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ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) represent
a rare heterogeneous subset of pluripotent stromal cells
that can be isolated from many different adult tissues
that exhibit the potential to give rise to cells of diverse
lineages. Numerous studies have reported beneficial
effects of MSCs in tissue repair and regeneration. After
culture expansion and in vivo administration, MSCs
home to and engraft to injured tissues and modulate the
inflammatory response through synergistic downregula-
tion of proinflammatory cytokines and upregulation of
both prosurvival and antiinflammatory factors. In addi-

tion, MSCs possess remarkable immunosuppressive prop-
erties, suppressing T-cell, NK cell functions, and also
modulating dentritic cell activities. Tremendous progress
has been made in preclinical studies using MSCs, includ-
ing the ability to use allogeneic cells, which has driven
the application of MSCs toward the clinical setting. This
review highlights our current understanding into the
biology of MSCs with particular emphasis on the cardio-
vascular and renal applications, and provides a brief
update on the clinical status of MSC-based therapy. STEM
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INTRODUCTION

The use of stem cells in the clinical arena has gathered tre-
mendous momentum over the last decade, advanced by vary-
ing levels of success in clinical trials and by the advancement
in our understanding of the mechanisms by which stem cells
exert their seemingly favorable effects. Broadly speaking,
stem cells can be characterized as either embryonic or adult
stem cells. In theory, embryonic stem cells (ESs) appear to be
the most versatile stem cell type for application in regenera-
tive medicine. In the hierarchy of ESs, cells taken from the
fertilized oocyte are called totipotent [1]. These totipotent
cells are then able to specialize, forming the blastocyst from
which the embryo will develop. ESs from within this blasto-
cyst are called pluripotent as these cells go on to specialize to
form all three of the germ layers (Fig. 1). Fully developed
adult tissues and organs contain niches of multipotent adult
stem cells. Originally these multipotent adult stem cells were
described as being able to differentiate into varying cell line-
ages from within their respective germ layer [1]. The develop-
ment of induced pluripotent stem cells (iPS) [2] and the char-
acterization of adult stem cells differentiating into cell types
of differing germ layers have complicated the nomenclature
of adult stem cells and therefore, flexibility and caution is
required when defining specific stem cell types. However, the

key properties that stem cells exhibit are unlimited self-
renewal and multilineage potential. The ethical issues sur-
rounding the use of ESs, the lack of understanding about how
to specifically regulate ES differentiation, and the widely
reported tumorigenicity [3] associated with ESs in experimen-
tal models have, in part, driven researchers to develop and
use adult stem cells that lack these side effects.

Adult stem cells have been described from a wide range
of adult tissues, including the brain, heart, lungs, kidney, and
spleen. However, the most well-characterized source for adult
stem cells is still adult bone marrow. Adult bone marrow con-
tains a heterogeneous population of cells, including hemato-
poietic stem cells, macrophages, erythrocytes, fibroblasts, adi-
pocytes, and endothelial cells. In addition to these cell types,
bone marrow also contains a subset of nonhematopoietic stem
cells that posses a multilineage potential [4, 5]. These stem
cells are commonly called marrow stromal stem cells or mes-
enchymal stem cells, and more commonly now, mesenchymal
stromal cells (MSCs). MSCs are primitive cells originating
from the mesodermal germ layer and were classically
described to give rise to connective tissues, skeletal muscle
cells, and cells of the vascular system.

MSCs, in the traditional view, should refer to stem cells
that are also capable of producing blood cells; however, blood
cells are actually derived from a distinct cell population called
the hematopoietic stem cells. This allows MSCs to be
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classified as nonhematopoietic, multipotential stem cells that
are capable of differentiating into both mesenchymal and non-
mesenchymal cell lineages.

More than 30 years ago, Friedenstein et al. [6] first
reported evidence of fibroblast-like cells that could be isolated
from bone marrow via their inherent adherence to plastic in
culture. He described a population of cells as multipotential
stromal precursor cells that were spindle-shaped and clono-
genic in culture conditions, defining them as colony-forming
unit fibroblasts (CFU-F). These cells were able to differentiate
into adipocytes, chondrocytes, osteocytes, and myoblasts, both
in vitro and in vivo. In addition, it has also been demonstrated
that MSCs are capable of differentiating into cardiomyocytes,
neurons, and astrocytes in vitro and in vivo [5, 7–10]. These
observations have formed the basis for most of the current
studies of bone marrow-derived stromal cells. However, there
still remain many unanswered questions about the true nature
and identity of MSCs, including location, origin, and multipo-
tential capacity. Isolation of MSCs has been reported from
several tissues, including adipose tissue, liver, muscle, amni-
otic fluid, placenta, umbilical cord blood, and dental pulp [5,
10–12], however bone marrow remains the principal source of
MSCs for most preclinical and clinical studies.

The true identity of MSCs has often been confused by dif-
ferent laboratories which employ different isolation and in
vitro culture methods. These variables are responsible for the
phenotype and function of resulting cell populations. Whether
these conditions selectively promote the expansion of differ-
ent populations of MSCs or cause similar cell populations to
acquire different phenotypes is not clear. It is estimated that
MSCs represent only between approximately 0.01 and 0.001%
of the total nucleated cells within isolated bone marrow aspi-
rates [8, 13]. Despite this low number, there remains a great
interest in these cells, as they can easily be isolated from a
small aspirate and culture-expanded through as many as 40

population doublings to significant numbers in about 8 to 10
weeks. MSCs have been studied from different sources, and
each type has been reported to vary in their proliferative and
multilineage potential. In addition, the lack of any single
unique specific cell surface marker to identify this cell popu-
lation, coupled with differences in terminology, has hindered
the progress of MSC research. Position papers from the Inter-
national Society for Cellular Therapy have attempted to
address these issues by clarifying the terminology and calling
the cells multipotent MSCs that should include the source in
the terminology, that is, adipose-derived MSCs, bone marrow-
derived MSCs, etc. The International Society for Cellular
Therapy has also provided the following minimum criteria for
defining multipotent human mesenchymal stromal cells [14]:

1) plastic-adherent under standard culture conditions;
2) positive for expression of CD105, CD73, and CD90, and

absent for expression of hematopoietic cell surface
markers CD34, CD45, CD11a, CD19, and HLA-DR;

3) under specific stimulus, cells should differentiate into
osteocytes, adipocytes, and chondrocytes in vitro.

Table 1 lists many cells’ surface markers that have been
used to characterize MSCs as either positive for or negative
for expression [8, 15, 16], although this is further complicated
by the differences between species and between different
strains of species [17]. This issue remains unresolved in the
absence of the identification of a unique cell surface marker.
The current evidence supporting the use of MSCs as a bio-
logic therapeutic for a diverse range of clinical applications
includes: ease of accessibility for isolation, enormous expan-
sion potential in culture, presumptive plasticity, immunosup-
pressive properties, use in allogeneic transplantation, para-
crine-mediated effects, homing and migratory behavior to
sites of tissue injury, and ethical considerations. This review

Figure 1. Hierarchy of stem cells.
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aims to highlight the current state of our knowledge, in partic-
ular the cardiovascular and renal preclinical studies and the
status of clinical trials involving MSC therapies.

Localization and Trafficking of MSCs

MSCs reside in specialized niches within various tissues, and
it has been shown that bone marrow, bone, and spleen are all
sites of engraftment [18–21]. It has also recently been
reported that a very small number of MSCs consistently circu-
late in the peripheral blood under stationary conditions, and
that this circulating pool is greatly increased under hypoxic
conditions [20]. However, several studies have reported con-
trasting results and the inability to locate any circulating
MSCs at all (reviewed in [22]).

The use of MSCs for therapeutic applications has been
particularly hailed because of their presumed inherent ability
to home to sites of inflammation following tissue injury when
injected intravenously. Chapel et al. [23] demonstrated in a
model of multiple organ failure that green fluorescent protein
(GFP)-tagged MSCs homed to numerous tissues with localiza-
tion correlating to the severity and geometry of injury. Hom-
ing is essentially the process by which cells migrate to and
engraft in the tissue in which they will exert functional and
protective effects. This homing feature of MSCs means that
the presumed complications associated with intramuscular or
site-specific injection of stem cells, such as ossifications [24],
is avoided, and systemic intravenous delivery with the poten-
tial for multiple dosages is possible.

Although the precise molecular mechanisms by which
MSCs are able to migrate and home into sites of injury are
not yet fully understood, the complex multistep process by
which leukocytes migrate to peripheral sites of inflammation
has been proposed as a paradigm (leukocyte adhesion cascade
reviewed [25]). This serves as a useful, albeit somewhat sim-
plified comparison, especially since more recent studies have
proposed a plethora of additional pathways and processes
involved in the migration, trafficking, and engraftment of
MSCs.

During inflammation, the recruitment of inflammatory
cells requires a coordinated sequence of multistep adhesive
and signaling events, including selectin-mediated rolling, cell
activation by chemokines and cytokines, activation of integ-
rins, integrin-mediated firm adhesion on endothelium, transen-
dothelial migration, and finally the migration/invasion in the

extracellular matrix involving integrin-dependent interactions
and matrix-degrading proteases [26, 27] (Fig. 2). It is well
known that migratory direction follows a chemokine density
gradient. The increase in inflammatory chemokine concentra-
tion at the site of inflammation is a key mediator of traffick-
ing of MSC to the site of injury. Chemokines are released af-
ter tissue damage and MSC express several receptors for
chemokines [28]. Activation by such chemokines is also an
important step during trafficking of MSCs to the site of
injury. SDF-1/CXCL12 is a member of the chemokine family
and is constitutively expressed by bone marrow stromal cells
and other progenitor cells [29]. Early passage MSCs have
been shown to express the specific SDF-1 chemokine receptor
CXCR4 [30, 31]. In addition, MSCs also express several ad-
hesion molecules [8, 32, 33] which respond to SDF-1 as well
as chemokines CX3CL1, CXCL16, CCL3, CCL19, and
CCL21 [21, 34]. SDF-1 has been shown to stimulate not only
hematopoietic stem cell engraftment, but also the recruitment
of other progenitor cells, including MSCs, to the site of tissue
injury [35]. Inhibition of the SDF-1/CXCR4 axis partially
blocks the homing of CXCR4-expressing cells to the site of
injury [36, 37]. Endothelial nitric oxide synthase (eNOS)-
derived nitric oxide (NO) production from the host myocar-
dium has recently been described to promote MSC migration
toward the ischemic myocardium via upregulation of SDF-1,
with MSC trafficking toward the region of ischemia leading
to improved cardiac function [38]. Furthermore, overexpres-
sion of SDF-1 was demonstrated to enhance stem cell homing
and incorporation into ischemic tissues [39], suggesting that
SDF-1 plays a crucial role for recruitment of intravenously-
infused cells.

Although the SDF-1/CXCR4 axis has been well character-
ized as a pathway for MSC homing, several other ligand-re-
ceptor interactions have also been recently reported to be
involved in MSC homing. Sasaki et al. [40] recently demon-
strated that injected-MSCs significantly contribute to wound
repair via MSC accumulation in the wound site. Keratinocytes
within sites of wounded skin have been reported to express
CCL21 [41], and MSCs, characterized to express the CCL21-
specific receptor CCR7, were reported to recruit to the wound
site via the specific CCL21/CCR7 interaction, both in vitro
and in vivo [40]. Furthermore, it was shown that local intra-
dermal delivery of CCL21 may have also contributed to the
differentiation of MSCs to multiple cell types [40].

Integrins have also been reported to play a key role in
cell adhesion, migration, and chemotaxis [26]. Ip et al. [42]
identified integrin b1 as a distinct pathway and not CXCR4,
in a model of AMI, for trafficking and engraftment of MSCs
to the ischemic myocardium. An alternate distinct pathway
identified involving specific integrin-mediated trafficking has
also recently been reported. Podocalyxin (PODXL) is a mem-
ber of the CD34 family of membrane mucin-proteins [43].
Lee et al. [44] recently demonstrated the role of PODXL and
integrin a6 (CD49f) in MSC migration and homing; and dem-
onstrated MSCs engrafted more efficiently in both the injured
heart and kidney. Using FACS analysis, it was reported that
culture-expanded PODXL(hi)/CD49f(hi) MSCs were more
clonogenic and differentiated more efficiently than PODXL
(low)/CD49f(low) cells. Inhibition of expression of PODXL
with RNA interference caused aggregation of the cells [44].
Furthermore, PODXL(hi)/CD49f(hi) MSCs were less prone to
produce lethal pulmonary emboli, and significantly greater
numbers of cells were recovered in heart and kidney follow-
ing intravenous infusion into mice with myocardial infarcts
[44].

The homing efficiency of MSCs has been reported to be
greatly influenced by the variation in protocols currently used

Table 1. Markers for the isolation of mesenchymal stromal cells

Positive Selection Negative Selection

CD9, CD10, CD13, CD29,
CD44, CD49a, CD49b,
CD49c, CD49e, CD51,
CD54, CD58, CD61,
CD62L, CD71, CD73,
CD90, CD102, CD104,
CD105, CD106, CD119,
CD120a, CD120b, CD121,
CD123, CD124, CD126,
CD127, CD140a, CD166,
CCR1, CCR4, CCR7, CXCR5,
CCR10, VCAM-1,CD166, AL-CAM,
ICAM-1, STRO-1 (CD140b),
HER-2/erbB2 (CD340), frizzled-9
(CD349), W8B2, W3D5, W4A5,
W5C4, W5C5,W7C6, 9A3,
58B1, F9-3C2F1, HEK-3D6.

CD45, CD34, CD14,
CD11a, CD19, CD86,
CD80/CD40, CD15,
CD18, CD25,
CD31, CD49d,
CD50,CD62E,
CD62P, CD117

Data compiled from references: 8, 15, 16.
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to isolate and culture expand populations to significant num-
bers required for in vivo use. It has been suggested that sub-
culturing of MSCs may potentially lead to changes in their
phenotype that effects MSC homing [45] and progressive sub-
culturing has been associated with a decrease in expression of
adhesion molecules, the loss of chemokine receptors, includ-
ing CXCR4, and a subsequent lack of chemotactic response
[30, 46].

Many groups have attempted to modify the functional
properties of MSCs to increase their homing potential. Modi-
fication of MSCs has included transduction of MSCs with
CXCR4 using a retroviral vector [37] and treatment of the
cells with tumor necrosis factor-a (TNFa), interferon-b and –c
(IFN-b –c), copaxone [47], and insulin-like growth factor
[48]. In addition, some groups have reported the use of alter-
native culturing protocols to modify gene expression of che-
mokine receptors such as CXCR4. It was reported that trans-
fer of a cultured monolayer of MSCs to a ‘‘hanging drop’’
method resulted in spontaneous association of cells leading to
formation of spheroids. This led to substantial changes in the
gene expression pattern, including upregulation of CXCR4
and the a2 integrin subunit mRNAs [49].

The initial homing events involve the processes of rolling
and tethering upon the endothelium between E- and P-selectin
(considered as critical molecules for the rolling process) [50].
These are constitutively expressed by bone marrow endothe-
lial cells and on endothelium in inflamed tissue [51]. Physio-
logic selectin receptors constitutively express sialylated resi-

dues such as PSGL-1 and CD44 [52]. CD44 is known to be
highly expressed by MSCs. Rolling is subsequently followed
by arrest and firm adhesion, with chemokines receptors
expressed on the surface of endothelium ligating to respective
chemokines and activating integrins, such as very late anti-
gen-4 (VLA-4) (also known as a4b1-integrin) [53], which in
turn bind to their ligands mediating firm adhesion. Ruster
et al. [54] also reported that MSCs bind to endothelial cells in
a P-selectin dependent manner and that rolling MSCs engage
VLA-4 and vascular cell-adhesion molecule one (VCAM-1)
to mediate firm adhesion to the endothelium. Firm adhesion is
followed by transendothelial migration between endothelial
cells via the action of junctional adhesion molecules (JAMs),
cadherins, and platelet-endothelial cell adhesion molecule-1
(PECAM-1/CD31), mediating translocation to the extracellu-
lar matrix where they adhere to the extracellular matrix
through molecules such as collagen, fibronectin via a1 integ-
rins, hyaluronic acid, and CD44 (Fig. 2).

The inhibition of both MMP (matrix metalloproteinase)
and TIMP-1/2 (tissue inhibitor of metalloproteinase) through
gene knockout studies have been shown to attenuate MSCs
migration though the basement membranes, and it was
reported that these proteins are triggered by inflammatory
cytokines [55, 56]. Steingen et al. [57] also demonstrated the
role of VCAM-1 and VLA4 to be involved in the extravasa-
tion process. In addition, MSCs have been shown to express
combinations of integrins a6b1, a8b1, and a9b1 which
are likely contributors to this process [42]. A clearer

Figure 2. Proposed mechanisms involved in the homing and trafficking of mesenchymal stromal cells to sites of tissue injury after infusion.
Abbreviations: ICAM, intercellular adhesion molecule; JAMs, junctional adhesion molecules; MSCs, mesenchymal stromal cells; PECAM, plate-
let-endothelial cell-adhesion molecule; PGE, prostaglandin E2; VCAM, vascular cell-adhesion molecule; VLA, very late antigen.
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understanding of the exact mechanisms by which MSCs home
to sites of tissue inflammation is likely to identify further
opportunities to improve the clinical benefits observed after
transplantation via their homing/migratory capacity.

Although numerous preclinical and clinical studies have
demonstrated the safe and toxicity-free effects of MSC trans-
plantation, many reports suggest that there exists a clear simi-
larity between stem cell and cancer stem cell genetic pro-
grams [58]. It has been reported that over longer term ex vivo
culture-expansion periods, human MSCs can undergo sponta-
neous transformation [59]. Miura et al. [60] reported that
long-term cultured MSCs that had undergone spontaneous
transformation colonized to multiple organs when delivered
intravenously in vivo. These studies have important implica-
tions in assessing the safety profile of MSC-based therapies
and the clear requirement for long-term follow-up studies on
clinical trials that are currently ongoing.

Immunomodulatory Capacity of Mesenchymal
Stromal Cells

MSCs have received renewed interest, particularly in their use
of transplantation medicine. Although traditionally the regen-
erative capacity of MSCs through their presumptive plasticity
was seen as the driving force behind interest in MSCs, their
role in modulating the immune response is now attracting
greater interest. T lymphocytes (T-cells) are a major executor
of the adaptive immune response, and numerous studies have
demonstrated that MSCs modulate the function of T-cells.
MSCs lack expression of MHC class II and most of the clas-
sical costimulatory molecules such as CD80, CD86, or CD40
[4, 8, 61]. MSCs can, however, express class II molecules
under specific conditions [33]. Le Blanc et al. [62] showed
that MHC class II antigens present inside MSCs can be
expressed on the cell surface after induction with interferon
gamma (IFN-c). This is relevant because, in many inflamma-
tory milieus, IFN-c is upregulated, which in turn may result
in an increase in the expression of MHC class II. However,
pretreatment of MSCs with IFN-c failed to generate a prolif-
erative response in allogeneic lymphocytes [63], and MSCs
expressing MHC class II antigens also failed to elicit a prolif-
erative response [61]. In addition, the lack of expression of T-
cell costimulatory molecules suggests that T-cell activity may
result in anergy (immune unresponsiveness) that may contrib-
ute to the observed immune tolerance [33]. In contrast, how-
ever, Stagg et al. [64] reported that IFN-c stimulated synge-
neic MSCs acted as conditional antigen-presenting cells
(APCs) which were able to activate antigen-specific immune
responses, suggesting important implications in the develop-
ment and selection of either autologous or allogeneic MSC
therapeutics.

The traditional view that MSCs simply evaded the host
immune response is not quite as simple as first proposed.
MSCs have been characterized as expressing several receptors
that allow them to interact with T-cells. MHC class I and sev-
eral adhesion molecules, including cell adhesion molecule
(VCAM), intercellular adhesion molecule one (ICAM-1), acti-
vated leukocyte cell adhesion molecule (ALCAM), lympho-
cyte functional antigen-3 (LFA3), and some integrins can
interact with their respective ligands on T-cells [65]. MSCs
have also been reported to express functionally active indole-
amine 2,3-dioxygenase (IDO) following stimulation by IFN-c.
IDO catalyzes the conversion from tryptophan to kynurenine
[66], and this has been identified as a T-cell inhibitory effec-
tor pathway [67, 68].

Miesel et al. [69] demonstrated that MSCs that expressed
functional IDO protein were able to inhibit allogeneic T-cell

responses in mixed lymphocyte reactions. IDO activity
resulted in tryptophan depletion and kynurenine production as
detected in coculture supernatants, and furthermore, the inhib-
itory action could be reversed by the addition of tryptophan.

Production of nitric oxide (NO) by MSCs has also been
implicated as a potential mechanism by which MSCs inhibit
T-cell proliferation [70]. MSCs also appear to reduce T-cell
activation through indirect mechanisms by inhibiting the mat-
uration of dentritic cells (DCs) from monocytes. DCs have a
fundamental role in antigen presentation to naive T-cells im-
mediately after maturation, which can be induced by inflam-
matory cytokines. MSCs inhibit the maturation of monocytes
(in addition to cord blood and CD34þ hematopoietic stem
cells) into DCs [71, 72].

Zhang et al. [73] reported that MSCs inhibited the upregu-
lation of CD1a, CD40, CD80, and CD86 during DC matura-
tion. MSCs also reduce the proinflammatory potential of DCs
by inhibiting their secretion of TNF-a, IFN-c, and interleukin
(IL)-12, and conversely increasing levels of IL-10, inducing a
more anti-inflammatory DC phenotype [71, 74, 75].

The interaction between MSCs and natural killer (NK)
cells may contribute to the immunomodulatory effects of
MSCs. NK cells are key effector molecules of innate immu-
nity. MSC may evade recognition by alloreactive cytotoxic
T-cells (CTL) and NK cells as these were not lysed in cocul-
ture experiments [76]. Angoulvant et al. [77] suggested this
was mediated by the secretion of soluble factors by MSCs
and through inhibition of CTL differentiation from precursors.
However, NK cells can effectively lyse MSCs, despite the
high levels of expression of MHC class I on MSCs [78].
Sotiropolou et al. [79] suggested a combinatorial effect on the
suppressed proliferation of NK cells via cell-cell contact
between MSCs-NK cells and secretion of soluble factors by
MSCs including transforming growth factor beta (TGF-b) and
prostaglandin E2 (PGE2).

The inhibitory molecule programmed death one (PD-1)
binding to its ligands PD-L1 and PD-L2 may also be respon-
sible for inhibition of T-cell proliferation via cell-cell contact
of MSCs, leading both to modulate the expression of cytokine
receptors and activate molecules for cytokine signaling [80,
81]. The mechanisms by which MSCs exert their function on
immune cells are pleiotropic and redundant, and it is clear
that our understanding is far from complete. Figure 3 summa-
rizes some of the multitude of possible effects of MSCs on
immune cells.

Use of MSCs in Renal Disease

Many kidney disorders involve both ischemic/inflammatory
and immunologic injury. Therefore cell-based therapies such
as those using MSCs which function through multiple mecha-
nisms and have the potential to target the inflammatory and
immunologic pathways have been considered a clinically rele-
vant solution in contrast to pharmacologic agents that target
only a single event or pathway in the pathophysiology of a
given disease. The significant morbidity from long-term palli-
ative treatments (that is, dialysis) and the ever increasing
transplant waiting lists dictate a need for alternative therapy
options such as cell therapy.

Chronic kidney disease results in significant cell loss,
accumulation of extracellular matrix proteins, and develop-
ment of interstitial fibrosis [82]. In contrast to conventional
therapies that aim to limit these processes, cell therapy is
focused more on the mechanisms promoting cellular repair
and tissue remodeling. Many early studies reported that injury
promoted the incorporation of bone marrow-derived cells into
organs [83]. These observations supported the rationale that
the incorporation of bone marrow-derived cells is part of and
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may aid the organ repair process. Ito et al. [84] reported that
MSCs homed to injured kidneys and facilitated repair when
chimeric rats carrying green fluorescent protein (GFP)-posi-
tive bone marrow cells were treated with anti-Thy1 antibody
to induce glomerulonephritis and the mesangium was repopu-
lated with GFPþ cells, mainly of nonhematopoietic lineages.
Ischemia-reperfusion injury is one of the major causes of
acute kidney injury, resulting in functional and structural
changes in the kidney, mainly at the endothelium and proxi-
mal tubule cells [85–87].

Morigi et al. [88] reported that in an acute renal failure
(ARF) model, injection of MSCs of male bone marrow origin
protected cisplatin-treated syngeneic female mice from renal
function impairment and severe tubular injury. Donor cells
were shown to have localized in the context of the tubular
epithelial lining and displayed binding sites for Lens culinaris
lectin, suggesting that MSCs engrafted within the damaged
kidney and differentiated into tubular epithelial cells, support-
ing renal structure and function recovery [88]. Lange et al.
[89] reported that in an ARM model, MSC-treated animals
had both significantly better renal function on days 2 and 3
and better injury scores at day 3 after ARF. Infusion of MSCs
enhanced recovery of renal function and showed cells were
located in the kidney cortex after injection. Togel et al. [90]
reported that intracarotid administration of MSCs after renal
ischemia resulted in significantly improved renal function,
higher proliferative and lower apoptotic indexes, lower renal
injury, and unchanged leukocyte infiltration scores compared
with animals treated with syngeneic fibroblasts. These find-
ings suggested that the renoprotective effects observed were
mediated via a paracrine effect caused by the significant
reduction in expression of proinflammatory cytokines IL-1b,

TNF-a, IFN-c, and iNOS, and the significant upregulation of
anti-inflammatory cytokines IL-10, bFGF, TGF-a, and Bcl-2
in treated kidneys [90].

MSCs from GFPþ transgenic mice injected intravenously
were reported to home to the kidney of mice with glycerol-
induced ARF, but not in normal mice. These cells were
shown to localize in the context of the tubular epithelial lin-
ing and expressed cytokeratin, suggesting that MSCs
engrafted in the damaged kidney were able to differentiate
into tubular epithelial cells. In addition, it was reported that
MSCs enhanced tubular proliferation as detected by the
increased number of proliferating cell nuclear antigen
(PCNA) positive cells with a significant contribution of the
engrafted MSCs in the regeneration of tubular epithelial cells
demonstrated by the presence of a consistent number of
GFPþ

� tubular cells 21 days after the induction of injury [91].
Crop et al. [92] recently demonstrated that donor-derived
MSCs were capable of inhibiting recipient alloactivated T-cell
proliferation before and after kidney transplantation. It was
suggested that these immunosuppressive effects by MSCs
were mediated by both cell-cell contact and release of soluble
factors such as IL-10 and IDO.

These studies highlight the controversy that still remains
about the exact mechanisms by which MSCs exert these
seemingly beneficial effects. Held et al. [93] reported that in a
mouse model of chronic renal injury, up to 50% of the regen-
erated proximal tubular epithelium resulted via cell fusion and
not transdifferentiation following BM-derived cell transplanta-
tion. In addition, it was demonstrated that host epithelial cells
underwent genetic modifications leading to repopulation of
damaged epithelium and correction of renal disease. Both
mechanisms of repopulation (bone marrow-derived renal

Figure 3. Immunomodulation by mesenchymal stromal cells. Abbreviations: DCs, dentritic cells; HGF, hepatocyte growth factor; ICAM, inter-
cellular adhesion molecule; IGF, insulin-like growth factor; IL, interleukin; JAMs, junctional adhesion molecules; MSCs, mesenchymal stromal
cells; NK, natural killer; NO, nitric oxide; PD-1, programmed death one; PD-L1, programmed death one ligand; PGE2 prostaglandin E2; T-cell, T
lymphocyte; TGFb, transforming growth factor beta; TNFa, tumor necrosis factor-a; VEGF, vascular endothelial growth factor; VLA, very late
antigen.
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tubule epithelium or by genetic alteration of endogenous
cells) illustrate selection of functional cells leading to disease
correction in the proximal tubules of the kidney [93]. While
earlier studies suggested that MSCs engraft in the damaged
kidney and differentiate into tubular epithelial cells resulting
in restoration of renal structure and function [88, 91], studies
using an ischemic reperfusion (I/R) model of ARF provide
evidence that MSCs did not differentiate into tubules, with la-
beled MSCs detected mostly in glomeruli and not in tubules
or vascular endothelial cells [89, 90]. These studies describe
that MSC treatment was associated with improvement of renal
function occurring within the first few days, suggesting a pro-
cess independent of transdifferentiation into functional renal
cells, and were more probably attributed to paracrine actions
of these MSCs. This is supported by a study using a rat model
of glomerulonephritis that suggested paracrine growth factor
release rather than cellular differentiation was responsible for
accelerated glomerular recovery in MSC-treated animals [94].

Use of MSCs in Cardiovascular Disease

Cardiovascular disease (CVD) remains a significant cause of
morbidity and mortality in the developed world. Coronary heart
disease (CHD) is also the primary cause of clinical heart failure,
and despite advances in medical therapy, 40% of patients with
heart failure die within the first year of diagnosis [95]. Although
pharmacologic, percutaneous coronary interventions and surgical
interventions (for example, coronary artery bypass graft surgery)
for CVD have improved outcomes, the rate of incidence contin-
ues to increase (http://www.who.int). In addition, cardiac trans-
plantation is complicated by immunosuppressive therapy and is
restricted by the limited supply of donor hearts. As with other
degenerative diseases, the potential of cell therapy using stem
cells to differentiate into viable cardiac myocytes and regenerate
scar tissue is an attractive prospect, with the aim of reversing
ventricular remodeling, preventing heart failure, and alleviating
the need for heart transplantation.

Acute myocardial infarction (AMI) is associated with the
death of cardiomyocytes by apoptosis and necrosis [96–98].
Although it has been reported that the heart exhibits some regen-
erative potential [99–101], it lacks the capacity to replace the
significant cardiomyocyte losses caused by AMI that is subse-
quently compensated by cardiomyocytes hypertrophy and fibro-
sis. This remodeling process is associated with reduced ventricu-
lar compliance, ventricular dilatation, and eventually heart
failure [102]. Clinical end-stage heart failure requires ventricular
assist device implantation or, ideally, cardiac transplantation.
With limited donor supplies and long-term patency issues associ-
ated with assist devices, cell therapy using MSCs to transdiffer-
entiate into viable cardiomyocytes and regenerate scar tissue is
an attractive prospect. Several groups have reported that MSCs,
once exposed to a variety of physiologic or nonphysiologic stim-
uli, are capable of differentiating into cells displaying several
features of cardiomyocytes-like cells [103–107]. In preclinical
studies using experimental models of cardiac injury, MSCs can
engraft after systemic administration and improve the repair of
infarcted myocardium in rodents. In a porcine myocardial infarc-
tion (MI) model, bone-marrow derived MSCs (injected directly
into the myocardium) efficiently engrafted into the host myocar-
dium and showed evidence of myogenic differentiation within 2
weeks, which correlated with a significant reduction in infarct
size, wall thinning, and contractile dysfunction [108].

In a rat model of dilated cardiomyopathy, transplantation
of MSCs led to a significant increase in capillary density
(enhanced angiogenesis) and a significant inhibition of myo-
cardial fibrosis. Both myogenic and angiogenic differentiation
of MSCs were observed, in addition to characterizing the
secretion of several prosurvival growth factors, including vas-

cular endothelial growth factor, hepatocyte growth factor, and
insulin-like growth factor, suggesting that the benefits
observed were caused by a combination of differentiation and
paracrine mediated effects [109]. Jiang et al. [110] reported
that the direct injection of MSC into the infarct border zone
in a rat model improved cardiac function and caused a signifi-
cant reduction in myocyte apoptosis as well as an increase in
vessel density. Cardiac improvement was reported to be
marked after transplantation at 1 week after MI compared
with 1 hour or 2 weeks after MI, indicating that timing of cell
delivery is equally critical for successful therapy [110]. The
appropriate delivery method for MSC treatment is still very
controversial. Several delivery approaches have been reported,
including intravenous infusion [111], direct injection in the
ventricular wall [112], transendocardial injection [113, 114],
and transcoronary artery injection [115] (Table 2).

The question of the ideal route of administration remains
one of the many unresolved issues facing efficient clinical
application of MSCs. Clinical trials in humans aimed at
improving cardiac function using stem cells have demon-
strated variable but encouraging results [116]. Intracoronary
injection of autologous MSCs was demonstrated to enhance
left ventricular functional recovery after myocardial infarction
[117–119]. Improvement of myocardial contractility was also
demonstrated in approximately 50% of patients with MI after
transcoronary transplantation of autologus MSC and endothe-
lial progenitor cells in the infarcted area through the left ante-
rior descending artery [115].

Table 2 summarizes the current clinical status of trials using
MSCs. While initial studies demonstrate some beneficial effects,
the mechanisms responsible for these effects are unclear,
although differentiation of transplanted MSC into cardiomyo-
cytes or their fusion with the host cardiomyocytes in vivo has
recently been excluded [120, 121]. Conversely, it has been sug-
gested that the transplanted MSCs enhance angiogenesis in the
ischemic tissues by secreting paracrine factors, including angio-
genic cytokines and antiapoptotic factors [122, 123].

Clinical Application of MSC-Based Therapy

The therapeutic potential of MSCs is currently being explored
in a number of phase I/II and III clinical trials, many of
which have recently been completed or are underway (Table
2). Several of these studies investigated the use of MSC ther-
apy to mediate HSC engraftment and reduce or eliminate
graft-versus-host disease (GvHD). Recently it was demon-
strated that infusion of culture-expanded haploidentical MSCs
into unrelated pediatric umbilical cord blood transplantation
recipients could be performed safely, and no adverse effects
or associated toxicity were reported. The study demonstrated
that all patients achieved neutrophil engraftment [124].

Another small study reported that haploidentical MSCs
infused in conjunction with allogeneic hematopoietic stem
cell transplantation led to enhanced engraftment. In addition,
all patients achieved neutrophil and platelet engraftment and
100% donor chimerism, again with the noted absence of any
associated toxicity [125]. Lazarus et al. [126] reported the use
of MSCs in an open-label, multicenter trial in patients with
hematologic malignancy. This involved the coadministration
of culture-expanded MSCs with HLA-identical sibling-
matched HSCs. The authors reported that culture-expanded
MSCs together with HSC transplantation was a safe procedure
and could potentially reduce transplant side effects and
enhance marrow recovery after myeloablative treatment.

In another small pilot study, Gonzalo-Daganzo et al. [127]
reported that MSCs were better employed prophylactically
when used to treat acute GvHD in umbilical cord blood trans-
plantation. Chen et al. [118] reported that intracoronary
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Table 2. Clinical trials using mesenchymal stromal cells

Clinical Trial Disease Route of Delivery Cell Type/Source Status Location/Sponsor

Mesenchymal Stem Cells in
Multiple Sclerosis

Multiple sclerosis Intravenous BM-derived
autologous MSC

Recruiting University of
Cambridge, UK

Mesenchymal Stem Cell
Infusion as Prevention
for Graft Rejection and
Graft-Versus-Host
Disease

Hematological
malignancies

BM-derived allogenic
MSC co- infusion
with either
HLA- mismatched
PBSC or cord
blood

Recruiting University
Hospital of
Liege, Belgium

Safety Study of
Allogeneic
Mesenchymal
Precursor Cells (MPCs)
in Subjects With Recent
Acute Myocardial
Infarction

Myocardial
infarction

Transendocardial
injection

BM-derived
allogenic MSC

Recruiting Angioblast
Systems,
U.S

Mesenchymal Stem Cells
and Subclinical
Rejection

Organ
transplantation

Intravenous BM-derived
allogenic MSC

Not yet
recruiting

Leiden
Universitary
Medical
Center,
Netherlands

Use of Autograft
Mesenchymal Stem
Cells Differentiated
Into Progenitor of
Hepatocytes for
Treatment of Patients
With End-Stage Liver
Disease

Cirrhosis,
liver failure

Intravenous Hepatocyte drived
autologous MSC

Recruiting Shaheed Beheshti
Medical
University,
Iran

A Phase II Dose-Escalation
Study to Assess the
Feasibility and Safety of
Transendocardial
Delivery of Three
Different Doses of
Allogeneic Mesenchymal
Precursor Cells (MPCs)
in Subjects With Heart
Failure

Heart failure Transendocardial
injection

BM-derived
allogenic MSC

Recruiting Angioblast
Systems, U.S

Mesenchymal Stem Cells
Under Basiliximab/Low
Dose RATG to Induce
Renal Transplant
Tolerance

Kidney transplant Intravenous BM-derived
autologous MSC

Recruiting Mario Negri
Institute for
Pharmacological
Research, Italy

Safety and Efficacy Study
of Adult Human
Mesenchymal Stem Cells
to Treat Acute GvHD.

Graft versus
host disease

Intravenous BM derived allogenic
MSC (Prochymal)

Completed Osiris
Therapeutics,
U.S.

Autologous Implantation of
Mesenchymal Stem Cells
for the Treatment of
Distal Tibial Fractures

Tibial fracture Local implantation BM-derived
autologous MSC

Active Hadassah Medical
Organization,
Israel

Prospective Randomized
Study of Mesenchymal
Stem Cell Therapy in
Patients Undergoing
Cardiac Surgery
(PROMETHEUS)

Left ventricular
dysfunction

Intramyocardial
injection

BM-derived
autologous MSC

Recruiting National Heart,
Lung, and Blood
Institute, U.S.

Cord Blood Expansion on
Mesenchymal Stem Cells

Myelodysplastic
syndrome; leukemia

Intravenous CB-derived allogenic
MSC

Recruiting U.T.M.D.
Anderson Cancer
Center, U.S

Extended Evaluation of
Prochymal Adult Human
Stem Cells for
Treatment-Resistant
Moderate-to-Severe
Crohn’s Disease

Crohn’s disease Intravenous BM derived allogenic
MSC (Prochymal)

Recruiting Osiris
Therapeutics,
U.S.
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injection of MSCs in patients with AMI resulted in signifi-
cantly increased wall movement velocity over the infarcted
area in MSC-treated patients. Most notably, left ventricular
ejection fraction was also higher in the MSC-treated group
compared with controls at 3 months follow-up observations.

In addition, significant efforts have been expended in
MSC therapies from industry experts. Osiris Therapeutics
Inc. (Columbia, MD, USA, http://www.osiristx.com/clinical_
trials.php) is currently evaluating their proprietary adult stem
cell product, Prochymal, in phase III clinical trials for three
indications, including steroid refractory acute graft-versus-
host disease (GvHD), newly diagnosed acute GvHD, and
Crohn’s disease. Prochymal are adult human MSCs derived
from healthy donors. Osiris is also evaluating Prochymal in
phase II clinical trials for type 1 diabetes mellitus and chronic
obstructive pulmonary disease. Follow-up data from the phase
II trials for the treatment of acute GvHD showed that 74% of
patients experienced total clinical resolution of the disease,
whereas follow-up data for the phase II trials for the treatment
of Crohn’s disease for patients who had failed to respond to
standard treatments, such as steroids, reported a significant
reduction in disease severity by day 28 with relatively low
doses of Prochymal and a short treatment course. Athersys
(Cleveland, OH, USA, http://www.athersys.com) is another
industry-led company investigating the therapeutic potential
of MSCs. Athersys is currently evaluating the potential of
MultiStem (progenitor cells harvested from a prequalified do-

nor) in several phase I clinical trials for ischemic injury (myo-
cardial infarction, stroke, and other indications) and condi-
tions involving the immune system (autoimmune disease).

At the time of writing this review, according to the clini-
cal trials Website of the United States sponsored by the
National Institutes of Health (http://clinicaltrials.gov), approx-
imately 80 clinical trials are currently exploring the applica-
tion of MSCs. In addition to the application of MSCs for re-
nal and CVD pathologies, the use of MSCs is also actively
pursued in a diverse range of other conditions, including he-
matologic pathologies such as graft-versus-host disease
(GvHD), osteogenesis imperfecta, amyotrophic lateral sclero-
sis (ALS), Hurler syndrome, metachromatic leukodystrophy,
and Crohn’s disease. In addition, MSC transplants have been
investigated to improve recovery after myeloablative therapy
for treatment of solid tumors. Table 2 summarizes some of
the current clinical trials using MSCs.

Future Directions

The last few years have witnessed a growing optimism by
both basic scientists and clinicians for the clinical application
of MSCs for many disease pathologies. Tremendous advance-
ments have been made from significant in vitro and in vivo
preclinical studies using MSCs. Although MSCs were origi-
nally heralded for their ability to contribute to tissue regenera-
tion through engraftment and long-term survival in injured

TABLE 2. (Continued)

Clinical Trial Disease Route of Delivery Cell Type/Source Status Location/Sponsor

Efficacy and Safety of
Adult Human
Mesenchymal Stem Cells
to Treat Patients Who
Have Failed to Respond
to Steroid Treatment for
Acute Graft Versus Host
Disease (GvHD)

Graft-versus-host
disease

Intravenous BM-derived
allogenic
MSC (Prochymal)

Completed Osiris
Therapeutics,
U.S

Prochymal (Human Adult
Stem Cells) for the
Treatment of Recently
Diagnosed Type 1
Diabetes Mellitus
(T1DM)

Type 1 diabetes
mellitus

Intravenous BM-derived allogenic
MSC (Prochymal)

Recruiting Osiris
Therapeutics,
U.S.

Prochymal (Human Adult
Stem Cells) for the
Treatment of Moderate to
Severe Chronic
Obstructive Pulmonary
Disease (COPD)

Chronic obstructive
pulmonary disease

Intravenous BM-derived
allogenic MSC
(Prochymal)

Active Osiris
Therapeutics,
U.S.

Mesenchymal Stem Cell
Transplantation in the
Treatment of Chronic
Allograft Nephropathy

Chronic allograft
nephropathy, kidney
transplant

Intravenous BM-derived MSC Not yet
recruiting

Fuzhou General
Hospital, China

Autologous Mesenchymal
Stromal Cell Therapy in
Heart Failure

Congestive heart
failure

Intramyocardial
Injection

BM-derived
autologous MSC

Not yet
recruiting

Rigshospitalet Uni-
versity
Hospital,
Copenhagen,
Denmark

Marrow Mesenchymal Cell
Therapy for Osteogenesis
Imperfecta: A Pilot Study

Osteogenesis imperfecta Intravenous BM-derived allogenic
MSC

Completed St. Jude
Children’s
Research
Hospital,
Memphis, TN,
38105

Abbreviations: BM, bone marrow; CB, cord blood; MSC, mesenchymal stromal cells;
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tissues via their presumed plasticity, recent findings have sug-
gested a plethora of additional mechanisms through which
MSCs exert their seemingly beneficial effects, including
immunomodulation and paracrine processes. In addition, the
increasing number of clinical trials demonstrating the absence
of any major adverse side effects coupled with early optimis-
tic benefits continues to drive the field of MSC therapy. How-
ever, unresolved issues such as the lack of conformity with
respect to isolation and ex vivo culture-expansion protocols
and the heterogeneity by which populations and subpopula-
tions of MSCs are characterized continue to be obstacles. In
addition, the conflicting data regarding the ability of MSCs to
engraft and differentiate into functional cardiomyocytes or tu-
bular epithelial cells, as well as numerous studies reporting
the beneficial effects of MSCs in early time frames, suggest
that the benefits are solely attributable to paracrine mediated
effects. It is clear that much more work is needed and evi-
dence from long-term studies is absolutely required to vali-

date the nature of MSC-based therapy before the prospect of
developing a genuine candidate for an ‘‘off-the-shelf’’ MSC
biotherapeutic product is achievable.
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28 Spring H, Schüler T, Arnold B et al. Chemokines direct endothelial
progenitors into tumor neovessels. Proc Natl Acad Sci U S A 2005;
102:18111–18116.

29 Lapidot T, Dar A, Kollet O. How do stem cells find their way
home? Blood 2005;106:1901–1910.

30 Honczarenko M, Le Y, Swierkowski M et al. Human bone marrow
stromal cells express a distinct set of biologically functional chemo-
kine receptors. Stem Cells 2006;24:1030–1041.

31 Ringe J, Strassburg S, Neumann K et al. Towards in situ tissue
repair: Human mesenchymal stem cells express chemokine receptors
CXCR1, CXCR2 And CCR2, and migrate upon stimulation with
CXCL8 but not CCL2. J Cell Biochem 2007;101:135–146.

32 Conget PA, Minguell JJ. Phenotypical and functional properties of
human bone marrow mesenchymal progenitor cells. J Cell Physiol
1999;181:67–73.

33 Majumdar MK, Keane-Moore M, Buyaner D et al. Characterization
and functionality of cell surface molecules on human mesenchymal
stem cells. J Biomed Sci 2003;10:228–241.

34 Sordi V, Malosio ML, Marchesi F et al. Bone marrow mesenchymal
stem cells express a restricted set of functionally active chemokine
receptors capable of promoting migration to pancreatic islets. Blood
2005;106:419–427.

35 Lapidot, T. Mechanism of human stem cell migration and repopula-
tion of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-
1/CXCR4 interactions. Ann N Y Acad Sci 2001;938:83–95.

36 Abbott JD, Huang Y, Liu D et al. Stromal cell-derived factor-1alpha
plays a critical role in stem cell recruitment to the heart after myo-
cardial infarction but is not sufficient to induce homing in the ab-
sence of injury. Circulation 2004;110:3300–3305.

37 Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4
stimulates mesenchymal stem cell migration to stromal cell-derived
factor-1 in vitro but does not decrease apoptosis under serum depri-
vation. Cardiovasc Revasc Med 2006;7:19–24.

594 Mesenchymal Stromal Cells



38 Li N, Lu X, Zhao X et al. Endothelial nitric oxide synthase promotes
bone marrow stromal cell migration to the ischemic myocardium via
upregulation of stromal cell-derived factor-1alpha. Stem Cells 2009;
27:961–970.

39 Ponomaryov T, Peled A, Petit I et al. Induction of the chemokine
stromal-derived factor-1 following DNA damage improves human
stem cell function. J Clin Invest 2000;106:1331–1339.

40 Sasaki M, Abe R, Fujita Y et al. Mesenchymal stem cells are
recruited into wounded skin and contribute to wound repair by trans-
differentiation into multiple skin cell type. J Immunol 2008;180:
2581–2587.

41 Inokuma D, Abe R, Fujita Y et al. CTACK/CCL27 accelerates skin
regeneration via accumulation of bone marrow-derived keratinocytes.
Stem Cells 2006;24:2810–2816.

42 Ip JE, Wu Y, Huang J et al. Mesenchymal stem cells use integrin
beta1 not CXC chemokine receptor 4 for myocardial migration and
engraftment. Mol Biol Cell 2007;18:2873–2882.

43 Kershaw DB, Thomas PE, Wharram BL et al. Molecular cloning,
expression, and characterization of podocalyxin-like protein 1 from
rabbit as a transmembrane protein of glomerular podocytes and vas-
cular endothelium. J Biol Chem 1995;270:29439–29446.

44 Lee RH, Seo MJ, Pulin AA et al. The CD34-like protein PODXL
and alpha6-integrin (CD49f) identify early progenitor MSCs with
increased clonogenicity and migration to infarcted heart in mice.
Blood 2009;113:816–826.

45 Kemp KC, Hows J, Donaldson C. Bone marrow-derived mesenchy-
mal stem cells. Leuk Lymphoma 2005;46:1531–1544.

46 Son BR, Marquez-Curtis LA, Kucia M et al. Migration of bone mar-
row and cord blood mesenchymal stem cells in vitro is regulated by
stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met
axes and involves matrix metalloproteinases. Stem Cells 2006;24:
1254–1264.

47 Croitoru-Lamoury J, Lamoury FM, Zaunders JJ et al. Human mesen-
chymal stem cells constitutively express chemokines and chemokine
receptors that can be upregulated by cytokines, IFN-beta, and Copax-
one. J Interferon Cytokine Res 2007;27:53–64.

48 Li Y, Yu X, Lin S et al. Insulin-like growth factor 1 enhances the
migratory capacity of mesenchymal stem cells. Biochem Biophys
Res Commun 2007;356:780–784.

49 Potapova IA, Gaudette GR, Brink PR et al. Mesenchymal stem cells
support migration, extracellular matrix invasion, proliferation, and
survival of endothelial cells in vitro. Stem Cells 2007;25:1761–1768.

50 Kansas, GS. Selectins and their ligands: Current concepts and contro-
versies. Blood 1996;88:3259–3287.
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