IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, DECEMBER 2014

Enabling Geometry Based 3D Tele-Immersion with
Real-Time Mesh Compression and Linear Rateless
Coding

Rufael Mekuria, Michele Sanna, Ebroul Izquierdo, Dick C.A. Bulterman, Pablo Cesar

Abstract—3D Tele-immersion enables participants in remote
locations to share, in real-time, an activity. It offers users
interactive and immersive experiences, but it challenges current
networking solutions. Work in the past has mainly focused
on the efficient delivery of image-based 3D videos and on the
realistic rendering and reconstruction of geometry-based 3D
objects. The contribution of this paper is a real-time streaming
component for 3D Tele-Immersion with reconstructed geometry.
This component includes both a novel fast compression method
and a rate-less packet protection scheme specifically designed
towards the requirements imposed by real-time transmission
of live-reconstructed mesh geometry. Tests on a large dataset
show an encoding and decoding speed-up of upto 10 times at
comparable compression and quality rates, when compared to the
high-end MPEG-4 SC3DMC mesh encoders. The implemented
rate-less code ensures complete packet loss protection of the
triangle mesh object and a delivery delay within interactive delay
bounds. Contrary to most linear fountain codes, the designed
codec enables real-time progressive decoding allowing partial
decoding each time a packet is received. This approach is
compared to a transmission over TCP and heavily outperforms
it in packet loss rates and latencies typical in managed WAN and
MAN networks. The component has been integrated into a larger
environment that includes state of the art 3D reconstruction and
rendering modules. This resulted in a prototype that can capture,
compress transmit and render triangle mesh geometry in real-
time in realistic internet conditions as shown in experiments. Low
interactive end-to-end delay and frame rates over 3 times higher
compared to alternative methods are achieved.

Index Terms—Multimedia Communication, Multimedia Sys-
tems, Block Codes, 3D Mesh Streaming, 3D Tele-Immersion,
Source Coding, Geometry Processing

I. INTRODUCTION

DVANCES in 3D reconstruction and rendering and the

success of inexpensive consumer grade depth cameras
enable, in real-time, the creation of highly realistic repre-
sentations of participants as triangle mesh models (see Fig.
1). Efficient real-time transmission of these representations
opens up new possibilities for 3D Tele-Immersion mixing
real and virtual environments. 3D Tele-Immersion has been
studied in the past for a variety of application areas such
as creative dancing, cyber-archeology, medicine, and gaming
[1] [2] [3] [4]. For example, a user can stream a 3D geo-
metric representation to a remote site interacting with several
other users in a 3D space for working on a common task.
However, existing video codecs and transmission schemes do
not support live reconstructed geometry well and neither do

Manuscript received December 1, 2012; revised December 27, 2012.
Corresponding author: R. Mekuria (email: rufael.mekuria@cwi.nl).

geometry streaming mechanisms intended for downloading
and interacting with remotely stored geometry-based objects.
This paper takes a step towards the direction of real-time
streaming of live reconstructed geometry, by reporting on our
efforts in developing a complete end-to-end prototype system
that is capable, in real-time, of efficiently transmitting this
media type between remote locations. Results show that our
solution outperforms existing mechanisms, when transmitting
high quality reconstructed 3D geometry representations. Look-
ing ahead in the future, when challenges regarding calibra-
tion and synchronization of the different depth cameras are
solved, 3D Tele-immersion can become integrated into social
network experiences similar to current video conferencing or
gaming features. In order to enable real-time transmission of
such geometric representations over the Internet an efficient
compression and streaming mechanism that can operate in a
realistic environment is needed. For multiview video, many
standardized compression and transmission methods exist, but
for live reconstructed geometry support is currently limited.
This paper introduces the streaming requirements and de-
scribes a working prototype for real-time streaming of live
reconstructed geometry. The experiments are run both by
using the integrated prototype with real-time rendering and
reconstruction and by using offline collected data captured
with five consumer grade depth-cameras (see Fig 1). This
paper is an extension of our previous conference publication
[5], in the current paper we extend this configuration with a
novel connectivity driven mesh codec. Also, we have made
the rateless coding progressive and performed a more exten-
sive performance evaluation of the complete integrated media
pipeline in representative network conditions.

A. 3D Representation

In this paper we investigate geometry-based 3D mesh rep-
resentation reconstructed in real time from multiple depth
cameras as in [7]. In Eq. 1 - 3 we define a sequence of
reconstructed triangle meshes introduced by a live reconstruc-
tion system. The individual vertices v, contain 3D coordinates
(x,y, %), the normals (ng,n,,n,). and the colors (r,g,b).
The faces f are triangulations of the vertices that are indexed
(v1,v2,v3). Each mesh in the sequence from i = 1,..., K
contains a set of vertices V and faces F that index vertices
and represent a participant by a 3D surface.

M= (Vi F"),i=1..K, (1)

Fig. 1. A screenshot of a live reconstructed mesh with the system described
in [7], datasets of this system are available online and currently used in for
evaluation in Motion Picture Experts Group (MPEG)

Content Decoding

Stream Reconstruction

Buffering and Synchronization

Fig. 2. Pipeline for 3D Tele-immersion with live-reconstructed geometry,
instead of live captured video, a 3D Geometric mesh is reconstructed for
visual communication

V= (v, vh, vh...ufy,), 2)

F' = (fi, fafiri) 3)

B. Media Pipeline

Fig. 2 shows the 3D tele-immersive media pipeline based
on live reconstructed geometry. First, participants are captured
in real-time and the 3D reconstruction module reconstructs
the 3D geometry. The result is a 3D Mesh sequence Eq. 1
that is transmitted in real-time to a remote host over an IP
network. The receiver renders the received mesh in the scene,
compositly with other participants.

C. Research Questions and Objectives

Real-Time streaming of live-captured (multi-view) video
is common in video conferencing systems, but streaming of
live reconstructed mesh geometry objects has rarely been
considered. There are various reasons why we consider effi-
cient real-time transmission of live-captured triangle geometry
essential. First, modern graphics cards can take advantage of
advanced rendering methods, such as multiple views for stereo
and multi-stereoscopic or free-viewpoint rendering. Second, it
allows integration with virtual worlds, where triangle mesh

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, DECEMBER 2014

representations are common. Finally, novel application areas
can emerge such as natural interactions between people in
real and virtual worlds. Geometry streaming solutions can
also be beneficial for applications like camera or terrain
surveillance, where geometric data is live-captured and needs
to be available in real-time to by observers or Geographic
information systems. In this paper we are concerned with
the 3D Tele-Immersion application between participants. In
particular, this paper aims to answer the following research
question: What is an efficient way to transmit live-captured
triangle mesh geometry in real-time over the internet, as
needed for 3D tele-immersion? Our main contribution is the
design and development of a streaming module that takes
into account the specific requirements for streaming captured
meshes. The requirements are the following:

Support a full 3D triangle mesh representation: the engine
should support streaming of the common 3D triangle mesh
representation. That is, a list of points with properties (co-
ordinates, normals colors) and a list of faces indexing these
points, resulting into a surface in the 3D space. Low end-to-
end Frame Delay is generally considered an important factor
in 3D tele-immersion, as the pipeline consists of bandwidth
and computation savvy operations. For this paper we aim to
keep the end-to-end frame latency below 300 ms, based on
video conferencing requirements.

Flexible I/O representation: the data should efficiently flow
from the capturing and reconstruction blocks, via the stream-
ing engine, to the renderers without blocking. To allow for
minimum pipeline delay and possible synchronization between
different streams a flexible I/O scheme is needed.

Adaptability: the mechanism should be able to adapt
to changing network conditions such as bandwidth, pos-
sibly reducing the quality of the captured stream. Some
rate/complexity control is desirable.

Robustness to packet loss as it occurs in congested networks
is desired. Some quality degradation may happen, but it should
be possible to reconstruct the triangle mesh at the receiver
in case of packet loss. Generally, dependencies between con-
nectivity and geometry data and the nature of mesh codecs
transmission of mesh geometry is sensitive to data losses.

Bandwidth: the triangle mesh stream should not consume
too much bandwidth; some form of compression is desired
that matches the state of the art. No a priori information of
the geometric properties of the objects can be assumed (non-
manifold/ open/closed oriented or not). Similar to video con-
ferencing, any mesh object that is captured should be streamed.
This also means that no pre-stored avatars or models can be
transmitted as placeholders. realistically, we aim for state of
art rates as currently provided in the MPEG-4 standards for
mesh coding.

Real-time live-captured triangle meshes should be sup-
ported. Contrary to live captured video, where frames gener-
ally consist of a fixed number of points (320x240, 640x480),
captured triangle mesh frames can have different numbers of
vertices and no such vertex correspondence between frames
can be made unless supported by the reconstruction system.
This is often referred as time-varying geometry.

mekuria et al.: ENABLING 3D TELE-IMMERSION WITH LIVE RECONSTRUCTED MESH GEOMETRY WITH FAST MESH COMPRESSION AND LINEAR RATELESS CODING3

TABLE I
TERMS AND ABBREVIATIONS USED THROUGHOUT THE PAPER
3DTI 3D Tele-Immersion
MPEG-4 multimedia coding standard, includes 3D mesh codecs
MPEG-4 tfan high-end mesh codec in MPEG-4
MPEG-4 sva low-end mesh codec in MPEG-4
CZLoD 3DTI representation color+ depth in [9]
DPCM Differential pulse code modulation

D. Contribution and Outline

This paper presents a component that can efficiently stream
in real-time triangle mesh geometry, which is live captured and
reconstructed. The component has two main subcomponents:
encoding and transmission. First, we introduce an encoding
mechanism that reduces the size of the reconstructed mesh to
rate-distortion values comparable to those obtained with a state
of the art TFAN MPEG encoder, but approximately 10 times
faster. This meets our requirements on latency and bandwidth.
Second, we provide a transmission scheme that uses rate-
less coding, meeting the requirements of robustness, latency
and adaptability to changing network conditions shown ex-
perimentally via network emulations. This paper is structured
as follows. Section II overviews the related work regarding
existing 3D Tele-Immersion systems, mesh geometry compres-
sion algorithms, and mesh geometry transmission solutions.
Section III presents a compression method we have designed
for the live meshes In Section IV we evaluate this method,
introducing the datasets, quality criteria and the compres-
sion results. Section V describes our proposed transmission
scheme based on a rate-less code, reporting computational
and network transport delay. Section VI then presents our
3D Tele-Immersion system, highlighting integration and the
performance of the overall system. We discuss the conclusions
and implications of our work in Section VIIL.

II. RELATED WORK
A. 3D Tele-Immersion

3D Tele-immersion has received considerable attention; we
highlight some of the current advances. Vasudevan et al. pro-
posed a 3D tele-immersion system for capturing and rendering
that can reconstructed multiple meshed depth images. An
advantage of this technique is that by interpolating points
and by changing the size of the triangles it is possible to
adapt the level of detail [8] . Wu et al. developed a streaming
engine that exploits this representation, Color plus depth (Z)
and Level of Detail (CZLoD) [9]. The authors found the just
noticeable degradation and just acceptable degradation levels
in a user study, and subsequently applied dynamic adaptation
of the CZLoD, depending on network and user conditions.
With this engine, CZLoD can be adapted to match user per-
ception in real-time for the given available network bandwidth
and user conditions. Contrary to our approach, the CZLoD
representation is a triangulation on a depth image, while the
polygonal mesh we consider is a triangulation in a full 3D
space. An overview of technical challenges and related user

experiences based on over a decade of experimental 3D Tele-
Immersion research can be found [6]. Fast frame compression
has been a bottleneck in 3D Tele-immersive systems design
and several methods have been proposed to address this issue.
[10] propose a real-time compression method for a multi view
plus depth based 3D tele-immersive system based on clustering
streams together and predicting all streams in a cluster to a
single stream . Yang et al. propose a method for streaming
multiple depth streams with segmented background based on
zlib library enabling real-time performance with reasonable
compression gains [11]. These methods do not support the
3D mesh representation that has only has become available
recently for use in 3D Tele-immersive systems [7].

B. Geometry Compression

A considerable body of work on geometry compression
and a survey is available [12]. In theory, high compression
rates up to 4 bits per vertex can be achieved when specific
topologic and geometric properties are met. However, in prac-
tice 3D meshes can be manifold or not, open, closed regular
or irregular, oriented or not and manageable computational
complexity is needed. Therefore, the MPEG standardization
has adopted the novel Triangle Fan coder that can compress
irregular, non-manifold meshes with state of art compression
rates and very fast decoding times. Evaluations show that
a compression gain of 5 perc. compared to state of art is
achieved on manifold datasets and even more on large indus-
trial datasets that includes disconnected (isolated) components
[13]. It was also shown that in the case multiple isolated
components exist state of art geometry compression methods
based on spectral, wavelet and progressive mesh introduce
artifacts [13]. In the case of 3D Tele-immersion with geometry
reconstructed on the fly, encoding complexity/time becomes
critical when compared to previously considered applications.
The constraints on encoding time and geometric properties
make most methods in the literature not directly applicable to
3D Tele-Immersion.

C. Geometry Streaming

Various solutions have been proposed for efficient progres-
sive download and streaming of progressively compressed
mesh geometry from a server. Methods such as 3TP [14]
and extensions such as [15] generally utilize an extensive
offline optimization scheme based on minimizing a geometric
distortion metric to the orignal geometry to decide on an
optimal transmission scheme. This is not possible in 3D tele-
immersion where the original geometry is reconstructed and
therefore not available offline. In a recent work [16] a TCP
like connected transmission is seen as the most desirable for
transporting geometric data. Instead, in this paper we propose
compressed mesh transmission with a linear rate-less code
optimized for real-time operation for 3D Tele-immersion and
compare it with connection oriented transmission via TCP.

III. FAST COMPRESSION METHOD FOR
LIVE-RECONSTRUCTED GEOMETRY

We consider the reconstructed 3D mesh sequences, as a
temporally incoherent mesh sequence as defined in Eq. (1). We

Linear
quant. C

|

Linear
quant. B

|

linear
quant. A

Connect Non-
. DPCM linear
traversal quant. A
Appearance
Quantization
d\fflerem Pattern encoder Entropy
C(E) ial Det. coder

Fig. 3. Outline of Proposed Geometry Compression Scheme

Compressed
Buffer

————

G(V),C(E)

Offline
optimization

Colours(V) , C(E)
Normals(V)

TABLE 11
DATASTRUCTURE PATTERN RUN

[mode [[Diffl [Diff2][Start][Count]

aim to compress this data with a rate-distortion comparable
to available methods, but with a lower computational com-
plexity resulting in real-time encoding making it suitable for
3D Tele-Immersion. Fig. 3 outlines the compression system.
We introduce a fast connectivity traversal method combined
with connectivity-driven (offline) optimized DPCM coding and
layered quantization. We explain the rationale and operations
for compressing the connectivity C(E) in the next sub-section.
The differential encoding of the geometry G(V') followed by
non-linear quantization is presented in III-A. In section III-B.
we discuss how the appearance (normals(V') and colors(V'))
are handled (appearance quantization).

A. Pattern Based Connectivity Coding

The idea behind the connectivity coding approach presented
in this paper is that 3D reconstruction can introduce specific
regularities in the connectivity information that can be ex-
ploited for compression purposes. For example, in the zip-
pering method [17] multiple range images are tessellated first
into range surfaces that are subsequently zippered (stitched)
together. If these range surfaces are tessellated in a consistent
order, this can introduce a more regular and predictable
connectivity structure. Such patterns were also found in the
connectivity of the reconstruction data [7]. As such, patterns
occur many times in a row, we actively search for them and
use them for efficient encoding. An example of how following
differences occur is shown in table III , where each next index
is an increment of 1. While such patterns might differ per
reconstruction method and need to be found before they can
be exploited, they are a key to enable low-complexity encoding
of large meshes. Fig 4 illustrates the connectivity compression
scheme. First, the entire connectivity information is searched
for repeated regularities which are counted and stored in the

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, DECEMBER 2014

TABLE III
AN EXAMPLE OF A PATTERN IN THE CONNECTIVITY LIST
1632 || 1520 || 1633
1520 || 1521 1633
1633 1521 1634
1521 1522 || 1634

Input Patterns |

(offline) &

| Iterate connectivity indices |

Search pattern runs |

Store
pattern
run

Fig. 4. Connectivity Compression scheme outline

data structure pattern run shown in Table II. The mode field
represents the type of pattern, the diff fields the two differences
that occur and the count field signals the number of repetitions.
The start field is used to reference the position of the first
index in the connectivity list. This value is used to detect the
start of a run in the next encoding step and in the decoder.
Next, all indices are iterated again. If an index is the start of
a run the pattern run (indicated by the start field), is stored
and the connectivity index iterator is increased with the count
field. If an index is not stored in a run, the difference with the
index in the previous face is stored instead. Storing differences
instead of absolute values yields mostly small numbers skewed
around O and 1 and therefore allows efficient entropy coding.
The resulting data vector is entropy encoded via the zlib library
[19].

B. Geometry Coding With Delayed Differential Quantization

Uniform quantization is used for geometry compression
in MPEG-4 SC3DMC and other methods, which have been
designed with high quality graphical models with large
quantization parameter (QP 10-20). For the low-bit rate
requirements for streaming live reconstructed 3D geometry
this has several disadvantages. Firstly, the dynamic range of
the vertices that are quantized in a 3D space is large compared
to the details in the 3D surface. This results quantization
artifacts quickly become visible to the viewer. le. the
surface is vulnerable to quantization distortion that increases
with low-quantization parameters. When low quantization
parameter are used for geometry compression, vertcices
may share positions resulting in degenerate triangles (faces
with a zero surface) and a blocky appearance. Therefore,
instead we propose quantization after the transform (DPCM)
with a variable number of bits. In our case we propose a

mekuria et al.: ENABLING 3D TELE-IMMERSION WITH LIVE RECONSTRUCTED MESH GEOMETRY WITH FAST MESH COMPRESSION AND LINEAR RATELESS CODINGS

layered structure: most vertices are quantized with 4 bits,
but values outside the 4-bits range are quantized with 8 bits,
16-bits and 32-bits respectively when needed, i.e., if the
differences become large. This way we avoid large errors
in the geometry, as even for a small amount of vertices
large quantization errors can become clearly visible when
the mesh is rendered. We code differences between vertices
that are connected to each other. In this case the differences
are even more fine-grained as by the nature of densely
sampled 3D reconstruction, connected vertices are closely
co-located. The primary quantization vector codes over 95
percent of the values and is defined as for the given datasets:
[-.011, —.0063, —.0042, —.00315, —.00236, —.0012, —.0004,
0,.0004,.0012,0.00236, .00315, .0042, .0063, .011]. In this
configuration for the 4 bits non-linear quantization vector
was computed offline. Since it can be dependent on the
reconstruction method, we envision that such information
can be exchanged out-of band (in our 3D Tele-Immersion
system we use a custom session management system to
exchange such information). Subsequently, we utilize a
layered structure with 8-bits for the range from 0.11 to 0.1,
and 16bit between 0 and 2 to cover the entire dynamic
range. This information again depends on the reconstruction
system and can also be sent out of band when a user joins a
3D-Tele-Immersive session with a specific setup. The lower
the threshold thresh of the 4-bits range, the better quality and
lower the compression gain will be. To perform connectivity
driven differential encoding, we defined and implemented
a traversal method that does not changes the order of the
vertices in the list. Each of the faces is traversed, and the
first connected vertex that was previously stored (set) is
used for differential prediction. If none of the connected
vertices have been previously traversed and set, we set the
first vertex index in the face by adding this value to the
reserve values list. The other connected vertices in the face
are then differentially encoded. At the decoder, we traverse
the connectivity in a similar manner, unset vertices are
loaded from the reserve values list and the other vertices are
recovered via inverse differential prediction. This method
works well as the reconstructed meshes are relatively coherent
(connected vertices are also closely located in the indexed
face list). In practice less than 0.1 percent of the vertices
are stored in the reserve list in some of the reconstruction
systems we have tested. Values in the range [—0.011,0.011]
are stored and appended in the 4-bits vector, values between
[-0.1,0.1] are quantized with 8 bits and appended to the
eight bits queue vector. Larger differential values are stored
in the 16-bits or 32 bits queue but occur very rarely. They
need to be stored accurately to guarantee decoding without
large distortions.

C. Appearance Quantization

In the case of surface mesh geometry, the perceived appear-
ance depends not only on the color but also on the geometry
coordinates and surface normal data. We deploy the same
system of late differential quantization for the appearance
data (normal and colors), however the layers are assigned

differently. We quantize normal components in the range from
-0.25 0.25 with 4 bits and the rest with eight bits (8 bits plus
the sign bit retrieved from the 4 bits quantization vector). We
code color differences between -25 and 25 with 4 bits and
the rest with 8 bits (precisely 8bits plus the sign bit retrieved
from the 4 bits quantization value covering the entire range
[—255,255]. Again, such information can be communicated
out of band prior to the media streaming session to configure
the encoder and decoder properly.

IV. EVALUATION OF FAST COMPRESSION
METHOD

A. Datasets

For evaluation of the compression method we use datasets
of meshes reconstructed with five depth cameras that are
currently used in the 3DG group of Motion Picture Experts
Group (MPEG). They have been created by the Center for
Research and Technology Hellas (CERTH) based on the
method reported in [7] and contain participants performing
different activities. The datasets are publicly available at the
website currently hosted at [20]. These datasets represent the
case where a user is in a room captured by multiple depth
cameras at a distance of 300 cm. We have also integrated
the reconstruction system with our 3D mesh streaming engine
and have captured several test sets with one depth-camera
representing a user that is sitting in front of his computer (at
1.30 meters). We use both datasets to evaluate the developed
method.

B. Quality Evaluation Metrics

We utilize two metrics to assess the geometric quality of
the mesh: the symmetric Haussdorf distance and similarly the
symmetrical root mean squared distance, computed between
the original and decoded surface. We give the definition of
this metric in this section. The distance between a point p and
surface M is defined as:

d(p, M) = minyem|p —)2 4)

From this definition the Haussdorf distance between surface
M and M’ is defined as:

d(M, M) = mazpeprd(p, M))

As this metric is generally not symmetric d(M,M’)
d(M’, M) we use the symmetrical Haussdorf distance which
is defined in equation 6 as:

sy (M, M') = maz[d(M, M'),d(M', M)] (6)

Similarly the root mean square error, defined as

dmst,M'):%/w / / et @)

where |M| denotes the area of surface mesh M, and the
symmetrical root mean square error is then defined as

drmssym(Ma M/) = mam[d(M/7M)7d(M7 Ml)] (3)

TABLE IV
QUALITY METRICS NOTATION

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, DECEMBER 2014

Encoding-Decoding Speed 16 - Achieved
- 2500 | Compression Ratio
\ M i original surface mesh | menc 14
\ M i distorted/decoded surface mesh | time(ms), 5
- = - 5 2000 - 1 depth
| drmssym(ns,nmv) || symmetric geometric rms distance between M and M
camera |
dgym(M, M) symmetric hausdorf distance between M and M’ 10
> - - 1500 - .
dapp(M, M) rms error in appearance on a per vertex basis H dec time s 4
‘ dyniform || quantization error(rms) uniform source and quantizer | (ms), 1
1000 -| depth 6

Achieved
CompressionRatio

3000 ; Encoding-Decoding Speed [ms]

16 -

M enctime (ms), 5 depth-
camera

2500 | 14 1

M dec time (ms), 5
depth-camera)

2000 -

10

1500 |

1000 -

500

Fig. 5. Encoding and decoding results with 5 cameras

In the rest of the paper, when we compare surfaces, rms refers
to 8. To facilitate the computation of these metrics we use the
tool developed in [21]. Alternatively, we compare the quality
of the colors and normal (appearance) and the normal with
root mean square error on a per vertex basis.

/(v Y

peM ,p’'eM’

dapp = (p—p)I3 ©)
Where p and p’ denote the 3 coordinate color/normal in
original mesh M and decoded mesh M’ respectively. As the
tfan codec does not preserve the order of the vertices we
compare to the SVA codec at the same quantization parameter.
Also, we compare against the quantization error introduced by
quantization of a uniform source with a uniform quantizer in
3D which is given by

duniform = ﬁa/\/ﬁ)

Where § is the quantization step size. Lastly we compared
the encoding and decoding times in the integrated codec in
the 3D Tele-immersive system in milliseconds and provide
screenshots of the original and decoded meshes. In table IV
we give an overview of the notations of the quality metrics.

(10)

V. EXPERIMENTAL RESULTS

Our scheme was implemented in C++ and the test ma-
chine was a desktop machine with Intel i7 CPU and 8,00
GB or RAM and a Geforce GTX 760 video card. The
MPEG-4 Codecs were compiled from source code with the
same compiler as available on [22]. To avoid overhead of

500 -

camera

Fig. 6. Encoding and decoding results with 1 camera

rms distance between origianl and
decoded model

Symmetric RMS Distance

~tfan 8-6-6
-=tfan-10-6-6
~our method

F i vy ol

of decoded Model in the database N

Fig. 7. distortion between original and decoded models : sym. rms

0.0009

0.0008

0.0007

0.0006

0.0005

0.0002

0.0003

Mean Symmetric Haussdorf Distance
Between Orignal and Decoded Mesh

FhelitF)
~tfan 8-6-6
=tfan-10-6-6
-our method

of Decoded Model in the dataset

Fig. 8. distortion between original and decoded models : sym. haussdorf

TABLE V
ENCODER PARAMETER SETTINGS

tfan-8-6-6 tfan 8 bits coordinate 6 bit normal, 6 bit color
tfan-10-6-6 tfan 10 bits coordinate 6 bit normal, 6 bit color

[sva-8-6-6 || sva 8 bits coordinate 6 bit normal, 6 bit color |
sva-10-6-6 sva 10 bits coordinate 6 bit normal, 6 bit color
our method || uses proposed method with delayed 4 bit quantization

MPEG-4 part 25 that deals with loading the supported text
formats [23](XMT/Collada), we interfaced directly the class
SC3DMCEncoder and SC3DMCDecoder with an MPEG in-
dexed face set structure that is directly loaded from the input

mekuria et al.: ENABLING 3D TELE-IMMERSION WITH LIVE RECONSTRUCTED MESH GEOMETRY WITH FAST MESH COMPRESSION AND LINEAR RATELESS CODING7

5 01
rms error colors rms error normals

0.09

2 0.08

\assasssssssssssasssad 4e—the developed method
15 1 =+—the developed method P

~m-mpeg-6 bits measured
, | -@=mpeg-6 bits measured Peg

rms error colors
rms error normals
o
2

. . X 003 rms-6bit-uniform quantizer
rms-6bit-uniform quantizer 002
05

1 3 5 7 9 11131517 19 21
#of decoded mesh in the database

1 3 5 7 9 11 13 1517 19 21
#of decoded mesh in database

Fig. 9. Quality Comparison colors and normals between original and decoded
models (rms), the proposed codec gives lower rms error compared to the mpeg
configurations tested

L

Fig. 10. Quality Comparison, original, mpeg and our method decoded meshes

mesh. This way any overhead delays in accessing the mpeg
codec are avoided. All files are first completely loaded into
memory before the compression routine is started. The running
times are recorded via CPU wall clock times provided by boost
C++ library with a resolution of 366 ns. We ran all methods
on N=158 Meshes with 5 depth cameras with average of
302K Vertices. As Fig. 5 shows, with our method a significant
speedup is achieved compared to other methods (151 millisec-
onds with 5 Kinect data in average in comparison to 1398
milliseconds on average with TFAN or 2400 ms with SVA).
In terms of compression size, in Fig. 5 we achieved on average
mesh size of 1,460 KiloBytes (ratio 12.3:1) compared to 1266
KiloBytes with TFAN MPEG (14:1) with 10 bits QP and 6
bits colors and normals. While the measured compression ratio
is about 15 percent lower compared to TFAN, we achieve a
speedup of over 10 times. A comparable result is achieved with
1 camera as shown in Fig. 6. The results when the meshes are
reconstructed with 1 depth camera (average of 72K vertices)
are consistent. Here we encode meshes in 35 ms on average
and the average frame size is reduced to 370Kb (a 12:1 ratio).
The evaluation of the symmetric quality metrics Fig. 7 and
Fig. 8 show that comparable quality of geometry is achieved
in both metrics. The quality of the normal and colors is a
bit better with our approach compared to MPEG-4 as lower
symmetric root mean square error is achieved. The results
show that the 8 bits MPEG achieves a lower quality. The
10-6-6 bit mpeg encoded meshes and those with our method
are closely clustered around 0,0002 (rms) indicating that their
quality is approximately equal. We compared the quality of the
colors and normals on a per vertex basis. As TFAN re-orders

TABLE VI
AVERAGE BANDWIDTH REQUIREMENT RESULTING FROM COMPRESSION

[. [5fps [8fps [10fps [12fps |
[T Camera || 14.8 Mbit]| 23 MBit]| 29.6 MBit]| 35.52 MBIt |
[5 Camera [58 Mbit [[93 MBit [116 Mbit [[134 Mbit |

vertices we compared only with SVA, Fig. 9 and to /36 /1/12
which is the root mean square quantization error introduced
when quantizing a uniformly distributed source uniformly in
3D with step size 6. This value roughly corresponds to the
quantization error achieved with the MPEG SC3DMC codec
TFAN. The results show that our method achieves slightly
lower distortion of the normal data and the colors compared
to this value and the measured value. In Fig. 10 we show
snapshots of the decoded meshes, most artifacts are related
to the 3D reconstruction method and not the compression
method. In the future, with better acquisition these artifacts
will reduce. We show the resulting bandwidth requirements in
table VL.

VI. V. REAL-TIME TRANSMISSION

In this section we introduce the concept of rate-less coding
and we compare it to resilient transmission via TCP, based on a
number of lab experiments, and show its favorable properties
for geometry transmission and 3D tele-immersion. Symbol-
based inter-packet coding, together with progressive decoding
based on Gauss-Jordan elimination are used to produce a rate-
less coded stream of arbitrary size, with controlled decoding
complexity. We aim at the more reliable and bandwidth
enabled inter-networks where packet loss ranges between 0
and 2 percent. In this case, a single frame of around 300Kb
would result in 300 UDP packets the chance a frame would
arrive E|[framearrives] = E[nolostpacket] would be less
than 5 percent in case of a 1 percent loss rate. Note that the
computationally heavy 3DTI receiver can also miss packets
at the interface due to threads missing hte packer, increasing
the loss rate. To combat this we introduce the rateless codec
to maintain proper delay characteristics and gauranteed frame
transmission.

A. Rateless Coding

Random Linear Coding aims to achieve packet loss pro-
tection with near optimal rate and quick adaptation to the
network conditions. The idea of rate-less and fountain codes
is that any amount of packets can be generated at the sender
(i.e. rate-less). The first practical random linear codes were
first proposed in [24]. An advantage of the rate-less property
is that in case of increased packet loss in the network, the
data generated can be increased for extra protection. This
constitutes one of the main advantages compared to traditional
fixed rate FEC codes such as Reed Solomon codes. The
receiver then only has to receive a minimum set of packets
to make sure the reconstruction of the frame is possible. A
symbol based version of rate-less codes, more similar to our
proposed technique, has been also adopted in the field of
network coding to allow receivers to decode from incoming
packets from several independent paths.

Source Coding

T, +125msec (31ps)

segment 1 = frame 1

segment2 | | segment/ |

‘ generation 1

| generation ‘ Packetisation

=
=

block | block | block | block

block
5

@ @ @ = =
L
generation 1 L{ packet 1 | [packet 2 | [packet3 | [packetn]
generation j ~ packet 1 H packet 2 ” packet 3 \ [packerN ‘
i block1 P block2 i1 block3 i

[[owna [ovns | [oes [omns [ovas | [ovms [owes | oo |

[Cr; :] [c;f

ow, oW, oWy

Fig. 11. Arrangement of blocks for rate-less coding(up) Schematic encoding
of an outgoing packet(below)

B. Implementation

The data stream is divided in segments that are encoded
together, e.g., frames containing the compressed triangular
mesh at a certain instant. We further divide these segments
in generations and data blocks as shown in Fig. 11. Each
generation consists of 10 blocks and the size of the blocks
is chosen to avoid possible Ethernet fragmentation, i.e., 1024
bytes. Linear coding is then performed on finite fields Galois
Field (GF) of size ¢ = 2™, where m is the number of data
bits covered by a codeword. Each block is considered as a
sequence of Ny code words:

b9 = p) oG k=1, Ky g =1,..,G (11)

The superscript (k, g) indicates the k — th block of generation
g. A field size q=256 (m=8 bits) has been chosen to allow
fast algebraic operations. Outgoing packets are generated by
linearly combining only the K, source blocks of the specific
generation, with coefficients c1,co,,ck,. A coded block is
generated from generation g as:

b9 — pmg

s D)

And each code word is calculated as in ((eq. 13)):

69 l,n=1,..,N,g=1,...,G (12)

Ky

b =3 (erd), = 1,2, ., Ny
k=1

13)

Therefore, N > K out-going blocks are generated. As only
K, linearly independent blocks are needed to decode the
original data around N — K, redundant blocks are generated.
The coefficients of the linear combination are embedded in
the packet header. They are needed by the receiver to build
the linear system. As soon K, linearly independent packets

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, DECEMBER 2014

TABLE VII
NOTATION LINEAR RATELESS CODING

G number of generations to partition source data

Ky number of source blocks per generation
[N i number of linear coded blocks per generation |
[GF(q =2™)][Galois finite field with q words represented by m bits]
[Nw i number of codewords per block |
[b(%.9) H source block k in generation g]
[p>(:9) H coded block n in generation g]

are received for a generation, the K K, linear system is
recovered and solved. The solution is then applied on the
received blocks to recover the original data. In order to reduce
the decoding computational load, we construct n intermediate
composite matrix of data and coefficients of the incoming
packets. Gaussian elimination is performed each time a new
packet is received. This spreads the computational cost of
solving the linear system over time and drastically reducing the
eventual decoding time when K linearly independent blocks
are received. The complexity can still be reduced more by
reducing the dimension of the coding space. Therefore, in
contrast with traditional fountain codes [31] [30], our rate-less
coding has been restricted to one linear system per generation
(as opposed to the Ny kernels per generation employed
by normal fountain codes). In table VII we summarize the
notations of the rateless code.

C. GF arithmetic

We implemented the non-sparse deterministic codes based
on Vandermonde matrices and the progressive decoding via
Gauss-Jordan elimination. The Vandermonde matrices are gen-
erated as a geometric progression of the rows as follows [25]:

(14)

where v;, ¢ = 1,...,2™ — 1 are the elements of the Galois
field excluding the null element. We augment the matrix by
concatenating an identity matrix of size K. Our code space
of size K, can be thus spanned by all K;,+2™~! columns of
the augmented matrix. By using a field of size 256 (8 bits per
symbol), a generation composed of 25 blocks (25 KBytes) can
be encoded into 280 independent packets, which is equivalent
to a 9 perc. information rate (or 10 times redundancy for loss
protection), and decoded from any 25 packets that arrive to
destination first. We made use of a library implementing fast
Galois Filed arithmetic [27] [26] using the latest Intel Stream-
ing Single-Instruction Multiple-Data (SIMD) extensions. Such
set of instruction allows 128 bits numbers to be handled in
the CPU, making operations such the region multiplication
of GF symbols, extremely fast with respect to previously
available implementations. We make heavy use of the region
multiplication, one example being the encoding operation in
Eq. 12. Additionally, region multiplication is used for all
row-operations needed for Gaussian-elimination, reducing the
matrix to row-echelon form.

mekuria et al.: ENABLING 3D TELE-IMMERSION WITH LIVE RECONSTRUCTED MESH GEOMETRY WITH FAST MESH COMPRESSION AND LINEAR RATELESS CODING9

0.6 rateless, 5 msec delay }
—4— rateless, 10 msec delay
05 TCP, 5 msec delay /.l
: —m- TCP, 10 msec dela
3 : ¥
<

@
~ 04 a
o s
1]
% oa g
o
a
2) 4
I

[]
.

B T T . S
S 6" of & & & B IR L. L M L
@xg.\cwe.bufs'&‘»wgr;ﬁ,;:,.\ﬂ‘@(?‘,\%e@

Packet loss rate

—+— rateless, no packet loss »
g rateless, 1% loss

== == TCP, no packet loss y
— @ TCP, 1% loss 7 | x

transport delay [sec]
o
=
N

o
s

0.08

0.0e

Link delay (msec)

Fig. 12. End-to-End delay of rateless code implementation based on packet
loss in the network

+ Generation Size = 24 KBytes, pkt size = 1024 Bytes|
Generation Size = 48 KBytes, pkt size = 1024 Bytes|
35 ize = 64 KBytes, pkt size = 1024 Bytes|

Time [msec]

15

! P v“:_uw.('_“.

d ke g
ST

011 1:‘59

267 651 779 907

395 523
Data Size [Bytes]

- Generation Size = 48 KBytes, pkt size = 2048 Bytes|
Generation Size = 48 KBytes, pkt size = 1024 Bytes|
30| - Generation Size = 24 KBytes, pkt size = 2048 Bytes|
o Size = 24 KBytes, pkt size = 1024 Bytes|

n
X

Generation Size = 48 KBytes

Time [msec]

0 o
“-“Genefation Size = 24 KBytes

394 522
Data Size [Bytes]

Fig. 13. Frame decoding times with fixed packes size and variable generation
size and with different packet sizes

D. Experimental Results Rateless Codec

In order to assess the delay performance of the rate-less
coding system we tested a point-to-point transmission between
two PCs, one compressing and streaming out the data, and
the second one receiving from the network, decoding the
packets. A network emulator [28] was used to emulate latency
and packet inside the LAN between the two machines. We
compare our system performance to performance of a TCP
connection tuned for low delay. Fig. 12 shows the performance
comparison between the two in case of packet loss (below)
and link delay (above). Contrary to TCP, the end to end delay

remains small for packet loss over 1.5p and link latency over
9 ms in our approach. Fig. 13 shows the decoding times of
data frames with sizes ranging from a few Kbytes to around 1
MByte. The decoding times consistently stay below 30 msec,
enabling decoding above 30 frames per second. Fig. 13 (up)
shows configurations with different generation size, which
implicate bigger decoding kernels and increased complexity
but better packet loss protection. Fig. 13 (bottom) shows
reduced complexity at equal generation size, when using larger
packets (but possibly larger information loss). Our rate-less
transmission scheme is always able to sustain the transmission
when the source throughput and the channel rate are higher
than the data rate and the packet loss. Delays and packet losses
affect only linearly the transport latency. This is due to the fact
that, regardless the number of packets that are lost, as long
as at least K, packets are received the data is reconstructed.
Realistic network delays will be over 9ms, and the rateless
code is expected to yield a better delay performance. While
this type of coding introduces overhead (we set 33 percent in
our case), the overhead can be decreased to match network
conditions making approriate use of the available bandwidth.

VII. 3D TELE-IMMERSION PIPELINE
INTEGRATION AND APPLICATION PERFORMANCE

The developed compression and channel coding components
have been integrated with a 3D reconstruction system and a
modular rendering engine to test the end-to-end performance.
We developed modules for both the transmission and ren-
dering/composition of the 3D Meshes in the scene (see 14).
The Rendering engine implements illumination and shading
and manages the different objects in the scene. The complete
end-to-end streaming system is tested in a lab environment
that consists of two computers. The first, with an intel i7 2.8
Ghz CPU and 8.00 GB of RAM plus Microsoft Kinect depth
camera and a second with an intel i7 3.4 Ghz CPU with 16.00
GB of RAM acting as receiver. At the receiver side a network
emulator [28] is set up that introduces randomly (normally)
distributed latencies and packet loss on the incoming packets
(in the operating system kernel). We deployed a monitoring
system integrated in the software that measures the synchro-
nized timestamps in each step of the transmission pipeline. We
monitor each event (frame captured time, frame compressed
time etc.). This way we assess the real-time streaming perfor-
mance of the pipeline. We matched the simulation parameters
to the impairment levels presented in ITU G.1050E [29] which
are values widely considered by the industry. VIII shows the
parameters for well-managed IP connections (class A based
as based on leased line) in the first and second column. In the
third and fourth column we show established characteristics for
partially managed networks (Class B) (that provides some QoS
for example based on seperate qeueus like DiffServ but where
data flows over shared paths). For our evaluation, our attention
focusses on latency and jitter values as VIII that in case of
TCP and large frame sizes cause large delays. We measured
the end-to-end frame delay from the capture timestamp to the
timestamp when the mesh is remotely rendered. The frame
capture/reconstruction time varies from around 30 millisec-
onds to a maximum 50 milliseconds per frame (this depends

Fig. 14. Live reconstructed mesh rendered remotely

TABLE VIII
ITU-T G 1050E INDUSTRY ACCEPTED IMPAIRMENT LEVELS
FOR WELL MANAGED (CLASS A) IP NETWORK AND
PARTIALLY MANAGED (CLASS B) [29]

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, DECEMBER 2014

End-to-End Transmission time with tfan and rate-less codec
implementation

100 ms, 50 ms 0.1% packet
loss

B compression time

= packetization time

= network time

m data reconstruction
time

m decoder time

m render time

50 ms, 30 ms 0.1% packet
loss

el
Network Delay
25ms, 15 ms 0.1% packet
loss

10 ms, 10 ms 0.1% packet
loss

Time [ms]

Fig. 16. Average end-to-end delay with Rate-less coding and MPEG TFAN-
10, encoder is bottleneck

Real-Time ing with Codei and proposed Codec

100 ms, 50 ms 0.1%
packet loss

delay Regional (A) IC (A) Regional (B) IC (B)
latency(ms) 20-100 90-300 ms 20-100 90-400
jitter(ms) 0-50 0-50 0-150 0-500
packet losses (p) 0-0.05p 0-0.05p 0to 2p 0 to 2p
TABLE IX
EXPLANATION OF TIME INTERVAL MEASUREMENTS OF THE STREAMING
PERFORMANCE

compression time
packetization time
network ready wait
network time
data reconstruction time
mesh decoding time
mesh render time

time to compress the frame
time to generate coded packets
time until network interface is available
time writing UDP datagrams (i.e. sendto calls)
time to receive and progressively decode data
time for source decoding the mesh
time spend before rendering the mesh

End-toEnd Latencies with TCP and the proposed codec

100 ms, 50 ms 0.1% packet loss

m compression time
50 ms, 30 ms 0.1% packet loss

m network time
25ms, 15 ms 0.1% packet loss m decoder time

= render time

10 ms, 10 ms 0.1% packet loss

10000

Fig. 15. end-to-end delay with tfan and tcp

on the number of vertices captured). The reconstruction and
compression introduces bitrates as defined in VI. As the rate-
less coding and UDP transmission (outgoing data rate-control)
each run in their own thread, it may not keep up with the
rate introduced by the capture/compression threads. In such
cases a frame will be skipped in the inter-thread exchange of
frames. Only the newest frame is exchanged in each stage.
This avoids delay to buildup in the pipeline that can happen
for example when a TCP connection blocks or a Sendto
operation blocks. This policy is implemented in both the
sender and the receiver modules to minimize the user level
end-end delay and avoid a buildup of delay in the pipeline.

In Table IX we present the time intervals that we assess.
The overall time packets of a frame spend in the network is

|

t W compression time
Network Delay
M packetization time

50 ms, 30 ms 0.1%
packet loss

[] net\)vork_ready_wait

M network time
25ms, 15ms 0.1%
packet loss

® data reconstruction
time

i decoder time
10ms, 10ms 0.1%

packet loss
w render time

Fig. 17. Average End to End delays: emulated network delays N (u, o).

12 7 m achieved frame rate with our compression method

B achieved frame-rate MPEG tfan
10 1

T T T
S50 ms, 30ms0.1% 100ms, S50 ms0.1%
packet loss. packet loss

Network condition N{m,std) and percentage random packet loss

10ms, 10ms0.1%
packet loss

25ms, 15ms0.1%
packet loss

Fig. 18. Resulting Frame-rate at the receiver when the sender is capturing at
a target rate of 15 in various network conditions, our method gives upto 5x
higher frame rates

network time (the time the sender uses to send out packets
(sender thread)) plus data reconstructed, which is the time
the receiver incrementally reconstructs the data each time
a packet is received (progressive decoding). The other time
intervals are all computational latencies and depend on the

mekuria et al.: ENABLING 3D TELE-IMMERSION WITH LIVE RECONSTRUCTED MESH GEOMETRY WITH FAST MESH COMPRESSION AND LINEAR RATELESS CODING11

system configuration. We have synchronized virtual clocks
between the machines operating the application to monitor
the time intervals. 15 shows how TCP handles the large
mesh frames (without rateless encoding) in the represented
network conditions, almost all time (4-10s) is spent waiting on
receiving the frame data and as a result, very low throughput
and frame-rate is achieved. This makes TCP unsuitable for
real-time transmission of large media frames that require low
delay in our tested configuration based on realistic conditions.
Fig. 16 shows that the end-to-end delay with the rate-less
channel coder with progressive decoding. The information rate
is set to 75 percent (75 percent information with 25 percent
redundancy, i.e. 33 percent overhead) and the source encoding
is based on MPEG TFAN in 16. In this case over 50 percent
of the total end-to end latency is caused by the TFAN encoder
which has become the performance bottleneck in the system.
Fig. 17 shows the delay performance of the optimized trans-
mission system integrated with both our proposed compression
method and the progressive rate-less codec. In this case no
longer the compression is the bottleneck. Instead the outgoing
UDP socket system calls (network time) are the bottleneck and
frames spend network ready wait milliseconds before they start
to actually be send to the receiver (13,3 ms on average in the
4 tested network conditions). In this case the end-to-end delay
still stays below 300 ms for the large majority of the frames
frames. The frame rates achieved at the remote site are much
better in this configuration. Compared to TFAN as shown in
Fig. 17, we achieve frame rates of approximatly 10 fps on
average in the 10ms and 25 ms scenarios and between 8 and
9 fps in the 50 and 100 ms scenarios. On the other hand, the
current MPEG implementation causes low frame-rates at the
receiver site of around 3fps.

VIII. DISCUSSION AND CONCLUSION

This paper presented a prototype implementation that en-
ables 3D Based conferencing between remote participants,
focusing on the compression and the transmission components.
The main motivation for this work is that we believe that
real-time streaming of live reconstructed geometry will enable
novel applications that can integrate real and virtual worlds.
The prototype addressed some of the significant challenges
that triangle mesh representation poses to the media streaming
pipeline in terms of latency, data-volume and robustness to
losses. The contributions of this research can be summarized
as follows:

Encoding/Decoding: Triangle mesh codecs have not been
designed with the interactive scenario in mind. Therefore
encoding complexity is often too large and low-bitrate/time
varying applications and arbitrary geometries have not been
considered appropriately. The proposed codec is low com-
plexity, and compared to the current TFAN implementation,
it achieves comparable (only slightly lower) quality/rate but
much better compared to MPEG SVA that originally tar-
geted this application. Also, the relatively simple operations
of this method allow fast implementations. In this context,
the MPEG-3DG (3D Graphics group) is currently exploring
possibilities to extend its mesh coding standards to support live

reconstructed geometry for 3D Tele-Immersion. Our proposed
method achieves a frame rates 3 times better in the developed
framework. In future work we will explore scalable mesh
coding and resolution reduction to enable better network,
rendering and application context awareness.

Streaming: systems that efficiently transmit geometry in
real-time, generally dealt with stored objects instead of cap-
tured reconstructions. With our rate-less code we achieve good
loss-resilience and latency performance and adaptability to
changing network conditions. As our rate-less code is quite in
line with state of art network coding solutions, an exploration
of 3D Tele-Immersive streams via network coding is envi-
sioned with the developed framework. In future work, we will
investigate adaptive streaming of live reconstructed geometry
in networks with congestion and bandwidth fluctuation by
controlling the rate-less code and reducing the mesh resolution
to meet frame-rate and delay requirements.

3D Tele-Immersion: this paper presents a prototype of a
triangle mesh based 3D tele-immersion system. This prototype
is integrated with state of the art capturing and rendering
components. It is enables a mix full local 3D reconstructions in
real-time with remote synthetic and computer controlled con-
tent. High quality rendering techniques have been integrated.
In the future we are planning more objective and subjective
evaluation in sample use cases in entertainment and education.

ACKNOWLEDGEMENT

We would like to thank Dimitrios Alexiadis and Petros
Daras at the CERTH for providing datasets and the reconstruc-
tion software. We thank Tamy Boubekeur, Steven Poulakos
and Manuel Lang for providing the Rendering framework.
The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. ICT-
2011-7-287723 (REVERIE project). We thank the people at
MPEG and Institut Telecom for making their codecs available.

REFERENCES

—

[1] R. Bajcy , L. Wymore,G. Kurillo , K. Mezur ,R. Sheppard , Z. Yang , and
W. Wu., K. Nahrstedt, ”Symbiosis of tele-immersive environments with
creative choreography,” in ACM Workshop on Supporting Creative
Arts Beyond Dissemination (in conjunction with CCC’07), 2007.

[2] Forte G. Kurillo., M., ”Experimenting with Tele-immersive Archeology,”,
in 16th international conference on Virtual Systems and Multimedia
(VSMM 2010) pp. 155-162, 2010.

[3] R. Bajcy ,O. Kreylos ,M. Rodriguez., G. Kurillo, "Tele-immersive envi-
ronment for remote medical collaboration,” in Medicine meets virtual
reality (MMVR17) pp. 148-150, 2009.

[4] W. Wu, Arefin, A., Z. Huang, P. Agarwal, S. Shi, Rivas, R. K. Nahrstedt,
”I'm the Jedi!” - A Case Study of User Experience in 3D Tele-immersive
Gaming,” Multimedia (ISM), 2010 IEEE International Symposium on
, vol., no., pp.220,227, 13-15 Dec. 2010 doi: 10.1109/ISM.2010.39

[5S] R.Mekuria, M.Sanna, S.Asioli, E.Izquierdo, D.C.A. Bulterman, P.S.Cesar
73D tele-immersion system based on live captured mesh geometry,” in
Proceedings of the 4th ACM Multimedia Systems Conference (MMSys
’13). ACM, Oslo, Norway, 2013, pp. 24-35.

[6] R. Bajcsy. G. Kurillo, 3D teleimmersion for collaboration and interac-
tion,” Springer Virtual Reality, vol. 17, pp. 29-43, Jan. 2013.

[7]1 D. Alexiadis, D. Zarpalas, and P. Daras., ”"Real-Time, full 3-D reconstruc-

tion of moving foreground objects from multiple consumer depth cameras,

IEEE Transactions on Multimedia, vol. 15, pp. 339-358, 2013.

[8] R. Vasudevan, K. Kurillo, E. Lobaton, T. Bernardin, O. Kreylos., R.
Baycsy, K. Nahrstedt "High Quality Visualization for Geographically
Disctributed 3-D Tele-Immersive Applications,” 1EEE Transactions on
Multimedia, vol. 13, no. 3, pp. 573-584, 2011.

[9] W. Wu, A. Arefin, G. Kurillo , P. Argawal , K. Nahrstedt , R. Bajcy ,
”Color-plus-Depth Level of Detail in 3D Tele-Immersive Video: a psy-
chophysical approach,” in 19th International conference on Multimedia
(MM’11) pp. 13-22, 2011.

[10] K.M. Patel, H.Fuchs. S.U. Kum, "Real-Time Compression for dynamic
3D Environments,” in ACM Multimedia’03, Berkeley, CA, USA, 2003.

[11] Z. Yang, Yi Cui, Z. Anwar, R. Bocchino, N. Kiyanclar, K. Nahrstedt,
R. CampBell, W. Yurcik , "Real-Time 3D Video Compression for 3D
Tele-Immersive Environments,” in MMCN’06, 2006.

[12] J. Peng C.S. Kim , J. Kuo , "Technologies for 3D Mesh Compression:
A survey,” Elsevier Journal of Visual Communication and Image
processing, pp. 688-733, 2005.

[13] K. Mammou, ”Compression de maillages 3D statistiques et dy-
namiques,” 1’Universite Rene Descartes - Paris V, Paris, PhD Thesis
2008.

[14] G. Al-Regib Y. Altunbasak, ”"3TP: An application layer protocol for
streaming 3D Graphics,” 1EEE Transactions on Multimedia, vol. 7, no.
6, pp. 1149-1156, 2005.

[15] M. Li, and B. Prabakaran H. Li, "Middleware for streaming 3D progres-
sive meshes over lossy networks,” ~ ACM Transactions on Multimedia
Computing and Communications Applications (TOMMCAPP), vol. 2, no.
4, pp. 282-317, 2006.

[16] W. Cheng, W. Tsang Ooi, S. Mondet, R. Grigoras, and G. Morin. 2011.
Modeling progressive mesh streaming: Does data dependency matter?.
ACM Trans. Multimedia Comput. Commun. Appl. 7, 2,

[17] G.Turk and M. Levoy. 1994. "Zippered polygon meshes from range
images”. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques (SIGGRAPH ’94). ACM, New York,
NY, USA, 311-318.

[18] E.S.Jang. S. Lee,B. Koo, D. Kim,K. Son, "Fast 3D Mesh Compression
using Shared Vertex Analysis,” ETRI Journal vol. 32, no. 1, 2010.
[19] M. Gailly J.L. Adler. (2013, Oct.) zlib, A Massively Spiffy Yet Delicately
Unobtrusive Compression Library. [Online]. http://www.zlib.net/

[20] D. Alexiadis. (2013, Oct.) Datasets of Multiple Kinects-based 3D
reconstructed meshes. [Online]. http://vcl.iti.gr/reconstructions/

[21] N. Aspert, D. Santa-Cruz, T. Ebrahimi, "MESH, Measuring Error
between Surfaces using the Haussdorff distance,” in IEEE International
conference on Media and Expo, 2002

[22] Institut Telecom. (2013) mymultimediaworld.com. [Online]. mymulti-
mediaworld.com

[23] B. Jovanova, M. Preda, F.Preteux, "MPEG-4 Part 25: A graphics
compression framework for XML-based scene graph formats,” Signal
Processing: Image Communication, vol. 24, no. 1/2, p. 101/114, January
2009.

[24] P.A. Chou, Wu Y., and K. Jain, "Practical Network Coding,” in
Allerton Conference in Communications and Computing, Monticello, 1L,
2003.

[25] C.R. Horn , R. A Johnson, analysis, Topics in matrix Analysis. Cam-
bridge: Cambridge University Press., 1991.

[26] K. Greenan., E. L. Miller., J. S. Plank., "Screaming Fast Galois Field
Arithmetic Using Intel SIMD Extensions” in Proceedings of the 11th
Conference on File and Storage Systems ”(FAST 2013), San Jose, CA,
January 2013.

[27] E. L. Miller, W. B. Houston, J. S. Plank. (2013., January) GF-Complete:
A Comprehensive Open Source Library for Galois Field Arithmetic.
Version 0.1, University of Tennessee.

[28] Microsoft Asia, NEWT Network Emulator for Windows, 2013, Mi-
crosoft Software.

[29] ITU-T, ”"Network model for evaluating multimedia ITU-T G.1050,” ITU-
T, Geneva, G-Series System Recommendation G.1050, 2011.

[30] M. Luby, "LT Codes” in IEEE Symposium of Computer Science pp.
271-280, 2002.

[31]7 A. Shokralli, M. Watson, T. Stockhammer M. Luby, "RFC 5053 Raptor
Forward Error Correction scheme for object Delivery,” 2007.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. X, NO. X, DECEMBER 2014

Rufael Mekuria received the B.Sc in Electrical
Engineering and the M.Sc. in Electrical Engineer-
ing from Delft University of Technology, Delft,
The Netherlands, in 2007 and 2011 respectively. In
September 2011 he joined the Centrum Wiskunde
& Informatica: CWI where he is a PhD Student.
He is active in international standardization activities
in ISO IEC Motion Picture Experts Group (MPEG)
since april 2013.

Michele Sanna received the B.Sc. in Electronic
Engineering and the M.Sc. in Telecommunications
Engineering, both with honors (summa cum laude),
from the University of Cagliari, Italy, in 2006 and
2008, respectively. He is currently pursuing the
Ph.D. degree in Electronic Engineering at the Queen
Mary, University of London, His interest include
media transmission and coding, including network
coding and peer-to-peer networks. He is student
member of IEEE since 2012.

Ebroul Izquierdo PhD, MSc, CEng, FIET,
SMIEEE, MBMVA, is Chair of Multimedia and
Computer Vision and head of the Multimedia and
Vision Group in the school of Electronic Engineer-
ing and Computer Science at Queen Mary, Uni-
versity of London. For his thesis on the numerical
approximation of algebraic-differential equations, he
received the Dr. Rerum Naturalium (PhD) from the
Humboldt University, Berlin, Germany. He has been
a senior researcher at the Heinrich-Hertz Institute,
Berlin, Germany, and the Department of Electronic
Systems Engineering of the University of Essex. Prof. Izquierdo has published
over 400 technical papers including chapters in books and patents.

Dick Bulterman Dr. Bulterman received his Ph.D.
in computer science from Brown University in Prov-
idence RI (USA) in 1981. He has been co-chair of
the W3C working group on synchronized multime-
dia since 2007; this group released the SMIL 3.0
Recommendation in late 2008. Since October 2013
Dick Bulterman is Chief Operating Officer (COO)
of FX Palo Alto Laboratory, Inc. (FXPAL). Before
he led the dis lab at CWIL.

Pablo Cesar leads the Distributed and Interac-
tive Systems group at Centrum Wiskunde & In-
formatica:CWI. He received his PhD from the
Helsinki University of Technology in 2006. He has
(co)authored over 70 articles (conference papers
and journal articles) about multimedia systems and
infrastructures, social media sharing, interactive me-
dia, multimedia content modeling, and user interac-
tion. He is involved in standardization activities (e.g.,
W3C, MPEG, ITU) and has been active in a number
of European projects. He is co editor of the book

Social Interactive Television: Immersive Shared Experiences and Perspectives
and has given tutorials about multimedia systems in prestigious conferences

such as ACM Multimedia and the WWW conference.

