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Kogălniceanu Str., 400084 Cluj-Napoca, Romania

Abstract

We generalize Bonk’s distortion theorem on the unit disc in the complex plane
to locally biholomorphic mappings on finite dimensional bounded symmetric
domains. As an application, we obtain a lower bound for the Bloch constant
for various classes of locally biholomorphic Bloch mappings.
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1. Introduction

Let U = {ζ ∈ C : |ζ| < 1} be the unit disc in C and let f : U → C be a
holomorphic function with f ′(0) = 1. The celebrated Bloch’s theorem states
that f maps a domain in U biholomorphically onto a disc with radius r(f)
greater than some positive absolute constant. The ‘best possible’ constant
B for all such functions, that is,

B = inf{r(f) : f is holomorphic on U and f ′(0) = 1},
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is called the Bloch constant. Bonk proved in [2] the following distortion
theorem.

Theorem 1.1. If f : U → C is a holomorphic function such that f ′(0) = 1
and supζ∈U(1− |ζ|2)|f ′(ζ)| ≤ 1, then the real part ℜf ′(ζ) satisfies

ℜf ′(ζ) ≥ 1−
√
3|ζ|(

1− |ζ|√
3

)3 , |ζ| ≤ 1√
3
.

The above distortion theorem implies readily a result of Ahlfors [1] that the
Bloch constant B is greater than

√
3/4 (see [2]). This lower bound was

further improved in [2] to B >
√
3
4
+ 10−14, and in [5] to B ≥

√
3
4
+ 2× 10−4.

Bonk’s distortion theorem has been extended by Liu in [20, Theorem 7]
to the family Hloc(Bn,Cn) of Cn-valued locally biholomorphic mappings on
the Euclidean unit ball Bn in Cn, as follows.

Theorem 1.2. If f ∈ Hloc(Bn,Cn), ∥f∥0 = 1 and detDf(0) = 1, then

| detDf(z)| ≥ ℜ detDf(z) ≥
exp

(
−(n+ 1)∥z∥

1− ∥z∥

)
(1− ∥z∥)n+1 , z ∈ Bn.

This inequality is sharp.

We refer to Definition 3.2 for the definition of the above prenorm ∥f∥0.
Bloch’s theorem fails in dimension 2. Nevertheless, one can define the Bloch
constant for various families of Bloch mappings in higher dimensions. Us-
ing the above distortion theorem, lower and upper bounds for such a Bloch
constant for Bn were obtained in [20]. For the class Hloc(Un,Cn) of locally bi-
holomorphic mappings on the unit polydisc Un in Cn, the following distortion
theorem has been shown by Wang and Liu [27, Theorem 3.2].

Theorem 1.3. If f ∈ Hloc(Un,Cn), ∥f∥0 = 1 and detDf(0) = 1, then

| detDf(z)| ≥ ℜ detDf(z) ≥
exp

(
−2n∥z∥
1− ∥z∥

)
(1− ∥z∥)2n

, z ∈ Un.

This inequality is sharp.
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This theorem was also used in [27] to derive a lower bound of the Bloch
constant for classes of locally biholomorphic Bloch mappings on Un.

Both the Euclidean unit ball and the unit polydisc in Cn are examples of
bounded symmetric domains in Cn. The following natural questions arise.

Question 1.4. Can we explain the difference of the exponents in the distor-
tion bounds in Theorems 1.2 and 1.3?

Question 1.5. Can we extend Bonk’s distortion theorem to other bounded
symmetric domains in Cn?

We give an affirmative answer to both questions in this paper and as an
application, we derive a lower bound of the Bloch constant for various classes
of locally biholomorphic Bloch mappings on a finite dimensional bounded
symmetric domain.

A finite dimensional bounded symmetric domain can be realized as the
open unit ball BX of a finite dimensional JB*-tripleX, which carries a Jordan
algebraic structure and is formed by the complex space Cn equipped with the
Carathéodory norm (cf. [6, p.153]), where n = dimX. Such a realization can
be viewed as a generalization of the Riemann Mapping Theorem, and enables
us to use Jordan theory to derive analytic results for bounded symmetric
domains.

The novelty of our approach is the use of Jordan theory. Indeed, the
exponent of the distortion bound depends on the ’diameter’ 2c(BX) of the
ball BX with respect to the Bergman metric at 0, defined by Hamada, Honda
and Kohr in [12]. The constant c(BX) depends on the Jordan structure of
the underlying JB*-triple X. For the Euclidean unit ball Bn and the unit
polydisc Un, we have c(Bn) = (n+ 1)/2 and c(Un) = n, respectively.

The lower bound of the Bloch constant obtained in Theorem 5.6 for classes
of locally biholomorphic Bloch mappings on BX is also given in terms of
2c(BX).

We prove a distortion theorem in Theorem 4.1 for the class Hloc(BX ,Cn)
of Cn-valued locally biholomorphic mappings on such a unit ball BX and a
special case of the theorem asserts that

| detDf(z)| ≥ 1

(1− ∥z∥)2c(BX)
exp

{
−2c(BX)∥z∥

1− ∥z∥

}
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for f ∈ Hloc(BX ,Cn), ∥f∥0 = 1 and detDf(0) = 1. This generalizes The-
orems 1.2 and 1.3, and also explains the difference of the exponents in the
first question.

Our results also generalize simultaneously other results on Bonk’s distor-
tion theorem for locally univalent Bloch functions in one complex variable
in [3, 21], and those for locally biholomorphic Bloch mappings in several
complex variables in [25]. We refer to [7, 11, 12, 13] for other distortion the-
orems for normalized locally biholomorphic mappings on unit balls of finite
dimensional JB∗-triples.

2. Bounded symmetric domains and JB*-triples

Let BX be the unit ball of a complex Banach space X. We will denote
by H(BX , Y ) the space of holomorphic mappings from BX to a complex
Banach space Y . A holomorphic mapping f : BX → Y is said to be locally
biholomorphic if the Fréchet derivative Df(x) has a bounded inverse for each
x ∈ BX . A holomorphic mapping f : BX → Y is said to be biholomorphic if
f(BX) is a domain in Y , f−1 exists and is holomorphic on f(BX).

Let L(X, Y ) denote the Banach space of continuous linear operators from
X to Y .

Finite dimensional bounded symmetric domains have been classified by
Cartan [4]. The irreducible ones come in four classical series of Cartan do-
mains (cf. [16, 19]) and two exceptional domains. They can be described as
the open unit balls of some finite dimensional JB*-triples (cf. [15] and [6,
Theorem 2.5.9]). In this context, Cartan’s classification has been extended
by Kaup in [18, Theorem 5.4], which asserts that every bounded symmetric
domain, including the infinite dimensional ones, is biholomorphic to the open
unit ball of a JB*-triple, and conversely, the open unit ball of a JB*-triple is
a bounded symmetric domain.

A JB∗-triple is a complex Banach space X equipped with a continuous
Jordan triple product

(x, y, z) ∈ X ×X ×X 7→ {x, y, z} ∈ X

satisfying

(i) {x, y, z} is symmetric bilinear in the outer variables, but conjugate
linear in the middle variable,

(ii) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}},
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(iii) x x ∈ L(X,X) is a hermitian operator with spectrum = 0,

(iv) ∥{x, x, x}∥ = ∥x∥3

for a, b, x, y, z ∈ X, where the box operator x y : X → X is defined by
x y(·) = {x, y, ·}.

Example 2.1. (i) A complex Hilbert space H with inner product ⟨·, ·⟩ is a
JB*-triple with the triple product

{x, y, z} =
1

2
(⟨x, y⟩z + ⟨z, y⟩x).

(ii) A C*-algebra A is a JB*-triple in the triple product

{a, b, c} =
1

2
(ab∗c+ cb∗a).

(iii) The complex space Cn is also a JB∗-triple when it is equipped with
the ℓ∞ norm ∥ · ∥∞ and the triple product

{x, y, z} = (xiyizi)1≤i≤n, x = (xi)1≤i≤n, y = (yi)1≤i≤n, z = (zi)1≤i≤n ∈ Cn.

The unit polydisc Un is the unit ball of (Cn, ∥ · ∥∞).

We refer to [6, 22, 23] for relevant details of JB∗-triples and references.
We recall some of them which will be needed later.

An element u in a JB*-triple X is called a tripotent if {u, u, u} = u. Two
tripotents u and v are said to be orthogonal to each other if u v = 0, which
is equivalent to v u = 0 (cf. [6, Corollary 1.2.46]). A tripotent u is said to
be maximal if the only tripotent which is orthogonal to u is 0. A tripotent
u is said to be minimal if it cannot be written as a sum of two non-zero
orthogonal tripotents. A frame is a maximal family of pairwise orthogonal
minimal tripotents. The cardinality of all frames is the same, and is called the
rank of X. As usual, we denote by Aut(BX) the automorphism group of the
open unit ball BX of a JB∗-triple X, consisting of biholomorphic self-maps
of BX .

Now let X be a finite dimensional JB*-triple. Then its open unit ball BX

is (biholomorphic to) a bounded symmetric domain in some Cn.
Given a tripotent v ∈ X, the possible eigenvalues of the box operator

v v are 0, 1/2 or 1, which induces the following eigenspace decomposition
of X:
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X = V0(v)⊕ V1(v)⊕ V2(v),

called the Peirce decomposition ofX, where Vj(v) = {x ∈ X : 2(v v)x = jx}
for j = 0, 1, 2. Let u be a maximal tripotent in X. Then, there exist
orthogonal tripotents u1, . . . , ur such that u = u1 + · · · + ur, where r is the
rank of X [23, Proposition VI.3.2]. Since u1, . . . , ur are linearly independent
in V2(u), we have

dimV2(u) ≥ r. (2.1)

We recall that the constant c(BX), introduced in [12], is defined by

c(BX) =
1

2
sup

x,y∈BX

|h0(x, y)|,

where h0 is the Bergman metric at 0. One can view 2c(BX) as the ‘diameter’
of BX measured by the metric h0. In [12], it is proved that

c(BX) =
1

2
(dimV1(u) + 2 dimV2(u)), (2.2)

where u is an arbitrary maximal tripotent in X. From (2.1), (2.2) and the
fact that V0(u) = 0, we deduce that

1

2
(dimX + r) ≤ c(BX) ≤ dimX, (2.3)

where r is the rank of X.
Let (X, ∥ · ∥) be a JB*-triple and let H(BX ,Cn) denote the space of holo-

morphic mappings from BX to Cn, where Cn is equipped with the Euclidean
norm ∥ · ∥e. The norm of a bounded operator A ∈ L(X,Cn) will be denoted
by

∥A∥X,e = sup {∥Az∥e : ∥z∥ = 1} .

The norm of A ∈ L(Cn,Cn) will be abbreviated to

∥A∥e = sup{∥Az∥e : ∥z∥e = 1}.

3. Bloch mappings

The notion of a Cn-valued Bloch mapping on a finite dimensional bounded
symmetric domain, under the name of normal mapping of finite order, was

6



first introduced by Hahn [9]. Several equivalent definitions for complex-
valued Bloch functions on a finite dimensional bounded homogeneous domain
have been given by Timoney in [24]. Cn-valued Bloch mappings on the
Euclidean ball of Cn have also been studied in [20]. The following definition
for a Bloch mapping from a finite dimensional bounded symmetric domain
to Cn given by Hamada [10] is a direct extension of the one in [24, Theorem
3.4 (4)] and [20].

Definition 3.1. Let BX be the unit ball of a finite dimensional JB∗-triple
X. A mapping f ∈ H(BX ,Cn) is called a Bloch mapping if the family

Ff = {f ◦ φ− f(φ(0)) : φ ∈ Aut(BX)}

is normal, that is, every sequence in Ff contains a subsequence converging
uniformly on compact subsets of BX .

Equivalently, f ∈ H(BX ,Cn) is a Bloch mapping if

∥f∥B = sup {∥D(f ◦ φ)(0)∥X,e : φ ∈ Aut(BX)} <∞

(cf. [20, 24]), where ∥f∥B is called the Bloch semi-norm of f .
For 1 ≤ K ≤ +∞, we will denote by β(BX ,Cn, K) the set of Bloch

mappings f ∈ H(BX ,Cn) with ∥f∥B ≤ K.
We note that, in the above definition of a Cn-valued Bloch mapping, we

do not require that the domain BX has the same dimension n, although this
is the case in the following results. We recall that an n-dimensional JB*-
triple X is the complex space (Cn, ∥ · ∥X) equipped with the Carathéodory
norm ∥ · ∥X .

Definition 3.2. Let BX be the unit ball of an n-dimensional JB∗-triple X.
We define the prenorm ∥f∥0 of f ∈ H(BX ,Cn) by

∥f∥0 = sup
{
(1− ∥z∥2)c(BX)/n| detDf(z)|1/n : z ∈ BX

}
.

We will make use of the following two lemmas which have been proved in
[10].

Lemma 3.3. Let BX be the unit ball of an n-dimensional JB∗-triple X and
f ∈ H(BX ,Cn).
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(i) If f is a Bloch mapping on BX , then we have

∥Df(z)∥X,e ≤
∥f∥B

1− ∥z∥2
, z ∈ BX

and
∥f∥0 ≤ sup

{
| detDg(0)|1/n : g ∈ Ff

}
< +∞.

(ii) If ∥f∥0 < +∞, then

| detDf(z)| ≤ ∥f∥n0
(1− ∥z∥2)c(BX)

, z ∈ BX .

(iii) If ∥f∥0 = 1 and detDf(0) = 1, then | detDf(z)| = 1 + o(∥z∥).

For x ∈ X \ {0}, the set

T (x) = {lx ∈ X∗ : lx(x) = ∥x∥, ∥lx∥ = 1}

of support functionals of x is nonempty in view of the Hahn-Banach theorem.
Let H(U) = H(U,C) denote the set of holomorphic functions on the unit disc
U in C.

Lemma 3.4. Fix a point u in the topological boundary ∂BX and let

f(z) =

(∫ lu(z)

0

ψ(t)dt

)
u+ z − lu(z)u, z ∈ BX ,

where lu ∈ T (u) and ψ ∈ H(U). Then f ∈ H(BX ,Cn), f(0) = 0 and
detDf(z) = ψ(lu(z)) for z ∈ BX .

Next, we recall some basic facts concerning subdomains in the unit disc
U.

Definition 3.5. Let Ω ⊂ C be a domain containing the origin and let f and
g be holomorphic functions on Ω. We say that f is subordinate to g if there
exists a holomorphic function v : Ω → Ω such that v(0) = 0 and f = g ◦ v.
We write f ≺ g to denote this subordination relation.
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For a ∈ C and r > 0, we let

U(a, r) = {ζ ∈ C : |ζ − a| < r}

and let ∆(1, r) be a horodisc in U, that is,

∆(1, r) =

{
ζ ∈ U :

|1− ζ|2

1− |ζ|2
< r

}
= U

(
1

1 + r
,

r

1 + r

)
.

The boundary ∂∆(1, r) is a circle internally tangent to the unit circle at 1.
Given r > 1, Wang [25, Lemma 1] has obtained the following lemma.

Lemma 3.6. Let r > 1. Assume that h ∈ H(U), h(0) = a ∈ R and that
there exists a positive number s > 0 such that h(∆(1, r)) ⊂ {w : ℜw < s}.
Then
(i) h(ζ) ≺ G0(ζ) = b ζ+1

ζ−1
+ b+ a on ∆(1, r), where b = r(s−a)

r−1
> 0.

(ii) ℜh(x) ≥ G0(x) =
2bx
x−1

+ a for 0 < x < 1, and equality holds for some x
if and only if h = G0.
(iii) ℜh(−x) ≤ G0(−x) = 2bx

x+1
+ a for 0 < x ≤ r−1

r+1
, and equality holds for

some x if and only if h = G0.

The following lemma can be derived directly from the classical Julia’s
lemma (see [27, Lemma 2.2] and [21, p.327]).

Lemma 3.7. Let g be a holomorphic function on U ∪ {1}. Assume that
g(U) ⊂ U \ {0} and g(1) = 1. Then g′(1) = α > 0 and

|g(x)| ≥ exp

{
−2α

1− x

1 + x

}
, for all x ∈ (−1, 1).

4. Distortion theorems

In this section, we prove a distortion theorem for locally biholomorphic
mappings on the unit ball BX of a finite dimensional JB∗-triple X, which is
a generalization of [20, Theorem 7], [25, Theorem 1], [26, Corollary 1.1] and
[27, Theorem 3.2].

Theorem 4.1. Let BX be the unit ball of an n-dimensional JB∗-triple X.
Let α ∈ (0, 1] and let m(α) be the unique root of the equation

e−c(BX)x(1 + x)c(BX) = α (4.1)
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in the interval [0,+∞). If f ∈ Hloc(BX ,Cn), ∥f∥0 = 1 and detDf(0) = α,
then we have

(i)

| detDf(z)| ≥ α

(1− ∥z∥)2c(BX)
exp

{
(1 +m(α))

−2c(BX)∥z∥
1− ∥z∥

}
(4.2)

for z ∈ BX ;
(ii)

| detDf(z)| ≤ α

(1 + ∥z∥)2c(BX)
exp

{
(1 +m(α))

2c(BX)∥z∥
1 + ∥z∥

}
(4.3)

for ∥z∥ ≤ m(α)

2 +m(α)
.

The estimates in (4.2) and (4.3) are sharp.

Proof. We shall use arguments similar to those in the proof of [25, Theorem
1]. Let c = c(BX) and let

r(t) = e−ct(1 + t)c, t ∈ [0,+∞).

Then r(t) is decreasing on [0,+∞), r(0) = 1 and r(+∞) = 0. Therefore,
there exists a unique m(α) ∈ [0,+∞) such that

e−cm(α)(1 +m(α))c = α.

Let z ∈ BX\{0} be fixed and let u = z/∥z∥.
(i) First, we consider the case α ∈ (0, 1). Then m(α) > 0. Let

g(ζ) = (1− ζ)2c detDf(ζu), ζ ∈ U.

Then g ∈ H(U), g(ζ) ̸= 0 on U and g(0) = α. Since ∥f∥0 = 1, Lemma 3.3
(ii) yields

|g(ζ)| ≤
(
|1− ζ|2

1− |ζ|2

)c

.

Let h(ζ) = log g(ζ), where the branch of the logarithm is chosen such that
h(0) = log g(0) = logα is real. Then we have

ℜh(ζ) = log |g(ζ)| ≤ c log
|1− ζ|2

1− |ζ|2
, ζ ∈ U.
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Therefore we have

h(∆(1, 1 +m(α))) ⊂ {w : ℜw < c log(1 +m(α))} .

In view of Lemma 3.6 (i), we obtain h ≺ G0 on ∆(1, 1 +m(α)), where

G0(ζ) = b
ζ + 1

ζ − 1
+ b+ logα and

b =
1 +m(α)

m(α)
(c log(1 +m(α))− logα) = c(1 +m(α)).

For the last equality, we use the identity

e−cm(α)(1 +m(α))c = α.

For any x ∈ (0, 1), we deduce from Lemma 3.6 (ii) that

log |g(x)| = ℜh(x) ≥ c(1 +m(α))
2x

x− 1
+ logα.

This implies that

|g(x)| ≥ α exp

{
c(1 +m(α))

−2x

1− x

}
.

Putting x = ∥z∥ in the above inequality, we obtain the inequality (4.2) for
α ∈ (0, 1).

Next, we consider the case α = 1 for which m(α) = 0. Let

g(ζ) =

(
1 + ζ

2

)2c

detDf

(
1− ζ

2
u

)
, ζ ∈ U.

Then g is holomorphic on U ∪ {1} and g(1) = 1. Since ∥f∥0 = 1 and
detDf(0) = 1, we have from Lemma 3.3 (ii) and (iii) that g′(1) = c and

|g(ζ)| =

∣∣∣∣1 + ζ

2

∣∣∣∣2c ∣∣∣∣detDf (1− ζ

2
u1

)∣∣∣∣
≤

(∣∣∣∣1− 1− ζ

2

∣∣∣∣2 1

1−
∣∣1−ζ

2

∣∣2
)c

< 1
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for ζ ∈ U, where

1− ζ

2
∈ U

(
1

2
,
1

2

)
=

{
ξ ∈ U :

|1− ξ|2

1− |ξ|2
< 1

}
.

This implies g(U) ⊂ U \ {0}. By Lemma 3.7, we obtain

|g(x)| ≥ exp

{
−2c

1− x

1 + x

}
for all x ∈ (−1, 1). Putting x = 1− 2∥z∥ in the above inequality, we obtain
the inequality (4.2) for α = 1.

(ii) If α = 1, then m(α) = 0 and the inequality (4.3) holds trivially.
Now let α ∈ (0, 1) and let

g(ζ) = (1− ζ)2c detDf(−ζu) (ζ ∈ U).

We define the mappings h and G0 as in the proof of (i).
By the arguments in (i) and Lemma 3.6 (iii), we derive

ℜh(−x) ≤ G0(−x) = 2c(1 +m(α))
x

x+ 1
+ logα

for 0 < x ≤ m(α)

2 +m(α)
. Putting x = ∥z∥ in the above inequality, one obtains

the inequality (4.3).
Finally, we will show that the estimates (4.2) and (4.3) are sharp. Indeed,

fix any u ∈ ∂BX and let

F (z) =

(∫ lu(z)

0

ψ(t)dt

)
u+ z − lu(z)u,

where lu ∈ T (u) and

ψ(ζ) =
α

(1− ζ)2c
exp

{
(1 +m(α))

−2cζ

1− ζ

}
∈ H(U).

Then F ∈ H(BX ,Cn), F (0) = 0 and detDF (z) = ψ(lu(z)) by Lemma 3.4.
Therefore detDF (0) = ψ(0) = α. For any z ∈ BX , let ζ = lu(z). Since
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e−cm(α)(1 +m(α))c = α, we have

(1− ∥z∥2)c| detDF (z)| ≤ (1− |lu(z)|2)c|ψ(lu(z))|

=

(
1− |ζ|2

|1− ζ|2

)c

α

∣∣∣∣exp((1 +m(α))
−2cζ

1− ζ

)∣∣∣∣
=

(
1− |ζ|2

|1− ζ|2
b exp

(
1− bℜ

(
1 +

2ζ

1− ζ

)))c

= (bt exp(1− bt))c

≤ 1,

where b = 1 +m(α) and

t =
1− |ζ|2

|1− ζ|2
> 0.

Note that in the last inequality, we have used the inequality

xe1−x ≤ 1 for x > 0.

Therefore ∥F∥0 ≤ 1. Let z = ζu. Then ∥z∥ = |ζ|, lu(z) = ζ and the equality
(1−∥z∥2)c| detDF (z)| = 1 holds when t = 1/b. This implies that ∥F∥0 = 1.
Since detDF (±∥z∥u) = ψ(±∥z∥) for all z ∈ BX , F attains the equalities in
(4.2) and (4.3). This completes the proof. �

Remark 4.2. (i) If BX = Bn, where Bn is the Euclidean unit ball in Cn, then
c(Bn) = (n+1)/2 by [12], and hence Theorem 4.1 reduces to [20, Theorem 7]
and [25, Theorem 1]. In particular, for the unit disc BX = U in C, Theorem
4.1 reduces to [3, Theorem 3].

(ii) Let Un be the unit polydisc in Cn. The Bergman metric at 0 is given
by

h0(u, v) = 2
n∑

j=1

ujvj.

Hence c(Un) = n and if α = 1, Theorem 4.1 reduces to [27, Theorem 3.2].

5. Bloch constant

Given the open unit ball BX of an n-dimensional JB*-triple X = (Cn, ∥ ·
∥X), we will assume throughout this section that

BX ⊃ Bn. (5.1)
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This assumption is not too restrictive since the unit polydisc satisfies this
condition and for any BX , there exists a constant r > 0 such that the ball
B = rBX satisfies (5.1). Under the above assumption, we give a lower
estimate for the radius of the largest univalent ball in the image of f centered
at f(0).

Let Bn(b, r) denote the Euclidean ball with center b and radius r. For f ∈
H(BX ,Cn), a schlicht ball of f centered at f(a) is a Euclidean ball Bn(f(a), r)
such that f maps an open set G ⊂ BX with a ∈ G biholomorphically onto
this ball.

For a point a ∈ BX , let r(a, f) be the radius of the largest schlicht ball
of f centered at f(a), that is,

r(a, f) = sup{r > 0 :

Bn(f(a), r) ⊂ f(BX), f
−1 is biholomorphic on Bn(f(a), r)}.

Let r(f) = sup{r(a, f) : a ∈ BX}. For the class β(BX ,Cn, K)∩Hloc(BX ,Cn),
one can define the Bloch constant to be

Bloc(K) = inf{r(f) : f ∈ β(BX ,Cn, K) ∩Hloc(BX ,Cn), detDf(0) = 1}.

As in [8, Theorem 1.3], we obtain the following result.

Proposition 5.1. Let BX be the unit ball of an n-dimensional JB∗-triple
X. For any K ≥ 1, there exists f ∈ β(BX ,Cn, K) ∩Hloc(BX ,Cn) such that
Bloc(K) = r(f), detDf(0) = 1 and ∥f∥0 = 1.

Definition 5.2. A point z0 ∈ BX is called a critical point of f ∈ H(BX ,Cn)
if detDf(z0) = 0. In this case f(z0) is called a critical value of f .

The following lemma is a generalization of [20, Lemma 2] to the unit ball
of a finite dimensional JB∗-triple. Since the proof of [20, Lemma 2] can be
applied directly to our case, we omit it.

Lemma 5.3. Let BX be the unit ball of an n-dimensional JB∗-triple X. Let
f ∈ H(BX ,Cn) and G be an open subset of BX with a ∈ G. If f maps G
biholomorphically onto the schlicht ball Bn(f(a), r(a, f)), then either G and
BX have a common boundary point or there exists a critical value f(z0) on
the boundary of the ball Bn(f(a), r(a, f)) with the critical point z0 on the
boundary of G.
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The following lemma was proved by Hamada and Kohr in [14].

Lemma 5.4. Assume that the condition (5.1) holds. Let A ∈ L(X,Cn).
Then the following inequality holds:

∥Aw∥e ≥
| detA|
∥A∥n−1

X,e

(w ∈ ∂BX) if ∥A∥X,e > 0. (5.2)

Remark 5.5. The inequality (5.2) need not hold if we use the JB∗-norm
∥·∥X for the codomain Cn. Indeed, let X = (C2, ∥·∥∞) and let A ∈ L(X,C2)
be given by

A =

[
1 a
0 2

]
,

where a ∈ (0, 1). Then detA = 2 and ∥A∥∞,∞ = 2. Then we have∥∥∥∥A [ 1
−ε

]∥∥∥∥
∞
< 1 =

detA

∥A∥∞,∞

for small ε > 0.

For a locally biholomorphic Bloch mapping f , we obtain the following
lower estimate for the radius of the largest schlicht ball of f centered at f(0).
The following result is a generalization of [20, Theorem 8], [25, Theorem 2]
and [27, Theorem 3.4] to the unit ball of a finite dimensional JB∗-triple.

Theorem 5.6. Let BX be the unit ball of an n-dimensional JB∗-triple X.
Also, assume that the condition (5.1) is satisfied. If f ∈ β(BX ,Cn, K) ∩
Hloc(BX ,Cn), ∥f∥0 = 1 and detDf(0) = α ∈ (0, 1], then we have

r(0, f) ≥ K1−nα

∫ 1

0

(1− t2)n−1

(1− t)2c(BX)
exp

{
(1 +m(α))

−2c(BX)t

1− t

}
dt

≥ αK1−n

2c(BX)(1 +m(α))

where m(α) is the unique root of the equation

e−c(BX)x(1 + x)c(BX) = α

in the interval [0,+∞).
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Proof. We shall use arguments similar to those in the proof of [25, Theo-
rem 2]. Write c = c(BX). By Lemma 5.3, r(0, f) is equal to the Euclidean
distance from f(0) to a boundary point of f(BX) since f is locally biholomor-
phic on BX . Hence there exists a line segment Γ of Euclidean length r(0, f)
from f(0) to a point in ∂f(BX). Note that r(0, f) is the largest nonnegative
number r such that there exists a domain V ⊂ BX which is mapped biholo-
morphically onto Bn(f(0), r) by f . Let γ = (f |V )−1(Γ). Then γ is a smooth
curve which is not relatively compact in BX . By Lemma 5.4, we have

r(0, f) =

∫
Γ

∥dw∥e =
∫
γ

∥Df(z)dz∥e =
∫
γ

∥∥∥∥Df(z) dz

∥dz∥

∥∥∥∥
e

∥dz∥

≥
∫
γ

| detDf(z)|
∥Df(z)∥n−1

X,e

∥dz∥.

From Theorem 4.1 (i) and Lemma 3.3 (i), we deduce∫
γ

| detDf(z)|
∥Df(z)∥n−1

X,e

∥dz∥

≥ K1−nα

∫
γ

(1− ∥z∥2)n−1

(1− ∥z∥)2c(BX)
exp

{
(1 +m(α))

−2c(BX)∥z∥
1− ∥z∥

}
∥dz∥

≥ K1−nα

∫
γ

(1− ∥z∥2)n−1

(1− ∥z∥)2c(BX)
exp

{
(1 +m(α))

−2c(BX)∥z∥
1− ∥z∥

}
d∥z∥,

where d∥z∥ ≤ ∥dz∥ a.e. on γ by [17, Lemma 1.3]. Therefore, we have

r(0, f) ≥ K1−nα

∫ 1

0

(1− t2)n−1

(1− t)2c(BX)
exp

{
(1 +m(α))

−2c(BX)t

1− t

}
dt.

Since c(BX) ≥ (n+ 1)/2 by (2.3), we also have

r(0, f) ≥ K1−nα

∫ 1

0

1

(1− t)2
exp

{
(1 +m(α))

−2c(BX)t

1− t

}
dt

≥ αK1−n

2c(BX)(1 +m(α))
.

This completes the proof. �

Remark 5.7. (i) If BX is the Euclidean unit ball Bn in Cn, then c(Bn) =
(n+ 1)/2 and Theorem 5.6 reduces to [20, Theorem 8] and [25, Theorem 2].
For n = 1, Theorem 5.6 reduces to [3, Corollary 3].
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(ii) If BX is the unit polydisc Un in Cn, then c(Un) = n and for α = 1,
Theorem 5.6 reduces to [27, Theorem 3.4].

When α = 1, we obtain the following result which is a generalization
of [20, Corollary, p. 362] and [27, Theorem 3.4] to the unit ball of a finite
dimensional JB∗-triple.

Corollary 5.8. Let BX be the unit ball of an n-dimensional JB∗-triple X.
(i) Assume that the condition (5.1) is satisfied. Then we have

Bloc(K) ≥ C0(K,BX , n),

where

C0(K,BX , n) = K1−n

∫ 1

0

(1− t2)n−1

(1− t)2c(BX)
exp

{
−2c(BX)t

1− t

}
dt.

(ii) If n ≥ 2 and inf{∥z∥e : z ∈ ∂BX} = 1 holds, then we have

K̃1−n ≥ Bloc(K),

where K̃ = K/ sup{∥z∥e : z ∈ ∂BX}.

Proof. (i) From Proposition 5.1 and Theorem 5.6, we obtain the inequality
Bloc(K) ≥ C0(K,BX , n).

(ii) Since inf{∥z∥e : z ∈ ∂BX} = 1 holds, there exists e1 ∈ ∂BX with
∥e1∥e = 1. Let e1, e2, . . . , en be an orthonormal basis of Cn with respect to
the Euclidean inner product and let f(z) = K̃1−nz1e1+ K̃z2e2+ · · ·+ K̃znen.
Since

∥Df(φ(0))Dφ(0)∥X.e ≤ K̃∥Dφ(0)∥X.e ≤ K

for all φ ∈ Aut(BX), we have f ∈ β(BX ,Cn, K) ∩ Hloc(BX ,Cn). Therefore
Bloc(K) ≤ r(f) = K̃1−n. �
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