
Action-Sound Latency: Are Our Tools Fast Enough?

Andrew P. McPherson
Centre for Digital Music

School of EECS
Queen Mary U. of London
a.mcpherson@qmul.ac.uk

Robert H. Jack
Centre for Digital Music

School of EECS
Queen Mary U. of London

r.h.jack@qmul.ac.uk

Giulio Moro
Centre for Digital Music

School of EECS
Queen Mary U. of London

g.moro@qmul.ac.uk

ABSTRACT
The importance of low and consistent latency in interactive
music systems is well-established. So how do commonly-
used tools for creating digital musical instruments and other
tangible interfaces perform in terms of latency from user ac-
tion to sound output? This paper examines several common
configurations where a microcontroller (e.g. Arduino) or
wireless device communicates with computer-based sound
generator (e.g. Max/MSP, Pd). We find that, perhaps
surprisingly, almost none of the tested configurations meet
generally-accepted guidelines for latency and jitter. To ad-
dress this limitation, the paper presents a new embedded
platform, Bela, which is capable of complex audio and sen-
sor processing at submillisecond latency.

Author Keywords
Latency; jitter; timing accuracy; embodied interaction; mu-
sical interaction; embedded hardware.

ACM Classification
H.5.1 [Multimedia Information Systems] Evaluation / method-
ology, H.5.2 [User Interfaces] Benchmarking, H.5.5 [Sound
and Music Computing] Systems

1. INTRODUCTION
In his theory of embodied music cognition [11], Marc Le-
man holds that the musical instrument becomes a natural
extension of the player’s body. Through extended prac-
tice, the instrument becomes “transparent” to the player
who can then focus directly on the music. More broadly,
the idea that technological artefacts can become extensions
of the body has deep roots in philosophy [15] and support
from experimental psychology (e.g. [14]). However, in the
domain of digital interactive systems, there is still much to
learn about how the design of the tool itself affects the user’s
incorporation of it into the body schema.

Latency is a fundamental issue affecting digital systems.
The delay between a user’s action and the corresponding
reaction (be it auditory, visual or tactile) can present prob-
lems both obvious and subtle. This paper examines the
state of play in 2016, measuring whether platforms com-
monly used to create interactive music systems meet generally-

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’16, July 11-15, 2016, Griffith University, Brisbane, Australia.
.

accepted guidelines for latency and jitter (variation in la-
tency).

Where previous papers have focused on latency in a sin-
gle component (e.g. audio throughput latency [21, 20] and
roundtrip network latency [17]), this paper measures the
latency of complete platforms commonly employed to cre-
ate digital musical instruments. Within these platforms we
test the most reductive possible setup: producing an audio
“click” in response to a change on a single digital or ana-
log pin. This provides a minimum latency measurement for
any tool created on that platform; naturally, the designer’s
application may introduce additional latency through filter
group delay, block-based processing or other buffering.

In addition to latency tests on commonly-used platforms,
this paper also presents Bela [16], a new hard real-time
audio processing platform based on the BeagleBone Black.
Bela is capable of synchronous audio and sensor processing
with submillisecond latencies and jitter under 50µs.

2. HOW FAST IS “FAST ENOUGH”?
In 2002, Wessel and Wright suggested that digital musical
instruments should aim for latency less than 10ms [22]. This
figure is perhaps the most common one still used in the
community, though Lago and Kon [10] point out that the
threshold is highly dependent on musical context and spatial
positioning. Percussive interactions are likely to be the most
sensitive to latency: humans tapping a steady beat exhibit
variations around 4ms [19]. An asynchrony of 6ms in a
steady pulse is detectable by listeners [6].

On the other hand, continuous gestural interaction may
be less sensitive to latency: 20-30ms was the minimum de-
tectable by theremin performers [13]. In a study of audio-
tactile latency, Dahl and Bresin [3] found that in a system
with latency, musicians execute their gestures ahead of the
beat to align the sound with a metronome, and that they
can maintain synchronisation this way up to 55ms latency.

Outside the musical domain, Kaaresoja et al. [9] exam-
ine touchscreen buttons, suggesting that latency should be
lowest for the tactile channel (5-50ms) followed by audio
(20-70ms) and finally visuals (30-85ms). Deber et al. [4]
provide a survey of latency in touch interfaces, and show
that the just-noticeable difference from touch to visual out-
put is lower for dragging (11ms) than for tapping (69ms).

The analyses in this paper use Wessel’s 10ms standard
as a point of reference, though we suspect that the ideal
threshold may be much lower for percussive musical inter-
actions.

2.1 Jitter
In addition to constant latency, variation in timing (jitter)
can present a problem for interactive systems. While users
can compensate for static latency [3], unpredictable varia-
tion cannot be corrected.



Tester  
(16MHz AVR) Dig. 

In

D.U.T.
Uno or Teensy

US
B serial, MIDI, or 

HID protocol

Computer

USB host 
transceiver

OS USB 
drivers

Sound
program

OS audio 
drivers Audio DAC

Comparator
(0.5V)

Dig. 
Out

Figure 1: Signal flow of the latency testing setup,
showing an Arduino attached to a computer as the
device under test. Tests are initiated by the Tester
and measure the total reaction time of the DUT and
computer.

Measurements of human sensorimotor synchronisation of-
fer clues to the amount of acceptable jitter. Repp and Su
[18] provide a detailed review. Notably, the standard de-
viation of asynchrony is lower for highly trained musicians
than for nonmusicians. Fujii et al. [7] find that profes-
sional drummers can achieve a mean synchronisation error
of 2ms for a metronome at 1000ms and 500ms, and 1ms for a
metronome at 300ms, with standard deviations of 10-16ms.
Of course, these numbers do not tell us the maximum ac-
ceptable amount of jitter, but it stands to reason that any
system with jitter less than 1ms would be sufficient for even
the most stringent scenarios.

2.2 Previous Device Measurement Work
Latency measurement in sound systems typically focuses on
audio input to audio output. In 2010, Wang et al. [21] mea-
sured desktop audio latency, finding results ranging from
just over 3ms to 70ms depending on the operating system
and driver. In 2014, Topliss et al. [20] found latencies as low
as 2.5ms on BeagleBone Black. The lowest latencies typi-
cally require small hardware buffer sizes which are prone to
dropouts as system load increases.

Mitchell et al. [17] in 2014 measured roundtrip network
latency for OSC over WiFi networks using the x-OSC board
[12], identifying a number of factors affecting performance
including network settings, RF interference and network
load. They found a mean of 5.3ms under ideal conditions in
an RF-controlled environment, rising to 8.1ms under load,
with jitter in the range of 1-5ms.

Measuring latency from a sensor input to an audio output
is a further challenge. The sensor data often arrives asyn-
chronously to the audio clock, and multiple communication
busses and software drivers may separate the streams. Un-
like pure audio throughput, the asynchrony of these streams
can potentially result in a large amount of jitter.

3. LATENCY EXPERIMENTS
The primary source of latency lies not in the processing
speed of the microcontroller but in the communication link,
which can be affected by limited bandwidth, OS drivers not
optimised for latency, delays and jitter in scheduling within
a program. All of these are added to the inherent audio
latency of the computer. We examine the effect of all of
these factors in this section.

Code for the tester and the devices under test, along with
raw data of the results, is available online.1 The link also
contains further tests which do not fit in this paper.

1http://isophonics.net/latency-measurements. Code
is available under a Creative Commons BY-SA 3.0 license.

3.1 Measurement Jig
A latency tester was created using an Arduino Uno. In
place of the normal Arduino library calls, low-level GPIO
register access and hardware timers were used with inter-
rupts disabled for maximum timing accuracy. Sample re-
sults were validated using a digital oscilloscope, showing
consistent timing within ±1µs.

Figure 1 shows how the tester attaches to the device under
test (DUT). A GPIO output from the tester connects to
an input on the DUT. The DUT connects by USB to a
computer running audio software. The audio output of the
computer runs to a comparator at 0.5V whose digital output
goes back to the tester.

3.2 Test Procedure
The measurement procedure for a single test involving a
microcontroller and computer is as follows:

1. Tester toggles GPIO pin from low to high;
2. Upon measuring the change, DUT sends a message to

the computer via USB;
3. When the computer receives the message, it generates

a click at the audio output, consisting of an immediate
jump from 0 to 1 followed by a 20ms ramp back to 0;

4. The click produces a low-to-high transition on the
comparator which is measured by the tester. The
tester records the time from toggling the pin to re-
ceiving this response.

A similar procedure applies when the DUT is a wireless
link; when the DUT is an embedded computer, it may per-
form both functions 2 and 3 internally. A test set consists of
around 1000 consecutive measurements by the tester, sep-
arated with a 250ms delay between tests. The tester sends
latency measurements in microseconds via a separate USB-
serial link, which is logged to file on the computer.

From 1000+ trials, mean latency can be calculated. To
measure jitter, we first discard the upper and lower 2.5%
of measurements (to eliminate spurious or transient events)
then subtract the shortest from the longest latency.

3.3 Configurations Tested
Our tests were divided into three categories: microcontroller-
computer links; single-board computers; and wireless com-
munication links.

3.3.1 Microcontroller to Computer
We tested two microcontrollers: Arduino Uno and Teensy
2.0. Both use a 16MHz AVR. The Uno uses a hardware
serial port connected to a separate USB-to-serial converter.
The Teensy has native on-chip USB support. For the Uno,
we tested serial bitrates of 9600bps and 115200bps. Bitrate
is much higher (over 1Mbps), and not adjustable, on the
native USB-serial of the Teensy.

On the Teensy, we further tested it in three different USB
modes: serial, MIDI and mouse (click button on trigger).
This comparison examined the effects of OS drivers and
software support on latency.

Sound was generated from the built-in audio device of a
MacBook Pro (mid 2014) with a 2.7GHz Core i7 and 16GB
of RAM, running MacOS X 10.10.5. Two programs were
tested: Max/MSP 6.1.9 and Pd-extended 0.43.4. Max/MSP
uses the native CoreAudio drivers; Pd was configured to use
the portaudio library [1]. Various audio buffer sizes were
compared on Max/MSP; Pd was used at its lowest buffer
size of 64 samples.

3.3.2 Single-Board Computers



Block 32, [qmetro 2]

Block 32, [qmetro 5]

Block 32, [qmetro 10]

Block 32, [qmetro 20]

Block 128, [qmetro 5]

Block 128, [qmetro 10]

Block 128, [qmetro 20]

Block 512, [qmetro 5]

Block 512, [qmetro 10]

Block 512, [qmetro 20]

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Figure 2: Latency of Arduino Uno connected
to Max/MSP for various audio block sizes and
serial polling intervals. Dashed line indicates
10ms target; error bars indicate jitter.

Teensy 2.0, USB-MIDI, Overdrive Interrupts
Teensy 2.0, USB-MIDI

Teensy 2.0, USB mouse click emulation
T2.0, USB-serial, [qmetro 2], send on event
T2.0, USB-serial, [qmetro 5], send on event
T2.0, USB-ser., [qm. 10], stream, 5ms delay

Uno @115kbps, [qmetro 2], send on event
Uno @115kbps, [qmetro 5], send on event

Uno @115kbps, [qmetro 10], send on event
Uno @115kbps, [qmetro 20], send on event
Uno @115kbps, [qm. 5], stream, 5ms delay

Uno @115kbps, [qmetro 5], stream, no delay
Uno @9600bps, [qmetro 5], send on event

Uno @9600bps, [qm. 10], stream, 5ms delay
Uno @9600bps, [qm. 10], stream, no delay

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00
91.5

Figure 3: Latency performance of Arduino (“Uno”) and
Teensy (“T2.0”) to Max/MSP; audio block size 32.

Latency (ms)
6 8 10 12 14 16 18 20 22 24

C
ou

nt

0

50

100

150

200

250

300

350

400

450
Histogram: Uno @ 115200bps, Max 6.1.9, block size 128, [qmetro 5]

Figure 4: Example latency histogram, showing
jitter at intervals of the audio block size.

T2.0, USB-MIDI, callbacks enabled
Teensy 2.0, USB-MIDI

T2.0, USB mouse, callbacks enabled
Teensy 2.0, USB mouse

T2.0, USB-serial, send on event
T2.0, USB-serial, stream, 5ms delay

T2.0, USB-serial, stream, no delay
Uno @115kbps, send on event

Uno @115kbps, stream, 5ms delay
Uno @115kbps, stream, no delay

Uno @9600bps, stream, 5ms delay
Uno @9600bps, stream, no delay

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

87.3

Figure 5: Latency performance of Arduino/Teensy to Pd
using portaudio on Mac; audio block size 64 samples.

We tested a Raspberry Pi 2 running Pd-extended 0.43.4
on Satellite CCRMA [2]. We examined GPIO input both
natively on the Pi and via an Arduino Uno attached by
USB. We also compared the performance of the built-in
PWM audio output, the IQaudIO Pi-DAC+ audio board
which connects via I2S, and an external USB audio interface
(Focusrite Scarlett 8i6). Pd was run with a buffer size of 64
samples with the minimum delay setting that did not lead
to dropouts.

We also compared Satellite CCRMA on Pi 2 against the
standard Raspbian (Jessie) image running on both Pi 2 and
Pi 3. Pd was used with similar settings in each case.

Finally, we tested the Bela [16] single-board computer
platform, as discussed separately in Section 5.

3.3.3 Wireless Links
We examined three wireless communication devices: the x-
OSC WiFi module [12], a pair of Xbee Series 2 wireless mod-
ules, and a Bluetooth Low-Energy (BLE) device (BLEMini
from Red Bear Labs). x-OSC testing was performed on a
21-inch iMac (midi 2010) with a 3.2GHz Core i3 and 4GB of
RAM, running MacOS X 10.10 and Max/MSP 7.1.0. Sev-
eral wireless settings were tried, discussed in Section 4.

In the Xbee setup, the tester was attached to one Xbee
module acting as a router. The router sent messages to
the second Xbee which acted as a coordinator. The router
was set to the highest possible sampling rate of 20Hz (50ms
intervals). The coordinator Xbee was connected to a second
Arduino Uno which parsed the Xbee native output and sent
a 1 or 0 over the USB-serial link at 9600bps to Max/MSP
running on the iMac.

The BLEmini was tested on the same MacBook Pro de-
scribed in Section 3.3.1 using the computer’s built-in BLE
support. Because MacOS X only natively supports BLE
keyboards and mice, which was not possible to configure

on the BLEmini, a simple helper application (derived from
the SimpleControls example by Red Bear Labs) using Ap-
ple’s IOBluetooth framework received BLE messages from
the device and sent an OSC message to Max/MSP running
on the same computer.

4. RESULTS
In this section, we examine the latency performance of each
set of devices. We compare different settings and configura-
tions of each device and offer recommendations to designers
using these devices to create DMIs.

4.1 Microcontroller to Computer
Figure 2 shows latency and jitter for an Arduino Uno con-
nected to Max/MSP for varying audio block sizes. As ex-
pected, latency increases with larger audio buffer sizes.

Figure 3 focuses on the smallest block size for Max/MSP
(32 samples) and compares different communication proto-
cols. In USB-serial mode, the most common communication
protocol for Arduino, none of the configurations consistently
met Wessel’s 10ms latency target, even on the highest bi-
trates and the smallest audio buffer sizes. The fastest set-
tings on Max/MSP produced a mean latency of 8.2ms, but
jitter resulted in >10ms latency 12% of the time. The serial
object in Max/MSP requires polling, and this configuration
relied on a 500Hz timer which is unlikely to perform well
under load. This suggests that 10ms latency is unattainable
in practical situations.

The best case of Teensy 2.0 USB-serial showed 0.7ms
more latency (8.9ms) than the Uno, a surprising result given
its higher bandwidth, which is perhaps due to driver varia-
tions. Using 9600bps on Arduino (still the default in many
code examples) adds a further 3.2ms latency in the fastest
case tested, explainable by the time it takes to transmit 3
bytes (character + CR + LF) at this bitrate.



Pi2 GPIO, I2S DAC, 5ms delay, -rt
Pi2 GPIO, I2S DAC, 5ms delay

Arduino, I2S DAC, 5ms delay, -rt
Arduino, I2S DAC, 5ms delay

Pi2 GPIO, USB DAC, 5ms delay, -rt
Pi2 GPIO, USB DAC, 5ms delay

Arduino, USB DAC, 5ms delay, -rt
Arduino, USB DAC, 5ms delay

Pi2 GPIO, internal, 22ms delay, -rt
Pi2 GPIO, internal, 22ms delay

Arduino, internal, 22ms delay, -rt
Arduino, internal, 22ms delay

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Figure 6: Latency of Pd on Raspberry Pi 2 for inter-
nal audio and USB and I2S sound cards, triggered
from internal or Arduino GPIO; audio block size 64.

Using MIDI or mouse events instead of serial resulted in a
substantial improvement in performance. The best perfor-
mance was attained in Max/MSP with a block size of 32, all
scheduler overdrives enabled, and a MIDI trigger, resulting
in 5.1ms mean latency. Without overdrive settings, mean
latency was 6.4ms for MIDI or 5.7ms for mouse clicks.

Latency in Pd (Figure 5) was consistently worse than
Max/MSP. The lowest serial latency was 16.8ms (Uno at
115200bps), with Teensy serial 0.5ms slower. Best perfor-
mance was obtained with MIDI triggers and the “callbacks
enabled” option selected in the Pd audio settings, resulting
in 9.0ms average latency (9.5ms maximum in any trial).

The difference between Pd and Max/MSP is not explain-
able by audio buffer sizes alone (64 in Pd vs. 32 in Max). It
suggests that another audio pipelining stage exists within
Pd, or perhaps in the audio libraries it uses. Pd can run
on either portaudio or JACK. We tested a similar setting
on JACK (Arduino Uno at 115200bps) and found similar
performance (18.7ms latency in JACK vs. 16.8ms for por-
taudio, with 10ms jitter).

Jitter was above 1ms in every configuration tested. MIDI
on Max/MSP exhibited the best performance at 1.5ms jit-
ter, where the serial configurations all showed jitter of 5ms
or higher (and sometimes over 20ms). Jitter results for Pd
were similar, though two of the 9600bps serial configura-
tions showed high latency (21ms) with low jitter (1.5ms).
Histograms of each individual test result (e.g. Figure 4)
show that jitter tends to be at intervals of the hardware
audio block size, meaning that using smaller audio blocks
improves both raw latency and jitter.

4.1.1 Recommendations
The latency performance of the USB-serial interface is at
least sporadically over 10ms in every situation tested, but
USB-MIDI and HID fared much better. The difference
probably lies in OS MIDI drivers being optimised for la-
tency performance. Wherever possible, DMI designers us-
ing a microcontroller would be best placed to implement a
native USB-MIDI device. If the MIDI specification proves
limiting, data could be transmitted by Sysex messages.

If an Arduino Uno is the only available choice, then set-
ting the serial baud rate to 115200bps and reducing the
[qmetro] polling interval in Max/MSP improves latency
performance, even when there is relatively little data being
transmitted.

Generally speaking, latency performance is better when
data is transmitted only on a trigger, rather than in a con-
tinuous stream. Of course, this limits the ability to simulta-
neously transmit other continuous data streams across the
same channel.

Max/MSP shows better latency than Pd. However, other

x-OSC, router, digital trigger
x-OSC, router, analog 50Hz

x-OSC, router, analog 100Hz
x-OSC, router, analog 200Hz
x-OSC, router, analog 400Hz

x-OSC, iMac, digital trigger
x-OSC, iMac, analog 50Hz

x-OSC, iMac, analog 100Hz
x-OSC, iMac, analog 200Hz

Xbee, trigger, [qmetro 2]
Xbee, trigger, [qmetro 5]

Xbee, trigger, [qmetro 10]
Xbee, stream 5ms, [qmetro 2]

BLEmini, trigger
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

142

Figure 7: Latency of x-OSC (WiFi), Xbee and
BLEmini (Bluetooth LE) wireless boards connected
to Max/MSP at a block size of 32 samples.

factors including open-source status often drive the decision
to choose one tool over another. In either tool, the minimum
usable audio buffer size should be chosen.

4.2 Raspberry Pi
Figure 6 shows the results with Pd on Raspberry Pi 2 using
Satellite CCRMA. Unlike Pd on the Mac, a nonzero value
for Pd’s Delay setting was needed for glitch-free operation.
The minimum reliable values were chosen for these tests.

Excellent performance can be obtained using the I2S DAC
and the internal GPIO of the Rasbperry Pi. Running Pd
with the -rt flag, the mean latency is 4.6ms (or 5.5ms with-
out the flag). Jitter is 1.5ms in both cases. Neither of the
other two audio devices fared well: using the internal PWM
sound, a higher Delay value was needed and the best latency
performance was 14.2ms with 10ms of jitter. Using the Fo-
cusrite USB audio interface, performance of 11.7ms could
be achieved with 3.0ms jitter.

The internal GPIO of the Rasberry Pi performed sub-
stantially better than the Arduino Uno connected by USB.
Only one of the Arduino configurations (I2S DAC, no -

rt flag) achieved mean latency of under 10ms (8.0ms in
this case), and even then, latency was over 10ms 7% of the
time. The poor performance of USB for either audio or
triggering might be explained by the 1ms frame interval in
the full-speed USB protocol used by most devices or by the
performance of the OS drivers.

Separately, we tested the default Raspbian Jessie image
running on both a Pi 2 and the newer Pi 3. With the best
settings (I2S DAC, internal GPIO, -rt), the Pi 2 achieved
mean latency of 6.2ms (2.9ms jitter) and the Pi 3 achieved
7.7ms latency (4.4ms jitter). This compares with 4.6ms
mean (1.5ms jitter) on Satellite CCRMA, demonstrating
that Satellite CCRMA does offer noticeably improved per-
formance. At the time of publication, Satellite CCRMA was
not available for Pi 3, however it appears that even with the
same software, the Pi 3 offers no latency advantage.

4.2.1 Recommendations
Excellent latency performance can be achieved on Rasp-
berry Pi 2 provided an I2S audio codec is used alongside
the onboard GPIO, a result which aligns with findings on
the BeagleBone Black [20]. Involving USB anywhere in the
chain, either for sensor gathering or for audio, significantly
degrades performance. In fact, audio performance seems to
depend heavily on the particular model of USB audio in-
terface: we earlier tested a Behringer U-Control UCA222
interface and found over 45ms of latency in every case.

Unfortunately, I2S audio boards tend to be more expen-
sive than the cheapest USB audio interfaces, and they oc-
cupy the Pi’s expansion header. USB audio interfaces still



produce superior results to the onboard PWM audio both
in terms of latency and quality. Here again, internal GPIO
should be used if possible.

The Raspberry Pi 3 offers processing power advantages
over the earlier Pi 2, but it does not improve latency per-
formance. Therefore if Pi 2 is adequate for a given sound
synthesis application, no performance benefit should be ex-
pected from upgrading to Pi 3.

4.3 Wireless Links
Figure 7 examines several configurations of the x-OSC WiFi
board. Three wireless networks were tested: the x-OSC
ad hoc network, the iMac shared network, and a consumer
Sagecom WiFi router. ([17] recommends the use of an ex-
ternal router.) We found significant packet loss with the
x-OSC ad hoc network, so Figure 7 only shows the other
two cases. Lost packets resulted in occasional missed trig-
gers in some of the iMac WiFi tests; no missed triggers were
observed on the external router. Missed triggers were ex-
cluded from the calculations but may have a practical effect
on a DMI. All tests were in unicast mode.

The x-OSC board was tested in two modes: digital trig-
ger, where a message is sent only when the digital pin
changes values; and analog sampling, where regular sam-
ples are taken of an analog input. Analog sampling was
tested at 50Hz, 100Hz, 200Hz and 400Hz on the external
router. The 400Hz case was excluded from the iMac WiFi
because of high packet loss. On both WiFi networks, the
best performance was obtained with the digital trigger in-
put: mean latency 6.7ms on the router (95% range 5.7ms to
13.0ms), 12.3ms on the iMac WiFi (range 5.7ms to 57ms).

It might be expected that a faster analog sampling rate
would reduce the latency, but the opposite effect was ob-
served. For the iMac WiFi, mean latency ranged from 31ms
at 50Hz to 64ms at 200Hz. On the external router, 100Hz
sampling produced the best performance, with 14.9ms mean
latency (range 10 to 27ms). This is likely due to the network
saturation from transmitting high-frequency OSC packets.

Jitter patterns on the x-OSC tend to show a long-tailed
distribution, with most tests at a consistent baseline latency,
but some tests showing latencies of 50ms or more. Whether
this is due to packet loss, delays in WiFi transmission, or
limitations of the [udpreceive] object in Max/MSP merits
further testing.

Figure 7 also shows the results for the Xbee and BLEmini
boards. The best-case Xbee performance is 57ms with 11ms
jitter, perhaps related to its internal 20Hz sample rate. The
BLEmini showed a highly consistent latency of 139ms for

nearly all tests, though 1% of tests measured 334ms. It
is possible this results from a low-frequency data polling
process inside MacOS X.

4.3.1 Recommendations
The x-OSC produces by far the best latency of the wireless
options we tested; Xbee and computer-based BLE appear
unusable for most DMIs. At its best, x-OSC performance
rivals USB MIDI; however, by the nature of WiFi, spo-
radic packets may be delayed or even lost. These effects are
reduced, but not eliminated, by using an external router
rather than the built-in network of either the x-OSC or the
computer. Though the best latency in our trials was ob-
tained using digital triggers, x-OSC (and WiFi generally)
may be better suited for transmitting continuous gestural
interaction rather than percussive events which are by na-
ture unforgiving to sporadic delays.

BLE is commonly used to connect to smartphones, with
applications including Bluetooth MIDI. We have not tested
these configurations but their increasing use in commercial
music devices suggests that the performance will be signifi-
cantly better than we observed for computer-based BLE.

5. BELA: BEAGLEBONE LOW-LATENCY
AUDIO

Bela (http://bela.io, [16]) is a hard real-time, ultra-low-
latency audio and sensor platform for the BeagleBone Black
(BBB) single-board computer. The BBB features a 1GHz
ARM Cortex-A8 processor with a diverse set of on-board
peripherals. Bela uses a custom hardware expansion board
(“cape”) for the BBB (Figure 8) which contains stereo audio
I/O with integrated speaker amplifiers, plus 8 channels each
of 16-bit ADC and DAC.

The Bela software environment is based on a Xenomai
Linux kernel. Audio processing runs in a Xenomai real-time
task which can preempt the kernel itself, allowing buffer
sizes as small as 2 audio samples at 44.1kHz (46µs) without
underruns, regardless of other system load. Rather than
using the ALSA Linux audio drivers, hardware I/O bypasses
the kernel using the Programmable Realtime Unit (PRU), a
200MHz on-chip microcontroller which shares memory and
peripheral access with the CPU. For further details on the
design, see [16].

Bela has been used for a number of digital musical instru-
ments and interactive audio systems, including the D-Box
hackable instrument [23], an instrument featuring dynamic
tactile feedback [8], and an active vibration control system

Figure 8: Bela hardware: BeagleBone Black
with a custom expansion board for audio and
DC-coupled analog I/O.

Block = 4, 88.2kHz
Block = 8, 88.2kHz

Block = 16, 88.2kHz
Block = 2, 44.1kHz
Block = 4, 44.1kHz
Block = 8, 44.1kHz

Block = 1, 22.05kHz
Block = 2, 22.05kHz
Block = 4, 22.05kHz
Block = 8, 22.05kHz

Block = 16, 22.05kHz
Block = 32, 22.05kHz

0.00 2.00 4.00 6.00 8.00 10.00

Audio DAC
Non-Audio DAC

Figure 9: Latency performance of Bela using analog sen-
sor input and generating audio either via sigma-delta
(“audio”) DAC or AD5668 16-bit (“non-audio”) DAC. No
error bars as jitter is always less than 0.025ms.



for a musical instrument bridge [5].
Figure 9 shows the latency and jitter performance of Bela

triggered by an analog (sensor) input. Using the audio
(sigma-delta) DAC, consistent latency around 600µs can
be achieved. The dominant latency here is the FIR filter
within the sigma-delta DAC itself. Using the analog output
instead (which uses an AD5668 string DAC) reduces the la-
tency by 500µs, though this arrangement requires external
analog filtering for the best audio quality. Latencies of just
over 100µs can be reliably achieved with this DAC.

Because digital, analog and audio I/O is handled syn-
chronously within Bela, jitter is no more than a single sam-
pling period. In practice, every configuration of Bela mea-
sured a jitter of 23µs or less, even for larger block sizes.

6. CONCLUSION AND NEXT STEPS
Our results show that over a decade after Wessel and Wright’s
article [22] set out a 10ms standard for digital musical in-
struments, many platforms still fall short of this target.
Even under a reductive best-case scenario, a microcontroller
connected to a computer by USB fails to meet the 10ms
action-to-sound latency standard when communication uses
a serial protocol, which is a common way of using these
tools. This result holds true whether the device has a hard-
ware serial port (Arduino Uno) or native USB Communica-
tion Device Class support (Teensy 2.0).

Where the MIDI protocol is used with the smallest audio
buffer size, latency can be as low as 5.1ms on Max/MSP, but
jitter remains above 1ms. These numbers suggest that the
precision of these digital tools in any configuration may still
be lower than the precision of skilled human percussionists
(cf. [7]) which in turn suggests that these platforms could
become the limiting factor in demanding musical situations.

We plan further investigations into the effects of latency
for audio and tactile cues, aiming to see how user experience
changes when latency and jitter are introduced. We are fo-
cusing specifically on the performer experience rather than
that of the audience, for whom the speed of sound means
that audio cues normally arrive later than visual cues. An
ongoing line of enquiry is whether latency erodes the sense
of a tool’s transparency [11] even before the user becomes
consciously aware of a delay.

This paper also evaluated Bela, a platform that eliminates
asynchrony between sensors and audio by replacing both
microcontroller and computer with a high-performance em-
bedded board running hard real time data processing. With
latency under 1ms and jitter around 20µs, Bela meets even
the most stringent specification for interactive systems.

7. ACKNOWLEDGMENTS
This work was supported by EPSRC under grants EP/
K032046/1 (Hackable Instruments), EP/K009559/1 (Cen-
tre for Digital Music Platform Grant) and EP/L019981/1
(Fusing Semantic and Audio Technologies for Intelligent
Music Production and Consumption).

8. REFERENCES
[1] R. Bencina and P. Burk. Portaudio–an open source

cross platform audio API. In Proc. ICMC, 2001.

[2] E. Berdahl and W. Ju. Satellite CCRMA: A musical
interaction and sound synthesis platform. In Proc.
New Interfaces for Musical Expression, 2011.

[3] S. Dahl and R. Bresin. Is the player more influenced
by the auditory than the tactile feedback from the
instrument? In Proc. DAFx, 2001.

[4] J. Deber, R. Jota, C. Forlines, and D. Wigdor. How

much faster is fast enough?: User perception of
latency & latency improvements in direct and indirect
touch. In Proc. CHI, 2015.

[5] L. B. Donovan and A. P. McPherson. Active control
of a string instrument bridge using the posicast
technique. In Audio Engineering Society Convention
138, 2015.

[6] A. Friberg and J. Sundberg. Time discrimination in a
monotonic, isochronous sequence. The Journal of the
Acoustical Society of America, 98(5):2524–2531, 1995.

[7] S. Fujii, M. Hirashima, K. Kudo, T. Ohtsuki,
Y. Nakamura, and S. Oda. Synchronization error of
drum kit playing with a metronome at different tempi
by professional drummers. Music Perception,
28(5):491–503, 2011.

[8] R. H. Jack, T. Stockman, and A. McPherson. Pitch
selection on a digital musical instrument with
dynamic tactile feedback. In Proc. TEI, 2016.

[9] T. Kaaresoja, S. Brewster, and V. Lantz. Towards the
temporally perfect virtual button: touch-feedback
simultaneity and perceived quality in mobile
touchscreen press interactions. ACM Transactions on
Applied Perception, 11(2):9, 2014.

[10] N. P. Lago and F. Kon. The quest for low latency. In
Proc. ICMC, 2004.

[11] M. Leman. Embodied music cognition and mediation
technology. MIT Press, Cambridge, MA, 2008.

[12] S. Madgwick and T. J. Mitchell. x-OSC: A versatile
wireless I/O device for creative/music applications. In
Proc. SMC, 2013.

[13] T. Mäki-Patola and P. Hämäläinen. Latency tolerance
for gesture controlled continuous sound instrument
without tactile feedback. In Proc. International
Computer Music Conference, 2004.

[14] A. Maravita and A. Iriki. Tools for the body (schema).
Trends in cognitive sciences, 8(2):79–86, 2004.

[15] M. McLuhan. Understanding media: The extensions
of man. 1964.

[16] A. P. McPherson and V. Zappi. An environment for
submillisecond-latency audio and sensor processing on
BeagleBone Black. In Audio Engineering Society
Convention 138, 2015.

[17] T. Mitchell, S. Madgwick, S. Rankine, G. S. Hilton,
A. Freed, and A. R. Nix. Making the most of Wi-Fi:
Optimisations for robust wireless live music
performance. In Proc. NIME, pages 251–256, 2014.

[18] B. H. Repp and Y.-H. Su. Sensorimotor
synchronization: a review of recent research
(2006–2012). Psychonomic Bulletin & Review,
20(3):403–452, 2013.

[19] D. Rubine and P. McAvinney. Programmable
finger-tracking instrument controllers. Computer
music journal, pages 26–41, 1990.

[20] J. Topliss, V. Zappi, and A. P. McPherson. Latency
performance for real-time audio on BeagleBone Black.
In Proc. Linux Audio Conference, 2014.

[21] Y. Wang, R. Stables, and J. Reiss. Audio latency
measurement for desktop operating systems with
onboard soundcards. In Audio Engineering Society
Convention 128, 2010.

[22] D. Wessel and M. Wright. Problems and prospects for
intimate musical control of computers. Computer
Music Journal, 26(3):11–22, 2002.

[23] V. Zappi and A. McPherson. Design and use of a
hackable digital instrument. In Proc. Live Interfaces,
2014.


