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Finding 47:23 in the Baby Monster
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Abstract

In this paper we describe methods for finding very small maximal subgroups of very large
groups, with particular application to the subgroup 47:23 of the Baby Monster. This example is
completely intractable by standard or näıve methods. The example of finding 31:15 inside the
Thompson group Th is also discussed, as a test case.

1. Introduction

When computing in finite groups, it is often useful to know how to find generating sets for
various subgroups, especially maximal ones, of a group G, in terms of the standard generators
of G. Usually this means either as words or as straight-line-programs: here we use ‘word’ loosely
to cover both concepts. The www-Atlas [11] now includes such words for maximal subgroups
of many groups. Some of the small maximal subgroups, however, pose particular challenges.

One place where we thought at one time the www-Atlas would have a permanent gap was
for a straight-line program to find generators for the maximal subgroup 47:23 of the Baby
Monster B, owing to pessimistic forecasts for how long such a search would take. However, in
2003 we managed to fill in this gap by devising a new and more subtle search strategy. In this
paper we describe this method, in the hope that it may be of use in other similar searches.

There are various reasons why our main problem is particularly difficult, such as B being
large (order approximately 4.15478 × 1033) and that we are constrained to compute in a large
representation (degree 4370 over F2). Moreover, the non-trivial elements of 47:23 have very
small centralisers in B (order 46 or 47). And every non-trivial proper subgroup of 47:23 is
cyclic of prime order, so we cannot even search in another subgroup of B to give us a useful
contribution towards generating 47:23.

We first tested the new strategy by using it to obtain words for generators of 31:15 in
terms of standard generators of the Thompson group Th. Since Th has a considerably smaller
representation than B (degree 248 as opposed to 4370 over F2) this provided an ideal ‘dry run’
opportunity to try out various methods. It is worth pointing out that finding 31:15 < Th is
amenable to other techniques, and these include a brute force direct search, which we have
also done. One of the main reasons for this is that 15, unlike 23, is not prime. The method
Wilson [10] employs to find 31:15 < Th relies on 15 not being prime.

For the purposes of this paper, we shall assume that we have a standard copy of B, on its
standard generators, given as a subgroup of GL4370(2) (the one whose www-Atlas identifier
is BG1-f2r4370B0). Likewise, we assume that we have a standard copy of Th as a subgroup of
GL248(2).

The calculations described in this paper can now be performed easily in Magma [3, 1].
Originally, we used the C-Meataxe [9, 8] for the computationally intensive parts of the Baby
Monster calculations (mainly calculating the ‘fingerprints’ in Step 1).
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2. A standard method

Of the various methods the authors of the www-Atlas [11] have commonly employed to
find words for subgroups of a group G = 〈a, b〉, the least implausible method in the present
instance (the case when G = B and the subgroup is 47:23) is to search at random through
subgroups generated by two elements of order 23.

Given fixed elements x, y ∈ G (an arbitrary finite group), and elements x′ and y′ such that
x and x′ are G-conjugate and y and y′ are G-conjugate, the probability that the pair (x′, y′)
is G-conjugate to (x, y) is

|CG(x)|.|CG(y)|
|G|.|CG(〈x, y〉)|

,

with |CG(〈x, y〉)| = 1 for the cases that interest us here.
Suppose we choose to generate 47:23 by two elements x and y of order 23 that are B-

conjugate. Since B has 242 conjugacy classes of (23A, 23A) pairs that generate 47:23, the
probability of success at each attempt is

46 · 46 · 242
|B|

=
253

2052757648827285667577856000000
≈ 1

8.114 × 1027
.

A test for success could be that [[x, y], [[x, y], y]] = 1 and [x, y] has order 47. Trying to generate
47:23 by two non-conjugate (in B) elements of order 23, gives us the same probability of success
as above, and the same test for success still works. We reiterate a point made by Linton [7]:
the thing we must test quickly is failure.

For the (23A, 23A) case, we know that for 1 6 i 6 22, the order of xyi should be 23. So we
would first test, using a carefully written ‘Monte Carlo order oracle’, that xy does not have
order 23. If xy does (or might) have order 23, we then perform the same test for xy2 and (if
xy2 has order 23) for xy3. At some point, we decide we are not gaining much by performing
more of these failure tests, and perform the success test instead. (For the (23A, 23B) case, the
elements xyi can have orders 23 or 47, and overall the test would take a bit more than twice
as long on average.)

Suppose, optimistically, that we can check 1012 cases a year (which is more than 30000 per
second). Then we would still expect the search to take more than 8 × 1015 years to complete,
which compares unfavourably to the current age of the Universe, which is thought to be about
1.38 × 1010 years.

It is worth remarking that this method is essentially a black-box method, even though some of
the tests are substantially speeded up by using fast Monte Carlo order oracles, or pseudo-order
oracles, which depend on the representation for their implementation.

3. A new method

Our method is actually a method for finding the normaliser of a cyclic subgroup (or more
generally, any small subgroup) inside a group H that lies in an ambient general linear group
or symmetric group G. We suppose that H is generated by a relatively small conjugacy class
X of elements of H. Let y be a generator for the cyclic group we wish to normalise.

Step 1. Locate pairs (x1, y) and (x2, y
k) that are H-conjugate, with xi ∈ X and k a

suitable integer, and 〈x1, y〉 = H.
Step 2. Use standard computational methods to find all elements g ∈ G that conjugate
(x1, y) to (x2, y

k).
Step 3. For one such g ∈ H, write g as a word in the generators of H.

Step 1 is accomplished by a fingerprinting (or hashing) technique, described in more detail in
Section 5.1, to detect coincidences in a large population. In this context, a fingerprint of a pair
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(a, b) of group elements is a suitable collection of conjugacy-invariant data, for example a list of
orders of certain elements, such as ab, ab2, [a, b], . . .. A similar fingerprint for representations of
group algebras is described in [8]. The essential ingredient of our method is to use the ‘birthday
paradox’ to find coincidences quickly. Suppose that x1, . . . , xm are chosen from a set of size
d. Then the probability of at least one coincidence between an xi and an xj exceeds 50% if
m2 > 2(loge 2)d, and it exceeds 90% if m2 > 2(loge 10)d.

Step 2 is achieved by a ‘standard basis’ algorithm, such as can be found in [5, Section 7.5.3],
see also [8]. The ‘standard basis’ is not in general unique, and g is only determined up to
multiplication by of the centraliser of the representation. However, in our examples, in fact the
standard basis element is unique.

Step 3 is a ‘constructive membership’ problem, for which a number of methods, such as
Ryba’s algorithm [6], are available. However, Ryba’s algorithm tends to produce quite long
words, and we prefer a method which produces shorter words.

Our approach to finding a word for g ∈ H (where H is a finite group) in terms of the
generators of H is straightforward, even näıve: we use a process of successive approximation.
So let

H = H0 > H1 > H2 > · · · > Hr = 1,

be a chain of subgroups of H, where the generators of Hi are given as words in the generators
of Hi−1, and thus ultimately as words in the generators of H. The basic idea is to run through
the right coset representatives h0 of H1 in H0 until we find one for which H1h0 = H1g. Thus
gh−1

0 ∈ H1 and we recurse the problem into H1, next finding h1 ∈ H1 such that H2gh−1
0 =

H2h1, giving gh−1
0 h−1

1 ∈ H2. Continuing in this manner, we eventually find elements h0 ∈ H0,
h1 ∈ H1, . . . , hr−1 ∈ Hr−1 such that g = hr−1 . . . h1h0. Of course, each hi is written as a word
in the generators of Hi.

Some of the indices we encounter below are somewhat too large to make such a näıve
approach feasible, and again, the ‘birthday paradox’ comes to our rescue. Instead of searching
through all the cosets H1h0 until we find H1g, we make a collection of cosets H1xi, and another
collection H1gyj , and look for coincidences between these two sets.

Suppose that x1, . . . , xm and y1, . . . , yn are chosen from a set of size d. Then the probability
of at least one coincidence between an xi and a yj exceeds 50% if mn > (loge 2)d, and it
exceeds 90% if mn > (loge 10)d. Therefore if H1 has index d in H0 and we make equal numbers
of “forward” and “back” cosets (that is, cosets H1xi and H1gyj), we need to make about
2
√

(loge 2)d cosets for the probability of coincidence to be at least 50%, and probably somewhat
more than that to account for insufficient randomness in our production of cosets.

4. Application to the Thompson group

We first describe how one can use this new method to find a copy of 31:15, the normaliser
of a subgroup of order 31, in Th. We use the embedding Th 6 GL248(2). For this experimental
case, we did try out Ryba’s algorithm, regarding the involution centraliser 21+8

+
·A9 as the base

case. The result of this is given as the program ThG1-max15W1 in the www-Atlas. Thereafter,
we quickly produced another version (ThG1-max15W2), with shorter words, using other methods
for constructive membership testing, as described below.

We pick an element y of order 31. The quadratic residules modulo 31 are the powers of 7,
that is:

1, 7, 18, 2, 14, 5, 4, 28, 10, 8, 25, 20, 16, 19, 9.

The conjugacy class X is taken to be Class 2A, which is the class of 976841775 involutions.
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Step 1. For the first step, we must fingerprint pairs (x, y) with x ∈ X. It is not quite true
that all such pairs must generate Th, for among the 976841775 involutions, one calculates that
3 × 7740 of them generate with y a copy of 25.L5(2) (for a probability of 16/700245) and that
3 × 31 of them generate 25 :31 (for a probability of 1/10503675). So the probability of a proper
subgroup is 241/10503675, which is approximately 1 in 43584. This is small enough that it
does not materially affect the calculations.

A convenient fingerprint is the list of orders of xy7k

, for 0 6 k 6 14. This was chosen because
7 is an element of multiplicative order 15 modulo 31. Indeed, the 8 elements of order 15 modulo
31 are just 7k for k coprime to 15. Replacing y by y7 then just has the effect of cycling the 15
orders in this fingerprint. Thus a relevant coincidence is detected by finding two fingerprints
which differ only by one of the 8 rotations of order 15. We expect around two million different
cyclically reduced fingerprints, and therefore expect to find a coincidence after inspecting a few
thousand of them.

Step 2. Once we have found a candidate coincidence in this way, Step 2 allows us both to
prove that it is a genuine coincidence, and to find an element g of GL248(2) which conjugates
the relevant pairs: (x1, y) to (x2, y

7k

). Now the fact that this representation of Th is absolutely
irreducible, over the field of two elements, implies that there is a unique such element g, and in
particular, g ∈ Th. Of course, we want g to have order 15, which means that the coincidence
we use must have k prime to 15. Otherwise, g has smaller order. (An alternative is to find one
element of order 3 and one of order 5, rather than an element of order 15.)

Step 3. The final step is now to find a word for g in terms of the standard generators for
Th. One method for doing this is Ryba’s algorithm, which is effective in this case, but gives
words which are perhaps longer than we might hope for. Since this is a one-off calculation, it
is worth adopting a rather more labour-intensive method in order to obtain shorter words, as
described in Section 3.

We pick a subgroup chain (of length 2):

Th > 21+8
+

·A9 > 1,

with indices 976841775 and 92897280. Our strategy is, essentially, first to identify which coset
of the subgroup 21+8

+
·A9 the element g lies in, and then to identify which element of that coset

it is. In both steps, we use the ‘birthday problem’ to square root the size of the search.
Now in the given representation of Th, the subgroup 21+8

+
·A9 fixes a unique nonzero vector

v, and we may use the orbit of v under Th to represent the cosets of 21+8
+

·A9 therein. The
method is to make around 100000 images of v and vg under known elements of Th, and search
for coincidences. Any such coincidence gives rise to an element w of Th such that gw fixes v,
and therefore gw lies in the given subgroup which is the stabiliser of v.

Within the subgroup, we first chopped the representation, and chose a suitable subquotient
representing the group 28 ·A9. In fact, we were able to choose a subspace of dimension 29,
namely the third socle. The dimension was small enough that we could compute enough group
elements to locate a coincidence directly. Hence we obtained a word for gw, which now only
had to be possibly adjusted by the central involution (of 21+8

+
·A9) in order to complete the

task.

5. Application to the Baby Monster

We apply the same basic method outlined in Section 3 to the problem of finding 47:23 in
B as follows. We assume the 47-subgroup we wish to normalise is generated by y, and that
B sits in some ‘universal’ group G, which in our case is G = GL4370(2). Specifically, we let
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B = 〈a, b〉 6 GL4370(2), where a and b are standard generators of B, that is a is in Class 2C, b
is in Class 3A, ab has order 55 and abababab2abab2ab2 has order 23. Our standard 47-element
is then taken to be y = ababab2abababab2abab2, which we shall deem to lie in Class 47A. The
normalising element g that we are looking for conjugates y to yk for some k 6= 1 which is a
quadratic residue modulo 47. The quadratic residues modulo 47 are the powers of 2. We let x
run through the smallest non-trivial conjugacy class in B, so that the number of possibilities
for (x, y) is as small as possible. This is the class of transpositions (Class 2A in the Atlas [4,
page 208]).

5.1. Step 1

Any (2A, 47A) pair of elements must generate the whole of B, since the only group H such
that B > H > 〈y〉 ∼= 47 is H = NB(〈y〉) ∼= 47:23. Now B has 13571955000 transpositions, and
all subgroups of order 47 are self-centralising, so the probability that any (2A, 47A)-pair is
conjugate in B to a given one is:

47
13571955000

=
1

288765000
.

Naturally, we do not wish to collect fingerprints of the 288765000 distinct (2A, 47A)-pairs
(and the same number for the (2A, 47B)-pairs) in order to define a pair of (2A, 47A) standard
generators of B. Nor would we wish to trawl through an expected 288765000 transpositions x2

until we found one such that (x2, y
2k

) is conjugate to our favourite (2A, 47A)-pair (x1, y).
We have already observed that we wish to conjugate y to some non-trivial power ym, where

necessarily m is a square modulo 47, and without loss of generality 1 < m < 47. It is convenient
for later computations to arrange the possible values of m as successive powers of 2, and so
the set S of allowed values of m modulo 47 is:

S := {2, 4, 8, 16, 32, 17, 34, 21, 42, 37, 27, 7, 14, 28, 9, 18, 36, 25, 3, 6, 12, 24}.

The fingerprint of a pair (x, y) is the list of the orders of the 23 elements xy2k

, as k runs
from 0 to 22. We used a Monte Carlo order oracle, which has a very small chance of giving a
proper divisor of the actual element order. In principle, this could cause us to miss a genuine
coincidence, or to flag up a false coincidence. The former is not material, while the latter is
detected at the next stage, so can be thrown away and a new coincidence tested.

The probability that (x1, y) is conjugate to (x2, y
m) for one of 22 values of m ∈ S is

p = 11/144382500, which is still uncomfortably low. But we are not looking for a particular
fingerprint, we are just looking for coincidences between fingerprints. That is, we wish to make
sufficient transpositions x1, x2, . . . , xr such that (xi, y) and (xj , y

m) are conjugate for some
m ∈ S. As described in Section 3, this is a form of the ‘birthday problem’, and somewhere
around r = 10000 gives us a reasonably good chance of finding a coincidence. Note, however,
that we are not interested in coincidences with m = 1. In the end, we considered slightly fewer
than 10000 fingerprints, and found exactly one coincidence of the required type. It transpires
that the coincidence we found was between pairs of the form (x1, y) and (x2, y

16).

5.2. Step 2

Since (x1, y) and (x2, y
16) are conjugate pairs of generators of B, they are also conjugate in

GL4370(2). Hence a ‘standard basis’ algorithm as described in [5, Section 7.5.3] will produce
an element g of GL4370(2) which conjugates one pair to the other. Since the representation of
B is irreducible, g is unique up to scalar multiplication, and since the field has order 2, the
element g is actually unique. It follows that g lies in B.
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5.3. Step 3

For Step 3, it was originally expected that we would use Ryba’s algorithm [6] to achieve
this. In fact, in the Baby Monster case we never tried to used Ryba’s algorithm, and used the
method described in Section 3, which was designed to give shorter words than Ryba’s algorithm
was likely to produce.

The best choice for H1 in the Baby Monster is the largest subgroup, 2·2E6(2) :2, of index
13571955000, and which can easily be found by the standard method of Bray [2]. Thus to
perform the first step in our Baby Monster calculation, we expect (in the English sense) to
create about 200000 cosets before finding the desired coincidence. This is an improvement on
the näıve method by a factor of nearly 105. Moreover, this subgroup fixes a unique non-zero
vector in the given representation, so we can use vectors as labels for the cosets. (Even so, the
storage requirement for 200000 vectors is at least 100MB, even when stored in binary format.)

For the remaining steps of the calculation, both the groups and the representations are much
smaller, and it is not necessary to take so much care over all the details. Our choice for the group
H2 was a group of shape 2.(21+20

+ :U6(2) :2), with index 3968055 in H1. For this calculation,
we chopped the representation (of H1) to one of dimension 78, such that there is an involution
in the kernel of the (78-dimensional) representation. We adjust for this involution, if necessary,
at the end of the whole calculation.

For H3 we chose 22.U6(2).2, with index 1048576 in H2, and order 73574645760, so it is
possible to choose H4 to be the trivial group. Other chains of subgroups of H3 are possible
and may be easier to use. (Once we had found H2 we worked in an even smaller representation
that faithfully represented 220 :U6(2) :2, and so the effective index of H4 in H3 was |U6(2) :2| =
18393661440.)
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