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Abstract 

Biology produces a range of composite structures that evolve to resist a wide range 

of loading conditions from their environments. The mechanical function of these 

biological composites is expected to be governed by the properties of the interfaces 

between distinct hard and soft constituents at different length scales. However, 

difficulties exist in applying composite theories to biological structures since the 

interfaces present between the nanoscale biological constituents are typically below 

standard measurement length scales. Hierarchical biological composites found in 

nacre and arthropod exoskeleton are distinct examples of structures potentially 

optimized to resist dynamic loading conditions. Understanding the deformation and 

failure of such biological composites thus require evaluations beyond quasi-static 

conditions. Knowing the dynamic mechanical properties of the biological interfaces 

at small scales would make a better understanding how nature designs different 

biological structures to serve their specific mechanical functions and potentially 

provide better guidance for synthesizing bio-inspired composites. 

 

Therefore, the aim of this PhD project is to examine the rate-dependent mechanical 

properties of the interfaces in different biological composites using a novel 

mechanical testing technique incorporating scanning electron microscopy (SEM), 
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focused ion beam (FIB) microscopy and atomic force microscopy (AFM) to 

understand their interfacial mechanical behaviour under different loading 

conditions and establish a relationship between their interfacial mechanics and 

their physiological loading conditions. 

 

As most biological composites are physiologically in hydrated condition, it is 

therefore critical to justify the applied experimental methodology capable of 

mechanically testing biological samples in hydrated condition effectively. Elastic 

modulus of nacre fabricated using FIB at the microscale were shown to be similar 

for both dry and hydrated samples under SEM vacuum and ambient air conditions, 

validating our methodology of mechanically testing hydrated biological samples 

under SEM vacuum condition at the sub-microscale. Nacre was then studied by 

performing the AFM nanoscale interfacial shear test under loading rates with the 

range of two orders of magnitude and a shear strength decrease of around 10% was 

found. General interfacial mechanical behaviour within biological composites was 

further explored by comparing interfacial mechanical behaviour from nacre and 

arthropod exoskeleton to the interfacial shear behaviour of the NCP-MCF interface 

in antler bone. All the three biological composites exhibited a weakened interface 

with increasing loading rates, but the biological interface with less confinement 

showed a shear strength more sensitive to varying loading rates and appeared to 

adapt to less dynamic physiological loading conditions. Finally, this work evaluated 

mechanically graded tendon-to-bone interfaces, highlighting the flexibility of the 

experimental approach used. Microscale beams of tendon-to-bone attachment 

fabricated using FIB were successfully tensile tested using in situ AFM. An analytical 
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model based on a simple rule of mixtures was used to predict the elastic moduli of 

the tendon-to-bone beams by consideration the spatial compositional variations 

within the larger interfacial regions, again providing a more complex-structure 

function relationship in a biological composite. Therefore, this PhD work highlights 

the use of mechanical testing using AFM and SEM to investigate the rate-dependent 

mechanical behaviour of small scale interfaces in a variety of structural biological 

composites. 
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Chapter 1 - Introduction 

1.1 Background  

Composites are a common class of materials where two or more distinct constituent 

phases are identifiable within the material structure (1). Composites are often used 

in structural applications and have synergistic improvements over their separate 

constituents, as well as potential weight savings. These structural composites are 

found widely in engineered structures such as aerospace and automotive industries 

due to their high specific mechanical properties. However, a considerable range of 

materials found in structural applications within biological organisms can also be 

clearly identified as having composite structures, most notably in mineralized 

tissues. 

 

The mechanical properties required from a composite ranges from strength and 

stiffness to toughness. It is common that composites achieve far better mechanical 

properties over their individual constituents. Therefore, understanding the 

mechanical behaviour of the composite constituents and more importantly, the 

interaction between the composite constituents is therefore critical in evaluating 

composite structures or providing design improvements. To this end, composite 
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constituents are widely defined as bi-components in terms of the properties of the 

reinforcing phase and the second binding phase, known as the matrix. Due to the 

extensive existence between composite constituents, the interfaces in composites 

have been widely regarded as being critical in defining overall mechanical response 

of composites. Generations of composite researchers have investigated interfacial 

behaviour and attempted modifications in order to optimize the interface according 

to the desired function. Mechanically, two interfacial conditions have been noted: 1) 

weak adhesion between reinforcement and binding matrix promotes reinforcement 

pullout for increased composite toughness whereas 2) strong interfacial adhesion 

allows efficient stress transfer from matrix to reinforcement for strong composites 

(1). 

 

The state-of-the-art in high performance composites has extended these design 

strategies to their potential pinnacle through the use of reinforcements such as 

nanotubes (2) and nanoclays (3). For example, significant activity has focused on 

high strength composites (2) produced from carbon nanotubes modified to 

chemically bond with the polymer matrix, following classic work on silane treated 

glass- or oxidized graphite- fibres bonding to polymer matrices (1). Biomimetic 

nanocomposites, based on designs found in nature, have recently received much 

attention as tough materials that evolve a large fracture area upon failure (3-5). 

However, the majority of these studies on interfacial mechanical optimization are 

critically based on evaluation and design for quasi-static loading events. A significant 

number of biological composites found in nature are subjected to a wide range of 

loading conditions for which quasi-static test is simply not suitable in recreating the 
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service-life loading conditions. Such loading conditions include impact of high loads 

and rates, smaller repetitive dynamic loading in vibration absorption, damping and 

fatigue. The rate-dependence of the mechanics of these biological materials is 

expected to be localized in the flexible molecules in the narrow interfaces between 

reinforcements, which are themselves rate dependent mechanically. A number of 

questions are therefore raised when considering biological composite structures. 

What are the structural mechanisms in the confined interfacial polymers activated 

in response to dynamic loading conditions? How do these mechanisms change as the 

interfacial structure or loading rate varies? 

 

To address these questions, it has been found by composites researchers that the 

consideration of design strategies used by natural biological composites is 

persuasive. Numerous structural biological composites are mechanically robust 

across a wide range of loading rates. Examples include the slow actuation of plant 

organs through water movement, periodic fatigue-type loading in tendon, the fast 

loading rates found in the impact of deer antler and the shell breaking appendages 

of mantis shrimp (6-10). Such biological composite systems exhibit common 

structural features at the nanoscale including a stiff majority reinforcement or 

scaffold surrounded by an amorphous interfacial region with a relatively small 

volume. Small changes to these interfacial regions are expected to have a significant 

effect on dynamic mechanical response of the material. The examination of the rate-

dependent interfacial deformation mechanisms at the nanoscale requires an 

experimental technique that both records the mechanical response from a rapidly 

deforming material and acquires structural information at small length scales 
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during this deformation. Focused ion beam (FIB) technique has been shown to have 

the ability to fabricate biological samples into discrete volumes of small length scales 

(11) while atomic force microscopy (AFM) has been widely employed for mechanical 

testing at small length scales for biological composites (12, 13). In this PhD project, 

a novel custom built AFM combining scanning electron microscopy (SEM) and FIB is 

developed for a wide range of nanomechanical testing, as shown in Figure 1.1. 

 

 

Figure 1.1 Photographs highlighting the experimental setup used to combine SEM, FIB 

and AFM techniques within a single instrument. The left image shows a standard SEM-

FIB dual-beam system (Quanta 3D FEG, FEI, USA/EU) whereas the right image 

indicates a custom built AFM that sits inside the SEM vacuum chamber and therefore 

allows in situ mechanical testing of small volumes of a wide range of biological samples. 
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1.2 Project Aims 

The main aim of this PhD project is to develop a novel mechanical testing 

methodology to investigate dynamic interfacial mechanical properties of different 

biological composites at small length scale. In order to achieve the overall aims, the 

objectives are outlined as follows: 

 

1. Develop a mechanical testing methodology suitable for evaluation of biological 

composites at small length scales. A custom built AFM integrated in SEM will 

provide both force spectroscopy for the measurement of mechanical properties 

as well as in situ observation of the failure behaviour using SEM imaging. 

 

2. Isolate discrete volumes suitable for AFM nanomechanical testing from the 

parent biological samples using FIB. Specially, the nanoscale interfaces in nacre 

and arthropod exoskeleton will be isolated from the bulk and directly tested 

mechanically. 

 

3. Validate this mechanical testing methodology of examining hydrated biological 

samples under SEM vacuum environment. 

 

4. Evaluate the rate-dependent mechanical behaviour of the discrete biological 

interfaces in nacre and arthropod exoskeleton and understand the role of the 

interfacial mechanics in controlling the overall mechanical properties. 
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5. Extend mechanical evaluation of interfaces by examining a graded interface 

structure as found in tendon-to-bone attachment. 

1.3 Thesis Outline 

The thesis is presented in eight chapters. A brief synopsis of each chapter is given as 

follows: 

 

The first chapter briefly introduces the background of this PhD project and the 

significance this work might bring to the composite material society. Then the main 

aim of this PhD project is illustrated followed by detailed objectives to achieve. After 

that, a thesis outline is given to present the structure of this PhD thesis. 

 

Chapter 2 reviews the basic background and knowledge related to the mechanical, 

structural, and formational properties of biological composites. Existing works are 

further reviewed to present a broad picture of the hierarchical structures and 

mechanical properties of three well-studied biological composites, including nacre, 

arthropod exoskeleton and tendon-to-bone attachment. These biological 

composites form the main applications of small scale mechanical testing of 

interfaces in this PhD thesis. 

 

To resolve the issue of mechanically testing biological composites at small length 

scales, a novel in situ nanomechanical testing methodology combining SEM, FIB and 

AFM is developed and described in detail in Chapter 3. FIB is used to fabricate 
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biological samples into dimensions suitable for nanomechanical testing, while 

mechanical properties are obtained from the custom built AFM system combined 

within the SEM-FIB dual-beam system. 

 

An obvious potential disadvantage of this combined mechanical testing technique is 

the exposure of biological samples to the SEM vacuum conditions, which might dry 

biological samples and affect their mechanical performance. Therefore in Chapter 4, 

elastic modulus of FIB-fabricated biological samples is mechanical tested and shown 

similar for both dry and hydrated samples under SEM vacuum and ambient air 

conditions, validating our methodology of mechanically test hydrated biological 

samples under SEM vacuum condition at the sub-microscale. 

 

After validation of the experimental methodology, nacre from abalone shell is 

studied by performing the nanoscale interfacial shear test under a range of loading 

rates in Chapter 5. Failure of the interface between nacre mineral tablets indicates a 

reduction in interfacial strength but an enhanced overall toughness with increasing 

loading rate, with two interfacial mechanisms proposed to explain this interfacial 

weakening behaviour under high loading conditions. 

 

In Chapter 6, the interface between arthropod exoskeleton layers is studied 

following similar experimental protocol in Chapter 5 and similar trend of the rate-

dependent interfacial behaviour is observed. Further investigations are performed 

to study the relationship between the rate-dependent mechanical behaviour of three 

biological composites (nacre, arthropod exoskeleton and antler bone) and their 
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physiological loading conditions. A mechanism is proposed based on these 

observations and simulations that considers the requirement of enhancing damage 

volume while minimizing the work of interfacial failure to maximize structural 

toughness under dynamic loading conditions. 

 

Chapter 7 extends this nanomechanical testing technique to larger length scale 

graded tendon-to-bone interfaces highlighting the flexibility of the experimental 

approach. These design strategies are potentially important in future applications 

when incorporated into engineered composites that operate under rapid loading 

conditions.  

 

Finally, the eighth chapter summarizes the main contributions of thesis. Additional 

studies beyond the thesis and future work are also examined. 
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Chapter 2 - Literature Review 

2.1 Introduction 

This chapter first reviews general terms of composite materials and the importance 

of various interfaces in composites at different length scales. Structural biological 

composites have a range of hierarchical architectures formed from complex 

biological processes that are notably more complex than typical engineering 

composites. The formation of structural biological composites is therefore reviewed 

subsequently and applied to describe the resultant structures of the three main 

subjects studied in this thesis: nacre of abalone shell, exoskeleton of mantis shrimp 

and the tendon-to-bone attachment from the humeral head of a mouse. Afterwards, 

existing literatures related to structures and mechanical properties of these 

structural biological composites are discussed in detail respectively. The literature 

review is of particular importance for justifying the experimental work of exploring 

mechanical properties of these structural biological composites at the sub-micron 

length scale. 
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2.2 Composites 

Composites are materials made from two or more constituent materials with 

significantly different physical or chemical properties, that when combined, produce 

a material with characteristics that differ from the individual components. In many 

cases, a strong and stiff component is present, often in elongated anisotropic form, 

embedded in a softer constituent forming the matrix. Normally, composites show 

marked overall anisotropy; that is to say, their properties vary significantly when 

measured in different directions. This usually arises because the harder constituent 

is in fibrous form with the fibre axes preferentially aligned in particular directions. 

In addition, one or more of the constituents may exhibit inherent anisotropy as a 

result of their crystal structure. 

 

In considering the formulation of a composite material for a particular type of 

application, it is important to consider the properties exhibited by the potential 

constituents. The properties of particular interest are the stiffness (Young’s 

modulus), strength and toughness. Density is of great significance in many 

applications, since the mass of the component may be of critical importance. 

Representative property data are shown in Table 2.1 for various types of matrix and 

reinforcement, comparison with some typical engineering materials and composites. 

Inspection of Table 2.1 indicates that outstanding property combinations can be 

obtained from these composites. For example, wood has a relatively high specific 
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strength due to low density, whereas polymer matrix composites (PMCs) have a 

higher specific fracture toughness than most metals. 

 

Table 2.1 Overview of different mechanical properties exhibited by different classes of 

materials (1). 

Type of material 
(example) 

Density 

ρ (g·cm-

3) 

Young’s 
modulus 

E (GPa) 

Strength 

σ (MPa) 

Fracture 
toughness 

Kc (MPa√
m) 

Specific 
fracture 

toughness 
(N·m4.5·g-1) 

Thermosetting 
resin (epoxy) 

1.25 3.5 50 0.5 0.4 

Engineering 
thermoplastic 

(nylon) 
1.1 2.5 80 4 3.63 

Rubber 
(polyurethane) 

1.2 0.01 20 0.1 0.083 

Metal (mild steel) 7.8 208 400 140 17.95 

Construction 
ceramic (concrete) 

2.4 40 20 0.2 0.083 

Engineering 
ceramic (alumina) 

3.9 380 500 4 1.03 

Wood (Load⫽grain) 0.6 16 80 6 10 

(spruce) (Load⟘ 

grain) 
0.6 1 2 0.5 0.83 

General PMC (in-
plane) (chopped 

strand mat) 
1.8 20 300 40 22.22 

Adv. PMC 
(load⫽fibres) 

1.6 200 1500 40 25 

(APC-2) 
(Load⟘fibres) 

1.6 3 50 5 3.13 

MMC (Al-20%SiC) 2.8 90 500 15 5.36 
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Central to an understanding of the mechanical behaviour of a composite is the 

concept of load sharing between the matrix and the reinforcing phase. The stress 

may vary sharply from point to point (particularly with short fibres or particles as 

reinforcement), but the proportion of the external load borne by each of the 

individual constituents can be gauged by volume-averaging the load within them. Of 

course, at equilibrium, the external load must equal the sum of the volume-averaged 

loads borne by the constituents (for example the matrix and the fibre). This gives 

rise to the condition 

   Affmf cc   )1(                                 Equation 2.1 

governing the volume-averaged matrix and fibre stresses (σm, σf) in a composite 

under an external applied stress σA, containing a volume fraction cf of reinforcement. 

Thus, for a simple two-constituent composite under a given applied load, a certain 

proportion of that load will be carried by the fibre and the remainder by the matrix. 

Provided the response of the composite remains elastic, this proportion of load 

carried by the reinforcement will be independent of the applied load. The 

mechanical behaviour of the composites depends on the volume fraction, shape and 

orientation of the reinforcement and on the elastic properties of both constituents. 

The reinforcement may be regarded as acting efficiently if it carries a relatively high 

proportion of the externally applied load. This can result in higher strength, as well 

as greater stiffness, because the reinforcement is usually stronger, as well as stiffer, 

than the matrix. Analysis of the load sharing which occurs in a composite is central 

to an understanding of the mechanical behaviour of composites. 
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Fibre architecture, describing the arrangement of commonly found reinforcements 

in composites, is an additional important parameter in defining the mechanical 

properties of composites. A number of fibre arrangements can be defined for the 

cylindrical geometries of fibres bound together in a surrounding matrix. For the 

simplest system of fibres aligned uniaxially in the composite, a lattice packing 

arrangement can be classified into two different types: hexagonal or square. 

Hexagonal packing is geometrically more efficient than square packing and, in 

theory, produces higher volume fractions of reinforcement in a composite. In 

practice, synthetic composites are rarely within a hexagonal or square packing 

organization throughout the composite but can occur over small, localized regions. 

However, fibres aligned parallel to each other form an important composite 

classification known as unidirectional lamina (1). 

 

Fibres arranged in pre-determined lamina layers of stacked fibres may be 

continuous or short and can be aligned in one direction or randomly. In order to 

simplify the study of laminates, each lamina is regarded as homogenous, meaning 

that the fibre arrangement and volume fraction are uniform throughout the layer. 

For definition purposes a ply is a unidirectional lamina and laminate is a stack of 

lamina. Two commonly found stacking sequences are the cross-ply laminate and the 

angle-ply laminate. The cross-ply describes a laminate with alternating piles; each 

ply having fibres orientated 90° to each other. The second angle-ply describes a 

laminate stacking arrangement where each ply has fibres that orientated 60° of each 

other (1). 
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The axial elastic behaviour of a fibre reinforced composites can be simplified by 

treating the materials as two components bonded together, with thickness relative 

to the volume fraction of the matrix and fibre. The two slabs of material are 

constrained to have the same lengths parallel to the bonded interface and hence, if a 

stress is applied along the fibre alignment, both components exhibit the same strain 

along the loading direction. This configuration is called the ‘equal strain’ condition 

and valid for loading along the fibre axis providing there is no interfacial sliding 

between the fibre and matrix. Such a simplification allows the elastic modulus of the 

composite to be derived and can be summarized using the ‘rule of mixtures’ shown 

in Equation 2.2 where the stiffness of the composite is a volume mean between the 

moduli of the two components. 

                                       Equation 2.2 

Where E is the overall elastic modulus of the composite, Ef is the elastic modulus of 

the fibre, Em is the elastic modulus of the matrix, cf is the volume fraction of the fibres 

and cm is the volume fraction of the matrix. The ‘rule of mixtures’ is considered to 

have a high degree of precision as long as the fibres are long enough for the ‘equal 

strain’ assumption to apply. The equal strain treatment is often described as the 

‘Voigt model’ (1) as shown in Figure 2.1c. Even though the ‘rule of mixtures’ equation 

has been shown to work for many composites with continuous fibres, minor 

deviations due to stresses that arise when the Poisson’s ratios of the two 

components are not equal are expected as will be explained later and shown in 

Figure 2.2. 

 

mmff cEcEE 
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Figure 2.1 Schematic diagrams of (a) a fibre composite, (b) the ‘slab model’ used to 

represent composite materials in terms of volume fraction where cf describes the 

volume fraction of the fibres and cm describes the volume fraction of the matrix, (c) 

schematic of the Voigt model and (d) the Reuss model. The white arrows represent the 

stresses, σ, applied to the composite and the black arrows represent the stresses 

transferred to each of the components. The dotted lines represent the deformation 

experienced by each component (1). 

 

The Voigt model is sufficient to describe a continuous reinforcement aligned in the 

direction of the applied load and can be considered as an upper limit when 

describing the elastic modulus of the composite material using Equation 2.2. 

Consequently, a lower limit on the elastic modulus of a composite can be determined 

from transverse stiffness. The simplest approach to define a lower limit for elastic 

behaviour is to represent the two components of reinforcement and matrix in the 

composite by the ‘slab model’ explained previously and shown in Figure 2.1a. A load 

applied orthogonally to the plane of the slabs will now produce variations in 

reinforcement and matrix phase strains, while each of these phases will be under an 

equal stress. This ‘equal stress’ model is often called a ‘Reuss model’ and can be used 

to calculate the elastic modulus of a composite using: 
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                                            Equation 2.3 

The strain and stress produced when loading the fibres transversely is distributed 

inhomogenously within the matrix as opposed to when the fibres are loaded axially 

as shown in Figure 2.1d. The inhomogeneity causes sharp concentrations of stress 

in specific regions around the reinforcing fibres that could lead to interfacial 

debonding, matrix plastic deformation and micro-cracking. This non-uniform 

distribution of stress and strain in transverse loading means that the equal stress 

model is often inadequate, giving an underestimate of the elastic modulus and can 

be treated as a lower boundary condition when calculating elastic properties of 

composites. 

 

The limits of the accuracy of the Voigt and Reuss models are due to the effect of the 

Poisson’s ratio as the composite is loaded. The Poisson’s ratio contraction effect is 

described by the matrix strain in the transverse direction caused by an axial stress. 

An aligned fibre composite has three different Poisson’s ratios as shown in Figure 

2.2. The first Poisson’s ratio shown in Figure 2.2a describes how applying a load 

along the principal fibre axis leads to equal applied strains but to unequal Poisson 

strains. The second Poisson’s ratio condition in Figure 2.2b describes how applying 

a load across of the fibres leads to unequal applied strains but equal Poisson strains 

and the third condition describes how applying a load transverse of the fibres as 

shown in Figure 2.2c leads to unequal applied strains and unequal Poisson strains. 
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Figure 2.2 Schematic diagram, from (1), showing the effect of Poisson’s ratio on fibre 

composites loaded in different directions: (a) a load along the principal fibre axis leads 

to equal to applied strains but unequal Poisson strains; (b) a load across of the fibres 

leads to unequal applied strains but equal Poisson strains; (c) a load transverse of the 

fibres leads to unequal applied strains and unequal Poisson strains. Dotted boxes 

represent state of composite before loading. 

 

Poisson’s ratio can be described therefore by the following equations: 

                                                      Equation 2.4 

                                                     Equation 2.5 

                                                Equation 2.6 

where νij is the Poisson’s ratio, where the i-direction is the direction at which the 

stress is applied and the j-direction is the direction of the deformation caused by the 

load in the i-direction; εi is the strain within the plane, εj is the strain normal to the 

plane, E is the Young’s modus and G is the shear modulus. 
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Laminate composites describe a sequence of stacked and bound sheets of a 

composite material with different fibre arrangement within each lamina. Three 

types of composites are useful for applications where there is an equal distribution 

of stresses along all the directions. A laminate, as opposed to a random fibre mat, 

allows higher fibre volume fractions of fibres aligned in different and specific 

directions and is therefore useful for the effective transfer of loads in different 

directions (1). The composite mechanics theories of Voigt, Reuss and Halpin-Tsai are 

therefore also critical in describing the mechanical properties of composite 

structure laminates containing arranged fibrous reinforcements but can additionally 

predict mechanical behaviour in materials that approximate to laminate structures. 

2.3 Structural Biological Composites 

2.3.1 Overview 

The study of biological materials has received increasing interest in recent years due 

to the often extraordinary mechanical properties and unusual structures these 

materials possess. A wide range of biological materials are complex composites with 

overall mechanical properties that are considered high performance despite using 

low performance constituents from which they are assembled. This limited 

mechanical behaviour of the constituents is a result of the ambient temperature, 

aqueous environment processing, as well as of the limited availability of elements 

(primarily C, N, Ca, H, O, Si and P) (10, 14). Biological organisms produce composites 

that are organized in terms of composition and structure, containing both inorganic 



Chapter 2 - Literature Review 

19 
 

and organic components in complex structures. These components are 

hierarchically organized from the molecular to the macro (structural) level. The 

structural biological composites, which have risen from hundreds of million years of 

evolution, have attracted scientists to study their structure-property relationships 

for decades and stimulated the development of bio-inspired synthetic composites. 

 

The study of structural biological materials such as seashells, antler, teeth and bones 

have yielded fascinating insight into how these inorganic/organic materials adjust 

their microstructure and growth conditions to provide superior structural 

properties. Mechanical property maps, more commonly known as Ashby maps, have 

become a convenient manner of concentrating a large amount of information into 

one simple diagram (15, 16). Two maps are presented in Figure 2.3 and present the 

Young’s modulus and strength as a function of density. Several striking and defining 

features are noted: 

 A wide range in Young’s modulus from 0.01 to 100 GPa, indicating a stiffness 

diversity of four orders of magnitude, is utilized in the natural world. 

 The range of toughness is almost as broad as the Young’s modulus, varying 

over five orders of magnitude: 0.001 - 100 kJ∙m2. 
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Figure 2.3 Ashby plots for biological materials showing toughness and modulus (16).  

 

These biological composites have an integrated, hierarchical structure with an 

increasing complexity of the macro constituents as the dimension becomes smaller. 

The macroscale shape has been optimized for external influences such as protection 

and fighting and the nanoscale displays an intricate interaction between the mineral 

and organic components (10, 17). This interaction, which has components of strong 

chemical and mechanical adherence, is maintained throughout various length scales. 

It has been shown that the length scale of the component is important for the 

optimized mechanical performance (18, 19). Using the Griffith criterion for brittle 

fracture, the stress (σ) required to activate a flaw of size 2a is: 

a

K c


                                                   Equation 2.7 

where Kc is the toughness of the brittle component. The fracture toughness is ~1 

MPa√m for aragonite (20) and ~1.2 MPa√m for hydroxyapatite (21). From Figure 
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2.3, the elastic modulus of aragonite and hydroxyapatite is ~100 GPa. Estimating 

that the theoretical strength of the material is E/10 (9, 19), this strength is reached 

at a length scale of ~25 nm. Biological structures therefore tend to use constituents 

for high strength by producing the constituents in the nanometre range. 

2.3.2 Basic Building Blocks 

2.3.2.1 Biominerals 

One of the defining features of rigid biological systems that comprise a significant 

fraction of the structural biological composites is the existence of two components: 

a mineral and an organic component. The intercalation of these components occurs 

at the nano, micro, meso or macroscale and often takes place at more than one length 

scale. Table 2.2 exemplifies this incorporation of mineral and organic components 

for a number of systems. The mineral component provides strength and the organic 

component contributes ductility as expected in typical composite design. This 

combination of strength and ductility leads to high energy absorption prior to failure. 

The most common mineral components are calcium carbonate, calcium phosphate 

(hydroxyapatite) and amorphous silica, although over 20 minerals (with principal 

elements being Ca, Mg, Si, Fe, Mn, P, S, C and the light elements H and O) have been 

identified. These minerals are embedded in complex assemblages of organic 

macromolecules that are hierarchically organized. The natural world is dominated 

by keratin, collagen and chitin acting as organic macromolecular frameworks. 
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Table 2.2 Principal components of common structural biological composites (10). 

 

 

Table 2.3 below shows the minerals that have been identified in biological systems 

(22). The number of minerals is relatively limited compared to the range of functions 

required by the biological organism. 
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Table 2.3 Principal minerals found in biological systems (22). 

 

 

Organic molecules in solution can influence the morphology and orientation of 

inorganic crystals if molecular complementarity at the crystal-additive interface 

occurs (20). Understanding the process in which living organisms control the 

growth and structure of inorganic materials could lead to significant advances in 

materials science, allowing novel synthesis techniques for nanoscale composites. 

Mann (23) states that in order to address the question of nanoscale biologically 

induced phase transformations and crystallographic control we must study the 



Chapter 2 - Literature Review 

24 
 

bonding and reactivity of extended organized structures under the mediation of 

organic chemistry. We examine two important processes of nucleation and 

morphology to describe the formation of the hard phase in biological structures. 

 

The control of nucleation of inorganic materials in nature is achieved by the effect of 

activation energy dependency on organic substrate composition. Inorganic 

precipitation is controlled by the kinetic constraints of nucleation. Mann (23) states 

that this activation energy may also depend on the two-dimensional structure of 

different crystal faces, indicating that there is a variation in complementarity of 

various crystal faces and the organic substrate. Weissbuch et al. (24) describe the 

auxiliary molecules which promote or inhibit crystal nucleation depending on their 

composition. 

 

The morphology of the inorganic material created in nucleation is controlled 

through the interaction with the organic matrix. Activation energies can be 

influenced in the presence of an organic matrix in three possible ways. Firstly, Figure 

2.4 describes the possibilities of polymorphic nucleation (23). The activation 

energies of two non-specific polymorphs, ‘A’ and ‘B’, are shown in the presence (state 

2) and absence (state 1) of the organic matrix. If ‘A’ is more kinetically favoured in 

the absence of the organic matrix then it is possible to examine the effect of the 

organic phase on the activation free energy (ΔG#) of various polymorphs with 

respect to each other. In the first case both polymorphs are affected equally, thus ‘A’ 

remains kinetically favourable. In the second case the effect on the ‘B’ polymorph is 

much larger than for ‘A’ and thus, when in the presence of the organic matrix, ‘B’ is 
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kinetically favourable. In the last case we see a combination of the two earlier cases, 

in which the kinetic favourability of the two polymorphs is influenced by genetic, 

metabolic, and environmental processes. 

 

 

Figure 2.4 Structural control by organic matrix-mediated nucleation. (a) Promotion of 

non-specific nucleation in which both polymorphs have the activation energies reduced 

by the same amount; (b) promotion of structure-specific nucleation of polymorph B 

due to more favourable crystallographic recognition at the matrix surface; (c) 

promotion of a sequence of structurally non-specific to highly specific nucleation (25). 

 

The selection of the polymorph will also be determined by the transformation 

sequence. This starts, in Figure 2.5, with an amorphous mineral and continues 

through a series of intermediate structures that have the same composition but 

decreasing free energy (increasing thermodynamic stability) (23, 26). This cascade 

is shown in Figure 2.5 and will either follow the one step route (A) or travel along a 

sequential transformation route (B) depending on the activation energies of 

nucleation, growth, and transformation. Addadi et al. (27-29) proposed that the role 

of the solid-state amorphous precursor phase could be fundamental in the 

biomineralization process. 
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Figure 2.5 Representation of activation energies of nucleation in the presence and 

absence of an organic matrix for two non-specific polymorphs (25). 

 

The composition of the complex structure in biological composites is mediated by 

the phase transformations, which occur by surface dissolution of the precursor. The 

phase transformation is dictated by the solubility of amorphous precursor into the 

crystalline intermediates, and the effect of these precursors on the free energies of 

activation of these interconversions. Thus an animal that is able to control its 

emission of molecular precursor (organic matrix, or soluble protein) will be able to 

control the growth and structure of its inorganic biocomposite. Addadi and Weiner 

(27) and Addadi et al. (28, 29) demonstrated the stereoselective adsorption of 

proteins in the growth of calcite crystals resulting in a slowing down of growth in 

the c-direction and altering the final shape of the crystal. This evidence of the 

influence of organics on inorganic crystal growth led them to examine the influence 

of proteins on the morphology of crystal growth. 
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2.3.2.2 Biopolymers 

The organic structures formed from cellular activity provide the framework in the 

biomineralization process. The organic material is typically a complex protein 

polymer, referred to as a biopolymer. Most proteins are complex macromolecules but 

typically incorporate amino acid chemistry containing both amine (-NH2) and 

carboxyl (-COOH) groups, with this chemical structure shown in Figure 2.6: 

 

 

Figure 2.6 Chemical structure of amino acids containing an amine and carboxyl group. 

R represents organic side groups. 

 

Twenty common amino acids are used in proteins, with the common amino acids 

given as: Arginine (Arg), Asparagine (Asn), Aspartate (Asp), Glutamine (Gln), Glycine 

(Gly), Histidine (His), Isoleucine (Ile), Methionine (Met), Threonine (Thr), 

Tryptophan (Trp), Tyrosine (Tyr), and Valine (Val) (30). The amino acids form linear 

chains similar to polymer chains known as polypeptide chains. These polypeptide 

chains acquire distinct configurations through the formation of bonds (hydrogen, 

van der Waals, and covalent bonds) between amino acids on the same or different 

chains. The two most common configurations are the alpha helix and the beta sheet 
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as shown in Figure 2.7. The alpha helix is formed due to hydrogen bonding between 

adjacent NH and CO groups in separate chains that facilitate helical shape. This 

structure can shift towards a beta sheet configuration shown in Figure 2.7b. 

 

 

Figure 2.7 (a) Structure of alpha helix; dotted double lines indicate hydrogen bonds; (b) 

structure of beta sheet with two anti-parallel polypeptide chains connected by 

hydrogen bonds (double dotted lines) (31). 

 

Further detail on the alpha helix structure is shown in Figure 2.8. The hydrogen 

bonds that hold the polymer chains together, shown in Figure 2.8a as present in both 

the alpha helix and beta sheet, are combined with steric repulsion from the organic 

side groups to give the alpha helix structure. 
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Figure 2.8 (a) Hydrogen bond connecting a CO to a NH group in a polypeptide; (b) 

successive hydrogen bonds on same polypeptide chain leading to formation of a helical 

arrangement (32). 

 

Organic frameworks require the combination of proteins using the amino groups 

present on the polymer chains to form fibrous constituents. These fibrous 

constituents can then build further structures, as will be discussed, and act as the 

template from which mineralization can occur. Interestingly, the majority of organic 

frameworks are formed from fibrous materials constructed from the following 

biopolymers (20): 

• Polypeptide chains, which are the building blocks for collagen, elastin, silks and 

keratins. 

• Polysaccharides, the building blocks for cellulose and hemicellulose. 

• Hybrid polypeptide–polysaccharide chains, the building blocks for chitin. 

 

For example, mammals use polypeptide chains almost exclusively to form fibrous 

collagen constituents as a framework for mineral formation whereas a number of 
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sea creatures use corresponding fibres constructed from polysaccharides. Therefore, 

while the biopolymers used by organisms can change, the principal of an organic 

framework holds in all mineralized tissue. 

2.3.3 Mechanical Analysis of Structural Biological 

Composites 

A wide range of mineralized biological composites are hierarchically structured 

beginning from the smallest length scale with mineral nano-fibres, -platelets, or -

spheres which are embedded within proteins and arranged into superordinate 

structures at larger dimension levels. For example, hierarchical structuring can 

embrace up to 7 levels of hierarchy (33) within bone where the largest structural 

elements can reach length scale of millimetres (33). Table 2.4 gives a brief overview 

of the hierarchical structures of some mineralized biological materials discussed in 

this section. All these materials are built from the bottom up with the first composite 

level consisting of mineral platelets, fibres or spheres embedded within a protein 

phase. The levels of hierarchy are counted from this first mineral-protein composite 

level up to the bulk material level. 
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Table 2.4 Overview of selected biological materials with a brief description of their 

hierarchical structures (34).  

Material 
Mineral 
content 
[vol.%] 

Structure 
Levels of 
hierarchy 

Nacre (20, 
35-37) 

95 

Aragonite nano-grains are glued together to 
form nano-platelets (1) which are staggered 

into a brick- and mortar-like structure, 
enveloped by proteins (2) 

2 

Enamel 
(38) 

85 

Hydroxyapatite nano-fibres (1) are bundled 
together to micro-fibres (‘rods’) (2) which are 

partially arranged in a superordinate 
decussated structure (3) 

3 

Sponge 
spicule 
(39-42) 

89 
Hydrated silica nano-spheres (1) are arranged 

into lamellae (2) which are arranged 
concentrically around a central cylinder (3) 

3 

Dentin 
(43) 

45 

Collagen fibrils are reinforced by 
hydroxyapatite nano-platelets (1) and form a 
network-like structure (2) around the dentinal 
tubules which are cylindrically shaped and 
surrounded by a highly-mineralized cuff (3) 

3 

Conch 
shell (44, 

45) 
99 

Layered, ply-wood like structure: Three meso-
layers (1) 0º/90º/0º are composed by first-

order lamellae in a ±45º orientation (2). Each 
first-order lamella consists of second-order 
lamellae (3) which in turn consist of single 
crystal third-order aragonite lamellae (4) 

4 

Cortical 
bone (33) 

40 

Collagen fibrils are reinforced by 
hydroxyapatite nano-platelets (1) and 

assemble into fibres (2) which are arranged 
into lamellar sheets (3) which are arranged 
concentrically into Haversian systems (4) 

which are arranged in parallel to the bone long 
axes (5) 

5 

Antler 
bone (46, 

47) 
36 

Structure similar to cortical bone but less 
mineralized 

5 

 

In general, investigations of mechanical properties of biological materials can be 

divided into two major groups, namely micro/nanoindentation and miniaturized 
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bulk mechanical testing. On the one hand, mechanical properties such as elastic 

modulus, hardness and toughness are determined via indentation methods. In a 

traditional indentation test (macro or microindentation), a hard tip whose 

mechanical properties are known (frequently made of a very hard material 

like diamond) is pressed into a sample whose properties are unknown. 

The load placed on the indenter tip is increased as the tip penetrates further into the 

specimen and soon reaches a user-defined value. At this point, the load may be held 

constant for a period or removed. The area of the residual indentation in the sample 

is measured and the hardness, H, is defined as the maximum load, Pmax, divided by 

the residual indentation area, AT: 

TA

P
H max                                            Equation 2.8 

Nowadays nanoindentation has superseded microindentation due to the need to 

understand the mechanical properties of nanoscale constituents. Table 2.5 (34) 

summarizes data determined via indentation tests for biological materials described 

in Table 2.4. As the issue of this section is to understand and discuss the mechanical 

properties of biological materials in regards to their hierarchical structures, the data 

presented here is allocated according to the hierarchical level classification 

presented in Table 2.4.  

 

As can be seen, indentation techniques are appropriate to determine the mechanical 

properties of small structural elements at the microscale or nanoscale. However, 

several problems need to be solved before applying small length scale mechanical 

testing techniques to perform compression, bending or tensile tests for elastic 

https://en.wikipedia.org/wiki/Diamond
https://en.wikipedia.org/wiki/Structural_load
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modulus, strength and toughness of biological materials. Firstly, the sample 

preparation of relatively small specimens requires suitable isolation and 

manipulation from bulk specimens. Secondly, standard experimental setups for 

mechanical testing of such small samples are uncommon and new techniques need 

to be developed. Indentation testing remains perhaps the only standard test that is 

sufficient to measure the mechanical properties of materials at small length scales. 

Nanoindentation has been applied to measure the elastic modulus, strength and 

toughness of many biological material and structure constituents in a range of 

loading modes as summarized in Table 2.5 below. 

 

Table 2.5 Characterization of biological materials via indentation (34). 

Material 
Level of hierarchy 

tested 
Elastic modulus 

[GPa] 
Hardness 

[GPa] 

Fracture 
toughness 
[MPa∙m1/2] 

Nacre 
2: staggered platelet 

arrangement 
30-120 (12, 
36, 48, 49) 

0.5-8 (12, 
36, 48, 49) 

6.8 (49) 

Enamel 

0: single crystals 

1: nano-fibre 
arrangement (‘intra-

rod’) 

2: multiple rods 

40-115 (50) 

120 (50) 

80-82 (49-
51) 

2.5-4 (51, 
52) 

0.5-1.3 (49) 

Sponge 
spicule 

1: nano-sphere 
arrangement (single 
concentric layer) 

2: layered structure 

42-43 (41) 

41-42 (41) 

35 (39) 

4.2-4.4 (41) 

3.8-4.1 (41) 

2.5-3 (39) 

0.84 (53) 

Dentin 
(43) 

2: intertubular dentin 
network 

17-21 (54) 
0.49-0.52 

(54) 

Material too 
soft for 

indentation 

toughness 
measurements 

(55) 
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Conch 
shell 

2: peritubular highly-
mineralized cuff 

2: second-order lamella 
structure 

29 (54) 

60-100 (56) 

2.2-2.5 (54) 

3-6 (56) 

Highly 
damaged zone 
around indents 

but no 

well-defined 
radial cracks 
for toughness 

calculations 
(57) 

Cortical 
bone 

4: single Osteon lamellae 

4: interstitial lamella 

Dry: 22.5 

Wet: 18 (58, 
59) 

Dry: 25.8 

Wet: 18 (58, 
59) 

0.4-0.6 (58, 
59) 

0.5-2 (60) 

Antler 
bone 

4: lamellae 5.5-7.6 (61) 
0.16-0.21 

(61)  

 

Biological materials simultaneously adopt a generic nanostructure consisting of 

protein and mineral, suggesting a convergent evolution of the microstructural 

design of biomaterials at the microscale or nanoscale, from previous studies (18, 19) 

examining the mechanical properties of different biological materials. Ji and Gao et 

al. (18, 19) found that nanostructures play critical roles in the stiffness and 

toughness of biological materials through a so-called tension-shear chain (TSC) 

model. Gao et al. (19, 62-64) carried out a series of studies on the mechanical 

properties of biological nanostructure, including fracture strength of the mineral 

phase becomes insensitive to existing flaws and approaches theoretical strength 

limits when the dimensions of the mineral crystal approach critical nanometre 

length scales. 
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While the reduction of the size of mineral crystal can enhance the fracture strength 

and toughness of the nanocomposite structure, this size reduction significantly 

increases the interfacial region of mineral and protein in bulk structures. For 

example, the area of the interfacial region can be as large as a football field in a rain-

drop-size volume of a nanocomposite (65). Nanocomposites can therefore be 

considered as ‘interface’ materials, and thus the interface plays more dominant roles 

in their mechanical properties in comparison with the conventional composites. In 

particular, many biological materials, such as bone, teeth and shells, are polymer 

nanocomposites of protein and mineral that have drastically different in mechanical 

properties: mineral is hard and brittle, but protein is soft, tough, and as a typical 

biopolymer its molecular conformation largely determines mechanical properties. 

Experimental studies have suggested that the static Coulomb force might dominate 

the interaction between mineral and protein in biological materials (66-69). 

However, to date, it is still unclear what mechanisms dominate the fracture strength 

and toughness of this hybrid interface and how the interface configuration changes 

when the materials deform and fail.  

 

At the most elementary structure level, biological composites exhibit a generic 

microstructure consisting of staggered mineral bricks as shown in Figure 2.9a. 

Jaeger and Fratzl (70) discussed the mineral platelet arrangement in collagen fibrils 

and developed a simple mechanical model to estimate the stiffness of biocomposites. 

Under an applied tensile stress, the Jaeger-Fratzl model can be schematically 

represented by Figure 2.9b, where the mineral platelets carry the tensile load while 

the protein matrix transfers the load between mineral crystals via shear. The path of 
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load transfer in the composite is thus simplified to a one-dimensional serial spring 

system consisting of mineral elements (tension) interspersed among protein 

elements (shear) (19). The large aspect ratio of mineral platelets compensates for 

the low modulus of the protein phase. According to this simple model, the stiffness 

(Young’s modulus) E of the composite can be expressed as: 

                                Equation 2.9 

where Em is the elastic modulus of mineral, Gp is the shear modulus of protein, Φ is 

the volume concentration of mineral, and ρ is the aspect ratio of the mineral platelets. 

The equation above indicates that the high stiffness of biocomposites is achieved by 

the large aspect ratio of mineral platelets, with most of the load carried by the hard 

mineral platelets via stress transfer through protein between the mineral. 

 

 

Figure 2.9 A model of a biocomposite. (a) A schematic diagram of staggered mineral 

crystals embedded in protein matrix. (b) A simplified model showing the load-carrying 

structure of the mineral–protein composites. Most of the load is carried by the mineral 

platelets whereas the protein transfers load via the high shear zones between mineral 

platelets (19). 
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Gao and Ji (19) applied a Griffith criterion to indicate that the strength of the mineral 

plate in a biocomposite as shown in Figure 2.9 is equal to the theoretical strength 

when the mineral size drops below 30 nm, even if flaws were present within the 

mineral itself. Therefore, the mineral phase in biological structures are theoretically 

expected to be insensitive to flaws at this scale. Gao et al. (71) and Gao and Ji (19) 

proposed a conceptual framework that explains the lowest scale of the structural 

elements in hard biological materials (bone, teeth, and shells) and applied Griffith’s 

criterion to the mineral components of hard biological materials thus: 

                                           Equation 2.10 

Where γ is the surface energy of the mineral, α is a proportionality constant, and h 

is the thickness of the mineral. Gao defined a parameter ψ by: 

                                                 Equation 2.11 

Where, for the thumbnail crack shown in Figure 2.10a, the value of α is √π. The 

theoretical stress, σth, has been defined, according to the Orowan criterion (72), for 

crystalline materials, as: 

,                                    Equation 2.12 

The analysis predicts a limiting value of h (or a), for which the strength is no longer 

size dependent, as: 

                                       Equation 2.13 
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This critical value of about 30 nm was calculated for bone, which is the approximate 

size of the mineral platelets observed experimentally (33). The critical value of ψ, ψ*, 

is marked in Figure 2.10b. 

 

 

Figure 2.10 A length scale for optimized fracture strength in mineral platelet. (a) 

Schematic of a mineral platelet with a surface crack (Griffith analysis); (b) comparison 

of the fracture strength of a cracked mineral platelet calculated from the Griffith 

criterion with that of a perfect crystal (71). 

 

Meyers et al. (73) used a similar approach to Gao et al. (71) to examine the strength 

of the nanoscale components in abalone shell. Abalone shell has a complex structure, 

as will be discussed later in this chapter, but contains nanoscale mineral bridges that 

have the potential to be high strength due to the relatively small size. These mineral 

bridges are shown in Figure 2.11a and b, with the corresponding schematic 

indicating sub 100 nm features. The calculation of the mineral bridge strength is 

shown in Figure 2.11c and highlights a rapid increase in the mineral strength as the 

bridge diameter decreases. This work suggested that the mineral bridge diameters 

are design to maximize strength. 
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Figure 2.11 (a) SEM micrograph showing mineral bridges (marked by arrows) 

between tile layers (73). (b) Schematic showing the nanoscale mineral bridges 

connecting layers of aragonite tiles. (c) Tensile strength of mineral as a function of 

bridge diameter (73). 

2.4 Nacre  

2.4.1 Hierarchical Structure 

Nacre is a biological composite that has been extensively studied due to its highly 

organized hierarchical structure and its exceptional mechanical properties (12, 74-

80). Nacre is part of the two-layer armour system adopted by most molluscs to 

protect their soft bodies from marine predators and other mechanical aggressions 

such as rocks or debris displaced by currents and waves. As shown in Figure 2.12b, 

the outer layer of shells consists of large prismatic calcite grains (rhombohedral 

calcite) which are hard and appropriate to withstand impact against shells, but 

prone to brittle failure (81). However, nacre is relatively ductile, capable of bearing 
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larger inelastic deformation than the pure mineral phase and dissipating mechanical 

energy during impact process (82). In order to achieve such mechanical 

performance, the structure of nacre is well organized at multiple length scales. Nacre 

is composed of 95% highly organized mineral calcium carbonate (CaCO3) tablets in 

the aragonite form separated by 20 to 50 nm thick layers of biopolymer mortar 

mainly composed of proteins and polysaccharides (36, 77, 83). The mineral is in the 

form of hexagonal tablets 5 to 15 µm in diameter and 0.2 to 0.5 µm in thickness. 

These tablets are strictly arranged as an interlocked ‘brick and mortar’ structure, as 

shown in Figure 2.12. 

 

 

Figure 2.12 Nacre at different length scales (all images from red abalone): (a) inside 

view of the whole shell; (b) cross section of a red abalone shell; (c) schematic of the 

‘brick and mortar’ structure; (d) top view optical micrograph showing the tiling of the 

tablets; (e) SEM image showing a fracture surface of nacre (84). 

 

The aragonite tablets in nacre are normally described and modelled as flat at the 

microscale. However, closer observation reveals that this is not the case, and that the 



Chapter 2 - Literature Review 

41 
 

interfaces between the tablets exhibit an evident waviness, as shown in Figure 2.13a 

and Figure 2.13b. Such features have been observed by a number of methods, such 

as optical microscopy, scanning electron microscopy (SEM), transmission electron 

microscopy (TEM) and atomic force microscopy (AFM) (12, 85, 86). The waviness of 

the tablets in nacre was also detected using a laser profilometer, as shown in Figure 

2.13c. AFM on the opposed faces of a cleaved sample (Figure 2.13d) reveals that the 

topology of the surface from one tablet to the next is highly conformal, making the 

tablets fit together perfectly.  

 

 

Figure 2.13 Nacre at the microscale. (a) TEM of nacre from red abalone showing tablet 

waviness; (b) optical micrograph of nacre from fresh water mussel Lampsilis Cardium; 

(c) layer topology from laser profilometry; (d) AFM images of opposed tablets (36, 87). 

 

The smallest features in the hierarchical architecture of nacre are observed at the 

nanoscale. The tablets are composed of single aragonite grains, with the [001] 

crystallographic orientation normal to the plane of the tablets. Figure 2.14a presents 
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a TEM image that demonstrates the existence of nanograins within the tablets. The 

interface between the tablets is a complex multi-layer system mainly composed of 

biopolymer species with the thickness of 20 - 30 nm (87). Aragonite bridges and 

nanoasperities on the surface of the tablets are observed using high resolution TEM 

(Figure 2.14b and Figure 2.14c), both of which are believed to provide direct 

mechanical interaction between tablets (76, 88). AFM imaging of a cleaved sample 

exhibits the distribution of these nanoscale features on the surface of the tablets, as 

shown in Figure 2.14d. The density and size of these features vary from one area to 

another (36), and on average they are 10 - 30 nm in height and width, with spacing 

of the order of 100 - 200 nm. All of the structural features identified in this section 

at different length scales have a potential influence on the mechanical performance 

of nacre, which will be discussed in detail in the next section. 

 

 

Figure 2.14 Nacre at the nanoscale. (a) TEM of a nacre tablet, showing nanograin 

inclusions; (b) high resolution TEM of asperity inside a tablet interface; (c) high 

resolution TEM of an aragonite bridge connecting two tablets across the interface; (d) 

AFM images of opposed tablet surfaces showing nanoscale features (76, 88). 
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2.4.2 Mechanical Properties 

The superior mechanical properties of nacre were first revealed by Currey (89) who 

performed measurements of mechanical properties of nacre from a variety of 

bivalves, gastropods and cephalopods. The studies demonstrated that nacre had a 

fracture strength in bending varying between 56 and 116 MPa and the maximum 

measured strain was 0.018. The work of fracture varied significantly in different 

loading directions, being about 1.65 × 103 J·m-2 when fractured across the grain, and 

1.5 × 102 J·m-2 when fractured along the grain. Currey indicated that the tablet 

geometry and arrangement were optimized for stiffness as well as energy 

absorption, with nacre exhibiting considerable ability to stop cracks leading to 

catastrophic failure. Further investigation of nacre was performed by Jackson et al. 

(85) who studied the effect of hydration on nacre from the shell of a bivalve mollusc, 

Pinctada. This work reported a Young’s modulus difference of approximately 70 GPa 

for dry samples (ambient conditions) and 60 GPa for hydrated samples (soaked in 

water); the tensile strength of nacre was demonstrated to be 170 MPa for dry and 

140 MPa for hydrated samples. The work of fracture varied from 350 to 1240 J·m-2, 

depending on the species, degree of hydration, span-to-depth ratio and the 

orientation of load applied. Hydrated nacre showed superior toughness by 

associated introduction of plastic work. In contrast, monolithic calcium carbonate 

showed a work of fracture up to 3 orders of magnitude lower than that of nacre (74, 

85). Jackson et al. (85) concluded that water affects the Young’s modulus and tensile 

strength by reducing the shear modulus and strength of the organic matrix. The 

toughness of nacre is enhanced by water, which plasticizes the organic mortar with 
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the result of enhanced crack blunting and deflection ability (85). Compared with 

traditional brittle ceramics (Al2O3) and high toughness ceramics (ZrO2), the crack 

propagation behaviour of nacre reflects its highly anisotropic structure resulting in 

a high degree of crack tortuosity (90). Jackson et al. thus concluded that the 

increased path length of cracks is responsible for enhanced work of fracture. Meyers 

(91) also observed crack deflection at the thick (20 µm) organic interfaces 

mesolayers.  

 

The deformation behaviour of nacre has been experimentally studied via a variety 

of methods including tensile (89, 92) and compressive (36, 77) tests, three and four 

point bending tests (74, 85) and shear test (92, 93). The mechanical behaviour of 

macroscopic nacre at high strain rates was also characterized by Menig et al. (77). 

Besides these mechanical tests at the macroscale, nanoindentation on individual 

aragonite tablet (12, 36) and load-extension curves on single molecules of organic 

matrix in nacre (13) were used to detect the mechanical response of individual 

components of nacre at smaller length scales. At the macroscale, the most significant 

mode of deformation is the uniaxial tensile test along the direction of the tablets. In 

considering the two-layer armour system of seashells discussed in Section 2.4.1, the 

outside layer is always subjected to compressions and impacts, thus the inside 

nacreous layer is subjected to tension along the tablets most of the time. Figure 2.15a 

and 2.15c presents the stress-strain curves of nacre in tensile and shear tests and 

the associated deformation modes as shown in Figure 2.15b and 2.15d, showing 

some ductility at the macroscale. The stress-strain curves show relatively large 

deformations, accompanied by hardening up to failure at a strain of around 2%. 
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Unloading paths show a decrease in elastic modulus, resulting from progressive 

accumulation of damage. The tensile behaviour of aragonite is also shown in Figure 

2.15a and indicates a linear elastic deformation followed by sudden, brittle failure 

at relatively small strain. Nacre therefore exhibits ductile behaviour with relatively 

large failure strains despite being made of 95% by volume of brittle aragonite 

mineral.  

 

 

Figure 2.15 (a) Experimental tensile stress-strain curve for nacre and (b) associated 

deformation modes. (c) Experimental shear stress-strain curve for nacre and (d) 

deformation mechanism. Tablet waviness generates resistance to sliding, accompanied 

by lateral expansion (red arrows) (94).  
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2.5 Arthropod Exoskeleton 

2.5.1 Hierarchical Structure 

Arthropods are the largest phylum of animals including the trilobites, chelicerates 

(spiders, mites, and scorpions), mariapods (millipedes and centipedes), hexapods 

(insects), and crustaceans (crabs, shrimps, lobsters, and others). All arthropods are 

covered by a rigid exoskeleton, which is periodically shed as the animal grows. The 

multifunctional arthropod exoskeleton supports the body mass, resists mechanical 

loads as well as providing environmental protection and resistance to desiccation 

(95-98). The three main components of exoskeleton are chitin, polysaccharide, 

structural proteins, and inorganic minerals, typically calcium carbonate. The 

exoskeleton is a multi-layered structure and can be observed under optical 

microscope. The outermost layer is the epicuticle, a thin, waxy layer that is the main 

waterproofing barrier. Beneath the epicuticle is the procuticle, the main structural 

part primarily designed to resist mechanical loads. The procuticle is further divided 

into two parts, an exocuticle and an endocuticle (99). The exocuticle (outer layer) 

and endocuticle (inner layer) are similar in structure and composition. The 

difference between exocuticle and endocuticle is that the exocuticle is stacked more 

densely while the endocuticle is sparsely stacked. Generally, the layer spacing in the 

endocuticle is about three times thicker than that in the exocuticle. 
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The most characteristic feature of arthropod exoskeletons is their well-defined 

hierarchical organization which reveals different structural levels as shown in Figure 

2.16. At the molecular level is the polysaccharide chitin which arrange into an anti-

parallel fashion forming α-chitin crystals. The next structure level consists of 18 - 25 

of such molecules, wrapped by proteins, forming nanofibrils of about 2 - 5 nm in 

diameter and about 300 nm in length. These nanofibrils further assemble into 

bundles of fibres of about 50 - 300 nm in diameter. The fibres then arrange parallel 

to each other and form horizontal planes. These planes are stacked in a helicoid 

fashion, creating a twisted plywood or Bouligand structure (100-103) that have 

completed a 180º rotation in organization, which further forms the exocuticle and 

endocuticle. The Bouligand (helical stacking) arrangement provides structural 

strength that is in-plane isotropic (x-y plane) in spite of the anisotropic nature of the 

individual fibre bundles. In crustaceans, the minerals are mostly in the form of 

crystalline CaCO3, deposited within the chitin-protein matrix (23, 25, 104, 105). The 

highly mineralized Bouligand arrangement provides strength in the in-plane (or in-

surface) direction and can be considered as the hard or brittle component. 
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Figure 2.16 Hierarchical structure of the exoskeleton of sheep crab, Loxorhynchus 

grandis. Chitin fibrils (~3 nm in diameter) wrapped with proteins form a fibre of ~60 

nm in diameter. Fibres further assemble into bundles, which form horizontal planes (x-

y plane) superposed in a helicoid stacking, creating a twisted plywood structure 

through a 180º rotation. Ribbon-like tubules, 1 µm wide and 0.2 µm thick organize in 

the z-direction and run through the pore canals (106). 

2.5.2 Mechanical Properties 

The mechanical properties of crustacean exoskeletons (mud crab, Scylla serrata and 

the prawn, Penaeus mondon) were first investigated by Hepburn and Joffe (107, 108), 

followed by Raabe and co-workers (American lobster, Homarus americanus) (109-

114) and Chen et al. (106) (sheep crab, Loxorhynchun grandis and Dungeness crab, 

Cancer magister). The tensile stress-strain curves for various exoskeletons are 

shown in Figure 2.17. The results from Hepburn and Joffe (99, 107) show a unique 

discontinuity (load drop) in the low strain region. The authors suggested that this 
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discontinuity is associated with the brittle failure of the mineral phase. When 

exoskeleton specimens are stretched, brittle failure of the mineral phase occurs at a 

low strain, leaving the chitin and protein phases to bear the load as shown in Figure 

2.17. Table 2.6 additionally shows the mechanical properties of crustacean 

exoskeletons, highlighting the importance of water in defining mechanical 

properties. The dried exoskeleton material is therefore rigid and brittle compared to 

that in the hydrated state. 

 

 

Figure 2.17 Tensile stress-strain curves for crustacean exoskeletons (20). 

 

 

 

 

 

 



Chapter 2 - Literature Review 

50 
 

Table 2.6 mechanical properties of crustacean exoskeletons (106, 107). 

Sample UTS (MPa) 
Young’s modulus 

(MPa) 
Fracture 

strain (%) 

Sheep crab Wet 29.8 ± 7.2 467 ± 92 6.9 ± 1.8 

Loxorhynchus 
grandis 

Dry 12.5 ± 2.3 735 ± 65 1.7 ± 0.3 

Mud crab Wet 30.1 ± 5.0 481 ± 75 6.2 

Scylla serrata Dry 23.0 ±3.8 640 ± 89 3.9 

Prawn Wet 28.0 ±3.8 549 ± 48 6.9 

Penaeus mondon Dry 29.5 ± 4.1 682 ±110 4.9 

 

Melnick et al. (115) studied the hardness and toughness of exoskeleton of the stone 

crab, Menippe mercenaria, which exhibits a dark colour (ranging from amber to black) 

on tips of chelae and walking legs. The dark material was much harder and tougher 

than the light-coloured material from the same crab chela, as presented in Table 2.7. 

Scanning electron micrographs as shown in Figure 2.18 showed that the dark 

exoskeleton material has lower level of porosity, and this may relate to the tanning 

effect and more progressed mineralization.  

 

Table 2.7 Mechanical properties of stone crab, Menippe mercenaria (115). 

 
Hardness 

(GPa) 
Fracture strength, σf 

(MPa) 
Fracture toughness, KIc 

(MPa∙m1/2) 

Black 1.33 108.9 2.3 

Yellow 0.48 32.4 1.0 
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Figure 2.18 (a) Stone crab, Menippe mercenaria, chelae showing dark and light-

coloured region. (b) SEM photograph showing high levels of porosity in yellow 

exoskeleton material. (c) SEM photograph showing high levels of porosity in black 

exoskeleton material (115) 

 

Raabe and co-workers extensively studied the structure and mechanical properties 

of the exoskeleton of American lobster, Homarus americanus (109-114). The authors 

observed the unique honeycomb-type arrangement of the chitin-protein fibres 

surrounding pore canals, as shown in Figure 2.19. The through-thickness 

mechanical properties of American lobster exoskeleton were studied using both 

micro- and nanoindentation techniques (110, 111). The hardness and stiffness of the 

exocuticle (outer layer) are higher than those of endocuticle (inner layer). This 

increased hardness in exocuticle is due to the dense twisted plywood structure when 

compared to the coarse twisted plywood structure in endocuticle. 
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Figure 2.19 SEM micrographs taken from fractured specimens of lobster Homarus 

americanus showing the hierarchical structure. The honeycomb-type arrangement of 

the chitin-protein fibres is visible at higher magnifications (112). 

2.6 Tendon-to-Bone Attachment  

2.6.1 Mechanical Challenge of Attaching Tendon to 

Bone 

Tendon and bone display dramatically different mechanical behaviour (116-118). At 

the hierarchical level of the tissue, tendon has a tensile modulus on the order of 200 

MPa in the direction of muscle force, but buckles in compression (i.e., it behaves like 

a rope) (117). Bone, on the other hand, has a modulus of 20 GPa in both tension and 

compression, and is rigid and brittle relative to tendon (116). The attachment of a 

compliant material such as tendon to a relatively stiff material of bone is a 
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fundamental engineering challenge (119). As is evident from the study of 

attachment of engineering materials, potentially damaging stress concentrations 

can be expected to arise at the insertion if the insertion is not tuned to this stiffness 

mismatch. The tendon-to-bone insertion has a complex composition, structure, and 

mechanical behaviour that is effective in transferring stress from tendon to bone. 

However, this complex attachment results in a particularly difficult challenge for 

effective response to injury. The unique transitional tissue that exists between 

uninjured tendon and bone is not recreated during tendon-to-bone healing (120-

125). Surgical reattachment of these two dissimilar biological materials therefore 

often fails. For example, failure rates for rotator cuff repair (which requires tendon-

to-bone healing) have been reported to range between 20% for repair of small tears 

to 94% for repair of massive tears (126, 127). Similarly, outcomes after anterior 

cruciate reconstruction (which also depend on tendon-to-bone healing) are poor 

(128, 129). Studies in rotator cuff and anterior cruciate ligament animal models 

indicate that poor healing is due to the lack of regeneration of a specialized tissue to 

connect tendon and bone (124, 130-134). Engineering a replacement tissue for the 

enthesis or to develop treatments for tendon-to-bone healing requires 

understanding of structure-function relationships at the natural interface between 

tendon and bone. 
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2.6.2 Graded Morphology of the Tendon-to-Bone 

Insertion 

While numerous types of insertions exist between tendon and bone, the most 

common anatomy is of tendon inserting into bone across a fibrocartilaginous 

transition (135, 136). This form of attachment has commonly been categorized into 

four zones (135). The first zone consists of tendon proper, and has properties similar 

to those found at the tendon mid-substance. This zone consists of well aligned type 

I collagen fibrils with small amounts of the proteoglycan decorin (117, 137). The 

second zone consists of fibrocartilage and marks the beginning of the transition from 

tendinous material to bony material. This zone is composed of types II and III 

collagen, with small amounts of types I, IX, and X collagen, and small amounts of the 

proteoglycans aggrecan and decorin (137-141). The third zone contains mineralized 

fibrocartilage, indicating a marked transition towards bony tissue. Here, the 

predominant collagen is type II, and there are significant amounts of type X collagen 

as well as aggrecan (138-142). Finally, zone four consists of bone, which is made up 

predominantly of type I collagen with a relatively high mineral content. Recent 

studies indicate that there are no sharp boundaries between the different ‘zones’ 

(143). Rather, a gradation exists in structure and composition between tendon and 

bone. This continuous change in tissue composition from tendon to bone is 

presumed to aid in the efficient transfer of load between the two materials. 
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2.6.3 Structure and Function of the Tendon-to-Bone 

Insertion 

The tendon-to-bone insertion is biomechanically, compositionally, and structurally 

complex. The four discrete types of tissue recognized under the optical microscope 

are tendon, fibrocartilage, mineralized fibrocartilage, and bone (136). Between the 

unmineralized and mineralized fibrocartilage is a narrow zone that darkens 

markedly during tissue staining. This line was traditionally thought to represent a 

mineralization front, or mechanically, a boundary between soft and hard tissue 

(136). Supraspinatus tendon-to-bone insertions from rats were used to evaluate the 

gene expression, collagen organization, mineral content, and biomechanical 

properties of the insertion (138, 143). Assays were performed at various points 

along the transition zone. For gene expression, in situ hybridization was performed 

for extracellular matrix genes. The normal insertion site appeared as a 

fibrocartilaginous transition zone between tendon and bone as shown in Figure 2.20. 

Collagen fibril orientation sections were viewed under polarized light and angular 

deviation was calculated. Collagen fibres were less oriented at the insertion 

compared to the tendon (144). The mineral along the insertion was examined using 

individual Raman microprobe analyses with an approximately linear increase of 

relative mineral concentration vs. distance across the insertion site observed (Figure 

2.21). Specimens were tested in tension to determine their biomechanical 

properties and the enthesis was significantly stiffer at the tendon end compared to 

the bony end. Based on these results, it is apparent that the tendon-to-bone insertion 
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site varies dramatically along its length in collagen structure, extracellular matrix 

composition, mineral content, geometry, and viscoelastic properties. This gradation 

in properties likely distributes forces more effectively across the transition from a 

flexible (i.e., tendon) to a rigid (i.e., bone) material. 

 

 

Figure 2.20 Morphology of the supraspinatus tendon-to-bone insertion site. 

 

 

Figure 2.21 Plot of the ratio of mineral to collagen, shown as the peak height of mineral 

apatite [960 Δcm-1] to collagen [2940 Δcm-1] evaluated by Raman spectroscopy across 

the tendon-to-bone insertion of the rotator cuff (143, 144).  
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A finite element model of the tendon-to-bone insertion was generated to examine 

structure-function relationships at the insertion (145). It was hypothesized that the 

microscopic structure of the insertion measured experimentally is optimized to 

minimize stress and strain concentrations associated with load transfer from the 

relatively compliant tendon to the relatively rigid bone. To explore this, collagen fibre 

orientation distributions were used to derive material properties for a two-

dimensional mechanical model of an insertion. Comparison between stress 

concentrations in an idealized model and those in three comparison models showed 

that the microstructure serves to 1) simultaneously reduce stress concentrations 

and material mass, and 2) shield the insertion’s outward splay from the highest 

stresses. 

 

The effect of mineral content on load transfer was modelled at the insertion (146). 

Mineral content and collagen fibre orientation was suggested as combining to give 

the tendon-to-bone transition a unique grading in mechanical properties. Results 

supported a new organ-level physiological model of continuous tissue transition 

from tendon to bone where the linear increase in mineral accumulation within 

collagen fibres moving from tendon to bone provides significant stiffening of the 

partially mineralized fibres as shown in Figure 2.21, but only for concentrations of 

mineral above a ‘percolation threshold’ corresponding to formation of a 

mechanically continuous mineral network in Figure 2.22. Increasing dispersion in 

the orientation distribution of collagen fibres from tendon to bone is a second major 

determinant of tissue stiffness. The combination of these two factors results in the 

nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion, 
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and describes how tendon-to-bone attachment is achieved in nature through a 

functionally graded material composition. These experimental and modelling 

results provide a nano- and micro-mechanical understanding of collagen and 

mineral combinations to achieve the grading of material properties that is necessary 

for tissue engineered tendon-to-bone grafts. 

 

 

Figure 2.22 Bounds (lines) and Monte Carlo estimates (circles) for the elastic modulus 

(E) of collagen fibrils containing mineral deposits up to the level of mineralization 

found in bone. The stiffening of collagen fibrils by mineral increases dramatically above 

a critical mineral concentration called the ‘percolation threshold’ (arrows). This 

concentration is a function of the shape and distribution of mineral (red: aspect ratio 

of 1:1; blue: aspect ratio of 2:1) (144, 147).  

2.7 Summary 

This chapter gives a broad overview of fundamental composite theories, focusing on 

the critical role of interfaces in defining composite mechanical performance. Many 
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biological materials can be considered as fibre-reinforced or laminate composites on 

which the composite theory can be applied. The formation and constituents of 

different biological composites are discussed in detail in this chapter. All the 

biological materials studied in this thesis can be considered as composites and their 

structures and mechanical properties are reviewed respectively. A general lack of 

information of the microscale or nanoscale interfaces in these biological composites 

and their resultant contribution to the overall mechanical mechanics are highlighted. 

Therefore, understanding these biological interfaces at small length scales would be 

a significant contribution to understanding complex biological composite mechanics. 
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Chapter 3 - Methodologies 

3.1 Introduction 

This chapter provides an overview of the methodologies applied throughout the 

thesis. As the biological materials studied in the thesis are considered as laminate or 

fibre-reinforced biological composites at the microscale or nanoscale, specific 

experimental techniques are required to both prepare and mechanically 

characterize biological samples at small length scales. The approach taken here is to 

exploit preparation methods that isolate a specific structural feature in a complex 

biological material so that further mechanical testing can be used to evaluate the 

mechanical performance, and thus the importance of the feature, with respect to the 

larger scale biological structure. Therefore, novel techniques combining focused ion 

beam (FIB) for small length scale sample preparation, scanning electron microscopy 

(SEM) for in situ imaging and an custom built in situ atomic force microscopy (AFM) 

for mechanical testing are extensively employed, with these techniques described in 

detail in this chapter before applications in subsequent experimental chapters. 
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3.2 SEM Imaging 

Scanning electron microscopy, first developed in the 1940s, is a technique that uses 

electrons focused onto the surface of a sample to produce a two-dimensional image 

(148). SEM is typically used where higher resolution imaging of materials is required 

beyond optical microscopy. The standard setup of a typical SEM is shown in Figure 

3.1. The SEM used throughout the studies in the thesis is combined with a FIB system 

to give what is commonly referred to as a dual-beam microscope (Quanta 3D FEG, 

FEI, USA/EU). The SEM operates as any standard electron imaging system and uses 

a field emission gun (FEG) as the electron source for high resolution SEM imaging, 

in this case down to <1 nm. The electrons from the FEG are accelerated onto the 

surface of the sample and three condenser lenses focus the electron beam to a 

diameter of the order of 1 nm. 

 

Figure 3.1 Schematic representation of a typical scanning electron microscopy (149).   



Chapter 3 - Methodologies 

62 
 

Interaction of the primary electron beam with a sample produce a number of 

complementary electrons, including secondary electrons (SE) due to the primary 

beam knocking electrons from the shells of the sample atoms and backscattered 

electrons (BSE) that are primary electrons deflected by the nuclei of sample atoms.  

Both SE and BSE are scattered from the surface and sub-surface of the sample during 

raster-scanning of the primary electron beam and are counted by detectors. The 

number of electrons detected at each position of the primary beam on the surface of 

the sample produces a resultant 2D image. The most common electron detector is 

an Eberhart-Thornley detector, which is a scintillator-photomultiplier sitting at the 

side of the specimen chamber inside SEM. Eberhart-Thornley detectors operate by 

attaching scattered low energy secondary electrons to the small positive voltage 

(+250 V) on the screen of the detector. Secondary electrons pass the screen and are 

accelerated to impact the scintillator in order to cause light emission, which is then 

detected by a photo-multiplier (148). The acceleration voltages in this setup range 

from 0.2 - 30 kV with currents up to 200 nA. 

 

The collection of BSE using a detector is schematically shown in Figure 3.2. 

Backscattered electron detector imaging is also used in this thesis as it provides 

decent contrast between different materials. Image contrast using BSE is 

particularly useful and is given by the number of BSE produced, which is dependent 

on the atomic number of the elements in the specimen (148). Therefore, elements of 

higher atomic numbers scatter a relatively large number of backscattered electrons, 

resulting in a brighter image area, whereas elements of lower atom numbers scatter 
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a relatively small number of backscattered electrons, resulting in a darker image 

area. 

 

Figure 3.2 Schematic of a typical backscattered electron detector (150). 

 

The production and scattering of electrons typically require a vacuum environment 

so that electrons do not scatter off air molecules. Thus, samples have to be mounted 

inside a vacuum chamber. The SEM-FIB dual-beam system used throughout this 

thesis allows for the vacuum chamber to be adjusted to different states. The two 

states applied in this thesis are high vacuum (HV) and low vacuum (LV) with vacuum 

pressures of 5.25 × 10-4 Pa and 120 Pa respectively. SEM technique has been widely 

used for the study of biological materials and the wide range of hierarchal structures 

they possess (151-154). Although there is controversy on the possible damage the 

electron beam and the vacuum environment might cause on biological samples (153, 

155, 156), SEM is extensively used as a suitable method for imaging biological 

materials at small length scales due to the high spatial resolution and flexibility of 

the technique. 
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3.3 Sample Preparation Using FIB 

The aim of sample preparation using FIB described in this section is to produce 

biological samples with volumes suitable for investigating their mechanical 

properties at the microscale or nanoscale. The capability of FIB to be used as a 

milling tool of producing small length scale samples for mechanical testing has 

already attracted increasing attentions in the study of synthetic materials (157, 158). 

FIB has also been proved suitable for site-specific milling of subsurface structures of 

biological samples in order to select a specific region for conventional electron 

microscopy examination (159). The capability of FIB to produce small discrete 

volumes of samples is particularly important for understanding the microscale or 

nanoscale mechanical properties of structural biological composites, which is 

impossible to achieve at large length scales where the shape and geometry of the 

sample in addition to the inherent material properties together define the overall 

mechanical properties of the material. 

 

Pioneering works reporting on the use of ion beams to modify and remove materials 

from a sample were found in the 1970s, notably from the literature of Abrahams et 

al. (160). This work used argon cations to thin samples of GaAs for inspection using 

transmission electron microscopy (TEM) and was found to produce damage to the 

sample. Improvements in producing ion beams that caused less sample damage and 

focused to sub-microscale beam diameters were achieved by using gallium ions 
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(161). A schematic showing the focusing of gallium ions is present below in Figure 

3.3a and a modern SEM-FIB dual-beam system is shown in Figure 3.3b. 

 

 

Figure 3.3 (a) Schematic diagram of a FIB ion column (161). (b) A modern dual-beam 

instrument combining an electron column, for SEM, and an FIB column. 

 

The preparation of biological materials for mechanical testing using FIB is fairly 

uncommon in the literature. Perhaps the first example is the use of FIB to prepare 

triangular cross-section beams of tooth enamel for subsequent bending to failure 

experiments (11). The sample preparation in this work of Chan et al. (11) is shown 

in Figure 3.4 and indicates a beam with length of approximately 10 µm and width of 

2 µm. The dimensions of the FIB-fabricated beam shown in Figure 3.4 are of great 

interest as they approach, or even exceed, the dimensions required to study the 

microscale or nanoscale biological structures in this work. Therefore, in principle, 

FIB can be used to isolate discrete volumes suitable for understanding the sub-

microscale mechanical behaviour of biological composites. 
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Figure 3.4 FIB preparation of cantilever micro-beam with a triangular cross-section in 

human primary molar sliced sections (11). 

 

More recent works have prepared more standard rectangular cross-section beams 

for the study of limpet teeth and bone samples as shown in Figure 3.5 (155, 162). 

Rectangular cross-section beams are considered suitable for studying mechanical 

properties of biological materials at small length scales, especially as conventional 

continuum mechanical descriptions exist to describe bending experiments on such 

beams. 
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Figure 3.5 FIB-fabricated micron-sized beams produced in (a) limpet teeth (162) and 

(b) bone samples (155).  

 

The use of FIB to prepare biological samples and isolate discrete volumes from the 

bulk require a series of preparation steps, typically performed inside a SEM-FIB 

dual-beam system so that the SEM is able to image the progress of the sample 

preparation. SEM is located above the sample stage and FIB is located at a 52° angle 

to the vertical direction as shown schematically in Figure 3.6. The sample needs to 

be tilted 52° in order to align FIB to the sample and proceed to mill the sample with 

FIB orientation parallel to the target surface of the sample. Indeed, the parallel 

orientation of FIB to the surface of the sample is critical in order to prevent the 

implantation of gallium ions into the sample. An ion beam that is incident to the 

surface of a sample will cause ion implantation, potentially changing the mechanical 

properties of the sample. Two factors are critical to protecting the sample from 

defocused ions. The first one is to deposit a thin layer of metal coating on the surface 

of the sample to prevent ion charging and the second one is to orientate the FIB 
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direction parallel to the sample surface produced, thus minimizing gallium ion 

implantation (163). 

 

 

Figure 3.6 Schematic of the SEM-FIB dual-beam setup (Quanta 3D FEG, FEI, USA/EU). 

The SEM beam is above while the FIB is at a 52° angle (164). 

 

Biological samples were prepared for FIB fabrication by first dehydrating the 

samples to remove water. Water within a sample is potentially problematic, as 

exposure of the sample to a partial vacuum will cause the water to evaporate rapidly, 

which may cause damage to the solid structure. Basically, biological samples were 

kept in ambient air environment for 2 hours before subsequent preparation using 

SEM and FIB, which had been proved to be sufficient to dehydrate the biological 

sample for SEM imaging and FIB fabrication (155). Biological samples were then 

gold coated for 45 seconds to improve their electrical conduction and fixed to the 

SEM sample stage using carbon tape in the SEM-FIB dual-beam system. The 

following describes an example of the FIB fabrication work on nacre by a succession 
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of processes summarized in Figure 3.7. FIB fabrication on other biological materials 

follows similar procedures with potential differences. 

 

 

Figure3.7 Schematic of the FIB milling process (155). The black rectangles mark the 

FIB-fabricated area. (a) Nacre sample mounted on the SEM sample stage, (b) initial 

edge polishing using a current of 30 nA, (c) separation of bulk material from edge using 

7 nA, (d) isolation of beams using 1 nA, (e) fine cutting and shaping of beams using 0.3 

nA, (f) finalized sample showing 5 parallel beams. All cuts were performed with an 

acceleration voltage of 30 kV. 

 

FIB was used to remove material from the biological structure in order to create 

discrete volumes by first polishing the edge of the sample using a high current ion 

beam of 30 nA and accelerating voltage of 30 kV as summarized in Table 3.1. 

Flattening of the sample edges allowed further removal of smaller volumes using 

smaller ion beam currents down to 0.3 nA. These smaller ion beam currents were 

used to minimize ion beam damage to the biological sample. Finally, materials were 

removed from the parent sample so that beams with dimensions of approximately 

10 × 2 × 2 µm were created for mechanical testing as shown in Figure 3.8. 



Chapter 3 - Methodologies 

70 
 

Table 3.1 Ion currents used in FIB to produce micron-sized beams suitable for 

mechanical testing. The steps are chronological from top (high current) to bottom (low 

current).  

Current (nA) Dimension (µm) Time (min) 

30 100 × 20 × 2 40 ± 10 

30 100 × 20 × 2 40 ± 10 

7 100 × 10 × 1 30 ± 5 

1 5 × 10 × 1 20 ± 5 

0.3 Polish around the beam 15 ± 5 

 

 

Figure 3.8 SEM micrograph showing a series of FIB-fabricated micron-sized nacre 

beams. 

3.4 AFM Mechanical Testing 

3.4.1 Introduction 

Rapid advances in nanotechnology and growth in synthetic nanomaterial 

manufacture have brought significant requirements for mechanical characterization 
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of materials at small length scales. A wide range of biological materials can be 

considered as fibre-reinforced or laminate composites with different hierarchical 

structures that provide optimized mechanical properties. Current challenges exist 

in relating the microscale or nanoscale biological components to their overall 

mechanical properties at larger length scales. Investigating the mechanical 

properties of biological components at small length scales is therefore critical in 

determining the overall mechanical properties of biological materials incorporating 

microscale or nanoscale components. 

3.4.2 AFM Working Principle 

In this work, mechanical testing of FIB-fabricated biological samples was performed 

using an AFM technique. AFM allows characterization and manipulation of small 

length scale samples and is an important technique for deforming samples at small 

loadings (165, 166). As FIB-fabricated biological samples have relatively small 

volumes, AFM has sufficient force resolution for mechanical testing on these samples 

(165). The AFM system involves an AFM cantilever with a sharp tip at the end 

attached to a set of piezo-electric ceramics, normally used to scan the topography of 

a sample surface. Historically, AFM has been used to produce 3D topographic 

reconstructions of sample surface by detecting the interaction between AFM tip and 

sample surface (167, 168). These interactions include Van der Waals forces, capillary 

forces, chemical bonding, electrostatic forces, magnetic forces, Casimir forces and 

solvation forces (169). Subsequent study has also shown the possibility of 
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measuring additional quantities simultaneously through the use of specialized AFM 

tips (169). 

 

The interaction between an AFM tip moved into contact with a solid surface in most 

typical cases can be described by the Lennard-Jones potential (170), which is a 

mathematical model describing the interaction between two neutral atoms, 

molecules or surfaces as they approach each other. The Lennard-Jones potential can 

be best described by a graph of the interaction versus the distance as shown in 

Figure 3.9. The curve indicates the interaction between two objects across a range 

of distances. Two objects with a relatively large separation distance interact weakly 

but in attraction, indicated by a small negative interaction energy in Figure 3.9, 

which increases to an energy minimum. Decreasing the separation distance beyond 

the energy minima causes a less favourable interaction energy, defined as a negative 

gradient, and therefore repulsion. 

 

 

Figure 3.9 Lennard-Jones curve showing the interaction energy between two surfaces 

with separation r between the surfaces (171). 
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AFM for topography imaging uses the Lennard-Jones potential when an AFM tip is 

systematically scanned over a sample surface with piezoelectric positioners while 

monitoring the extent of tip-sample interactions. Changes in sample topography will 

cause changes in the interaction between the scanning tip and the surface. These 

changes can be related to surface topography so that, for example, a high feature on 

the surface will increase the interaction between the tip and the sample whereas a 

hole on the surface will decrease the tip-sample interaction as the sample surface is 

relatively far away from the AFM tip. An imaging AFM tip is able to measure the AFM 

tip-sample surface interactions by the cantilever system attached to the AFM tip so 

that repulsion and attraction cause corresponding bendings of the cantilever.  

 

An optical system is additionally used to convert the AFM cantilever bending 

behaviour into measurable electrical signals. AFM imaging exploits a feedback 

system so that, during scanning of the AFM tip across the sample surface in an x-y 

plane, the tip-sample interaction is monitored and the AFM tip moved towards or 

away from the sample surface using a z-piezo positioner in order to maintain the 

AFM tip-sample interaction. Therefore, recording the piezo (x, y, z) co-ordinates 

during AFM tip scanning over the sample surface produces a topographic image of 

the sample. This mechanism can also be used to accurately measure forces when an 

AFM tip moves towards a sample into contact or away from a sample to perform a 

mechanical test rather than imaging. Forces acting between the AFM tip and sample 

surface will cause a corresponding deflection of the cantilever during approach or 

retraction of the AFM tip from the sample. According to Hooke’s Law, the bending of 

an AFM cantilever can be converted to force by considering the spring constant k of 
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the cantilever, which is defined by both the elastic modulus of the cantilever material 

(silicon in this work) and the cantilever dimensions. A standard AFM technique 

calculates the spring constant of an AFM cantilever by the Sader calibration method 

involved in the AFM software package (Nova, NT-MDT, Russia) (172), which uses the 

plan area of the cantilever, the resonance frequency, the quality factor of the AFM 

cantilever and the density and viscosity of the fluid in which these factors are 

measured, in this case air (172, 173). These factors are then considered in the 

following equation: 

                                 Equation 3.1 

where 

                                            Equation 3.2 

where k is the spring constant, ρf is the density of the media around the AFM 

cantilever, w is the width of the cantilever, L is the length of the cantilever from the 

base to the apex, Q is the quality factor of the cantilever, f0 is the resonance frequency 

of the cantilever, Γ is the imaginary component of the hydrodynamic function, which 

in turn is a function of the Reynolds number, Re, defined in Equation 3.2 using the 

viscosity of the fluid ηf. Both the quality factor of the cantilever and the resonance 

frequency are determined by performing a power spectral analysis of the 

cantilever’s thermally driven oscillations. The resonance peak is fitted with the 

following harmonic model: 

                          Equation 3.3 
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Where Awhite is the white noise fit baseline and A0 is the zero frequency amplitude. 

The four parameters are fitted using a least-squares method (173). Overall, the 

Sader method is accurate for calibration of AFM rectangular cantilevers and has 

been determined to have only ~4% uncertainty, with the cantilever width as the 

major source of error (173). 

 

Deformation of a sample during contact or separation from an AFM tip is further 

required so as to determine the mechanical performance of the sample. A profile of 

the force acting on the AFM tip (with respect to the tip position relative to the sample) 

is required, known as a force-distance curve as shown in Figure 3.10. Two force-

distance curves are required when evaluating the deformation behaviour of a 

sample when loading with an AFM tip. The first curve recorded is that of the AFM 

cantilever deflection as a contacting AFM tip is moved towards a rigid non-

deformable surface, which is referred to as the calibration curve, shown in red in 

Figure 3.10. This curve shows that the z-piezo movement causes a corresponding 

deflection in the AFM cantilever. Therefore, the cantilever deflection measured using 

the AFM optical setup can be directly converted to a length displacement. The 

second curve in Figure 3.10 corresponds to an AFM tip moving towards and into a 

deformable sample surface, therefore producing a mechanical test on the sample 

and is referred to as the test curve, shown in blue in Figure 3.10. 
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Figure 3.10 Schematic plot of AFM cantilever deflection against z-piezo position. The 

red line corresponds to the approach and contact of an AFM tip with a rigid non-

deformable sample in order to carry out AFM cantilever deflection calibration. The 

blue line indicates approach and contact between an AFM tip and a deformable sample. 

 

The displacement of the tip into the sample can be found by aassuming that the 

sample will behave as a deformable surface relative to a rigid surface. Considering 

an initial position of an AFM tip contacting a sample surface with zero force, further 

extension of the z-piezo (Z0) will cause the AFM tip to move into the sample by a 

distance D0 and a resultant applied force causing a deflection of the cantilever C0 

such that: Z0 = D0 + C0.  

 

The force applied by the AFM tip to the sample is measured from the deflection of 

the AFM cantilever to give: 

kdF                                                Equation 3.4 
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Where F is the force applied by the AFM tip, k is the AFM cantilever spring constant 

and d is the deflection of the AFM cantilever under the applied force F in the 

calibration curve. The force applied by the AFM tip to the sample therefore depends 

on the spring constant of the AFM cantilever being used and the displacement of the 

AFM cantilever. 

3.4.3 SEM-AFM Setup for Mechanical Testing 

A novel in situ nanomechanical AFM testing methodology is employed in this thesis 

and applied to FIB-fabricated biological samples by incorporating the mechanical 

testing capability of a custom built AFM system (Attocube System AG, Germany) with 

the imaging capability of the high resolution SEM (Quanta 3D FEG, FEI, USA/EU) in 

the SEM-FIB dual-beam microscopy system as shown optically in Figure 3.11. 

Sample gripping and manipulation are achieved using accurate AFM piezoelectric 

ceramic positioners while mechanical testing experiments continually record 

cantilever deflection at high force resolution using AFM force spectroscopy. This 

configuration allows accurate force-deflection signals to be recorded during 

mechanical testing and a wide range of mechanical properties to be achieved. 
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Figure 3.11 (A) Optical photograph showing AFM fitted on SEM sample stage when the 

door of SEM chamber is open. Dashed rectangle indicates location of the AFM. 

Secondary electron (SE) axis and focused ion beam (FIB) axis are also labelled. (B) 

Higher magnification optical side view image of the AFM on the SEM sample stage.  

 

This novel SEM-AFM mechanical testing system has the capability for general 

mechanical testing including bending, tensile, buckling and peeling tests (154, 155, 

174-176). The Attocube AFM sits horizontally in the SEM chamber to allow electron 

beam access to the sample, as shown schematically in Figure 3.12, with AFM control 

and data acquisition obtained using vacuum feed-through points in the SEM 

chamber. Both the sample stage and the AFM head could move in three dimensional 

directions to allow accurate location of particular regions in the sample using SEM. 
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Figure 3.12 Schematic diagram showing the in situ SEM-AFM configuration. The insert 

shows fixing of a nanofibre with glue between the substrate and AFM cantilever (154). 

 

An optical interferometry is used in the Attocube AFM system to record the AFM 

cantilever deflection during mechanical testing. Interference is the superposition of 

two or more waves which results in a new wave pattern. Interference usually refers 

to the interaction of waves that are correlated or coherent with each other, either 

because they come from the same source or because they have the same or nearly 

the same frequency. If there is a fixed phase relation between two waves, 

interference is confirmed to either constructive or destructive as shown in Figure 

3.13. Consider two waves that are in phase, with amplitudes A1 and A2. Their troughs 

and peaks line up and the resultant wave will have amplitude A = A1 + A2. This is 

known as constructive interference. If the two waves are π radians, or 180°, out of 

phase, then one wave's crests will coincide with another wave's troughs and they 

will tend to cancel out. The resultant amplitude is A = |A1 − A2|. If A1 = A2, the 

resultant amplitude will be zero. This is known as destructive interference. 
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Figure 3.13 Constructive and deconstructive interference of two waves. 

 

In the Attocube AFM system, two reflected laser beams with high monochromaticity 

are generated by two pivotal reflecting surfaces, which make interference possible. 

These two surfaces are schematically shown in Figure 3.14. The reflection of the 

original laser signal at the end surface of the detecting optic fibre and the back of the 

AFM cantilever produces two resulting reflected laser signals, which forms the 

detectable signal of the interferometer. A force applied to the AFM tip will therefore 

produce a corresponding cantilever deflection and interaction between the reflected 

laser signals. As cantilever deflects, the distance between the AFM cantilever and the 

optic fibre end changes, with an example of force applied to the AFM tip. The 

reflected laser from the back of the cantilever will travel a correspondingly different 

path length resulting in progressively different interference between the two 

reflected laser light wavelengths. Thus, corresponding change in the interference 

signal from the combination of the two reflected wavelengths is indicative of the 

AFM cantilever bending and the resultant force acting on the AFM tip. 
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Figure 3.14 Schematic diagram of the laser interferometer used in the AFM illustrating 

the interference signal measured. Approximately 4% of the laser light is reflected at 

the glass-air interface with an intensity of I1 while 96% of the light is transmitted and 

partially reflected at the AFM cantilever with an intensity of I2. The intensity I2 depends 

on the reflectivity of the AFM cantilever. 

 

The force spectroscopy measurement using the Attocube AFM is driven as a similar 

way as conventional AFM described above. Two piezoelectric ceramic positioners 

are involved: the z-piezo and dither piezo. A dither piezo is used to set up the initial 

distance between the AFM tip and the optic fibre end. In force spectroscopy, the z-

piezo expands in order to move the AFM tip towards the sample. With continuous 

expansion of the z-piezo after contact with the sample, the AFM tip causes a change 

in the gap between the optic fibre end and the AFM cantilever. If the z-piezo 

movement is continual, the total intensity change of the two interfered reflected 

laser beams collected by the optic fibre will follow sinusoidal behaviour, indicative 

of an interferometer curve as shown in Figure 3.15. Contact between the AFM tip 

and the sample is shown as a start of the sinusoidal signal response which 

progresses as the cantilever deflects further, causing corresponding destructive and 
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constructive interference between the two reflected laser light pathways. The 

progression of the sinusoidal signal is indicative of increasing force acting between 

the AFM tip and the sample. 

 

 

Figure 3.15 Detected laser signal during force spectroscopy (y-axis) as the z-piezo 

expands from left to right on the x-axis. Contact between the AFM tip and the sample 

causes a deflection of the AFM cantilever and a corresponding change in the collected 

laser intensity. 

3.4.4 AFM Data Analysis  

The capability of the Attocube AFM to record force during force spectroscopy can be 

used to measure the mechanical quantities of stress and strain applied to a sample 

by the end of an AFM tip. For tensile testing, the tensile stress applied to the sample 

can be calculated using Hooke’s Law: 

                                             Equation 3.5 

where F is the force applied on the sample, k is the spring constant of the cantilever, 

d is the cantilever deflection and A is the cross-sectional area of the sample. 
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When the cantilever is translated away from the sample stage, the retraction 

distance of piezo scanner X behind the cantilever is recorded by AFM. This 

translation causes the AFM cantilever deflection and the deformation of the sample. 

The retraction distance X is therefore equal to the sum of the cantilever bending 

deflection d and the sample deformation ΔL. Hence, the sample strain δ can be 

calculated using: 

                                      Equation 3.6 

where ΔL is the elongation of the sample, L is the original length of the sample taken 

from SEM images at the start of tensile testing and X is the retraction distance of the 

piezo scanner. 

 

Equations 3.5 and 3.6 indicate that determination of AFM cantilever bending is 

required to measure both the stress and strain behaviour of the sample during 

mechanical testing. The mechanical deformation of the sample shown in Figure 3.16 

clearly indicates a sinusoidal variation in the collected laser intensity as the 

cantilever deflects during z-piezo scanner translation. The collected laser intensity 

is defined by the intensity of incident lights I1 and I2 as well as the optical path length 

difference between the two, defined as 2(D + d) as shown in Figure 3.14: 

    Equation 3.7 

where I0 is the reflected laser intensity, I1 and I2 are the reflected laser intensities, D 

is the initial cantilever-fibre optic distance and (D + d) is the cantilever-optic fibre 

distance as the tensile test proceeds. λ is the wavelength of the laser (1330 nm) used 
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in the laser interferometer setup. The cantilever bending d is therefore calculated 

from: 

                         Equation 3.8 

Equation 3.8 can therefore be applied to the collected laser intensity data to 

determine the cantilever bending. The force sensitivity of each test is evaluated by 

defining the resolution of data collection in the sinusoidal intensity-displacement 

curve. The laser intensity changing between two adjacent data points could be 

converted to the minimum displacement recorded in the test by Equation 3.8. The 

force resolution can then be calculated from the minimum displacement of the 

cantilever recorded combined with the spring constant of the selected AFM 

cantilever, and typically gives a force resolution of (5.4 ± 0.8) × 10-4 µN using AFM 

cantilevers with relatively small spring constants of approximately 1 N∙m-1. 

3.5 Summary 

This chapter details the main experimental methodologies used throughout this 

thesis to produce discrete volumes of biological samples at the microscale or 

nanoscale using FIB microscope in the SEM-FIB dual-beam system. Further 

mechanical testing techniques based on the custom built in situ AFM system within 

the SEM-FIB dual-beam system are described to show how to apply accurate small 

forces to small length scale objects and ultimately, perform a variety of mechanical 

tests on FIB-fabricated biological samples at the sub-microscale. These 

methodologies will be repeatedly referred to in the following experimental chapters. 
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Chapter 4 - Influence of SEM Vacuum 

on the Mechanical Properties of Nacre 

4.1 Introduction  

Nacre, along with many other biological composites, is physiologically in a hydrated 

state (73, 92, 177-180). Therefore, the mechanical performance of these biological 

materials is partly dependent on the level of hydration of the material. However, 

evaluating the structure-mechanical relationships of biological materials at small 

length scales using techniques that potentially introduce vacuum environments, 

such as SEM and FIB microscopy detailed in Chapter 3, potentially compromise the 

measured mechanical properties (181, 182). Therefore, small deflection bending 

testing of FIB-fabricated nacre beams at the microscale under different 

environmental conditions are carried out in this chapter to evaluate the influence of 

SEM vacuum conditions on the mechanical properties of nacre, thereby validating 

the methodology applied in this thesis. 

 

A wide range of investigations have been performed to study the mechanical 

properties of nacre under different hydration conditions (81, 85, 92, 183-186). 
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Figure 4.1 shows typical tensile and shear behaviour of nacre studies in the 

literature under dry (ambient conditions) and hydrated conditions (soaked in 

water), showing some ductility at the macroscale (92, 183). The tensile stress–strain 

curves are shown in Figure 4.1a; the behaviour of dry nacre is similar to that of pure 

aragonite and fails in a brittle fashion. The plot indicates that dehydrated nacre loses 

toughness, defined as the area under the stress-strain curve, with suggestions that 

the dehydration affects the small fraction (5 wt.%) of organic materials (5 wt.%) and 

highlighting the importance of the soft phase to overall nacre mechanics. Hydrated 

nacre shows an initial linear elastic response under loading, which is similar to dry 

nacre, but then exhibits plasticity with increasing strain starting at a stress of 

approximately 70 MPa. Plastic deformation in nacre is clearly observed when 

shearing the bulk (Figure 4.1b) but is less obvious in tension (Figure 4.1a) due to 

tablet interlocking causing more stress transfer to the hard phase. Jackson et al. (85) 

concluded that water affects the elastic modulus and tensile strength of nacre by 

reducing the shear modulus and shear strength of the organic matrix. Toughness is 

enhanced by water, which plasticizes the organic matrix, resulting in greater crack 

blunting and deflection abilities.  
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Figure 4.1 (a) Tensile and (b) shear stress–strain curves for nacre in red abalone and 

a schematic of lamellar tile structures showing associated deformation modes. Tablet 

waviness generates resistance to sliding, accompanied by lateral expansion (vertical 

arrows) (92, 183). 

 

Micro-scratch tests and indentation tests were also performed on both dry and 

soaked surfaces of nacre from green mussel shells (184) to investigate the role of 

water content in the organic matrix and the scratch/nanoindentation hardness on 

the toughness mechanism. Both scratch and indentation experiments showed a 

decrease in hardness as a result of hydration. These results suggest that the 

toughness of nacre is affected by sample hydration. Further friction and wear 

behaviour of sheet nacre has been studied in dry and wet environments (185, 186). 

The coefficient of friction was found to be high under dry conditions (0.45) and 

increases further under wet conditions (0.78) (185). The environment was indicated 
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as influencing the wear mechanisms of nacre by means of various physicochemical 

interactions on the water-soluble ‘intracrystalline’ organic phase. Friction-induced 

damage mechanisms involving thermal effects remain poorly understood (186). 

 

Previous investigations detailed above have examined the hydration of nacre and 

corresponding influence on the mechanical behaviour of nacre, yet so far little work 

has been done to examine the influence of vacuum environment on nacre properties. 

The vacuum environment is essential in many cases where electron or ion 

microscopy is employed, such as SEM and FIB microscopy applied in this work. The 

evaluation of nacre mechanics using techniques involving SEM, FIB and AFM has 

distinct advantages compared to previous works. Principally, observation and 

modification of relatively small volumes of nacre sample can be achieved in the SEM-

FIB dual-beam system, with subsequent mechanical behaviour evaluated using the 

custom built AFM. Mechanical testing of nacre at small length scales is advantageous 

compared to that at larger length scales since the effect of structural hierarchies can 

be potentially ignored or simplified. Such methodology allows the study of nacre 

mechanics at small length scales rather than the whole nacre mechanical behaviour. 

The influence of SEM vacuum condition on potential structural and mechanical 

changes in nacre due to water removal, which is the main focus of this chapter, is 

therefore able to be evaluated. Previous works (154, 155) have used a SEM-FIB-AFM 

setup to mechanically test a variety of bone samples from the microscale to the 

nanoscale within SEM vacuum environments, showing that dehydration of bone in 

vacuum chamber does not have an effect on the mechanical properties of bone at 

sub-micron length scale. In this chapter, cantilever beam bending test was 
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performed on FIB-fabricated nacre beams under a range of environmental 

conditions to investigate the influence of vacuum on the mechanical properties of 

nacre. The results and discussion in this chapter will also validate the methodology 

performed in subsequent chapters on other biological composites, like arthropod 

exoskeleton and tendon-to-bone attachment. 

4.2 Materials and Methods 

4.2.1 Preliminary Sample Preparation 

Nacre studied in this work was harvested from wild French abalone shells purchased 

from the Fish Society Company, London, UK. Wild French abalones (approximately 

160 g each) were stored at -20°C in a freezer prior to dissection. Specimens were 

carefully dissected using a water-cooled rotating diamond saw (Struers Accutom-5). 

Structural motifs were examined using optical and electron microscopies as shown 

in Figure 4.2. Specifically, Figure 4.2b shows an SEM image of the cross section area 

of the nacreous layer, showing the structure of mesolayers with thickness of 

approximately 150 µm separated by thick organic layers with thickness of 

approximately 30 µm. SEM imaging also shows that the nacreous layer in abalone 

shell is columnar nacre where mineral tablets are stacked in columns with 

coinciding centres, as shown in Figure 4.2c. Higher magnification SEM image shown 

in Figure 4.2d reveals typical dimensions of the mineral tablet approximately 6.80 

µm in width and 0.42 µm in thickness, measured by detailed pixel measurements 

(ImageJ, N.I.H., USA) with a dimensional measurement error smaller than 5%.  
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Figure 4.2 The hierarchical structure of nacre showing (a) optical image of whole 

French wild abalone studied in this work with SEM micrographs of the cross section of 

nacreous layer indicating (b) the structure of mesolayers within the cross section area 

of nacre sample, (c) typical ‘brick and mortar’ structural characteristic of the 

aragonite mineral tablets and the organic matrix and (d) higher resolution image 

showing organic material between the aragonite mineral tablets.  

4.2.2 Sample Preparation Using FIB 

Tensile test is regarded as the typical mechanical testing method in order to 

characterize a material but is practically difficult to perform at small length scales. 

Many researchers choose bending tests as a more suitable and practical method, 

primarily because careful gripping of small samples is normally not required in a 
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bending test (11, 155, 162). Therefore, cantilever beam bending test is applied 

herein to evaluate the influence of SEM vacuum environments on the mechanical 

properties of nacre. FIB technique is used to fabricate nacre samples suitable for 

mechanical testing at small length scales as described in section 3.3. Specifically, 

small pieces of nacre samples with dimensions of approximately 10 × 5 × 3 mm were 

first isolated from parent abalone shells using the water-cooled rotating diamond 

saw. Nacre samples were thoroughly rinsed and kept in distilled water at room 

temperature in order to keep samples clean and hydrated. Before FIB fabrication, 

samples were removed from distilled water and maintained in ambient air for 2 

hours to dehydrate the nacre sufficiently for SEM imaging and FIB fabrication. 

Samples were subsequently sputter gold coated to avoid electron or ion charging 

effects that could interfere with FIB fabrication (155, 181), followed by placement 

into the SEM-FIB dual-beam system. Individual micron-sized nacre beams were 

created following the FIB fabrication procedure described in Section 3.3. Figure 4.3 

shows typical FIB-fabricated nacre beams with dimensions of approximately 10 × 2 

× 2 µm with the long axis of the beam parallel to the long axis of the mineral tablets. 

The beam was fabricated in this direction to make sure that the mineral tablets carry 

most of the load during the cantilever bending test rather than the weak organic 

interfaces if the beam was fabricated with the mineral tablet transverse to the long 

axis of the beam. The location of the beams was selected under SEM imaging to avoid 

the thick organic layers between mesolayers, making ensure that all nacre beams 

consist of the ‘brick and mortar’ structure. 
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Figure 4.3 SEM micrographs showing a series of FIB-fabricated micron-sized nacre 

beams under a range of magnifications from low (left) to high (right), indicating the 

highly regular rectangular shapes produced. 

 

After FIB fabrication, nacre samples were removed from the vacuum chamber of the 

SEM. Half of the samples were kept dry in ambient air environment as a control 

group and the other half were placed in an isolated vessel containing a beaker of 

distilled water with a high vapour concentration to allow sample rehydration. This 

rehydration method has been more effective than directly immersing FIB-fabricated 

samples into liquid solutions, which leads to the surface tension of liquid fracturing 

the relatively fragile FIB-fabricated samples (155). In order to assess the 

effectiveness of this rehydration process, the weights of five small nacre samples 

with dimensions of approximately 10 × 5 × 3 mm were measured following the same 

sample preparation process as described above. Table 4.1 records the weight loss 

measured for five samples subjected to various environmental conditions used in 

the sample preparation process and Figure 4.4 shows the weight change with time. 

Nacre samples were normally kept in distilled water for storage. Then samples were 
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removed from water and after removing excess surface water with filter paper, 

weighed using an electronic analytical microbalance (Sartorius, Germany) to four 

significant figures. The weights of these samples were taken as fully hydrated weight. 

Further preparation processes were recorded by the percentage of weight loss 

relatively to this fully hydrated nacre weight as shown in Table 4.1. 

 

Table 4.1 Change in weight, as a percentage of the weight difference relative to 

hydrated nacre in distilled water. The cycle of hydration represented by the table was 

repeated on five different nacre sections. 

Sample conditions 
Time 

(hours) 

Weight loss compared to 

hydrated condition in 

distilled water (%) 

Stored in distilled water Storage 0.000 ± 0.021 

Dehydrated in ambient air 2 2.743 ± 0.115 

Dehydrated in SEM vacuum 

(High vacuum 5.25×10-4 Pa) 
2 3.961 ± 0.082 

Rehydrated in high vapour 

concentration 
4 0.035 ± 0.059 

Dehydrated in SEM vacuum 

(High vacuum 5.25×10-4 Pa) 
2 4.258 ± 0.091 

Rehydrated in high vapour 

concentration 
4 0.046 ± 0.035 
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Figure 4.4 Weight loss of five nacre samples with time in different environmental 

conditions. 

 

Nacre samples were first exposed to ambient air environment for two hours, as 

indicated in Table 4.1, and resulted in a weight loss of approximately 2.743%. 

Exposure to the vacuum environment of SEM chamber for two hours caused a 

further 3.961% weight loss. The initial weight loss of approximately 2.743% during 

exposure in air indicates a partial removal of free water in nacre whereas exposure 

to SEM vacuum removes more free water. Rehydration of dehydrated nacre samples 

for four hours in high vapour concentration recovered almost all lost water 

compared with the fully hydrated weight. Repeating the exposure to vacuum 

environment removed similar amount of free water from the sample compared with 

previous dehydration process and subsequent rehydration recovered the weight 

loss again, as would be expected if the rehydration process recovering water and the 

vacuum condition removing the water were consistent. We therefore conclude that 
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the dehydration-rehydration process removes the free water in nacre samples and 

can be fully recovered using our applied rehydration method. 

4.2.3 Small-deflection Bending Test 

Cantilever beam bending tests on both dry and hydrated nacre beams were 

performed using the custom built AFM (Attocube System AG, Germany) in three 

different environments: high vacuum (5.25 × 10-4 Pa) SEM vacuum chamber, low 

vacuum (120 Pa pressure provided by water vapor) SEM vacuum chamber and the 

ambient air environment by removal of the sample-mounted AFM system out of the 

SEM chamber. Comparison of the mechanical performance of nacre beams under the 

three environmental conditions provides an assessment of the hydration of nacre 

samples in the SEM chamber, which will provide validation of AFM mechanical 

testing in SEM. Mechanical testing was achieved by first approaching the AFM tip 

into contact with individual nacre beams as shown in Figure 4.5a. Extending the AFM 

tip into the free end of the individual nacre beam caused deflection of both the nacre 

beam and the AFM cantilever, as shown in Figure 4.5b. AFM tip (Bruker Nano GmbH, 

USA) with a cantilever spring constant of 150 N·m-1 (measured using the Sader 

calibration method (172)) was used for the beam bending experiments. The loading 

rate was kept constant at 0.2 µm·s-1 for all bending tests. Each beam was deflected 

by a small deflection of up to 0.3 µm to ensure elastic behaviour and avoid 

catastrophic failure so that each beam could be tested repeatedly in the three 

different environments. In addition, the bending test was performed repeatedly 

every 20 minutes within the timeframe of 2 hours in the three different 
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environments to investigate the potential change of mechanical properties of nacre 

beams within a certain period of time duration.  

 

 

Figure 4.5 SEM images showing the movement of an AFM tip towards a FIB-fabricated 

nacre beam with (a) the moment the tip prior to contact with the nacre beam and (b) 

further deflection of the nacre beam. The SEM allows in situ observation of the contact 

between the AFM tip and the sample without need for AFM imaging whereas the AFM 

system will record the force acting between the AFM tip and the sample. 

4.3 Results and Discussion 

Force-deflection curves recorded for the bending tests on both dry and hydrated 

nacre beams in high vacuum, low vacuum and ambient air environments after 10 

minutes of exposure to each environment are shown in Figure 4.6. All the force-

deflection curves show a relatively linear trend within the small deflections of up to 

0.3 µm so that gradients (dF/dδ) can be fitted to these curves. The elastic modulus 

(E) of the micron-sized rectangular nacre beams can be calculated from these 

gradients using the Euler-Bernoulli beam bending theory (187, 188): 
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where F is the force applied to the beam by AFM tip and δ is the resultant deflection 

of the free end of the beam. l is the length from the bottom of the beam to the contact 

point of the AFM tip. b and h are the breadth and height of nacre beams respectively. 

All dimensions were measured directly from SEM imaging. Typical dimensions of 

individual nacre beams were l = 10 µm, b = 2 µm and h = 2 µm.  

 

 

Figure 4.6 Force-deflection curves of the AFM bending tests on dry and hydrated nacre 

beams under high vacuum, low vacuum and ambient air environments.  

 

Figure 4.7 shows the calculated elastic modulus values for both dry and hydrated 

nacre beams tested under the three different environmental conditions every 20 

minutes within the time frame of 2 hours, with the error in elastic modulus 

calculated from the standard deviation of the values for the elastic modulus arising 

from the changes of the contact point during testing. The elastic modulus shows little 
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change for both dry and hydrated nacre samples either in air environment or time 

of exposure in the SEM vacuum chamber. This observation is true for all micron-

sized nacre beams tested in the cantilever bending test. 

 

 

Figure 4.7 Plots of calculated elastic modulus for (a) dry and (b) hydrated nacre beams 

under high vacuum, low vacuum and ambient air environments within the time 

duration of 2 hours. 

 

Table 4.2 Calculated elastic modulus of dry and hydrated nacre beams under high 

vacuum, low vacuum and ambient air environments. 

Sample 
Elastic modulus (GPa) 

High vacuum Low vacuum Ambient air 

Dry nacre 150.8 ± 4.3 149.5 ± 4.8 151.4 ± 4.5 

Hydrated nacre 129.5 ± 3.9 126.8 ± 4.2 127.9 ± 3.6 

 

The elastic modulus of dry nacre beams calculated from Equation 4.1 are shown in 

Figure 4.7a for the bending testing in high vacuum, low vacuum and air 

environments, with results detailed in Table 4.2. All tested environments provide a 

constant elastic modulus of 150 GPa, suggesting that both high and low vacuum 
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and air environments are insufficient for plasticizing the sample due to hydration. 

Bending of hydrated micron-sized nacre beams in high vacuum, low vacuum and air 

environments also provides a constant elastic modulus value, which is noticeably 

lower than dry beams at 128 GPa, as shown in Figure 4.7b and Table 4.2. These 

results highlight the inability of the SEM vacuum environment to remove the water 

molecules that are expected to be tightly bonded within the nacre architecture. 

Indeed, such a mechanism has been observed for bone material (155). The 

preparation of biological micro-beams prior to mechanical testing through either 

dehydrated or hydrated processes is therefore critical in defining whether water is 

present in the sample whereas high vacuum, low vacuum and air environments 

simply maintain the level of hydration over the certain period of time duration (120 

minutes) evaluated in this work. The elastic moduli calculated from our experiments 

correlate with previous literature showing that hydrated nacre exhibits a lower 

elastic modulus than dry nacre due to decrease in the shear modulus and shear 

strength of the organic matrix in nacre from plasticization from water (85, 92, 183). 

The elastic modulus of both dry and hydrated nacre beams obtained from our 

experiments is additionally noted as being slightly higher compared with previous 

literature results obtained from macroscopic tensile testing (81), potentially due to 

fewer defects and flaws involved when mechanical testing is carried out at relatively 

smaller length scales. However, the relatively similar elastic modulus values between 

our small length scale nacre volumes and whole nacre testing suggests an effective 

transfer of stress throughout nacre.  
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4.4 Summary 

Small-deflection AFM bending test on both dry and hydrated nacre samples was 

performed in three different environments: high vacuum SEM environment, low 

vacuum SEM environment and ambient air environment. The lack of environmental 

influence on the mechanical properties of the micron-sized nacre beams indicates 

that the water content is constant in all mechanical testing cases. Biological samples 

exposed to high vacuum would be expected to provide the largest removal of water 

but similar elastic modulus of both dry and hydrated nacre beams in three different 

environments shows that the vacuum driving force is not sufficient to remove the 

water within the tested nacre volumes. The discrete volumes tested in this work 

must therefore contain bound water, which is not removed in any of the 

environmental conditions. We can conclude that the environmental conditions used 

for mechanical testing of micron-sized nacre beams are not evasive within the 

timescales examined in this chapter. Subsequent chapters will exploit this novel AFM 

mechanical testing procedure to examine the small length scale interfaces in nacre 

and other biological structural composites.  
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Chapter 5 - On the Nanoscale Origin of 

Rate-dependent Toughness in Nacre 

5.1 Introduction 

Nature has developed a diversity of complex biological structures that resist 

catastrophic failure during externally applied loads. Considerable literature has 

reviewed the toughness efficiency of these biological structures by examining a wide 

range of mechanical properties, with optimization of structure using a limited range 

of materials available highlighted as a particular strength in natural design (9, 14, 

15, 18, 20, 189). Critically, these biological structures are often required to resist 

impact, yet structural design features that enable functional toughness under 

dynamic loading conditions, as opposed to less physiologically relevant quasi-static 

loading, is poorly understood. All biological structures exploit the assembly of 

nanomaterial building blocks to produce complex structures and have been recently 

demonstrated as effective at resisting extreme loading conditions (77, 162, 190, 

191). However, understanding the relationship between these nanomaterials and 

resultant mechanical function is a persistent challenge, especially for dynamic 

loading rates that need to be resisted by the structure.  
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Nacre exhibits perhaps the highest toughness among many stiff biological composite 

structures (85, 89, 92) and is used in the interior layer of most mollusc shells for 

protection against dynamic loading conditions from predators and environmental 

impacts (92). The mechanical importance of nacre has led to a concerted effort in 

developing bio-inspired synthetic composites for applications where toughness is 

paramount (3-5, 192). Indeed, the toughness of nacre is outstanding and over three 

orders of magnitude higher than the aragonite mineral composing approximately 95% 

of the volume of nacreous structures (85, 89). Despite the high mineral content in 

nacre, a number of studies have identified the importance of the nanoscale interface 

region, which consists of organic material approximately 20 nm in thickness that 

binds the aragonite tablet within a distinctive ‘brick and mortar’ structure (13, 18, 

85). This composite of mineral and organic in nacre is particularly notable as a 

structure maintaining the stiffness and strength of the mineral constituents (85, 89) 

while exceeding the toughness of high performance ceramics (85, 90). Evaluations 

of the loading rate-dependent mechanical properties of nacre are currently limited 

when compared to quasi-static mechanical performance, with changes in the elastic 

properties and strength of nacre with loading rate commonly observed (77). 

Toughening mechanisms have been extensively discussed for nacre under quasi-

static testing and include crack deflection between mineral tablets (77, 81), 

frictional contact between mineral tablets due to tablet dovetailing (36) and tablet 

nanoasperities (36, 76, 193), deformation of the organic phase (13, 194) and 

fracture of mineral bridges between tablets (19, 36, 73, 86). However, the relevance 

of such mechanisms under dynamic loading conditions remains a barrier in 

understanding the use of nanomaterials within the structure of nacre. The aims of 
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the work in this chapter are to therefore identify the key mechanisms at the 

nanoscale interfaces that contribute to the toughness of nacre and provide effective 

design strategies in resisting dynamic loading. 

 

The approach taken here is to quantify failure at the nanoscale interfaces in nacre 

directly using techniques that isolate discrete volumes of nacre material. Chapter 3 

has reviewed the use of FIB to isolate specific regions of interest in a range of 

materials including metals, ceramics, polymers and biological samples for 

mechanical testing (11, 157, 181, 182, 195-197). These experimental methods have 

yet to be adapted for the evaluation of small scale interfacial failure in nacreous 

material, or indeed other biological composite structures where interfacial failure is 

prevalent. In this chapter, the combined technique of in situ AFM within the SEM-

FIB dual-beam system described in Chapter 4 is used to investigate the mechanical 

behaviour of the inorganic-organic interface of nacre at the nanoscale (11, 155, 162, 

174, 198). The mechanical testing of materials at small length scales while observing 

deformation behaviour in SEM has been shown to be particularly effective for 

identifying the structure-property relationships of a wide range of materials (11, 

155, 162, 174, 196, 198). FIB is used to fabricate nacre samples into discrete volumes 

containing a single nanoscale interface for subsequent AFM mechanical testing, 

allowing direct study of the intrinsic nanoscale interface rather than the overall 

mechanical behaviour of whole nacre. These FIB-fabricated nacre samples were 

mechanically tested using the custom built in situ AFM system as detailed in Section 

3.4. Standard mechanical testing of bulk composites often exploits shear stress to 

evaluate the strength of interfaces using a range of sample geometries and loading 
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conditions (92, 93, 183). Controlled failure at the nanoscale interfaces can therefore 

be achieved with suitable sample geometries fabricated using FIB. Failure at 

nanoscale interfaces was further correlated with modelling approaches to define the 

influence of intrinsic behaviour on the overall toughness of nacreous structures. 

5.2 Materials and Methods 

5.2.1 Macroscopic Tensile Test 

Preliminary nacre sample preparation was performed following the procedure 

described in Section 4.2.1. Small dog-bone shaped nacre specimens were fabricated 

from the nacreous layer of abalone shells, at locations where the shell had minimal 

curvature using the water cooled rotating diamond saw. The width and thickness of 

the specimen was 1.2 mm and 0.6 mm. The gauge length of the specimen was 2.0 

mm and the overall length of the specimen was 18.0 mm. The specimens were cut 

such that their long axis was aligned with the plane of the mineral tablets. 

Macroscopic quasi-static tensile test was performed on both dry and hydrated nacre 

samples using a commercial microtester (Deben, 200 N tensile stage, UK), as shown 

in Figure 5.1. Samples defined as dry were kept at ambient temperature and 

humidity in air prior to mechanical testing, while hydrated samples were soaked in 

distilled water for at least 2 hours prior to mechanical testing. The specimens were 

loaded at a strain rate of about 0.001 s-1, up to failure. Four specimens were tensile 

tested for each case. 
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Figure 5.1 Digital image of the microtester, with the arrows showing the components 

of the tester. 

5.2.2 Nanoscale Interfacial Shear Test 

The nanoscale interfacial shear test was performed using the custom built in situ 

AFM within the SEM-FIB dual-beam system described in Chapter 3. Preliminary 

nacre sample preparation was performed as described in Section 4.2 so that only 

hydrated nacre samples were investigated in this work. The key point of the FIB 

sample preparation was to ensure that the nacre beam was FIB fabricated with the 

mineral tablets stacked perpendicular to the long axis of the beams. The 

backscattered electron micrograph, as shown in Figure 5.2, clearly shows the 

interfaces between mineral tablets as the dark lines and the mineral tablets in 

brighter pattern. 
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Figure 5.2 Backscattered electron micrograph of the FIB-fabricated nacre beam for 

nanoscale interfacial shear testing, with the mineral plate perpendicular to the long 

axis of the beam. Arrows show the existence of the mineral tablet and the organic 

interface. The insert SEM micrograph shows the FIB fabricated nacre beams at low 

magnification. 

 

FIB-flattened AFM tips (Bruker Nano GmbH, USA) with cantilever spring constant of 

40 N∙m-1 was moved towards the bottom of the beam while imaging with SEM to 

ensure the tip contacted the base of the beam, as illustrated in Figure 5.3. Figure 5.3a 

indicates SEM imaging of the AFM tip approaching and contacting the base of an 

individual nacre beam and Figure 5.3b shows application of load to the base of the 

nacre beam, which results in shearing between the mineral tablets. The expected 

shearing on the interfaces between the mineral tablets in shown schematically in 

Figure 5.3c and d. Under this protocol, shear deformation occurs at the interface 
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between the bottom FIB-fabricated mineral tablet and the top surface of the bulk 

nacre sample. A range of loading rates (0.2 µm·s-1, 10 µm·s-1, 30 µm·s-1, 60 µm·s-1 

and 90 µm·s-1) were applied in the shear test to investigate the influence of varying 

loading rates on the nanoscale interfacial shear behaviour of nacre. Four nacre 

beams were shear tested for each loading rate to determine an average value of 

shear strength.  

 

 

Figure 5.3 (a) SEM micrograph and (c) schematic showing the AFM tip approaching 

and contacting the base of an individual nacre beam; (b) SEM micrograph and (d) 

schematic showing application of load to the base of the nacre beam causing shearing 

between the mineral plates. Note the organic region at the base of the beam in the 

schematic is represented as larger than in the SEM image for clarity.  
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The shear strain (γ) at the interface between mineral plates in an individual nacre 

beam is defined by:  

                                       Equation 5.1 

where δ is the axial displacement along the interface, and S is the distance between 

the point of applied force and the shear plane. The shear stress (τ) at this interface 

is defined as: 

A

F
                                         Equation 5.2 

where F is the force applied by the AFM tip to the sample and A is the interfacial area 

where shear occurs. The maximum shear stress to fail the interface between mineral 

tablets can therefore be calculated from Equation 5.2 as well as measuring the 

maximum force applied to the sample from the AFM and knowing the interface area 

from SEM images. 

5.3 Results 

5.3.1 Macroscopic Tensile Test 

Figure 5.4 shows the stress-strain curves of the macroscopic tensile test on dry and 

hydrated nacre samples. Dry nacre behaved like a monolithic ceramic and failed in a 

brittle fashion. The response was linear elastic (E~100 GPa) up to a failure stress of 

~100 MPa at a failure strain of 0.001. The behaviour of dry nacre is similar to that of 

pure aragonite (92). By contrast, hydrated nacre showed a linear elastic response 

S


 
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(E~60 GPa) followed by a region of larger inelastic strains starting at a stress of 62 

MPa, with a final maximum strain to failure of 0.009 ± 0.001. The increase in the 

strain to failure of hydrated nacre relative to dry nacre highlights the role of water 

in plasticizing the organic phase at the interface between the mineral tablets. The 

water affects the elastic modulus and tensile strength of nacre by reducing the shear 

modulus and shear strength of the organic matrix between mineral tablets. 

Toughness is enhanced by water, which plasticizes the organic matrix, resulting in 

greater crack blunting and deflection abilities. The tensile behaviour of both dry and 

hydrated nacre corroborates previous macroscopic tensile tests on nacre (85, 92, 

183). We obtain an average hydrated nacre toughness of 720.2 ± 34.0 J·m-3 by 

calculating the areas under the stress-strain curves. This toughness value serves as 

a macroscopic toughness value when considering the nanoscale interfacial shear 

test discussed below. 

 

 

Figure 5.4 Typical stress-strain curves of dry and hydrated dog-bone shaped nacre 

samples under macroscopic tensile testing. 
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5.3.2 Nanoscale Interfacial Shear Test  

Typical shear stress-strain curves for the nanoscale interfacial shear test are shown 

in Figure 5.5. All the curves indicate a relatively linear deformation up to the 

maximum shear stress, with slight plastic behaviour during the deformation. This 

mechanical behaviour shows no clear transition from elastic deformation to plastic 

deformation at the nanoscale interfacial level, which is contrary to the initial elastic 

region followed by a considerably larger linear plastic region observed in 

macroscopic shear testing (77, 92). The discrepancy between linear elastic-like 

behaviour in micron-sized nacre beams and a plastic response in macroscopic 

testing is expected to be due to the nanoscale lacking extrinsic crack deflection 

mechanisms available macroscopically. The nanoscale shear test is therefore 

evaluating the intrinsic shear response at the interface between adjacent mineral 

tablets. We additionally note that the linear increase in stress with strain in Figure 

5.5 lacks the drop in stress with strain associated with failure of mineral bridges 

between tablets (19, 36, 73, 86), suggesting that these mineral bridges do not play a 

significant role in interfacial mechanics of nacre.  
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Figure 5.5 Stress-strain curves for nanoscale interfacial shear testing of hydrated nacre 

samples using five different loading rates (0.2 µm·s-1, 10 µm·s-1, 30 µm·s-1, 60 µm·s-1 

and 90 µm·s-1). 

 

The loading rate-dependent properties of the nanoscale interfaces in nacre are 

expected to be critical in defining the functional toughness of nacre and were thus 

explored further. Figure 5.6 shows the variation of shear strength, taken as the 

maximum stress applied from Figure 5.5 across a range of loading rates, in order to 

explore the dynamic response of the nanoscale interfaces in nacre. The interfacial 

shear strength is defined by the soft phase between the hard mineral plates and is 

observed to decrease as the loading rate increases as shown in Figure 5.6. A loading 

rate increase of approximately two orders of magnitude caused a shear strength 

decrease of approximately 10%. The y-axis starts from 33.5 MPa in order to 

emphasize the small shear strength change in the range between 33.5 MPa and 40.5 

MPa. The corresponding interfacial work of fracture calculated from the area under 

the stress-strain curves as shown in Figure 5.6 also exhibits a degradation of 
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mechanical behaviour as the loading rate increases. The values of the interfacial 

shear strength and work of fracture under different loading rates are presented in 

Table 5.1. The variation in interfacial mechanical properties of nacre under different 

loading rates provides evidence for design strategies that potentially enhance 

energy absorption with higher rate impact. 

 

 

Figure 5.6 Plot of the nanoscale interfacial shear strength and work of fracture 

between mineral tablets under five different loading rates (0.2 µm·s-1, 10 µm·s-1, 30 

µm·s-1, 60 µm·s-1 and 90 µm·s-1). 
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Table 5.1 Shear strength and interfacial toughness obtained from the interfacial shear 

test on nacre under different loading rates. 

Loading rate 

(µm·s-1) 

Shear strength 

(MPa) 

Standard 

deviation 

Interfacial 

toughness (J·m-2) 

Standard 

deviation 

0.2 38.525 1.156 15.476 1.926 

10 38.180 0.462 13.243 1.385 

30 36.257 0.786 12.838 2.162 

60 35.888 0.775 9.873 0.975 

90 34.739 0.524 7.964 1.457 

 

5.4 Discussion 

Interfacial shear strength and work of fracture are clearly observed to decrease with 

increasing loading rate as shown in Figure 5.6, and highlight the intrinsic weakening 

of the nanoscale interface in nacre as the loading rate increases. Such an observation 

is perhaps counter-intuitive as a higher loading rate impact will transfer more 

kinetic energy to the shell and, thus, the expectation that more work is required to 

fail the interfaces in order to absorb this impact energy. Synergy between this 

intrinsic material behaviour and extrinsic effects that define resultant failure must 

be considered in order to fully evaluate the toughness of nacre under dynamic 

loading conditions. Specifically, weak interfaces in composite structures are known 

to enhance crack propagation and increase toughness in quasi-static tests as the 

resultant failed surface area evolved increases (199, 200). Maintaining toughness 

with increased loading rate deviates from quasi-static conditions and are typically 
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achieved in, for example, engineered fibre reinforced plastics composites (201) 

where the mechanical properties of the polymer phase such as stiffness and strength 

increases. The advantage of decreasing interfacial strength with increasing loading 

rate as shown in Figure 5.6 must be considered. 

 

Two possible nanoscale mechanisms are expected to be responsible for this rate-

dependent shear behaviour. The first rate-dependent mechanism must consider the 

organic molecules entangled along the interface between mineral tablets (13, 194). 

These long organic molecules elongate in a stepwise manner as folded domains or 

loops are pulled open during tablet sliding, with previous literature detailing a saw 

tooth pattern in force-extension curves when the molecular chains were stretched 

by an AFM probe and demonstrated that every peak in the saw tooth pattern 

corresponded to a single chain domain unfolding (13). During further tablet sliding, 

the force repeatedly rises to a significant fraction of the force required to break a 

strong bond, but before a strong bond is broken, another domain unfolds. This 

process continues until all domains are unfolded and a strong bond breaks. The 

result is to sustain a relatively large force during tablet sliding before interfacial 

failure, making the nanoscale interface strong, while producing a larger area under 

the force-deflection curve for enhanced toughness. However, this stepwise 

elongation behaviour of the long molecules is a relatively slow process (13). At high 

loading rates, the long molecules have insufficient time to elongate, thus decreasing 

the mechanical energy that can be absorbed during this elongation process. Slower 

loading rates allow sufficient time for the long molecules to unfold fully so that a 
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relatively large shear stress could be achieved during tablet sliding before interfacial 

failure, thus providing an increase in the interfacial shear strength.  

 

The second responsible mechanism is derived from potential electrostatic attraction 

along the inorganic-organic interface (202-205). At molecular length scales, 

positively charged divalent calcium ions in the mineral tablets interact with proteins, 

amino acids or polysaccharides containing negative charges within the organic 

region between the mineral tablets (184). The divalent calcium ions and negatively 

charged functional groups can form a network of sacrificial ionic bonds by 

electrostatic attractions along the inorganic-organic interface (184), as shown 

schematically in Figure 5.7. The work required to break this network during tablet 

sliding will cause failure of the sacrificial ionic bonds in the network. Previous works 

have shown how the sacrificial ionic bonds along the interface can reform to some 

extent, indicating these bonds can break and reform several times before complete 

interfacial failure (202-205). In this work, the nanoscale interfacial shear strength 

increases as the loading rate decreases. We believe that the sacrificial bond 

reforming during tablet sliding is responsible for larger shear strength when the 

loading rate is relatively low. Higher loading rates would allow insufficient time for 

the divalent calcium ions to transport sufficiently to bond reforming sites, which 

leads to a decreased shear strength. Slower tablet sliding velocities will therefore 

provide more time for the broken ionic bonds to reform, resulting in higher shear 

strength and more mechanical energy absorbed during tablet sliding. 
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Figure 5.7 Schematic of the sacrificial ionic bonding network existing within the 

nanoscale inorganic-organic interface with the green rectangles representing 

aragonite mineral tablet and short random lines representing organic molecules. The 

grey arrows indicate the movement of mineral tablets causing shear along the 

interface. During tablet sliding, broken sacrificial bonds can reform to some extent by 

electrostatic attractions between the divalent calcium ions and negatively charged 

functional groups. 

5.5 Summary 

In conclusion, the nanoscale interfacial shear test on the inorganic-organic interface 

in nacre was performed using the in situ AFM within the SEM-FIB dual-beam system. 

Decreasing interfacial shear strength and work of fracture was found with increasing 

loading rates. Two potential interfacial mechanisms relating to entangled long 

organic molecule dynamics along the organic interface and the sacrificial ionic bond 

reformation between adjacent mineral tablets are proposed as being responsible for 

this rate-dependent shear behaviour. Such tuning of mechanical behaviour of the 
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nanoscale interfaces in nacre allows extrinsic failure to be the dominant toughening 

mechanism. True biomimetic design must therefore consider optimization of 

nanoscale interface behaviour to maximize the work to failure through an enhanced 

damage zone.  
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Chapter 6 - Rate-dependent Interfacial 

Nanomechanical Trends in Biological 

Composites 

6.1 Introduction 

The study of biological materials that have evolved through millions of years of 

evolution and natural selection can provide insights into heretofore-unexploited 

mechanical behaviour. A significant number of biological systems found in nature 

are subjected to a wide range of loading conditions for which the quasi-static test is 

simply not suitable in recreating the physiological loading conditions. Numerous 

structural biological composites are mechanically robust across a wide range of 

loading rates. Examples are prevalent in nature including the dynamic loadings of 

abalone shell as studies in Chapter 5 through impacts from predators and 

environmental aggression like rocks and debris (81), the fast loading rates found in 

the impact of deer antler bone (6) and the shell breaking appendages of mantis 

shrimp (arthropod) (97, 98). These biological composite systems exhibit common 

structural features at the nanoscale including a stiff majority reinforcement or 
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scaffold surrounded by an amorphous interfacial region with a relatively small 

volume. Small changes to these interfacial regions are expected to have a significant 

effect on dynamic mechanical response of the material.  

 

However a majority of previous mechanical studies on these structural biological 

materials have been limited to quasi-static loading conditions while the dynamic 

mechanical properties of biological materials are scarce in the literature (17, 44, 77). 

The rate-dependent mechanical properties of these biological composites are 

expected to be localized in the flexible organic molecules in the narrow interfaces 

between biological reinforcements, which are themselves mechanically rate 

dependent. Our studies on the rate-dependent interfacial mechanical properties of 

nacre in Chapter 5 serve as a good example. But what is the dynamic mechanical 

behaviour of other structural biological composites besides nacre? Do they show 

similar behaviour as nacre or different mechanical performance? How does the 

confined nansocale interfacial structures in these biological systems control their 

dynamic mechanical performance? Furthermore, what is the relationship between 

their dynamic mechanical properties and their physiological loading conditions they 

experience in their real lives? To address these questions, we need more rate-

dependent mechanical properties of biological composites and establish a 

relationship with their physiological loading conditions. 

 

This chapter thus attempts to determine the relationship between the rate-

dependent mechanical behaviour of biological composites with their nanoscale 

interfacial structures and their physiological loading conditions. The rate-dependent 
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mechanical properties of the nanoscale interfaces in nacre have been experimentally 

studied and modelled in Chapter 5 using the technique combing SEM, FIB and AFM. 

A weakening of inorganic-organic interfaces but enhanced overall nacre toughness 

was observed with higher loading rates applied in the experiment. The techniques 

developed in the last chapter are extended to study arthropod exoskeleton in this 

chapter. Arthropod exoskeleton has a unique hierarchical architecture from the 

macroscale to the nanoscale, which has been discussed in detail in Section 2.5, and 

is robust at higher loading rates than for nacre. Therefore, in this chapter, the 

nanoscale interfacial shear test on the interface between exocuticle layers of 

arthropod exoskeleton was performed under different loading rates using the same 

mechanical testing methodology applied on study of nacre in Chapter 5. Results on 

nacre and exocuticle are compared to literature, specifically previous work by Hang 

et al. (175) that investigated the rate-dependent nanoscale interfacial strength 

between non-collagenous protein and collagen fibrils in antler bone. Comparison of 

the rate-dependent interfacial mechanical behaviour of the above three well-studied 

biological composites (nacre, arthropod exoskeleton and antler bone) and the 

relationship to their physiological loading conditions are discussed in the following 

sections to present a general mechanism of biological composite behaviour under 

dynamic loading. 
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6.2 Materials and Methods 

6.2.1 Sample Preparation 

Two adult mantis shrimps were obtained from the Tropical Marine Centre Company, 

UK. The mantis shrimps were in the intermolt stage, in which the exoskeleton was 

completely developed and fully mineralized (206, 207). The mantis shrimp samples 

were transported to the lab in frozen condition and directly stored in the freezer at 

-20°C before dissection. Small exoskeleton sections with dimensions of 

approximately 8 × 4 × 4 mm were isolated from parent mantis shrimp samples using 

a water-cooled rotating diamond saw. Figure 6.1 shows optical images of a complete 

mantis shrimp and an exoskeleton piece sectioned for subsequent FIB fabrication. 

 

 

Figure 6.1 Optical images showing (a) the complete mantis shrimp and (b) one 

exoskeleton piece sectioned from the parent mantis shrimp sample. 

 



Chapter 6 - Rate-dependent Interfacial Nanomechanical Trends in Biological 
Composites 

122 
 

The exoskeleton sections were thoroughly rinsed and kept in distilled water at room 

temperature in order to keep the samples clean and hydrated. Before FIB fabrication, 

sections were removed from distilled water and maintained in ambient air 

environment for 2 hours to provide dehydration prior to SEM imaging and FIB 

fabrication. Sections were subsequently sputter gold coated to avoid electron or ion 

charging effects that could interfere with FIB fabrication (155, 181), followed by 

placement into the SEM chamber. The exoskeleton section was mounted on the SEM 

sample stage with the order of epicuticle, exocuticle and endocuticle from top to 

bottom. The thin layer of epicuticle with thickness of approximately 4.8 µm was 

firstly removed using FIB to expose the exocuticle layer, which is the main subject of 

this preparation. The exocuticle layer, which shows a thickness of approximately 10 

µm, is stacked more densely and regularly than the endocuticle layer. The interfaces 

were assumed to be similar throughout the exoskeleton as the materials used 

throughout are similar, but the exocuticle was considered more preferable for   FIB 

fabrication and mechanical investigation on the interface between layers as porosity, 

such as found in the endocuticle or epicuticle, was absent. Figure 6.2 shows the SEM 

micrographs of the structure of the epicuticle, exocuticle and endocuticle layers at 

different magnifications, indicating the layered exoskeleton clearly. Individual 

rectangular beams were created following the same FIB fabrication procedure 

described in Section 3.3 into dimensions of approximately 35 × 8 × 8 µm as shown 

in Figure 6.2d. The exocuticle layers are stacked through the beam with the 

interfaces perpendicular to the long axis of the beam so that interfacial shear testing 

on the beam can be performed. 
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Figure 6.2 SEM micrographs showing (a) the existence of the thin epicuticle layer above 

the procuticle layer, (b) the exocuticle (outer) and endocuticle (inner) layers 

comprising the procuticle layer, (c) the exocuticle layer only showing the well-

organized layered structure and (d) the FIB-fabricated exocuticle beams with the 

exocuticle layers stacked perpendicular to the long axis of the beam. 

 

FIB-fabricated exoskeleton samples were rehydrated following the same 

rehydration protocol described in Section 4.2.1 to ensure the exoskeleton samples 

were fully rehydrated when mechanically tested. Table 6.1 records the weight loss 

measured from five exoskeleton samples subjected to various environmental 

conditions used in the sample preparation process and Figure 6.3 shows the weight 
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change with time. Exoskeleton samples were kept in distilled water before 

preparation. Samples were then removed from water and weighed using an 

electronic analytical microbalance (Sartorius, Germany) to four significant figures 

after removing excess water from the sample’s surface with filter paper. The weights 

of these samples were taken as fully hydrated weight. Further preparation processes 

were recorded by the percentage of weight loss relatively to this fully hydrated 

sample weight as shown in Table 6.1. 

 

Table 6.1 Change in weight, as a percentage of the weight difference relative to 

hydrated exoskeleton samples in distilled water. The cycle of hydration represented by 

the table was repeated on five different exoskeleton samples. 

Sample conditions Time (hours) 

Weight loss compared to 

hydrated condition in 

distilled water (%) 

Stored in distilled water Storage 0.000 ± 0.015 

Dehydrated in ambient air 2 6.746 ± 1.233 

Dehydrated in SEM vacuum 

(High vacuum 5.25×10-4 Pa) 
2 7.861 ± 0.792 

Rehydrated in high vapour 

concentration 
4 0.224 ± 0.265 

Dehydrated in SEM vacuum 

(High vacuum 5.25×10-4 Pa) 
2 6.955 ± 1.219 

Rehydrated in high vapour 

concentration 
4 0.287 ± 0.353 
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Figure 6.3 Weight loss of five arthropod exoskeleton samples with time in different 

environmental conditions. 

 

Exoskeleton samples were first exposed to ambient air environment for two hours, 

as indicated in Table 6.1, and resulted in a weight loss of approximately 6.746%. 

Exposure to the vacuum environment of SEM chamber for two hours caused a 

further 7.861% weight loss. The initial weight loss of approximately 6.746% during 

exposure in air indicates a partial removal of free water in exoskeleton samples 

whereas exposure to SEM vacuum removes more free water. Rehydration of 

dehydrated exoskeleton samples for four hours in high vapor concentration 

recovered almost all lost water compared with the fully hydrated weight. Repeating 

the exposure to vacuum environment removed similar amount of free water from 

the sample compared with previous dehydration process and subsequent 

rehydration recovered the weight loss again, as would be expected if the rehydration 

process recovering water and the vacuum condition removing the water were 
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consistent. We therefore conclude that the dehydration-rehydration process 

removes the free water in exoskeleton samples and can be fully recovered using our 

applied rehydration method. 

6.2.2 Nanoscale Interfacial Shear Test 

Interfacial shear testing was applied to examine exocuticle layers within hydrated 

FIB-fabricated exoskeleton samples using the custom built in situ AFM within the 

SEM-FIB dual-beam system as detailed in Section 3.4. A FIB-flattened AFM tip (ACT, 

AppNano, USA) with spring constant of 200 N·m-1 was moved towards the bottom of 

the beam while imaging with SEM to ensure the FIB-flattened AFM tip contacted the 

bottom of the beam, as shown in Figure 6.4. A stiffer AFM cantilever was used when 

compared to the nacre testing in Chapter 5 as the AFM cantilever required larger 

forces applied to the exocuticle samples to cause shear failure, especially as the FIB-

fabricated beams were generally larger than for nacre. In this way, shear 

deformation could be controlled to occur at the interface between the bottom FIB-

fabricated exocuticle layer and the top surface of the bulk exocuticle sample. A wide 

range of loading rates (0.2 µm·s-1, 24 µm·s-1, 55 µm·s-1, 78 µm·s-1 and 110 µm·s-1) 

were applied in the shear test to investigate the influence of varying loading rates on 

the interfacial shear behaviour of exocuticle. Three exocuticle beams were shear 

tested for each loading rate to determine an average value of mechanical properties. 

The strain and stress information were calculated using the same method as 

described in Section 5.2.2. 
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Figure 6.4 SEM micrographs showing (a) the FIB-fabricated exocuticle beam before 

mechanical testing and (b) the failed interface after the AFM interfacial shear test. 

6.3 Results 

Typical shear stress-strain curves for the interfacial shear test between exocuticle 

layers under five different loading rates (0.2 µm·s-1, 24 µm·s-1, 55 µm·s-1, 78 µm·s-1 

and 110 µm·s-1) are shown in Figure 6.5. The loading rate information was obtained 

directly from the Attocube AFM system and translated into standard velocity with 

the unit of µm·s-1. The loading rates span over two orders of magnitude with the 

lowest velocity representing quasi-static test while the highest velocity coming close 

to the physiological loading rate for arthropod exoskeleton (8). All the curves 

indicate a relatively linear deformation up to the maximum shear stress with 

catastrophic failure through shear as observed from SEM. The shear behaviour 

showed no clear transition from elastic deformation to plastic deformation at this 

nanoscale interfacial level, which is similar to the nanoscale interfacial shear 

behaviour of nacre as detailed in Chapter 5. This linear elastic-like behaviour in 
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micron-sized exocuticle beams with no further plastic deformation stage is expected 

to be due to the nanoscale lacking extrinsic crack deflection mechanisms available 

macroscopically. The nanoscale interfacial shear test is therefore evaluating the 

intrinsic shear response at the interface between adjacent exocuticle layers. 

 

 

Figure 6.5 Stress-strain curves of the nanoscale interfacial shear test on hydrated 

exocuticle layers under five different loading rates (0.2 µm·s-1, 24 µm·s-1, 55 µm·s-1, 78 

µm·s-1 and 110 µm·s-1). 

 

The loading rate-dependent properties of the interface in exoskeleton are expected 

to be important in defining the functional toughness of exoskeleton and were thus 

explored further. Figure 6.6a shows the variation of shear strength, taken as the 

maximum stress applied from Figure 6.5 across a range of loading rates, in order to 

explore the dynamic response of the nanoscale interfaces. The error bar results from 

varying shear strength obtained from different shear tests under the same loading 

rate. The interfacial shear strength is defined by the interface between two 
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exocuticle layers and is observed to decrease as the loading rate increases as shown 

in Figure 6.6a. A loading rate increase of approximately two orders of magnitude 

caused a shear strength decrease of 11%. The corresponding interfacial toughness 

calculated from the area under the stress-strain curves as shown in Figure 6.6b also 

exhibits a degradation of mechanical behaviour as the loading rate increases. The 

values of the interfacial shear strength and toughness under different loading rates 

are presented in Table 6.2. The variation in interfacial mechanical properties of 

exoskeleton under different loading rates shows a similar trend as that of nacre and 

provides evidence for design strategies that potentially enhance energy absorption 

with higher rate impact. 

 

 

Figure 6.6 Plot of the nanoscale interfacial shear strength and work of fracture 

between exoskeleton layers under five different loading rates. (0.2 µm·s-1, 24 µm·s-1, 55 

µm·s-1, 78 µm·s-1 and 110 µm·s-1). 
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Table 6.2 Average shear strength and interfacial toughness with standard deviation 

obtained from the interfacial shear test on exoskeleton under different loading rates. 

Loading rates are arranged from lowest to highest. 

Loading rate 

(µm·s-1) 

Shear strength 

(MPa) 

Standard 

deviation 

Interfacial 

toughness (J·m-2) 

Standard 

deviation 

0.2 15.401 0.456 9.1723 0.603 

24 15.499 0.225 8.4583 0.521 

55 14.503 0.357 6.3902 0.845 

78 14.355 0.275 6.2344 0.364 

110 13.878 0.201 5.0051 0.567 

 

6.4 Discussion 

The rate-dependent nanomechanical properties of the interfaces in nacre and 

arthropod exoskeleton have been AFM mechanically studied in Chapter 5 and 

previous sections in Chapter 6. A further comparison of the rate-dependent 

mechanical properties of different biological composites, while generally difficult 

due to the lack of data, can be made by considering the nanoscale interfacial shear 

test between non-collagenous proteins (NCPs) and mineralized collagen fibrils 

(MCFs) from the work of Hang et al. (175). Antler bone displays considerable 

toughness through the use of a complex nanofibrous structure of MCFs bound 

together by NCPs. While the NCP regions represent a small volume fraction relative 

to the MCFs, significant surface area is evolved upon failure of the nanoscale 
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interfaces formed at the NCP-MCF boundaries. The mechanical properties of the 

nanoscale interfaces between the MCFs were investigated using the same AFM 

mechanical testing technique as has been applied to nacre and arthropod 

exoskeleton here but by pulling out individual MCF from NCPs to give interfacial 

shear, as shown in Figure 6.7. 

 

 

Figure 6.7 SEM micrographs showing (a) an AFM probe containing glue at its apex 

attached to an individual MCF partially embedded in a fibril bundle at the fracture 

surface of antler bone and (b) higher magnification image showing the pulled out fibril 

of embedded length le (175). 

 

Pullout of individual MCFs using the Attocube AFM within the SEM chamber shown 

in Figure 6.7 produced resultant mechanical information during progression of the 

pullout test as shown in Figure 6.8. The mechanical properties of the NCP interfacial 

region around the MCF can be calculated by recording the force applied to the MCF 

by the AFM system. As shown in Figure 6.7, a force F is applied at the free end of MCF 

protruding from the bone material. The pullout force increased linearly with 

progression time of the experiment until a maximum force, Fp, was reached, which 



Chapter 6 - Rate-dependent Interfacial Nanomechanical Trends in Biological 
Composites 

132 
 

caused failure of the MCF-NCP interface and a rapid drop in the force F exerted by 

the AFM until the MCF was separated from the bone sample. 

 

 

Figure 6.8 Plot showing the force applied to the partially exposed MCF during pullout 

against progression time for the pullout experiment. The force increases linearly with 

progression time until a maximum force Fp is reached, which causes failure of the 

interface and rapid separation of the MCF from the bulk bone sample. Curves 

correspond to pullout velocities of 2.30 m∙s-1 (), 1.47 m∙s-1 (), 1.18 m∙s-1 (), 

1.03 m∙s-1 () and 0.61 m∙s-1 () (175). 

 

The strength of the interface between the MCF and surrounding NCP is characterized 

by the interfacial shear strength (τ) and is calculated from the maximum force 

applied to the exposed MCF to cause pull-out from the surrounding NCP using the 

force balance: 

                                 
e

p

Dl

F


                                                  Equation 6.1 
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where D is the fibril diameter and le is the length of fibril embedded within the bone. 

Solving Equation 6.1 using the maximum pull-out force results shown in Figure 6.8 

gives a calculated MCF-NCP interfacial shear strength τ = 0.65 ± 0.15 MPa. To further 

explore the rate-dependent interfacial failure mechanism, various loading rates 

were examined to understand the dynamic behaviour of antler bone. The rate-

dependent failure of the MCF-NCP interface can be evaluated by controlling the 

displacement velocity of the pullout experiment. Figure 6.9 shows the variation in 

the interfacial shear strength over a range of pullout velocities. The physiological 

loading rate for antler bone is approximately 1 m∙s-1 derived from strain rate of 

~1.6 s-1 reported in previous literature (7) and is within the range of pullout 

velocities examined in Figure 6.9. The rate-dependent mechanical behaviour at the 

MCF-NCP interface highlights a clear increase in the interfacial shear strength with 

decreasing pullout velocity as shown in Figure 6.9, with detailed experimental 

results displayed in Table 6.3. Thus, the MCF-NCP interface is shown to be both 

relatively weak but exhibiting rate-dependent mechanical behaviour. This rate-

dependent interfacial shear behaviour has a similar trend to those of nacre and 

arthropod exoskeleton, showing a weakened interface with increasing loading rate. 

The interfacial structures of these biological composites and their physiological 

loading conditions affect their interfacial shear behavior, but the relationships 

among them are still unclear and need further discussion. 

 



Chapter 6 - Rate-dependent Interfacial Nanomechanical Trends in Biological 
Composites 

134 
 

 

Figure 6.9 Plot of the variation in the MCF-NCP interfacial shear strength, calculated 

using Equation 6.3, with pullout velocity. A simple linear trend line highlights the 

increase in interfacial shear strength with decreasing pullout velocity (175). 

 

Table 6.3 Data showing the fibril geometry, the resultant pullout behaviour including 

the work done and interfacial shear strength (τ), as well as interfacial fracture energy 

(γ) when pulling MCF from NCPs at various velocities (175). 

le 
(nm) 

Diameter 
(nm) 

Work 
(×10-14 J) 

τ 
(MPa) 

γ 
(J∙m-2) 

Pullout 
velocity 
(μm∙s-1) 

700 ± 35 168 ± 4 7.89 ± 0.12 0.61 ± 0.06 0.21 ± 0.02 1.47 

510 ± 26 102 ± 3 2.96 ± 0.04 0.71 ± 0.07 0.18 ± 0.02 1.18 

740 ± 37 110 ± 3 7.00 ± 0.10 0.74 ± 0.07 0.27 ± 0.03 0.61 

880 ± 44 121 ± 3 6.03 ± 0.11 0.41 ± 0.04 0.18 ± 0.02 2.30 

540 ± 27 81 ± 3 2.93 ± 0.07 0.79 ± 0.08 0.21 ± 0.03 1.03 

 

To have a general overview of the interfacial structures and rate-dependent 

mechanics of nacre, arthropod exoskeleton and antler bone as we have studied, 
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Table 6.4 summarizes their rate-dependent interfacial mechanical structures and 

properties obtained from experimental results for further comparison and 

discussion. The width values (w) of the interface in nacre, arthropod exoskeleton 

and antler bone are derived from direct SEM sample imaging and previous literature 

(6, 36, 46, 92, 99, 106, 112, 175). The width of the inorganic-organic interface 

between adjacent mineral tablets in nacre is around 20 – 30 nm (36, 92). The width 

of the interface between fibre bundles at adjacent exocuticle layers is ~3 nm (99, 

106, 112) while the width of the small space between MCFs in antler bone is ~1 – 2 

nm (6, 46, 175). The average interfacial strength (τA) of the three biological 

composites are obtained from the nanoscale interfacial shear test detailed in 

Chapter 5 (nacre), Chapter 6 (arthropod exoskeleton) and the work performed by 

Hang et al. (175) (antler bone) respectively. The detailed values for each interface 

are presented in Table 6.4. We also find out that there is a potential relationship 

about the ratio of w and τA (w/τA) and is also shown in Table 6.4. The unit of the w/τA 

value is defined m3∙N-1. This value will be further discussed in the following 

paragraph. Considering the varied interfacial strength at different loading rates for 

all the three biological composites, here we define a shear strength decrease rate 

(SSDR) as the change in the interfacial shear strength divided by the increase of 

loading rate that caused this shear decrease. The unit of SSDR is defined N∙s∙m-3. 

Finally, the physiological loading rates (PLR) (s-1) are obtained from literature for 

nacre (81), arthropod exoskeleton (8, 109) and antler bone (7) to establish a 

potential relationship among the rate-dependent interfacial mechanics of these 

biological systems and their physiological loading conditions. 
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Table 6.4 Structural and rate-dependent mechanical properties of the interface in 

nacre, arthropod exoskeleton and antler bone, with their physiological loading rates 

indicated. 

Sample Exoskeleton Nacre Antler 

w (nm) 3 20 - 30 1 - 2 

τA (MPa) 14.7 ± 0.78 36.5 ± 1.45 0.65 ± 0.15 

w/τA (×10-15 m3∙N-1) ~0.2 ~0.68 ~2.3 

SSDR (×1010 N∙s∙m-3) 1.7 4.2 18.5 

PLR (s-1) ~106 102 - 103 ~100 

 

The width of the interface (w) controls the mobility of the organic phase in the 

interface. A wider interface provides more space for organic mobility and less 

confinement of interfacial polymers, while a narrower interface applies greater 

confinement of interfacial polymers. Furthermore, the shear strength of the 

interface (τA) adjusts the confinement that the interface could apply to the interfacial 

organic phase. A higher interfacial shear strength indicates an interfacial phase with 

greater confinement (less mobility) while a lower shear strength indicates the 

interfacial phase with less confinement (more mobility). Therefore, the w/τA value 

indicated in Table 6.4 represents the confinement of the interface in these biological 

systems. Higher w/τA value provides less confinement of the interface while lower 

w/τA value provides greater confinement. The w/τA value and the shear strength 

decrease rate (SSDR) as shown in Table 6.4 indicate a positive relationship, also 

plotted in Figure 6.10. This positive relationship proves that when the biological 

interface is more confined with lower w/τA value, the polymers within the interface 

must be more rigid, less mobile and less sensitive to varying loading rates, therefore 
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resulting in lower SSDR under this circumstance. Conversely, less confined interface 

with higher w/τA value is more flexible and rate dependent, with higher SSDR 

observed. The mobility of confined organic polymers within the interfacial region is 

therefore more instructive in determining rate-dependent mechanical properties 

than conventional approaches based on classical static theories such as shear-lag (1).  

 

 

Figure 6.10 Plot showing the inverse relationship between the physiological loading 

rate (PLR) and the shear strength decrease rate (SSDR) and w/τA value among the 

biological systems of antler bone, nacre and arthropod exoskeleton. The left y-axis 

indicates the shear strength decrease rate of the three biological composites while the 

right y-axis indicates the w/τA value of the three biological composites. 

 

Considering the physiological loading rates these biological composites experience 

in their real life as shown in Table 6.4, we find out that biological composites that 

adapt to relatively high dynamic stresses appear to have lower w/τA value whereas 

the opposite is true for lower loads and rates. A relatively fast loading rate, as occurs 
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during impact, is expected to rapidly develop shear or other stresses at the interface. 

A potential explanation is that a biological interface with lower w/τA value would 

have more confinement along the interface and stronger mechanical connection 

between two reinforcements. In this circumstance, the applied stress would be 

transferred to reinforcements through shear along the interface more effectively in 

a short time than an interface with higher w/τA value, dissipating a relatively large 

amount of mechanical energy in this process. The results showing the inverse 

relationship between physiological loading rate and w/τA (inverse relationship with 

interfacial confinement) as shown in Figure 6.10 supports this point of view. 

Molecular mobility in the interface may thus be tuned to a specific external time-

scale of loading through interfacial width and polymer confinement. 

6.5 Summary 

In this chapter, the interfacial shear behaviour of the arthropod exoskeleton under a 

range of loading rates was investigated using the same experimental methodology 

as applied on nacre in Chapter 5. Results indicated a decrease in arthropod 

interfacial strength with increasing loading rates, highlighting a potential damage 

volume enhancement as observed in nacre with such interfacial weakening. General 

interfacial mechanical behaviour within biological composites was explored by 

comparing interfacial behaviour from nacre and arthropod exoskeleton to the 

interfacial shear behaviour of the NCP-MCF interface in antler bone from literature 

(175). All the three biological composites exhibited a weakened interface with 

increasing loading rates, but the biological interface with less confinement 
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(characterized with a larger w/τA value) showed a shear strength more sensitive to 

varying loading rates and appeared to adapt to less dynamic physiological loading 

conditions. The results and discussion in this chapter highlight the potential 

relationship between biological structural designs and the physiological loading 

conditions these biological systems experience. 
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Chapter 7 - Mechanical Properties of 

Graded Tendon-to-Bone Attachment 

Interfaces 

7.1 Introduction 

Connecting dissimilar materials is a fundamental challenge because of stress 

concentrations that can arise at their interfaces (208). Interfacial stress 

concentrations can contribute to material failures at levels of mechanical loads that 

are too small to cause failure in either material individually (209). ‘Functionally 

graded’ material systems that interpolate spatially between properties of two 

materials are often considered to reduce stress concentrations in engineering and 

medical applications, ranging from semiconductor thin films to prosthetic joints and 

limbs (210-212).  

 

In nature, a graded material exists between the unmineralized ‘soft’ and mineralized 

‘hard’ tissues (138, 213, 214), for example, at the shoulder’s rotator cuff tendon-to-

bone attachment, as shown in Figure 7.1. Here, tendon attaches to bone through a 
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fibrocartilaginous transition zone, known as the ‘insertion site’, that presents a 

continuous spatial grading in mineralization and organization of the underlying 

collagen fibres (143). Previous work suggest that this attachment mechanism might 

exist in other tensile connections such as ligaments (215) and menisci (216). 

Whereas engineering practice would be to interpolate between the mechanical 

properties of tendon and bone, experimental evidence indicates that grading at the 

rotator cuff insertion site produces a soft tissue region that is more compliant than 

either tendon or bone (217). 

 

 

Figure 7.1 The rotator cuff as viewed from the side (i.e., the lateral view). Tendons are 

shown in white, muscles in red, and bones in tan. The rotator cuff tendons (TM, I, S, and 

SS) wrap around the spherical humeral head (H) (left panel). Removing the overlying 

structures (A, B, C) and unwrapping the rotator cuff tendons reveals the axisymmetric 

geometry of the tendons and their bony insertions (right panel) (218). 
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Tendons and ligaments attach to bone across transitional tissue interfaces that are 

several micrometres to millimetres in thickness. The interface, termed the ‘enthesis’, 

is classified as either fibrous (e.g., medial collateral ligament to tibia enthesis) or 

fibrocartilaginous (e.g., supraspinatus tendon to humeral head enthesis) (135, 219, 

220). The fibrocartilaginous enthesis contains a functionally graded transitional 

tissue, with variations in extracellular matrix structure and composition giving rise 

to variations in mechanical properties across the interface (138, 215, 221-223). 

Tendon consists primarily of type I collagen with small amounts of decorin and 

biglycan. Bone consists of heavily mineralized type I collagen. Collagen fibres are 

well aligned in tendon. However, the collagen fibres become less organized as they 

insert into the bone (145). At the tendon enthesis, a fibrocartilaginous transitional 

zone is present that is rich in type II collagen and aggrecan produced by 

fibrochondrocytes, which have a rounder morphology compared to spindle-shaped 

tendon fibroblast cells and are phenotypically similar to chondrocytes. Within the 

transitional zone of the rat supraspinatus tendon enthesis, an increase in mineral 

relative to collagen has been observed through the transition from tendon to bone 

(143). These variations in structural and compositional properties result in graded 

mechanical behaviour that contributes to an efficient transfer of muscle load from 

tendon to bone (147, 218, 224). The gradient in mineral content is believed to be 

particularly important for limiting stress concentrations at the mineralized interface. 

 

In an injury-and-repair scenario, the original graded transitional tissue of the 

fibrocartilaginous insertion is not recreated after the tendon is surgically reattached 

to bone. Surgical reattachment leads to a more abrupt interface of mechanically 
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inferior and disorganized scar tissue (124, 130, 225). The loss of a gradual mineral 

transition likely contributes to the decreased mechanical performance of the load-

bearing interface and results in frequent re-ruptures. For example, surgical repair of 

massive rotator cuff tears, which relies on tendon-to-bone healing for success, has a 

re-tear rate of up to 94% (126, 127). Therefore, understanding the counterintuitive 

biophysics of the natural attachment is important for medical practice and for 

biomimetic design. 

 

The micrometre length scale provides an opportunity to study the tendon-to-bone 

attachments as a composite and, thus, explore the synergies between material 

components that define resultant mechanical function. Although millimetre length 

scale mechanical testing has elucidated some of the mechanisms of load transfer 

described above (226, 227), few efforts have attempted to examine the microscale 

mechanics. Previous work has loaded tendon-to-bone specimens in uniaxial tension 

and attempts have been made to measure local deformations (226). This technique 

has described tissue-level mechanics, but interpretation of results has been limited 

by the complex attachment geometry, interference from other tissues (e.g., the 

tendon sheath), and difficulty in identifying the exact location of failure. 

 

In this chapter, we employed atomic force microscopy (AFM) in conjunction with 

scanning electron microscopy (SEM) to perform tensile tests on microscale beams 

of tendon-to-bone attachments fabricated using focused ion beam (FIB). The 

approach of preparing microscale beams of biological sample and subsequent 

mechanical testing using in situ AFM as described in Chapter 3 is therefore applied 
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to an interfacial region with graded mechanics, as opposed to the discrete interfaces 

examined in Chapter 5 and 6. This combined SEM-FIB-AFM technique allows for the 

first-ever visualization and mechanical testing of the micrometre-long transitional 

tissue between tendon and bone. 

7.2 Materials and Methods 

7.2.1 Animals 

The use of animals and our procedures for this study were approved by the animal 

studies committee at Washington University (Protocol Number: 20100091) and all 

efforts were made to minimize suffering. The baseline animals were female CD-1 

wild type (WT) mice (Charles River lab. Int., Inc.) aged 14 - 18 weeks. For the 

conditional Indian hedgehog (Ihh) signaling knockout (KO) experiments, ScxCre 

mice (228) were crossed with Smofl/fl mice and aged to P56 (229). Indian hedgehog 

homolog signaling has been shown to play a role in enthesis development and 

maturation (230). The ScxCre/Smofl/fl mice exhibit conditional knock out of 

Smoothened, a molecule required for Ihh responsiveness, at the tendon-to-bone 

attachment. These mice exhibit inhibited fibrocartilage mineralization and 

compromised tissue level biomechanics (230).  Three WT mice and three KO mice 

were studied in this work. 
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7.2.2 Sample Preparation Using LCM 

The sample preparation described in this section was performed in Washington 

University in St. Louis. The supraspinatus-humerus complex was dissected from the 

mouse sample detailed in Section 7.2.1 after immediate sacrifice. Care was taken to 

maintain the integrity of the supraspinatus tendon-to-humeral head interface. The 

dissected complex was cut down using a sharp scalpel blade to keep just the humeral 

head and part of the supraspinatus tendon. The sides of the anterior and posterior 

edges of the humeral head were also cut in order to provide a flat surface. This 

complex which includes the tendon-to-bone interface was then placed in the Optimal 

Cutting Temperature (OCT) compound and frozen at -80°C before further 

preparation. The OCT-embedded sample was cut into sections using a Cryostat. The 

sections were 20 - 30 µm in thickness and deposited onto a special Laser Capture 

Microscopy (LCM) tape which was stretched across a 1 cm diameter hole in the LCM 

plastic slides, as shown in Figure 7.2. Once sectioned, the slides were maintained at 

-80°C for further preparation. 
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Figure 7.2 Optical photograph showing the tendon-to-bone attachment section 

deposited on the LCM tape stretched across the LCM plastic slide.  

 

The frozen sections were thawed and imaged in the LCM. The tendon-to-bone 

attachment was identified and beams were cut spanning the tendon-to-bone 

interface. The beams were cut using the LCM laser, making sure that these beams 

were parallel to the collagen fibrils and spanned the mineralized and unmineralized 

fibrocartilage. This LCM laser cut resulted in beams with dimensions of 150 - 200 

µm long and ~30 µm in width, as shown in Figure 7.3. In order to facilitate access to 

the beams for subsequent FIB fabrication, a relatively large hole (>1.5 mm) was cut 

around the beams so that the tendon-to-bone attachment section could be easily 

manipulated using scalpel blades and tweezers. Two to four beams spanning the 

mineralized and unmineralized fibrocartilage for each tendon-to-bone attachment 

section were cut depending on the dimension and quality of the section. Once the 

beams were successfully cut, the samples were refrozen at -80°C and shipped to 

Queen Mary, University of London (QMUL) on dry ice. Once received at QMUL, the 

samples were placed in the freezer at -80°C until further preparation. 
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Figure 7.3 Optical images showing the section before LCM dissection and the tendon-

to-bone attachment beam after the dissection, with schematic showing the tendon and 

bone part on the section. 

7.2.3 Sample Preparation Using Cryo-FIB 

FIB fabrication of the tendon-to-bone attachment beam sample was performed 

under cryo condition using the SEM-FIB dual-beam system as detailed in Chapter 3. 

The sample slide was removed from the freezer before FIB fabrication. The tendon-

to-bone attachment beams with some of the surrounding tissue attached to the bone 

part were cut away from the rest of the slide using a sharp scalpel blade under an 

optical microscope in order to work with the beams exclusively. A 60° pre-tilt stage 

was attached to the cryo-stage using the OCT solution. A small piece of aluminum 

foil was then attached to the pre-tilt stage, also via the OCT solution. Finally the beam 
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sample was attached to the aluminum foil via the OCT solution. The beam sample 

was placed such that the beams extend beyond the edge of the pre-tilt stage and 

perpendicular to the direction of the tilt. Until this step, the sample was still attached 

with the LCM tape facing down. The cryo-stage with sample was then brought to 

cryo-temperatures by dipping into liquid nitrogen slush. The cryo-stage was 

continuously rotated in the slush for 2 minutes in order to guarantee that the stage 

was -130°C, which is the temperature of the pre-chamber and main cryo-chamber. 

The sample was then inserted into the pre-chamber of the SEM-FIB dual-beam 

system, as shown in Figure 7.4. In the pre-chamber, the sample was first brought to 

-90°C to sublime ice off the surface of the sample. Argon was subsequently pumped 

into the chamber and a thin layer of platinum/gold deposited on the sample through 

plasma sputtering. Once coated, the sample was further inserted into the main cryo-

chamber for FIB fabrication. 

 

 

Figure 7.4 Optical photograph showing the pre-chamber and the main cryo-chamber 

of the SEM-FIB dual-beam system. 
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The sample was then cut using FIB by first positioning such that the top surface of 

the beams lies perpendicular to the direction of the ion beam. In this orientation the 

left and right sides of the beam could be removed with the ion beam at the voltage 

of 16 kV and 3 nA for initial milling. A lower voltage (16 kV) was applied here 

compared with the voltage (30 kV) applied for nacre and exoskeleton in order to 

minimize the damage FIB microscopy might cause on this soft tissue sample. Due to 

the potential drift caused from ion charging, similar protocol as described in Section 

3.3 was carried out by multiple ion currents down to 0.5 nA for fine polishing. The 

width of the beam was reduced to a final dimension of ~3 µm. Once the left and right 

sides of the beam were removed, the sample was removed from the cryo-chamber 

and the stage was rotated 90°. The sample was then reinserted into the cryo-

chamber and solid water sublimated as previously described. The side surface of the 

beam was positioned perpendicular to the direction of FIB so as to remove the top 

and bottom parts of the beam. During this process the LCM tape (attached to the 

bottom of the beam) and the platinum/gold coating were removed.  The resultant 

beam had a final square cross-section of ~3 × 3 µm2. Progression of sample 

preparation as observed with SEM from the initial irregular shaped laser trap 

sectioned sample to the final regular sample form after FIB is shown in Figure 7.5. 

The samples were then removed from the SEM chamber for subsequent AFM 

mechanical testing. 
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Figure 7.5 SEM imaging showing the tendon-to-bone attachment beam (a) before and 

(b) after FIB fabrication. 

7.2.4 Compositional Study Using EDS 

X-ray energy dispersive spectroscopy (EDS) microanalysis within the SEM (Inspect 

SEM, FEI Company, EU/USA) was used to investigate the proportion of the 

mineralized and unmineralized fibrocartilage on FIB-fabricated tendon-to-bone 

attachment beam. The proportion of the mineralized and unmineralized 

fibrocartilage in each beam is related to the mechanical properties of these beams 

and used as a maker for mechanical performance. Ten points with identical interval 

along the FIB-fabricated beam were EDS tested in order to determine the calcium 

contents along the beam.  

7.2.5 AFM Tensile Testing 

AFM tensile testing was performed on rehydrated samples using the same 

methodology applied to nacre and arthropod exoskeleton. Each tendon-to-bone 
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sample was fixed to a piece of aluminum foil with carbon tape since the OCT lacks 

adhesion at room temperature. Once attached, the aluminum foil and the sample 

were placed in a water vapour environment for rehydration as described in Section 

4.2.1.  

 

After hydration, the sample complex (sample + aluminum foil) was attached to the 

AFM sample stage via a piece of carbon tape. The sample was attached such that the 

FIB-fabricated beams extend beyond the edge of the sample stage in order to 

perform tensile test on the beams. A high-vacuum compatible adhesive (SEMGLU, 

Kleindiek Nanotechnik GmbH, Germany) was used in this experiment to attach the 

free end of the beam to the AFM tip in order to perform the tensile test. The SEMGLU 

hardens under electron beam irradiation using a high current electron beam on a 

small area whereas under relatively low imaging electron currents, the glue remains 

uncured and deformable. A small bead of SEMGLU was mounted on the tip of a thin 

wire placed besides and parallel to each individual tendon-to-bone beam to be 

mechanically tested. A FIB-flattened AFM tip with spring constant of 40 N∙m-1 was 

mounted on the AFM system and positioned 30 µm ahead of the default position by 

the AFM software so that the AFM tip could retract backwards for tensile testing 

when attached firmly to the sample. The sample stage was then moved towards the 

AFM tip, which allowed contact of the tip to the SEMGLU as shown in Figure 7.6, 

followed by stage retraction so that a small amount of glue was retained at the apex 

of the FM tip.  
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Figure 7.6 SEM imaging showing the AFM tip contact the SEMGLU bead. 

 

The sample stage was then moved to contact the free end of the FIB-fabricated beam 

with the SEMGLU at the AFM tip apex. All steps were performed under the electron 

current of 93 pA to prevent the glue from hardening. Curing of the SEMGLU at the 

AFM tip-sample contact was achieved by focusing the electron beam onto the 

SEMGLU drop under a high electron current of 1.5 nA for approximately 10 minutes 

to ensure a strong bond between the tip and the beam. In this way, the FIB-fabricated 

tendon-to-bone attachment beam was firmly attached to the AFM tip prior to 

mechanical tensile testing. The AFM uniaxial tensile test to failure was then 

performed by retracting the AFM tip in a quasi-static manner at a loading rate of 0.1 

µm∙s-1, as shown in Figure 7.7. Tensile testing was the preferred mechanical testing 

configuration as this provided a similar stress condition to the native tissue state. 
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Figure 7.7 SEM images showing the AFM tensile test on tendon-to-bone attachment 

beam (a) before and (b) after failure. 

7.3 Results 

Figure 7.8 shows the stress-strain curves for nine successful tensile tests on five KO 

samples and four WT samples. Five KO samples were successfully tested on KO 

mouse No.1 (sample KO1-1 and KO1-2), KO mouse No.2 (KO2-1 and KO2-2) and KO 

mouse No.3 (KO3). Four WT samples were successfully tested on WT mouse No.2 

(sample WT2-1, WT2-2 and WT2-3) and WT mouse No.3 (WT3). There was no 

successful tests achieved on WT mouse No.1. Sample KO3 and WT3 showed large 

plastic deformation stages with high strains of ~8.5% while the other samples 

showed a relatively linear deformation until ultimate failure at relatively small 

strains. The Young’s moduli of the tensile tests were calculated from the linear region 

of the curves and detailed in Table 7.1 along with the failure stress and failure strain 

values. As shown in Table 7.1, the elastic modulus of the samples span a wide range 

from 1 GPa to 4.2 GPa while the failure strength of the samples span a relatively 

smaller range from 20 MPa to 60 MPa. The mechanical properties shown in Table 
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7.1 also indicate little significant difference in any of the mechanical properties 

between KO and WT samples, including failure strength, failure strain and the 

Young’s modulus, which suggests that the Ihh KO did not affect the mechanical 

properties of the tendon-to-bone attachment at this tissue level. The average 

stiffness (Young’s modulus) of the nine samples was ~2.6 GPa which is nearly 50 

times higher than the values measured by tissue level testing (226). This difference 

in stiffness is likely due to scaling effects, particularly the small length scale samples 

being continuum whereas larger samples contain voids that are not considered 

when calculating mechanical properties based on forces acting on sample cross-

sectional areas. 

 

 

Figure 7.8 Tensile stress-strain curves for all nine successful tensile tests on five KO and 

four WT tendon-to-bone beam samples. 
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Table 7.1 Stress, strain and elastic modulus values for all the successful tensile tests. 

Sample Stress (MPa) Strain (%) Modulus (GPa) 

KO1-1 49.03 2.48 4.13 

KO1-2 36.34 2.36 3.32 

KO2-1 33.01 3.83 1.05 

KO2-2 23.21 1.45 2.25 

KO3 37.56 8.97 1.08 

WT2-1 57.70 2.52 3.21 

WT2-2 20.39 1.26 1.58 

WT2-3 49.03 3.88 2.65 

WT3 49.08 8.09 4.16 

 

The stiffness values varied between samples due to the variations in beam length 

and due to the ratios of mineralized to unmineralized tissue in each beam. The 

Calcium EDS signal was used to determine the amount of mineralized, 

unmineralized, and graded tissue in each beam, which is shown in Figure 7.9. 
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Figure 7.9 Plot of the relative percentage of mineralized, unmineralized and gradient 

regions for all of the beams tested. Values are determined from the EDS results. 

7.4 Discussion 

The variations in mineral content had significant effects on the measured modulus 

of the beams during tensile testing. The simplest test for determining the effects of 

the composition on the modulus of the beams is to use a simple law of mixtures. All 

of the beams have been FIB fabricated such that the beam length lies perpendicular 

to the direction of the gradient in mineralization and parallel to the preferential 

orientation of the collagen fibrils. Therefore, the three regions of mineralized, 

unmineralized and graded tissue can be considered as components set in series and 

modelled via the Reuss model: 

𝐸𝑡𝑜𝑡 = (
𝑉𝑀

𝐸𝑀
+

𝑉𝑈

𝐸𝑈
+

𝑉𝐺

𝐸𝐺
)

−1
                              Equation 7.1 
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where VM, VU, and VG are the fractions of mineralized, unmineralized, and graded 

tissue, and EM, EU, and EG are the Young’s moduli of each tissue. EM was assigned 20 

GPa and EU was assigned 0.5 GPa respectively based on previous literature results 

(136, 218). The graded region was assumed to be linear and treated as a sum of small 

regions with linearly increasing Young’s moduli. Using the Reuss model, the 

calculated modulus values of the beams matched the experimental results 

reasonably well as shown in Figure 7.10. 

 

 

Figure 7.10 Plot of the experimental moduli in blue vs. modelled moduli in red of all of 

the samples using the Reuss model. Note that the Reuss model matches the 

experimental results reasonably well except for a few exceptions: both KO1 samples 

and WT3. 

 

Detailed analysis of the recorded videos of the tensile tests revealed that the three 

beams exhibiting the largest errors in comparison to the modelling results appeared 

to undergo bending as well as tensile forces during loading. In order to account for 
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these bending changes, a more complex bending model that included a force acting 

non-parallel to the long access of the beam was developed. The bending model 

assumes a rule of mixtures (Reuss model); that the three tissue types are in series 

and that the graded region exhibits a linear change in modulus between the other 

two tissues. However, instead of stopping there, the bending model assumes that the 

force is not necessarily applied directly parallel to the long axis of the beam but may 

be at a small angle (<15º), as shown schematically in Figure 7.11. With a non-parallel 

applied force, there are now both a horizontal displacement parallel to the length of 

the beam and a vertical one perpendicular. Both of these values must be calculated 

to determine the Young’s modulus of the beam. The details of how the horizontal (v1) 

and vertical (v2) displacement are measured is detailed in the appendix. 

 

 

Figure 7.11 Schematic of the bending model. The beam is still composed of three 

regions: mineralized, unmineralized and graded regions of lengths a, c and b. The 

modulus of the graded region (EG) is a linear extrapolation between the moduli for the 

mineralized (EM) and unmineralized (EU) regions. This bending model can be used for 

both parallel loading (θ = 0) and off-axis loading (θ ≠ 0). 
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The calculation of the horizontal displacement, v1, was calculated from the following 

equation: 

𝑣1 =
𝐹𝑐𝑜𝑠(𝜃)

𝐴
(

𝑐

𝐸𝑈
+

𝑎

𝐸𝑀
+

𝑏

𝐸𝑀−𝐸𝑈
) (𝑙𝑛 𝐸𝑀 − 𝑙𝑛 𝐸𝑈)         Equation 7.2 

Where F is the force applied on the beam calculated from the AFM system and A is 

the cross-sectional area of the beam. The length and cross-sectional area of the beam 

was measured from direct SEM imaging. Mineral content from EDS analysis was 

input into the model to determine the amount of mineralized (a), unmineralized (c) 

and graded (b) regions in the beams. The angle θ at which the beams were loaded 

was determined and measured from the video recorded for each tensile test. Most of 

the beams were loaded at an angle of 0º but a few were loaded at angles up to 10º. 

The vertical displacement, v2, was calculated using the composite beam bending 

theory by solving the boundary equations at the interfaces between the three tissue 

types. With known v1 and v2 we can calculate the total displacement of the beam 

according to the equation:  

Δ = √𝑣1 + 𝑣2                                           Equation 7.3 

The total Young’s modulus of the beam can then be determine from the equation: 

𝐸 =
𝐹𝐿

Δ
(

cos2 𝜃

𝐴2 +
sin2 𝜃𝐿4

9𝐼2 )

1

2
                         Equation 7.4 

Where I is the moment of inertia and L is the total length of the beam. All the other 

parameters have been illustrated after Equation 7.2. With this bending model the 

error was decreased in the fitting between the model and the experiments, as shown 

in Figure 7.12.  
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Figure 7.12 Plot of the experimental moduli in blue vs. modelled moduli in red of all of 

the samples using the bending model. By accounting for the difference in the 

orientation of the load, the errors are decreased in the fitting between the model and 

the experiments. 

 

In addition, the EM and EU values were varied within reasonable ranges and found 

that the value of EM = 25 GPa and EU = 0.5 GPa optimized the system to minimize 

error. This fact was true both for the WT and KO samples. The error was decreased 

from 32% to 22% even though sample KO1-2 and WT3 still have high errors (~50%). 

Upon further inspection of the recorded videos of the tensile tests, it was found that 

both sample KO1-2 and WT3 exhibited clear bends in their structures before loading. 

These bends and deviations in the beam made it impossible to accurately analyse 

the beam with this bending model. This is evident, that in most cases, this model can 

be successfully used to model the mechanics of a beam under simple loading 

conditions. In cases where the beams are no longer “beam-like”, the model falls apart. 
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If we eliminate the errors for the two oddly shaped beams (KO1-2 and WT3), the 

average error with the bending model drops to 13 ± 10%. 

 

Our work used a simple beam bending and rule of mixtures based model to predict 

the modulus of the tendon-to-bone beams. What our results show is that the 

experimentally measured modulus of the beams do not change with the Ihh KO as 

compared to the WT samples. In addition, the model can be used to account for 

changes in composition across the beam and to predict the beam modulus and in 

return the tissue Young’s modulus. This suggests that the significant change in the 

amount of mineralized fibrocartilage in cases of Ihh KO causes a structural defect, 

but not a tissue level one. It appears that the modulus is unchanged in the collagen 

and mineral at the nanoscale and the microscale although it causes structural 

differences that affect the organ level mechanics. This is important in situations 

where Ihh may be impaired and the enthesis cannot mineralized correctly. Changes 

in mineralization due to Ihh KO may cause increased fracture risk compared to the 

WT samples and this should be treated at the organ level and not the tissue level. 

 

Our results also show that the gradient region can simply be modelled as a series of 

three different tissues: mineralized, unmineralized and graded regions. The ease of 

application of this simple model suggests that the complex structure of the 

attachment site may easily be described as three tissues in series. This is extremely 

important in tissue engineering of interfacial scaffold. Scaffolds can be created 

according to this basic model, varying the collagen content and mineralization to fit 

these natural biological structures. 
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7.5 Summary 

In summary, the microscale beams of the tendon-to-bone attachments fabricated 

using FIB were successfully tensile tested using the custom built AFM system in the 

SEM-FIB dual-beam system. Then we applied a beam bending and rule of mixtures 

based model to successfully model and predict the moduli of the tendon-to-bone 

beams. The mechanical properties of KO and WT samples showed no evident 

difference between each other, indicating that the knockout of Ihh didn’t changed 

the collagen and mineral properties at the microscale and nanoscale although it 

caused structural differences that affect the organ level mechanics. 
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Chapter 8 - Conclusions and Future 

Work 

8.1 Summary of the Thesis 

The importance of interfaces in biological systems with mechanical functions 

operating under dynamic loading conditions is identified in this work. An approach 

of considering biological structures as composites required definition of composite 

materials established using typical engineering concepts described in Chapter 2, 

with the importance interfaces in defining overall composite behaviour highlighted. 

The most notable deviation exhibited by biological composite structures over 

engineering composites is the use of hierarchical architectures formed across 

multiple length scales. The formation of structural biological composites was 

therefore reviewed and applied to describe the resultant structures-mechanical 

function of the three diverse biological composites studied in this thesis: nacre of 

abalone shell, arthropod exoskeleton of mantis shrimp and tendon-to-bone 

attachment in humeral head of mouse. Toughness was seen to be a critical 

mechanical properties that was of principle importance in the function of these 

biological structures. However, the intrinsic toughness of interfaces in these 
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biological composite and their behaviour under dynamic loading conditions, which 

is generally ignored in composite mechanicals, was found to be lacking. The 

literature review in Chapter 2 was of particular importance for justifying the 

experimental work of exploring toughness of these structural biological composites 

at the sub-micron length scale. 

 

Chapter 3 reported on an overview of the experimental methodologies applied 

throughout the thesis for investigating interfacial toughness of biological samples at 

small length scales, including sample preparation processes and the 

nanomechanical testing setup as well as data collection and analysis. The approach 

taken was to exploit preparation methods that isolate a specific structural feature in 

a complex biological material so that further mechanical testing could be used to 

evaluate toughness, and thus the importance of the feature, with respect to the larger 

scale biological structure. Therefore, novel techniques combining focused ion beam 

(FIB) for small length scale biological sample preparation, scanning electron 

microscopy (SEM) for in situ imaging and an custom built in situ atomic force 

microscopy (AFM) for mechanical testing were extensively employed, with these 

techniques described in detail in this chapter before applications in subsequent 

experimental chapters. 

 

The SEM-FIB-AFM technique introduced in Chapter 3 was applied in Chapter 4 to 

perform small-deflection AFM bending test on both dry and hydrated nacre samples 

in a variety of environments to study the effect of potential sample dehydration, and 

thus modification of the mechanical properties of the biological structures, due to 
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SEM vacuum. A lack of environmental influence on the mechanical properties of the 

micron-sized nacre beams was observed, which indicated that the water content is 

constant in all mechanical testing cases. Biological samples exposed to high vacuum 

would be expected to provide the largest removal of water but similar elastic 

modulus of both dry and hydrated nacre beams in three different environments 

showed that the vacuum driving force was not sufficient to remove the water within 

the tested nacre volumes. The discrete volumes tested in this work must therefore 

contain bound water, which is not removed in any of the environmental conditions. 

We can conclude that the environmental conditions used for mechanical testing of 

micron-sized nacre beams are not evasive within the timescales examined in this 

chapter.  

 

Chapter 5 employed a nanoscale interfacial shear test to evaluate the inorganic-

organic interfacial properties in nacre using the in situ AFM system within SEM. 

Decreasing interfacial shear strength and work of fracture was found with increasing 

loading rates. Entangled long molecules and electrostatic attractions along the 

inorganic-organic interfaces are regarded as two potential mechanisms explaining 

this interface weakness under high loading rates. 

 

Understanding of interfaces in biological structures was extended to arthropod 

exoskeleton, selected due to a similar layered structure to nacre but a required 

toughness operating at high loading rates. Chapter 6 showed a weakening of 

interfaces with increasing loading rates in arthropod exoskeleton, thus displaying a 

comparable behaviour to nacreous structures. The interfacial mechanics in nacre 
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and arthropod exoskeleton were additionally compared to interfacial shear behavior 

in antler bone from literature (175) to propose a general rate-dependent interfacial 

mechanical behaviour for these biological structures. All the three biological 

composites showed a weakened interface with increasing loading rates, but the 

biological interface with less confinement (characterized with w/τA values) 

displayed a shear strength more sensitive to varying loading rates. Biological 

composites with weak interfacial shear strengths and relatively wide interfaces are 

thus expected to show significant loss in shear strength with increasing loading rates. 

Biological structures that experience relatively high loading rates or, perhaps more 

importantly, a variation in loading conditions potentially confine their interfaces to 

restrict significant resultant interfacial weakening at higher loading rates while 

maximizing damage zones for toughness. Resultant biological structural designs are 

expected to be optimized somewhat towards the physiological loading rates 

experienced by the organism, with the experimental observations here providing 

evidence of such structure-function relationships. 

 

Finally, Chapter 7 evaluated mechanically graded tendon-to-bone interfaces, 

highlighting the flexibility of the experimental approach used. Microscale beams of 

tendon-to-bone attachment fabricated using FIB were successfully tensile tested 

using in situ AFM. An analytical model based on a simple rule of mixtures was used 

to predict the elastic moduli of the tendon-to-bone beams by consideration the 

spatial compositional variations within the larger interfacial regions, again 

providing a more complex-structure function relationship in a biological composite. 
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8.2 Future Work 

The work presented in the thesis is pioneering in direct mechanical study on the 

interfaces of a wide range of structural biological composites at small length scales 

and provides a number of future opportunities. Specifically, mechanical testing 

usually requires a large number of samples tested but a larger statistical data set is 

difficult to achieve in this study due to the difficulty in nanoscale manipulation and 

performing AFM mechanical testing. Although every experiment in this thesis was 

performed on at least 3 to 6 samples, which meets minimum statistics requirement, 

larger data sets would provide information on the material variation in these studied 

structural biological composites.  

 

Furthermore, due to the limitation of time consumption and sample preparation, the 

mechanical properties of the tendon-to-bone attachment were not studied under 

varying loading rates, but the dynamic mechanical information of the tendon-to-

bone attachment would be obviously desirable considering the complex loading 

conditions the tendon-to-bone attachment experiences in real life. The microscale 

tendon-to-bone attachment would be tensile tested at varying loading rates in the 

future. Achieving the dynamic mechanics of the tendon-to-bone attachment would 

provide a more comprehensive understanding of the tendon-to-bone mechanics and 

a better guidance for medical practice and biomimetic design. 
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Finally, Finite element modelling could be potentially applied to the nanoscale 

interfacial shear tests on these biological composite structures. The combination of 

the nanoscale behaviour obtained from experimental results and larger scale 

modelling would therefore provide a complete understanding of the dynamic 

mechanical properties of these biological composites, which is still a barrier in the 

understanding of composite materials incorporating nanoscale constituents as 

commonly found in natural design. 

8.3 Major Findings of the Thesis 

 A custom built in situ AFM nanomechanical testing method established in this 

thesis was proven to be suitable for mechanically testing a wide range of 

structural biological composites under a variety of loading configurations. 

 

 Dehydration of nacre by exposing to vacuum in the SEM chamber was found to 

be minimum within the time frame used in all the in situ mechanical 

experiments, indicating the applicability of this mechanical testing technique on 

hydrated biological samples. 

 

 Nacre was found to exhibit a weakened interface between mineral tablets with 

increasing loading rates. Two potential mechanisms relating to entangled long 

molecules along the organic interfaces and electrostatic attractions between the 

mineral tablets are proposed to explain this interfacial weakening behaviour. 
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 Among the three biological composites (nacre, arthropod exoskeleton and 

antler bone) studied in this thesis, the biological interface with more 

confinement (smaller w/τA value) displayed less shear strength sensitivity to 

varying loading rates but appeared to adapt to more dynamic physiological 

loading conditions. 

 

 The mechanical properties of a graded tendon-to-bone attachment region was 

directly related to compositional variations, resulting in a predictive model.  
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Appendix - Bending Model of the 

Tendon-to-Bone Attachment 

In order to account for the variability in the composition of the beams, it was 

necessary to develop a model that would describe the average modulus of a beam 

with varying amounts of mineralized, graded and unmineralized tissue. 

 

A force F is applied to the beam of length L and cross-sectional area A at an angle θ. 

The axis x lies along the length of the beam with a value of 0 at the free end. The 

vertical and horizontal components of the force are: 

𝐹𝑉 = 𝐹𝑠𝑖𝑛(𝜃)                              Equation A1 

𝐹𝐻 = 𝐹𝑐𝑜𝑠(𝜃)        Equation A2 

This force will cause a displacement v1 in the horizontal direction and v2 in the 

vertical direction. The total displacement, Δ, is equal to: 

Δ = √𝑣1 + 𝑣2    Equation A3 

The beam is composed of three sections: mineralized, graded, and unmineralized 

with lengths of a, b, and c where a + b + c = L. Their moduli are EM, EG, and EU 

respectively. The value of EG is a linear interpolation between the mineralized and 

unmineralized moduli: 
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𝐸𝐺 = 𝐸𝑈 +
𝐸𝑀−𝐸𝑈

𝑏
(𝑥 − 𝑐)                 Equation A4 

The displacement in the horizontal direction v1, is the sum of the displacements in 

the unmineralized, vU, graded, vG, and mineralized, vM, sections of the beam:  

𝑣1 = 𝑣𝑈 + 𝑣𝐺 + 𝑣𝑀                 Equation A5 

The displacements in the unmineralized and mineralized sections can be calculated 

from basic mechanics: 

𝑣𝑈 =
𝐹𝐻

𝐴

𝑐

𝐸𝑢
=

𝜎𝑐

𝐸𝑈
         Equation A6 

𝑣𝑀 =
𝜎𝑎

𝐸𝑀
                 Equation A7 

The displacement in the graded region can be found from the following: 

𝑣𝐺 = ∫ 𝜎/(
𝑏+𝑐

𝑐
𝐸𝑈 +

𝐸𝑀−𝐸𝑈

𝑏
(𝑥 − 𝑐)) 𝑑𝑥  Equation A8 

𝑣𝐺 =
𝜎𝑏

𝐸𝑀−𝐸𝑈
(𝑙𝑛 𝐸𝑀 − ln 𝐸𝑈)   Equation A9 

With all three displacements the horizontal displacement can be found from 

Equation A5.  

𝑣1 =  
𝜎𝑐

𝐸𝑈
+

𝜎𝑏

𝐸𝑀−𝐸𝑈
(𝑙𝑛 𝐸𝑀 − ln 𝐸𝑈) +

𝜎𝑎

𝐸𝑀
            Equation A10 

𝑣1 =
𝐹𝑐𝑜𝑠(𝜃)

𝐴
[

𝑐

𝐸𝑈
+

𝑎

𝐸𝑀
+

𝑏

𝐸𝑀−𝐸𝑈
(ln 𝐸𝑀 − ln 𝐸𝑈)]  Equation A11 

In order to calculate the vertical displacement of the beam, we need to solve the 

boundary conditions between the three regions of the beam. As the beam bends, the 

vertical displacement varies along the length of the beam. Let us define the 

displacement within the unmineralized region as y1, displacement in the graded 

region as y2, and displacement in the mineralized region as y3. The total vertical 

displacement of the beam will be the displacement at the free end of the beam where 

x = 0: 
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𝑣2 = 𝑦1(𝑥 = 0)   Equation A12 

In order to find y1 at x = 0 it is necessary to solve for the following boundary and 

continuity conditions: 

𝑦1(𝑥 = 𝑐) = 𝑦2(𝑥 = 𝑐)   Equation A13 

𝑦1
′ (𝑥 = 𝑐) = 𝑦2

′ (𝑥 = 𝑐)   Equation A14 

𝑦2(𝑥 = 𝑏 + 𝑐) = 𝑦3(𝑥 = 𝑏 + 𝑐)  Equation A15 

𝑦2
′ (𝑥 = 𝑏 + 𝑐) = 𝑦3

′ (𝑏 + 𝑐)   Equation A16 

𝑦3(𝑥 = 𝐿) = 0   Equation A17 

𝑦3
′ (𝑥 = 𝐿) = 0   Equation A18 

We can start to solve for these conditions by finding the values of y. For the 

unmineralized and mineralized sections:  

𝐸𝑈𝐼𝑦1
′′ = 𝐹𝑉𝑥     Equation A19 

𝑦1 =
𝐹𝑉𝑥3

6𝐸𝑈𝐼
+ 𝑘1𝑥 + 𝑘2   Equation A20 

𝑦3 =
𝐹𝑉𝑥3

6𝐸𝑀𝐼
+ 𝑘5𝑥 + 𝑘6  Equation A21 

For the graded tissue: 

[𝐸𝑈 +
𝐸𝑀−𝐸𝑈

𝑏
(𝑥 − 𝑐)] 𝐼 𝑦2

′′ = 𝐹𝑉𝑥  Equation A22 

𝑦2
′′ =

𝐹𝑣

𝐼𝐸𝑈

𝑥𝑑𝑥

(
𝐸𝑀
𝐸𝑈

−1)(
𝑥

𝑏
)+[1−

𝐸𝑀
𝐸𝑈

−1

𝐵
𝑐]

    Equation A23 

Let 𝑝 =
(

𝐸𝑀
𝐸𝑈

−1)

𝐵
 and 𝑡 = 1 −

𝐸𝑀
𝐸𝑈

−1

𝐵
𝑐 such that: 

𝑦2
′′ =

𝐹𝑣

𝐼𝐸𝑈
∫

𝑥𝑑𝑥

𝑝𝑥+𝑡
     Equation A24 

𝑦2
′ =

𝐹𝑉

𝐸𝑈𝐼
(

1

𝑝2) [𝑝𝑥 + 𝑡 − 𝑡𝑙𝑛(𝑝𝑥 + 𝑡)] + 𝑘3  Equation A25 
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𝑦2 =
𝐹𝑉

𝐸𝑈𝐼
(

1

𝑝2) [
𝑝𝑥2

2
+ 𝑡𝑥 −

𝑡

𝑝
ln(𝑝𝑥 + 𝑡)] + 𝑘3𝑥 + 𝑘4S Equation A26 

The vertical displacement can be calculated by solving for k2: 

𝑣2 = 𝑦1(𝑥 = 0) = 𝑘2                                   Equation A27 

The total displacement can then be calculated by inserting Equation A27 and 

Equation A11 into Equation A3.  

 

In order to calculate the average modulus of the beam, E, we assume the beam is 

homogenous. In this case the total horizontal and vertical displacements can be 

described by: 

𝑣1 =
𝐹𝑐𝑜𝑠(𝜃)𝐿

𝐸𝐴
    Equation A28 

𝑣2 =
𝐹𝑠𝑖𝑛(𝜃)𝐿3

3𝐸𝐼
    Equation A29 

The total displacement is therefore: 

Δ = √
𝐹2 cos2 𝜃𝐿2

𝐸2𝐴2 +
𝐹2 sin2 𝜃𝐿6

9𝐸2𝐼2     Equation A30 

Solving for the average modulus: 

𝐸 =
𝐹𝐿

Δ
√

cos2 𝜃

𝐴2 +
sin2 𝜃𝐿4

𝐼2    Equation A31 

By inputting equation the total displacement calculated in Equation A1 - A27 into 

Equation A31 we can determine the average modulus of each beam. 


