
A FLEXIBLE CALIBRATION METHOD OF MULTIPLE KINECTS FOR 3D HUMAN
RECONSTRUCTION

Petar Palasek*, Heng Yang*, Zongyi Xu, Navid Hajimirza, Ebroul Izquierdo, Ioannis Patras

Queen Mary University of London
{p.palasek, heng.yang, zongyi.xu, n.hajimirza, ebroul.ezquierdo, i.patras}@qmul.ac.uk

ABSTRACT
In this paper, we present a simple yet effective calibration
method for multiple Kinects, i.e. a method that finds the rel-
ative position of RGB-depth cameras, as opposed to conven-
tional methods that find the relative position of RGB cameras.
We first find the mapping function between the RGB camera
and the depth camera mounted on one Kinect. With such a
mapping function, we propose a scheme that is able to esti-
mate the 3D coordinates of the extracted corners from a stan-
dard calibration chessboard. To this end, we are able to build
the 3D correspondences between two Kinects directly. This
simplifies the calibration to a simple Least-Square Minimiza-
tion problem with very stable solution. Furthermore, by using
two mirrored chessboard images on a thin board, we are able
to calibrate two Kinects facing each other, something that is
intractable using traditional calibration methods. We demon-
strate our proposed method with real data and show very accu-
rate calibration results, namely less than 7mm reconstruction
error for objects at a distance of 1.5m, using around 7 frames
for calibration.

Index Terms— Kinect, calibration

1. INTRODUCTION

The rapid development of social networks and communica-
tion technologies has moved an individual’s social life to a
whole new level. People communicate with their family and
friends instantly using social networks such as Facebook, ex-
changing messages even if they live far away from each other.
However, this kind of on-line interaction is just a substitute
for real human interactions. Although we can see and/or talk
with each other, we cannot feel each other because we are
not co-located in the same environment. Enabling people at
different locations to be able to collaborate and interact in a
general environment allows for a lot of different applications,
such as distant education or gaming. REVERIE [1] project
aims to build such an immersive online environment where
people can conduct realistic interpersonal communication and
interaction. REVERIE envisages an ambient, content-centric

* indicates authors contributed equally. This work was supported by the
European Integrating Project Reverie under Grant FP-287723.

Capturing Station
Kinect V2 - WIN 8.0

Capturing Station
Kinect V 2 - WIN 8.0

z

x

y
#K0

#K1

z
x

y

z

x
y

1.5m

Capturing Station
Kinect V2 - WIN 8.0

#K2

Fig. 1: Top view of the Kinects’ spatial arrangement.

Internet-based environment, highly flexible and secure, where
people can work, meet, participate in live events, socialize
and share experiences, as they do in real life, but without
time, space and affordability limitations. The reconstruction
of people’s 3D virtual counterparts in order to provide realis-
tic representations of people from different geographical lo-
cations is one of the core parts in REVERIE project.

The calibration problem has been studied in different
ways and many methods have been proposed. The most
widely used extrinsic calibration method is proposed by
Zhang et al. [2]. It uses a chessboard pattern captured at sev-
eral 2D views from different angles to estimate the relative
positions of two cameras, which is known as stereo calibra-
tion. It is mainly used for ordinary RGB cameras as it relies
on accurate extraction of the corners of the chessboard. [3]
also studied the problem of multiple Kinects calibration but
it also requires non-linear optimization. [4] also studied this
problem.

There are some common limitations of current methods.
First, since the 2D chessboard only provides 2D information,
it usually requires non-linear optimization for 3D pose esti-
mation. Therefore, a good calibration usually requires dozens
of frames. Second, in our 3D reconstruction setup shown in
Figure 2, the two cameras are facing each other, so each of

RAB , tAB

Fig. 2: Top view of two Kinects’ spatial arrangement.

the cameras sees only the front or the back side of the sub-
ject. In this case, the method of Zhang Z. [2] cannot be used
to estimate the extrinsic parameters of these two cameras at
the same time due to the invisibility of the common side of
the 2D board. Third, in order to achieve reconstruction with
Kinect sensors, the 3D point clouds from each separate view
need to be registered. The conventional method is designed
for calibration of RGB cameras, thus people use the relative
position between two RGB cameras to approximate that of the
depth camera, which will result in inaccuracy. In this paper
we aim to solve the above mentioned problems. We directly
find the 3D correspondences between different views based
on the corner extraction of the 2D chessboard. We demon-
strate our proposed method in a real calibration experiment
and obtain accurate calibration using only less than 10 frames.

2. METHOD

In order to calculate the relative position of two arbitrary
Kinects, we first need to get a set of point correspondences.
Traditional methods of stereo calibration like [2] use 2D cali-
bration patterns [5] where the calculation is based on the pla-
nar constraints and homography transformation. In this work
we propose a 3D correspondence-based method in which we
calibrate the 2D RGB image and the depth image of each
Kinect. Given the intrinsic parameters of both the RGB and
depth cameras, we can calibrate their relative position and
map each 3D point into the RGB image. Thus for each pixel
on the RGB image, we can approximately estimate the depth
information and further infer the 3D coordinates. Similar to
the traditional method, we capture a few image frames of the
calibration pattern and extract the locations of the correspond-
ing corners as shown in Fig. 4. Instead of using the 2D corre-
spondences, we infer the 3D coordinates of each point. This
allows us to create a set of pairs of 3D correspondences for
each Kinect depth camera system.

We describe how we find the 3D correpondences in Sec-
tion 2.1, the pose calculation in Section 2.2 and the 3D trans-

formation in 2.3.

2.1. 3D correspondences

Since we can easily extract chessboard corners from RGB im-
age (12 corners per image in our case), we assume we have
calibrated intrinsic parameters of the RGB and depth cameras
using traditional methods [2]. Here we assume both cameras
have no distortion. Thus we only need to find the focus length
and optical center. The dense mapping procedure is shown in
Algorithm 1.

Algorithm 1 Mapping the color pixels to the depth data.
1: procedure GET MAPPING(depth image, color image)
2: center x← depth image.width / 2
3: center y← depth image.height / 2
4: grid← mat[color image.height][color image.width]
5: for each depth pixel ∈ depth image do
6: c point← get corr color point(depth pixel)
7: if c point.color = not available then
8: continue
9: end if

10: z← depth pixel.value
11: x← (c point.x - center x) * z / flx
12: y← (c point.y - center y) * z / fly
13: grid[c point.y][c point.x].color = c point.color
14: grid[c point.y][c point.x].xyz = {x, y, z}
15: end for
16: return grid
17: end procedure

Once we get this dense mapping, we can find the 3D co-
ordinates of the extracted corners from the RGB images using
algorithm 2.

Algorithm 2 Getting world coordinates of 2D corner points.
1: procedure 3D CORNERS(depth image, color image)
2: grid← get mapping(depth image, color image)
3: 2D corners← find corners(color image)
4: 3D corners← []
5: for each corner ∈ 2D corners do
6: (x, y) = closest x y(grid, corner.x, corner.y)
7: 3D corners← 3D corners ∪ grid[y][x].xyz
8: end for
9: return 3D corners

10: end procedure
11: procedure CLOSEST X Y(grid, c x, c y)
12: return (x, y) such that (grid[y][x] 6= empty and
13: distance((x, y), (c x, c y)) is minimized)
14: end procedure

Left Right

Back

Person

RRL, tRL

RBL, tBL

Fig. 3: An illustration of the setup with three Kinects. The
right and the back Kinect were calibrated with respect to the
left Kinect, which was chosen as the reference device.

2.2. Pose estimation based on 3D correspondences

Assuming that we have n pairs of 3D correspondences
{(pi

A,p
i
B)}ni=1, where pi

A and pi
B are respectively the 3D

coordinates in camera A and camera B, the rigid transforma-
tion can be calculated by optimizing the following function:

argmin
RAB ,tAB

n∑
i

||RABp
i
A + tAB − pi

B ||2. (1)

In the next section we will demonstrate how we find the 3D
correspondences between two Kinects.

2.3. 3D transformation

After the real-world coordinates of the corners on the calibra-
tion pattern are acquired from both devices we are able to do
the transformation of the points from the coordinate system of
one device into the coordinate system of the other using the
calibrated rotation matrix R and translation vector t. If we
label a point in the coordinate system of Kinect A as pi

A, we
can transform it into the coordinate system of Kinect B as

pi
A′ = RABp

i
A + tAB . (2)

If we combine the rotation matrix and the translation vec-
tor into a 4× 4 transformation matrix

TAB =

[
RAB tAB

0 1

]
, (3)

and put the points from each Kinect into a 4× nA matrix

PA =

[
p0
A . . . pi

A . . . pnA

A

1 . . . 1 . . . 1

]
, (4)

the transformed points can be calculated as

PA′ = TABPA. (5)

We will denote the set of transformed points (set of all the
columns of matrix PA′ , without the last row) as PA′ .

By selecting one of the Kinect devices to be the reference
device, the previously described methods for calibrating two
Kinects can be used to get a 3D point cloud from three cam-
eras. The cameras were positioned in such a way that they
form a triangle (see Figure 3) and the left Kinect was chosen
as the reference device. The remaining two Kinects were then
calibrated with respect to the reference one, which allows the
point clouds from all three cameras to be transformed and
shown in the same coordinate system. If we denote the trans-
formation matrix from the right Kinect’s coordinate system
into the left Kinect’s coordinate system as TRL and the trans-
formation matrix from the back to the left Kinect coordinate
system as TBL, the final point cloud from all three Kinects is
calculated as

Pfinal = Pleft ∪ Pright′ ∪ Pback′ , (6)

where Pback′ = TBLPback and Pright′ = TRLPright rep-
resent the points transformed into the left Kinect’s coordinate
system.

3. EXPERIMENT

3.1. Implementation details

The reconstruction platform is a real-time and convenient way
to acquire accurate 3D human models by using three com-
modity Kinect V21 sensors. Compared to Kinect V1, Kinect
V2 offers greater precision, responsiveness, and intuitive ca-
pabilities to accelerate the development of applications that
respond to movement, gestures. The sensor’s color camera
is enhanced with full 1080p video that can be displayed in
the same resolution as the viewing screen. In addition, the
new version can now track as many as six people and the
tracked positions are more anatomically correct and stable.
The higher depth fidelity makes it significantly easier to cap-
ture smaller objects and to capture all objects with more de-
tail. Given their high precision performance, we rely on them
for creating the moving 3D human reconstruction.

The set-up of the system is shown in Figure 1. The human
subject can move freely in the center of a circle surrounded by
three Kinects. Each of the Kinects records the subject from
different viewpoints, followed by registration of these three
views. In order to merge the separate views, consisting of the
cloud points and color information, into a complete human
model, the critical step is to estimate the relative position be-
tween sensors in a flexible way. This is the main focus of this
paper.

The project was written in C++ and it uses the Kinect
SDK developed by Microsoft in order to communicate with
the devices. The SDK provides, among others, functions for

1http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx

acquiring data from the RGB and the depth camera, a method
for segmenting people from the background and a method
that maps the depth data to the color data (method denoted
as get corr color point in Algorithm 1). A method was de-
veloped to combine the color data with the depth informa-
tion, which allowed us to get real-world coordinates of cor-
ners on the calibration pattern extracted from the color cam-
era. Knowing the 3D coordinates of the corners made the
calculation of the previously discussed transformation matrix
used to transform points from one Kinect’s coordinate system
to the other’s possible. In this paper we only focus on the
calibration and illustrate how we acquire the 3D cloud points.
The 3D mesh reconstruction is beyond the scope of this paper.

3.2. Results

Since it is difficult to get the ground truth of R and t, we pro-
pose to evaluate the performance of our calibration method
by comparing the distance of the 3D points transformed from
camera A’s viewpoint to the viewpoint of camera B to the
3D points captured from camera B. We estimate R and t us-
ing only n captured frames, while the m corners from the re-
maining frames are used to calculate the calibration error. We
calculate the 3D location of an extracted chessboard corner
by the algorithm presented in Section 2.1. Then we transform
them from view (A) to view (B) using the caculated R and
t. The mean error between PA′ and PB is then calculated as
follows:

ME =
1

m

m∑
i

||pi
A′ − pi

B ||. (7)

The performance over the number of frames used for calibra-
tion is shown in Fig. 5. As we can see, using only around
7 frames, we are able to obtain an error level of 6mm for
right-left cameras and 7 mm for front and back cameras at a
distance of 1.5m, which is reasonably good for 3D human re-
construction. We show an example result reconstructed from
three Kinects in Fig. 6.

4. REFERENCES

[1] Julie Wall, Ebroul Izquierdo, Lemonia Argyriou, D Monaghan,
N OConnor, Steven Poulakos, Aljoscha Smolic, and Rufael
Mekuria, “Reverie: Natural human interaction in virtual im-
mersive environments,” in ICIP. 2014, IEEE.

[2] Zhengyou Zhang, “A flexible new technique for camera calibra-
tion,” T-PAMI, vol. 22, no. 11, pp. 1330–1334, 2000.

[3] Jean-Clement Devaux, Hicham Hadj-Abdelkader, and Etienne
Colle, “A multi-sensor calibration toolbox for kinect: Applica-
tion to kinect and laser range finder fusion.,” in 16th Interna-
tional Conference on Advanced Robotics, 2013.

[4] Shashwat Rohilla, A study of a multi-kinect system for human
body scanning, Ph.D. thesis, IIT Bombay, 2014.

[5] Richard Hartley and Andrew Zisserman, Multiple view geome-
try in computer vision, Cambridge university press, 2003.

(a) View from the left camera. (b) View from the back camera.

(c) Combined view from the back and left Kinects, with the detected corners
plotted on the calibration board displayed in 3D.

Fig. 4: Calibration of the back and left Kinect cameras.

0 5 10 15 20
Number of images used for estimation of R and t

4

6

8

10

12

14

16

Ca
lib

ra
tio

n
er

ro
r (

m
m

)

Average calibration error

back - left cameras
right - left cameras

Fig. 5: Calibration error vs. the number of frames used for
calibration.

Fig. 6: Example of 3D human reconstruction.

