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Abstract
Originally inspired by categorical quantum mechanics (Abramsky and Coecke, LiCS’04), the
categorical compositional distributional model of natural language meaning of Coecke, Sadrzadeh
and Clark provides a conceptually motivated procedure to compute the meaning of a sentence,
given its grammatical structure within a Lambek pregroup and a vectorial representation of the
meaning of its parts. Moreover, just like CQM allows for varying the model in which we interpret
quantum axioms, one can also vary the model in which we interpret word meaning.

In this paper we show that further developments in categorical quantum mechanics are relev-
ant to natural language processing too. Firstly, Selinger’s CPM-construction allows for explicitly
taking into account lexical ambiguity and distinguishing between the two inherently different
notions of homonymy and polysemy. In terms of the model in which we interpret word meaning,
this means a passage from the vector space model to density matrices. Despite this change of
model, standard empirical methods for comparing meanings can be easily adopted, which we
demonstrate by a small-scale experiment on real-world data. Secondly, commutative classical
structures as well as their non-commutative counterparts that arise in the image of the CPM-
construction allow for encoding relative pronouns, verbs and adjectives, and finally, iteration of
the CPM-construction, something that has no counterpart in the quantum realm, enables one to
accommodate both entailment and ambiguity.
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1 Introduction

Language serves to convey meaning. From this perspective, the ultimate and long-standing
goal of any computational linguist is to capture and adequately represent the meaning of
an utterance in a computer’s memory. At word level, distributional semantics offers an
effective way to achieve that goal; following the distributional hypothesis [11] which states
that the meaning of a word is determined by its context, words are represented as vectors
of co-occurrence statistics with all other words in the vocabulary. While models following
this paradigm have been found very useful in a number of natural language processing tasks,
they do not scale up to the level of phrases or sentences. This is due to the capacity of
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natural language to generate an infinite number of structures (phases and sentences) from
finite means (words); no text corpus, regardless of its size, can provide reliable distributional
statistics for a multi-word sentence. On the other hand, type-logical approaches conforming
to the tradition of Lambek [16], Montague and other pioneers of language, are compositional
and deal with the sentence at a more abstract level based on the syntactical rules that hold
between the different text constituents, but in principle they do not provide a convincing
model for word meaning.

The categorical compositional distributional model of Coecke, Sadrzadeh and Clark [7]
addresses the challenge of combining these two orthogonal models of meaning in a unified
setting. The model is based on the observation that a grammar expressed as a pregroup [15]
shares the same structure with the category of finite dimensional vector spaces and linear
maps, that of a compact closed category [14]. In principle, this offers a canonical way to
express a grammatical derivation as a morphism that defines linear-algebraic manipulations
between vector spaces, resulting in a sentence vector. The main characteristic of the model
is that the grammatical type of a word determines the vector space in which it lives. Words
with atomic types, such as nouns, are represented by vectors living in some basic vector
space N ; on the contrary, relational words such as verbs and adjectives live in tensor product
spaces of higher order. An adjective, for example, is an element of N ⊗N , while a transitive
verb lives in N ⊗ S ⊗N . The relational tensors act on their argument by tensor contraction,
a generalization of the familiar notion of matrix multiplication to higher order tensors.

Ambiguity is a dominant feature of language. At the lexical level, one can distinguish
between two broad types of ambiguity: homonymy refers to cases in which, due to some
historical accident, words that share exactly the same spelling and pronunciation are used
to describe completely distinct concepts; such an example is ‘bank’, meaning a financial
institution and a land alongside a river. On the other hand, the senses of a polysemous word
are usually closely related with only small deviations between them; as an example, think
of ‘bank’ again as a financial institution and the concrete building where that institution is
accommodated. These two notions of ambiguity are inherently different; while a polysemous
word still retains a certain level of semantic coherence, a homonymous word can be seen as
an incoherent mixing due to coincidence. The issue of lexical ambiguity and the different
levels of it is currently ignored from almost all attempts that aim to equip distributional
models of meaning with compositionality.

The purpose of this paper is to provide the theoretical foundations for a compositional
distributional model of meaning capable of explicitly dealing with lexical ambiguity. In the
proposed model we exploit the observation that the compact closed structure on which the
original model of Coecke et al. [7] was based provides an abstraction of the Hilbert space
formulation used in the quantum theory, in terms of pure quantum states as vectors, which is
known under the umbrella of categorical quantum mechanics [1]. In fact, the original model
of Coecke et al. was itself greatly inspired by quantum theory, and in particular, by quantum
protocols such as quantum teleportation. Importantly, vectors in a Hilbert space represent
the states of a closed quantum system, also called pure states. Selinger’s CPM-construction
[21], which maps any dagger compact closed category on another one, then adjoins open
system states, also called mixed states. In the new model, these allow for a lack of knowledge
on part of the system under consideration, which may be about an extended part of the
quantum system, or uncertainty (read: ambiguity) regarding the preparation procedure.

The crucial distinction between homonymous and polysemous words is achieved as follows:
while a polysemous word corresponds to a pure quantum state, a homonymous word is
given by a mixed state that essentially embodies a probability distribution over all potential
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meanings of that word. Mathematically, a mixed states is expressed as a density matrix:
a self-adjoint, positive semi-definite operator with trace one. The new formulation offers
many opportunities for interesting and novel research. For instance, by exploiting the notion
of Von Neumann entropy one can measure how ambiguity evolves from individual words to
larger text constituents; we would expect that the level of ambiguity in word ‘bank’ is higher
than that of the compound ‘river bank’.

Furthermore, the richness of the new category in which the meanings of words now live
offers interesting alternative design options. In the past, for example, Sadrzadeh, Kartsaklis
and colleagues [19, 12] enriched the categorical compositional model with elements of classical
processing, exploiting the fact that any basis of a finite-dimensional vector space induces a
commutative Frobenius algebra over this space, which allows the uniform copying or deleting of
the information relative to this basis [6]. As we will see in Sect. 4, the dagger compact closed
categories arising from the CPM-construction also accommodate canonical non-commutative
Frobenius algebras which have the potential to account for the non-commutativity of language.

Finally, we discuss how iterated application of the CPM-construction, which gives rise
to states that have no interpretation in quantum theory, does have a natural application
in natural language processing. It allows for simultaneous semantic representation of more
than one language feature that can be represented by density matrices, for example, lexical
entailment in conjunction with ambiguity.

Related work. The issue of lexical ambiguity in categorical compositional models of meaning
has been previously experimentally investigated by Kartsaklis and Sadrzadeh [13], who present
evidence that the introduction of an explicit disambiguation step on the word vectors prior
to composition improves the performance of the models. Furthermore, the research presented
here is not the only one that uses density matrices for linguistic purposes. Balkır [2] uses
a form of density matrices in order to provide a similarity measure that can be used for
evaluating hyponymy-hypernymy relations. In Sect. 5 we indicate how these two uses of
density matrices can be merged into one. Finally, Blacoe et al. [3] describe a distributional
(but not compositional) model of meaning based on density matrices created by grammatical
dependencies.

2 Background

The field of category theory aims at identifying and studying connections between seemingly
different forms of mathematical structures. A very representative example of its potency is
the compositional categorical framework of Coecke et al. [7], which shows that a grammatical
derivation defining the structure of a sentence is homomorphic to a linear-algebraic formula
acting on a semantic space defined by a distributional model. The framework offers a concrete
manifestation of the rule-to-rule hypothesis and a mathematical counterpart to the formal
semantics perspective on language. As noted above, the main idea is based on the fact
that both the type-logic of the model, a pregroup grammar, and the semantic category,
namely FHilb, possess a compact-closed structure. Recall that a compact closed category is
a monoidal category in which every object A has a left and right adjoint, denoted as Al, Ar
respectively, for which the following special morphisms exist:

ηl : I → A⊗Al ηr : I → Ar ⊗A εl : Al ⊗A→ I εr : A⊗Ar → I (1)

These maps need to satisfy certain conditions (known as yanking equations) which ensure
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that all relevant diagrams commute:

(1A ⊗ εlA) ◦ (ηlA ⊗ 1A) = 1A (εrA ⊗ 1A) ◦ (1A ⊗ ηrA) = 1A (2)
(εlA ⊗ 1Al) ◦ (1Al ⊗ ηlA) = 1Al (1Ar ⊗ εrA) ◦ (ηrA ⊗ 1Ar ) = 1Ar

Finally, the passage from syntax to semantics is carried out by a strong monoidal functor
and, as a result, preserves the compact closed structure. Before we proceed to expand on the
above constructions, we refer the reader to App. A for a brief introduction to the graphical
calculus of monoidal categories which will be used throughout our exposition.

2.1 Pregroup grammars
A pregroup algebra [15] is a partially ordered monoid with unit 1, whose each element p has
a left adjoint pl and a right adjoint pr, conforming to the following inequalities:

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p (3)

A pregroup grammar is a pregroup algebra freely generated over a set of basic types B
including a designated end type and a type dictionary that assigns elements of the pregroup
to the vocabulary of a language. For example, it is usually assumed that B = {n, s}, where
n is the type assigned to a noun or a well-formed noun phrase, while s is a designated type
kept for a well-formed sentence. Atomic types can be combined in order to provide types
for relational words; for example, an adjective has type n · nl, reflecting the fact that it is
something that expects for a noun at its right-hand side in order to return another noun.
Similarly, a transitive verb has type nr · s · nl, denoting something that expects two nouns
(one at each side) in order to return a sentence. Based on (3), for this latter case the pregroup
derivation gets the following form:

n · (nr · s · nl) · n = (n · nr) · s · (nl · n) ≤ 1 · s · 1 ≤ s (4)

Let CF denote the free compact closed category derived from the pregroup algebra of a
pregroup grammar [18]; then, according to (1), the above type reduction corresponds to the
morphism εrn · 1s · εln : n · nr · s · nl · n→ s in CF.

2.2 From syntax to semantics
The type-logical approach presented in Sect. 2.1 is compositional, but unable to distinguish
between words of the same type; even more importantly, the only information that a
derivation such as the one in (4) can provide to us is whether the sentence is well-formed
or not. Distributional models of meaning offer a solution to the first of these problems, by
representing a word in terms of its distributional behaviour in a large corpus of text. While
the actual methods for achieving this can vary (see App. D for a concrete implementation), the
goal is always the same: to represent words as points of some metric space, where differences
in semantic similarity can be detected and precisely quantified. The prime intuition is that
words appearing in similar contexts must have a similar meaning [11]. The word vectors
typically live in a highly dimensional semantic space with a fixed orthonormal basis, the
elements of which correspond to content-bearing words. The values in the vector of a target
word wt express co-occurrence statistics extracted from some large corpus of text, showing
how strongly wt is associated with each one of the basis words. For a concise introduction to
distributional models of meaning see [23].
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We take (FHilb,⊗), the category of finite dimensional Hilbert spaces and linear maps
over the scalar field I, to be the semantic counterpart of CF which, as we saw before,
accommodates the grammar. FHilb is a dagger compact closed category (or, †-compact
closed); that is, a symmetric compact closed category (so that Ar ∼= Al = A∗ for all A)
equipped with an involutive contravariant functor † : FHilb→ FHilb that is the identity on
objects. Concretely, in FHilb, for a morphism f : A→ B, its dagger f† : B → A is simply
its adjoint. Furthermore, εA = η†A ◦ σA∗,A for all A.

Taking |ψ〉 and |φ〉 to be two vectors in a Hilbert space H, εA : A∗ ⊗ A → I is the
pairing εA(〈ψ|, |φ〉) = 〈ψ|(|φ〉) = 〈ψ|φ〉 and ηA = ε†A. This allows the inner product to be

categorically defined as 〈ψ|φ〉 : I ψ−−→ H φ†−−−→ I. In practice it is often necessary to normalise
in order to obtain the cosine of the angle between vectors as a measure of semantic similarity.

2.3 Quantizing the grammar
We now proceed to present a solution to the second problem posed above, that of providing
a quantified semantic representation for a sentence by composing the representations of the
words therein: in this paper we follow [17] and [12] and we achieve the transition from syntax
to semantics via a strong monoidal functor Q : CF → FHilb which can be shown to also
preserve the compact structure so that Q(pl) = Q(p)l and Q(pr) = Q(p)r for p an object
of CF. Since each object in FHilb is its own dual we also have Q(pl) ∼= Q(p) ∼= Q(pr).
Moreover, for basic types, we let Q(n) = N and Q(s) = S. Note that since Q is strongly
monoidal, complex types are mapped to tensor product of vector spaces:

Q(n ·nr) = Q(n)⊗Q(nr) = N ⊗N Q(nr · s ·nl) = Q(nr)⊗Q(s)⊗Q(nl) = N ⊗S⊗N

Finally, each morphism in CF is mapped to a linear map in FHilb. Equipped with such
a functor, we can now define the meaning of a sentence as follows:

I Definition 1. Let |wi〉 be a vector I → Q(pi) corresponding to word wi with type pi in a
sentence w1w2 . . . wn. Given a type-reduction α : p1 · p2 · . . . · pn → s, the meaning of the
sentence is defined as:

|w1w2 . . . wn〉 := Q(α)(|w1〉 ⊗ . . .⊗ |wn〉) (5)

Take as an example the sentence “Trembling shadows play hide-and-seek”, with the
standard types n · nl and nr · s · nl assigned to adjectives and verbs, respectively. Then the
adjective ‘trembling’ will be a morphism I → Q(n · nl) = I → N ⊗ N , that is, a state in
the tensor product space N ⊗N . Note that this matrix defines a linear map N → N , an
interpretation that is fully aligned with the formal semantics perspective: an adjective is a
function that takes a noun as input and returns a modified version of it. Similarly, the verb
‘play’ lives in N ⊗ S ⊗N or, equivalently, is a bi-linear map N ⊗N → S (with a subject and
an object as arguments) which returns a sentence. In contrast to those two relational words,
the nouns ‘shadows’ and ‘hide-and-seek’ are plain vectors in N . The syntax of the sentence
conforms to the following type reduction:

(εrn · 1s) ◦ (1n · εln · 1nr · 1s · εln) : n · nl · n · nr · s · nl · n→ s (6)

which, when transferred to FHilb via Q, yields the following diagrammatic derivation:

S

N N l N Nr N l N

Trembling shadows play hide-and-seek

(7)
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2.4 Using Frobenius algebras in language
Compact closed categories on their own do not have much structure. The expressive power of
these categories can be increased using Frobenius algebras. Recall from [4] that a Frobenius
algebra in a monoidal category is a quintuple (A,∆, ι, µ, ζ) such that:

(A,µ, ζ) is a monoid, that is we have µ : A⊗A→ A and ζ : I → A satisfying

associativity and unit conditions,
(A,∆, ι) is a co-monoid, so that ∆ : A → A ⊗ A and ι : A → I satisfy

co-associativity and co-unit conditions;
furthermore, ∆ and µ adhere to the following Frobenius condition:

= = (8)

In a monoidal †-category, a †-Frobenius algebra is a Frobenius algebra whose co-monoid
is adjoint to the monoid. As shown in [6], every finite dimensional Hilbert space H with
orthonormal basis {|i〉} has a †-Frobenius algebra associated to it, the co-multiplication and
multiplication of which correspond to uniformly copying and uncopying the basis as follows:

∆ :: |i〉 7→ |i〉 ⊗ |i〉 ι :: |i〉 7→ 1 µ :: |i〉 ⊗ |j〉 7→ δij |i〉 :=
{
|i〉 i = j

|0〉 i 6= j
ζ :: 1 7→

∑
i

|i〉

Abstractly, this enables us to copy and delete the (classical) information relative to the
given basis. Concretely, the copying ∆-map amounts to encoding faithfully the components
of a vector in H as the diagonal elements of a matrix in H ⊗ H, while the “uncopying”
operation µ picks out the diagonal elements of a matrix and returns them as a vector in
H. Kartsaklis et al. [12] use the Frobenius co-multiplication in order to faithfully encode
tensors of lower order to higher order ones, thus restoring the proper functorial relation. An
adjective, for example, is given as ∆(

∑
i |nouni〉), where |nouni〉 is a noun modified by the

specific adjective in a training corpus. Furthermore, given a transitive verb constructed as
|verb〉 =

∑
i |subji〉⊗ |obji〉 [10], we can encode it to a tensor in H⊗H⊗H by either copying

the row dimension (responsible for the interaction of the verb with the subject noun) or
the column dimension (responsible for the interaction with the object). For the latter case,
referred to by Copy-Object, the composition becomes as follows:

=verb: (9)

The composition for the case of copying the subject dimension proceeds similarly on the
left-hand side. In practice, empirical work has shown that objects have stronger influence on
the meaning of a transitive sentence than subjects [12], which suggests that the Frobenius
structure of the Copy-Object approach is a more effective model of sentential compositionality.

Finally, Sadrzadeh et al. [19] exploit the abilities of Frobenius algebras in order to model
relative pronouns. Specifically, copying is used in conjunction with deleting in order to allow
the head noun of a relative clause to interact with its modifier verb phrase from the far
left-hand side of the clause to its right-hand side. For the case of a relative clause modifying
a subject this is achieved as follows:

N N N S N N S N N N N N N=

the man who likes Mary the man likes Mary

(10)
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3 Encoding ambiguity

The previous compositional model relies on a strong monoidal functor from a compact closed
category, representing syntax, to FHilb, modelling a form of distributional semantics. In
this section we will modify the functor to a new codomain category. To achieve our goal, we
will explore a categorical construction, inspired from quantum physics and originally due to
Selinger [21], in the context of the categorical model of meaning developed in the previous
sections.

3.1 Mixing in FHilb
Although seemingly unrelated, quantum mechanics and linguistics share a common link
through the framework of †-compact closed categories, an abstraction of the Hilbert space
formulation, and have been used in the past [1] to provide structural proofs for a class of
quantum protocols, essentially recasting the vector space semantics of quantum mechanics in
a more abstract way. Shifting the perspective to the field of linguistics, we saw how the same
formalism proposes a description of the semantic interactions of words at the sentence level.
Here we make the connection between the two fields even more explicit, taking advantage of
the fact that the ultimate purpose of quantum mechanics is to deal with uncertainty – and
this is essentially what we need to achieve here in the context of language.

We start by observing that, in quantum physics, the Hilbert space model is insufficient
to incorporate the epistemic state of the observer in its formalism: what if one does not
have knowledge of a quantum system’s initial state and can only attribute a probability
distribution to a set of possible states? The answer is by considering a statistical ensemble of
pure states: for example, one may assign a 1

2 probability that the state vector of a system is
|ψ1〉 and a 1

2 probability that it is in state |ψ2〉. We say that this system is in a mixed state.
In the Hilbert space setting, such a state cannot be represented as a vector. In fact, any
normalised sum of pure states is again a pure state (by the vector space structure). Note that
the state (ψ1 + ψ2)/

√
2 is a quantum superposition and not the mathematical representation

of the mixed state above.
This situation is similar to the issue we face when trying to model ambiguity in distri-

butional semantics: given two different meanings of a homonymous word and their relative
weights (given as probabilities), simply looking at the convex composition of the associated
vectors collapses the ambiguous meaning to a single vector, thereby fusing together the
two senses of the word. The mathematical response to this problem is to move the focus
away from states in a Hilbert space to a specific kind of operators on the same space: more
specifically, to density operators, i.e., positive semi-definite, self-adjoint operators of trace
one. The density operator formalism is our means to express a probability distribution over
the potential meanings of a homonymous word in a distributional model (see App. C for a
more detailed linguistic intuition). We formally define this as follows:

I Definition 2. Let a distributional model be given in the form of a Hilbert space M , in
which every word wt is represented by a statistical ensemble {(pi, |wit〉)}i – where |wit〉 is a
vector corresponding to a specific unambiguous meaning of the word that can occur with
probability pi. The distributional meaning of the word is defined as:

ρ(wt) =
∑
i

pi|wit〉〈wit| (11)

Note that for the case of a non-homonymous word, the above formula reduces to |wt〉〈wt|,
with |wt〉 corresponding to the state vector assigned to wt. Now, if mixed states are density
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operators, we need a notion of morphism that preserves this structure, i.e., that maps
states to states. In the Hilbert space model, the morphisms were simply linear maps. The
corresponding notion in the mixed setting is that of completely positive maps, that is, positive
maps that respect the monoidal structure of the underlying category.

To constitute a compositional model of meaning, our construction also needs to respect
our stated goals: specifically, the category of operator spaces and completely positive maps
must be a †-compact closed category; furthermore, we need to identify the morphism that
plays the part of the Frobenius algebra of the previous model. We start working towards
these goals by describing a construction that builds a similar category, not only from FHilb,
but, more abstractly, from any †-compact closed category.

3.2 Doubling and complete positivity

The category that we are going to build was originally introduced by Selinger [21] as
a generalisation of the corresponding construction on Hilbert spaces. Conceptually, it
corresponds to shifting the focus away from vectors or morphisms of the form I → A to
operators on the same space or morphisms of type A→ A. We will formalise this idea by first
introducing the category D(C) on a compact closed category C, which can be perhaps better
understood in its diagrammatic form as a doubling of the wires. In this context, we obtain a
duality between states of D(C) and operators of C, pictured by simple wire manipulations.
As we will see, D(C) retains the compact closedness of C and is therefore a viable candidate
for a semantic category in our compositional model of meaning. However, at this stage,
states of D(C) do not yet admit a clear interpretation in terms of mixing. This is why we
need to introduce the notion of completely positive morphisms, of which positive operators
on a Hilbert space (mixed states in quantum mechanics) are a special case. This will allow
us later to define the subcategory CPM(C) of D(C).

3.2.1 The D construction (doubling)

First, given a †-compact closed category1 C we define:

I Definition 3. The category D(C) with
the same objects as C;
morphisms between objects A and B of D(C) are morphisms A⊗A∗ → B ⊗B∗ of C.
composition and dagger are inherited from C via the embedding E : D(C) ↪→ C defined
by A 7→ A⊗A∗ on objects and f 7→ f on morphisms.

In addition, we can endow the category D(C) of a monoidal structure by defining the
tensor ⊗D as A⊗DB = A⊗B on objects A and B, and for morphisms f1 : A⊗A∗ → B⊗B∗
and f2 : C ⊗ C∗ → D ⊗D∗, by:

f1 ⊗D f2 : A⊗ C ⊗ C∗ ⊗A∗
∼=−→ A⊗A∗ ⊗ C ⊗ C∗

f1⊗f2−−−−→ B ⊗ B∗ ⊗D ⊗D∗
∼=−→ B ⊗D ⊗D∗ ⊗ B∗ (12)

1 The construction works on any monoidal category with a dagger, i.e., an involution, but we will not
need the additional generality.
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Or graphically by,

f2
f1 f2 7→ f1 f2 =

f1

(13)

where the arrow 7→ represents the functor E and we use the convention of depicting morphisms
in D(C) with thick wires and boxes to avoid confusion. Note that the intuitive alternative
of simply juxtaposing the two morphisms as we would in C fails to produce a completely
positive morphism in general, as will become clearer when we define completely positivity in
this context. This category carries all the required structure. We refer the reader to [21] for
a proof of the following:

I Proposition 4. The category D(C) inherits a †-compact closed structure from C via the
strict monoidal functor M : C → D(C) defined inductively by

f1 ⊗ f2 7→M(f1)⊗D M(f2) ;
A 7→ A on objects;
f 7→ f ⊗ f∗ on morphisms.

where f∗ = (f†)∗ by definition.

The functor M shows that we are not losing any expressive power since unambiguous
words (represented as maps of C) still admit a faithful representation in doubled form. For
reference, the reader can find in App. B a dictionary that translates useful diagrams from
one category to the other. Now, notice that we have a bijective correspondence between
states of D(C), i.e., morphisms I → A and operators on A in C. Explicitly, the map
C(A,A)→ C(I, A⊗A∗) is, for an operator ρ : A→ A,

ρ 7→ pρq = (ρ⊗ 1A∗) ◦ ηA∗ = ρ (14)

that is easily seen to be an isomorphism by bending back the rightmost wire (by application
of the yanking equations (2)). In the special case of states, the generalised inner product
generated by the dagger functor can be computed in terms of the canonical trace induced by
the compact closed structure (and reduces to the usual inner product on a space of operators
in FHilb):

ρ†2

7→ ρ1 ρ2∗ = = Tr(ρ†2ρ1)
ρ1

(15)

3.2.2 The CPM construction (complete positivity)

I Definition 5. A morphism f : A→ B of D(C) is completely positive if there exists an object
C and a morphism k : C⊗A→ B, in C, such that f embeds in C as (k⊗k∗)◦(1A⊗ηC∗⊗1A∗)
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or, pictorially,
B B

f 7→ k k∗

A A
C

A∗

B∗

(16)

From this last representation, we easily see that the composition of two completely
positive maps is completely positive. Similarly, the tensor product of two completely positive
maps is completely positive. Therefore, we can define:

I Definition 6. The category CPM(C) is the subcategory of D(C) whose objects are the
same and morphisms are completely positive maps.

CPM(C) is monoidal and ⊗CPM = ⊗D. We easily recover the usual notion of positive
operator from this definition:

k

7→ k k∗ = = pk ◦ k†q
k†

(17)

with pure states corresponding to the disconnected case. Finally, from Def. 5 it is clear that,
for a morphism f of C, M(f) = f ⊗ f∗ is completely positive. Thus,

I Proposition 7. M factors through the embedding I : CPM(C) ↪→ D(C), i.e., there exists
a strictly monoidal functor M̃ : C → CPM(C) such that M = IM̃ .

3.3 Categorical model of meaning: Reprise
We are now ready to put together all the concepts introduced above in the context of a
compositional model of meaning. Our aim in this section is to reinterpret the previous model
of [7] as a functor from a compact closed grammar to the category CPM(C), for any compact
closed category C. Given semantics in the form of a strong monoidal functor Q : CF → C,
our model of meaning is defined by the composition:

M̃Q : CF → C → CPM(C) (18)

Since M̃ sends an object A to the same A in CPM(C), the mapping of atomic types,
their duals and relational types of the grammar occurs in exactly the same fashion as in the
previous model. Furthermore, note that Q is strongly monoidal and M̃ is strictly monoidal, so
the resulting functor is strongly monoidal and, in particular, preserves the compact structure.
Thus, we can perform type reductions in CPM(C) according to the grammatical structure
dictated by the category CF.

Note that we have deliberately abstracted the model to highlight its richness – the
category C could be any compact closed category: FHilb, the category Rel of sets and
relations (in which case we recover a form of Montague semantics) or, as we will see in Sect. 5,
even another iteration of the CPM construction.

I Definition 8. Let ρ(wi) be a meaning state I → M̃Q(pi) corresponding to word wi with
type pi in a sentence w1 . . . wn. Given a type-reduction α : p1 · . . . · pn → s, the meaning of
the sentence is defined as:

ρ(w1 . . . wn) := M̃Q(α)
(
ρ(w1)⊗CPM . . .⊗CPM ρ(wn)

)
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For example, assigning density matrix representations to the words in the previous
example sentence “trembling shadows play hide and seek”, we obtain the following meaning
representation:

N N N NSN NN N N NSN N

7→

Trembling shadows play hide-and-seek

Diagrammatically, it is clear that in the new setting the partial trace implements meaning
composition. Note that diagrams as the above illustrate the flow of ambiguity or information
between words. The question of how does ambiguity evolve when composing words to
form sentences is very hard to answer precisely in full generality. The key message is that
(unambiguous) meaning emerges in the interaction of a word with its context, through the
wires. This process of disambiguation is perhaps better understood by studying very simple
examples, as we are going to do in the next section.

3.4 Introducing ambiguity in formal semantics
Here, we will work in the category CPM(Rel). We recall that Rel is the †-compact category
of sets and relations. The tensor product is the Cartesian product and the dagger associates
to a relation its opposite. Let our sentence set be S = {true, false}. In Rel, this means that
we are only interested in the truth of a sentence, as in Montague semantics. In this context,
nouns are subsets of attributes. Given a context to which we pass the meaning of a word, the
meaning of the resulting sentence can be either |false〉, |true〉 or |false〉+ |true〉, the latter
representing superposition, i.e., the case for which the context is insufficient to determine
the truth of all the attributes of the word (classically, this can be identified with false).

On the other hand, in the internal logic of CPM(Rel), mixing adds a second dimension
that can be interpreted as ambiguous meaning, regardless of truth. The possible values are:

N N S

ambiguous context
word

=


|true〉〈true|,
|false〉〈false|,
(|true〉+ |false〉)(〈true|+ 〈false|),
1S

where the identity on S represents ambiguity. Note that we use Dirac notation in Rel rather
than set theoretic union and cartesian product, since elements in finite sets can be seen
as basis vectors of free modules over the semi-ring of Booleans; a binary relation can be
expressed as an adjacency matrix. The trace of a square matrix picks out the elements for
which the corresponding relation is reflexive.

Consider the phrase ‘queen rules’. We allow a few highly simplifying assumptions: first,
we restrict our set of nouns to the rather peculiar ‘Freddy Mercury’, ‘Brian May’, ‘Elisabeth
II’, ‘chess’, ‘England’ and the empty word ε. Moreover, we consider the verb ‘rule’, supposed
to have the following unambiguous meaning:

|rule〉 = |band〉 ⊗ |true〉 ⊗ |ε〉+ |chess〉 ⊗ |false〉 ⊗ |ε〉+ |elisabeth〉 ⊗ |true〉 ⊗ |england〉

with the obvious |band〉 = |freddy〉 + |brian〉. This definition reflects the fact that a band
can rule (understand “be the best") as well as a monarch. Finally, the ambiguous meaning of
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Table 1 Computing entropy for nouns modified by relative clauses and adjectives.

Relative Clauses
noun: v1/v2 noun n that v1 n that v2

organ: enchant/ache 0.18 0.11 0.08
vessel: swell/sail 0.25 0.16 0.01
queen: fly/rule 0.28 0.14 0.16
nail: gleam/grow 0.19 0.06 0.14
bank: overflow/loan 0.21 0.19 0.18

Adjectives
adj1/adj2 adj1 n adj2 n
music/body 0.10 0.13
blood/naval 0.05 0.07
fair/chess 0.05 0.16
rusty/finger 0.04 0.11
water/financial 0.20 0.16

‘queen’ is represented by the following operator:

ρ(queen) = |elisabeth〉〈elisabeth|+ |band〉〈band|+ |chess〉〈chess|

A computation of the meaning of the sentence in algebraic form yields, TrN (|rule〉〈rule| ◦
(TrN ′(ρ(queen))⊗ 1′N )) = 1S . In other words, the meaning of the sentence is neither true nor
false but still ambiguous. This is because the context that we pass to ‘queen’ is insufficient to
disambiguate it (the band or the monarch can rule). Now, if we consider ‘queen rules England’,
the only matching pattern in the definition of |rule〉 is |elisabeth〉 which corresponds to a
unique and therefore unambiguous meaning of ρ(queen). Hence, a similar calculation yields
TrN (|rule〉〈rule| ◦ (TrN ′(ρ(queen))⊗ |england〉〈england|)) = |true〉〈true| and the sentence is
not only true but unambiguous. In this case, the context was sufficient to disambiguate the
meaning of the word ‘queen’.

3.5 Measuring ambiguity with real data
While a large-scale experiment is out of the scope of this paper, in this section we present
some preliminary witnessing results that showcase the potential of the model. Using 2000-
dimensional meaning vectors created by the procedure described in App. D, we show how
ambiguity evolves for five ambiguous nouns when they are modified by an adjective or a
relative clause. For example, ‘nail’ can appear as ‘rusty nail’ or ‘nail that grows’; in both
cases the modifier resolves part of the ambiguity, so we expect that the entropy of the
larger compound would be lower than that of the original ambiguous noun. Both types of
composition use the Frobenius framework described in Sect. 2.4; We further remind that for
a density matrix ρ with eigen-decomposition ρ =

∑
ei|ei〉〈ei|, Von Neumann entropy is given

as S(ρ) = −Tr(ρ ln ρ) = −
∑
i ei ln ei.

As Table 1 shows, the entropy of the compounds is always lower than that of the ambiguous
noun. Even more interestingly, for some cases (e.g ‘vessel that sails’) the context is so strong
that is capable to almost purify the meaning of the noun. This demonstrates an important
aspect of the proposed model: disambiguation = purification.

3.6 Flow of information with †-Frobenius algebras
In the above examples we used the assumption that a verb tensor had been faithfully
constructed according to its grammatical type. However, as we saw in Sect. 2.4, concrete
constructions might yield operators on a space of tensor order lower than the space to
which the functor M̃Q maps their grammatical type. As before, †-Frobenius algebras can be
used to solve this type mismatch and encode the information carried by an operator into
tensors of higher order. Specifically, we will first consider the †-Frobenius algebra whose
copying map isM(∆) and whose deleting map isM(ι), as doubling preserves both operations.
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In addition, the monoid operation is clearly completely positive. In more concrete terms,
the monoid operation is precisely the point-wise (sometimes called Hadamard) product of
matrices. Assuming we have a distributional model in the form of a vector space W with a
distinguished basis and density matrices on W (to represent the meaning of our nouns and
adjectives) and on W ⊗W (for verbs), our example sentence is given by:

W W WW W W W WW W

7→

Trembling shadows play hide-and-seek

4 Non-commutativity

If the last section was concerned with applications of the CPM-construction to model
ambiguity, here we discuss the role of the D-construction for the same purpose. Frobenius
algebras on objects of D(C) are not necessarily commutative and thus their associated monoid
is not a completely positive morphism. In the quantum physical literature, non-completely
positive maps are not usually considered since they are not physically realisable. However,
in linguistics, free from these constraints, we could theoretically venture outside of the
subcategory CPM(C), deep into D(C).

For example, Coecke, Heunen and Kissinger [8] introduced the category CP∗(C) of †-
Frobenius algebras (with additional technical conditions) and completely positive maps, over
an arbitrary †-compact category C, in order to study the interaction of classical and quantum
systems in a single categorical setting: classical systems are precisely the commutative algebras
and completely positive maps are quantum channels, that is, physically realisable processes
between systems. Interestingly, in accordance with the content of the no-broadcasting
theorem for quantum systems the multiplication of a commutative algebra is a completely
positive morphism while the multiplication of a non-commutative algebra is not. It is clear
that the meaning composition of words in a sentence is only commutative in exceptional
cases; the non commutativity of the grammatical structure reflects this. However, in earlier
methods of composition, this complexity was lost in translation when passing to semantics.

With linguistic applications in mind, the CP∗ construction suggests various ways of
composing the meaning of words, each corresponding to a specific Frobenius algebra operation.
Conceptually, this idea makes sense since a verb does not compose with its subject in the
same way that an adjective composes with the noun phrase to which it applies. The various
ways of composing words may also offer a theoretical base for the introduction of logic in
distributional models of natural language. This is where the richness of D(C) reveals itself:
algebras in this category are more complex and, in particular, allow us to study the action
of non-commutative structures – a topic of great interest to formal linguistics where the
interaction of words is highly non-commutative. Hereafter we introduce a non-commutative
†-Frobenius algebra that is not the doubled image of any algebra in C.

I Definition 9. For every object A of D(C), the morphisms of D(C), µ : A⊗D A→ A and
ι : I → A defined by the following diagrams in C:

= (1A ⊗ εA ⊗ 1A∗) ◦ (1A⊗A ⊗ σA,A∗) 7→ = ηA∗7→
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are the multiplication and unit of a †-Frobenius algebra FD – where σ is the natural swap
isomorphism in C.

Proof that the above construction is indeed a †-Frobenius algebra can be found in [9]. The
action of the Frobenius multiplication µ on states I → A of D(C) is particularly interesting;
in fact, it implements the composition of operators of C, in D(C):

ρ1
7→ = = pρ1 ◦ ρ2qρ1 ρ2

ρ2

The meaning of the “trembling shadows...” sentence using the algebra FD becomes:

W W WW W W WW W

7→

Trembling shadows play hide-and-seek

How does composition with the new algebra affect the flow of ambiguity in the simple case
of an ambiguous word to which we pass an unambiguous context? Given a projection onto a
one-dimensional subspace |w〉〈w| and a density operator ρ, the composition |w〉〈w|ρ is a (not
necessarily orthogonal) projection. In a sense, the meaning of the pure word determines that
of the ambiguous word as evidenced by the disconnected topology of the following diagram:

N N

7→

pure ambiguous
context word

5 Adding lexical entailment

We now demonstrate the advantage of the fact that the CPM-construction is an abstract
construction, and hence can be applied to any suitable (i.e. living in a †-compact closed
category) model of word meaning. Besides ambiguity, another feature of language which
is not captured by the distributional model is the fact that the meaning of one word (=
hypernym) generalises that of another word (= hyponym). This points at a partial ordering
of word meanings. For example, ‘painter’ generalises ‘Brueghel’. Density matrices can be
endowed with a partial ordering which could play that role, e.g. the Bayesian ordering
[5]. This raises the question of how to accommodate both features together in a model of
natural language meaning. Since CPM(C) is always †-compact closed, a canonical solution
is obtained by iterating the CPM-construction:

x x∗ x x∗f 7→ k k∗ 7→ x x∗ x x∗7→
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Given a word/phrase/sentence meaning as above, lack of any ambiguity or generality cor-
respond to distinct diagrams, respectively (left), and can be measured by taking the von
Neumann entropy of different operators (right):

x x∗ x x∗ vs. x x∗ x x∗

x∗ x

x∗x x x∗

x∗ x
vs.

6 Conclusion and future work

In this paper we detailed a compositional distributional model of meaning capable of explicitly
handling lexical ambiguity. We discussed its theoretical properties and demonstrated its
potential for real-world natural language processing tasks by a small-scale experiment. A
large-scale evaluation will be our challenging next step, aiming to provide empirical evidence
regarding the effectiveness of the model in general and the performance of the different
Frobenius algebras in particular. On the theoretical side, the logic of ambiguity in CPM(Rel),
the non-commutative features of the D-construction as well as further exploration of nested
levels of CPM, each deserve a separate treatment. In addition, one important weakness of
distributional models is the representation of words that serve a purely logical role, like logical
connectives or negation. Density operators support a form of logic whose distributional
and compositional properties could be examined, potentially providing a solution to this
long-standing problem of compositional distributional models.
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A Graphical calculus

Monoidal categories are complete with regard to a graphical calculus [22] which depicts
derivations in their internal language very intuitively, thus simplifying the reading and the
analysis. Objects are represented as labelled wires, and morphisms as boxes with input and
output wires. The η- and ε-maps are given as half-turns.

B ηl: ηr:
f A

εl: εr:A

Composing morphisms amounts to connecting outputs to inputs, while the tensor product
is simply juxtaposition:

C
C B g B D B D

g ◦ f = B f ⊗ g = f g

B A f A C A C
A

In this language, the yanking equations (2) get an intuitive visual justification (here for
the first two identities):

A Al
A = A A Ar A = A
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For a given object A, we define a state of A to be a morphism I → A. If A denotes a
vector space, we can think of a state as a specific vector living in that space. In our graphical
language the unit object I can be omitted, leading to the following representation of states:

A A B A B A B
⊗ =

Note that the second diagram from the left depicts an entangled state of A⊗B; product
states (such as the rightmost one) are simple juxtapositions of two states.

B Translation from C to D(C)

D(C) C D(C) C
B B B∗

1A A A A∗ f f f

A A A∗

C C C∗

A A A∗ g g
Bf† f† f B B∗g ◦ f
f f

B B B∗

A A A∗

εη

Frob. µFrob. ∆

Frob. ι Frob. ζ

C Linguistic intuition

In order to deal with lexical ambiguity we firstly need to understand its nature. In other words,
we are interested to study in what way an ambiguous word differs from an unambiguous one,
and what is the defining quality that makes this distinction clear. On the surface, the answer
to these questions seems straightforward: an ambiguous word is one with more than one
lexicographic entries in the dictionary. However, this definition fits well only to homonymous
cases, in which due to some historical accident words that share the same spelling and
pronunciation refer to completely unrelated concepts. Indeed, while the number of meanings
of a homonymous word such as ‘bank’ is almost fixed across different dictionaries, the same
is not true for the small (and overlapping) variations of senses that might be listed under a
word expressing a polysemous case.

The crucial distinction between homonymy and polysemy is that in the latter case a word
still expresses a coherent and self-contained concept. Recall the example of the polysemous
use of ‘bank’ as a financial institution and the building where the services of the institution
are offered; when we use the sentence ‘I went to the bank’ (with the financial meaning of
the word in mind) we essentially refer to both of the polysemous meanings of ‘bank’ at the
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same time – at a higher level, the word ‘bank’ expresses an abstract but concise concept that
encompasses all of the available polysemous meanings. On the other hand, the fact that the
same name can be used to describe a completely different concept (such as a river bank or
a number of objects in a row) is nothing more than an unfortunate coincidence expressing
lack of specification. Indeed, a listener of the above sentence can retain a small amount
of uncertainty regarding the true intentions of the sayer; although her first guess would be
that ‘bank’ refers to the dominant meaning of financial institution (including all related
polysemous meanings), a small possibility that the sayer has actually visited a river bank still
remains. Therefore, in the absence of sufficient context, the meaning of a homonymous word
is more reliably expressed as a probabilistic mixing of the unrelated individual meanings.

In a distributional model of meaning where a homonymous word is represented by a
single vector, the ambiguity in meaning has been collapsed into a convex combination of the
relevant sense vectors; the result is a vector that can be seen as the average of all senses,
inadequate to reflect the meaning of any of them in a reliable way. We need a way to avoid
that. In natural language, ambiguities are resolved with the introduction of context (recall
that meaning is use), which means that for a compositional model of meaning the resolving
mechanism is the compositional process itself. We would like to retain the ambiguity of a
homonymous word when needed (i.e. in the absence of appropriate context) and allow it to
collapse only when the context defines the intended sense, during the compositional process.

In summary, we seek an appropriate model that will allows us: (a) to express homonymous
words as probabilistic mixings of their individual meanings; (b) to retain the ambiguity until
the presence of sufficient context that will eventually resolve it during composition time; (c)
to achieve all the above in the multi-linear setting imposed by the vector space semantics of
our original model.

D From Theory to Practice

The purpose of this appendix is to show how the theoretical ideas presented in this paper can
take a concrete form using standard natural language processing techniques. The setting we
present below has been used for the mini-experiments in Sect. 3.5. We approach the creation
of density matrices as a three-step process: (a) we first produce an ambiguous semantic
space; (b) we apply a word sense induction method on it in order to associate each word with
a set of sense vectors; and finally (c) we use the sense vectors in order to create a density
matrix for each word. These steps are described in separate sections below.

D.1 Creating a Concrete Semantic Space

We train our basic vector space using ukWaC, a corpus of English text with 2 billion words (100
million sentences). The basis of the vector space consists of the 2,000 most frequent content
words (nouns, verbs, adjectives, and adverbs), excluding a list of stop words.2 Furthermore,
the vector space is lemmatized and unambiguous regarding syntactic information; in other
words, each vector is uniquely identified by a (lemma,pos-tag) pair, which means for example
that ‘book’ as a noun and ‘book’ as a verb are represented by different meaning vectors. The
weights of each vector are set to the ratio of the probability of the context word ci given the

2 That is, very common words with low information content, such as the verbs ‘get’ and ‘take’ or adverbs
like ‘really’ and ‘always’.
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Table 2 Derived Meanings for Word ‘Vessel’.

Meaning 1: 24070 contexts
port owner cargo fleet sailing ferry craft Navy merchant cruise navigation officer metre voyage
authority deck coast launch fishery island charter Harbour pottery radio trip pay River Agency
Scotland sell duty visit fish insurance skipper Roman sink War shore sail town Coastguard
assistance Maritime registration call rescue bank Museum captain incident customer States
yacht mooring barge comply landing Ireland sherd money Scottish tow tug maritime wreck
board visitor tanker freight purchase lifeboat

Meaning 2: 5930 contexts
clot complication haemorrhage lymph stem VEGF Vitamin glucose penis endothelium
retinopathy spasm antibody clotting AMD coagulation marrow lesion angina blindness
medication graft vitamin vasoconstriction virus proliferation Ginkgo diabetic ventricle
thickening tablet anaemia thrombus Vein leukocyte scleroderma stimulation degeneration
homocysteine Raynaud breathe mediator Biloba Diabetes LDL metabolism Gene infiltrate
atheroma arthritis lymphocyte lobe C’s histamine melanoma gut dysfunction vitro triglyceride
infarction lipoprotein

target word t to the probability of the context word overall, as follows:

vi(t) = p(ci|t)
p(ci)

= count(ci, t) · count(total)
count(t) · count(ci)

where count(ci, t) refers to how many times ci appears in the context of t (that is, in a 5-word
window at either side of t) and count(total) is the total number of word tokens in the corpus.

D.2 Word Sense Induction

The notion of word sense induction, that is, the task of detecting the different meanings
under which a word appears in a text, is intimately connected with that of distributional
hypothesis – that the meaning of a word is always context-dependent. If we had a way to
create a vectorial representation for the contexts in which a specific word occurs, then, a
clustering algorithm could be applied in order to create groupings of these contexts that
hopefully reveal different usages of the word – different meanings – in the training corpus.

This intuitive idea was first presented by Schütze [20] in 1998, and more or less is the
cornerstone of every unsupervised word sense induction and disambiguation method based on
semantic word spaces up to today. The approach we use is a direct variation of this standard
technique. For what follows, we assume that each word in the vocabulary has already been
assigned to an ambiguous semantic vector by following typical distributional procedures, for
example similar to the setting described in Sect. D.1.

We assume for simplicity that the context is defined at the sentence level. First, each
context for a target word wt is represented by a context vector of the form 1

n

∑n
i=1 |wi〉,

where |wi〉 is the semantic vector of some other word wi 6= wt in the same context. Next,
we apply hierarchical agglomerative clustering on this set of vectors in order to discover the
latent senses of wt. Ideally, the contexts of wt will vary according to the specific meaning
in which this word has been used. Table 2 provides a visualization of the outcome of this
process for the ambiguous word ‘vessel’. Each meaning is visualized as a list of the most
dominant words in the corresponding cluster, ranked by their TF-IDF values.
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We take the centroid of each cluster as the vectorial representation of the corresponding
sense/meaning. Thus, each word w is initially represented by a tuple (|w〉, Sw), where |w〉 is
the ambiguous semantic vector of the word as created by the usual distributional practice,
and Sw is a set of sense vectors (that is, centroids of context vectors clusters) produced by
the above procedure.

Note that our approach takes place at the vector level (as opposed to tensors of higher
order), so it provides a natural way to create sets of meaning vectors for “atomic” words of the
language, that is, for nouns. It turns out that the generalization of this to tensors of higher
order is straightforward, since the clustering step has already equipped us with a number of
sets consisting of context vectors, each one of which stands in one-to-one correspondence
with a set of contexts reflecting a different semantic usage of the higher-order word. One
then can use, for example, the argument “tensoring and summing” procedure of [10] (briefly
described in Sect. 2.4) in order to compute the meaning of the ith sense of a word of arity n
as:

|word〉i =
∑
c∈Ci

n⊗
k=1
|argk,c〉 (19)

where Ci is the set of contexts associated with the ith sense, and argk,c denotes the kth
argument of the target word in context c. Of course, more advanced statistical methods could
be also used for learning the sense tensors from the provided partitioning of the contexts, as
long as these methods respect the multi-linear nature of the model. This completes the word
sense induction step.

D.3 Creating Density Matrices
We have now managed to equip each word with a set of sense vectors (or higher-order tensors,
depending on its grammatical type). Assigning a probability to each sense is trivial and can
be directly derived by the number of times the target word occurs under a specific sense
divided by the total occurrences of the word in the training corpus. This creates a statistical
ensemble of state vectors and probabilities that can be used for computing a density matrix
for the word according to Def. 2.
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