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ABSTRACT

In this paper we study the construction of holomorphic gauge invariant operators for gen-

eral quiver gauge theories with flavour symmetries. Using a characterisation of the gauge

invariants in terms of equivalence classes generated by permutation actions, along with rep-

resentation theory results in symmetric groups and unitary groups, we give a diagonal basis

for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a gen-

eralisation of the previously constructed Quiver Restricted Schur operators to the flavoured

case. The 3-point functions are derived and shown to be given in terms of networks of sym-

metric group branching coefficients. The networks are constructed through cutting and gluing

operations on the quivers.
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1 Introduction

Finite N aspects of AdS/CFT [1–3], such as giant gravitons [4], the stringy exclusion principle

[5] and LLM geometries [6], have motivated the study of multi-matrix sectors of N = 4 SYM,

associated with different BPS sectors of the theory. These multi-matrix systems are also of

interest purely from the point of view of supersymmetric gauge theory and their moduli spaces

(e.g. [7]).

In this paper we study correlation functions of holomorphic and anti-holomorphic gauge

invariant operators in quiver gauge theories with flavour symmetries, in the zero coupling limit.

This builds on the results in our previous paper focused on enumeration of gauge invariant

operators [8] and proceeds to explicit construction of the operators and consideration of free

field two and three point functions. These have non-trivial dependences on the structure of

the operators and on the ranks of the gauge and flavour symmetries. Our results are exact

in the ranks, and their expansions contain information about the planar limit as well as all

order expansions. The techniques we use build on earlier work exploiting representation theory

techniques in the context of N = 4 SYM [9–19]. The zero coupling results contain information

about a singular limit from the point of view of the dual AdS. For special BPS sectors, where

non-renormalization theorems are available, the representation theory methods have made

contact with branes and geometries in the semiclassical AdS background. These representation

theoretic studies were extended beyond N = 4 SYM to ABJM [20] and conifolds [21–24]. The

case of general quivers was studied in [25] and related work on quivers has since appeared

in [26–29].

In the context of AdS/CFT, adding matter to N = 4 SYM introduces flavour symme-

tries [30–34]. Typically, the added matter transforms in fundamental and anti-fundamental

representations of these flavour symmetries. Matrix invariants in flavoured gauge theories do

not need to be invariant under the flavour group: on the contrary, they have free indices living

in the representation carried by their constituent fields. In this paper, we consider a general

class of flavoured free gauge theories parametrised by a quiver. A quiver is a directed graph

comprising of round nodes (gauge groups) and square nodes (flavour groups). The directed

edges which join the round nodes corresponds to fields transforming in the bi-fundamental

representation of the gauge group, as illustrated in subsection 1.1. Edges stretching between

a round and a square node correspond to fields carrying a fundamental or antifundamental

representation of the flavour group, depending on their orientation. We will call them simply

quarks and antiquarks.

It was shown in [25] that the quiver, besides being a compact way to encode all the gauge

groups and the matter content of the theory, is a powerful computational tool for correlators

of gauge invariants. In that paper a generalisation of permutation group characters, called

quiver characters, was introduced, involving branching coefficients of permutation groups in a

non-trivial way. Obtaining the quiver character from the quiver diagram involves splitting each
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gauge node into two nodes, called positive and negative nodes. The first one collects all the

fields coming into the original node, while the second one collects all the fields outgoing from

the original node. A new line is added to join the positive and the negative node of the split-

node diagram. Each edge in this modified quiver is decorated with appropriate representation

theory data, as will be explained in the following sections. The properties of these characters,

which have natural pictorial representations, allowed the derivation of counting formulae for

the gauge invariants and expressions for the correlation functions.

In this paper, we will be concerned with the construction of a basis for the Hilbert space

of holomorphic matrix invariants for the class of quiver gauge theories with
∏

a U(Na) gauge

group and
∏

a SU(Fa)×SU(F̄a)×U(1) flavour group. This basis is obtained in terms of Quiver

Restricted Schur Polynomials OQ(LLL), that we define in Section 3. These are a generalisation of

the restricted Schur operators introduced in [12–14,35,36]. In [25], the non-flavoured versions of

these objects were called Generalised Restricted Schur operators, constructed in terms of quiver

characters χQ(LLL) where LLL is a collection of representation theory labels. In this flavoured case,

we will find generalisations of these quiver characters, where the representation labels will

include flavour states organised according to irreducible representations of the flavour groups.

The advantages of using this approach is twofold. On the one hand, the Quiver Restricted

Schur polynomials are orthogonal in the free field metric, as we will show, even for flavoured

gauge theories. This leads to the simple expression for the two point function in eq. (4.1):〈
OQ(LLL)O†Q(L′L′L′)

〉
= δLLL,L′L′L′ c~n

∏
a

fNa(Ra) (1.1)

In this equation fNa(Ra) represents the product of weights of the U(Na) representation Ra,

where a runs over the gauge nodes of the quiver. c~n is a constant depending on the matter

content of the matrix invariant OQ(LLL), given in (3.27). On the other hand, the Quiver Re-

stricted Schur polynomial formalism offers a simple way to capture the finite N constraints of

matrix invariants. This can be seen directly from (1.1): each fNa(Ra) vanishes if the length

of the first column of the Ra Young diagram exceeds Na.

In subsection 4.2 we give an N -exact expression for the three point function of matrix

invariants in the free limit. This computation is performed using the Quiver Restricted Schur

polynomial basis. Specifically, we will derive the GLLL(1),LLL(2),LLL(3) coefficients in〈
OQ(LLL(1))OQ(LLL(2))O†Q(LLL(3))

〉
= c~n(3) GLLL(1),LLL(2),LLL(3)

∏
a

fNa
(
R(3)
a

)
(1.2)

The analytical expression for GLLL(1),LLL(2),LLL(3) looks rather complicated, but it can be easily

understood in terms of diagrams. Although the identities we need appear somewhat complex,

they all have a simple diagrammatic interpretation. Diagrammatics therefore play a central

role in this paper: all the quantities we define and the calculational steps we perform can be

visualised in terms of networks involving symmetric group branching coefficients and Clebsch-
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Gordan coefficients. Both these quantities are defined in Section 3. The quantity GLLL(1),LLL(2),LLL(3)

is actually found to be a product over the gauge groups: for each gauge group there is a

network of symmetric group branching coefficients and a single Clebsch-Gordan coefficient.

The organisation of this paper is as follows. In the next section we establish the notation

we will use throughout the paper, and we specify the class of quiver theories we will focus on.

In Section 2 we describe a permutation based approach to label matrix invariants of the

flavoured gauge theories under study. A matrix invariant will be constructed using a set of

permutations (schematically σ) associated with gauge nodes of the quiver, and by a collec-

tion of fundamental and antifundamental states (schematically s, s̄ ) of the flavour group,

associated with external flavour nodes. In this section we highlight how the simplicity of

apparently complex formulae can be understood via diagrammatic techniques. We describe

equivalence relations, generated by the action of permutations associated with edges of the

quiver (schematically η), acting on the gauge node permutations and flavour states. Equiva-

lent data label the same matrix invariant. The equivalence is explained further and illustrated

in Appendix A. The equivalences η can be viewed as “permutation gauge symmetries”, while

the (σ, s, s̄) can be viewed as “matter fields” for these permutation gauge symmetries.

In Section 3 we give a basis of the matrix invariants using representation theory data,

LLL. This can be viewed as a dual basis where representation theory is used to perform a

Fourier transformation on the equivalence classes of the permutation description. We refer to

these gauge invariants, polynomial in the bi-fundamental and fundamental matter fields, as

Quiver Restricted Schur polynomials. In this section we introduce the two main mathematical

ingredients needed in this formalism. These are the symmetric group branching coefficients

and the Clebsch-Gordan coefficients. Their definition will be accompanied by a corresponding

diagram.

In Section 4 we derive the results for the free field two and three point function of gauge

invariants. In subsection 4.1 we show that the two point function which couples holomorphic

and anti-holomorphic matrix invariants is diagonal in the basis of Quiver Restricted Schur

polynomials. In subsection 4.2 we give a diagrammatic description of the structure constants

of the ring of Holomorphic Gauge Invariant Operators (GIOs). In particular, we present

a step by step procedure to obtain such a diagram for the example of an N = 2 SQCD,

starting from its split-node diagram. Using these formulae, we identify four selection rules, all

expressed in terms of symmetric group representation theory data. The analytical calculations

are reported in Appendices C and D, and rely on the Quiver Restricted Schur polynomial

technology introduced in the previous section.

Finally, in Section 5, we give some examples of the matrix invariants we can build using

our method, for the case of an N = 2 SQCD.
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1.1 Definitions and framework

In this paper we consider free quiver gauge theories with gauge group
∏n

a=1 U(Na) and flavour

symmetry of the general schematic form
∏n

a=1 U(Fa) × U(F̄a). Specifically, to work in the

most general configuration, we choose to focus our attention to the subgroup
∏n

a=1[×βU(Fa,β)

×γU(F̄a,γ)] of the flavour symmetry where Fa =
∑

β Fa,β and F̄a =
∑

γ F̄a,γ. This more general

flavour symmetry, where the U(Fa)× U(F̄a) is broken to a product of unitary groups for the

quarks and anti-quarks, is likely to be useful when interactions are turned on. Our calculations

work without any significant modification for this case of product global symmetry, hence we

will work in this generality.

To recover the results for the global symmetry U(Fa) × U(F̄a) it is enough to drop the

β, γ labels from all the equations that we are going to write. The constraint Fa = F̄a solves

chiral gauge anomaly conditions. As a last remark, notice that strictly speaking the global

symmetry of the free theory contains only the determinant one part S(U(Fa,1) × U(Fa,2) ×
· · ·U(Fa,Ma) × U(F̄a,1) × · · · × U(F̄a,M̄a

)). This means that, although for simplicity we write∏n
a=1

[
×βU(Fa,β)×γ U(F̄a,γ)

]
as the global symmetry, all the states we will write are neutral

under the U(1) which acts with a phase on all of the chiral fields and with the opposite phase

on all of the anti-chiral fields. This U(1) is part of the U(Na) gauge symmetry.

We now introduce the diagrammatic notation for the quivers. We follow the usual conven-

tion according to which round nodes in the quiver correspond to gauge groups, whereas square

nodes correspond to global symmetries. Fields leaving gauge node a and arriving at gauge

node b are be denoted by Φab,α, and transform in the antifundamental representation V̄Na of

U(Na) and the fundamental representation VNb of U(Nb). The third label α takes values in

{1, ...,Mab}, and is used to distinguishes between Mab different fields that transform in the

same way under the gauge group. We can think of each Φab,α as a map

Φab,α : VNa → VNb (1.3)

At every gauge node a we allow Ma different families of quarks {Qa,β, β = 1, ...,Ma} trans-

forming in the antifundamental of U(Na) and M̄a different families of antiquarks {Q̄a,γ, γ =

1, ..., M̄a}, transforming in the fundamental of U(Na). As for the field Φ, the greek letters β

and γ distinguish the multiplicities of the quarks and antiquarks respectively. U(Fa,β) and

U(Fa,γ) represent the flavour group of the quark Qa,β and of the antiquark Q̄a,γ respectively.

Figure 1 explicitly show this field configuration for one node a of the quiver. Table 1 sum-

marises instead all the gauge and flavour group representations carried by every field in the

quiver.
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Figure 1: Pictorial representation of the fundamental fields (oriented edges), flavour group (square
nodes) for a single gauge node labelled a.

U(Na) U(Nb) U(Fa,β) U(F̄a,γ)

Φab,α 1 1

Φaa,α Adj 1 1 1

Qa,β 1 1

Q̄a,γ 1 1

Table 1: Gauge and flavour group representations carried by Φab,α, Qa,β and Q̄a,γ . �, �̄ and 1
are respectively the fundamental, antifundamental and trivial representations of the corresponding
group.

2 Gauge Invariant Operators and Permutations

In this section we will present a systematic approach to list and label every holomorphic matrix

invariant in quiver gauge theories of the type discussed above. We also allow for a flavour

symmetry of the type discussed in Section 1.1. The operators we consider are polynomial in

the Φ, Q and Q̄ type fields that are invariant under gauge transformations. Therefore, all
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colour indices are contracted to produce traces and products of traces of these fields. For

example

· (ΦabΦbc · · ·Φta) · (ΦabΦbc) (Φtt)

·
(
Q̄k
aQla

)
·(Q̄k

aΦabΦbc · · ·ΦqtQlq)

(2.1)

and products thereof are suitable matrix invariants. In these examples round brackets denote

contraction of gauge indices (i.e. traces), while k, l are flavour indices. The last two examples

belong to the class of GIOs that in the literature has been called ‘generalised mesons’ (see

e.g. [37]). In order to label these matrix polynomials, the first ingredient we need to specify is

the number of fundamental fields that they contain. Let nab,α be the number of copies of Φab,α

fields that are used to build the GIO. Similarly, let na,β (n̄a,γ) be the number of copies of Qa,β

quarks (Q̄a,γ antiquarks) used in the GIO. In other words, the polynomial is characterised by

degrees ~n given by

~n = ∪a {∪b,α nab,α;∪β na,β;∪γ n̄a,γ} (2.2)

For fixed degrees there is a large number of gauge invariant polynomials, differing in how the

gauge indices are contracted. To guarantee gauge invariance we have to impose that the GIO

does not have any free gauge indices. This condition implies the constraint on ~n
na =

∑
b,α nab,α +

∑
β na,β =

∑
b,α nba,α +

∑
γ n̄a,γ ∀a

nα =
∑

a

∑
β na,β =

∑
a

∑
γ n̄a,γ

(2.3)

We now introduce a second vector-like quantity, ~s. It will store the information about the

states of the quarks and antiquarks in the matrix invariant. To do so, let us first define the

states

|sssa,β〉 ∈ V
⊗na,β
Fa,β

, 〈s̄a,γs̄a,γs̄a,γ| ∈ V̄ ⊗n̄a,γF̄a,γ
(2.4)

Here VFa,β is the fundamental representation of U(Fa,β) and V̄F̄a,γ is the antifundamental

representation of U(F̄a,γ). Therefore, |sssa,β〉 is the tensor product of all the U(Fa,β) fundamental

representation states of the na,β quarks Qa,β. Similarly, 〈sssa,γ| is the tensor product of all the

U(F̄a,γ) antifundamental representation states of the n̄a,γ quarks Q̄a,γ. We define the vector ~s

as the collection of these state labels:

~s = ∪a {∪β sssa,β;∪γ s̄̄s̄sa,γ} (2.5)

In the framework that we are going to introduce in this section, the building blocks of any

matrix invariant are the tensor products of the fundamental fields Φ
⊗nab,α
ab,α , Q

⊗na,β
a,β and Q̄

⊗n̄a,γ
a,γ .
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Let us then introduce the states

|Iab,α〉 = |i1, ..., inab,α〉 ∈ V
⊗nab,α
Na

, |Ia,β〉 = |i1, ..., ina,β〉 ∈ V
⊗na,β
Na

|Jab,α〉 = |j1, ..., jnab,α〉 ∈ V
⊗nab,α
Na

, |J̄a,γ〉 = |j̄1, ..., j̄n̄a,γ〉 ∈ V
⊗n̄a,γ
Na

Using these definitions, together with eq. (2.4), we can write the matrix elements of every

Φ
⊗nab,α
ab,α tensor product as

(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

=
〈
Iab,α

∣∣∣Φ⊗nab,αab,α

∣∣∣ Jab,α〉 (2.6)

and similarly for Q
⊗na,β
a,β and Q̄

⊗n̄a,γ
a,γ :

(
Q
⊗na,β
a,β

)Ia,β
sssa,β

=
〈
Ia,β

∣∣∣Q⊗na,βa,β

∣∣∣sssa,β〉 , (
Q̄⊗n̄a,γa,γ

)s̄̄s̄sa,γ
J̄a,γ

=
〈
s̄̄s̄sa,γ

∣∣∣Q̄⊗n̄a,γa,γ

∣∣∣ J̄a,γ〉 (2.7)

We will now present the first of the many diagrammatic techniques that we will use throughout

this paper. We draw the matrix components of fundamental fields (Φab,α)ij, (Qa,β)is and
(
Q̄a,γ

)s̄
j

as in Fig. 2.

Figure 2: Diagrammatic description of the matrix elements of the fundamental fields Φ, Q and Q̄.

This diagrammatic notation is then naturally extended to the tensor products
(

Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

,(
Q
⊗na,β
a,β

)Ia,β
sssa,β

and
(
Q̄
⊗n̄a,γ
a,γ

)s̄̄s̄sa,γ
J̄a,γ

, defined in eqs. 2.6 and 2.7, as in Fig. 3.
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Figure 3: Diagrammatic description of the matrix elements of the tensor products of the funda-
mental fields Φ, Q and Q̄.

Permutations act on a tensor product of states by rearranging the order in which the states

are tensored together. For example, given a permutation σ ∈ Sk and a tensor product of k

states |ia〉 (1 ≤ a ≤ k) belonging to some vector space V , we have

σ|i1, i2, ..., ik〉 = |iσ(1), iσ(2), ..., iσ(k)〉 (2.8)

Therefore, there is a natural permutation action on the states (2.4) and (2.6).

The gauge invariant polynomial is constructed by contracting the upper na indices of all

the fields incident at the node a with their lower na indices. We describe these gauge invariants

as follows. First we choose an ordering for all the fields with an upper U(Na) index. Then we

fix a set of labelled upper indices: this means that we have picked an embedding of subsets

into the set [na] ≡ {1, · · · , na}, i.e.

[na1,α=1] t [na1,α=2] t · · · t [na2,α=1] t [na2,α=2] t · · · t [na,β=1] t [na,β=2] t · · · → [na] (2.9)

which gives a set-partition of [na]. Similarly, there is an embedding into [na] corresponding to

the ordering of the lower U(Na) indices, namely

[n1a,α=1] t [n1a,α=2] t · · · t [n2a,α=1] t [n2a,α=2] t · · · t [n̄a,γ=1] t [n̄a,γ=2] t · · · → [na] (2.10)

Now we contract the upper indices of these fields with their lower indices, after a permutation

σa ∈ Sna of their labels. We will therefore be considering permutations σa ∈ Sna , where

na =
∑

b,α nab,α +
∑

β na,β =
∑

b,α nba,α +
∑

γ na,γ. Along the lines of eqs. (2.6) and (2.7) we

can define the matrix elements of σa as

(σa)
×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β =

(
⊗b,α〈Jba,α| ⊗γ〈J̄a,γ

∣∣)σa (⊗b,α|Iab,α〉 ⊗β|Ia,β〉 ) (2.11)
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where the product symbols appearing in the upper and lower indices of σa are ordered as in

(2.9) and (2.10). We depict these matrix elements as in Fig. 4.

Figure 4: Diagrammatic description of the matrix elements of the permutation σ.

Following the approach of [25], we can write any GIO OQ of a quiver gauge theory Q with

flavour symmetry as

OQ(~n; ~s; ~σ) =
∏
a

[∏
b,α

(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

]
⊗

[∏
β

(
Q
⊗na,β
a,β

)Ia,β
sssa,β

]
⊗

[∏
γ

(
Q̄⊗n̄a,γa,γ

)s̄̄s̄sa,γ
J̄a,γ

]

×
∏
a

(σa)
×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β (2.12)

Here ~σ = ∪a{σa} is a collection of permutations σa ∈ Sna , where na =
∑

b,α nab,α +
∑

β na,β.

The purpose of ~σ is to contract all the gauge indices of the Φ, Q and Q̄ fields to make a

proper GIO. This formula looks rather complicated. However, it can be nicely interpreted in a

diagrammatic way. We will now give an example of such a diagrammatic approach. Consider

an N = 2 SCQD theory. The N = 1 quiver for this model is illustrated in Fig. 5.

Figure 5: The N = 1 quiver for an N = 2 SQCD model.

We labelled the fields of this quiver by φ, Q and Q̄, simplifying the notation of given in table

1. Consider now the GIO (Q̄φQ)s̄1s1 (Q̄Q)s̄2s2 . Here s1, s2 and s̄1, s̄2 are states of the fundamental
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and antifundamental representation of SU(F ) respectively, and the round brackets denotes

U(N) indices contraction. Figure 6 shows the diagrammatic interpretation of this GIO.

Figure 6: Diagrammatic description of the GIO (Q̄φQ)s̄1s1 (Q̄Q)s̄2s2 in an N = 2 SQCD. The horizontal
bars are to be identified.

For fixed ~n, the data ~σ,~s determines a gauge invariant. However changing ~σ,~s can produce

the same invariant. This fact can be described in terms of an equivalence relation generated

by the action of permutations, associated with edges of the quiver, on the data ~σ,~s. This has

been discussed for the case without flavour symmetry in [25] and we will extend the discussion

to flavours here. Continuing the example of the N = 2 SQCD introduced above, let us

consider a matrix invariant built with n adjoint fields φ and nq quarks and antiquarks Q and

Q̄. We label the tensor product of all the nq quark states |si〉 ∈ VSU(F ) with the shorthand

notation |sss〉 = ⊗nqi=1|si〉. Here VSU(F ) is the fundamental representation of SU(F ). Similarly,

〈s̄̄s̄s| = ⊗nqi=1〈s̄i| will be the tensor product of all the antiquarks states 〈s̄i| ∈ V̄SU(F ), where

V̄SU(F ) is the antifundamental representation of SU(F ). In this model, a matrix invariant

can be labelled by the triplet (σ,sss, s̄̄s̄s). The redundancy discussed above is captured by the

identification

(σ, sss, s̄̄s̄s) ∼
(
(η × ρ̄)σ(η−1 × ρ−1), ρ(sss), ρ̄(s̄̄s̄s)

)
(2.13)

where η ∈ Sn, ρ, ρ̄ ∈ Snq and ρ(sss) = (sρ(1), sρ(2), ..., sρ(nq)), ρ̄(s̄̄s̄s) = (s̄ρ̄(1), s̄ρ̄(2), ..., s̄ρ̄(nq)). The

last two equations are to be interpreted as the action of ρ and ρ̄−1 on the states |sss〉 and 〈s̄̄s̄s|:

ρ|sss〉 = |sρ(1), sρ(2), ..., sρ(nq)〉 , 〈s̄̄s̄s|ρ̄−1 = 〈s̄ρ̄(1), s̄ρ̄(2), ..., s̄ρ̄(nq)| (2.14)

We refer to Appendix A for a diagrammatic interpretation of this equivalence.
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For the general case of a gauge theory with flavour symmetry, the degeneracy is described

by the identity

OQ(~n; ~s; ~σ) = OQ(~n; ~ρ (~s ); Adj~η×~ρ(~σ)) (2.15)

Here we introduced the permutations

~η = ∪a,b,α{ηab,α} , ηab,α ∈ Snab,α (2.16a)

~ρ = ∪a{∪β ρa,β; ∪γ ρ̄a,γ} , ρa,β ∈ Sna,β , ρ̄a,γ ∈ Sn̄a,γ (2.16b)

and we defined

Adj~η×~ρ(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} , (2.17)

~ρ (~s) = ∪a{∪β ρa,β(sssa,β); ∪γ ρ̄a,γ(s̄̄s̄sa,γ)} (2.18)

In Appendix A we will derive the constraint (2.15). This is essentially a set of equivalences

of the type (2.13), iterated over all the nodes and edges of the quiver. The permutations

ηab,α, ρa,β, ρ̄a,γ can be viewed as “permutation gauge symmetries”, associated with the edges

of the quiver. The permutations ~σ and state labels ~s can be viewed as “matter fields” for the

permutation gauge symmetries, associated with the nodes of the quiver. It is very intriguing

that, in terms of the original Lie group gauge symmetry, the round nodes were associated

with gauge groups U(Na), while the edges were matter. In this world of permutations, these

roles are reversed, with the edges being associated with gauge symmetries and the nodes with

matter.

So far we have used a permutation basis approach to characterise the quiver matrix in-

variants. This has offered a nice diagrammatic interpretation, but on the other hand it is

subject to the complicated constraint in eq. (2.15). In the following section we are going to

introduce a Fourier Transformation (FT) from this permutation description to its dual space,

which is described in terms of representation theory quantities. In other words, we are going

to change the way we label the matrix invariants: instead of using permutation data, we are

going to use representation theory data. The upshot of doing so is twofold. On one hand the

new basis will not be subject to any equivalence relation such as the one in (2.15). On the

other hand, as a consequence of the Schur-Weyl duality (see e.g. [38]), it offers a simple way

to capture the finite N constraints of the GIOs. Schematically, using this FT we trade the set

of labels {~n; ~s; ~σ} of any GIO for the new set {Ra, rab,α, ra,β, Sa,β, r̄a,γ, S̄a,γ, ν
+
a , ν

−
a }, that we

denote with the shorthand notation LLL:

FT : {~n; ~s; ~σ} → LLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ, S̄a,γ, ν
+
a , ν

−
a } (2.19)
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Each Ra is a representation of the symmetric group Sna , where na has been defined in (2.3).

rab,α, ra,β, r̄a,γ are partitions of nab,α, na,β, n̄a,γ respectively. Sa,β and S̄a,γ are U(Fa,β) and

U(F̄a,γ) states in the representation specified by the partitions ra,β and r̄a,γ respectively. The

integers ν±a are symmetric group multiplicity labels, a pair for each node in the quiver. Their

meaning will be explained in the next section. Graphically, at each node a of the quiver we

change the description of any matrix invariant as in Fig. 7. The diagram on the right in this

figure is also called a split-node [25].

Figure 7: Pictorial representation of the Fourier transform discussed in the text. The multiplicity
labels of the fields are not displayed.

We call the Fourier transformed operators Quiver Restricted Schur polynomials, or quiver

Schurs for short. These are a generalisation of the Restricted Schur polynomials that first

appeared in the literature in [12–14,35,36]. In section 4.1 we will show how the quiver Schurs

form a basis for the Hilbert space of holomorphic operators.

3 The Quiver Restricted Schur Polynomials

In this section we describe the FT introduced above. In other words, we will explicitly con-

struct the map

FT : OQ(~n;~s;~σ) → OQ(LLL) (3.1)

In order to do so, we need to introduce two main mathematical ingredients. These are the

symmetric group branching coefficients and the Clebsch-Gordan coefficients. For each of these

quantities we give both an analytic and a diagrammatic description: the latter will aid to

make notationally heavy formulae easier to understand.
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We begin by focusing on the symmetric group branching coefficients. Consider the sym-

metric group restriction

×ki=1 Sni → Sn ,
k∑
i=1

ni = n (3.2)

For each representation V Sn
R of Sn, this restriction induces the representation branching

V Sn
R '

⊕
r1`n1
r2`n2···
rk`nk

(
k⊗
i=1

V
Sni
ri

)
⊗ V ~r

R , ~r = (r1, r2, ..., rk) (3.3)

V ~r
R is the multiplicity vector space, in case the representation ⊗iVri appears more than once

in the decomposition (3.3). The dimension of this space is dim(V ~r
R) = g

(
∪ki=1ri;R

)
, where

g
(
∪ki=1ri;R

)
= g (r1, r2, ..., rk;R) are Littlewood-Richardson coefficients [38].

In the following, the vectors belonging to any vector space V will be denoted using a

bra-ket notation. The symbol 〈·|·〉 will indicate the inner product in V . Let then the set

of vectors {⊗ki=1|ri, li, ν〉} be an orthonormal basis for
⊕

~r

(⊗k
i=1 V

Sni
ri

)
⊗ V ~r

R. Here li is a

state in V
Sni
ri and ν = 1, ..., g

(
∪ki=1ri;R

)
is a multiplicity label. We adopt the convention that

⊗ki=1|ri, li, ν〉 ≡ | ∪i ri,∪ili, ν〉. Similarly, let the set of vectors {|R, j〉 , j = 1, ..., dim(V Sn
R )} be

an orthonormal basis for V Sn
R . The branching coefficients BR→∪iri; ν

j→∪ili are the matrix entries of

the linear invertible operator B, mapping

B : V Sn
R −→

⊕
~r

(⊗k
i=1 V

Sni
ri

)
⊗ V ~r

R
(3.4)

so that

BR→∪krk; ν
j→∪klk |R, j〉 = | ∪i ri,∪ili, ν〉 (3.5)

The sum over repeated indices is understood. By acting with 〈S, i| on the left of both sides

of (3.5) we then have

BS→∪krk; ν
i→∪klk = 〈S, i| ∪i ri,∪ili, ν〉 (3.6)

Since B is an automorphism that maps an orthonormal basis to an orthonormal basis, it

follows that B is an unitary operator, B† = B−1. We can then write

∑
j

BR→∪iri; ν
j→∪ili (B†)∪isi;µ→R∪iqi→j =

(∏
i

δsi,ri δqi,li

)
δµ,ν (3.7)

However, since all the irreducible representations of any symmetric group can be chosen to
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be real [39], there exists a convention in which the branching coefficients (3.6) are also real.

Therefore B† = BT , where BT is the transpose of the map (3.5). Using this last fact we can

write the chain of equalities

〈S, i| ∪i ri,∪ili, ν〉 = BS→∪krk; ν
i→∪klk = (BT )∪krk; ν→S

∪klk→i = (B−1)∪krk; ν→S
∪klk→i = 〈∪iri,∪ili, ν|S, i〉 (3.8)

We draw the branching coefficients (3.6) as in Fig. 8. The orientation of the arrows can be

reversed because of the identities in (3.8).

Figure 8: Pictorial description of the symmetric group branching coefficients.

Consider now taking k irreducible representations V
U(N)
ri of the unitary group U(N), i =

1, 2, ..., k. For each V
U(N)
ri , ri is a partition of some integer ni. This partition is associated

with a Young diagram which is used to label the representation. If we tensor together all the

V
U(N)
ri ’s, we generally end up with a reducible representation, and we have the isomorphism

(see e.g. [39])

k⊗
i=1

V U(N)
ri

'
⊕
R`n

c1(R)≤N

V
U(N)
R ⊗ V ~r

R , n =
k∑
i=1

ni , (3.9)

Here R is a partition of n =
∑

i ni. The direct sum on the RHS above is restricted to the Young

diagrams R whose first column length c1(R) does not exceed the rank N of the gauge group.

V ~r
R, with ~r = (r1, r2, ..., rk), is the multiplicity vector space, satisfying dim(V ~r

R) = g
(
∪ki=1ri;R

)
.

The g
(
∪ki=1ri;R

)
coefficients that appear in this formula are the same Littlewood-Richardson

coefficients that we used in the above description of the symmetric group branching coefficients.

Now let the set of vectors {|ri, Kj〉} be an orthonormal basis for V
U(N)
ri , for i = 1, 2, ..., k. Here

Kj is a state in V
U(N)
ri . Also let {|R,M ; ν〉} be an orthonormal basis for

⊕
R`n V

U(N)
R ⊗ V ~r

R.

Here M is a state in the U(N) representation V
U(N)
R and ν is a multiplicity index. The

Clebsch-Gordan coefficients CR;ν→∪iri
M→∪iKi are the matrix entries of the linear invertible operator

C, mapping

C :
⊗k

i=1 V
U(N)
ri −→

⊕
R`n V

U(N)
R ⊗ V ~r

R
(3.10)
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so that

CR;ν→∪iri
M→∪iKi |∪iri,∪iKi〉 = |R,M ; ν〉 (3.11)

The sum over repeated indices is understood. By acting on the left of both sides of (3.11)

with 〈∪isi,∪iPi|, where Pi are states of the U(N) representations V
U(N)
si , we get

CR;ν→∪isi
M→∪iPi = 〈∪isi,∪iPi|R,M ; ν〉 (3.12)

From (3.11), we see that the automorphism C maps an orthonormal basis to an orthonormal

basis. This makes C an unitary operator, C† = C−1, and we can therefore write∑
~r, ~K

CR;ν→∪iri
M→∪iKi (C†)∪iri→S;µ

∪iKi→P = δS,R δP,M δµ,ν (3.13)

As with the branching coefficients, it is always possible to choose a consistent convention in

which all the U(N) Clebsch-Gordan coefficients (3.12) are real. If we choose to work with

such a convention, C becomes an orthogonal operator: CT = C−1. We then have, in the same

fashion of (3.8)

〈∪isi,∪iPi|R,M ; ν〉 = CR;ν→∪isi
M→∪iPi = (CT )∪isi→R;ν

∪iPi→M = (C−1)∪isi→R;ν
∪iPi→M = 〈R,M ; ν| ∪i si,∪iPi〉

(3.14)

We draw the Clebsch-Gordan coefficients as in Fig. 9. Again, the orientation of the arrows

can be reversed, due to (3.14).

Figure 9: Pictorial representation of the U(N) Clebsch-Gordan coefficient in eq. (3.12).

Consider now the particular case of (3.9) in which every representation V
U(N)
ri tensored

on the LHS coincides with the U(N) fundamental1 representation, that for simplicity we just

call V for the remainder of this section. This configuration allows us to use the Schur-Weyl

1We can get similar results by replacing the fundamental with the antifundamental representation of U(N).
The quantities we define here get modified accordingly.
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duality to write

k times︷ ︸︸ ︷
V ⊗ · · · ⊗ V = V ⊗k '

⊕
R`k

c1(R)≤N

V
U(N)
R ⊗ V Sk

R (3.15)

where V
U(N)
R and V Sk

R are irreducible representations of U(N) and Sk respectively. They

correspond to the Young diagrams specified by the partition R of k. By comparing (3.15) with

(3.9), we see that the representation V Sk
R has now taken the place of the generic multiplicity

vector space V ~r
R. Since the Schur-Weyl decomposition will play a major role in this paper, we

are now going to introduce a more compact notation for its Clebsch-Gordan coefficients. Let

us consider the states

|sss〉 = ⊗kj=1|sj〉 ∈ V ⊗k , |sj〉 ∈ V , |R;M, i〉 = |R,M〉 ⊗ |R, i〉 ∈ V U(N)
R ⊗ V Sk

R (3.16)

where {|R,M〉 , M = 1, ..., dim(V
U(N)
R )} and {|R, i〉 , i = 1, ..., dim(V Sk

R )} are orthonormal

bases of V
U(N)
R and V Sk

R respectively. The equations (3.11) and (3.14) imply

CR,M,i
sss |sss〉 = |R,M, i〉 (3.17)

and

CR,M,i
ttt = 〈ttt|R,M, i〉 = 〈R,M, i|ttt〉 = Cttt

R,M,i (3.18)

respectively. We draw these quantities as in Fig. 10.

Figure 10: Pictorial representation of the U(N) Clebsch-Gordan coefficients (3.18) for the Schur-
Weyl duality (3.15).

3.1 The quiver characters

We now have all the tools necessary to introduce a key quantity, the quiver characters

χQ(LLL,~s, ~σ). Here LLL is the set of representation theory labels defined in (2.19). The quiver

characters are the expansion coefficients of the FT (3.1):

OQ(LLL) =
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n,~s, ~σ) (3.19)
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We define them as

χQ(LLL,~s, ~σ) =cLLL
∑
{lab,α}

{la,β}, {l̄a,γ}

∏
a

∑
ia,ja

DRa
ia,ja

(σa) B
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

(3.20)

where the coefficient cLLL is the normalisation constant

cLLL =
∏
a

(
d(Ra)

na!

) 1
2

(∏
b,α

1

d(rab,α)

) 1
2
(∏

β

1

d(ra,β)

) 1
2
(∏

γ

1

d(r̄a,γ)

) 1
2

(3.21)

Since we chose to work in the convention in which all symmetric group representations and

Clebsch-Gordan coefficients are real, then the quiver characters are real quantities as well:

χQ(LLL,~s, ~σ) = χ∗Q(LLL,~s, ~σ) (3.22)

This convention will be convenient when we compute the 2-point functions of holomorphic

and anti-holomorphic matrix invariants in section 4.1.

These quantities have a pictorial interpretation. We have already introduced a diagram-

matic notation for the branching and Clebsch-Gordan coefficients B and C in Fig. 8 and in

Fig. 10 respectively. The pictorial notation for the i, j matrix element of the permutation σ

in the irreducible representation R, DR
i,j(σ), is displayed in Fig. 11. All the edges of these

diagrams are to be contracted together as per instructions of formula (3.20).

Figure 11: Pictorial description of the matrix element DR
i,j(σ) of the Sn symmetric group represen-

tation R.

Let us give an example of the diagrammatic of the quiver character of a well-known

flavoured gauge theory. Consider the N = 1 quiver for the flavoured conifold [33,34,40,41] in

Fig. 12.

Figure 12: N = 1 quiver for the flavoured conifold gauge theory.

19



The quiver character for this model is depicted in Fig. 13. This figure explicitly shows how

all the symmetric group matrix elements, the branching coefficients and the Clebsch-Gordan

coefficients are contracted together.

Figure 13: The quiver character diagram for the flavoured conifold gauge theory.

For completeness we also give a diagram for the the most generic quiver character χQ(LLL,~s, ~σ).

This is done in Fig. 14. In this picture, we factored the quiver character into a product over

the gauge nodes a of the quiver. All the internal edges (that is, the ones that are not connected

to a Clebsch-Gordan coefficient) are contracted following the prescription of (3.20).

Figure 14: Pictorial description of the quiver characters χQ(LLL,~s, ~σ).

The quiver characters (3.20) satisfy the invariance relation

χQ(LLL,~s, ~σ) = χQ(LLL, ~ρ (~s ),Adj~η×~ρ(~σ)) (3.23)

where Adj~η×~ρ(~σ) has been defined in (2.17):

Adj~η×~ρ(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} (3.24)
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They also satisfy the two orthogonality relations∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L, ~s, ~σ) = δLLL,L̃LL (3.25)

and ∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η×~ρ

δ
(
Adj~η×~ρ(~σ)~τ −1

)
δ~ρ(~s),~t (3.26)

where we introduced the normalisation constant

c~n =
∏
a

(∏
b,α

nab,α!

)(∏
β

na,β!

)(∏
γ

na,γ!

)
(3.27)

It is worthwhile to note that this quantity can be interpreted as the order of the permutation

gauge symmetry group. All of these equations are derived in Appendix B.

The set of operators (3.19) form the Quiver Restricted Schur polynomial basis. Using

(3.23) we can immediately check that such operators are invariant under the constraint (2.15).

We have

OQ(LLL) =
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n,~s, ~σ)

=
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n, ~ρ (~s ), Adj~η×~ρ(~σ))

=
∑
~s

∑
~σ

χQ(LLL, ~ρ (~s ),Adj~η×~ρ(~σ))OQ(~n, ~ρ (~s ), Adj~η×~ρ(~σ))

=
∑
~s

∑
~σ

χQ(LLL,~s, ~σ)OQ(~n, ~s, ~σ) = OQ(LLL) (3.28)

were in the second line we used the constraint (2.15), in the third one the invariance of the

quiver characters (3.23) and in the fourth one we relabelled the dummy variables of the double

sum.

Finally, the FT (3.19) can be easily inverted. Starting from

OQ(LLL) =
∑
~t

∑
~τ

χQ(LLL,~t, ~τ)OQ(~n,~t, ~τ) (3.29)

we multiply both sides by χQ(LLL,~s, ~σ) and we take the sum over the set of labels in LLL to get

∑
LLL

χQ(LLL,~s, ~σ)OQ(LLL) =
∑
~t

∑
~τ

(∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ)

)
OQ(~n,~t, ~τ) (3.30)
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Using the orthogonality relation (3.26), the above equation becomes

∑
LLL

χQ(LLL,~s, ~σ)OQ(LLL) =
∑
~t

∑
~τ

 1

c~n

∑
~η×~ρ

δ
(
Adj~η×~ρ (~σ)~τ −1

)
δ~ρ(~s),~t

OQ(~n,~t, ~τ)

=
1

c~n

∑
~η×~ρ

OQ
(
~n, ~ρ(~s ),Adj~η×~ρ (~σ)

)
=

1

c~n

∑
~η×~ρ

OQ(~n,~s, ~σ) (3.31)

where in the last line we used the constraint (2.15). Now the sum over the permutations ~η, ~ρ

is trivial, and it just gives a factor of c~n. We then have that the inverse of the map (3.19) is

simply

OQ(~n,~s, ~σ) =
∑
LLL

χQ(LLL,~s, ~σ)OQ(LLL) (3.32)

4 Two and Three Point Functions

In this section we will derive an expression for the two and three point function of matrix in-

variants, using the free field metric. All the computations are done using the Quiver Restricted

Schur polynomials. The result for the two point function is rather compact, and offers a nice

way to describe the Hilbert space of holomorphic GIOs. On the other hand, the expression

for the three point function is still quite involved. We give a diagrammatic description of the

answer in section 4.2, leaving the analytical expression and its derivation in Appendix D.

4.1 Hilbert space of holomorphic gauge invariant operators

In the free field metric, the Quiver Restricted Schur polynomials (3.19) form an orthogonal ba-

sis for the 2-point functions of holomorphic and anti-holomorphic matrix invariants. Explicitly,

in Appendix C we derive the equation〈
OQ(LLL)O†Q(L′L′L′)

〉
= δLLL,L′L′L′ c~n

∏
a

fNa(Ra) (4.1)

where c~n is given in (3.27). The quantity fNa(Ra) is the product of weights of the U(Na)

representation Ra, and it is defined as

fNa(Ra) =
∏
i,j

(Na − i+ j) (4.2)

Here i and j label the row and column of the Young diagram Ra. At finite Na, this quantity

vanishes if the length of the first column of its Young diagram exceeds Na, that is if c1(Ra) >

Na. This means that for a generic quiver Q the Hilbert space HQ of holomorphic GIOs can
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be described by

HQ = Span {OQ(LLL)| LLL s.t. c1(Ra) ≤ Na, ∀a} (4.3)

We can see how the finite Na constraints of any matrix invariant are captured by the simple

rule c1(Ra) ≤ Na. We leave the formal proof of (4.1) in Appendix C, and we present here only

the main steps. In the free field metric, the only non-zero correlators are the ones that couple

fields of the same kind (e.g. Φab,α with Φ†ab,α):〈
(Φab,α)ij (Φ†ab,α)kl

〉
= δilδ

k
j ,

〈
(Qa,β)is (Q†a,β)pl

〉
= δilδ

p
s ,

〈(
Q̄a,γ

)s̄
j
(Q̄†a,γ)

k
p̄

〉
= δkj δ

s̄
p̄ (4.4)

Consequently, we can use Wick contractions to find the 2-point function of matrix invariants

in the permutation basis of eq. (2.12):〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
=
∑
~η, ~ρ

δ~s ′,~ρ (~s )

∏
a

TrV ⊗naNa

[
Adj~η×~ρ (σa) (σ′a)

−1
]

(4.5)

The details of the computations are shown in Appendix C. Here the trace is taken over the

product space V ⊗naNa
, VNa being the fundamental representation of U(Na) and na =

∑
b,α nab,α+∑

β na,β. The trace in the product is also equal to Na raised to the power of the number of

cycles in the permutation appearing as an argument. Using the definition (3.19) we get〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s,~s ′

∑
~σ,~σ ′

χQ(LLL,~s, ~σ)χ∗Q(LLL′, ~s ′, ~σ ′)
〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
(4.6)

=
∑
~s

∑
~σ,~σ ′

∑
~η ,~ρ

χQ(LLL,~s, ~σ)χQ(LLL′, ~ρ(~s), ~σ ′)
∏
a

TrV ⊗naNa

[
Adj~η×~ρ (σa) (σ′a)

−1
]

where we also exploited the reality of the quiver characters. Using the invariance and orthog-

onality properties (3.23) and (3.25) we get〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL,~s, ~σ)χQ(LLL′, ~s, ~σ ′)
∏
a

TrV ⊗naNa

[
σa (σ′a)

−1
]

(4.7)

Now the sum over the permutations ~η and ~ρ is trivial, and can be computed to give the

factor c~n that appears in (4.1). Using the substitution σa → τa · σ′a, the identity (B.15), and

computing explicitly the trace in (4.7) allows us to obtain the result (4.1).
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4.2 Chiral ring structure constants and three point functions

In Appendix D we derive an equation for the holomorphic GIO ring structure constants

GLLL(1),LLL(2),LLL(3) , defined as the coefficients of the operator product expansion

OQ(LLL(1))OQ(LLL(2)) =
∑
LLL(3)

GLLL(1),LLL(2),LLL(3) OQ(LLL(3)) (4.8)

Because of the orthogonality of the two point function (4.1), we also obtain an equation for

the three point function:〈
OQ(LLL(1))OQ(LLL(2))O†Q(LLL(3))

〉
= c~n(3) GLLL(1),LLL(2),LLL(3)

∏
a

fNa
(
R(3)
a

)
(4.9)

We only give here a pictorial interpretation of the equation we derived for GLLL(1),LLL(2),LLL(3) , leaving

the technicalities in Appendix D. In particular, eq. (D.45) gives the analytical formula for the

GLLL(1),LLL(2),LLL(3) coefficients.

Let us begin by considering an example. We will show how to draw the diagram for the

chiral ring structure constants for an N = 2 SCQD, through a step-by-step procedure. The

quiver for this theory is shown in Fig. 5. As we discussed in the previous section, for any given

model, a basis of GIOs is labelled by LLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ, S̄a,γ, ν
+
a , ν

−
a }. However, for

an N = 2 SQCD theory, many of these a, b, α, β, γ indices are redundant: for this reason we

can simplify LLL as

LLL = {R, r, rq, S, r̄q, S̄, ν+, ν−} (4.10)

Here r is the representation associated with the adjoint field φ; S denotes a state in the

SU(F ) representation rq and S̄ denotes a state in the SU(F ) representation r̄q. R is the

representation associated with the gauge group, U(N). We therefore want to compute the

three point function (4.9), where all the LLL(i), i = 1, 2, 3, are of the form given in (4.10). We

split this process into five steps, that we now describe.

i) Create the split node quiver diagram. The first step is to create the split-node

quiver diagram from the N = 2 SCQD quiver of Fig. 5. This involves separating the

gauge node into two components, one that collects all the incoming edges and one from

which all the edges exit. The former is called a positive node of the split-node quiver, the

latter is called a negative node. These two are then joined by an edge, called a gauge edge,

directed from the positive to the negative node. We then decorate all the edges in the

split-node quiver with symmetric group representation labels. The positive and negative

nodes in the split-node diagram are points where the edges meet. Since the edges now

carry a symmetric group representation, we interpret them as representation branching

points, to which we associate a branching coefficient (3.4). To the positive node we
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associate the branching multiplicity ν+, to the negative node we associate the branching

multiplicity ν−. Finally, we label the open endpoints of the quark and antiquark edges

with U(F ) fundamental and antifundamental representation state labels, S and S̄. The

resulting diagram is shown on the left of Fig. 15. Notice that such a diagram contains

all the labels in LLL = {R, r, rq, S, r̄q, S̄, ν+, ν−}.

ii) Cut the edges in the split-node quiver. In this step we will cut all the edges in the

split-node diagram, as shown in the middle picture of Fig. 15. After all the cuts have

been performed, we are left with two trivalent vertices and two edges corresponding to

the quark and the antiquark fields. As previously stated, the trivalent vertices will be

interpreted as branching coefficients (see Fig. 8). We group these four object into two

pairs, depending whether their edges are connected to the positive or negative node of

the split-node diagram. This is shown in the rightmost picture of Fig. 15.

Figure 15: From left to right: the split-node quiver for the N = 2 SQCD, the same diagram with
the cut edges, and the two components of the negative and positive node of the split-node quiver.

iii) Merge the edges connected to the negative node. We consider the set of edges con-

nected to the negative node of the split-node quiver. In order to compute the three point

function (4.9), we need three copies of these sets, one for each field OQ(LLL(1)) ,OQ(LLL(2)),

O†Q(LLL(3)). These sets are shown in Fig. 16. The orientation of the edges in the last pair

is reversed: this is because the third field on the LHS of (4.9) is hermitian conjugate.

Figure 16: The three sets of trivalent vertices and edges needed to construct part of the N = 2
SQCD three point function diagram.
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We will now suitably merge the three trivalent vertices (branching coefficients) in Fig.

16, and join the three edges corresponding to the quark fields. The outcome of this

fusing process is shown in Fig. 17. We introduced three new trivalent vertices, which

as usual we interpret as branching coefficients: the labels µ, νr and νq denote their

multiplicity. The fusing of the three quark edges has been achieved by introducing

a Clebsch-Gordan coefficient, see Fig. 9. We further impose that the label for the

multiplicity of the representation branching r
(1)
q ⊗ r

(2)
q → r

(3)
q is the same in both the

Clebsch-Gordan coefficient and the branching coefficient that appear in Fig. 16. In the

figure we also inserted a permutation λ− in the edge carrying the representation R(3).

The purpose of this permutation is to rearrange tensor factors given the two different

factorisation of R(3), that is from (r(1) ⊗ r(1)) ⊗ (r
(2)
q ⊗ r

(2)
q ) → r(3) ⊗ r

(3)
q → R(3) to

R(3) → R(1) ⊗R(2) → (r(1) ⊗ r(1)
q )⊗ (r(2) ⊗ r(2)

q ).

Figure 17: Merging of branching coefficients and quarks labels for the three sets in Fig. 16.

We thus obtained a closed network of branching coefficients, together with a single

SU(F ) Clebsch-Gordan coefficient. All the edges involved into this process were the

ones connected to the negative node of the split-node diagram they belonged to.

iv) Merge the edges connected to the positive node. By repeating the fusing process

presented in point iii) for all the edges connected to the positive node of the split-node

quiver, we obtain a diagram very similar to the one in Fig. 17. The only rule that we

impose is that the multiplicity labels for representation branchings which appear in both

these diagrams have to be the same. In our example, the branching of R(3) into R(1) and

R(2) will appear in both diagrams. This is because the edge carrying the representation

label R is connected to both the positive and negative node of the split-node quiver,

as it can be seen from Fig. 15. Therefore these two branching coefficients will share
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the same multiplicity label, µ. Similarly, the branching of r(1) and r(2) into r(3) will be

present in both diagrams too. Following the same rule, these two branching coefficients

will then have the same multiplicity label, νr.

v) Combine the diagrams and sum over multiplicities. To obtain the final expression

for the three point function, we just need put together the two diagram we obtained in

the steps iv) and v) and sum over the multiplicities µ, νr, νq and ν̄q. This final diagram

is shown in Fig. 18.

Figure 18: The diagram of the three point function (4.9) for the N = 2 SQCD.

In Appendix D.1 we give a purely diagrammatic derivation of this result. We can see how the

answer for the three point function factorises into two components: the former features only

edges connected to the negative node of the split-node diagram, the latter only involves edges

connected to its positive node. The same behaviour can be observed in the answer for the
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three point function of matrix invariants of generic quivers. We are now going to present this

general result. The diagram for the three point function (4.9) is shown in Fig. 19.

Figure 19: Pictorial description of the expression for the holomorphic GIO ring structure constants
GLLL(1),LLL(2),LLL(3) , corresponding to eq. (D.45).
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In drawing this picture we used the diagrammatic shorthand notation displayed in Fig. 20.

Figure 20: A shorthand notation for a collection of branching coefficients.

The λa− and λa+ in Fig. 19 are permutations of n
(3)
a elements, defined by the equations

(D.2) and (D.3). Figure 19 shows that the holomorphic GIO ring structure constants factorise

into a product over all the gauge nodes a of the quiver. Each one of these terms, whose

diagrammatic interpretation is drawn in the figure, further factorises into a product of two

components. They correspond to the positive and negative nodes of the split node a, with

a = 1, 2, ..., n (see also Fig. 7). Notice that the multiplicity labels µa, νab,α, νa,β and ν̄a,γ

always appear in pairs. For example, µa appears both in the upper and lower (disconnected)

parts of the split-node a diagram. In the same diagram, νa,β appears in both a symmetric

group branching coefficient and in a Clebsch-Gordan coefficient.

By inspecting Fig. 19 we can write four selection rules for the holomorphic GIO ring

structure constants:

i) upon the restriction S
n

(3)
a

∣∣∣
Ha

, where Ha = S
n

(1)
a
× S

n
(2)
a

, the S
n

(3)
a

representation R
(3)
a

becomes reducible. This reduction must contain the tensor product representation R
(1)
a ⊗

R
(2)
a , ∀ a. This implies the constraint g(R

(1)
a , R

(2)
a ;R

(3)
a ) 6= 0, ∀ a.

ii) upon the restriction S
n

(3)
ab,α

∣∣∣
Hab,α

, where Hab,α = S
n

(1)
ab,α
× S

n
(2)
ab,α

, the S
n

(3)
ab,α

representation

r
(3)
ab,α becomes reducible. This reduction must contain the tensor product representation

r
(1)
ab,α ⊗ r

(2)
ab,α, ∀ a, b, α. This implies the constraint g(r

(1)
ab,α, r

(2)
ab,α; r

(3)
ab,α) 6= 0, ∀ a, b, α.

iii) upon the restriction S
n

(3)
a,β

∣∣∣
Ha,β

, where Ha,β = S
n

(1)
a,β
× S

n
(2)
a,β

, the S
n

(3)
a,β

representation r
(3)
a,β

becomes reducible. This reduction must contain the tensor product representation r
(1)
a,β⊗

r
(2)
a,β, ∀ a, β. This implies the constraint g(r

(1)
a,β, r

(2)
a,β; r

(3)
a,β) 6= 0, ∀ a, β.
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iv) upon the restriction S
n̄

(3)
a,γ

∣∣∣
Ha,γ

, where Ha,γ = S
n̄

(1)
a,γ
× S

n̄
(2)
a,γ

, the S
n̄

(3)
a,γ

representation r̄
(3)
a,γ

becomes reducible. This reduction must contain the tensor product representation r̄
(1)
a,γ⊗

r̄
(2)
a,γ, ∀ a, γ. This implies the constraint g(r̄

(1)
a,γ, r̄

(2)
a,γ; r̄

(3)
a,γ) 6= 0, ∀ a, γ.

All these rules are enforced by the branching coefficients networks in Fig. 19. Given two

matrix invariants labelled by LLL(1) and LLL(2) respectively, we conclude that GLLL(1),LLL(2),LLL(3) 6= 0 if

and only if LLL(3) satisfies the selection rules i) - iv) above.

5 An Example: Quiver Restricted Schur Polynomials

for an N = 2 SQCD

We will now present some explicit examples of quiver Schurs for an N = 2 SQCD, whose

N = 1 quiver is depicted in Fig. 5. We will begin by listing all the matrix invariants in the

permutation basis (2.12) that it is possible to build using a fixed amount ~n of fundamental

fields. We will then Fourier transform these operators to the quiver Schurs basis using (3.19).

The set of representation theory labels needed to identify any matrix invariant in an N = 2

SQCD has been explicitly given in (4.10). In the following we will continue to use such a

convention.

The permutation basis is generated by

O(~n, ~s, σ) =
(
φ⊗n

)I
J
⊗
(
Q⊗nQ

)IQ
sss
⊗
(
Q̄⊗ n̄Q

)s̄ss
JQ

(σ)
J×JQ
I×IQ (5.1)

where ~n = {n, nQ, n̄Q} specifies the field content of the operator O, and ~s = (sss, s̄̄s̄s). As we

previously stated, we construct the quiver Schurs O(LLL) by using the Fourier transform (3.19):

O(LLL) =
∑
σ,~s

χ(LLL, ~s, σ)O(~n, ~s, σ) (5.2)

where LLL = {R, r, rq, S, r̄q, S̄, ν+, ν−} has been defined in eq. (4.10). In this formula χ(LLL, ~s, σ)

is the N = 2 SQCD quiver character, which reads

χ(LLL, ~s, σ) = cLLLD
R
i,j(σ)

{
B
R→ r, rq ;ν−

j→ l, p C rq , S, p
sss

} {
B
R→ r, r̄q ;ν+

i→ l, t C
r̄q , S̄, t
s̄̄s̄s

}
(5.3)

Figure 21 shows the diagram for this quantity.
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Figure 21: Diagram for the N = 2 SQCD quiver character, corresponding to eq. (5.3).

We now focus on some fixed values of ~n.

- ~n = (2, 1, 1) field content

We start by listing the Fourier transformed holomorphic GIOs (3.19) that we can build with

the set of fields {φ, φ,Q, Q̄}, that is with the choice ~n = (2, 1, 1). In the permutation basis,

these operators read

O(~n , s, s̄ , (1)) = (φ)(φ)(Q̄Q)s̄s , O(~n , s, s̄ , (12)) = (φφ)(Q̄Q)s̄s ,

O(~n , s, s̄ , (13)) = (φ)(Q̄φQ)s̄s , O(~n , s, s̄ , (23)) = (φ)(Q̄φQ)s̄s ,

O(~n , s, s̄ , (123)) = (Q̄φφQ)s̄s , O(~n , s, s̄ , (132)) = (Q̄φφQ)s̄s

(5.4)

where the round brackets denote U(N) indices contraction. Notice that in this case ~s = (s, s̄).

We will now construct the Fourier transformed operators. For this field content we do not

have any branching multiplicity ν+, ν−: we can drop them from the set of labels LLL, which

now reads LLL = {R, r, rq, S, r̄q, S̄}. We then look for the operators O(LLLi), i = 1, 2, 3, 4, where

LLL1 = { , , , S , , S̄} , LLL2 =

{
, , , S , , S̄

}
, (5.5)

LLL3 =
{

, , , S , , S̄
}
, LLL4 =

{
, , , S , , S̄

}
We left the states S, S̄ of the fundamental and antifundamental representation of SU(F )

implicit.

We first notice that, having one quark-antiquark pair only, the Clebsch-Gordan coefficients
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simplify as

C rq , S, p
sss = C , S, p

s ≡ δSs , C
r̄q , S̄, t
s̄̄s̄s = C

¯ , S̄, t
s̄ ≡ δS̄s̄ (5.6)

We can then easily compute χ(LLL1) and χ(LLL2). Both the symmetric group representation

branching → ⊗ and → ⊗ describe the branching of a 1-dimensional space into

itself: as such their associate branching coefficients equal 1 identically. On the other hand,

D (σ) = 1 ∀ σ and D (σ) = sign(σ). We then have

χ(LLL1, s, s̄, σ) =
1√
3!
δSs δ

S̄
s̄ , χ(LLL1, s, s̄, σ) =

1√
3!

sign(σ) δSs δ
S̄
s̄ (5.7)

The S3 irrep is two dimensional, and we work in an orthonormal basis {e1, e2} in which

it reads2

D ((1)) =

 1 0

0 1

 , D ((12)) =

 1 0

0 −1

 , D ((13)) =

 −1
2
−
√

3
2

−
√

3
2

1
2



D ((23)) =

 −1
2

√
3

2

√
3

2
1
2

 , D ((123)) =

 −1
2
−
√

3
2

√
3

2
−1

2

 , D ((132)) =

 −1
2

√
3

2

−
√

3
2
−1

2


(5.8)

If we restrict S3 to S2 × S1, the reduces as∣∣∣∣
S2×S1

= ⊗ ⊕ ⊗ (5.9)

The restricted group S3|S2×S1
only contains two elements: S3|S2×S1

= {(1), (12)}. The branch-

ing coefficients for this restriction are the matrix elements of the orthogonal operator B such

that

B−1D ((12))B = D ((12))⊗D ((1)) ⊕ D ((12))⊗D ((1)) = diag(1,−1) (5.10)

With our basis choice for such a decomposition is already manifest, as it is clear from the

matrix expression of the identity element and the (12) transposition in (5.8). Therefore, for

this particular configuration, B is just the two dimensional identity matrix: B = 12. If we

label f1 the only state in the of S2 and f2 the only state in the of S2, the branching

2Note that this is not the convention used in the SageMath software.
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coefficients read

B → ,
j→1,1 = (ej, f1) = δj,1 , B → ,

j→1,1 = (ej, f2) = δj,2 (5.11)

Inserting this result in (5.3) we obtain an expression for χ(LLL3) and χ(LLL4):

χ(LLL3, s, s̄, σ) =
1√
3

Tr
[
D (σ)P → ,

]
δSs δ

S̄
s̄ ,

χ(LLL4, s, s̄, σ) =
1√
3

Tr
[
D (σ)P → ,

]
δSs δ

S̄
s̄ (5.12)

Here P → , and P → , are the projection operators of the of S3 on the ⊗ of S2×S1

and the of S3 on the ⊗ of S2 × S1:

P → , =

 1 0

0 0

 , P → , =

 0 0

0 1

 (5.13)

We are now ready to write down the Fourier transformed operators. Using the definition (5.2)

and the results (5.7) and (5.12), we find that

O(LLL1) =
1√
3!

(
(φ)(φ)(Q̄Q)S̄S + (φφ)(Q̄Q)S̄S + 2(φ)(Q̄φQ)S̄S + 2(Q̄φφQ)S̄S

)
,

O(LLL2) =
1√
3!

(
(φ)(φ)(Q̄Q)S̄S − (φφ)(Q̄Q)S̄S − 2(φ)(Q̄φQ)S̄S + 2(Q̄φφQ)S̄S

)
, (5.14)

O(LLL3) =
1√
3

(
(φ)(φ)(Q̄Q)S̄S + (φφ)(Q̄Q)S̄S − (φ)(Q̄φQ)S̄S − (Q̄φφQ)S̄S

)
,

O(LLL4) =
1√
3

(
(φ)(φ)(Q̄Q)S̄S − (φφ)(Q̄Q)S̄S + (φ)(Q̄φQ)S̄S − (Q̄φφQ)S̄S

)
We can now perform some checks on this result. First of all, we expect to see the finite

N constraints to manifest themselves if the gauge group of the theory is either N = 1 or

N = 2. In the former case, only O(LLL1) should remain, and it is in fact easy to see that for

N = 1 all the other operators are identically zero. For the latter case, we expect O(LLL2) to

vanish, as l( ) > 2, and as such it violates the finite N constraints. Indeed, using the identity

φ2 = (φ)φ − det(φ)12, which follows from the Cayley-Hamilton theorem, one can verify that

O(LLL2) = 0 for a U(2) gauge group.

We also expect these operators to be orthogonal in the free field metric. According to eq.
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(4.5), the two point function in the permutation basis is simply

〈
O(~n , s, s̄ , σ)O†(~n , t, t̄ , τ)

〉
= δs,t δs̄,t̄

∑
η∈S2

NC[(η×1)σ (η×1)−1 τ−1] , ~n = (2, 1, 1) (5.15)

were C [σ] is the number of cycles in the permutation σ. With this equation we can check

that all the states in (5.14) are orthogonal, and that

〈
O(LLL1)O†(LLL1)

〉
= 2N(N + 1)(N + 2) ,

〈
O(LLL2)O†(LLL2)

〉
= 2N(N − 1)(N − 2) ,

〈
O(LLL3)O†(LLL3)

〉
= 2N(N2 − 1) ,

〈
O(LLL4)O†(LLL4)

〉
= 2N(N2 − 1)

(5.16)

in agreement with (4.1).

- ~n = (1, 2, 2) field content

We now consider a different field content, that is {φ,Q,Q, Q̄, Q̄}. This choice corresponds to

~n = (1, 2, 2). In the permutation basis, the GIOs that we can form with these fields are

O(~n ,~s , (1)) = (φ) (Q̄Q)s̄1s1 (Q̄Q)s̄2s2 , O(~n ,~s , (12)) = (Q̄φQ)s̄1s1 (Q̄Q)s̄2s2 ,

O(~n ,~s , (13)) = (Q̄φQ)s̄2s2 (Q̄Q)s̄1s1 , O(~n ,~s , (23)) = (φ) (Q̄Q)s̄1s2 (Q̄Q)s̄2s1 ,

O(~n ,~s , (123)) = (Q̄φQ)s̄2s1 (Q̄Q)s̄1s2 , O(~n ,~s , (132)) = (Q̄φQ)s̄1s2 (Q̄Q)s̄2s1

(5.17)

Here ~s = (s1, s2 , s̄1, s̄2), and the round brackets denote U(N) indices contraction.

Let us now construct the Fourier transformed operators. As in the previous example, for

this fields content we do not have any branching multiplicity ν+, ν−, so that we will drop

them from the set of labels in LLL. We will now write the expression for the six operators O(LLLi),

i = 1, 2, ..., 6, with

LLL1 = { , , , S , , S̄} , LLL2 =
{

, , , S , , S̄
}
,

LLL3 =
{

, , , S , , S̄
}
, LLL4 =

{
, , , S , , S̄

}
,

LLL5 =
{

, , , S , , S̄
}
, LLL6 =

{
, , , S , , S̄

}
(5.18)

As in the previous example, we leave the SU(F ) states S, S̄ implicit.

The symmetric branching group coefficients are similar to the ones already introduced in
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the previous example. Both the branchings → ⊕ and → ⊕ are trivial, as they

correspond to a branching of a 1-dimensional space into itself. These branching coefficients

are therefore equal to 1 identically:

B → ,
1→1,1 ≡ 1 , B → ,

1→1,1 ≡ 1 (5.19)

We now turn to the reduction ∣∣∣∣
S1×S2

= ⊗ ⊕ ⊗ (5.20)

As in the previous example, the group S3|S1×S2
only contains two elements, but this time they

are S3|S1×S2
= {(1), (23)}. This is because the (1) × (12) ∈ S1 × S2 has to be embedded

into S3, where it corresponds to the transposition (23). The branching coefficients for the

reduction in (5.20) will be the matrix elements of the orthogonal operator B such that

B−1D ((23))B = D ((1))⊗D ((12)) ⊕ D ((1))⊗D ((12)) = diag(1,−1) (5.21)

We equip the of S3 with a basis {e1, e2}, in which the representation takes the explicit form

(5.8). We then choose f1 and f2 to be the basis vectors of the and the of S2 respectively.

In this basis the orthogonal matrix B must then take the form

B =

 1
2
−
√

3
2

√
3

2
1
2

 (5.22)

We then have, by construction, Be1 = f1 and Be2 = f2. The branching coefficients for the

reduction (5.20) then read

B → ,
1→1,1 = (e1, f1) = 1

2
, B → ,

1→1,1 = (e1, f2) = −
√

3
2
,

B → ,
2→1,1 = (e2, f1) =

√
3

2
, B → ,

2→1,1 = (e2, f2) = 1
2

(5.23)

It is useful to define the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 , P → ,

i,j = B → ,
i→1,1 B → ,

j→1,1 (5.24)

projecting the of S3 on the ⊗ and on the ⊗ of S1×S2 respectively. We also define

the linear operator T through its matrix elements as

Ti,j = B → ,
i→1,1 B → ,

j→1,1 (5.25)
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Explicitly, these matrices read

P → , =
1

4

 1
√

3

√
3 3

 , P → , =
1

4

 3 −
√

3

−
√

3 1

 , T =
1

4

 −√3 1

−3
√

3


(5.26)

We will use these quantities to compactly write the quiver characters.

We now turn to the Clebsch-Gordan coefficients, C
rq , S, p
s1, s2 and C

r̄q , S̄, t
s̄1, s̄2 , where rq and r̄q are

both either or . First of all notice that we can drop the symmetric group state labels p

and t, because all the irreducible representation of S2 are 1-dimensional. Let us call VF the the

fundamental representation of SU(F ), and let us choose an orthonormal basis ei, i = 1, 2, ..., F .

Consider now the VF ⊗VF vector space, equipped with the induced basis {ei,j = ei⊗ej}ij. The

of SU(F ) is spanned by every symmetric permutation of the ei,j = ei ⊗ ej basis vectors of

VF ⊗ VF . We can label an orthonormal basis for this representation with the notation i j ,

where

i i = ei ⊗ ei , (5.27a)

i j =
1√
2

(ei ⊗ ej + ej ⊗ ei) , i 6= j (5.27b)

On the other hand, the of SU(F ) is spanned by every antisymmetric permutation of the

ei,j = ei⊗ej basis vectors of VF⊗VF . We can label an orthonormal basis for this representation

with the notation i
j

, where

i
j

=
1√
2

(ei ⊗ ej − ej ⊗ ei) (5.28)

We can therefore easily compute the Clebsch-Gordan coefficients (3.18). To optimise the

notation, we use the Young tableaux i j and i
j

to label both the SU(F ) representations

and their states. The Clebsch-Gordan coefficients then read

C
i i

k,l = (ek,l, i i ) = (ek ⊗ el, ei ⊗ ei) = δk,i δl,i ,

C
i j

k,l = (ek,l, i j ) =
1√
2

(ek ⊗ el, ei ⊗ ej + ej ⊗ ei) =
1√
2

(δk,i δl,j + δk,j δl,i) , i 6= j ,

C
i
j

k,l = (ek,l,
i
j ) =

1√
2

(ek ⊗ el, ei ⊗ ej − ej ⊗ ei) =
1√
2

(δk,i δl,j − δk,j δl,i) (5.29)

A similar approach can be used to derive the Clebsch-Gordan coefficients for the decomposition

of the V̄F ⊗ V̄F representation of SU(F ), which gives similar results to the ones in (5.29).

We can now write the quiver characters for the six states (5.18). Denoting the generic
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flavour state |S〉 ∈ V SU(F )
rq as in (5.27) for rq = and as in (5.28) for rq = (and similarly

for |S̄〉 ∈ V SU(F )
r̄q ), the labels in (5.18) read now

LLL1 = { , , i j , p q } , LLL2 =

{
, , i

j
, p
q

}
,

LLL3 =
{

, , i j , p q

}
, LLL4 =

{
, , i

j
, p
q

}
,

LLL5 =
{

, , i j , p
q

}
, LLL6 =

{
, , i

j
, p q

}
(5.30)

The quiver characters are

χ(LLL1, ~s, σ) =
1√
3!
C

i j

s1,s2
C

p q

s̄1,s̄2
,

χ(LLL2, ~s, σ) =
1√
3!

sign(σ)C
i
j

s1,s2
C

p
q

s̄1,s̄2
,

χ(LLL3, ~s, σ) =
1√
3

Tr
[
D (σ)P → ,

]
C

i j

s1,s2
C

p q

s̄1,s̄2
,

χ(LLL4, ~s, σ) =
1√
3

Tr
[
D (σ)P → ,

]
C

i
j

s1,s2
C

p
q

s̄1,s̄2
,

χ(LLL5, ~s, σ) =
1√
3

Tr
[
D (σ)T

]
C

i j

s1,s2
C

p
q

s̄1,s̄2
,

χ(LLL6, ~s, σ) =
1√
3

Tr
[
D (σ)T t

]
C

i
j

s1,s2
C

p q

s̄1,s̄2
(5.31)

where T t denotes the transpose of the matrix T , defined in (5.26).

Defining the normalisation constants

fi,j =


1 if i 6= j

1√
2

if i = j

(5.32)

which keeps track of the different normalisation of the Clebsch-Gordan coefficients (5.27a) and

(5.27b), the Fourier transformed operators take the explicit form

O(LLL1) =
fi,j fp̄,q̄√

3!

(
(φ) (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) + 2(Q̄φQ)

(p̄
(i (Q̄Q)

q̄)
j)

)
,

O(LLL2) =
1√
3!

(
(φ) (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] − 2(Q̄φQ)

[p̄
[i (Q̄Q)

q̄]
j]

)
,
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O(LLL3) =
fi,j fp̄,q̄√

3

(
(φ) (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) − (Q̄φQ)

(p̄
(i (Q̄Q)

q̄)
j)

)
, (5.33)

O(LLL4) =
1√
3

(
(φ) (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] + (Q̄φQ)

[p̄
[i (Q̄Q)

q̄]
j]

)
,

O(LLL5) = −fi,j (Q̄φQ)
[p̄
(i (Q̄Q)

q̄]
j) ,

O(LLL6) = −fp̄,q̄ (Q̄φQ)
(p̄
[i (Q̄Q)

q̄)
j]

Round brackets around the flavour indices denotes their symmetrisation, square brackets

around them denotes their antisymmetrisation.

As in the previous case, we now run some tests on this result. It is easily seen that if the

rank of the gauge group is N = 1, then among these six operators only O(LLL1) is non-zero, in

agreement with our finite N constraints (4.3). Moreover, when N = 2, by explicitly writing

all the components of O(LLL2) it is possible to check that O(LLL2) = 0. This is a nontrivial

result, once again predicted by the finite N constraints. Let us now check the orthogonality

of these operators, in the free field metric. For this field content the two point function in the

permutation basis, eq. (4.5), reads

〈
O(~n ,~s , σ)O†(~n ,~t , τ)

〉
=

∑
ρ1, ρ2∈S2

δρ1(sss),ttt δρ2(s̄̄s̄s),t̄̄t̄t N
C[(1×ρ2)σ (1×ρ1)−1 τ−1] , ~n = (1, 2, 2)

(5.34)

As in the previous example, C [σ] is the number of cycles in the permutation σ. Using this

equation we can verify that the states in (5.33) are indeed orthogonal. Similarly, their squared

norm are

〈
O(LLL1)O†(LLL1)

〉
= 4N(N + 1)(N + 2) ,

〈
O(LLL2)O†(LLL2)

〉
= 4N(N − 1)(N − 2) ,

〈
O(LLL3)O†(LLL3)

〉
= 4N(N2 − 1) ,

〈
O(LLL4)O†(LLL4)

〉
= 4N(N2 − 1) ,

〈
O(LLL5)O†(LLL5)

〉
= 4N(N2 − 1) ,

〈
O(LLL6)O†(LLL6)

〉
= 4N(N2 − 1)

(5.35)

in agreement with our prediction (4.1).

- ~n = (2, 2, 2) field content

Consider now the field content {φ, φ,Q,Q, Q̄, Q̄}, that is ~n = (2, 2, 2). Using the same notation

of the previous examples, the quiver Schurs for this subspace can be labelled by the fourteen
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sets

LLL1 =
{

, , i j , p q
}
, LLL2 =

{
, , i

j
, p
q

}
,

LLL3 =
{

, , i j , p q

}
, LLL4 =

{
, , i j , p q

}
,

LLL5 =
{

, , i
j
, p
q

}
, LLL6 =

{
, , i j , p

q

}
,

LLL7 =
{

, , i
j
, p q

}
, LLL8 =

{
, , i

j
, p
q

}
,

LLL9 =

{
, , i j , p q

}
, LLL10 =

{
, , i

j
, p
q

}
,

LLL11 =

{
, , i j , p

q

}
, LLL12 =

{
, , i

j
, p q

}
,

LLL13 =
{

, , i j , p q

}
, LLL14 =

{
, , i

j
, p
q

}

(5.36)

As usual, we left the states i j and i
j

(with i, j = 1, 2, ..., F ) of the symmetric and antisym-

metric representation of SU(F ) unspecified.

The quiver Schurs explicitly read

O(LLL1) =
fi,j fp̄,q̄√

3!

(
2(Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄φQ)

(p̄
(i (Q̄φQ)

q̄)
j) +

1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

+
1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φφ) + 2(Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,

O(LLL2) =
1√
3!

(
2(Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄φQ)

[p̄
[i (Q̄φQ)

q̄]
j] +

1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

−1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φφ)− 2(Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
,

O(LLL3) =
fi,j fp̄,q̄

2
√

2

(
− 2(Q̄φQ)

(p̄
(i (Q̄φQ)

q̄)
j) + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2 + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φφ)

)
,

O(LLL4) =
fi,j fp̄,q̄

2
√

2

(
− 2(Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

−(Q̄Q)
(p̄
(i (Q̄Q)

q̄)
j) (φφ) + 2(Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,
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O(LLL5) =
1

2
√

2

(
2(Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

+(Q̄Q)
[p̄
[i (Q̄Q)

q̄]
j] (φφ) + 2(Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
, (5.37)

O(LLL6) = −fi,j
(

(Q̄Q)
[p̄
(i (Q̄φφQ)

q̄]
j) + (Q̄Q)

[p̄
(i (Q̄φQ)

q̄]
j) (φ)

)
,

O(LLL7) = −fp̄,q̄
(

(Q̄Q)
(p̄
[i (Q̄φφQ)

q̄)
j] + (Q̄Q)

(p̄
[i (Q̄φQ)

q̄)
j] (φ)

)
,

O(LLL8) =
1

2
√

2

(
− 2(Q̄φQ)

[p̄
[i (Q̄φQ)

q̄]
j] + (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2 − (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φφ)

)
,

O(LLL9) =
fi,j fp̄,q̄

2
√

2

(
2(Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

−(Q̄Q)
(p̄
(i (Q̄Q)

q̄)
j) (φφ)− 2(Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,

O(LLL10) =
1

2
√

2

(
− 2(Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

+(Q̄Q)
[p̄
[i (Q̄Q)

q̄]
j] (φφ)− 2(Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
,

O(LLL11) = −fi,j
(

(Q̄Q)
[p̄
(i (Q̄φφQ)

q̄]
j) − (Q̄Q)

[p̄
(i (Q̄φQ)

q̄]
j) (φ)

)
,

O(LLL12) = −fp̄,q̄
(

(Q̄Q)
(p̄
[i (Q̄φφQ)

q̄)
j] − (Q̄Q)

(p̄
[i (Q̄φQ)

q̄)
j] (φ)

)
,

O(LLL13) =
fi,j fp̄,q̄√

3

(
− (Q̄Q)

(p̄
(i (Q̄φφQ)

q̄)
j) + (Q̄φQ)

(p̄
(i (Q̄φQ)

q̄)
j) +

1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φ)2+

+
1

2
(Q̄Q)

(p̄
(i (Q̄Q)

q̄)
j) (φφ)− (Q̄Q)

(p̄
(i (Q̄φQ)

q̄)
j) (φ)

)
,

O(LLL14) =
1√
3

(
− (Q̄Q)

[p̄
[i (Q̄φφQ)

q̄]
j] + (Q̄φQ)

[p̄
[i (Q̄φQ)

q̄]
j] +

1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φ)2+

−1

2
(Q̄Q)

[p̄
[i (Q̄Q)

q̄]
j] (φφ) + (Q̄Q)

[p̄
[i (Q̄φQ)

q̄]
j] (φ)

)
The convention for round and square brackets around flavour indices is the same as the one

used in the previous example. The computation that leads to this result is summarised in

Appendix E. Using Mathematica, we checked that all these operators are orthogonal in the

free field metric, that their norm satisfy (4.1), and that they obey the finite N constraints

(4.3).
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6 Conclusions and Outlook

In this paper we considered free quiver gauge theories with gauge group
∏n

a=1 U(Na) and

flavour group
∏n

a=1 U(Fa)×U(F̄a). We found that the basis of Quiver Restricted Schur poly-

nomials (3.19) diagonalises the two point function (4.1). Relying on diagrammatic methods,

we also provided an analytical finite N expression for the three point function of holomorphic

matrix invariants. The relevant diagram is shown in Fig. 19.

For quiver gauge theories with bi-fundamental matter (no fundamental matter), the count-

ing and correlators of gauge invariant operators can be expressed in terms of defect observables

in two dimensional topological field theories (TFT2). These theories are based on lattice gauge

theory where permutation groups play the role of gauge groups [25]. The relevant two dimen-

sional surfaces were obtained by a process of thickening the quiver. This leads us to expect

that the counting and correlators for the present case can be expressed in terms of defect ob-

servables in TFT2 on Riemann surfaces with boundary. It will be very interesting to elaborate

on this in the future. Another interesting future direction is the relation of gauge invariant

correlators to the counting of branched covers. This has been discussed for the case of a single

gauge group and one or more adjoint fields [42–47]. The equation (4.5) giving the formula for

the 2-point function in the permutation basis would be a good starting point. By tracing the

flavour indices, we expect to see that powers of the flavour rank are related to the counting of

covering surfaces with boundaries (see for example [48]).

For the case of a single gauge group but multi-matrices (quiver with one node and multiple

edges), a complete set of charges measuring the group theoretic labels of orthogonal bases for

gauge invariant operators were given in [17]. They were constructed from Noether charges for

enhanced symmetries in the zero coupling limit. A minimal set of charges can be characterised

by using properties of Permutation Centralizer Algebras (PCAs) [49]. We expect similar appli-

cations of PCAs to gauge invariant operators in general quiver theories (without fundamental

matter) to proceed in a fairly similar manner. For the case of quivers with fundamental mat-

ter, we may expect that appropriate PCAs along with modules over these algebras will play

a role. There are in fact two ways one might associate a PCA to quiver with fundamentals.

One is to excise the flavour legs of the quiver to be left with a quiver with bi-fundamentals

only. Putting back the legs might correspond to going from algebra to a broader construction

involving modules over the algebra. The other way is to tie all the incoming and outgoing

legs to a single new node, preserving their orientation. This latter procedure was useful in

consideration of the counting of gauge invariant operators [8].

Another interesting line of research would be to study the action of the one-loop dilatation

operator on the basis of matrix invariants (3.19) for flavoured theories, possibly in some simple

subsector. The action of the one-loop dilatation operator on the Schur basis for N = 4 SYM

has already been studied [50,51]. For example, in the giant graviton sector of N = 4 SYM, the

explicit action of the one-loop dilatation operator corresponds to moving a single box in the
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Young diagram that parametrises the giant graviton. It is an open problem to find analogous

results in flavoured theories: an interesting starting point would be N = 2 SQCD with gauge

group SU(N) and flavour symmetry SU(2N), which is a conformal theory. An explicit basis

for its matrix invariants is given in (5.2).

The broad summary of the results of the present paper and of a number of future direc-

tions is that the quiver, combined with associated permutation algebras and topological field

theories, can be a powerful device in constructing correlators of gauge invariant observables

and exposing hidden geometrical structures associated with these.
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A Operator Invariance

In this appendix we will derive the identity (2.15). Let us consider a matrix Φ in the bi-

fundamental (�, �̄) representation of U(Na)× U(Nb), and a permutation η ∈ Sn. Eq. (2.15)

arises from the equivalence

η−1
(
Φ⊗n

)
η = Φ⊗n ⇒

[
Φ⊗n, η

]
= 0 (A.1)

which follows from the identities

〈ei1 , ei2 , · · · , ein|Φ⊗n|ej1 , ej2 , · · · , ejn〉 = (Φ⊗n)i1,i2,...inj1,j2,...,jn
= Φi1

j1
Φi2
j2
· · ·Φin

jn
= Φ

iη(1)

jη(1)
Φ
iη(2)

jη(2)
· · ·Φiη(n)

jη(n)

= (Φ⊗n)
iη(1),iη(2),...iη(n)

jη(1),jη(2),...,jη(n)
= 〈eiη(1) , eiη(2) , · · · , eiη(n)|Φ⊗n|ejη(1)

, ejη(2)
, · · · , ejη(n)

〉

= 〈ei1 , ei2 , · · · , ein|η−1Φ⊗nη|ej1 , ej2 , · · · , ejn〉 , η ∈ Sn (A.2)

Here |ej1 , ej2 , · · · , ejn〉 ∈ V ⊗nNa
and 〈ej1 , ej2 , · · · , ejn| ∈ V̄ ⊗nNb

, VNa and V̄Nb being the fundamental

and antifundamental representations of U(Na) and U(Nb) respectively. In the following, we
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will need the two identities

(
Q⊗nρ

)I
sss

= 〈ei1 , ei2 , · · · , ein|Q⊗nρ|es1 , es2 , · · · , esn〉

= 〈ei1 , ei2 , · · · , ein|Q⊗n|esρ(1)
, esρ(2)

, · · · , esρ(n)
〉 =

(
Q⊗n

)I
ρ(sss)

(A.3)

and

(
ρ̄−1Q̄⊗n

)s̄̄s̄s
J

= 〈es̄1 , es̄2 , · · · , es̄n|ρ̄−1Q̄⊗n|ej1 , ej2 , · · · , ejn〉

= 〈es̄ρ̄(1) , es̄ρ̄(2) , · · · , es̄ρ̄(n)|Q̄⊗n|ej1 , ej2, · · · , ejn〉 =
(
Q̄⊗n

)ρ̄(s̄̄s̄s)

J
(A.4)

Now let us consider a generic GIO OQ(~n; ~s; ~σ), built with nab,α type Φab,α fields, na,β type

Qa,β fields and n̄a,γ type Q̄a,γ fields. We also introduce the permutations

~η = ∪a,b,α{ηab,α} , ηab,α ∈ Snab,α (A.5a)

~ρ = ∪a{∪β ρa,β; ∪γ ρ̄a,γ} , ρa,β ∈ Sna,β , ρ̄a,γ ∈ Sn̄a,γ (A.5b)

From (A.1), we then have the equivalences

η−1
ab,α

(
Φ
⊗nab,α
ab,α

)
ηab,α = Φ

⊗nab,α
ab,α , ρ−1

a,β

(
Q
⊗na,β
a,β

)
ρa,β = Q

⊗na,β
a,β , ρ̄−1

a,γ

(
Q̄⊗n̄a,γa,γ

)
ρ̄a,γ = Q̄⊗n̄a,γa,γ

(A.6)

for every a, b, α, β, γ. Inserting these identities in (2.12) gives

OQ(~n; ~s; ~σ) =
∏
a

[∏
b,α

(
η−1
ab,α

(
Φ
⊗nab,α
ab,α

)
ηab,α

)Iab,α
Jab,α

]
⊗

[∏
β

(
ρ−1
a,β

(
Q
⊗na,β
a,β

)
ρa,β

)Ia,β
sssa,β

]

⊗

[∏
γ

(
ρ̄−1
a,γ

(
Q̄⊗n̄a,γa,γ

)
ρ̄a,γ
)s̄̄s̄sa,γ
J̄a,γ

]
(σa)

×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β

=
∏
a

[∏
b,α

(
Φ
⊗nab,α
ab,α

)Kab,α
Lab,α

]
⊗

[∏
β

(
Q
⊗na,β
a,β ρa,β

)Ka,β
sssa,β

]
⊗

[∏
γ

(
ρ̄−1
a,γQ̄

⊗n̄a,γ
a,γ

)s̄̄s̄sa,γ
L̄a,γ

]

×

[∏
b,α

(ηab,α)
Lab,α
Jab,α

][∏
γ

(ρ̄a,γ)
L̄a,γ
J̄a,γ

]
(σa)

×b,αJba,α×γ J̄a,γ
×b,αIab,α×βIa,β

[∏
b,α

(
η−1
ab,α

)Iab,α
Kab,α

][∏
β

(
ρ−1
a,β

)Ia,β
Ka,β

]
(A.7)
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Now we use the equations (A.3) and (A.4) to obtain

OQ(~n; ~s; ~σ) =
∏
a

[∏
b,α

(
Φ
⊗nab,α
ab,α

)Kab,α
Lab,α

]
⊗

[∏
β

(
Q
⊗na,β
a,β

)Ka,β
ρa,β(sssa,β)

]
⊗

[∏
γ

(
Q̄⊗n̄a,γa,γ

)ρ̄a,γ(s̄̄s̄sa,γ)

L̄a,γ

]

×
(
(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1

ab,α ×β ρ
−1
a,β)
)×b,αLba,α×γ L̄a,γ
×b,αKab,α×βKa,β

= OQ(~n; ~ρ (~s ); Adj~η×~ρ(~σ)) (A.8)

where we also used the definition of Adj~η×~ρ(~σ), eq. (2.17):

Adj~η×~ρ(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} (A.9)

We thus have explicitly shown the equivalence (2.15).

As it usually is the case when working in this framework, (2.15) has a pictorial interpreta-

tion. We now give an example of this diagrammatic interpretation, for the simple case of an

N = 2 SQCD. The N = 1 quiver for this model is the one depicted in Fig. 5. Let us then

consider an N = 2 SQCD GIO built with n adjoint fields φ and nq quarks Q and antiquarks

Q̄. Each quark comes with a fixed state si state belonging to the fundamental representation

of the flavour group SU(F ). We label the collection of these nq states as sss = (s1, s2, ..., snq).

Similarly, s̄̄s̄s = (s̄1, s̄2, ..., s̄nq) is the collection of the SU(F ) antifundamental states of the

antiquarks Q̄. The generic GIO OQ(n, nq; sss, s̄̄s̄s; σ) can be drawn as in Fig. 22.

Figure 22: Diagram corresponding to a generic N = 2 SQCD GIO.
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The horizontal bars denotes the identification of the indices. Specialising eq. (2.15) to this

case, we have the identity

O(n, nq; sss, s̄̄s̄s; σ) = O(n, nq; ρ(sss), ρ̄(s̄̄s̄s); Adjη×ρ(σ)) (A.10)

for σ ∈ Sn+nq , η ∈ Sn and ρ ρ̄ ∈ Snq . This equivalence is described in diagrammatic terms in

Fig. 23.

Figure 23: Diagrammatic interpretation of the identity (A.10).

B Quiver Character Identities

In this appendix we will derive equations (3.23), (3.25) and (3.26). Many of the symmetric

group identities that we will use in this appendix were already introduced and discussed in

Appendix A of [25].

B.1 Invariance Relation

In this section we will prove formula (3.23):

χQ(LLL,~s, ~σ) = χQ(LLL, ~ρ (~s ),Adj~ρ×~η(~σ)) (B.1)
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Using the definition of Adj~ρ×~η(~σ) given in (2.17)

Adj~ρ×~η(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} (B.2)

we start by writing

χQ(LLL,~s,Adj~ρ×~η(~σ)) = cLLL
∏
a

∑
ia,ja

∑
lab,α

la,β,l̄a,γ

DRa
ia,ja

((×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β))

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

(∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

)
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

(∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

)

=cLLL
∏
a

∑
ia,ja

∑
lab,α

la,β,l̄a,γ

DRa
ia,i′a

(×b,αηba,α ×γ ρ̄a,γ)DRa
i′a,j
′
a
(σa)D

Ra
j′a,ja

(×b,αη−1
ab,α ×β ρ

−1
a,β)

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

(∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

)
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

(∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

)
(B.3)

To ease the notation, for the remainder of this section we will drop the summation symbol in

our equations. The sum over repeated symmetric group state indices will therefore be implicit.

Notice however that there is no summation over the repeated representation labels rab,α, ra,β,

r̄a,γ. Using the equivariance property of the branching coefficients [39]

DR
k,j(×aγa)B

R→∪ara;νa
j→∪ala =

(∏
a

Dra
l′a,la

(γa)

)
BR→∪ara;νa
k→∪al′a (B.4)

we can write

DRa
j′a,ja

(×b,αη−1
ab,α ×β ρ

−1
a,β)B

Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

=

(∏
b,α

D
rab,α
l′ab,α,lab,α

(η−1
ab,α)

∏
β

D
ra,β
l′a,β ,la,β

(ρ−1
a,β)

)
B
Ra→∪b,αrab,α∪βra,β ,ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

(B.5)

and

DRa
ia,i′a

(×b,αηba,α ×γ ρ̄a,γ)B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ
(B.6)

=

(∏
b,α

D
rba,α
lba,α,lba,α′′

(ηba,α)
∏
γ

D
r̄a,γ
l̄a,γ ,l̄a,γ ′′

(ρ̄a,γ)

)
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αlba,α′′∪γ la,γ ′′
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Inserting the last two equations in (B.3) gives

χQ(LLL,~s,Adj~ρ×~η(~σ)) =cLLL
∏
a

DRa
i′a,j
′
a
(σa)

{∏
b,α

D
rab,α
l′ab,α,lab,α

(η−1
ab,α)D

rba,α
lba,α,lba,α′′

(ηba,α)

}

×BRa→∪b,αrab,α∪βra,β ,ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

{∏
β

D
ra,β
la,β ,l

′
a,β

(ρa,β)C
ra,β ,Sa,β ,la,β
sssa,β

}

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

i′a→∪b,αlba,α′′∪γ la,γ ′′

{∏
γ

D
r̄a,γ
l̄a,γ ,l̄a,γ ′′

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

}
(B.7)

A first simplification comes from noticing that∏
a,b,α

D
rab,α
l′ab,α,lab,α

(η−1
ab,α)D

rba,α
lba,α,lba,α′′

(ηba,α) =
∏
a,b,α

δl′ab,α,lab,α′′ (B.8)

We now focus on the Clebsch-Gordan coefficients. Let us first consider the chain of equalities

DR
i,i′(σ)CR,M,i

sss = DR
i,i′(σ)〈sss|R,M, i〉 = 〈sss|D(σ)|R,M, i′〉

= 〈D(σ)−1sss|R,M, i′〉 = 〈σ−1(sss)|R,M, i′〉 = CR,M,i′

σ−1(sss) (B.9)

We can use this identity to write

D
ra,β
la,β ,l

′
a,β

(ρa,β)C
ra,β ,Sa,β ,la,β
sssa,β = C

ra,β ,Sa,β ,l
′
a,β

ρ−1
a,β(sssa,β)

(B.10)

and

D
r̄a,γ
l̄a,γ ,l̄a,γ ′′

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

= C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄a,γ ,S̄a,γ ,l̄a,γ ′′
(B.11)

Using these results in (B.7) we then get

χQ(LLL,~s,Adj~ρ×~η(~σ)) =cLLL
∏
a

DRa
i′a,j
′
a
(σa)

(∏
b,α

δl′ab,α,lab,α′′

)

×BRa→∪b,αrab,α∪βra,β ,ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

{∏
β

C
ra,β ,Sa,β ,l

′
a,β

ρ−1
a,β(sssa,β)

}

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

i′a→∪b,αlba,α′′∪γ la,γ ′′

{∏
γ

C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄a,γ ,S̄a,γ ,l̄a,γ ′′

}
(B.12)
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=cLLL
∏
a

DRa
i′a,j
′
a
(σa)B

Ra→∪b,αrab,α∪βra,β ,ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

∏
β

C
ra,β ,Sa,β ,l

′
a,β

ρ−1
a,β(sssa,β)

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

i′a→∪b,αl′ba,α∪γ la,γ ′′
∏
γ

C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄a,γ ,S̄a,γ ,l̄a,γ ′′
= χQ(LLL, ~ρ −1 (~s), ~σ)

Substituting ~s→ ~ρ (~s), we finally get

χQ(LLL,~s, ~σ) = χQ(LLL, ~ρ (~s ),Adj~ρ×~η(~σ)) (B.13)

Our proposition is thus proven.

B.2 Orthogonality Relations

In this section we will prove the quiver character orthogonality equations (3.25) and (3.26).

B.2.1 Orthogonality in LLL

Let us start with eq. (3.25):∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L, ~s, ~σ) = δLLL,L̃LL (B.14)

This formula is actually a particular case of the more general identity∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L, ~s, ~σ) (B.15)

= cLLL cL̃̃L̃L
∏
a

na!

d(Ra)
Tr
(
DRa(σ′a)P

ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
δRa,R̃a

×

(∏
b,α

δrab,α,r̃ab,α

)(∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

)(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
δν−a ,ν̃−a

Here P ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ is a linear operator whose matrix elements are

P ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

∣∣∣̃
ia,ia

= B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ
(B.16)
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Let us prove eq. (B.15). As a first step we expanding its LHS to get∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L, ~s, ~σ)

= cLLL cL̃̃L̃L
∑
~s

∑
~σ

∏
a

DRa
ia,ja

(σ′a · σa)DR̃a
ĩa,j̃a

(σa)

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β B

R̃a→∪b,αr̃ab,α∪β r̃a,β ;ν̃−a

j̃a→∪b,α l̃ab,α∪β l̃a,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β C

r̃a,β ,S̃a,β ,l̃a,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
R̃a→∪b,αr̃ba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,α l̃ba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
(B.17)

The next step is to rewrite the known relation

∑
σ∈Sn

DR
i,j(σ)DR′

p,q(σ) =
n!

d(R)
δR,R′δi,pδj,q (B.18)

into the form ∑
σa

DRa
ia,ja

(σ′a · σa)DR̃a
ĩa,j̃a

(σa) =
∑
ka

DRa
ia,ka

(σ′a)
na!

d(Ra)
δRa,R̃aδka ,̃iaδja,j̃a

= DRa
ia ,̃ia

(σ′a)
na!

d(Ra)
δRa,R̃aδja,j̃a (B.19)

This identity can be inserted into eq. (B.17) to get∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L, ~s, ~σ)

= cLLL cL̃̃L̃L
∑
~s

∏
a

na!

d(Ra)
δRa,R̃a D

Ra
ia ,̃ia

(σ′a)

× δja,j̃aB
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β B

Ra→∪b,αr̃ab,α∪β r̃a,β ;ν̃−a

j̃a→∪b,α l̃ab,α∪β l̃a,β

∏
β

C
ra,β ,Sa,β ,la,β
sssa,β C

r̃a,β ,S̃a,β ,l̃a,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αr̃ba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,α l̃ba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
(B.20)

Now using the orthogonality relation (3.7) in eq. (B.20), we further obtain∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L, ~s, ~σ)

= cLLL cL̃̃L̃L
∑
~s

∏
a

na!

d(Ra)
δRa,R̃a

(∏
b,α

δrab,α,r̃ab,αδlab,α,l̃ab,α

)
δν−a ,ν̃−a D

Ra
ia ,̃ia

(σ′a)
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×

(∏
β

δra,β ,r̃a,βδla,β ,l̃a,βC
ra,β ,Sa,β ,la,β
sssa,β C

r̃a,β ,S̃a,β ,l̃a,β
sssa,β

)

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αr̃ba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,α l̃ba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ

= cLLL cL̃̃L̃L
∑
~s

∏
a

na!

d(Ra)
δRa,R̃a

(∏
b,α

δrab,α,r̃ab,α

)(∏
β

δra,β ,r̃a,β

)
δν−a ,ν̃−a D

Ra
ia ,̃ia

(σ′a)

×
∏
β

C
ra,β ,Sa,β ,la,β
sssa,β C

ra,β ,S̃a,β ,la,β
sssa,β

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ ˜̄la,γ

∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
(B.21)

Let us focus on the pair of Clebsch-Gordan coefficients C
ra,β ,Sa,β ,la,β
sssa,β C

ra,β ,S̃a,β ,la,β
sssa,β in this formula.

It is immediate to verify that, for a U(F ) Clebsch-Gordan coefficient Cr,S,i
sss

∑
sss

Cr,S,i
sss Cr′,S′,i′

sss =
∑
sss

〈r, S, i|sss〉 〈r′, S ′, i′|sss〉 = 〈r, S, i|

(∑
sss

|sss〉 〈sss|

)
|r′, S ′, i′〉

= 〈r, S, i|1|r′, S ′, i′〉 = δr,r′ δS,S′ δi,i′ (B.22)

Therefore we can write∑
la,β

∑
sssa,β

C
ra,β ,Sa,β ,la,β
sssa,β C

ra,β ,S̃a,β ,la,β
sssa,β =

∑
la,β

δSa,β ,S̃a,β = d(ra,β) δSa,β ,S̃a,β (B.23)

Inserting this in (B.21) we obtain∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L, ~s, ~σ)

= cLLL cL̃̃L̃L
∏
a

na!

d(Ra)
δRa,R̃a

(∏
b,α

δrab,α,r̃ab,α

)(∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

)
δν−a ,ν̃−a D

Ra
ia ,̃ia

(σ′a)

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ ˜̄la,γ

∏
γ

∑
s̄̄s̄sa,γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ

= cLLL cL̃̃L̃L
∏
a

na!

d(Ra)
δRa,R̃a

(∏
b,α

δrab,α,r̃ab,α

)(∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

)
δν−a ,ν̃−a D

Ra
ia ,̃ia

(σ′a)

×BRa→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ ˜̄ra,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ ˜̄la,γ

(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γδl̄a,γ ,˜̄la,γ

)
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= cLLL cL̃̃L̃L
∏
a

na!

d(Ra)
δRa,R̃a

(∏
b,α

δrab,α,r̃ab,α

)(∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

)

×

(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
δν−a ,ν̃−a DRa

ia ,̃ia
(σ′a)B

Ra→∪b,αrba,α∪γ r̄a,γ ;ν+
a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ l̄a,γ

(B.24)

In the second equality above we again used (B.22):∑
s̄̄s̄sa,γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

C
s̄̄s̄sa,γ

˜̄ra,γ ,
˜̄Sa,γ ,

˜̄la,γ
= δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γδl̄a,γ ,˜̄la,γ (B.25)

We now define the projector-like operator P ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ , whose matrix elements are

P ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

∣∣∣̃
ia,ia

= B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ĩa→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ
(B.26)

For ν+
a = ν̃+

a the operator P ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ is the projector on the (∪b,αrba,α ∪γ r̄a,γ, ν+
a )

subspace of Ra, but when ν+
a 6= ν̃+

a it is rather an intertwining operator mapping the copies

ν+
a and ν̃+

a of the same subspace ∪b,αrba,α ∪γ r̄a,γ ⊂ Ra one to another. With this definition,

we can finally write∑
~s

∑
~σ

χQ(LLL,~s, ~σ′ · ~σ)χQ(L̃̃L̃L, ~s, ~σ)

= cLLL cL̃̃L̃L
∏
a

na!

d(Ra)
Tr
(
DRa(σ′a)P

ν+
a ,ν̃

+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
δRa,R̃a

×

(∏
b,α

δrab,α,r̃ab,α

)(∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

)(∏
γ

δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
δν−a ,ν̃−a

(B.27)

which is eq. (B.15). Consider now the case in which ~σ′ = ~1. Then

Tr
(
DRa(1)P ν+

a ,ν̃
+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
= Tr

(
P ν+

a ,ν̃
+
a

Ra→∪b,αrba,α∪γ r̄a,γ

)
=
∑
lba,α
l̄a,γ

(∑
ia

B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν̃+

a

ia→∪b,αlba,α∪γ l̄a,γ
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

)
(B.28)

= δν+
a ,ν̃

+
a

∑
lba,α
l̄a,γ

(∏
b,α

δlba,α,lba,α

)(∏
γ

δl̄a,γ ,l̄a,γ

)
= δν+

a ,ν̃
+
a

(∏
b,α

d(rba,α)

)(∏
γ

d(r̄a,γ)

)
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where the third equality follows from the orthogonality relation (3.7). Using this identity in

(B.15) we get∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L, ~s, ~σ)

= cLLL cL̃̃L̃L
∏
a

na!

d(Ra)
δRa,R̃aδν−a ,ν̃−a δν+

a ,ν̃
+
a

(∏
b,α

d(rab,α)δrab,α,r̃ab,α

)

×

(∏
β

d(ra,β)δra,β ,r̃a,βδSa,β ,S̃a,β

)(∏
γ

d(r̄a,γ)δr̄a,γ ,˜̄ra,γδS̄a,γ , ˜̄Sa,γ

)
(B.29)

Recalling the definition of the set of labels LLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ, S̄a,γ, ν
+
a , ν

−
a }, we can

thus write∑
~s

∑
~σ

χQ(LLL,~s, ~σ)χQ(L̃̃L̃L, ~s, ~σ)

= δLLL,L̃LL cLLL cL̃̃L̃L
∏
a

na!

d(Ra)

(∏
b,α

d(rab,α)

)(∏
β

d(ra,β)

)(∏
γ

d(r̄a,γ)

)
= δLLL,L̃LL (B.30)

The identity (B.14) is proven.

B.2.2 Orthogonality in ~s, ~σ

In this section we are going to prove (3.26):

∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η×~ρ

δ
(
Adj~η×~ρ(~σ)~τ −1

)
δ~ρ(~s),~t (B.31)

We start by writing two useful identities, which will allow us to connect state indices appear-

ing in the first quiver character with state indices appearing in the second quiver character.

Consider contracting both sides of the equation [39]

∑
σ∈Sn

Dr
i,j(σ)Dr′

k,l(σ) =
n!

d(r)
δr,r′δi,kδj,l (B.32)

with BR→r,··· ;ν−
I→i,··· BR→r,··· ;ν+

J→j,··· BR→r′,··· ;ν+

K→k,··· BR→r′,··· ;ν−
L→l,··· and then summing over the representation

r′ ` n. By doing so, we get the identity

BR→r,··· ;ν−
I→i,··· BR→r,··· ;ν+

K→i,··· BR→r,··· ;ν−
L→l,··· BR→r,··· ;ν+

J→l,··· (B.33)

=
d(r)

n!

∑
σ∈Sn

∑
r′`n

BR→r,··· ;ν−
I→i,··· BR→r,··· ;ν+

J→j,··· BR→r′,··· ;ν+

K→k,··· BR→r′,··· ;ν−
L→l,··· Dr

i,j(σ)Dr′

k,l(σ)
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Alternatively, contracting both sides of (B.32) with Cr′,S,k
sss Cr′,S,l

ttt and summing over the rep-

resentations r′ ` n, we obtain

Cr,S,i
sss Cr,S,j

ttt =
d(r)

n!

∑
σ∈Sn

Dr
i,j(σ)

(∑
r′`n

Dr′

k,l(σ)Cr′,S,k
sss Cr′,S,l

ttt

)
(B.34)

This is the second identity we are going to need.

Let us then consider the product

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) = c2
LLL

∏
a

DRa
ia,ja

(σa)D
Ra
i′a,j
′
a
(τa)

×BRa→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αlab,α∪β la,β

(∏
β

C
ra,β ,Sa,β ,la,β
sssa,β

)
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αlba,α∪γ l̄a,γ

(∏
γ

C
s̄̄s̄sa,γ
r̄a,γ ,S̄a,γ ,l̄a,γ

)

×BRa→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αl′ab,α∪β l

′
a,β

(∏
β

C
ra,β ,Sa,β ,l

′
a,β

ttta,β

)
B
Ra→∪b,αrba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αl′ba,α∪γ l̄′a,γ

(∏
γ

C
t̄̄t̄ta,γ
r̄a,γ ,S̄a,γ ,l̄′a,γ

)
(B.35)

Using (B.33) and (B.34) in (B.35) we find

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) = c2
LLL

∑
~η, ~ρ

∑
{r′ab,α}

∑
{r′a,β}

∑
{r̄′a,γ}

×
∏
a

(∏
b,α

d(rab,α)

nab,α!

)(∏
β

d(ra,β)

na,β!

)(∏
γ

d(r̄a,γ)

n̄a,γ!

)
DRa
ia,ja

(σa)D
Ra
i′a,j
′
a
(τa)

×

[(∏
b,α

D
rab,α
pab,α,p

′
ab,α

(ηab,α)

)(∏
β

D
ra,β
pa,β ,p

′
a,β

(ρa,β)

)
B
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αpab,α∪βpa,β

]

×

(∏
β

D
r′a,β
qa,β ,q

′
a,β

(ρa,β)C
r′a,β ,Sa,β ,qa,β
sssa,β C

r′a,β ,Sa,β ,q
′
a,β

ttta,β

)

×

[(∏
b,α

D
r′ba,α
qba,α,q

′
ba,α

(ηba,α)

)(∏
γ

D
r̄a,γ
p̄a,γ ,p̄′a,γ

(ρ̄a,γ)

)
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αqba,α∪γ p̄a,γ

]

×

(∏
γ

D
r̄′a,γ
q̄a,γ ,q̄′a,γ

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ

C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄

′
a,γ

)

×BRa→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αp′ab,α∪βp

′
a,β

B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αq′ba,α∪γ p̄′a,γ
(B.36)

where {r′ab,α}, {r′a,β} and {r̄′a,γ} are shorthands for ∪a,b,α{r′ab,α}, ∪a,β{r′a,β} and ∪a,γ{r̄′a,γ}
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respectively. We now use the equivariance property of the branching coefficients (eq. (B.4))

to rewrite the terms in the square brackets above as(∏
b,α

D
rab,α
pab,α,p

′
ab,α

(ηab,α)

)(∏
β

D
ra,β
pa,β ,p

′
a,β

(ρa,β)

)
B
Ra→∪b,αrab,α∪βra,β ;ν−a
ja→∪b,αpab,α∪βpa,β

= DRa
ja,la

(×b,αηab,α ×β ρa,β)B
Ra→∪b,αrab,α∪βra,β ;ν−a
la→∪b,αp′ab,α∪βp

′
a,β

(B.37)

and (∏
b,α

D
r′ba,α
qba,α,q

′
ba,α

(ηba,α)

)(∏
γ

D
r̄a,γ
p̄a,γ ,p̄′a,γ

(ρ̄a,γ)

)
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

ia→∪b,αqba,α∪γ p̄a,γ

= DRa
ia,l′a

(×b,αηba,α ×γ ρa,γ)B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

l′a→∪b,αq′ba,α∪γ p̄′a,γ
(B.38)

On the other hand, we can use eqs. (B.10) and (B.11) to write the Clebsch-Gordan coefficient

terms as∏
β

D
r′a,β
qa,β ,q

′
a,β

(ρa,β)C
r′a,β ,Sa,β ,qa,β
sssa,β C

r′a,β ,Sa,β ,q
′
a,β

ttta,β
=
∏
β

C
r′a,β ,Sa,β ,q

′
a,β

ρ−1
a,β(sssa,β)

C
r′a,β ,Sa,β ,q

′
a,β

ttta,β
(B.39)

(there is no sum over the ra,β and Sa,β labels) and∏
γ

D
r̄′a,γ
q̄a,γ ,q̄′a,γ

(ρ̄a,γ)C
s̄̄s̄sa,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ

C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄

′
a,γ

=
∏
γ

C
ρ̄−1
a,γ(s̄̄s̄sa,γ)

r̄′a,γ ,S̄a,γ ,q̄
′
a,γ
C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄

′
a,γ

(B.40)

(again no sum over the r̄a,γ and S̄a,γ labels).

Inserting the last four equations in (B.36), taking the transpose of the matrix element on

the RHS of (B.38) and relabelling the dummy permutation variables as ~η → ~η −1, ~ρ → ~ρ −1

gives

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η, ~ρ

∑
{sab,α}

∑
{sa,β}

∑
{s̄a,γ}

∏
a

d(Ra)

na!

×DRa
l′a,ia

(×b,αηba,α ×γ ρa,γ)DRa
ia,ja

(σa)D
Ra
ja,la

(
×b,αη−1

ab,α ×β ρ
−1
a,β

)
DRa
i′a,j
′
a
(τa)

×
[
B
Ra→∪b,αrab,α∪βra,β ;ν−a
la→∪b,αp′ab,α∪βp

′
a,β

B
Ra→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αp′ab,α∪βp

′
a,β

]
×
[
B
Ra→∪b,αsba,α∪γ r̄a,γ ;ν+

a

l′a→∪b,αq′ba,α∪γ p̄′a,γ
B
Ra→∪b,αsba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αq′ba,α∪γ p̄′a,γ

]
×

(∏
β

C
sa,β ,Sa,β ,qa,β
ρa,β(sssa,β) C

sa,β ,Sa,β ,qa,β
ttta,β

) (∏
γ

C
ρ̄a,γ(s̄̄s̄sa,γ)

s̄a,γ ,S̄a,γ ,q̄a,γ
C
t̄̄t̄ta,γ
s̄a,γ ,S̄a,γ ,q̄a,γ

)
(B.41)
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where we also used the definitions of cLLL and c~n given in (3.21) and (3.27). Now, from eq.

(B.16) we have[
B
Ra→∪b,αrab,α∪βra,β ;ν−a
la→∪b,αp′ab,α∪βp

′
a,β

B
Ra→∪b,αrab,α∪βra,β ;ν−a
j′a→∪b,αp′ab,α∪βp

′
a,β

]
= P ν−a ,ν

−
a

Ra→∪b,αrab,α∪βra,β

∣∣∣
la,j′a

(B.42)

[
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

l′a→∪b,αq′ba,α∪γ p̄′a,γ
B
Ra→∪b,αr′ba,α∪γ r̄a,γ ;ν+

a

i′a→∪b,αq′ba,α∪γ p̄′a,γ

]
= P ν+

a ,ν
+
a

Ra→∪b,αr′ba,α∪γ r̄a,γ

∣∣∣
l′a,i
′
a

(B.43)

so that we can write

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η, ~ρ

∑
{r′ab,α}

∏
a

d(Ra)

na!
DRa
l′a,la

(
Adj~η×~ρ(σa)

)
DRa
i′a,j
′
a
(τa)

× P ν−a ,ν
−
a

Ra→∪b,αrab,α∪βra,β

∣∣∣
la,j′a

P ν+
a ,ν

+
a

Ra→∪b,αr′ba,α∪γ r̄a,γ

∣∣∣
l′a,i
′
a

(B.44)

×

∑
{r′a,β}

∏
β

C
r′a,β ,Sa,β ,qa,β

ρa,β(sssa,β) C
r′a,β ,Sa,β ,qa,β
ttta,β

 ∑
{r̄′a,γ}

∏
γ

C
ρ̄a,γ(s̄̄s̄sa,γ)

r̄′a,γ ,S̄a,γ ,q̄a,γ
C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ


where we defined

Adj~η×~ρ(σa) = (×b,αηba,α ×γ ρa,γ)(σa)(×b,αη−1
ab,α ×β ρ

−1
a,β) (B.45)

Now we can proceed to sum over LLL = {Ra, rab,α, ra,β, Sa,β, r̄a,γ, S̄a,γ, ν
+
a , ν

−
a }. This intro-

duces, among others, a summation over the flavour states Sa,β and S̄a,γ. Consider then a pair

of Clebsch-Gordan coefficients like the ones appearing in the last line of eq. (B.44). It is easy

to write the relation

∑
r,S,i

Cr,S,i
ρ(sss) C

r,S,i
ttt = 〈ρ(sss)|

(∑
r,S,i

|r, S, i〉〈r, S, i|

)
|ttt〉 = 〈ρ(sss)|1|ttt〉 = δρ(sss),ttt (B.46)

We then have the identity∑
r′a,β , Sa,β , qa,β

C
r′a,β ,Sa,β ,qa,β

ρa,β(sssa,β) C
r′a,β ,Sa,β ,qa,β
ttta,β

= δρa,β(sssa,β),ttta,β (B.47)

and similarly ∑
r̄′a,γ , S̄a,γ , q̄a,γ

C
ρ̄a,γ(s̄̄s̄sa,γ)

r̄′a,γ ,S̄a,γ ,q̄a,γ
C
t̄̄t̄ta,γ
r̄′a,γ ,S̄a,γ ,q̄a,γ

= δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ (B.48)
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Inserting this result in eq. (B.44) we obtain∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ)

=
1

c~n

∑
~η, ~ρ

∏
a

∑
Ra

d(Ra)

na!
DRa
l′a,la

(
Adj~η×~ρ(σa)

)
DRa
i′a,j
′
a
(τa)

×
∑

∪b,α{rab,α}

∑
∪β{ra,β}

ν−a

P ν−a ,ν
−
a

Ra→∪b,αrab,α∪βra,β

∣∣∣
la,j′a

∑
∪b,α{r′ba,α}

∑
∪γ{r̄a,γ}

ν+
a

P ν+
a ,ν

+
a

Ra→∪b,αr′ba,α∪γ r̄a,γ

∣∣∣
l′a,i
′
a

×

(∏
β

δρa,β(sssa,β),ttta,β

) (∏
γ

δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ

)
(B.49)

Now using the projector identity ∑
∪i{ri}, ν

P ν,ν
R→∪iri

∣∣
k,l

= δk,l (B.50)

we further get

∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =
1

c~n

∑
~η, ~ρ

∏
a

∑
Ra

d(Ra)

na!
χRa

(
Adj~η×~ρ(σa) τ

−1
a

)

×

(∏
β

δρa,β(sssa,β),ttta,β

) (∏
γ

δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ

)
(B.51)

Finally, through the identity

∑
R`n

d(R)

n!
χR(σ) = δ(σ) (B.52)

we can rewrite (B.51) as∑
LLL

χQ(LLL,~s, ~σ)χQ(LLL,~t, ~τ) =

=
1

c~n

∑
~η, ~ρ

∏
a

δ
(
Adj~η×~ρ(σa) τ

−1
a

) (∏
β

δρa,β(sssa,β),ttta,β

) (∏
γ

δρ̄a,γ(s̄̄s̄sa,γ),t̄̄t̄ta,γ

)

=
1

c~n

∑
~η, ~ρ

δ
(
Adj~η×~ρ (~σ)~τ −1

)
δ~ρ(~s),~t (B.53)

This last equation is exactly (3.26).
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C Two Point Function: Proof of Orthogonality

In this section we will prove the orthogonality formula (4.1):〈
OQ(LLL)O†Q(L′L′L′)

〉
= δLLL,L′L′L′ c~n

∏
a

fNa(Ra) (C.1)

The first ingredient we need is the Hermitean conjugated version of the operator defined in

(2.12), which is simply

O†Q(~n; ~s; ~σ) =
∏
a

[∏
b,α

(
Φ
† ⊗nab,α
ab,α

)Jab,α
Iab,α

]
⊗

[∏
β

(
Q
† ⊗na,β
a,β

)sssa,β
Ia,β

]
⊗

[∏
γ

(
Q̄† ⊗n̄a,γa,γ

)J̄a,γ
s̄̄s̄sa,γ

]

×
∏
c

(
σ−1
c

)∪b,αIcb,α∪βIa,β
∪b,αJbc,α∪γ J̄a,γ

(C.2)

Here we used (σ)
j
i = (σ−1)

i
j. Using the free field metric〈

(Φab,α)ij (Φ†ab,α)kl

〉
= δilδ

k
j ,

〈
(Qa,β)is (Q†a,β)pl

〉
= δilδ

p
s ,

〈(
Q̄a,γ

)s̄
j
(Q̄†a,γ)

k
p̄

〉
= δkj δ

s̄
p̄ (C.3)

(the remaining correlators are zero) we get〈(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

(
Φ
† ⊗nab,α
ab,α

)J ′ab,α
I′ab,α

〉
=

∑
η∈Snab,α

δ
η(Iab,α)

I′ab,α
δ
J ′ab,α
η(Jab,α) (C.4)

In this formula the sum over permutations represents all possible Wick contractions of the

labels Iab,α = {i1, ..., inab,α}, Jab,α = {j1, ..., jnab,α}. Denoting the states belonging to the

fundamental and the antifundamental representation of U(N) by |ej〉 and 〈ej|respectively, we

have the identities

δ
J ′ab,α
η(Jab,α) = 〈ej′1 , ..., ej

′
nab,α |ejη(1)

, ..., ejη(nab,α)
〉 = 〈ej′1 , ..., ej

′
nab,α |η|ej1 , ..., ejnab,α 〉 = (η)

J ′ab,α
Jab,α

(C.5)

and

δ
I′ab,α
η(Iab,α) = (η)

I′ab,α
Iab,α

=
(
η−1
)Iab,α
I′ab,α

= δ
Iab,α
η−1(I′ab,α) (C.6)

Performing similar steps on the correlators of quarks and antiquarks, we can then write〈(
Φ
⊗nab,α
ab,α

)Iab,α
Jab,α

(
Φ
† ⊗nab,α
ab,α

)J ′ab,α
I′ab,α

〉
=

∑
η∈Snab,α

(
η−1
)Iab,α
I′ab,α

(η)
J ′ab,α
Jab,α

(C.7a)

〈(
Q
⊗na,β
a,β

)Ia,β
sssa,β

(
Q
† ⊗na,β
a,β

)s′s′s′a,β
I′a,β

〉
=

∑
ρ∈Sna,β

(
ρ−1
)Ia,β
I′a,β

(ρ)
s′s′s′a,β
sssa,β =

∑
ρ∈Sna,β

(
ρ−1
)Ia,β
I′a,β

δ
s′s′s′a,β
ρ(sssa,β) (C.7b)
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〈(
Q̄⊗n̄a,γa,γ

)s̄̄s̄sa,γ
J̄a,γ

(
Q̄† ⊗n̄a,γa,γ

)J̄ ′a,γ
s̄′̄s′̄s′a,γ

〉
=

∑
ρ̄∈Sn̄a,γ

(ρ̄−1)
s̄̄s̄sa,γ
s̄′̄s′̄s′a,γ

(
ρ̄
)J̄ ′a,γ
J̄a,γ

=
∑

ρ̄∈Sn̄a,γ

(
ρ̄
)J̄ ′a,γ
J̄a,γ

δ
ρ̄(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ
(C.7c)

We therefore get

〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
=
∑
~η, ~ρ

∏
a

[∏
b,α

(
η−1
ab,α

)Iab,α
I′ab,α

(ηab,α)
J ′ab,α
Jab,α

][∏
β

(
ρ−1
a,β

)Ia,β
I′a,β

δ
ρa,β(sssa,β)

s′s′s′a,β

]

×

[∏
γ

(
ρ̄a,γ
)J̄ ′a,γ
J̄a,γ

δ
ρ̄a,γ(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ

] (
σa
)∪b,αJba,α∪γ J̄a,γ
∪b,αIab,α∪βIa,β

(
(σ′a)

−1
)∪b,αI′ab,α∪βI′a,β
∪b,αJ ′ba,α∪γ J̄ ′a,γ

=
∑
~η, ~ρ

∏
a

TrV ⊗naNa

[
(×b,αηba,α ×γ ρ̄a,γ)σa

(
×b,αη−1

ab,α ×β ρ
−1
a,β

)
(σ′a)

−1
]

×

[∏
β

δ
ρa,β(sssa,β)

s′s′s′a,β

][∏
γ

δ
ρ̄a,γ(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ

]
(C.8)

where, as we defined in (2.16),

~η = ∪a,b,α{ηab,α} , ηab,α ∈ Snab,α (C.9a)

~ρ = ∪a{∪β ρa,β; ∪γ ρ̄a,γ} , ρa,β ∈ Sna,β , ρ̄a,γ ∈ Sn̄a,γ (C.9b)

The trace is taken over the product space V ⊗naNa
, VNa being the fundamental representation of

U(Na) and na =
∑

b,α nab,α +
∑

β na,β. Recalling (2.17),

Adj~η×~ρ(~σ) = ∪a{(×b,αηba,α ×γ ρ̄a,γ)σa(×b,αη−1
ab,α ×β ρ

−1
a,β)} (C.10)

we can finally write〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
=
∑
~η, ~ρ

∏
a

TrV ⊗naNa

[
Adj~η×~ρ(σa) (σ′a)

−1
]

×

[∏
β

δ
ρa,β(sssa,β)

s′s′s′a,β

][∏
γ

δ
ρ̄a,γ(s̄̄s̄sa,γ)

s̄′̄s′̄s′a,γ

]
(C.11)

which is eq. (4.5).
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Using the definition of the Fourier transformed operator (3.19) we then get〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s,~s ′

∑
~σ,~σ ′

χQ(LLL,~s, ~σ)χ†Q(LLL′, ~s ′, ~σ ′)
〈
OQ(~n,~s, ~σ)O†Q(~n,~s ′, ~σ ′)

〉
(C.12)

=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL,~s, ~σ)χQ(LLL′, ~ρ(~s), ~σ ′)
∏
a

TrV ⊗naNa

[
Adj~η×~ρ(σa) (σ′a)

−1
]

where to get the second equality we summed over ~s ′, used the Kronecker delta functions and

used the reality of the quiver characters. Redefining the dummy variable ~s→ ~ρ −1(~s ) in (C.12)

we obtain〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL, ~ρ −1(~s ), ~σ)χQ(LLL′, ~s, ~σ ′)
∏
a

TrV ⊗naNa

[
Adj~η×~ρ(σa) (σ′a)

−1
]

=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL,~s,Adj~η×~ρ(~σ))χQ(LLL′, ~s, ~σ ′)
∏
a

TrV ⊗naNa

[
Adj~η×~ρ(σa) (σ′a)

−1
]

=
∑
~s

∑
~σ,~σ ′

∑
~η, ~ρ

χQ(LLL,~s, ~σ)χQ(LLL′, ~s, ~σ ′)
∏
a

TrV ⊗naNa

[
σa (σ′a)

−1
]

(C.13)

To get the second equality we used the invariance relation (3.23), and in the third we relabelled

the dummy variable ~σ → Adj~ρ×~η(~σ). We then see that the dependence on the permutations ~η

and ~ρ drops out, so that their sums can be trivially computed to obtain〈
OQ(LLL)O†Q(L′L′L′)

〉
=
∑
~s

∑
~σ,~σ ′

χQ(LLL,~s, ~σ)χQ(LLL′, ~s, ~σ ′)

×
∏
a

(∏
b,α

nab,α!

)(∏
β

na,β!

)(∏
γ

n̄a,γ!

)
TrV ⊗naNa

[
σa (σ′a)

−1
]

(C.14)

Now let us further relabel σa → τa · σ′a and use the definition of c~n given in (3.27) to get〈
OQ(LLL)O†Q(L′L′L′)

〉
= c~n

∑
~s

∑
~τ,~σ ′

χQ(LLL,~s, ~τ · ~σ ′)χQ(LLL′, ~s, ~σ ′)
∏
a

TrV ⊗naNa

[
τa

]
(C.15)

The only dependence on ~σ′ and ~s is now inside the two quiver characters, so that we can use
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(B.15) and write∑
~s

∑
~σ ′

χQ(LLL,~s, ~τ · ~σ ′)χQ(L′L′L′, ~s, ~σ ′)

= cLLLcL′L′L′
∏
a

na!

d(Ra)
Tr
(
DRa(τa)P

ν+
a ,ν

+
a
′

Ra→∪b,αrba,α∪γ r̄a,γ

)
δRa,R′a

×

(∏
b,α

δrab,α,r′ab,α

)(∏
β

d(ra,β)δra,β ,r′a,βδSa,β ,S′a,β

)(∏
γ

δr̄a,γ ,r̄′a,γδS̄a,γ ,S̄′a,γ

)
δ
ν−a ,ν

−
a
′

(C.16)

Inserting this equation into (C.15) and recalling the identity

TrV ⊗nN
(σ) = NC[σ] (C.17)

we get

〈
OQ(LLL)O†Q(L′L′L′)

〉
= c~n

∑
~τ

cLLLcLLL′
∏
a

na!

d(Ra)
δRa,R′aδν−a ,ν−a

′

(∏
b,α

δrab,α,r′ab,α

)

×

(∏
β

d(ra,β)δra,β ,r′a,βδSa,β ,S′a,β

)(∏
γ

δr̄a,γ ,r̄′a,γδS̄a,γ ,S̄′a,γ

)

× Tr
(
DRa(τa)P

ν+
a ,ν

+
a
′

Ra→∪b,αrba,α∪γ r̄a,γ

)
N c[τa]
a (C.18)

The last piece we need to obtain eq. (C.1) is the identity

∑
τa

Tr
(
DRa(τa)P

ν+
a ,ν

+
a
′

Ra→∪b,αrba,α∪γ r̄a,γ

)
N c[τa]
a = δ

ν+
a ,ν

+
a
′

(∏
b,α

d(rba,α)

)(∏
γ

d(r̄a,γ)

)
fNa(Ra)

(C.19)

a proof of which can be found in e.g. [39]. Inserting it in (C.18) we finally get

〈
OQ(LLL)O†Q(L′L′L′)

〉
= c~n cLLLcLLL′

∏
a

na!

d(Ra)
δRa,R′aδν−a ,ν−a

′δ
ν+
a ,ν

+
a
′

(∏
b,α

d(rab,α)δrab,α,r′ab,α

)

×

(∏
β

d(ra,β)δra,β ,r′a,βδSa,β ,S′a,β

)(∏
γ

d̄(r̄a,γ)δr̄a,γ ,r̄′a,γδS̄a,γ ,S̄′a,γ

)
fNa(Ra)
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= δLLL,L′L′L′ c~n c
2
LLL

∏
a

na!

d(Ra)

(∏
b,α

d(rab,α)

) (∏
β

d(ra,β)

)(∏
γ

d̄(r̄a,γ)

)
fNa(Ra)

(C.20)

which, using the normalisation constant cLLL defined in (3.21), reduces to eq. (4.1):〈
OQ(LLL)O†Q(L′L′L′)

〉
= δLLL,L′L′L′ c~n

∏
a

fNa(Ra) (C.21)

The orthogonality of the Fourier transformed operators is thus proven.

D Deriving the Holomorphic Gauge Invariant Operator

Ring Structure Constants

In this appendix we will derive the analytical expression for the holomorphic GIO ring structure

constants GLLL(1),LLL(2),LLL(3) , corresponding to the diagram given in Fig. 19. We will divide the

computation into five main steps, for improved clarity. In the following subsection D.1 we will

explicitly derive the chiral ring structure constants for anN = 2 SQCD, by using diagrammatic

techniques alone.

1) The permutation basis product

In this first step we are going to rewrite the product of two operators in the permutation

basis, OQ(~n1, ~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2)), as a single operator OQ(~n3, ~s
(3), ~σ(3)), specified by

appropriate labels ~n3, ~s
(3) and ~σ(3). We use the defining equation (2.12) for OQ(~n,~s, ~σ) to

write this product as

OQ(~n1, ~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2))

=
∏
a

∏
b,α

(
Φ
⊗n(1)

ab,α

ab,α

)I(1)
ab,α

J
(1)
ab,α

⊗
∏

β

(
Q
⊗n(1)

a,β

a,β

)I(1)
a,β

sss
(1)
a,β

⊗ [∏
γ

(
Q̄⊗n̄

(1)
a,γ

a,γ

)s̄̄s̄s(1)
a,γ

J̄
(1)
a,γ

] (
σ(1)
a

)×b,αJ(1)
ba,α×γ J̄

(1)
a,γ

×b,αI
(1)
ab,α×βI

(1)
a,β

×
∏
a

∏
b,α

(
Φ
⊗n(2)

ab,α

ab,α

)I(2)
ab,α

J
(2)
ab,α

⊗
∏

β

(
Q
⊗n(2)

a,β

a,β

)I(2)
a,β

sss
(2)
a,β

⊗ [∏
γ

(
Q̄⊗n̄

(2)
a,γ

a,γ

)s̄̄s̄s(2)
a,γ

J̄
(2)
a,γ

] (
σ(2)
a

)×b,αJ(2)
ba,α×γ J̄

(2)
a,γ

×b,αI
(2)
ab,α×βI

(2)
a,β

=
∏
a

∏
b,α

(
Φ
⊗
(
n

(1)
ab,α+n

(2)
ab,α

)
ab,α

)I(1)
ab,α×I

(2)
ab,α

J
(1)
ab,α×J

(2)
ab,α

∏
β

(
Q
⊗
(
n

(1)
a,β+n

(2)
a,β

)
a,β

)I(1)
a,β×I

(2)
a,β

sss
(1)
a,β×sss

(2)
a,β



⊗

∏
γ

(
Q̄
⊗
(
n̄

(1)
a,γ+n̄

(1)
a,γ

)
a,γ

)s̄̄s̄s(1)
a,γ×s̄̄s̄s

(2)
a,γ

J̄
(1)
a,γ×J̄

(2)
a,γ

 (σ(1)
a × σ(2)

a

)×b,αJ(1)
ba,α×γ J̄

(1)
a,γ×b,αJ

(2)
ba,α×γ J̄

(2)
a,γ

×b,αI
(1)
ab,α×βI

(1)
a,β×b,αI

(2)
ab,α×βI

(2)
a,β

(D.1)
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In the following we will continue to use the shorthand notation

|ei1 , ei2 , ..., ein〉 = |I〉 , I = (i1, i2, ..., in) ,

〈ej1 , ej2 , ..., ejn| = 〈J | , J = (j1, j2, ..., jn)

which was already introduced in the previous sections. For each gauge node a, let us now

define the λa− and λa+ permutations such that

λa−

∣∣∣×b,αI(1)
ab,α ×β I

(1)
a,β ×b,α I

(2)
ab,α ×β I

(2)
a,β

〉
=
∣∣∣×b,α (I(1)

ab,α × I
(2)
ab,α

)
×β
(
I

(1)
a,β × I

(2)
a,β

)〉
(D.2)

and

λ−1
a+

∣∣∣×b,αJ (1)
ba,α ×γ J̄

(1)
a,γ ×b,α J

(2)
ba,α ×γ J̄

(2)
a,γ

〉
=
∣∣∣×b,α (J (1)

ba,α × J
(2)
ba,α

)
×γ
(
J̄ (1)
a,γ × J̄ (2)

a,γ

)〉
(D.3)

These permutations have been chosen such that, when suitably acting on the σ
(1)
a × σ

(2)
a

component of (D.1), the resulting term has the right index structure to match the index

structure of the associated field component,

[∏
b,α

Φ
⊗
(
n

(1)
ab,α+n

(2)
ab,α

)
ab,α

][∏
β

Q
⊗
(
n

(1)
a,β+n

(2)
a,β

)
a,β

][∏
γ

Q̄
⊗
(
n̄

(1)
a,γ+n̄

(1)
a,γ

)
a,γ

]×b,α(I(1)
ab,α×I

(2)
ab,α

)
×β

(
I

(1)
a,β×I

(2)
a,β

)

×b,α
(
J

(1)
ba,α×J

(2)
ba,α

)
×γ

(
J̄

(1)
a,γ×J̄

(2)
a,γ

) (D.4)

We have in fact

(
σ(1)
a × σ(2)

a

)×b,αJ(1)
ba,α×γ J̄

(1)
a,γ×b,αJ

(2)
ba,α×γ J̄

(2)
a,γ

×b,αI
(1)
ab,α×βI

(1)
a,β×b,αI

(2)
ab,α×βI

(2)
a,β

=
(
λ−1
a+

(
σ(1)
a × σ(2)

a

)
λ−1
a−
)×b,α(J(1)

ba,α×J
(2)
ba,α

)
×γ

(
J̄

(1)
a,γ×J̄

(2)
a,γ

)
×b,α

(
I

(1)
ab,α×I

(2)
ab,α

)
×β

(
I

(1)
a,β×I

(2)
a,β

)
(D.5)

The purpose of λa− and λa+ is therefore to change the embedding into [na] corresponding to

the ordering of the upper (lower) U(Na) indices of the fields coming into (departing from)

node a, eq. (2.9) (eq. (2.10)). It can be seen that the index structure of the RHS of (D.5)

now matches the one in (D.4). Inserting (D.5) into (D.1), we then obtain

OQ(~n1,~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2)) = OQ(~n1+2, ~s
(1) ∪ ~s (2), ~λ−1

+

(
~σ(1) × ~σ(2)

)
~λ−1
− ) (D.6)

where

~n1+2 = ∪a
{
∪b,α {n(1)

ab,α, n
(2)
ab,α};∪β {n

(1)
a,β, n

(2)
a,β};∪γ {n̄

(1)
a,γ, n̄

(2)
a,γ}
}
,

~s (1) ∪ ~s (2) = ∪a{∪β{sss(1)
a,β, sss

(2)
a,β} ; ∪γ{s̄̄s̄s(1)

a,γ, s̄̄s̄s
(2)
a,γ}} , (D.7)
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~λ−1
+

(
~σ(1) × ~σ(2)

)
~λ−1
− = ∪a{λ−1

a+

(
σ(1)
a × σ(2)

a

)
λ−1
a−}

2) Using the inversion formula

In this step we are going to use eq. (D.6) to write a first expression for the GLLL(1),LLL(2),LLL(3)

coefficients. Let us start form the product OQ(LLL(1))OQ(LLL(2)), that we expand as

OQ(LLL(1))OQ(LLL(2))

=
∑

~s (1),~s (2)

∑
~σ(1),~σ(2)

χQ(LLL(1), ~s (1), ~σ(1))χQ(LLL(2), ~s (2), ~σ(2))OQ(~n1, ~s
(1), ~σ(1))OQ(~n2, ~s

(2), ~σ(2))

(D.8)

Plugging eq. (D.6) into this equation we get

OQ(LLL(1))OQ(LLL(2)) =
∑

~s (1),~s (2)

∑
~σ(1),~σ(2)

χQ(LLL(1), ~s (1), ~σ(1))χQ(LLL(2), ~s (2), ~σ(2))

×OQ(~n1+2, ~s
(1) ∪ ~s (2), ~λ−1

+

(
~σ(1) × ~σ(2)

)
~λ−1
− ) (D.9)

We now use the inversion formula (3.32) to get

OQ(LLL(1))OQ(LLL(2)) =
∑
LLL(3)

 ∑
~s (1),~s (2)

∑
~σ(1),~σ(2)

χQ(LLL(1), ~s (1), ~σ(1))χQ(LLL(2), ~s (2), ~σ(2))

× χQ(LLL(3), ~s (1) ∪ ~s (2), ~λ−1
+

(
~σ(1) × ~σ(2)

)
~λ−1
− )

}
OQ(LLL(3))

(D.10)

from which we obtain an expression for GLLL(1),LLL(2),LLL(3) :

GLLL(1),LLL(2),LLL(3)

=
∑

~s (1),~s (2)

∑
~σ (1),~σ (2)

χQ(LLL(1), ~s (1), ~σ (1))χQ(LLL(2), ~s (2), ~σ (2))χQ(LLL(3), ~s (1) ∪ ~s (2), ~λ−1
+

(
~σ (1) × ~σ (2)

)
~λ−1
− )

= cLLL(1) cLLL(2) cLLL(3)

∑
~s (1),~s (2)

∑
~σ(1),~σ(2)

∏
a

DR
(1)
a

i
(1)
a ,j

(1)
a

(σ(1)
a )DR

(2)
a

i
(2)
a ,j

(2)
a

(σ(2)
a )DR

(3)
a

i
(3)
a ,j

(3)
a

(λ−1
a+

(
σ(1)
a × σ(2)

a

)
λ−1
a− )

×

(
3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
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3) Fusing of gauge edges

At this stage the chiral ring structure constants are given as a product of three definite

quantities, i.e. three quiver characters. We now proceed to fuse together their gauge edges,

by using standard representation theory identities. Let us then focus on the permutation

dependent piece of eq. (D.11), namely∑
~σ(1),~σ(2)

∏
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Using the identity
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∑
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we can write∑
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where in the second equality we used

∑
σ∈Sn

DR
ij(σ)DS

kl(σ) =
n!

d(R)
δR,S δi,k δj,l (D.15)

It is important to stress that all the steps that we will be describing in this appendix can be

also interpreted diagrammatically. For example, (D.14) can be understood trough the diagram

in Fig. 24.

Figure 24: Diagrammatic interpretation of eq. (D.14).

Similar pictures can be drawn for all the following steps. In equation (D.14) (or equiva-

lently, in Fig. 24) we see the emergence of the first of the selection rules already anticipated

in section 4.2. This selection rule is expressed by the terms
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These coefficients are non-zero only if the restriction of the Sn1+n2 representation R
(3)
a to

Sn1 × Sn2 contains the representation R
(1)
a ⊗R(2)

a , ∀ a.

4) Fusing of the quark/antiquark edges

In this step we will perform the fusing of the edges corresponding to the fundamental/anti-

fundamental matter fields. This involves summing over the quark/antiquark states sss
(1,2)
a,β and

s̄̄s̄s
(1,2)
a,γ . Let us then turn to the Clebsch-Gordan parts of equation (D.11), that is
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Consider for example the former. Aiming at simplifying notation, we rewrite it here dropping

the a, β labels: ∑
sss(1), sss(2)

Cr(1),S(1),l(1)

sss(1) Cr(2),S(2),l(2)

sss(2) Cr(3),S(3),l(3)
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We can expand this quantity as∑
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)
〈r(3), S(3), l(3)|sss(1) ∪ sss(2)〉
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=
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= 〈{r(1), r(2)}, {S(1), S(2)}, {l(1), l(2)}|r(3), S(3), l(3)〉 (D.20)

Since the generic state |r, S, l〉 ∈ V Sn
r ⊗ V U(F )

r is by definition the tensor product |r, S, l〉 =

|r, S〉 ⊗ |r, l〉, we may separately decompose the two states |r(3), S(3), l(3)〉 and |{r(1), r(2)},
{S(1), S(2)}, {l(1), l(2)}〉 as follows. We factorise the former according to the decomposition

(3.3), which in this case reads

V
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We then write
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(D.22)
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For the latter we use instead the the unitary group decomposition (3.9), which in this case

takes the explicit form

V
U(F )

r(1) ⊗ V
U(F )

r(2) =
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u(3)`n(3)

V
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We therefore have
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The vector spaces V u(1),u(2)

r(3) in (D.21) and V r(1),r(2)

u(3) in (D.23) are both multiplicity vector spaces.

We recall that dim(V r(1),r(2)

r(3) ) = g(r(1), r(2); r(3)), where g is the Littlewood-Richardson coeffi-

cient. Notice that both the states on the far RHSs of (D.22) and (D.24) live in the tensor

space W , where

W = V
S
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S
n(2)

r(2) ⊗ V
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r(3) ⊗ V r(1),r(2)

r(3) (D.25)

Taking the scalar product of (D.22) and (D.23) then gives
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We conclude that∑
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The diagrammatic interpretation of eq. (D.27) is drawn in Fig. 25.

67



Figure 25: Diagrammatic interpretation of eq. (D.27).

Reintroducing the a, β notation, we then obtain
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Similarly, we can show that for (D.18)
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From eq. (D.28) and (D.29) (or equivalently by considering Fig. 25) one can see the manifesta-

tion of another selection rule for the holomorphic GIO ring structure constants. In particular,

the coefficients B
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Inserting eqs. (D.14), (D.28) and (D.29) into (D.11) we then get
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×
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5) Fusing the bi-fundamental edges and factorising the ± nodes

The two tasks of this last step are to fuse the edges corresponding to the bi-fundamental

fields and to factorise the positive and negative node of the split-node quiver. We start by

considering the product
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which appears in eq. (D.30). We want to decompose this term into a product of branching

coefficients of the form B
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ab,α→l

(1)
ab,α,l
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.

First we notice that the equivariance property of the branching coefficients
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also implies
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i→∪ala = DR
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a
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)
BR→∪ara;νa
k→∪al′a (D.33)

for a collection of permutations ∪a{γa ∈ Sna}, where each ra is a partition of the integer na.

We can use this identity to write (D.31) as
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(D.34)

where (×b,αη(p)
ab,α × 1) ∈ S

n
(p)
a

and η
(p)
ab,α ∈ Sn(p)

ab,α
, for p = 1, 2.

Let us now go back to the equation defining the λa− permutations, (D.2). It is easy to see
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that
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(D.35)

We can use this identity in (D.34) to get
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(D.36)

Next we use the identity (D.32) in eq. (D.36) as follows, for p = 1, 2:
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(D.37)

Similarly, we use (D.32) also for the term
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(D.38)
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Putting these last equations together, we get to
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(D.39)

Notice that the quantity on the LHS above is independent of the permutations η. We can

then sum over all possible permutations η on the RHS, provided we divide by the number of

permutations themselves: we thus obtain
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(D.40)

The quantity inside the curvy brackets above has the same structure of the far LHS of eq.

(D.14). Performing similar steps to the ones presented in that equation we obtain, dropping

the a, b, α notation for improved clarity∑
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Inserting this identity in (D.40) we get

DR
(3)
a

j
(3)
a ,g

(3)
a

(λa−)BR
(3)
a →R

(1)
a ,R

(2)
a ;µa

g
(3)
a →j

(1)
a ,j

(2)
a

(
3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

j
(p)
a →∪b,αl

(p)
ab,α∪β l

(p)
a,β

)

=
∑

∪b,α{νab,α}

{∏
b,α

1

d(r
(1)
ab,α) d(r

(2)
ab,α)

B
r
(3)
ab,α→r

(1)
ab,α,r

(2)
ab,α;νab,α

l
(3)
ab,α→l

(1)
ab,α,l

(2)
ab,α

B
r
(3)
ab,α→r

(1)
ab,α,r

(2)
ab,α;νab,α

q
(3)
ab,α→q

(1)
ab,α,q

(2)
ab,α

}
BR

(3)
a →R

(1)
a ,R

(2)
a ;µa

k
(3)
a →k

(1)
a ,k

(2)
a

×
[
DR

(3)
a

g
(3)
a ,k

(3)
a

(λa−)B
R

(3)
a →∪b,αr

(3)
ab,α∪βr

(3)
a,β ;ν

−(3)
a

g
(3)
a →∪b,αq

(3)
ab,α∪β l

(3)
a,β

] 2∏
p=1

B
R

(p)
a →∪b,αr

(p)
ab,α∪βr

(p)
a,β ;ν

−(p)
a

k
(p)
a →∪b,αq

(p)
ab,α∪β l

(p)
a,β

(D.42)

Using the substitutions k
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(D.43)

We see here the manifestation of the last selection rule, enforced by the branching coefficients

B
r
(3)
ab,α→r

(1)
ab,α,r

(2)
ab,α;νab,α

l
(3)
ab,α→l

(1)
ab,α,l

(2)
ab,α

. These quantities are non zero only if the restriction of the S
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contains the representation r
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(2)
ab,α.

With the identity (D.43) we have achieved a factorisation of the branching coefficients over

all the nodes of the quiver. Moreover, the positive and negative node of every split-node a

are now disentangled. There are no symmetric group states q
(i)
ab,α (i = 1, 2, 3), associated with

the negative node of the split-node a, that mix with symmetric group states l
(i)
ab,α (i = 1, 2, 3),

associated with its positive node.
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Plugging eq. (D.43) into (D.30), we get
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The latter equation can be finally rewritten as
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a,β ;ν

−(p)
a

k
(p)
a →∪b,αq

(p)
ab,α∪β l

(p)
a,β

)

×

(∏
b,α

B
r
(3)
ab,α→r

(1)
ab,α,r

(2)
ab,α;νab,α

q
(3)
ab,α→q

(1)
ab,α,q

(2)
ab,α

) ∏
β

∑
νa,β

B
r
(3)
a,β→r

(1)
a,β ,r

(2)
a,β ;νa,β

l
(3)
a,β→l

(1)
a,β ,l

(2)
a,β

C
r
(3)
a,β ;νa,β→r

(1)
a,β ,r

(2)
a,β

S
(3)
a,β→S

(1)
a,β ,S

(2)
a,β


×

[
DR

(3)
a

i
(3)
a ,h

(3)
a

(
λ−1
a+

)
BR

(3)
a →R

(1)
a ,R

(2)
a ;µa

h
(3)
a →i

(1)
a ,i

(2)
a

(
3∏
p=1

B
R

(p)
a →∪b,αr

(p)
ba,α∪γ r̄

(p)
a,γ ;ν

+(p)
a

i
(p)
a →∪b,αl

(p)
ba,α∪γ l̄

(p)
a,γ

)

×

(∏
b,α

B
r
(3)
ba,α→r

(1)
ba,α,r

(2)
ba,α;νba,α

l
(3)
ba,α→l

(1)
ba,α,l

(2)
ba,α

) ∏
γ

∑
ν̄a,γ

B
r̄
(3)
a,γ→r̄

(1)
a,γ ,r̄

(2)
a,γ ;ν̄a,γ

l̄
(3)
a,γ→l̄

(1)
a,γ ,l̄

(2)
a,γ

C
r̄
(3)
a,γ ;ν̄a,γ→r̄(1)

a,γ ,r̄
(2)
a,γ

S̄
(3)
a,γ→S̄

(1)
a,γ ,S̄

(2)
a,γ


(D.45)

The last equation shows that, at each node a in the quiver, the holomorphic GIO ring structure

constant factorises into two components, one associated with the positive node and one asso-

73



ciated with the negative node of the corresponding split node a. Figure 19 shows a pictorial

interpretation of this formula.

D.1 Diagrammatic derivation for an N = 2 SQCD

We are now going to present a diagrammatic recap of this derivation, for the example of an

N = 2 SQCD already discussed in section 4.2. Our starting point is (D.11), where each LLL(i)

has been simplified as in eq. (4.10). We can depict this quantity as in Fig. 26.

Figure 26: Diagrammatic representation of the chiral ring structure constants for an N = 2 SQCD,
corresponding to eq. (D.11).

After using identity (D.14), which is represented in Fig. 24, the diagram is transformed to

the one in Fig. 27. We see that now the three disjoint diagrams of the previous Fig. 26 are
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now joined into a single connected component.

Figure 27: The diagram for the chiral ring structure constants after using the identity (D.14). The
horizontal bars are to be identified.

Here we can see the relevance of the permutations λ− and λ+, which were previously

obtained in the explicit derivation. They allow the fusing of all the state indices of the three

disjoint pieces of Fig. 26. This can be understood by looking at Fig. 27. Let us follow the

flow at the top of the diagram from r(1) ⊗ r̄(1)
q ⊗ r(2) ⊗ r̄(2)

q to R(3). This corresponds to the

embeddings

Sn(1) × S
n

(1)
q
× Sn(2) × S

n
(2)
q
→ S

n(1)+n
(1)
q
× S

n(2)+n
(2)
q
→ S

n(1)+n(2)+n
(1)
q +n

(2)
q

(D.46)

and

[n(1)] t [n(1)
q ] t [n(2)] t [n(2)

q ]→ [n(1) + n(1)
q ] t [n(2) + n(2)

q ]→ [n(1) + n(1)
q + n(2) + n(2)

q ] (D.47)

The second embedding corresponds to the branching coefficient labelled by µ. In the branching
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after the λ+ permutation, R(3) splits into r(3) and r
(3)
q . The relevant embedding is now

[n(1) + n(2)] t [n(1)
q + n(2)

q ]→ [n(1) + n(1)
q + n(2) + n(2)

q ] (D.48)

which comes naturally from the construction of O(LLL3). The purpose of λ+ is to allow the

transition from (D.47) to (D.48). A similar (but reversed) role is played by the permutation

λ−.

Now we use the relation in Fig. 25 to separate the edges corresponding to the quark (and

antiquark) fields from the rest of the diagram. We thus obtain Fig. 28.

Figure 28: The outcome of inserting the identity described by Fig. 25 into Fig. 27. The horizontal
bars are to be identified.

The last step is to separate all the edges connected to the negative node of the split-

node from all the edges connected to its positive node. As explained in the derivation above,

this operation is achieved through the identity (D.43), which in this example takes the form

depicted in Fig. 29.
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Figure 29: Diagrammatic description of eq. (D.43) for the N = 2 SQCD example.

Once this diagrammatic relation has been inserted into Fig. 28, we straightforwardly

obtain the final diagram for the chiral ring structure constants for an N = 2 SQCD, depicted

in Fig. 18.

E Quiver Restricted Schur Polynomials for an N = 2

SQCD: ~n = (2, 2, 2) Field Content

In this appendix we will summarise the main steps which led to the expression of the operators

in (5.37). In particular we will derive all the fourteen different quiver characters, corresponding

to the set of labels LLLi described in (5.36), i = 1, 2, ..., 14. The operators (5.37) are then readily

obtained by using the definition (3.19).

We start from O(LLL1) and O(LLL2). Their quiver characters can be immediately computed

to be respectively

χ(LLL1, ~s, σ) =
1√
4!
C

i j

s1,s2
C

p q

s̄1,s̄2
, χ(LLL2, ~s, σ) =

1√
4!

sign(σ)C
i
j

s1,s2
C

p
q

s̄1,s̄2
(E.1)

Here we used the Clebsch-Gordan coefficients already derived in (5.29). We will keep using

this notation for the rest of this appendix.

Let us now turn to the three dimensional representation of S4. We choose a basis

{e1, e2, e3} in which the three Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) of

S4 have the eigenvalues in table 2.

77



(12) (13) + (23) (14) + (24) + (34)

e1 1 -1 2

e2 -1 1 2

e3 1 2 -1

Table 2: Eigenvalues of the Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) on our
chosen basis {e1, e2, e3} for the standard representation of S4.

Alternatively, we can specify our basis choice with the standard Young tableaux

e1 ∼ 1 2 4
3

, e2 ∼ 1 3 4
2

, e3 ∼ 1 2 3
4

(E.2)

We now consider the group restriction S4|S2×S2
= {(1), (12), (34), (12)(34)}. Under this re-

striction, the decomposes as∣∣∣∣
S2×S2

= ⊗ ⊕ ⊗ ⊕ ⊗ (E.3)

The branching coefficients for this group reduction will then be the matrix elements of the

orthogonal operator B such that

B−1D ( (1) )B =


1 0 0

0 1 0

0 0 1

 , B−1D ( (12) )B =


1 0 0

0 −1 0

0 0 1

 ,

B−1D ( (34) )B =


1 0 0

0 1 0

0 0 −1

 , B−1D ( (12)(34) )B =


1 0 0

0 −1 0

0 0 −1


(E.4)

In our basis choice (E.2) the matrix B reads

B =
1√
3


√

2 0 −1

0
√

3 0

1 0
√

2

 (E.5)
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The branching coefficient for (E.3) are then

B → ,
1→1,1 =

√
2
3
, B → ,

1→1,1 = 0 , B → ,
1→1,1 = − 1√

3
,

B → ,
2→1,1 = 0 , B → ,

2→1,1 = 1 , B → ,
2→1,1 = 0 ,

B → ,
3→1,1 = 1 , B → ,

3→1,1 = 0 , B → ,
3→1,1 =

√
2
3

(E.6)

We now define the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 , P → ,

i,j = B → ,
i→1,1 B → ,

j→1,1 ,

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 (E.7)

which project the of S4 on the ⊗ , on the ⊗ and on the ⊗ of S2 × S2

respectively. We also define a fourth operator, that we label T , as

Ti,j = B → ,
i→1,1 B → ,

j→1,1 (E.8)

These matrices explicitly read

P → , = 1
3


2 0

√
2

0 0 0

√
2 0 1

 , P → , =


0 0 0

0 1 0

0 0 0

 ,

P → , = 1
3


1 0 −

√
2

0 0 0

−
√

2 0 2

 , T = 1
3


−
√

2 0 2

0 0 0

−1 0
√

2



(E.9)

The quiver character for O(LLL3), O(LLL4), O(LLL5), O(LLL6), O(LLL7) are then

χ(LLL3, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i j

s1,s2
C

p q

s̄1,s̄2
,

χ(LLL4, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i j

s1,s2
C

p q

s̄1,s̄2
,

χ(LLL5, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i
j

s1,s2
C

p
q

s̄1,s̄2
, (E.10)
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χ(LLL6, ~s, σ) =
1

2
√

2
Tr
[
D (σ)T

]
C

i j

s1,s2
C

p
q

s̄1,s̄2
,

χ(LLL7, ~s, σ) =
1

2
√

2
Tr
[
D (σ)T t

]
C

i
j

s1,s2
C

p q

s̄1,s̄2

Here T t is the transpose of the matrix T in (E.8).

We now focus on the representation of S4. This representation can be obtained by

tensoring together the standard and the sign representation of S4:

= ⊗ (E.11)

In the following, we will continue to use (E.2) as our basis choice for the standard representation

. Under the group restriction S4|S2×S2
= {(1), (12), (34), (12)(34)}, the decomposes as

∣∣∣∣∣∣
S2×S2

= ⊗ ⊕ ⊗ ⊕ ⊗ (E.12)

As in the previous instance, the branching coefficients for this group reduction are the matrix

elements of the orthogonal operator B, such that

B−1D ( (1) )B =


1 0 0

0 1 0

0 0 1

 , B−1D ( (12) )B =


1 0 0

0 −1 0

0 0 −1

 ,

B−1D ( (34) )B =


−1 0 0

0 1 0

0 0 −1

 , B−1D ( (12)(34) )B =


−1 0 0

0 −1 0

0 0 1


(E.13)

In our basis choice, the matrix B reads

B =
1√
3


0 −1

√
2

√
3 0 0

0
√

2 1

 (E.14)
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The branching coefficient for (E.12) are thus

B → ,
1→1,1 = 0 , B → ,

1→1,1 = − 1√
3
, B → ,

1→1,1 =
√

2
3
,

B → ,
2→1,1 = 1 , B → ,

2→1,1 = 0 , B → ,
2→1,1 = 0 ,

B → ,
3→1,1 = 0 , B → ,

3→1,1 =
√

2
3
, B → ,

3→1,1 = 1√
3

(E.15)

Closely following the procedure of the previous paragraph, we define the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 , P → ,

i,j = B → ,
i→1,1 B → ,

j→1,1 ,

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 (E.16)

These operators project the of S4 on the ⊗ , on the ⊗ and on the ⊗ of S2×S2

respectively. We also introduce the operator V :

Vi,j = B → ,
i→1,1 B → ,

j→1,1 (E.17)

These matrices explicitly read

P → , =


0 0 0

0 1 0

0 0 0

 , P → , = 1
3


1 0 −

√
2

0 0 0

−
√

2 0 2

 ,

P → , = 1
3


2 0

√
2

0 0 0

−
√

2 0 1

 , V = 1
3


−
√

2 0 −1

0 0 0

2 0
√

2



(E.18)

Notice that V = T t, where T is the matrix defined in (E.9). The quiver character for O(LLL8),

O(LLL9), O(LLL10), O(LLL11), O(LLL12) are therefore

χ(LLL8, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i
j

s1,s2
C

p
q

s̄1,s̄2
,

χ(LLL9, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i j

s1,s2
C

p q

s̄1,s̄2
, (E.19)
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χ(LLL10, ~s, σ) =
1

2
√

2
Tr
[
D (σ)P → ,

]
C

i
j

s1,s2
C

p
q

s̄1,s̄2
,

χ(LLL11, ~s, σ) =
1

2
√

2
Tr
[
D (σ)V

]
C

i j

s1,s2
C

p
q

s̄1,s̄2
,

χ(LLL12, ~s, σ) =
1

2
√

2
Tr
[
D (σ)V t

]
C

i
j

s1,s2
C

p q

s̄1,s̄2

Two operators still remain. They can be obtained by considering the S4 representation

branching ∣∣∣∣
S2×S2

= ⊗ ⊕ ⊗ (E.20)

The representation of S4 is really a representation of the quotient group S4/{(1),

(12)(34), (13)(24), (14)(23)}, which in turn is isomorphic to S3. This representation is thus

just the standard representation of S3 pulled back to S4 via this quotient [38]. We choose a

basis {e1, e2} in which the Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) of S4

have the eigenvalues in table 3.

(12) (13) + (23) (14) + (24) + (34)

e1 1 -1 0

e2 -1 1 0

Table 3: Eigenvalues of the Jucys-Murphy elements (12), (13) + (23), (14) + (24) + (34) on our
chosen basis {e1, e2} for the two-dimensional representation of S4.

The standard Young tableaux labelling of this basis is

e1 ∼ 1 2
3 4

, e2 ∼ 1 3
2 4

(E.21)
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An explicit representation of is therefore obtained by considering the set of matrices

D ( (1) ) = D ( (12)(34) ) = D ( (13)(24) ) = D ( (14)(23) ) =

 1 0

0 1

 ,

D ( (12) ) = D ( (34) ) = D ( (1324) ) = D ( (1423) ) =

 1 0

0 −1

 ,

D ( (13) ) = D ( (24) ) = D ( (1234) ) = D ( (1432) ) =

 −1
2
−
√

3
2

−
√

3
2

1
2

 ,

D ( (23) ) = D ( (14) ) = D ( (1342) ) = D ( (1243) ) =

 −1
2

√
3

2

√
3

2
1
2

 ,

D ( (123) ) = D ( (243) ) = D ( (142) ) = D ( (134) ) =

 −1
2
−
√

3
2

√
3

2
−1

2

 ,

D ( (132) ) = D ( (143) ) = D ( (234) ) = D ( (124) ) =

 −1
2

√
3

2

−
√

3
2
−1

2



(E.22)

With this basis choice, under the group restriction S4|S2×S2
= {(1), (12), (34), (12)(34)}, we

have

D ( (1) ) =

 1 0

0 1

 , D ( (12) ) =

 1 0

0 −1

 ,

D ( (34) ) =

 1 0

0 −1

 , D ( (12)(34) ) =

 1 0

0 1


(E.23)

The decomposition (E.20) is already manifest. The branching coefficients for this reduction

are then

B → ,
j→1,1 = δj,1 , B → ,

j→1,1 = δj,2 , j = 1, 2 (E.24)
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We can now write the orthogonal projectors

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 −→ P → , =

 1 0

0 0

 ,

P → ,
i,j = B → ,

i→1,1 B → ,
j→1,1 −→ P → , =

 0 0

0 1


(E.25)

projecting the of S4 on the ⊗ and on the ⊗ of S2 × S2 respectively. The quiver

characters for the remaining two operators, O(LLL13) and O(LLL14), are then

χ(LLL13, ~s, σ) =
1

2
√

3
Tr
[
D (σ)P → ,

]
C

i j

s1,s2
C

p q

s̄1,s̄2
,

χ(LLL14, ~s, σ) =
1

2
√

3
Tr
[
D (σ)P → ,

]
C

i
j

s1,s2
C

p
q

s̄1,s̄2
(E.26)
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