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A NONCONVEX SINGULAR STOCHASTIC CONTROL
PROBLEM AND ITS RELATED OPTIMAL
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Abstract. Equivalences are known between problems of singular stochastic control (SSC) with
convex performance criteria and related questions of optimal stopping; see, for example, Karatzas
and Shreve [SIAM J. Control Optim., 22 (1984), pp. 856–877]. The aim of this paper is to inves-
tigate how far connections of this type generalize to a nonconvex problem of purchasing electricity.
Where the classical equivalence breaks down we provide alternative connections to optimal stopping
problems. We consider a nonconvex infinite time horizon SSC problem whose state consists of an un-
controlled diffusion representing a real-valued commodity price, and a controlled increasing bounded
process representing an inventory. We analyze the geometry of the action and inaction regions by
characterizing their (optimal) boundaries. Unlike the case of convex SSC problems we find that the
optimal boundaries may be both reflecting and repelling and it is natural to interpret the problem
as one of SSC with discretionary stopping.
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1. Introduction and problem formulation. It is well known that convexity
of the performance criterion suffices to link certain singular stochastic control (SSC)
problems to related problems of optimal stopping (cf. [16], [24], and [25], among
others). In this paper we establish multiple connections with optimal stopping for a
nonconvex, infinite time horizon, two-dimensional, degenerate SSC problem motivated
by a problem of purchasing electricity. The nonconvexity arises because our electricity
price model allows for both positive and negative prices.

We model the purchase of electricity over time at a stochastic real-valued spot
price (Xt)t≥0 for the purpose of storage in a battery (for example, the battery of an
electric vehicle). The battery must be full at a random terminal time, any deficit
being met by a less efficient charging method. This feature is captured by inclusion
of a terminal cost term equal to the product of the terminal spot price and a convex
function Φ of the undersupply. Under the assumption of a random terminal time
independent of X and exponentially distributed, we show in Appendix A that this
optimisation problem is equivalent to solving the following problem.

Letting λ > 0 and c ∈ [0, 1] be constants, {ν : ν ∈ Sc} a set of bounded increasing
controls, (Xx

t )t≥0 a continuous strong Markov process starting from x ∈ R at time
zero and Cc,νt a process representing the level of storage at time t:

(1.1) Cc,νt = c+ νt, t ≥ 0,
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the problem is to find

(1.2) U(x, c) := inf
ν∈Sc

Jx,c(ν)

with

(1.3) Jx,c(ν) := E

[ ∫ ∞

0

e−λsλXx
sΦ(C

c,ν
s )ds+

∫ ∞

0

e−λsXx
s dνs

]

and the minimizing control policy ν∗. It is notable that the integrands in (1.3) may
assume both positive and negative values: economically this corresponds to the possi-
bility that the price is negative prior to or at the random terminal time in the original
optimization problem discussed in Appendix A.

In common with other commodity prices, the standard approach in the literature
is to model electricity prices through a geometric or arithmetic mean reverting process
(see, e.g., [21] or [30] and references therein). Motivated by deregulated electricity
markets with renewable generation, in which periods of negative electricity prices have
been observed due to the requirement to balance real-time supply and demand, we
assume an arithmetic model. We assume that X follows a standard time-homogeneous
Ornstein–Uhlenbeck process1 with positive volatility σ, positive adjustment rate θ,
and positive asymptotic (or equilibrium) value μ. On a complete probability space
(Ω,F ,P), with F := (Ft)t≥0 the filtration generated by a one-dimensional standard
Brownian motion (Bt)t≥0 and augmented by P-null sets, we therefore take Xx as the
unique strong solution of

(1.4)

{
dXx

t = θ(μ−Xx
t )dt+ σdBt, t > 0,

Xx
0 = x ∈ R.

We assume that the electricity storage capacity is bounded above by 1 (this
resembles a so-called finite-fuel constraint; see, for example, [16]): for any initial
level c ∈ [0, 1] the set of admissible controls is

Sc := {ν : Ω× R+ �→ R+, (νt(ω))t≥0 is nondecreasing, left-continuous,(1.5)

adapted with c+ νt ≤ 1 for all t ≥ 0, ν0 = 0, P-a.s.},

and νt represents the cumulative amount of energy purchased up to time t. From now
on we make the following standing assumption on the running cost function Φ.

Assumption 1.1. Φ : R �→ R+ lies in C2(R) and is decreasing and strictly convex
with Φ(1) = 0. We note that we do not cover with Assumption 1.1 the case of a
linear running cost function, although the solution in the linear case is simpler and
follows immediately from the results contained in sections 2 and 3.

With these specifications, problem (1.2) shares common features with the class of
finite-fuel, SSC problems of monotone follower type (see, e.g., [6], [11], [16], [17], [25],
and [26] as classical references on finite-fuel monotone follower problems). Such prob-
lems, with finite or infinite fuel and a running cost (profit) which is convex (concave)
in the control variable, have been well studied for over 30 years (see, e.g., [2], [3], [5],
[10], [16], [17], [23], [24], [25], and [26], among many others). Remarkably it turns
out that convexity (or concavity), together with other more technical conditions, is
sufficient to prove that such singular stochastic control problems are equivalent to

1See Appendix B for general facts on the Ornstein–Uhlenbeck process.
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related problems of optimal stopping; moreover the optimally controlled state process
is the solution of a Skorokhod reflection problem at the free boundary of the latter
(see, e.g., [10], [16], [24], [25], and [26]).

In our case the weighting function Φ appearing in the running cost is strictly
convex, the marginal cost e−λsXx

s dνs of exercising control is linear in the control
variable, and the set of admissible controls Sc (cf. (1.5)) is convex. However, the
Ornstein–Uhlenbeck process Xx of (1.4) can assume negative values with positive
probability and is also a factor of the running cost so that the total expected cost
functional (1.3) is not convex in the control variable. Therefore the connection be-
tween SSC and optimal stopping as addressed in [16], [24], and [25], among others, is
no longer guaranteed for problem (1.2).

The optimization problem we study (in common with many others in the litera-
ture; see, for instance, [18], [19], [29], [31], or [35]) has two state variables, one of which
is diffusive and the other is a control process, a setup typically referred to as degener-
ate two-dimensional. Our particular problem may be regarded as a two-dimensional
(history dependent) relative of a class of one-dimensional problems studied, for exam-
ple, in a series of papers by Alvarez (see [1], [2], and [3] and references therein). The
latter problems are neither convex nor concave, and the “critical depensation” which
they exhibit is also observed in the solutions we find. Their solutions are, however,
found in terms of optimal boundaries represented by points on the real axis rather
than the free boundary curves studied in the present paper. An advantage of the
one-dimensional setting is that general theory may be applied to develop solutions
for general diffusion processes. Since additional arguments are required to verify the
optimality of the free boundaries in our two-dimensional degenerate setting, how-
ever, such generality does not seem achievable and we work with the specific class of
Ornstein–Uhlenbeck processes given by (1.4).

We now briefly summarize the main findings that will be discussed and proved in
detail in sections 1.1, 2, 3, and 4. We begin in section 1.1 with a useful restatement of
the problem (1.2) as an SSC problem with discretionary stopping (SSCDS) (see (1.9)
below). To the best of our knowledge SSCDS problems were originally introduced
in [12]. In that paper the authors aimed at minimizing total expected costs with
a quadratic running cost depending on a Brownian motion linearly controlled by a
bounded variation process, and with a constant cost of exercising control. The case of
finite-fuel SSCDS was then considered in [28], where a terminal quadratic cost at the
time of discretionary stopping was also included. A detailed analysis of the variational
inequalities arising in singular control problems with discretionary stopping may be
found in [32] and [33].

Our SSCDS problem (1.2) exhibits three regimes depending on the sign of the
function

(1.6) k(c) := λ+ θ + λΦ′(c)

over c ∈ [0, 1]. We will show (section 3) that for fixed c, the sign of the function
k determines the nature of the relationship between the price level x and the net
contribution to the infimum (1.2) (equivalently, the infimum (1.9)) from exercising
control. In particular, when k > 0 this relationship is increasing and when k < 0 it is
decreasing.

Since c �→ k(c) is strictly increasing by the strict convexity of Φ (cf. Assump-
tion 1.1) define ĉ ∈ R as the unique solution of

(1.7) k(c) = 0
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should one exist, in which case ĉ may belong to [0, 1] or not, depending on the choice
of Φ and on the value of the parameters of the model.

In section 2 we study the case in which k(c) ≥ 0 for all c ∈ [0, 1] (and hence
ĉ ≤ 0, if it exists). We show that although problem (1.2) is nonconvex, the optimal
control policy behaves as that of a convex finite-fuel SSC problem of monotone follower
type (cf., e.g., [16], [25], and [26]) and, accordingly, (i) the optimal control ν∗ is
of the reflecting type, being the minimal effort to keep the (optimally) controlled
state variable inside the closure of the continuation region of an associated optimal
stopping problem up to the time at which all the fuel has been spent, and (ii) the
directional derivative Uc of (1.2) in the c variable coincides with the value function
of the associated optimal stopping problem. In this case the infimum over stopping
times is not achieved in the SSCDS formulation (1.9), which may be interpreted as a
formally infinite optimal stopping time.

On the other hand, in section 3 we assume k(c) ≤ 0 for all c ∈ [0, 1] (and hence
ĉ ≥ 1). In this case the optimal singular control policy in (1.9) is identically zero,
which may be interpreted as problem (1.2) becoming a stopping problem in which it
is optimal to do nothing up to the first hitting time of X at a repelling barrier (in
the language of [28]) and then to exercise all the available control. In particular the
differential connection between SSC and optimal stopping observed in the previous
case breaks down here and, to the best of our knowledge, this is a rare example of
such an effect in the literature on SSC problems.

The case when ĉ exists in [0, 1] is discussed in section 4. This case, in general
involving multiple free boundaries, is left as an open problem, although we refer to a
complete solution of the limiting case θ = 0 (cf. (1.4)) derived in a companion paper
[13]. Finally, we collect in the appendixes the model formulation, some well-known
facts on the Ornstein–Uhlenbeck process X , and some technical results.

Before concluding this section we observe that problem (1.2) may also fit in the
economic literature as an irreversible investment problem with stochastic investment
cost. It is well known that in the presence of a convex cost criterion (or concave
profit) the optimal (stochastic) irreversible investment policy consists in keeping the
production capacity at or above a certain reference level � (see, e.g., [9], [15], and [34];
cf. also [4] among others for the case of stochastic investments cost) which has been
recently characterized in [19] and [35], where it is referred to as base capacity. The
index �t describes the desirable level of capacity at time t. If the firm has capacity
Ct > �t, then it faces excess capacity and should wait. If the capacity is below �t,
then it should invest νt = �t − Ct in order to reach the level �t.

Our analysis shows that in the presence of nonconvex costs it is not always optimal
to invest just enough to keep the capacity at or above a base capacity level. In fact,
for a suitable choice of the parameters (ĉ ≤ 0) the optimal investment policy is
of a purely dichotomous bang-bang type: not invest or go to full capacity. On the
other hand, for a different choice of the parameters (ĉ ≥ 1) a base capacity policy is
optimal regardless of the nonconvexity of the total expected costs. To the best of our
knowledge this result is a novelty also in the mathematical-economics literature on
irreversible investment under uncertainty.

1.1. A problem with discretionary stopping. In this section we establish
the equivalence between problem (1.2) and a finite-fuel SSC problem with discre-
tionary stopping (cf. [12] and [28] as classical references on this topic). We first
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observe that, for fixed (x, c) ∈ R× [0, 1] and any ν ∈ Sc, the process (Xx
t )t≥0 and the

processes (Ix,c,νt )t≥0, (J
x,ν
t )t≥0 defined by

Ix,c,νt :=

∫ t

0

e−λsλXx
sΦ(C

c,ν
s )ds and Jx,νt :=

∫ t

0

e−λsXx
s dνs,(1.8)

respectively, are uniformly bounded in L2(Ω,P), hence uniformly integrable. This
is a straightforward consequence of standard properties of the Ornstein–Uhlenbeck
process (1.4) (see Appendix B), Assumption 1.1, the finite fuel condition, and an
integration by parts.

Proposition 1.2. Recall U of (1.2). Then one has U ≡ Û with

Û(x, c) = inf
ν∈Sc, τ≥0

E

[∫ τ

0

e−λsλXx
sΦ(C

c,ν
s )ds(1.9)

+

∫ τ

0

e−λsXx
s dνs + e−λτXx

τ (1 − Cc,ντ )

]

for (x, c) ∈ R× [0, 1] and where τ must be a P-a.s. finite stopping time.
Proof. Fix (x, c) ∈ R × [0, 1]. Take a sequence of deterministic stopping times

(tn)n∈N such that tn ↑ ∞ as n ↑ ∞ in the expectation in (1.9) and use uniform
integrability, continuity of Xx

· , I
x,c,ν
· , left-continuity of Jx,ν· (cf. (1.8)), and that

limn↑∞ E[e−λtnXx
tn(1 − Cc,νtn )] = 0 to obtain Û ≤ U in the limit as n → ∞. To

show the reverse inequality, for any admissible ν ∈ Sc and any stopping time τ ≥ 0
set

(1.10) ν̂t :=

{
νt, t ≤ τ,

1− c, t > τ.

The control ν̂ is admissible and then from the definition of U (cf. (1.2)) it follows that

U(x, c)≤Jx,c(ν̂) =E

[∫ τ

0

e−λsλXx
sΦ(C

c,ν
s )ds+

∫ τ

0

e−λsXx
s dνs + e−λτXx

τ (1− Cc,ντ )

]
.

Since the previous inequality holds for any admissible ν and any P-a.s. finite stopping
time τ ≥ 0 we conclude that U ≤ Û , hence U ≡ Û .

Since the proof of Proposition 1.2 does not rely on particular cost functions (run-
ning cost and cost of investment), the arguments apply to a more general class of SSC
problems. However, in some cases (including the convex or concave SSC problems) it
turns out that the infimum over stopping times in (1.9) is not achieved and one should
formally take τ = +∞: clearly in those cases an equivalence such as Proposition 1.2
would add no insight to the analysis of the problem. In contrast we show below that
depending on the quantity ĉ introduced through (1.7), both the control and stopping
policies in (1.9) may play either trivial or nontrivial roles through the interplay of two
free boundaries. A complete analysis of the interplay of these two free boundaries
is outside the scope of this paper and is a challenging open problem (discussed in
section 4).

2. The case ĉ ≤ 0. In this section we identify when the differential relation-
ship between SSC and optimal stopping known in convex problems of monotone fol-
lower type with finite fuel (cf., e.g., [16], [25], and [26]) holds in our nonconvex problem.
In this case, as discussed above one should formally set τ∗ = +∞ in (1.9). We find
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that the differential relationship holds when k(c) > 0 (cf. (1.6)) for all c ∈ [0, 1] or,
equivalently, when ĉ < 0: in this case the derivative (with respect to c, the direction
of the control variable) of the value function in (1.2) is given by the value function of
the family of optimal stopping problems solved below and the optimal control ν∗ is of
reflection type, being the minimal effort to keep the (optimally) controlled state vari-
able Cc,ν

∗
above the corresponding nonconstant free boundary. The optimal control

in this case is illustrated in Figure 1. The case ĉ = 0 is similar; see Remark 2.3.

2.1. The associated family of optimal stopping problems. The family of
infinite time horizon optimal stopping problems we expect to be naturally associated
to the control problem (1.2) is given by

v(x; c) := sup
σ≥0

E

[
− e−λσXx

σ +

∫ σ

0

e−λsλXx
sΦ

′(c)ds
]
, c ∈ [0, 1],(2.1)

where the supremum is taken over all P-a.s. finite stopping times σ (see, for example,
[16], [24], or [25], among others). For any given value of c ∈ [0, 1], (2.1) is a one-
dimensional optimal stopping problem that can be addressed through a variety of well-
established methods. As c varies, the optimal stopping boundary points for problem
(2.1) will serve to construct the candidate optimal boundary of the action region of
problem (1.2) and, as noted in the introduction, we will therefore require sufficient
monotonicity and regularity of this free boundary curve to verify its optimality.

Define

G(x; c) :=
μ(k(c)− θ)

λ
+
k(c)(x − μ)

λ+ θ
, (x, c) ∈ R× [0, 1],(2.2)

x0(c) := − θμΦ′(c)
k(c)

> 0, c ∈ [0, 1],(2.3)

and let LX be the infinitesimal generator of the diffusion Xx, i.e.,

LXf (x) :=
1

2
σ2f ′′(x) + θ(μ− x)f ′(x) for f ∈ C2

b (R) and x ∈ R.(2.4)

The next theorem is proved in Appendix C.1 and provides a characterization of v in
(2.1) and of the related optimal stopping boundary.

Theorem 2.1. For each given c ∈ [0, 1] one has v(x; c) = −x+ u(x; c), where

u(x; c) :=

{
G(x; c)− G(β∗(c);c)

φλ(β∗(c)) φλ(x), x > β∗(c),

0, x ≤ β∗(c),
(2.5)

with φλ the strictly decreasing fundamental solution of LXf = λf (cf. (B.2) in Ap-
pendix B) and β∗(c) ∈ (−∞, x0(c)) the unique solution of the problem

find x ∈ R: Gx(x; c)− G(x; c)

φλ(x)
φ′λ(x) = 0.(2.6)

Moreover

σ∗ := inf{t ≥ 0 : Xx
t ≤ β∗(c)}(2.7)

is an optimal stopping time in (2.1) and c �→ β∗(c) is strictly decreasing and, if ĉ < 1,
it is C1 on [0, 1].
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Fig. 1. An illustrative diagram of the action/inaction regions in the case ĉ ≤ 0 and of the
optimal control ν∗ (see (2.15)). The boundary β∗ splits the state space into the inaction region
(white) and action region (hatched). When the initial state is (x, c) with x > β∗(c) one observes a

Skorokhod reflection of (Xx, Cc,ν∗
) at β∗ in the horizontal direction up to when all the fuel is spent.

Remark 2.2. The monotonicity of the boundary, crucial for the verification the-
orem below, is obtained using specific properties of the diffusion X (through the
function φλ) and of the cost functional. To the best of our knowledge general results
of this kind for a wider class of diffusions cannot be provided in this nonconvex setting
by either probabilistic or analytical methods; thus a study on a case-by-case basis is
required. We note in fact that in [13] in a setting similar to the present one but with
a different choice of X , the geometry of the action and inaction regions for the control
problem is quite different.

Remark 2.3. In the case when ĉ = 0 (cf. (1.7)) one only has β∗ ∈ C1((0, 1]), as in
fact limc↓ĉ β∗(c) = +∞ along with its derivative. This follows by noting that taking
y = β∗(c) in (2.6) and passing to the limit as c ↓ ĉ, if limc↓ĉ β∗(c) = � < +∞ one finds
a contradiction. For c = ĉ the optimal stopping time for problem (2.1) is σ∗ = 0 for
any x ∈ R.

2.2. The solution of the stochastic control problem. In this section we
aim at providing a solution to the finite-fuel SSC problem (1.2) by starting from the
solution of the optimal stopping problem (2.1) (see also (C.1)) and guessing that the
classical connection to SSC holds.

By Theorem 2.1 we know that c �→ β∗(c) is strictly decreasing and so has a strictly
decreasing inverse. We define

g∗(x) :=

⎧⎪⎨
⎪⎩
1, x ≤ β∗(1),
β−1∗ (x), x ∈ (β∗(1), β∗(0)),
0, x ≥ β∗(0).

(2.8)

Obviously g∗ : R → [0, 1] is continuous and decreasing. Moreover, since β∗ ∈ C1 and
β′
∗ < 0 (cf. again Theorem 2.1), then g′∗ exists almost everywhere and it is bounded.
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Define the function

(2.9) F (x, c) := −
∫ 1

c

v(x; y)dy = x(1 − c)−
∫ 1

c

u(x; y)dy.

We expect that F (x, c) = U(x, c) for all (x, c) ∈ R× [0, 1], with U as defined in (1.2).
Proposition 2.4. The function F (x, c) in (2.9) is such that x �→ F (x, c) is

concave, F ∈ C2,1(R× [0, 1]), and the following bounds hold:∣∣F (x, c)∣∣+ ∣∣Fc(x, c)∣∣ ≤ C1(1 + |x|), ∣∣Fx(x, c)∣∣ + ∣∣Fxx(x, c)∣∣ ≤ C2,(2.10)

for (x, c) ∈ R× [0, 1] and some positive constants C1 and C2.
Proof. In this proof we will often refer to the proof of Theorem 2.1 in Ap-

pendix C.1. Recall (2.5) and that uβ∗ ≡ u (cf. Theorem 2.1). Concavity of F as in
(2.9) easily follows by observing that x �→ u(x; c) is convex (cf. again Theorem 2.1). It
is also easy to verify from (2.2) and (2.5) that u is of the form u(x; c) = A(c)P (x)+B(c)
for suitable continuous functions A, B, and P , so that (x, c) �→ F (x, c) is continuous
on R× [0, 1] and c �→ Fc(x, c) is continuous on [0, 1] as well. From the definition of uβ∗

(cf. (2.5)), (2.6), convexity of uβ∗ , and continuity of β∗ it is straightforward to verify
that for x ∈ K ⊂ R, K bounded, |ux| and |uxx| are at least bounded by a function
QK(c) ∈ L1(0, 1). It follows that evaluating Fx and Fxx one can pass derivatives
inside the integral in (2.9) to obtain

Fx(x, c) = (1− c)−
∫ 1

c

ux(x; y)dy = (1− c)−
∫ 1

g∗(x)∨c
ux(x; y)dy(2.11)

and

Fxx(x, c) = −
∫ 1

c

uxx(x; y)dy = −
∫ 1

g∗(x)∨c
uxx(x; y)dy.(2.12)

Therefore F ∈ C2,1 by (2.5), (2.6), convexity of u (cf. Theorem 2.1), and continuity
of g∗(·) (cf. (2.8)).

Recall now that φλ(x) and all its derivatives go to zero as x→ ∞ and (2.8). Then
bounds (2.10) follow from (2.5), (2.9), (2.11), and (2.12).

From standard theory of stochastic control (e.g., see [20, Chapter VIII]), we expect
that the value function U of (1.2) identifies with an appropriate solution w to the
Hamilton–Jacobi–Bellman (HJB) equation

(2.13) max{−LXw + λw − λxΦ(c),−wc − x} = 0 for a.e. (x, c) ∈ R× [0, 1].

Recall Proposition 2.4.
Proposition 2.5. For all (x, c) ∈ R× [0, 1] we have that F is a classical solution

of (2.13).
Proof. First we observe that (2.2) and (2.9) give

F (x, c) =μΦ(c)+(x − μ)
λΦ(c)

λ+ θ
+ φλ(x)

∫ 1

c

G(β∗(y); y)
φλ(β∗(y))

dy for all c > g∗(x).(2.14)

For any fixed c ∈ [0, 1] and x ∈ R such that Fc(x, c) > −x, i.e., c > g∗(x) (cf. (2.9)),
one has

(LX − λ)F (x, c) = −λΦ(c)x
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by (2.14). On the other hand, for arbitrary (x, c) ∈ R× [0, 1] we notice that

(LX − λ)F (x, c) = (1 − c)(θμ− (λ+ θ)x) −
∫ 1

c

(LX − λ)u(x; y)dy

by (2.11) and (2.12). Now, recalling (C.12) one has

∫ 1

c

(LX − λ)u(x; y)dy ≤
∫ 1

c

[θμ− k(y)x]dy = [θμ− (λ+ θ)x](1 − c) + λΦ(c)x,

since θμ− k(c)x ≥ 0 when Fc(x, c) = −x, i.e., c < g∗(x), by (C.13). Then

(LX − λ)F (x, c) ≥ −λΦ(c)x for all (x, c) ∈ R× [0, 1].

We now aim at providing a candidate optimal control policy ν∗ for problem (1.2).
Let (x, c) ∈ R× [0, 1] and consider the process

(2.15) ν∗t =
[
g∗
(

inf
0≤s≤t

Xx
s

)− c
]+
, t > 0, ν∗0 = 0,

with g∗ as in (2.8) and [ · ]+ denoting the positive part.
Proposition 2.6. The process ν∗ of (2.15) is an admissbile control.
Proof. Fix ω ∈ Ω and recall (1.5). By definition t �→ ν∗t (ω) is clearly increasing

and such that Cc,ν
∗

t (ω) ≤ 1, for any t ≥ 0, since 0 ≤ g∗(x) ≤ 1, x ∈ R. The map
x �→ g∗(x) is continuous, and then t �→ ν∗t (ω) is continuous, apart from a possible
initial jump at t = 0, by continuity of paths t �→ Xx

t (ω).
To prove that ν∗ ∈ Sc it thus remains to show that ν∗ is (Ft)-adapted. To this

end, first of all notice that continuity of g∗(·) also implies its Borel measurability
and hence progressive measurability of the process g∗(Xx). Then ν∗ is progressively
measurable since g∗

(
inf0≤s≤tXx

s

)
= sup0≤s≤t g∗(X

x
s ), by monotonicity of g∗, and by

[14, Theorem IV.33]. Hence ν∗ is (Ft)-adapted.
To show optimality of ν∗ we introduce the action and inaction sets

C :=
{
(x, c) : Fc(x, c) > −x} and D :=

{
(x, c) : Fc(x, c) = −x},(2.16)

respectively, and with (x, c) ∈ R × [0, 1]. Their link to the sets defined in (C.2)
is clear by recalling that Fc = u. The following proposition, which is somewhat
standard (see, e.g., [27, p. 210] and [36] as classical references on the topic), is proved
in Appendix C.2.

Proposition 2.7. Let C∗
t := Cc,ν

∗
t = c + ν∗t , with ν∗ as in (2.15). Then ν∗

solves the Skorokhod problem:
1. (C∗

t , X
x
t ) ∈ C, P-a.s., for each t > 0,

2.
∫ T
0 e−λt1{(C∗

t ,X
x
t )∈C}dν∗t = 0 a.s. for all T ≥ 0,

where C := {(x, c) ∈ R× [0, 1] : c ≥ g∗(x)} denotes the closure of the inaction region
C (cf. (2.16)).

Theorem 2.8. The control ν∗ defined in (2.15) is optimal for problem (1.2) and
F ≡ U (cf. (2.9)).

Proof. The proof is based on a verification argument and, as usual, it splits into
two steps.

Step 1. Fix (x, c) ∈ R × [0, 1] and take R > 0. Set τR := inf
{
t ≥ 0 : Xx

t /∈
(−R,R)}, take an admissible control ν, and recall the regularity results for F of
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Proposition 2.4. Then we can use Itô’s formula in its classical form up to the stopping
time τR ∧ T , for some T > 0, to obtain

F (x, c) =E
[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[∫ τR∧T

0

e−λs(LX − λ)F (Xx
s , C

c,ν
s )ds

]

− E

[∫ τR∧T

0

e−λsFc(Xx
s , C

c,ν
s )dνs

]

− E

⎡
⎣ ∑
0≤s<τR∧T

e−λs
(
F (Xx

s , C
c,ν
s+ )− F (Xx

s , C
c,ν
s )− Fc(X

x
s , C

c,ν
s )Δνs

)⎤⎦,
where Δνs := νs+ − νs and the expectation of the stochastic integral vanishes since
Fx is bounded on (x, c) ∈ [−R,R]× [0, 1].

Now, recalling that any ν ∈ Sc can be decomposed into the sum of its continuous
part and its pure jump part, i.e., dν = dνcont + Δν, one has (see [20, Chapter 8,
section VIII.4, Theorem 4.1, pp. 301–302])

F (x, c)= E
[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[∫ τR∧T

0

e−λs(LX − λ)F (Xx
s , C

c,ν
s )ds

]

−E

[∫ τR∧T

0

e−λsFc(Xx
s , C

c,ν
s )dνconts

]

−E

[ ∑
0≤s<τR∧T

e−λs
(
F (Xx

s , C
c,ν
s+ )− F (Xx

s , C
c,ν
s )

) ]
.

Since F satisfies the HJB equation (2.13) (cf. Proposition 2.5), and by noticing that

(2.17) F (Xx
s , C

c,ν
s+ )− F (Xx

s , C
c,ν
s ) =

∫ Δνs

0

Fc(X
x
s , C

c,ν
s + u)du,

we obtain

F (x, c) ≤E
[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T )

]
(2.18)

+ E

[∫ τR∧T

0

e−λsλXx
sΦ(C

c,ν
s )ds

]

+ E

[∫ τR∧T

0

e−λsXx
s dν

cont
s

]
+ E

⎡
⎣ ∑
0≤s<τR∧T

e−λsXx
sΔνs

⎤
⎦

=E

[
e−λ(τR∧T )F (Xx

τR∧T , C
c,ν
τR∧T )

]

+ E

[∫ τR∧T

0

e−λsλXx
sΦ(C

c,ν
s )ds+

∫ τR∧T

0

e−λsXx
s dνs

]
.

When taking limits as R → ∞ we have τR ∧ T → T , P-a.s. The integral terms in
the last expression on the right-hand side of (2.18) are uniformly integrable (cf. (1.8))
and F has sublinear growth (cf. (2.10)). Then we also take limits as T ↑ ∞ and it
follows that

F (x, c) ≤ E

[∫ ∞

0

e−λsλXx
sΦ(C

c,ν
s )ds+

∫ ∞

0

e−λsXx
s dνs

]
,(2.19)
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due to the fact that limT→∞ E[e−λTF (Xx
T , C

c,ν
T )] = 0. Since the latter holds for all

admissible ν we have F (x, c) ≤ U(x, c).

Step 2. If c = 1, then F (x, 1) = U(x, 1) = 0. Then take c ∈ [0, 1), C∗ as in
Proposition 2.7 and define ρ := inf

{
t ≥ 0 : ν∗t = 1 − c

}
. We can repeat arguments

of Step 1 on Itô’s formula with τR replaced by τR ∧ ρ to find

F (x, c) = E
[
e−λ (τR∧ρ)F (Xx

τR∧ρ, C
∗
τR∧ρ)

]
− E

[∫ τR∧ρ

0

e−λs(LX − λ)F (Xx
s , C

∗
s )ds

]

− E

[∫ τR∧ρ

0

e−λsFc(Xx
s , C

∗
s )dν

∗,cont
s

]

− E

⎡
⎣ ∑
0≤s<τR∧ρ

e−λs
(
F (Xx

s , C
∗
s+)− F (Xx

s , C
∗
s )
)⎤⎦ .

If we now recall Proposition 2.5, Proposition 2.7, and (2.17), then from the above we
obtain

F (x, c) =E

[
e−λ (τR∧ρ)F (Xx

τR∧ρ, C
∗
τR∧ρ)

]
(2.20)

+ E

[∫ τR∧ρ

0

e−λsλXx
sΦ(C

∗
s )ds+

∫ τR∧ρ

0

e−λsXx
s dν

∗
s

]
.

As R→ ∞, again τR → ∞, clearly τR ∧ ρ→ ρ, P-a.s., and

E
[
e−λ(τR∧ρ)F (Xx

τR∧ρ, C
∗
τR∧ρ)

]
→ 0.

Moreover, we also notice that since d ν∗s ≡ 0 and Φ(C∗
s ) ≡ 0 for s > ρ the integrals in

the last expression of (2.20) may be extended beyond ρ up to +∞ so as to obtain

F (x, c) =E

[ ∫ ∞

0

e−λsλXx
sΦ(C

∗
s )ds+

∫ ∞

0

e−λsXx
s dν

∗
s

]
= Jx;c(ν∗).(2.21)

Then F ≡ U and ν∗ is optimal.

3. The case ĉ ≥ 1. In this section we examine the regime opposite to that of
section 2, when the infimum in (1.9) is attained by an almost surely finite stopping
time τ∗ and the constant control policy ν̂ ≡ 0. Equivalently the solution to (1.2) does
not exert control before the price process X hits a repelling boundary, at which point
all available control is exerted. We show that this regime occurs when k(c) < 0 for all
c ∈ [0, 1] (cf. (1.6)), or equivalently ĉ > 1. The optimal control in this case is illustrated
in Figure 2. We confirm this contrast with the differential relationship holding in
section 2 (i.e., the breakdown of the classical connection to optimal stopping) by
showing that the principle of smooth fit does not hold for the value function of the
control problem, whose second order mixed derivative Ucx is not continuous across
the optimal boundary. The case ĉ = 1 is similar; see Remark 3.3.

We begin by observing that exercising no control produces a payoff equal to

λΦ(c)

∫ ∞

0

e−λsE [Xx
s ] ds(3.1)
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Fig. 2. An illustrative diagram of the action/inaction regions in the case ĉ > 0 and of
the optimal control ν∗ (see (3.25)). The boundary γ∗ splits the state space into the inaction
region (white) and action region (hatched). When the initial state is (x, c) with x < γ∗(c), the
first time Xx hits γ∗(c) one observes a single jump of (Xx, Cc,ν∗

) in the horizontal direction
up to c = 1.

(cf. (1.2)). Suppose instead that we exert a small amount Δ0 of control at time
zero and exercise no further control. In this case the cost of control is xΔ0 and,
approximating Φ(c+Δ0) ∼ Φ(c) + Φ′(c)Δ0, the payoff reads

λΦ(c)

∫ ∞

0

e−λsE [Xx
s ] ds+Δ0λΦ′(c)

∫ ∞

0

e−λsE
[
Xx
s

]
ds+ xΔ0(3.2)

= λΦ(c)

∫ ∞

0

e−λsE [Xx
s ] ds+

Δ0

λ+ θ

(
k(c)x+ θμΦ′(c)

)
,

recalling that E[Xx
s ] = μ+(x−μ)e−θs (cf. (B.1)) to obtain the second term. Comparing

(3.1) and (3.2) we observe that the relative net contribution to the infimum (1.2)
(equivalently, the infimum (1.9)) from exercising the amount Δ0 of control is given
by the second term in the second line of (3.2), which for fixed c depends only on
the term k(c)x. When x > −θμΦ′(c)/k(c) the second term in (3.2) is negative and
therefore favorable, while when x < −θμΦ′(c)/k(c) it is positive and unfavorable.
This suggests that in the present case, when ĉ > 1, we should expect the inaction
region to correspond to {(x, c) : x < γ(c)} for some function γ. Moreover, since
the curve c �→ −θμΦ′(c)/k(c) is strictly decreasing as Φ is strictly convex, small
control increments in this profitable region x > −θμΦ′(c)/k(c) keep the state process
(X,C) inside the same region. It thus follows that infinitesimal increments due to a
possible reflecting boundary as in section 2 do not seem to lead to an optimal strategy.
Instead a phenomenon similar to “critical depensation” in optimal harvesting models
is suggested, where it becomes optimal to exercise all available control upon hitting a
repelling free boundary (see, for example, [1] for one-dimensional problems but note
that in our setting the free boundary will in general be nonconstant).

We solve the optimization problem (1.2) by directly tackling the associated HJB
equation suggested by the above heuristic and the dynamic programming principle.
It is not difficult to show from (1.2) that x �→ U(x, c) has at most sublinear growth:
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indeed, integrating by parts the cost term
∫∞
0
e−λsXx

s dνs and noting that the mar-

tingale Mt :=
∫ t
0 σe

−λsνsdBs is uniformly integrable, we can write for any ν ∈ Sc

Jx,c(ν) ≤ E

[ ∫ ∞

0

e−λs
(
λ|Xx

s |Φ(Cc,νs ) + |νs|[λ|Xx
s |+ θ(μ+ |Xx

s |)]
)
ds

]
≤ K(1 + |x|)

for some suitable K > 0, by (B.1), Assumption 1.1, and the fact that any admissible
ν is nonnegative and uniformly bounded.

We seek a couple (W,γ) solving the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

LXW (x, c)− λW (x, c) = −λxΦ(c) for x < γ(c), c ∈ [0, 1),

Wc(x, c) ≥ −x for (x, c) ∈ R× [0, 1],

W (x, c) = x(1 − c) for x ≥ γ(c), c ∈ [0, 1],

Wx(γ(c), c) = (1− c) for c ∈ [0, 1].

(3.3)

We will verify a posteriori that W then also satisfies Wc(γ(c), c) = −γ(c) but does
not satisfy Wcx(γ(c), c) = −1, which is a smooth fit condition often employed in the
solution of SSC problems (see, for example, [18] and [31]).

Theorem 3.1. Let ψλ be the increasing fundamental solution of (LX − λ)f = 0
(cf. (B.3) in Appendix B) and define

x0(c) :=
θμΦ(c)

ζ(c)
, c ∈ [0, 1),(3.4)

where ζ(c) := (λ + θ)(1 − c) − λΦ(c) =
∫ 1

c
k(y)dy < 0. There exists a unique couple

(W,γ) solving (3.3) with W satisfying W ∈ W 2,1,∞
loc (R× (0, 1)) and Wc(γ(c), c) = −1.

The function γ is decreasing and, if ĉ > 1, it is C1 on [0, 1]. For each c ∈ [0, 1],
γ(c) ∈ (x0(c),+∞) is the unique solution of

find x ∈ R:
ψλ(x)

ψ′
λ(x)

= x− x0(c).(3.5)

For c ∈ [0, 1] the function W may be expressed in terms of γ as

W (x, c)=

⎧⎨
⎩

ψλ(x)
ψλ(γ(c))

[
γ(c)(1−c)−λΦ(c)

(
γ(c)−μ
λ+θ + μ

λ

)]
+λΦ(c)

[
x−μ
λ+θ+

μ
λ

]
for x < γ(c),

x(1 − c) for x ≥ γ(c).

(3.6)

Moreover the map x �→ Wc(x, c) is not C1 across the boundary γ and one has
Wcx(γ(c), c) < −1, c ∈ [0, 1].

Proof. The proof will be carried out in several steps.
Step 1. The first equation in (3.3) is an ordinary differential equation solved by

W (x, c) = A(c)ψλ(x) +B(c)φλ(x) + λΦ(c)

[
x− μ

λ+ θ
+
μ

λ

]
(3.7)

with φλ and ψλ as in (B.2) and (B.3), respectively. Since W (x, c) = x(1 − c) for
x > γ(c) sublinear growth is fulfilled as x→ +∞; however, as x→ −∞ one has that
φλ(x) → +∞ with a superlinear trend. Since we are trying to identify U , it is then
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natural to set B(c) ≡ 0. Imposing the third and fourth conditions of (3.3) at x = γ(c)
we find

A(c)ψλ(γ(c)) = γ(c)(1− c)− λΦ(c)

(
γ(c)− μ

λ+ θ
+
μ

λ

)
(3.8)

and

A(c)ψ′
λ(γ(c)) = (1 − c)− λΦ(c)

λ+ θ
,(3.9)

from which it follows that γ(c) should solve (3.5). Since ψλ/ψ
′
λ > 0 any solution

of (3.5) must be in the set (x0(c),+∞) and so (3.5) is equivalent to finding x ∈
(x0(c),+∞) such that H(x, c) = 0 with

H(x, c) := ψλ(x)

[
(1− c)− λΦ(c)

λ+ θ

]
− ψ′

λ(x)

[
x(1 − c)− λΦ(c)

(
x− μ

λ+ θ
+
μ

λ

)]
.

(3.10)

Since ψ′
λ > 0 and ψ′′

λ > 0 (cf. (B.3) and (B.4)) it follows by direct calculation that
Hx(x, c) > 0 and Hxx(x, c) > 0 on x ∈ (x0(c),+∞); moreover, since H(x0(c), c) < 0
there exists a unique γ(c) solving (3.5). Now from (3.5), (3.8), and (3.9) we can
equivalently set

A(c) :=
1

ψλ(γ(c))

[
γ(c)(1 − c)− λΦ(c)

(
γ(c)− μ

λ+ θ
+
μ

λ

)]

=
1

ψ′
λ(γ(c))

[
(1− c)− λΦ(c)

λ+ θ

]
(3.11)

and (3.6) follows by extending W to be x(1 − c) for x > γ(c).
Step 2. Using (3.5) and (3.6) it is easy to check that W (γ(c), c) = γ(c)(1− c) and

Wx(γ(c), c) = (1 − c).
Step 3. In order to establish the monotonicity of γ we study the derivative with

respect to c of the map c �→ x− x0(c). Differentiating we obtain

d

d c
(x− x0(c)) = − d

d c
x0(c) = −θμ(λ+ θ)[Φ′(c)(1 − c) + Φ(c)]

ζ2(c)
> 0,(3.12)

where the last inequality holds since −Φ(c) =
∫ 1

c
Φ′(y)dy > Φ′(c)(1 − c) by strict

convexity of Φ. Now (3.12) guarantees that c �→ x − x0(c) is increasing and then the
implicit function theorem and arguments similar to those that led to (C.11) in the
proof of Proposition C.3 allow us to conclude that γ lies in C1([0, 1]) (if ĉ > 1) and is
decreasing (for ĉ = 1 see Remark 3.3 below).

Step 4. We now aim to prove the second condition in (3.3). Recalling that W has
been extended to be x(1− c) for x ≥ γ(c) the result is trivial in that region. Consider
only x < γ(c). From (3.6) we have

W (x, c) = x(1 − c)−
[
x(1 − c)− λΦ(c)

(
x− μ

λ+ θ
+
μ

λ

)]

+
ψλ(x)

ψλ(γ(c))

[
γ(c)(1− c)− λΦ(c)

(
γ(c)− μ

λ+ θ
+
μ

λ

)]
(3.13)
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and since γ is differentiable, recalling (2.2) and rearranging terms we have

Wc(x, c) = − x+G(x, c) − ψλ(x)

ψλ(γ(c))
G(γ(c), c)

+
ψλ(x)

ψλ(γ(c))
γ′(c)

[
(1− c)− λΦ(c)

λ+ θ

] [
1− ψ′

λ(γ(c))

ψλ(γ(c))
(γ(c)− x0(c))

]
(3.14)

= − x+G(x, c) − ψλ(x)

ψλ(γ(c))
G(γ(c), c),

where the last equality follows since γ solves (3.5). Note that as a byproduct of (3.14)
we also have Wc(γ(c), c) = −γ(c). Differentiating (3.14) with respect to x and taking
x = γ(c) gives

Wcx(γ(c), c) + 1 =
k(c)

λ+ θ
− ψ′

λ(γ(c))

ψλ(γ(c))
G(γ(c), c)(3.15)

and hence from (2.2) and (3.5) we obtain

Wcx(γ(c), c) + 1=− k(c)

(λ+ θ)

1

(γ(c)− x0(c))

[
μθΦ′(c)
k(c)

+ x0(c)

]

=− θμ

ζ(c)

1

(γ(c)− x0(c))
[Φ′(c)(1− c) + Φ(c)].(3.16)

Since γ(c) > x0(c), ζ(c) < 0, and Φ′(c)(1 − c) + Φ(c) < 0 by the convexity of Φ we
conclude that

Wcx(γ(c), c) + 1 < 0, c ∈ [0, 1].(3.17)

For x < γ(c) we can differentiate with respect to c and x the first equation in (3.3),
set ū(x, c) :=Wxc(x, c) + 1, and find

LX ū(x, c) − (λ+ θ)ū(x, c) = −k(c) ≥ 0 for c ∈ [0, 1] and x < γ(c),(3.18)

with boundary condition ū(γ(c), c) =Wxc(γ(c), c) + 1 < 0. Taking σγ := inf
{
t ≥ 0 :

Xx
t ≥ γ(c)

}
and using Itô’s formula we find

(3.19)

ū(x, c) = E

[
e−(λ+θ)σγ ū

(
Xx
σγ
, c
)
+ k(c)

∫ σγ

0

e−(λ+θ)sds

]
for c ∈ [0, 1] and x < γ(c).

It follows from (3.14) and recurrence ofX that e−(λ+θ)σγ ū
(
Xx
σγ
, c
)
= e−(λ+θ)σγ ū

(
γ(c),

c
)
, P-a.s. Moreover, k(c) < 0 and (3.17) imply that the right-hand side of (3.19)

is strictly negative. It follows that Wxc(x, c) + 1 < 0 for all x < γ(c) and hence
x �→ Wc(x, c) + x is decreasing. Since Wc(γ(c), c) + γ(c) = 0 by (3.14), we can
conclude Wc(x, c) + x ≥ 0 for all (x, c) ∈ R× [0, 1].

Remark 3.2. If Wc were the value function of an optimal stopping problem with
free boundary γ we would expect the principle of smooth fit to hold, i.e.,Wc( · , c) ∈ C1

across the boundary γ. In the literature on SSC, continuity of Wcx is usually verified
(cf., for instance, [18] and [31]) and often used to characterize the optimal boundary.
However, (3.17) confirms that this property does not hold in this example, and indeed
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the differential relationship between singular control and optimal stopping (in the
sense, e.g., of [16], [24], [25]) breaks down.

Remark 3.3. It is interesting to note that if ĉ = 1 one has limc↑ĉ x0(c) = −∞
and hence limc↑ĉ γ(c) = −∞; otherwise a contradiction is found when passing to the
limit in (3.5) with x = γ(c). Since γ solving (3.5) is the unique candidate optimal
boundary we set γ∗ := γ from now on.

Proposition 3.4. The function W of Theorem 3.1 solves (2.13) with W (x, 1) =
U(x, 1) = 0.

Proof. The boundary condition at c = 1 follows from (3.6). Since W solves
(3.3) it also solves (2.13) for x < γ∗(c), c ∈ [0, 1]. It thus remains to prove that(
LX − λ

)
W (x, c) ≥ −λΦ(c)x for x > γ∗(c). Note that since W (x, c) = x(1 − c) in

that region,
(
LX − λ

)
W (x, c) = (1− c)

[
θμ− (λ+ θ)x

]
. Set

x̃(c) :=
(1− c)θμ

ζ(c)
, c ∈ [0, 1),(3.20)

where again ζ(c) =
∫ 1

c
k(y)dy, and observe that (1 − c)

[
θμ − (λ + θ)x

] ≥ −λΦ(c)x
for all x ≥ x̃(c). To conclude we need only show that γ∗(c) > x̃(c) for c ∈ [0, 1]. It
suffices to prove that H(x̃(c), c) < 0 (cf. (3.10)) and the result will follow since H(·, c)
is strictly increasing and such that H(γ∗(c), c) = 0.

Fix c ∈ [0, 1) and denote x̃ := x̃(c) and x0 := x0(c) (cf. (3.4)) for simplicity. Then
we have

ψλ(x̃)

ψ′
λ(x̃)

− (x̃− x0) =
ψλ(x̃)

ψ′
λ(x̃)

− θμ

ζ(c)
(1 − c− Φ(c))(3.21)

=
ψλ(x̃)

ψ′
λ(x̃)

− x̃

(1 − c)
[(1− c)− Φ(c)] ,

where the last equality follows from (3.20). Since ψ′′
λ > 0 and ψλ solves

(
LX−λ)ψλ = 0

we obtain

ψλ(x̃)

ψ′
λ(x̃)

>
θ(μ− x̃)

λ
(3.22)

and from the right-hand side of (3.21) also

ψλ(x̃)

ψ′
λ(x̃)

− (x̃− x0) >
θ(μ− x̃)

λ
− x̃ [λ(1 − c)− λΦ(c)]

λ(1− c)
(3.23)

=

(
θμ− (λ + θ)x̃

)
(1− c) + λΦ(c)x̃

λ(1 − c)
= 0.

The inequality above implies H(x̃(c), c) < 0 so that γ∗(c) > x̃(c). Hence
(
LX −

λ
)
W (x, c) ≥ −λΦ(c)x for x > γ∗(c).
Introduce the stopping time

(3.24) τ∗ := inf
{
t ≥ 0 : Xx

t ≥ γ∗(c)
}
,

and for any c ∈ [0, 1) define the admissible control strategy

ν∗t :=

{
0, t ≤ τ∗,
(1− c), t > τ∗.

(3.25)



NONCONVEX SINGULAR STOCHASTIC CONTROL 1215

Theorem 3.5. The admissible control ν∗ of (3.25) is optimal for problem (1.2)
and W ≡ U .

Proof. The proof employs arguments similar to those used in the proof of The-
orem 2.8. We recall the regularity of W by Theorem 3.1 and note that

∣∣W (x, c)
∣∣ ≤

K(1 + |x|) for a suitable K > 0. Then an application of Itô’s formula in the weak
version of [20, Chapter 8, section VIII.4, Theorem 4.1] easily gives W (x, c) ≤ U(x, c)
for all (x, c) ∈ R× [0, 1] (cf. also arguments in Step 1 of the proof of Theorem 2.8).

On the other hand, taking C∗
t := Cc,ν

∗
t = c+ ν∗t , c ∈ [0, 1), with ν∗ as in (3.25),

and applying Itô’s formula again (possibly using localization arguments as in the proof
of Theorem 2.8) we find

W (x, c) =E

[
e−λτ∗W (Xx

τ∗ , C
∗
τ∗) +

∫ τ∗

0

e−λsλXx
s Φ(C∗

s )ds

]
(3.26)

− E

[∫ τ∗

0

e−λsWc(X
x
s , C

∗
s )d ν

∗,cont
s

]

− E

⎡
⎣ ∑
0≤s<τ∗

e−λs
(
W (Xx

s , C
∗
s+)−W (Xx

s , C
∗
s )
)⎤⎦ .

Since (Xx
s , C

∗
s ) = (Xx

s , c) for s ≤ τ∗, the third and fourth terms on the right-hand
side of (3.26) equal zero, whereas for the first term we have from (3.3) and (3.25)

E
[
e−λτ∗W (Xx

τ∗ , c+ ν∗τ∗)
]
= E

[
e−λτ∗W (Xx

τ∗ , c)
]

(3.27)

=E
[
e−λτ∗Xx

τ∗(1− c)
]
= E

[∫ ∞

0

e−λsXx
s dC

∗
s

]
.

For the second term on the right-hand side of (3.26) we have

E

[∫ τ∗

0

e−λsλXx
s Φ(c+ ν∗s )ds

]
= E

[∫ ∞

0

e−λsλXx
s Φ(c+ ν∗s )ds

]
,(3.28)

since Φ(1) = 0 by Assumption 1.1. Now, (3.26), (3.27), and (3.28) give W (x, c) =
U(x, c), and C∗ is optimal.

4. Considerations in the case ĉ ∈ (0, 1). In this section we discuss the
remaining case when ĉ ∈ (0, 1), or equivalently when the function k(·) of (1.6) changes
its sign over (0, 1).

1. For c ∈ [ĉ, 1] it can be seen that setting the strictly convex penalty function in
(1.3) equal to Φ̂( · ) := Φ(ĉ+ · ) reduces problem (1.2) to that of section 2. The optimal
control strategy for c ∈ [ĉ, 1] is therefore of reflecting type and it is characterized

in terms of a decreasing boundary β̂ defined on (ĉ, 1]. As expected the classical
connection with optimal stopping holds in the sense that Uc = v on R× (ĉ, 1] with v
as in (2.1).

2. When c ∈ [0, ĉ) the optimal policy depends both on the local considerations
discussed at the beginning of section 3 and on the solution for c ∈ [ĉ, 1] given in point
1 above. Assuming that the analytic expression of U is known for c ∈ [ĉ, 1], the HJB
equation in the set R×[0, ĉ) has a natural boundary condition at c = ĉ and its solution
is expected to paste (at least) continuously with U( · , ĉ). Since the expression for U
obtained in section 2 is nonexplicit in general, analysis of the geometry of the action
and inaction regions is more challenging in this case and its rigorous study is beyond
the scope of this paper; nevertheless we will discuss some qualitative ideas based on
the findings of the previous sections.
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3. The local considerations at the beginning of section 3 hold in the same way
in this setting and therefore we may expect a repelling behavior of the boundary of
the action region. Conjecturing the existence of a decreasing free boundary γ̂ defined
on [0, ĉ) two possible optimal controls can be envisioned, depending on the position

of γ̂ relative to β̂ in the (x, c)-plane. For an initial inventory c ∈ [0, ĉ), once the
uncontrolled diffusion X hits γ̂(c) the inventory should be increased as follows: (i)

if γ̂(c) ≤ infc∈(ĉ,1] β̂(c) all available control is exerted; otherwise (ii) the inventory is
increased just enough to push (X,C) inside the portion of inaction region in R× (ĉ, 1]

(i.e., the subset of R× (ĉ, 1] bounded below by β̂). As a result the optimal boundaries

β̂ and γ̂ exhibit a strong coupling, which together with the difficulty in handling the
expressions for φλ and ψλ challenges the methods of solution employed in this paper.

4. We note that determining the geometry of two coexisting free boundaries in
a two-dimensional state space is not a novelty in the context of SSCDS but explicit
solutions can be found only in some specific models (see, for instance, [28], where a
Brownian motion and a quadratic cost are considered). Indeed it is possible to provide
a solution when θ = 0, for which we refer the reader to [13]. Before concluding this
section we show that the latter results are consistent with the above ideas. In [13] the
interval [0, 1] for the values of the inventory is again split into two subintervals by a
point that here we denote by c̃ for clarity (in [13] it is denoted by ĉ). In the portion
R × [0, c̃) of the state space of [13] the boundary of the action region is of repelling
type consistent with point 3 above, although in this case two repelling boundaries are
present. For c ∈ (c̃, 1] the free boundary in [13] is constant with respect to c and,
although the optimal policy is therefore of bang-bang type, it is not difficult to see that
it may equally be interpreted as the limit of reflecting boundaries. Indeed, smooth
fit holds at this boundary when c ∈ (c̃, 1], along with the differential connection with
optimal stopping (see p. 3 in the introduction of [13] and Remark 3.3 therein) so that
the qualitative behavior is the same as that described in point 1 above.

Appendix A. A problem of storage and consumption. A problem naturally
arising in the analysis of power systems is the optimal charging of electricity storage.
We consider the point of view of an agent that commits to fully charging an electrical
battery on or before a randomly occurring time τ > 0 of demand. At any time t > 0
prior to the arrival of the demand the agent may increase the storage level Ct (within
the limits of its capacity, which is one unit) by buying electricity at the spot price Xt.
Several specifications of the spot price dynamics can be considered. We take (Xt)t≥0

as a continuous, strong Markov process adapted to a filtration (Ft)t≥0 on a complete
probability space (Ω,F ,P).

If the battery is not full at time τ , then it is filled by a less efficent method so that
the terminal spot price is weighted by a strictly convex function Φ and so is equal
to Ψ(Xτ , Cτ ) = XτΦ(Cτ ) with Φ(1) = 0 (cf. Assumption 1.1). The storage level can
only be increased and the process Ct = c+ νt follows the dynamics (1.1) with ν ∈ Sc
(cf. (1.5)). For simplicity and with no loss of generality we assume that costs are
discounted at a rate r = 0.

The aim of the agent is to minimize the future expected costs by optimally in-
creasing the storage within its limited capacity. Then the agent faces the optimization
problem with random maturity

inf
ν∈Sc

E

[∫ τ

0

Xtdνt +XτΦ(Cτ )

]
.(A.1)
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Various specifications for the law of τ are clearly possible. Here we consider only
the case of τ independent of the filtration (Ft)t≥0 and distributed according to an
exponential law with parameter λ > 0; that is,

P
(
τ > t

)
= e−λt.(A.2)

This setting effectively models the demand as completely unpredictable. By the as-
sumption of independence of τ and (X,C), for any ν we easily obtain

E
[
XτΦ(Cτ )

]
= E

[∫ ∞

0

λe−λtXtΦ(Ct)dt

]
(A.3)

and

E

[∫ τ

0

Xtdνt

]
=E

[∫ ∞

0

λe−λs
(∫ s

0

Xtdνt

)
ds

]
(A.4)

=E

[∫ ∞

0

(∫ ∞

t

λe−λsds
)
Xtdνt

]
= E

[∫ ∞

0

e−λtXtdνt

]
,

where the integrals were exchanged by an application of Fubini’s theorem. It then
follows that problem (A.1) may be rewritten as in (1.2) and (1.3).

Appendix B. Facts on the Ornstein–Uhlenbeck process. Recall the
Ornstein–Uhlenbeck process X of (1.4). It is well known that X is a positively
recurrent Gaussian process (cf., e.g., [7, Appendix 1, section 24, pp. 136–137]) with
state space R and that (1.4) admits the explicit solution

(B.1) Xx
t = μ+ (x− μ)e−θt +

∫ t

0

σeθ(s−t)dBs.

We introduced its infinitesimal generator LX in (2.4); the characteristic equation
LXu = λu, λ > 0, admits the two linearly independent, positive solutions (cf. [22,
p. 280])

(B.2) φλ(x) := e
θ(x−μ)2

2σ2 D−λ
θ

((x− μ)

σ

√
2θ
)

and

(B.3) ψλ(x) := e
θ(x−μ)2

2σ2 D−λ
θ

(
− (x− μ)

σ

√
2θ
)
,

which are strictly decreasing and strictly increasing, respectively. In both (B.2) and
(B.3) Dα is the cylinder function of order α (see [8, Chapter VIII], among others) and
it is also worth recalling that (see, e.g., [8, Chapter VIII, section 8.3, equation (3),
p. 119])

Dα(x) :=
e−

x2

4

Γ(−α)
∫ ∞

0

t−α−1e−
t2

2 −xtdt, Re(α) < 0,(B.4)

where Γ(·) is the Euler’s Gamma function.
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We denote by Px the probability measure on (Ω,F) induced by the process
(Xx

t )t≥0, i.e., such that Px( · ) = P( · |X0 = x), x ∈ R, and by Ex[ · ] the expecta-
tion under this measure. Then, it is a well known result on one-dimensional regular
diffusion processes (see, e.g., [7, Chapter I, section 10]) that

(B.5) Ex[e
−λτy ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φλ(x)

φλ(y)
, x ≥ y,

ψλ(x)

ψλ(y)
, x ≤ y,

with φλ and ψλ as in (B.2) and (B.3) and τy := inf{t ≥ 0 : Xx
t = y} the hitting

time of Xx at level y ∈ R. Due to the recurrence property of the Ornstein–Uhlenbeck
process X one has τy <∞ Px-a.s. for any x, y ∈ R.

Appendix C. Some proofs from section 2.

C.1. Proof of Theorem 2.1. The proof goes through a number of steps which
we organize in lemmas, propositions, and theorems. Integrating by parts in (2.1) and

noting that the martingale (
∫ t
0
e−λsσdBs)t≥0 is uniformly integrable we can write

u(x; c) := v(x; c) + x = sup
σ≥0

E

[∫ σ

0

e−λs [k(c)Xx
s − θμ] ds

]
(C.1)

with k(c) as in (1.6). For each c ∈ [0, 1] we define the continuation and stopping
regions of problem (C.1) by

(C.2) Cc := {x : u(x; c) > 0} and Dc := {x : u(x; c) = 0},

respectively. From standard arguments based on exit times from small balls one notes
that Dc ⊂ {x : x ≤ θμ

k(c)} as it is never optimal to stop immediately in its complement

{x : x > θμ
k(c)}. Since x �→ u(x; c) is increasing, Dc lies below Cc and we also expect

the optimal stopping strategy to be of threshold type.

Now, for any given c ∈ [0, 1] and β(c) ∈ R we define the hitting time σβ(x, c) :=
inf{t ≥ 0 : Xx

t ≤ β(c)}. For simplicity we set σβ(x, c) = σβ . A natural candidate
value function for problem (C.1) is of the form

(C.3) uβ(x; c) =

⎧⎪⎨
⎪⎩

E

[∫ σβ

0

e−λs (k(c)Xx
s − θμ) ds

]
, x > β(c),

0, x ≤ β(c).

An application of Fubini’s theorem, (B.1), and some simple algebra leads to the
following.

Lemma C.1. For all (x, c) ∈ R× [0, 1] and with G as in (2.2) one has

E

[ ∫ ∞

0

e−λs (k(c)Xx
s − θμ) ds

]
= G(x; c).(C.4)

Recall LX and φλ as in the statement of Theorem 2.1. The analytical expression
of uβ is provided in the next lemma.
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Lemma C.2. For uβ as in (C.3) it holds that

uβ(x; c) =

⎧⎨
⎩G(x; c) − G(β(c); c)

φλ(β(c))
φλ(x), x > β(c),

0, x ≤ β(c).

(C.5)

Proof. From (C.3), (2.2), and strongMarkov property we have that for all x > β(c)

uβ(x; c) = G(x; c) − E

[
E

[∫ ∞

σβ

e−λs (k(c)Xx
s − θμ) ds

∣∣∣Fσβ

]]
(C.6)

= G(x; c) − E
[
e−λσβG(Xx

σβ
; c)

]
,

= G(x; c) −G(β(c); c)
φλ(x)

φλ(β(c))
,

where the last equality follows sinceXx is positively recurrent and by using well-known
properties of hitting times summarized in Appendix B for completeness (cf. (B.5)).

The candidate optimal boundary β∗(c) is found by imposing the familiar principle
of smooth fit, i.e., the continuity of the first derivative uβx at the boundary β∗. This
amounts to solving problem (2.6).

Proposition C.3. Recall (2.3). For each c ∈ [0, 1] there exists a unique solution
β∗(c) ∈ (−∞, x0(c)) of (2.6). Moreover, β∗ ∈ C1([0, 1]) and it is strictly decreasing.

Proof. Since we are only interested in finite valued solutions of (2.6) and φλ(x) > 0
for all x ∈ (−∞,+∞) we may as well consider the equivalent problem of finding x ∈ R

such that H(x; c) = 0, where

H(x; c) := Gx(x; c)φλ(x) −G(x; c)φ′λ(x).(C.7)

We first notice that G(x0(c); c) = 0 (cf. (2.2) and (2.3)) and since k(c) > 0, then (i)
G(x; c) > 0 for x > x0(c), (ii) G(x; c) < 0 for x < x0(c), and (iii) Gx(x; c) > 0 for all
x. Hence

H(x0(c); c) = Gx(x0(c); c)φλ(x0(c)) > 0.(C.8)

Recall also that φλ is strictly convex (cf. (B.2) and (B.4) in Appendix B); then it
easily follows by (2.2) and (C.7) that

Hx(x; c) = −G(x; c)φ′′λ(x) > 0 for x < x0(c).(C.9)

Moreover,H(x; c) > 0 for all x ≥ x0(c), and so if β∗(c) exists such thatH(β∗(c); c)= 0,
then β∗(c) < x0(c). Derivation of (C.9) with respect to x gives

Hxx(x; c) = −Gx(x; c)φ′′λ(x) −G(x; c)φ′′′λ (x) < 0 for x < x0(c),

which implies that x �→ H(x; c) is continuous, strictly increasing, and strictly con-
cave on (−∞, x0(c)). Hence, by (C.8) there exists a unique β∗(c) < x0(c) solving
H(β∗(c); c) = 0 (and equivalently (2.6)). Since Hx(β∗(c); c) > 0 for all c ∈ [0, 1]
(cf. (C.9)), then β∗ ∈ C1([0, 1]) from the implicit function’s theorem, with

β′
∗(c) = − Hc(β∗(c); c)

Hx(β∗(c); c)
, c ∈ [0, 1].(C.10)
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We now show that c �→ β∗(c) is strictly decreasing. A direct study of the sign
of the right-hand side of (C.10) seems nontrivial so we use a different trick. It is
not hard to verify from (2.3) that c �→ x0(c) is strictly decreasing since c �→ Φ′(c) is
strictly increasing. Setting x̄ := β∗(c) in (2.6), straightforward calculations give

φ′λ(x̄)
φλ(x̄)

=
Gx(x̄; c)

G(x̄; c)
=

k(c)

x̄k(c) + μθΦ′(c)
=

1

x̄− x0(c)

so that c �→ Gx(x̄;c)
G(x̄;c) is strictly decreasing. Since c �→ x0(c) is continuous it is always

possible to pick c′ > c sufficiently close to c so that x̄ < x0(c
′) < x0(c) (hence

G(x̄; c′) < 0) and one finds

Gx(x̄; c
′)

G(x̄; c′)
<
φ′λ(x̄)
φλ(x̄)

(C.11)

and therefore H(x̄; c′) > 0. It follows that β∗(c′) < β∗(c), since x �→ H(x; c) is
increasing for x < x0(c

′). Then c �→ β∗(c) is a strictly decreasing map.
We verify the optimality of β∗ in the next theorem and note that a stopping time

σ is optimal for (C.1) if and only if it is optimal for (2.1).
Theorem C.4. The boundary β∗ of Proposition C.3 is optimal for (C.1) in the

sense that σ∗ of (2.7) is an optimal stopping time and uβ∗ ≡ u.
Proof. The candidate value function uβ∗ (cf. (2.5)) is such that uβ∗(·; c) ∈ C1(R)

by Proposition C.3 and it is convex. Hence it is also nonnegative, since uβ∗
x (β∗(c); c) =

uβ∗(β∗(c); c) = 0 by (2.5) and (2.6).
It is easily checked that

(LX − λ)uβ∗(x; c) =

{
θμ− k(c)x, x > β∗(c),

0, x ≤ β∗(c).
(C.12)

We claim (and we will prove it later) that

(C.13) β∗(c) <
θμ

k(c)
=: x̂0(c)

so that (LX − λ)uβ∗(x; c) ≤ θμ− k(c)x for all x ∈ R.
Fix (x, c) ∈ R × [0, 1]. Now take R > 0 such that β∗(c) ∈ (−R,R) and define

τR := inf{t ≥ 0 : Xx
t /∈ (−R,R)}. By convexity of uβ∗(·, c), the Itô–Tanaka formula

(see, for example, [27, Chapter 3, section 3.6 D]) and the principle of smooth fit we
have

E
[
e−λ(τR∧τ)uβ∗(Xx

τR∧τ , c)
]
≤ uβ∗(x, c) + E

[∫ τR∧τ

0

e−λs
(
θμ− k(c)Xx

s

)
ds

]
(C.14)

for an arbitrary P-a.s. finite stopping time τ ≥ 0. Now τR ∧ τ ↑ τ as R ↑ ∞ and the
integral inside the expectation on the right-hand side of (C.14) is uniformly integrable.
Then taking limits as R ↑ ∞ and using that uβ∗ ≥ 0 we obtain

uβ∗(x; c) ≥ E

[∫ τ

0

e−λs
(
θμ− k(c)Xx

s

)
ds

]
.

Since τ is arbitrary we can take the supremum over all stopping times to obtain
uβ∗ ≥ u.
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To prove the reverse inequality we take τ = σ∗ to have strict inequality in (C.14).
Then we notice that 0 ≤ uβ∗(x, c) ≤ |G(β∗(c); c)| + |G(x; c)| for x > β∗(c) so that
recurrence of Xx implies that

(
e−λτuβ∗(Xx

τ , c)
)
τ≥0

is uniformly integrable

and e−λσ
∗
uβ∗(Xx

σ∗ ; c) = e−λσ
∗
uβ∗(β∗(c), c).

(C.15)

Therefore

lim
R→∞

E
[
e−λ (τR∧σ∗)uβ∗(Xx

τR∧σ∗ , c)
]
= E

[
e−λσ

∗
uβ∗(β∗(c), c)

]
= 0,(C.16)

and in the limit we find uβ∗ = u.

To conclude the proof we only need to show that (C.13) holds true. Set x̂0 = x̂0(c)
for simplicity. We have

(C.17)
H(x̂0; c)

φλ(x̂0)
=

k(c)

λ+ θ
− θμ(k(c) − θ)

λ(λ+ θ)

φ′λ(x̂0)
φλ(x̂0)

by (2.2), (C.7), and (2.3); since
(
LX − λ

)
φλ = 0 and φ′′λ > 0 we also have

θ(μ− x̂0)φ
′
λ(x̂0)− λφλ(x̂0) < 0.(C.18)

It is clear that if k(c) ≥ θ, then the right-hand side of (C.17) is strictly positive and
β∗(c) < x̂0(c). On the other hand, if k(c) < θ, then μ − x̂0 < 0, and from (C.18) we
get

φ′(x̂0)
φ(x̂0)

>
λ

θμ

(
k(c)

k(c)− θ

)
.(C.19)

Now plugging (C.19) into the right-hand side of (C.17) we find H(x̂0; c)/φλ(x̂0) > 0
so that again β∗(c) < x̂0(c).

C.2. Proof of Proposition 2.7. By monotonicity of g∗ we have

C∗
t = c+ ν∗t = c+

[
g∗
(

inf
0≤s≤t

Xx
s

)− c
]+

≥ g∗(Xx
t ) ∧ 1 = g∗(Xx

t ),

since 0 ≤ g∗ ≤ 1. Hence 1 follows.

To prove 2 fix ω ∈ Ω and suppose that for some t > 0 we have (C∗
t (ω), X

x
t (ω)) ∈ C,

i.e., C∗
t (ω) > g∗(Xx

t (ω)). We distinguish two cases. In the case that g∗(inf0≤u≤t
Xx
u(ω)) ≥ c, we have g∗ (inf0≤u≤tXx

u(ω)) = C∗
t (ω) > g∗(Xx

t (ω)), and then by mono-
tonicity of g∗ we have inf0≤u≤tXx

u(ω) < Xx
t (ω). By continuity of t �→ Xx

t (ω) we
deduce that r �→ inf0≤u≤rXx

u(ω) is constant in the interval r ∈ [t, t+ ε(ω)) for some
ε(ω) > 0. In the case that g∗ (inf0≤u≤tXx

u(ω)) < c, we have c = C∗
t (ω) > g∗(Xx

t (ω))
and then again by monotonicity and continuity of g∗, and continuity of Xx

t (ω), there
exists ε(ω) > 0 such that c > g∗

(
inf0≤u≤t+ε(ω)Xx

u(ω)
)
and so ν∗r (ω) = 0 for all

r ∈ [0, t+ ε(ω)).

Summarizing, we have shown that if (C∗
t (ω), X

x
t (ω)) ∈ C, then ν∗ is constant in

a right (stochastic) neighborhood of t, establishing the second part.
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