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Abstract Analyzing unstructured group activities and
events in uncontrolled web videos is a challenging task due
to 1) the semantic gap between class labels and low-level
visual features, 2) the demanding computational cost given
high-dimensional low-level feature vectors and 3) the lack
of labeled training data. These difficulties can be overcome
by learning a meaningful and compact mid-level video rep-
resentation. To this end, in this paper a novel supervised
probabilistic graphical model termed relevance Restricted
Boltzmann Machine (ReRBM) is developed to learn a low-
dimensional latent semantic representation for complex ac-
tivities and events. Our model is a variant of the Restricted
Boltzmann Machine (RBM) with a number of critical exten-
sions: (1) sparse Bayesian learning is incorporated into the
RBM to learn features which are relevant to video classes,
i.e., discriminative; (2) binary stochastic hidden units in the
RBM are replaced by rectified linear units in order to better
explain complex video contents and make variational infer-
ence tractable for the proposed model; and (3) an efficient
variational EM algorithm is formulated for model parame-
ter estimation and inference. We conduct extensive experi-
ments on two recent challenging benchmarks: the Unstruc-
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tured Social Activity Attribute dataset and the Event Video
dataset. Experimental results demonstrate that the relevant
features learned by our model provide better semantic and
discriminative description for videos than a number of alter-
native supervised latent variable models, and achieves state
of the art performance in terms of classification accuracy
and retrieval precision, particularly when only a few labeled
training samples are available.

Keywords Representation learning · Video analysis ·
Restricted Boltzmann Machine · Sparse Bayesian learning

1 Introduction

Every minute, 100 hours of videos are uploaded to YouTube
– equivalent to 16 years of new content every day.1 In 2013,
Web videos account for 53% of internet downstream traf-
fic in North America, with YouTube alone around 19%.2

This growing volume of data demands effective and effi-
cient ways for users to organize, browse and search videos,
and for video-sharing website operators to provide accurate
personalised recommendations and sensibly targeted adver-
tisements. Commercial search engines rely on text meta-
data associated with videos, including the title, description
or tags provided by users; but these metadata are typically
sparse, incomplete, noisy and sometimes inconsistent with
the video content. As a result, automatic video analysis tech-
niques, such as classification, retrieval and recommendation,
have received increasing interests.

Among the great variety of videos uploaded on the inter-
net, the videos containing unstructured group activities (e.g.,
wedding reception and graduation ceremony) and events

1 http://www.youtube.com/t/faq
2 http://www.hollywoodreporter.com/news/video-accounts-53-

percent-internet-655203
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(a) Simple motions

(b) Structured activities

(c) Unstructured group activities and events

Fig. 1 Comparison of sample frames from different types of video datasets.

(e.g., anti-government demonstrations and riots) pose the ul-
timate challenge for automated video content analysis (see
Figure 1 (c)). These videos often feature a large number of
people and objects interacting with each other. Importantly
different type of videos may share many common charac-
teristics, e.g. wedding reception and graduation ceremony
all have large crowds gathering which act and sound sim-
ilarly, e.g. clapping hands. Videos containing unstructured
activities and events differ significantly from the videos tar-
geted by most existing techniques such as those in the KTH
(Schuldt et al, 2004), UCFSports (Rodriguez et al, 2008)
and UCF50 (Reddy and Shah, 2013) datasets. The videos
in these datasets are short clips containing simple motions
or structured activities without complex multi-object inter-
action (see Figure 1 (a) and (b)). In a conventional approach
designed for understanding the contents of these simpler
videos, the following steps are taken. First, a set of training
samples are labeled; second, low-level features are extracted
from the videos to form a representation; and finally, these
features are fed into a model for clustering, classification
or retrieval. However, this standard pipeline is not suitable
for analysing unstructured group activities or events. This
is due to the following problems: 1) The semantic gap be-
tween class labels and low-level visual features – complex
videos contain rich semantic concepts that cannot be repre-
sented directly and explicitly by the low-level features. 2)
The demanding computational cost given high-dimensional
low-level feature vectors – to represent complex video con-
tent, features of high dimensionality (e.g. thousands) are
typically extracted. This results in complex models with a
large number of model parameters and intractable learning

and inference algorithms for large scale problems. 3) The
lack of labeled training data – although there are literally un-
limited videos available online, few of them are adequately
labelled. Manually annotating large quantities of videos is
often infeasible. On the other hand, freely available tags as-
sociated with the videos are often sparse and noisy, some-
times even irrelevant to the video content.

To overcome these problems, recently semantic concept
(or attribute) based mid-level representations have been pro-
posed to bridge the semantic gap (Wei et al, 2011; Fu et al,
2012) and provide a compact representation. However, those
methods need human defined ontology and manual anno-
tation of attribute vectors for each class or instance, and
thus they scale poorly to large scale problems. Critically, at-
tribute based approaches (e.g. Fu et al, 2012) are principally
designed for transfer learning to recognize unseen classes
without any training data, i.e., zero-shot learning. For tasks
such as recognizing seen classes with labeled training sam-
ples, attributes have not yet proven convincingly as an effec-
tive alternative to low-level feature based representations.

In this paper, we aim to learn rather than handcraft a
mid-level representation of unstructured group activities and
events, in order to bridge the semantic gap and reduce the
dimensionality of the visual representation. Critically, these
learned mid-level features need to be discriminative, that is,
relevant to the video classes, so as to facilitate different tasks
such as classification and retrieval. Such a mid-level feature
can be learned as latent variables in a probabilistic graphi-
cal model. Latent feature representation learned by proba-
bilistic graphical models have been widely used to analyze
text, images and videos. Examples of such models include
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topic models (Zhu et al, 2012; Rasiwasia and Vasconcelos,
2013; Wang and Mori, 2009) and Restricted Boltzmann Ma-
chines (Salakhutdinov and Hinton, 2009; Larochelle et al,
2012; Taylor et al, 2010). The representations in these mod-
els are constructed purely from data without the need for
human intervention, thus are more scalable. However, how
to learn more discriminative and compact latent represen-
tations from complex video content remains an unsolved
problem (see Section 1.1). In particular, unstructured group
activities and events captured by amateurs using hand-held
camcorders or mobile phones often contain some distracting
visual patterns such as camera jitters and background move-
ments and noise. A useful mid-level representation must be
able to filter out these patterns and keep the more meaning-
ful ones that can be used to discriminate different activity
and event classes.

To this end, a novel hierarchal probabilistic graphi-
cal model is proposed to discover compact and discrim-
inative/relevant mid-level representations for unstructured
group activities and events in videos. The model, termed rel-
evance Restricted Boltzmann Machine (ReRBM), is based
on the Restricted Boltzmann Machine (RBM) (Smolensky,
1986) which is an undirected graphical model with a bipar-
tite structure. Compared to the standard RBM, our ReRBM
has a built-in relevance measure based on sparse Bayesian
learning (Tipping, 2001) to make the learned mid-level fea-
tures more discriminative and compact. In addition, binary
stochastic hidden units in the RBM are replaced by rectified
linear units (Nair and Hinton, 2010), which allows each unit
to express more information for better explaining video data
containing complex content and also makes variational in-
ference tractable for the proposed model. By employing a
simple quadratic bound on the log-sum-exp function (Bohn-
ing, 1992), an efficient variational EM algorithm is devel-
oped for parameter estimation and inference. Furthermore,
our model can be easily extended to accommodate multi-
modal feature inputs (e.g. visual and audio) necessary for
modeling complex video contents.

1.1 Related work

Low-level features for video representation – The prob-
lem of extracting video features has been extensively stud-
ied on standard datasets ranging from the simplest KTH to
the more realistic UCF50. One of the earliest works on de-
signing video low-level features are (Laptev, 2005; Laptev
et al, 2008) which proposed to detect space-time interest
points and aggregated their descriptors into a compact rep-
resentation based on bag-of-words. Wang et al (2011) inves-
tigated dense trajectories based representation for videos.
Recently, Gopalan (2013) proposed a joint sparsity-based
representation by decomposing a video sequence into that
observed by spatially/temporally distributed receivers. Till

now, most of the existing works (Turaga et al, 2008) were
focused on controlled and well-structured videos contain-
ing limited contents (e.g., clean background and little cam-
era motions). They follow the standard pipeline, i.e., firstly
designing and extracting low-level features and then lean-
ing classifiers. However this pipeline is unsuitable for un-
derstanding unstructured group activities and events due to
the semantic gap problem mentioned earlier. Different from
these approaches, our method uses the low-level feature rep-
resentation as model input and learns both a mid-level fea-
ture representation and a classifier in a single model.

Semantic attributes for video representation – Compared
with simple videos, unstructured group activity and event
analysis in uncontrolled videos has been much less explored.
As mentioned earlier, these complex videos pose a num-
ber of significant challenges that are beyond the capabil-
ities of most existing approaches using low-level feature
representations. In order to address these challenges, re-
cently semantic concepts (or attributes) have been studied
as a mid-level representation, which are originally proposed
for static images (Lampert et al, 2009, 2013; Farhadi et al,
2009), and then extended for videos (Liu et al, 2011; Wei
et al, 2011). Yang and Shah (2012) attempted to learn data-
driven concepts from multi-modality video data in an unsu-
pervised manner. Izadinia and Shah (2012) considered mod-
elling co-occurrence relations among the low-level events in
a graph to detect complex events, which require extra la-
beling for the low-level events. Most relevant to our work
is a recent work that learns video attributes to analyze un-
structured group activities (Fu et al, 2012), wherein a semi-
latent attribute space was introduced, consisting of human-
defined attributes, class-conditional and background latent
attributes. Besides, an extended Latent Dirichlet Allocation
(LDA) (Blei et al, 2003) was formulated to model those at-
tributes as latent topics. Different from (Fu et al, 2012), our
approach is weakly supervised and automatically discovers
a set of discriminative latent feature representations without
human annotated attributes. In addition, our approach differs
significantly from these semantic attribute based approaches
in that (1) we do not require human defined ontologies, and
(2) mid-level representation and classifier are learned jointly
in a single model.

Probabilistic graphical models – Our relevance Restricted
Boltzmann Machine (ReRBM) is one type of probabilis-
tic graphical models (PGMs). PGMs have been employed
before for learning mid-level latent feature representations.
Most existing models are either unsupervised, or super-
vised but unable to learn discriminative latent represen-
tations (Rasiwasia and Vasconcelos, 2013). The ones that
are most closely related to our model are the maximum
entropy discrimination LDA (MedLDA) (Zhu et al, 2012)
and the supervised Restricted Boltzmann Machines (sRBM)
(Larochelle et al, 2012), both of which have been success-
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fully applied to document semantic analysis. MedLDA in-
tegrates the max-margin learning and hierarchical directed
topic models by optimizing a single objective function with
a set of expected margin constraints. MedLDA tries to es-
timate parameters and find latent topics in a max-margin
sense, which is different from our model that relies on the
principle of automatic relevance determination (Neal, 1995).
sRBM also uses class labels to learn some discriminative
features. Instead of point estimation of classifier parameters
in sRBM, our proposed model learns a sparse posterior dis-
tribution over parameters within a Bayesian paradigm. This
makes the learned features more compact and discrimina-
tive, resulting in better classification and retrieval perfor-
mance as demonstrated by our experiments (see Section 4).
Sparse Bayesian learning – It is a general probabilistic
framework to obtain sparse solutions of parameters in re-
gression and classification tasks. It has been used in the
Relevance Vector Machine (Tipping, 2001) to discern basis
functions which are relevant to good predictions. Here we
use sparse Bayesian learning to select latent features related
to classes for semantic representation learning.
Representation learning – Our work is also related to the
concept of feature learning or representaiton learning (Ben-
gio et al, 2012). In particular, our model extends Restricted
Bolzmann Machines (RBMs) which have been explored
recently for representation learning (Ranzato and Hinton,
2010; Sun et al, 2013). Apart from extending RMBs to an
undirected and directed hybrid graph model, and introduc-
ing sparse Bayesian learning, a key extension is to replace
the binary stochastic hidden units in the RBM with real val-
ued ones via rectified linear units (Nair and Hinton, 2010),
which allows each unit to express more information for bet-
ter explaining complex video data. The limitations of a stan-
dard RBM caused by its binary visible and hidden units have
long been acknowledged and efforts have been injected to
generalize it to real value data for the visible units (Hinton
and Salakhutdinov, 2006; Ranzato and Hinton, 2010). Nev-
ertheless, no attempt has been made to generalise the binary
hidden units to real values so far. Recently RBMs have been
extended for deep learning, either by joint training of multi-
ple layers of hidden units as in Deep Boltzmann Machines
(Desjardins et al, 2012), or by using them as the final lay-
ers on top of a deep convolutional neural network (Hinton
et al, 2006; Sun et al, 2013) which take the raw image data
as input. Our work is orthogonal to these works and can be
integrated into these deep representation learning architec-
tures.

1.2 Contributions

Our main contributions include: 1) We propose a unified
framework based on a single hierarchal model to learn both
mid-level video representation and classifier jointly. 2) By

leveraging labels associated with videos and sparse priors
on classifier weights, we extend the standard RBMs to ex-
tract meaningful and compact latent features which are more
suitable for complex video classification and retrieval. 3)
We develop an efficient learning and inference algorithm for
the proposed model via variational inference. 4) We con-
duct extensive experiments to demonstrate that the latent
feature representation learned by the proposed model has
more discriminative power resulting in better classification
and retrieval performance compared with other state of the
art alternatives. A preliminary version of the work was re-
ported in (Zhao et al, 2013). In comparison with (Zhao et al,
2013), apart from more comprehensive description, analysis
and experiments, this paper formulates a more generalized
latent variable model based on the RBM for representation
learning, which is not confined to the topic model as dis-
cussed in (Zhao et al, 2013).

The rest of this paper is organized as follows. The back-
ground knowledge is briefly introduced in Section 2. The
proposed model is presented in Section 3. Experimental
evaluations are presented in Section 4. Finally, Section 5
concludes this paper and discusses the future work.

2 Background

2.1 Restricted Boltzmann Machine and its variants

A Restricted Boltzmann Machine (RBM) is an undirected
graphical model which can be used to learn features unsu-
pervised from input data and has been successfully applied
to a variety of represenation learning tasks involving high
dimensional data such as images and videos (Hinton and
Salakhutdinov, 2006; Ranzato and Hinton, 2010). As shown
in Figure 2, the standard RBM has a two-layer architecture,
in which the bottom layer represents stochastic visible units
v ∈ {0, 1}D and the top layer represents stochastic hidden
units h ∈ {0, 1}F , that is, both sets of variables are binary.
The energy function of the state {v,h} is defined as follows:

E(v,h; θ) = −
D∑
i=1

F∑
j=1

Wijvihj−
D∑
i=1

aivi−
F∑
j=1

bjhj , (1)

where θ = {W,a,b}, Wij is the weight connected with vi
and hj , ai and bj are the bias terms of visible and hidden
units respectively. The joint distribution over the visible and
hidden units is given by:

P (v,h; θ) =
1

Z(θ)
exp(−E(v,h; θ)),

Z(θ) =
∑
v

∑
h

exp(−E(v,h; θ)), (2)

where Z(θ) is the partition function.
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Fig. 2 Restricted Boltzmann Machine: a two-layer undirected graphi-
cal model. Visible/observed nodes are shaded.

Some generalizations to binary visible units in the star-
dard RBM have been proposed to improve the applicability
of the model. When the input data are word count vectors,
the Replicated Softmax model (Salakhutdinov and Hinton,
2009) (an undirected topic model) can be used for model-
ing, which is a family of RBMs that share parameters. Let
a multinomial visible unit v ∈ NN represent a word count
vector (N is the size of the vocabulary). Then the energy
function of the state {v,h} is defined by:

E(v,h; θ) = −
N∑
i=1

F∑
j=1

Wijvihj −
N∑
i=1

aivi −K
F∑
j=1

bjhj ,

(3)

where K =
∑
i vi is the total number of words in a docu-

ment and h can be seen as latent topics. It has been shown
that the Replicated Softmax model outperforms directly
probabilistic latent topic models such as Latent Direchlet
Allocation (LDA) in terms of both the generalization perfor-
mance and the retrieval accuracy on text datasets (Salakhut-
dinov and Hinton, 2009).

The Gaussian RBM (Hinton and Salakhutdinov, 2006)
can be used to model real-valued input data. Let v ∈ RD be
real-valued visible units. The energy function is defined by:

E(v,h; θ) =

−
D∑
i=1

F∑
j=1

1

σi
Wijvihj −

D∑
i=1

(vi − ai)2

2σ2
i

−
F∑
j=1

bjhj , (4)

where σ is the standard deviation of the input data. We shall
show later that how the descriptive power of the learned fea-
tures can be enhanced in our model by replacing the binary
hidden units with real-valued ones.

Unlike directed graphical models, the conditional distri-
bution of the RBM over hidden units is factorial due to its
special bipartite graph structure. Thus the inference of la-
tent variables is straightforward. However, exact maximum
likelihood learning in this model is still intractable. The con-
trastive divergence (Hinton, 2002) approximation is often
used to estimate model parameters in practice.

2.2 Low-level video representation

Our model takes low-level feature representations as the
model inputs. We consider local keypoint features (such
as scale-invariant feature transform (SIFT) (Lowe, 2004),
spatial-temporal interest points (STIP) (Laptev, 2005) and
mel-frequency cepstral coefficients (MFCC) (Logan, 2000))
which capture static visual appearance, space-time visual
appearance and audio features respectively. Then we en-
code them into fixed-dimensional representation vectors.
The three types of low-level features are used to form a
fixed-length vector for each modality. Two encoding ap-
proaches are adopted respectively: bag-of-words (Sivic and
Zisserman, 2003) and MultiVLAD (Jegou and Chum, 2012).
The bag-of-words (BoW) representation quantizes local fea-
tures into visual words using k-means clustering and has
been used widely for visual recognition and search (Philbin
et al, 2007). The MultiVLAD representation is a variant of
the Fisher vector (Perronnin et al, 2010). Two VLAD de-
scriptors obtained from two different codebooks are con-
catenated, and power-law normalization and PCA are ap-
plied to the vector as in (Perronnin et al, 2010). These two
encoding approaches differ in that one produces discrete
model and the other real-valued. Consequently, we use the
Replicated Softmax model for modeling the discrete BoW
vectors and the Gaussian RBM for the real-valued Multi-
VLAD vectors.

3 Models and Algorithms

3.1 Problem description

We aim to learn both a mid-level video representation and a
classifier by extending the standard RBM model described
in Section 2.1. Given a video dataset D = {(vm, ym)}Mm=1

with class labels y ∈ {1, ..., C}, each video is represented as
a N-dimensional low-level feature vector v. Consider mod-
eling videos using a Restricted Boltzmann Machine and let t
denote a F-dimensional latent feature representation of one
video. Through training this model, we can map the low-
level feature vector v to the vector t which can be seen
as a mid-level video representation. The learned representa-
tion is expected to bridge the semantic gap and improve the
effectiveness and efficiency of classification and retrieval.
Next we formulate our model with the discrete BoW vectors
as model input and omit the case where the real-valued Mul-
tiVLAD vectors are used because the formulation is similar.

3.2 Relevance Restricted Boltzmann Machine

The Relevance Restricted Boltzmann Machine (ReRBM) is
formulated by integrating sparse Bayesian learning into a
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Restricted Boltzmann Machine. The main idea is to jointly
learn discriminative latent features as mid-level video rep-
resentations and a sparse discriminant function as a video
classifier.

Let tr = [tr1, ..., t
r
F ] denote a F-dimensional mid-level

relevance feature vector of one video. According to Equa-
tion 2, the marginal distribution over the BoW vector v is
given by:

P (v; θ) =
1

Z(θ)
∑
tr

exp(−E(v, tr; θ)). (5)

Since videos contain more complex and diverse con-
tents than documents, especially when featuring unstruc-
tured group activities and events, binary mid-level features
learned by the hidden units in the standard RBM are not suf-
ficient to represent the video content. We thus replace the bi-
nary hidden units with rectified linear units which are given
by:

trj = max(0, tj),

P (tj |v; θ) = N (tj |Kbj +
N∑
i=1

Wijvi, 1), (6)

where N (·|µ, τ) denotes a Gaussian distribution with mean
µ and variance τ . The rectified linear units taking nonnega-
tive real values can preserve information about relative im-
portance of features. Meanwhile, the rectified Gaussian dis-
tribution is semi-conjugate to the Gaussian likelihood. This
facilitates the development of variational algorithms for pos-
terior inference and parameter estimation, which will be de-
tailed in Section 3.4.

Let η = {ηy}Cy=1 denote a set of class-specific weight
vectors. We define the discriminant function as a linear com-
bination of features: F (y, tr,η) = ηTy t

r. The conditional
distribution of classes is defined as follows:

P (y|tr,η) = exp(F (y, tr,η))∑C
y′=1 exp(F (y

′, tr,η))
, (7)

and the classifier is given by:

ŷ = argmax
y∈C

E[F (y, tr,η)|v]. (8)

The weights η are given a zero-mean Gaussian prior:

P (η|α) =
C∏
y=1

F∏
j=1

P (ηyj |αyj) =
C∏
y=1

F∏
j=1

N(ηyj |0, α−1yj ),

(9)

where α = {αy}Cy=1 is a set of hyperparameter vectors, and
each hyperparameter αyj is assigned independently to each

y

t
r

v

ηc

αc

C

W

. . .

Fig. 3 Relevance Restricted Boltzmann Machine: a hybrid graphical
model. The undirected part models the marginal distribution of low-
level feature vectors v and the directed part models the conditional
distribution of class labels y given latent features tr by using a hierar-
chical prior on weights η.

weight ηyj . The hyperpriors over α are given by Gamma
distributions:

P (α) =

C∏
y=1

F∏
j=1

P (αyj) =

C∏
y=1

F∏
j=1

Γ (c)
−1
dcαc−1yj e−dα,

(10)

where Γ (c) is the Gamma function. To obtain broad hyper-
priors, we set c and d to small values, e.g., c = d = 10−4.
This hierarchical prior, which is a type of automatic rele-
vance determination prior (Neal, 1995), enables the poste-
rior probability of the weights η to be concentrated at zero
and thus effectively to switch off the corresponding latent
features that are considered to be irrelevant to classification.
And we refer to those features corresponding to non-zero
weights as “class-relevant” features which are discrimina-
tive with respect to different video classes.

Finally, given the parameters θ, ReRBM defines the joint
distribution:

P (v, y, tr,η,α; θ) = P (v; θ)P (y|tr,η)
( F∏
j=1

P (tj |v; θ)
)

×
( C∏
y=1

F∏
j=1

P (ηyj |αyj)P (αyj)
)
. (11)

Figure 3 illustrates ReRBM as a hybrid graphical model
with undirected and directed edges. The undirected part
models the marginal distribution of video data and the di-
rected part models the conditional distribution of classes
given latent features.
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3.3 Learning and Inference

To learn a ReRBM, we wish to find parameters θ =

{W,a,b} that maximize the log likelihood on D:

logP (D; θ) =

log

∫
P ({vm, ym, trm}Mm=1,η,α; θ)d{tm}Mm=1dηdα,

(12)

and learn the posterior distribution:

P (η,α|D; θ) = P (η,α,D; θ)/P (D; θ). (13)

3.3.1 Variational bounds

Since exactly computing P (D; θ) is intractable, we employ
variational methods to optimize a lower bound L on the log
likelihood by introducing a variational distribution to ap-
proximate P ({tm}Mm=1,η,α|D; θ):

Q({tm}Mm=1,η,α) =

( M∏
m=1

F∏
j=1

q(tmj)

)
q(η)q(α). (14)

Using the Jensens inequality, we have:

logP (D; θ) >
∫
Q({tm}Mm=1,η,α)

× log
P ({vm, ym, trm}Mm=1,η,α; θ)

Q({tm}Mm=1,η,α)
d{tm}Mm=1dηdα,

(15)

where

P ({vm, ym, trm}Mm=1,η,α; θ) =( M∏
m=1

P (vm; θ)P (ym|trm,η)P (tm|vm; θ)

)
P (η|α)P (α).

Note that P (ym|trm,η) is not conjugate to the Gaussian
prior, which makes it intractable to compute the variational
factors q(η) and q(tmj). Here we use a quadratic bound on
the log-sum-exp (LSE) function (Bohning, 1992) to derive a
further bound. We rewrite P (ym|trm,η) as follows:

P (ym|trm,η) = exp(yTmTr
mη− lse(Tr

mη)), (16)

where Tr
mη = [(trm)Tη1, ..., (t

r
m)TηC−1], ym = I(ym =

c) is the one-of-C encoding of class label ym and lse(x) ,
log(1 +

∑C−1
y′=1 exp(xy′)) (we set ηC = 0 to ensure identi-

fiability). In (Bohning, 1992), the LSE function is expanded
as a second order Taylor series around a point ϕ, and an up-
per bound is found by replacing the Hessian matrix H(ϕ)

with a fixed matrix A = 1
2 [IC∗ −

1
C∗+11C∗1

T
C∗ ] such that

A � H(ϕ), where C∗ = C−1, IC∗ is the identity matrix of

size M ×M and 1C∗ is a M -vector of ones. Thus, similar
to (Murphy, 2012), we have:

logP (ym|trm,η) > J(ym, t
r
m,η,ϕm) =

yTmTr
mη− 1

2
(Tr

mη)TATr
mη + sTmTr

mη− κi, (17)

sm = Aϕm − exp(ϕm − lse(ϕm)), (18)

κi =
1

2
ϕ
T
mAϕm − ϕ

T
m exp(ϕm − lse(ϕm)) + lse(ϕm),

(19)

where ϕm ∈ RC∗ is a vector of variational parameters. Sub-
stituting J(ym, trm,η,ϕm) into Equation 11, we can obtain
a further lower bound:

logP (D; θ) > L(θ,ϕ) =
M∑
m=1

logP (vm; θ)

+ EQ
[ M∑
m=1

J(ym, t
r
m,η,ϕm) +

M∑
m=1

logP (tm|vm; θ)

+ logP (η|α) + logP (α)−Q({tm}Mm=1,η,α)

]
. (20)

Now we have converted the problem of model learning into
maximizing the lower bound L(θ,ϕ) with respect to the
variational posteriors q(η), q(α) and q(t) = {q(tmj)} as
well as the parameters θ and ϕ = {ϕm}. We can give some
insights into the objective function L(θ,ϕ): the first term is
exactly the marginal log likelihood of video data and the sec-
ond term is a variational bound of the conditional log like-
lihood of classes. Thus maximizing L(θ,ϕ) is equivalent to
finding a set of model parameters and latent features which
could fit video data well and simultaneously make good pre-
dictions for the class each video belongs to.

3.3.2 Variational inference

Due to the conjugacy properties of the chosen distributions,
we can directly calculate free-form variational posteriors
q(η), q(α) and parameters ϕ:

q(η) = N (η|Eη,Vη), (21)

q(α) =

C∏
y=1

F∏
j=1

Gamma(αyj |ĉ, d̂yj), (22)

ϕm = 〈Tr
m〉q(t)Eη, (23)
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where 〈·〉q denotes an exception with respect to the distribu-
tion q and

Vη =

( M∑
m=1

〈
(Tr

m)TATr
m

〉
q(t)

+ diag〈αyj〉q(α)

)−1
,

(24)

Eη = Vη

M∑
m=1

〈
(Tr

m)T
〉
q(t)

(ym + sm), (25)

ĉ = c+
1

2
, (26)

d̂yj = d+
1

2

〈
η2yj
〉
q(η)

. (27)

For q(t), the calculation is not directly implemented because
of the rectification. Inspired by (Harva and Kaban, 2007), we
have the following free-form solution:

q(tmj) =
ωpos
Z
N (tmj |µpos, σ2

pos)u(tmj)

+
ωneg
Z
N (tmj |µneg, σ2

neg)u(−tmj), (28)

where u(·) is the unit step function. See Appendix A for
a detailed descripton on how the parameters of q(tmj) are
estimated.

Given θ, through repeating the updates of Equations 18-
20 and 23 to maximizeL(θ,ϕ), we can obtain the variational
posteriors q(η), q(α) and q(t).

3.3.3 Parameter estimation

After the variational posteriors q(η), q(α) and q(t) are com-
puted, we estimate model parameters θ = {W,a,b} by
using stochastic gradient descent to maximize L(θ,ϕ). The
derivatives of L(θ,ϕ) with respect to θ are given by:

∂L(θ,ϕ)
∂Wij

=
〈
vit

r
j

〉
data
−
〈
vit

r
j

〉
model

+
1

M

M∑
m=1

vmi

(
〈tmj〉q(t) −

N∑
i=1

Wijvmi −Kbj
)
, (29)

∂L(θ,ϕ)
∂ai

= 〈vi〉data − 〈vi〉model, (30)

∂L(θ,ϕ)
∂bj

=
〈
trj
〉
data
−
〈
trj
〉
model

+
K

M

M∑
m=1

(
〈tmj〉q(t) −

N∑
i=1

Wijvmi −Kbj
)
, (31)

where the derivatives of
∑M
m=1 logP (vm; θ) are the same

as those in (Salakhutdinov and Hinton, 2009).

This leads to the following variational EM algorithm. E-
step: Calculate variational posteriors q(η), q(α) and q(t).
M-step: Estimate parameters θ = {W,a,b} through max-
imizing L(θ,ϕ). These two steps are repeated until L(θ,ϕ)
converges. The entire learning procedure is summarized in
Algorithm 1. After the learning is completed, the prediction
for new videos can be easily obtained via Equation 8:

ŷ = argmax
y∈C

〈
η
T
y

〉
q(η)
〈tr〉p(t|v;θ). (32)

According to Equation 6, the computational complexity for
the inference of latent features t is O(NF ). Thus the com-
putation for the prediction is O(NF 2) (typically F � N )
which is linearly proportional to the dimensionality of the
model input.

Algorithm 1 Variational EM for learning ReRBM
Input:

Video dataset D = {(vm, ym)}Mm=1

Output:
Model parameters θ = {W,a,b}
Variational posteriors q(η), q(α) and q(t)

1: Initialize θ
2: repeat
3: for m = 1 to M do
4: Update q(tm) as in Equation 28
5: Update ϕm as in Equation 23
6: end for
7: Update q(α) as in Equation 22
8: Update q(η) as in Equation 21
9: Optimize W, a and b with stochastic gradient descent using

Equation 29-31
10: until convergence

3.4 Extension to multiple modalities

The formulation so far is limited to a single BoW vector
from a single modality. Single-modality features are usu-
ally limited for videos containing complicated content. In
particular, both visual and audio features are often neces-
sary. For example, the tune of the happy birthday song is
a very useful feature for distinguishing a birthday party
from a normal dinner party. Therefore in this work, in ad-
dition to motion features typically used for video represen-
tation, static appearance and auditory features are also used
as described in Section 2.2. More specifically, to sufficiently
characterise complex videos, we consider using features of
three modalities, i.e., SIFT, STIP and MFCC. Accordingly
we extend ReRBM to Multimodal ReRBM to discover a
unified mid-level feature representation from multi-modal
low-level feature inputs. As shown in Figure 4, our Multi-
modal ReRBM uses the undirected part to model the multi-
modal data v = {vmodl}Ll=1. Consequently, its joint distribu-
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tion can be given by replacing P (v; θ) in Equation 11 with∏L
l=1 P (v

modl; θmodl).

y

t
r

BoSIFT

W3

ηc

αc

C

W1

W2
BoSTIP

BoMFCC

v

Fig. 4 Multimodal ReRBM: the extension of ReRBM for modeling
multi-modal input data including bag-of-SIFT, bag-of-STIP and bag-
of-MFCC.

For learning Multimodal ReRBM, we just need to ad-
ditionally calculate the gradients of θmodl for each modality
l and estimate θmodl with stochastic gradient descent in the
M-step while other updating rules remain unchanged.

4 Experiments

4.1 Datasets and settings

For evaluating the performance of the learned mid-level
video representation, we test our models on the Unstruc-
tured Social Activity Attribute (USAA) dataset3 for group
activity recognition and the Event Video (EVVE) dataset4

for event retrieval. We also present quantitative and qualita-
tive comparisons with other supervised latent variable mod-
els (namely MedLDA and sRBM) and some other baselines
when appropriate on these datasets. In all experiments, the
contrastive divergence is used to efficiently approximate the
derivatives of the marginal log likelihood and the unsuper-
vised training on RBM is used to initialize θ.

The USAA dataset consists of 8 semantic classes of so-
cial activity videos collected from the Internet. The eight
classes are: birthday party, graduation party, music perfor-
mance, non-music performance, parade, wedding ceremony,
wedding dance and wedding reception. The dataset contains
a total of 1466 videos and approximate 100 videos per-class
for training and testing respectively. These videos last from
20 seconds to 8 minutes with an average duration of 3 min-
utes and contain very complex and diverse contents, which
brings significant challenges for content analysis. Some ex-
ample video frames are shown in Figure 5. For each video,
three local features (SIFT, STIP and MFCC) are extracted
and result in three bag-of-words vectors (5000 dimensions

3 http://www.eecs.qmul.ac.uk/˜yf300/USAA/download
4 http://pascal.inrialpes.fr/data/evve

for SIFT and STIP, and 4000 dimensions for MFCC) using
a soft-weighting clustering algorithm.

The EVVE dataset contains 2375 database videos (1123
negatives which do not belong to any events) and 620
query videos which were returned to 13 different queries
on YouTube. The total length of the videos is 166 hours.
Different from event detection tasks which aim to recognize
video event categories, it is dedicated to the retrieval of par-
ticular events, as illustrated in Figure 6. The query phrases
include “Austerity riots in Barcelona in 2012”, “Concert of
Die toten Hosen in 2012” and “Egyptian revolution: Tahrir
Square demonstrations”, etc. EVVE also includes some neg-
ative samples which are relevant events but they took place
not in the same place or time, such as riots occurring in
different places but not in Barcelona 2012. All videos are
sampled at a fixed rate of 15 fps and resized to a maximum
of 120k pixels. Square-root SIFT features are extracted for
each frame on a dense grid. Then the SIFT features of a
frame are encoded into a MultiVLAD vector. For character-
izing the entire video, the Mean-MultiVLAD (MMV) repre-
sentation is obtained by averaging all the frame descriptors.

4.2 Experiments on group activity recognition

4.2.1 Comparisons against alternative latent variable
models

To verify the discriminative power of the class-relevant fea-
tures learned by our ReRBM, we present quantitative classi-
fication results compared with other supervised latent vari-
able models namely MedLDA (Zhu et al, 2012) and sRBM
(Larochelle et al, 2012) in the case of different modalities
on the USAA dataset. We have tried our best to tune these
compared models and report the best results.

Figure 7 shows the classification accuracy of different
models for three single-modal local features: SIFT, STIP
and MFCC. We test different latent feature dimensions (cor-
responding to the number of hidden units/variables in dif-
ferent models) from 20 to 60. We can see that ReRBM
achieves higher classification accuracy than MedLDA and
sRBM in all cases regardless what low-level feature modal-
ity or latent feature dimension is used. This result demon-
strates that ReRBM can find more discriminative represen-
tations for complex video data through leveraging sparse
Bayesian learning to incorporate class label information into
representation learning. The sparsity of classifier weights ef-
fectively selects latent features that are relevant to the class
labels. The performance of ReRBM in the case of high di-
mensional mid-level feature representation is slightly worse
than the case of the low dimension because no more class-
relevant features are learned when the dimension of the la-
tent features continues to increase. Note that the features
learned from SIFT perform better than those learned from
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(a) Wedding Dance (b) Birthday Party (c) Graduation Ceremony

Fig. 5 Example videos of the “Wedding Dance”, “Birthday Party” and “Graduation Ceremony” classes from the USAA dataset.

(a) Austerity riots in Barcelona in 2012

(b) Concert of Die toten Hosen in 2012

(c) Egyptian revolution: Tahrir Square demonstrations

Fig. 6 Example videos of the events “Austerity riots in Barcelona in 2012”, “Concert of Die toten Hosen in 2012” and “Egyptian revolution: Tahrir
Square demonstrations” from the EVVE dataset.

the other two local features which suggests that scene and
object information are more useful for understanding com-
plex videos.

4.2.2 Comparisons against other baselines

We compare Multimodal ReRBM with the baselines in (Fu
et al, 2012) which reports the state of the art results on the
USAA dataset. More specifically, we compare ReRBM with
three models in (Fu et al, 2012) given 10 and 100 instances
per class respectively for model training. They are:

– Direct: Direct SVM or KNN classification on raw video
BoW vectors (14000 dimensions obtained by concate-
nating the SIFT, STIP and MFCC BoW vectors). SVM
is used for experiments with 100 instances per class and
KNN with 10 instances.

– SVM-UD+LR: SVM attribute classifiers are first
trained for the 69 human-defined attributes, and then a
logistic regression (LR) classifier is trained using the

attribute classifier outputs as mid-level video represen-
tation. Note that additional annotations in the form of
human-defined instance-level attribute vectors are used
in this model, giving it a unfair advantage over our
ReRBM.

– SLAS+LR: Semi-latent attribute space is learned, and
then a LR classifier is trained using the aggregation of 69
human-defined, 8 class-conditional and 8 latent topics as
mid-level video representation. Again additional manual
annotations of instance-level attributes are used.

In addition, our ReRBM is compared with another base-
line not reported in (Fu et al, 2012). In this baseline, mul-
timodal features extracted by Replicated Softmax, another
undirected topic model, are connected together as video rep-
resentations, followed by learning a multi-class SVM clas-
sifier from the representations (Tsochantaridis et al, 2004).
This baseline is denoted as RS+SVM. Similar to SVM-
UD+LR and SLAS+LR, this is a two-staged approach with
the tasks of mid-level representation learning and classifier
learning tackled separately, in contrast to our unified model.
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Fig. 7 Classification accuracy of different supervised latent variable models for single-modal local features (a) SIFT, (b) STIP and (c) MFCC.

Table 1 Classification accuracy of different methods for multimodal features.

Method Multimodal ReRBM RS+SVM Direct SVM-UD+LR SLAS+LR

Accuracy
(%)

100 Inst

60-D 60.22 54.60

66.0
(14000-D)

65.0
(69-D)

65.0
(85-D)

90-D 62.69 56.10
120-D 63.79 57.34
150-D 64.06 59.26
180-D 64.72 60.63

10 Inst

60-D 38.68 23.73

29.0
(14000-D)

37.0
(69-D)

40.0
(85-D)

90-D 41.29 28.53
120-D 43.48 30.59
150-D 43.72 33.47
180-D 44.99 35.94

The results are shown in Table 2. Here the dimension-
ality of latent features for each modality is assumed to be
the same, ranging from 20 to 60 (totally from 60 to 180).
When the labeled training data is plentiful (100 instances per
class), Table 2 shows that the classification performance of
our Multimodal ReRBM is similar to the three baselines in
(Fu et al, 2012) but clearly better than RS+SVM. Note that
both SVM-UD+LR and SLAS+LR use human defined con-
cepts which need additional label information and thus has
an unfair advantage. In contrast, our model does not require
an attribute ontology and manual annotation of attribute vec-
tors, and is thus able to be better generalized to large scale
problem. Since the Direct method (with original dimensions
of low-level feature representations) performs strongly, this
result suggests that learning mid-level representations are
not necessarily useful given sufficient training data. How-
ever, the Direct method is with high dimension, and will cost
huge computation in practical applications.

When considering the classification scenario where only
a very small number of training data are available (10 in-
stances per class), Multimodal ReRBM outperforms all four
baselines with the number of latent features more than 90.
Again this result demonstrates the importance of learning

sparse and discriminative mid-level features. In particular,
the sparsity of the mid-level features learned by ReRBM can
effectively prevent overfitting to specific training instances
given limited training data. It is also noted that our model
outperforms RS+SVM in both cases, which demonstrates
the advantage of jointly learning latent features and classifier
weights through sparse Bayesian learning over a two-staged
approach.

4.2.3 Further evaluation on learned features

To validate the sparsity of the class-relevant features learned
by ReRBM, Figure 8(a) illustrates the degree of relevance
between features and two different classes. We can see that
the learned class-relevant features are very sparse and dis-
tinct between two classes; they thus are able to provide dis-
criminative information for distinguishing these two classes.
We also show the average relevance of features on all 8
classes in Figure 8(b). The overall sparsity can be also ob-
served, which leads to good generalization for new instances
and robustness given small training datasets.

To gain some insight into what the learned class-relevant
features actually correspond to in videos, we visualize some
of them for static appearance (SIFT) and motion (STIP) in
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(a) Class-relevant features for two different classes.

(b) Class-relevant features averaged on all classes.

Fig. 8 Class-relevant features discovered by ReRBM. Vertical axis in-
dicates the degree of relevance.

Figure 9(a) and (b) respectively. We also visualize latent fea-
tures learned by sRBM in Figure 9(c) for comparison. It can
be seen that the local low-level features included in the class-
relevant features mostly lie on people and objects which are
relevant to video classes (e.g., for SIFT the cake in the birth-
day party video, and the bride and flowers in the wedding
dance video; for STIP the performer in the music perfor-
mance video and troops in the parade video). Some nega-
tive class-relevant features are also shown, e.g., the speaker’s
desk which usually dose not appear in a birthday party, and
blowing candles which seldom happens in a music perfor-
mance. In the meantime, those from the non-relevant fea-
tures mostly lie on backgrounds which are shared between
classes (e.g., trees, windows and floors). This qualitative re-
sult suggests that although there are no human annotations
available, ReRBM can still automatically discover semantic
and discriminative visual patterns in videos. We also observe
that ReRBM learns more discriminative features than sRBM

because only very sparse class-relevant features are permit-
ted to contribute to the decision of classification in ReRBM,
which enables the discriminative semantic information to be
concentrated on a subset of the learned latent features.

4.2.4 Scalability of the inference

Although the inference of latent features in the learning pro-
cedure is difficult due to the explaining away effect caused
by the direct part, in the prediction stage because the class
labels are unknown, the latent features are conditional in-
dependent given the low-level features and can be directly
calculated by Equation 6 efficiently as described in Section
3.3.3. This is what we want since the learning of the model
can be completed offline but the prediction is usually on-
line and need be real-time. We evaluate the inference time
of Multimodal ReRBM on the test set of the USAA dataset.
The time of computing 180-D latent features is 0.14s using
Matlab on a standard desktop with a 3.10GHz Intel Core
processor.

4.3 Experiments on event retrieval

To further validate the semantic knowledge discovered by
the class-relevant features, we evaluate the retrieval perfor-
mance of ReRBM on the EVVE dataset and compare it with
sRBM, as well as the MMV representation which is the
low-level feature representation provided by (Revaud et al,
2013). Note that the MMV features, which are also used as
model input for both ReRBM and sRBM, have a dimension-
ality of 1024 which is significantly higher than the dimen-
sionality of the learned mid-level features by ReRBM and
sRBM. For ReRBM, we also present the retrieval results of
using all learned features and only relevance features respec-
tively to show the effectiveness of sparse Bayesian learn-
ing. We use the database videos (only positive samples) as
the training set and the query videos as the test sets. Sim-
ilar to the setting in (Salakhutdinov and Hinton, 2009), a
retrieval video is considered relevant to the query video if
they have the same class label. The similarity is measured
using the Cosine distance between the feature vectors rep-
resenting the video content. To measure the retrieval per-
formance, the mean Average Precision (mAP) is computed
per event given different mid-level feature dimensions for
ReRBM and sRBM. To evaluate the overall performance,
the average of the mAPs over the 13 different events (avg-
mAP) is also given.

The results in Table 3 show clearly that the mid-level
feature representation learned by our ReRBM achieves the
highest average mAP than using the low-level MMV feature
directly. This indicates that the mid-level features learned
by ReRBM can effectively bridge the semantic gap. Inter-
estingly, using only the class-relevant features performs bet-
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(a) Latent features learned by ReRBM for static appearance (SIFT). Left: Birthday party; Right: Wedding dance

(b) Latent features learned by ReRBM for motion (STIP). Left: Music performance; Right: Parade

(c) Latent features learned by sRBM for SIFT (Left) and STIP (Right)

Fig. 9 Visualization of learned latent features. Red (blue) circles indicate local low-level features included in positive (negative) class-relevant
features learned by ReRBM and green crosses indicate those included in irrelevant features learned by ReRBM; red crosses indicate local low-
level features included in relevant features learned by sRBM.

ter than using all latent features learned by ReRBM. This
suggests that the class-relevant features do capture semantic
information related to classes thus more useful for retrieval,
whilst the non-relevant features are non-discriminative thus
are distracted to include. Furthermore, with the growth of
the dimensionality, more non-relevance features will be
learned than relevance features due to the sparsity con-
straint enforced on the learned features in ReRBM. Thus in
higher dimensions using all learned features has worse per-
formance. In contrast, when only relevant features are used
the perform keeps increasing.

Figure 10 depicts the quality of retrieval results for two
example queries, where sample frames of the top-5 retrieved
videos are shown. It can be observed that ReRBM retrieves
videos which belong to the same target event very well;
sRBM can find some semantically related videos (e.g., some
riot events but not in Barcelona), while MMV only cap-
tures visual similarity between videos which leads to poor
retrieval performance as many different classes of events
share visual similarity (e.g. many different events have large
crowds).

5 Conclusion

We have proposed a supervised Restricted Boltzmann Ma-
chine, called Relevance Restricted Boltzmann Machine
(ReRBM), to learn discriminative mid-level feature repre-
sentations for the classification and retrieval of unstructured
group activities and events in videos. In ReRBM, sparse
Bayisian learning is integrated with the RBM to discover
sparse class-relevant features. Rectified linear units are em-
ployed in the place of binary hidden units to better describe
complex video content and enable an efficient variational
method to be developed for parameter estimation and in-
ference. ReRBM can be readily be extended to take multi-
modal data as inputs. Our experimental results demonstrated
that ReRBM is able to learn a more discriminative video rep-
resentation than other supervised latent variable models and
achieves state of the art classification and retrieval perfor-
mance, particularly given insufficient training data.

In this work, we have only considered a single layer
RBM. RBM has been constructed with a deep learning
structure with multiple layers (Hinton et al, 2006). Thus it
seems a promising direction to generalize our framework
of representation learning to a multilayer structure. Further-
more, when combined with other deep learning models such



14 Fang Zhao et al.

Table 2 Results on retrieval performance (mAP) using different featurs.

Event
number

sRBM ReRBM ReRBM + Relevance Features MMV
20-D 40-D 60-D 20-D 40-D 60-D 20-D 40-D 60-D 1024-D

#1 0.810 0.718 0.715 0.882 0.842 0.747 0.891 0.862 0.867 0.555
#2 0.538 0.522 0.559 0.673 0.712 0.691 0.672 0.740 0.749 0.344
#3 0.203 0.127 0.124 0.215 0.354 0.319 0.212 0.405 0.352 0.092
#4 0.473 0.532 0.535 0.777 0.753 0.734 0.788 0.780 0.810 0.467
#5 0.317 0.310 0.310 0.477 0.448 0.444 0.478 0.470 0.528 0.238
#6 0.215 0.296 0.326 0.477 0.469 0.458 0.476 0.519 0.659 0.264
#7 0.219 0.240 0.265 0.410 0.377 0.377 0.405 0.444 0.539 0.208
#8 0.146 0.175 0.184 0.292 0.254 0.258 0.296 0.261 0.347 0.120
#9 0.228 0.172 0.165 0.540 0.507 0.504 0.551 0.525 0.581 0.123

#10 0.553 0.571 0.569 0.771 0.664 0.808 0.776 0.601 0.869 0.365
#11 0.306 0.331 0.326 0.503 0.538 0.519 0.530 0.597 0.699 0.257
#12 0.880 0.848 0.820 0.905 0.888 0.899 0.906 0.856 0.879 0.759
#13 0.619 0.842 0.857 0.926 0.869 0.801 0.923 0.874 0.837 0.601

avg-mAP 0.424 0.437 0.443 0.604 0.590 0.581 0.608 0.610 0.671 0.338

Fig. 10 Sample retrieval results using ReRBM + Relevance Features (first row), sRBM (second row) and MMV (third row). The left item in the
every row is the query video, and red rectangles indicate mistakes (best viewed in color).

as deep convolutional neural networks (Hinton et al, 2006;
Sun et al, 2013), it is possible to learn from the low-level fea-
ture representation at the bottom all the way up to the class
labels at the top in a single unified model. This is another
interesting direction and part of the on-going work.

Appendix A. Parameters of free-form variational poste-
rior q(tmj)

The expressions of parameters in q(tmj) (Equation 28) are
listed as follows:

ωpos = N (α|β, γ + 1), σ2
pos = (γ−1 + 1)−1, (33)

µpos = σ2
pos(

α

γ
+ β), (34)

ωneg = N (α|0, γ), σ2
neg = 1, µneg = β, (35)

Z =
1

2
ωposerfc

(
−µpos√
2σ2

pos

)
+

1

2
ωnegerfc

(
µneg√
2σ2

neg

)
,

(36)
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where erfc(·) is the complementary error function and

α =

〈
η·j

(
ym + sm −

∑
j′ 6=j η·j′At

r
mj′

)
η·jAη

T
·j

〉
q(η)q(t)

, (37)

γ =
〈

η·jAη
T
·j

〉−1
q(η)

, β =

N∑
i=1

Wijvmi +Kbj . (38)

We can see that q(tmj) depends on expectations over η and
{tmj′}j′ 6=j , which is consistent with the graphical model
representation of ReRBM in Figure 3.
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