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1 Introduction

Scattering amplitudes of massless particles in quantum field theory have infrared diver-

gences, which are known to cancel in inclusive cross-sections [1–3]. Exhibiting such cancel-

lations in perturbation theory relies on universal factorisation properties of amplitudes in

the limit as the momentum of a massless particle is taken soft, p → δp, which makes the

study of these limits particularly significant.

The leading soft behaviour was first studied at tree level in QED [4] and then in grav-

ity [5]. Yang-Mills theories were also shown to exhibit similar factorisation [6]. There is

however an important difference — in gravity the leading soft behaviour is not renormalised

by loop effects [7], unlike in QED and Yang-Mills. Parallel work considered the subleading

soft corrections at tree level in QED and found universal behaviour described by a dif-

ferential operator [8, 9]. The analogous subleading correction in gravity was studied only

recently using eikonal methods [10]. Subsequently, in [11] a simple universal form for the

subleading and sub-subleading contributions for soft gravitons at tree level was discovered,

which easily generalises to Yang-Mills theories [12]. These results are now known to hold

in arbitrary dimensions [13–15] courtesy of the CHY formalism [16].

At one loop, the leading soft behaviour is fully understood. Results in QED were found

in [17] while the one-loop leading soft correction in QCD was computed in [18, 19] as part

of a phenomenological study of NNLO jet production at colliders, and in more generality

by different methods in [20]. Less is known about the subleading soft theorems at one-loop

level. This question was first approached in QED in [21]. In QCD and gravity the infrared-

divergent corrections were computed in [22] and found to be universal. A recent general-

isation of [21] hints at universality in the subleading log δ terms of gauge theories [23].

Only partial information is available for the infrared-finite terms, both in gauge theory

and in gravity. The subleading soft behaviour of certain rational amplitudes was computed

in [24]. Soft-collinear effective theory identifies a general structure, which has been verified

with examples from QCD [25]. It is possible to evaluate the factorising contributions [26]

for soft graviton emission using locality and symmetry principles [27]. Very recently the

subleading soft behaviour of non-factorising terms was determined for single-minus graviton

amplitudes through eight points [28]. In this paper we evaluate the first complete n-point

one-loop correction to subleading soft behaviour in a non-abelian gauge theory, namely

planar N = 4 super Yang-Mills (SYM). The expressions we find, equations (5.1)–(5.4),

contain simple sums of bulk terms together with boundary contributions involving legs

near the soft particle. The latter give rise to a particularly simple and universal form of

the log δ terms in the soft expansion.

Our modern understanding of soft theorems is entwined with symmetry. Indeed, the

soft behaviour was proved in [29, 30] to be a Ward identity for BMS symmetry [31], and

it was further conjectured that the tree-level subleading soft graviton theorem emerges

from a hidden Virasoro symmetry at null infinity. An interesting approach was pursued

in [32], where it was shown that conformal symmetry is sufficient to determine the tree-

level Yang-Mills subleading soft theorem. In fact, merely gauge and Poincaré invariance is

enough [33, 34]. One of the goals of this paper is to work out the constraints imposed by
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dual conformal symmetry on soft theorems in N = 4 SYM at tree level and one loop. This

symmetry provides differential constraints on soft corrections, and we have found these

to be a powerful tool to determine them. Invoking some straightforward and reasonable

conjectures on the general form of the soft corrections, the dual conformal symmetry re-

quirements are solvable and the resulting expressions pass nontrivial tests. The known

simple form of the one-loop anomaly for dual superconformal symmetry is a key element

in this process — this is a feature unavailable for conventional conformal symmetry.

Several fascinating related papers lie slightly outside the main line of our development.

Various holographic theories now exist which manifest the tree-level soft theorems as Ward

identities [35–40]. Subleading double-soft and multi-soft corrections have been studied

in [41–46]. Subleading soft behaviour has also been scrutinised in string theories [47–51],

and recently, subleading soft theorems have been extended to off-shell quantities as well [52].

The rest of the paper is organised as follows. In section 2 we review the dual super-

conformal symmetry of N = 4 SYM. In section 3 we summarise the supersymmetric soft

gluon theorems at tree level and conjecture a form for a one-loop extension. In section 4

we derive constraints on supersoft theorems at tree level and one loop using the anomalous

dual conformal Ward identity for amplitudes. In section 5 we compute the subleading soft

behaviour of general MHV amplitudes and the six- and seven-point NMHV amplitudes at

one loop, employing unitarity and momentum twistors. In particular we present some evi-

dence for universality of the subleading log δ terms. We present our conclusions in section

6 as well as suggestions for future work. Several appendices are included which illustrate

some of the technical points, and in particular appendix C documents a new Mathematica

package used in section 5.

2 Dual superconformal symmetry

In this section we recall some properties of the dual superconformal symmetry of ampli-

tudes that we will need for later calculations. It is well known that planar colour-ordered

gluon amplitudes in N = 4 SYM theory may equivalently be calculated as the expectation

values of certain lightlike Wilson loops with appropriate operator insertions [53–57]. Su-

perconformal symmetry acting on the vertices of Wilson loops then yields a hidden dual

superconformal symmetry of amplitudes [58].

We use on-shell superamplitudes [59] to make the symmetry manifest and arrange the

external states into N = 4 supermultiplets, defining for particle i,

Φi(pi, ηi) = G+(pi) + ηAi λA(pi) +
1

2
ηAi η

B
i SAB(pi)

+
1

3!
ηAi η

B
i η

C
i ǫABCDλ

D
(pi) +

1

4!
ηAi η

B
i η

C
i η

D
i ǫABCDG

−(pi) ,

(2.1)

where ηAi are auxiliary Grassmann variables and A = 1, . . . , 4 is an SU(4) index. A super-

amplitude in on-shell coordinates (|i], |i〉, ηi) is then

An(|i], |i〉, ηi) = A(Φ1, . . . ,Φn) . (2.2)
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To exhibit the dual superconformal symmetry, we introduce dual coordinates (xi, θi) [58]

defined by

(xi − xi+1)
α̇α = |i〉α[i|α̇ , (θi − θi+1)

αA = |i〉αηAi . (2.3)

Momentum conservation and supersymmetry imply that (xn+1, θn+1) = (x1, θ1) for an n-

particle scattering process. Assuming that the amplitude is written exclusively in terms of

the coordinates (|i〉, |i], ηi), the generator of dual conformal boosts takes the form,

Kαα̇ =
n
∑

i=1

(

xβiα̇〈i|α
∂

∂|i〉β
+ x

i+1αβ̇ |i]α̇
∂

∂|i]
β̇

+ θAi+1α|i]α̇
∂

∂ηAi

)

. (2.4)

Tree amplitudes transform covariantly as

Kαα̇A
tree
n = −

( n
∑

i=1

xiαα̇

)

Atree
n . (2.5)

Note that the amplitude contains the universal factor δ(4)(p)δ(8)(q) which is dual conformal

invariant.

At loop level the symmetry is anomalous, owing to divergences in the Wilson loop [60].

In particular the infrared divergences of loop amplitudes correspond to the ultraviolet cusp

divergences of Wilson loops [61]. This provides us with a useful means to visualise the

entanglement between subleading soft behaviour and infrared divergences at loop level, as

we will discuss in section 3.2.

The anomalous Ward identities calculated in [62, 63] suffice to explain the BDS ansatz

for all-loop MHV amplitudes [64], which is correct up to a function of dual conformal

invariant cross-ratios. We will require the explicit form of the one-loop anomaly proved

in [65], namely

Kαα̇A
1-loop
n =

2

ǫ
cΓA

tree
n

n
∑

i=1

xiαα̇
[

− (i− 1 i)
]−ǫ

− A1-loop
n

n
∑

i=1

xiαα̇ , (2.6)

valid through O(ǫ0), where (i j) := 2pi · pj , ǫ is an infrared regulator, and

cΓ =
Γ(1 + ǫ)Γ2(1− ǫ)

(4π)2−ǫΓ(1− 2ǫ)
. (2.7)

3 Summary of soft gluon theorems

In preparation for the new results presented in sections 4 and 5, here we recall some known

results on soft limits of superamplitudes.

3.1 Tree level

Consider the holomorphic soft limit of a positive-helicity gluon n+ in an n-particle ampli-

tude,

|n〉 → δ|n〉 , |n] → |n] , pn → δpn , (3.1)
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where1 pαα̇n = |i〉α[i|α̇. LetAn denote an n-particle colour-ordered superamplitude in planar

N = 4 SYM. Then expanding in δ one has, at tree level [12],

Atree
n →

(

1

δ2
S(0) +

1

δ
S(1)

)

Atree
n−1 , (3.2)

where S(0) and S(1) are given by

S(0) =
〈n− 1 1〉

〈n− 1 n〉〈n 1〉
, (3.3)

S(1) =
|n]

〈n− 1 n〉
·

∂

∂|n− 1]
+

|n]

〈n 1〉
·

∂

∂|1]
. (3.4)

Note that these operators are antisymmetric about particle n. This is a consequence of our

freedom to relabel particles in the opposite direction without changing the physics.2

To perform practical calculations it is convenient to work with stripped amplitudes

An, where

An = An δ
(4)(Pn) , (3.5)

with Pn :=
∑n

i=1 pi. Note that a stripped amplitude is ambiguous without a momentum

conservation prescription. One means of resolving this is by eliminating two antiholomor-

phic spinors |a] and |b] [11]. We may define such an elimination for any function f of

external kinematics as

f (ab),n =

∫

d|a]d|b] |〈a b〉| δ(4)(Pn) f , (3.6)

so that an unambiguous stripped amplitude may be written as A
(ab),n
n . Clearly it is useful to

have an explicit prescription for performing the integral in (3.6). We impose the equalities,

|a] =
1

〈a b〉

n
∑

i 6=a

〈b i〉|i], |b] =
1

〈b a〉

n
∑

i 6=b

〈a i〉|i] . (3.7)

These relations are especially important when considering the soft behaviour at one loop,

which turns out to depend on the choice of |a] and |b].3

Taking the integrals through the derivatives in (3.2) proves the result for stripped

amplitudes,

Atree(ab),n
n →

(

1

δ2
S(0) +

1

δ
S(1)

)

A
tree(ab),n−1
n−1 , (3.8)

as found in [11] in the case of gravity.

In [22] Bern, Nohle and Davies argued for a statement equivalent to (3.2), namely

Atree
n → δ(4)(Pn)

(

1

δ2
S(0) +

1

δ
S(1)

)

Atree
n−1 , (3.9)

1See appendix A for our spinor helicity conventions.
2Soft theorems can also be formulated without restricting leg n to be a gluon. Doing this one finds that for

scalar particles there is no soft theorem, while for gluinos there is only a leading-order (1/δ) statement [66].
3In other words, it depends on how one implements momentum conservation, in a way similar to stripped

amplitudes.
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where the momentum conservation delta function sits in front of the soft operator. The dis-

tinguishing property of this expression is that it features n-point momentum conservation

on both sides. Many explicit examples have been calculated in the literature demonstrat-

ing the equivalence of (3.2) and (3.9) and the issue was discussed formally in [34]. One

may verify this equivalence by Taylor expanding δ(4)(Pn) and applying the chain rule to

S(1)δ(4)(Pn−1).

We may easily write down the stripped amplitude version of (3.9); that is

Atree(ab),n
n →

[(

1

δ2
S(0) +

1

δ
S(1)

)

Atree
n−1

](ab),n

. (3.10)

This formulation has an advantage over (3.8) because it allows one to adopt the following

two step strategy to verify soft theorems:

1. Choose arbitrary forms for An and An−1 and determine

An −
1

δ2
S(0)An−1 −

1

δ
S(1)An−1 . (3.11)

2. Apply n-point momentum conservation and expand in δ, then one finds zero up to

O(δ0).

We emphasise that this approach leads to so-called feed-down terms from Taylor-expanding

the term
[

−
1

δ2
S(0)Atree

n−1

](ab),n

, (3.12)

in (3.11) evaluated using n-point momentum conservation (which contains δ-dependence).

In this paper we shall consider soft theorems only in the language of (3.9) and (3.10), which

is better suited to a loop-level generalisation.

3.2 One loop

At one-loop level, the leading soft behaviour is well-known [18, 19, 67]. Subleading soft

theorems for the infrared-divergent part of generic one-loop amplitudes were found in [22].

Based on this, one may conjecture the one-loop extension to the subleading soft theorem,

A1-loop
n →

1

δ2

(

S(0)A1-loop
n−1 + S(0)1-loopAtree

n−1

)

+
1

δ

(

S(1)A1-loop
n−1 + S(1)1-loopAtree

n−1

)

, (3.13)

where the leading soft factor is [18, 19]

S(0)1-loop = S(0)F (0) , F (0) =

(

cΓ
ǫ2

πǫ

sin(πǫ)

)(

−
1

δ2
(n− 1 1)

(n− 1 n)(n 1)

)ǫ

, (3.14)

and the infrared-divergent part of the subleading soft operator is [22]

S(1)1-loop
∣

∣

∣

div.
=

cΓ
ǫ2

[

1 + ǫ log

(

−
1

δ2
(n− 1 1)

(n− 1 n)(n 1)

)]

S(1)tree

+
cΓ
ǫ

[

[n− 1 n]

[n−1 1]〈1 n〉
+

[2 n]

[2 1]〈1 n〉
−

[1 n]

[1 n−1]〈n−1 n〉
−

[n− 2 n]

[n−2 n−1]〈n−1 n〉

]

.

(3.15)
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δpn

p1(δ)pn−1(δ)

δpn

p1(δ)pn−1(δ)

δpn

p1(δ)pn−1(δ)

δpn

p1(δ)pn−1(δ)

Figure 1. The four diagrams contributing to the infrared-divergent terms in the soft theorem at

one loop.

More generally we conjecture that the subleading soft operator takes the form,

S(1)1-loop = F (1)S(1) + cΓZ . (3.16)

Here F (1) and Z are functions of external kinematics. We shall refer to Z as the subleading

soft anomaly. Note that Z is only defined up to a momentum conservation prescription —

it is frame dependent. Nevertheless it remains a useful and practical quantity. Indeed we

may immediately transform Z between frames using of the elimination (3.7). In section 4

we will fix F (1) and derive a differential constraint on Z. Section 5 then provides explicit

computations of Z for amplitudes in the MHV and NMHV sectors. All of our results will

be valid through finite order in ǫ.

From a Wilson loop perspective, one-loop amplitudes decompose into a sum of dia-

grams with one internal gluon. Evaluating each diagram requires a ultraviolet regulator ǫ

which corresponds exactly to the infrared regulator of the loop amplitude. Only diagrams

in which a gluon attaches to a δ-dependent external momentum will contribute to the

one-loop soft anomaly.

It is useful to distinguish the diagrams in which the internal gluon connects adja-

cent edges of the polygon. These have a ultraviolet cusp divergence, and in fact capture

all infrared-divergent terms in the amplitude [61]. This restriction limits the number of

diagrams required to analyse the infrared-divergent soft anomaly. In fact, choosing a sym-

metric momentum conservation prescription eliminating (|n − 1], |1]) we see that the four

diagrams in figure 1 suffice.
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δpn

p1(δ)pn−1(δ)

δpn

p1(δ)pn−1(δ)

Figure 2. Two of the 3n−10 diagrams contributing to the finite terms in the soft theorem at one

loop.

The remaining diagrams generate the finite parts of box functions [55–57]. Examples

are displayed in figure 2. It is important to note a conceptual subtlety: although the

terms from these diagrams are independent of ǫ they still contribute to the subleading

soft anomaly. The large number of contributing diagrams makes finite order analysis

significantly harder; nevertheless in section 5 we shall see surprising cancellations leading

to compact formulae.

4 Dual superconformal constraints on soft theorems

4.1 Summary of results

In this section we derive dual superconformal constraint equations for leading and sublead-

ing soft operators at tree level and one loop. We collect the results here for simplicity; the

notation used is defined subsequently where it is new.

At tree level and leading order in the soft parameter δ, we find that

(

Kαα̇

)

O(δ0)
S(0) =

( n−1
∑

j=3

|j]〈j|

)

S(0) , (4.1)

while at subleading order in δ,

−
|n]〈1|

〈n 1〉
Atree

n−1 + S(0) (Kαα̇)O(δ1)A
tree
n−1 +

[

(Kαα̇)O(δ0) , S
(1)tree

]

Atree
n−1

+Atree
n−1S

(1)tree





∑

i 6=3,n

i−1
∑

j=3

′

|j]〈j|



 = 2|n]〈n|S(0)Atree
n−1 +





n−1
∑

j=3

|j]〈j|



S(1)treeAtree
n−1 .

(4.2)

At one loop and leading order in δ,

(Kαα̇)O(δ0) S
(0)1-loop =

2

ǫ
cΓ





n−1
∑

j=3

|j]〈j|





[

(

−δ(n− 1 n)
)−ǫ

+
(

−δ(n 1)
)−ǫ

−
(

−(n− 1 1)
)−ǫ

]

,

(4.3)
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while at subleading order in δ,

S(0)Atree
n−1 (Kαα̇)O(δ1) F

(0) +Atree
n−1 (Kαα̇)O(δ0) Z = (anomaly)O(δ1) S

(0)Atree
n−1

− S(1)tree
[

(anomaly)n−1

]

Atree
n−1 +

[

(covariance)O(δ0) − (covariance)n−1

]

ZAtree
n−1 .

(4.4)

We verify that known expressions satisfy our formulae and conversely argue that the con-

straints determine ansätze for the operators. Finally, we propose the form of the log δ part

of the unknown infrared-finite soft anomaly,

Z0|log δ =

(

(n 1)

(n− 1 1)
+

(n− 2 n)

(n− 2 n− 1)
−

(n− 2 1)(n− 1 n)

(n− 2 n− 1)(n− 1 1)

)

S(0) log(−(n−1 n))+(i ↔ n−i) .

(4.5)

4.2 Soft theorems from conformal symmetry

In [32], conformal symmetry was used in order to determine the tree-level soft theorem (3.9).

As a warm-up to our dual conformal calculations we shall briefly review this method. From

now on we employ arbitrary forms of the stripped amplitudes, with the proviso that an

n-point momentum conservation prescription should be applied afterwards.

First recall that the conformal generator takes the form,4

kαα̇ =
n
∑

i=1

∂2

∂|i〉∂[i|
, (4.6)

and upon expanding in the soft parameter δ,

kαα̇ =
n−1
∑

i=1

∂2

∂|i〉∂[i|
+

1

δ

∂2

∂|n〉∂[n|
. (4.7)

Now note that k annihilates arbitrary forms of tree-level stripped superamplitudes, in

particular order by order in δ. Applying k to (3.9) yields the constraint equations,

∂2

∂|n〉∂[n|

(

S(0)Atree
n−1

)

= 0 , (4.8)

n−1
∑

i=1

∂2

∂|i〉∂[i|

(

S(0)Atree
n−1

)

+
∂2

∂|n〉∂[n|

(

S(1)Atree
n−1

)

= 0 . (4.9)

These equations allow us to determine the forms of the soft factors. In fact we shall require

extra input from considerations of little group scaling, mass dimension and colour ordering.

Firstly, the soft operators must have mass dimension −1. Furthermore, since we are taking

a positive helicity particle soft, the soft operators must transform with weight −2 under

the little group scaling,

|n〉 → t|n〉 , |n] → t−1|n] , (4.10)

and remain invariant under little group scaling for all other particles. Finally, since the

amplitudes are colour ordered, the soft operators may only depend on particles n− 1 and

4Here, and elsewhere in this section, we leave some spinor indices implicit.
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xi

xj
pi

pi+1

pj−1

Figure 3. Solving for xj(p) clockwise around the polygon from xi.

1 adjacent to n, since only these share a colour line with n. At one loop we will find that

this simplifying assumption no longer holds since internal gluons carry colour dependence

between arbitrary particles. Putting all this information together with the conformal Ward

identities (4.8) and (4.9) suffices to determine S(0) and S(1) as written in (3.3) and (3.4).

It is difficult to generalise the method of [32] to loop level, because the conformal

anomaly takes a complicated form. The current state of the art is restricted to MHV am-

plitudes and is rather intricate [68]. By contrast, the dual conformal anomaly (2.6) is very

simple, which will allow us to make progress as we will see in the remainder of this section.

4.3 Tree-level preliminaries

Our goal is to constrain soft factors using dual superconformal symmetry. We first work

at tree level, and then extend the technique to one-loop amplitudes.

To this end, we begin by expanding the dual conformal boost generator (2.4) in powers

of the soft parameter δ. This involves solving for dual momenta xi in terms of momenta

pj . This procedure is ambiguous because of momentum conservation. In general we may

freely fix any xi allowing us to perform the change of variables x → p. More precisely, we

determine xj as a sum of the pk between xi and xj as indicated in figure 3. The clockwise

orientation is an arbitrary choice corresponding to taking j > i cyclically.

In section 3 we saw that momentum conservation is a subtle issue for subleading soft

theorems. Therefore we must be careful regarding the ambiguity in base point xi and orien-

tation around the polygon when solving for x(p). In the following we use a prescription that

eliminates a pair of antiholomorphic spinors (|a], |b]) according to the substitution (3.7).

The simplest choice5 is to fix x3 = 0 and solve clockwise around the polygon, whence

xkαα̇ = −
k−1
∑

j=3

|j]〈j| , (4.11)

for k 6= 3. The solution (4.11) is compatible with eliminating |1] and |2]. The only δ-

dependent region momenta are then x1 and x2 as shown in figure 4.

5In order to preserve momentum conservation and on-shell external momenta, a minimum of three

momenta must acquire δ dependence, and hence a minimum of two dual momenta must be δ-dependent.

Our choice (4.11) achieves this.
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p2(δ)

x1(δ)
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x3 = 0

Figure 4. Setting x3 = 0 is compatible with eliminating |1] and |2].

Similarly, for the fermionic variables we set θ3 = 0 and write

〈θAk | = −
k−1
∑

j=3

〈j|ηAj , (4.12)

for k 6= 3. We should view (4.11) and (4.12) as a frame choice well-adapted to the com-

putations which follow. Of course, any result we derive in this frame may trivially be

transformed to another using the substitution (3.7).

The soft expansion of the dual conformal boost generator is (with soft leg n)

Kαα̇ = −
∑

i 6=3

i−1
∑

j=3

′

|j]〈i|

(

|j〉 ·
∂

∂|i〉

)

−
∑

i 6=2

i
∑

j=3

′

|i]〈j|

(

|j] ·
∂

∂|i]

)

−
∑

i 6=2

i
∑

j=3

′

|i]〈j|ηAj
∂

∂ηAi

− δ|n]〈2|

(

|n〉·
∂

∂|2〉

)

−δ|n]〈1|

(

|n〉·
∂

∂|1〉

)

−δ|n]〈n|

(

|n]·
∂

∂|n]

)

−δ|1]〈n|

(

|n]·
∂

∂|1]

)

− δ|n]〈n|ηAn
∂

∂ηAn
− δ|1]〈n|ηAn

∂

∂ηA1
,

where
∑

j

′

indicates a sum over j 6= n. Similarly the statement of dual conformal covari-

ance (2.5) yields

Kαα̇A
tree
n =

(

∑

i 6=3

i−1
∑

j=3

′

|j]〈j|+ 2δ|n]〈n|

)

Atree
n . (4.13)

4.4 Leading soft theorems at tree level

By keeping the leading 1/δ divergence in (4.3) we find the following constraint equation

for the leading soft factor, in analogy with (4.8),

(

Kαα̇A
tree
n

)

O(δ−2)
= (Kαα̇)O(δ0)

(

S(0)Atree
n−1

)

=

(

∑

i 6=3

i−1
∑

j=3

′

|j]〈j|

)

S(0)Atree
n−1 . (4.14)

The covariance statement for (n−1)-point amplitudes gives

(Kαα̇)O(δ0)A
tree
n−1 =

(

∑

i 6=3,n

i−1
∑

j=3

′

|j]〈j|

)

Atree
n−1 . (4.15)
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Hence (4.14) simplifies to

(Kαα̇)O(δ0) S
(0) =

( n−1
∑

j=3

|j]〈j|

)

S(0) . (4.16)

This leading order behaviour can be checked explicitly using the known form of S(0) and

the formulae in appendix B. Conversely we may use (4.16) to determine the form of S(0),

at least up to a constant factor. Since our amplitudes are colour ordered, we may assume

S(0) = f(〈a b〉, [a b]) , (4.17)

where a, b can take values in {n − 1, n, 1}. To obtain the dual conformal transforma-

tion (4.16) f must be proportional to

1

〈n 1〉
or

1

[n− 1 n]
. (4.18)

The constant of proportionality must have mass dimension 0. Moreover f must transform

under little group scaling with weight +2 for particle n and 0 for all other particles. These

constraints rule out the second option in (4.18), and lead us immediately to

f = k
〈n− 1 1〉

〈n− 1 n〉〈n 1〉
(4.19)

Assuming universality, we may fix k = 1 by examining the simplest example, namely a

four-point MHV amplitude.

4.5 Subleading soft theorems at tree level

At subleading order we employ the approach of [22], allowing the freedom to use arbitrary

forms of the stripped amplitudes in our derivations. The dual conformal analogue of (4.9) is

(

Kαα̇A
tree
n

)

O(δ−1)
= (Kαα̇)O(δ1)

(

S(0)Atree
n−1

)

+ (Kαα̇)O(δ0)

(

S(1)Atree
n−1

)

= 2|n]〈n|S(0)Atree
n−1 +

(

∑

i 6=3

i−1
∑

j=3

′

|j]〈j|

)

S(1)Atree
n−1 .

(4.20)

It is convenient to rewrite the first line of (4.20) to obtain

(

Kαα̇A
tree
n

)

O(δ−1)
= −

|n]〈1|

〈n 1〉
Atree

n−1 + S(0) (Kαα̇)O(δ1)A
tree
n−1

+
[

(Kαα̇)O(δ0) , S
(1)
]

Atree
n−1+S(1)





(

∑

i 6=3,n

i−1
∑

j=3

′

|j]〈j|

)

Atree
n−1



 .

(4.21)

Using the covariance statement for (n−1)-point amplitudes we get

−
|n]〈1|

〈n 1〉
Atree

n−1 + S(0) (Kαα̇)O(δ1) A
tree
n−1 +

[

(Kαα̇)O(δ0) , S
(1)

]

Atree
n−1 +Atree

n−1S
(1)

(

∑

i6=3,n

i−1
∑

j=3

′

|j]〈j|

)
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= 2|n]〈n|S(0)Atree
n−1 +

( n−1
∑

j=3

|j]〈j|

)

S(1)Atree
n−1 . (4.22)

We begin by verifying this using the known form of the subleading soft operator S(1). First

note that
|n]〈1|

〈n 1〉
+ S(1)

(

∑

i 6=3,n

i−1
∑

j=3

′

|j]〈j|

)

= 2|n]〈n|S(0) , (4.23)

using a Schouten identity, whence (4.22) becomes

− 2
|n]〈1|

〈n 1〉
Atree

n−1 +S(0) (Kαα̇)O(δ1)A
tree
n−1 +

[

(Kαα̇)O(δ0) , S
(1)

]

Atree
n−1 =

( n−1
∑

j=3

|j]〈j|

)

S(1)Atree
n−1 .

(4.24)

Using formulae from appendix B and Schouten identities we evaluate

[

(Kαα̇)O(δ0) , S
(1)

]

=

( n−1
∑

j=3

|j]〈j|

)

S(1) + S(0)|1]〈n|

(

|n] ·
∂

∂|1]

)

+ S(0)|n]〈1|

(

|n〉 ·
∂

∂|1〉

)

−
|n]〈1|

〈n 1〉

(

|1〉 ·
∂

∂|1〉
− |1] ·

∂

∂|1]
−

ηA1
〈n 1〉

∂

∂ηA1

)

, (4.25)

and observe that

S(0) (Kαα̇)O(δ1) = −S(0)|1]〈n|

(

|n] ·
∂

∂|1]

)

− S(0)|n]〈1|

(

|n〉 ·
∂

∂|1〉

)

. (4.26)

Hence (4.24) simplifies to

−
|n]〈1|

〈n 1〉

(

|1〉 ·
∂

∂|1〉
− |1] ·

∂

∂|1]
−

ηA1
〈n 1〉

∂

∂ηA1

)

Atree
n−1 = 2

|n]〈1|

〈n 1〉
Atree

n . (4.27)

On the the left-hand side of (4.27) we immediately recognise the appearance of the helicity

operator (A.4) for particle 1. Recalling that superamplitudes have unit helicity completes

the verification.

Conversely, we can use (4.22) to derive the form of S(1) up to two constants. From

Taylor series considerations it is natural to expect S(1) to be a derivative operator. We

first split the constraint according to whether derivatives act, yielding

S(0) (Kαα̇)O(δ1) +
[

(

Kαα̇

)

O(δ0)
, S(1)

]

=

( n−1
∑

j=3

|j]〈j|

)

S(1) , (4.28)

−
|n]〈1|

〈n 1〉
+ S(1)

(

∑

i 6=3,n

i−1
∑

j=3

′

|j]〈j|

)

= 2|n]〈n|S(0) . (4.29)

Note that we might expect some mixing between the terms in each equation by virtue of the

identity operator. The canonical representation of the identity under these circumstances

is as a helicity operator. Hence we look for a form of S(1) which satisfies (4.28) up to

additive helicity operators.
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The key observation is found by studying the derivative structure of S(0) (Kαα̇)O(δ1)

in (4.26). After Schoutening, the second term on the right hand side yields a derivative

structure which appears in (Kαα̇)O(δ0), namely

|n− 1〉 ·
∂

∂|1〉
, (4.30)

and one which appears in the helicity operator for particle 1, namely

|1〉 ·
∂

∂|1〉
. (4.31)

Now (4.28) and Occam’s razor suggest that the second term on the right hand side of (4.26)

does not represent a contribution to S(1). On the contrary, the first term does not admit

such a Schoutening since the derivative part involves antiholomorphic spinors. We thus

propose that

S(1) ∝ |n] ·
∂

∂|1]
. (4.32)

As in the leading case, the requirements of mass dimension, little group scaling and color

ordering constrain the constant of proportionality, leading to

S(1) =
k|n]

〈n 1〉
·

∂

∂|1]
. (4.33)

Of course, freedom to relabel the polygon in the opposite direction dictates the appearance

of a similar term involving particle (n− 1). We finally arrive at

S(1) =
k|n]

〈n− 1 n〉
·

∂

∂|n− 1]
+

l|n]

〈n 1〉
·

∂

∂|1]
. (4.34)

As above, k and l may be set to 1 by assuming universality and considering two non-trivial

examples.

Similarly to [32] we can fix the leading and subleading soft operators at tree level, with

mild assumptions. More importantly, we may now use the simple form of the one-loop

anomaly of dual conformal symmetry to study soft factorisation at one-loop level, as we

will see below. Note in this context that the conventional conformal anomaly is much more

complicated and its general form is not known.

4.6 One-loop preliminaries

In section 3 we conjectured a form for the one-loop soft theorem

A1-loop
n →

1

δ2

(

S(0)A1-loop
n−1 + S(0)1-loopAtree

n−1

)

+
1

δ

(

S(1)treeA1-loop
n−1 + S(1)1-loopAtree

n−1

)

, (4.35)

with previous results for S(0)1-loop and the infrared-divergent part of S(1)1-loop quoted

in (3.14) and (3.15). We now derive dual conformal constraint equations on both S(0)1-loop

and S(1)1-loop through O(ǫ0). These equations provide non-trivial checks on the known

expressions. Furthermore, the one-loop subleading soft constraint suggests an ansatz for

the hitherto unknown infrared-finite part of S(1)1-loop.

– 14 –



J
H
E
P
0
3
(
2
0
1
6
)
0
8
4

Paraphrasing (2.6), the dual conformal operator acts on one-loop amplitudes to give

Kαα̇A
1-loop
n = (anomaly)Atree

n + (covariance)A1-loop
n . (4.36)

For later convenience we reproduce the soft expansion of the covariance statement

from (4.13),

(covariance) =

(

∑

i 6=3

i−1
∑

j=3

′

|j]〈j|+ 2δ|n]〈n|

)

. (4.37)

In the frame choice (4.11) the soft expansion of the anomaly (2.6) is

(anomaly) = −
2

ǫ
cΓ

[

∑

i 6=1,3,n

i−1
∑

j=3

′

|j]〈j|
(

−(i− 1 i)
)−ǫ

+
n−1
∑

j=3

|j]〈j|
(

−δ(n− 1 n)
)−ǫ

+

n−1
∑

j=3

|j]〈j|
(

−δ(n 1)
)−ǫ

+δ|n]〈n|
(

−δ(n 1)
)−ǫ

+δ|n]〈n|
(

−(1 2)
)−ǫ

]

.

(4.38)

4.7 Leading soft theorems at one loop

The one-loop version of (4.14) is
(

Kαα̇A
1-loop
n

)

O(δ−2)
= (Kαα̇)O(δ0)

(

S(0)F (0)Atree
n−1 + S(0)A1-loop

n−1

)

= (anomaly)O(δ0) S
(0)Atree

n−1 + (covariance)O(δ0) S
(0)F (0)Atree

n−1

+ (covariance)O(δ0) S
(0)A1-loop

n−1 ,

where F (0) is defined in (3.14). This can be simplified significantly by recycling our tree-

level knowledge; in fact, we can remove all terms involving the one-loop amplitude. Recall

from (4.14) that

(Kαα̇)O(δ0)

(

S(0)Atree
n−1

)

= (covariance)O(δ0) S
(0)Atree

n−1 , (4.39)

and hence we find that

(Kαα̇)O(δ0)

(

S(0)A1-loop
n−1

)

= (covariance)O(δ0) S
(0)A1-loop

n−1 +(anomaly)n−1 S
(0)Atree

n−1 . (4.40)

Using these results (4.7) simplifies to

(Kαα̇)O(δ0) F
(0) + (anomaly)n−1 = (anomaly)O(δ0) , (4.41)

or more explicitly,

(Kαα̇)O(δ0) F
(0) =

2

ǫ
cΓ

( n−1
∑

j=3

|j]〈j|

)[

(

−δ(n− 1 n)
)−ǫ

+
(

−δ(n 1)
)−ǫ

−
(

−(n− 1 1)
)−ǫ

]

.

(4.42)

Firstly we wish to verify that (4.42) holds using the known expression for F (0) in (3.14).

It is easy to see that this is true at O(ǫ−1). Using results from appendix B we find that

(Kαα̇)O(δ0)

(

(n− 1 1)

(n− 1 n)(n 1)

)

= 2

( n−1
∑

j=3

|j]〈j|

)(

(n− 1 1)

(n− 1 n)(n 1)

)

, (4.43)
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whence at O(ǫ0) in (4.42) both sides evaluate to

2cΓ

( n−1
∑

j=3

|j]〈j|

)

log

(

−
1

δ2
(n− 1 1)

(n− 1 n)(n 1)

)

, (4.44)

confirming the consistency of (4.42) at O(ǫ0) also.

Conversely we can use (4.42) as a constraint equation to determine F (0) up to and

including ǫ0 terms, provided that we assume that F (0) only depends on particles n− 1, n

and 1 and is a dimensionless, helicity-blind function. The derivation proceeds analogously

to that in section 4.4.

Näıvely, the restriction to particles neighbouring n seems unreasonable from the Wilson

loop perspective. Indeed, we might expect contributions from diagrams where an internal

gluon connects an arbitrary edge to pn. However, the scalar boxes corresponding to the

non-cusp diagrams do not contribute in the leading soft limit. This is perhaps most obvious

from the perspective of MHV diagrams [67].

4.8 Subleading soft behaviour at one loop

The one-loop version of (4.20) is

(

Kαα̇A
1-loop
n

)

O(δ−1)
= (Kαα̇)O(δ1)

(

S(0)F (0)Atree
n−1 + S(0)A1-loop

n−1

)

+ (Kαα̇)O(δ0)

(

S(1)A1-loop
n−1 + F (1)S(1)Atree

n−1 + ZAtree
n−1

)

= (anomaly)O(δ1) S
(0)Atree

n−1 + (covariance)O(δ1) S
(0)F (0)Atree

n−1

+ (covariance)O(δ1) S
(0)A1-loop

n−1 + (anomaly)O(δ0) S
(1)Atree

n−1

+ (covariance)O(δ0) S
(1)A1-loop

n−1 +(covariance)O(δ0) F
(1)S(1)Atree

n−1

+ (covariance)O(δ0) ZAtree
n−1 , (4.45)

where F (1) and Z are defined in (3.16). Just as in section 4.7 we can remove all terms

involving A1-loop
n−1 by recycling tree-level knowledge. Recall from (4.20) that

(Kαα̇)O(δ1)

(

S(0)Atree
n−1

)

+ (Kαα̇)O(δ0)

(

S(1)Atree
n−1

)

= (covariance)O(δ1) S
(0)Atree

n−1 + (covariance)O(δ0) S(1)Atree
n−1 ,

(4.46)

and hence that

(Kαα̇)O(δ1)

(

S(0)A1-loop
n−1

)

+ (Kαα̇)O(δ0)

(

S(1)A1-loop
n−1

)

(4.47)

= (covariance)O(δ1) S
(0)A1-loop

n−1 +(covariance)O(δ0) S(1)A1-loop
n−1 +S(1)

[

(anomaly)n−1A
tree
n−1

]

.

Applying these results to (4.45) we get

S(0)Atree
n−1 (Kαα̇)O(δ1) F

(0) + (F (0) − F (1)) (Kαα̇)O(δ1)

(

S(0)Atree
n−1

)

+ S(1)Atree
n−1 (Kαα̇)O(δ0) F

(1) +Atree
n−1 (Kαα̇)O(δ0) Z
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= (F (0) − F (1)) (covariance)O(δ1) S
(0)Atree

n−1 + (anomaly)O(δ1) S
(0)Atree

n−1

+ (anomaly)O(δ0) S(1)Atree
n−1 + (anomaly)n−1 S

(1)Atree
n−1 − S(1)

[

(anomaly)n−1

]

Atree
n−1

+
[

(covariance)O(δ0) − (covariance)n−1

]

ZAtree
n−1 . (4.48)

To proceed, we separate this result into two equations, depending on whether derivatives

act on Atree
n−1; of course there may be some cancellations between these equations via the

appearance of helicity operators. With this separation we have derivative terms,

(F (0) − F (1))S(0) (Kαα̇)O(δ1)A
tree
n−1 + S(1)Atree

n−1 (Kαα̇)O(δ0) F
(1)

= (anomaly)O(δ0) S(1)Atree
n−1 − (anomaly)n−1 S

(1)Atree
n−1 ,

(4.49)

and non-derivative terms,

S(0)Atree
n−1 (Kαα̇)O(δ1) F

(0) + (F (0) − F (1))Atree
n−1 (Kαα̇)O(δ1) S

(0) +Atree
n−1 (Kαα̇)O(δ0) Z

= (F (0) − F (1)) (covariance)O(δ1) S
(0)Atree

n−1 + (anomaly)O(δ1) S
(0)Atree

n−1

− S(1)
[

(anomaly)n−1

]

Atree
n−1 +

[

(covariance)O(δ0) − (covariance)n−1

]

ZAtree
n−1 . (4.50)

We focus first on equation (4.49). Note that the derivatives in (Kαα̇)O(δ1) and S(1) do not

combine to yield a helicity operator. Therefore we may assume that this equation is truly

decoupled from (4.50). Using (4.41) we see that (4.49) is satisfied if we choose F (1) = F (0).

This is consistent with the known infrared divergent behaviour of F (1) and extends it to

finite order in ǫ.

With this choice, (4.50) simplifies to give

S(0)Atree
n−1 (Kαα̇)O(δ1) F

(0) +Atree
n−1 (Kαα̇)O(δ0) Z = (anomaly)O(δ1) S

(0)Atree
n−1

− S(1)
[

(anomaly)n−1

]

Atree
n−1 +

[

(covariance)O(δ0) − (covariance)n−1

]

ZAtree
n−1 .

(4.51)

Thus we have arrived at the dual conformal constraint equation on the one-loop subleading

soft anomaly promised in section 4.1.

Constraint on the infrared-divergent anomaly. We now expand in ǫ to find con-

straint equations for Z at each order. We write

Z =
1

ǫ2
Z−2 +

1

ǫ
Z−1 + Z0 +O(ǫ) . (4.52)

At leading order in ǫ the anomaly constraint (4.51) becomes

(Kαα̇)O(δ0) Z−2 =
[

(covariance)O(δ0) − (covariance)n−1

]

Z−2 =

( n−1
∑

j=3

|j]〈j|

)

Z−2 . (4.53)

Clearly this is consistent with the choice Z−2 = 0 implicit in (3.15). For the converse

argument, first note that (4.53) has exactly the same form as (4.16). We therefore employ

logic similar to the leading tree-level case. Indeed, since we are dealing with infrared-

divergent terms,

Z−2 = f(〈a b〉, [a b]) , (4.54)
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where a, b takes values in {n−2, n−1, n, 1, 2} by the Wilson loop observations of section 3.

Following section 4.4, we see that if Z−2 6= 0 then we must have Z−2 = S(0). But reinserting

factors of δ shows that S(0) can only appear as a leading soft divergence. Hence the

constraint equation fixes

Z−2 = 0 . (4.55)

At subleading order in ǫ the anomaly constraint (4.51) becomes

[

(Kαα̇)O(δ0) −
n−1
∑

j=3

|j]〈j|

]

Z−1

= −|1]〈1|
[n− 1 n]

[n− 1 1]〈n 1〉
+

|n]〈n− 1|

〈n− 1 n〉
−

|n]〈1|

〈n 1〉
+ |n− 1]〈n− 1|

[n 1]

〈n− 1 n〉[n− 1 1]
.

(4.56)

Note that this is symmetric under relabelling the polygon anticlockwise, as expected.

From (3.15) we have [22]

Z−1 =
[n− 1 n]

[n− 1 1]〈1 n〉
+

[2 n]

[2 1]〈1 n〉
−

[1 n]

[1 n− 1]〈n− 1 n〉
−

[n− 2 n]

[n− 2 n− 1]〈n− 1 n〉
. (4.57)

The reader may verify that this satisfies the constraint equation, using formulae from

appendix B. Conversely we write an ansatz,

Z−1 = g(〈a b〉, [a b]) , (4.58)

where a, b can take values in {n−2, n−1, n, 1, 2} by the same logic as for Z−2. We assume

for simplicity that each term on the right-hand side of (4.56) emerges from a single term in

Z−1. Then (B.7)–(B.10) immediately suggest the result (4.57), which is clearly consistent

with spinor weight and dimension constraints.

Constraint on the infrared-finite anomaly. Finally we consider the O(ǫ0) terms.

The anomaly constraint (4.51) becomes

[

(Kαα̇)O(δ0) −
n−1
∑

j=3

|j]〈j|

]

Z0

= 2

[

Z−1

n−1
∑

j=3

|j]〈j| − |n− 1]〈n− 1|
[n− 2 n]

〈n− 1 n〉[n− 1 n− 2]
+ |1]〈1|

[2 n]

[2 1]〈1 n〉

]

+

[

|n]〈1|

〈n 1〉
+ 2

|n]〈n− 1|

〈n− 1 n〉
− |1]〈n|

〈n− 1 1〉[n n− 1]

〈n− 1 n〉〈n 1〉[1 n− 1]

]

log

(

−
(n− 1 1)

(n− 1 n)(n 1)

)

− 2
|n]〈n− 1|

〈n− 1 n〉
log(−(n− 1 1)) + 2|n]〈n|

〈n− 1 1〉

〈n− 1 n〉〈n 1〉
log(−(n 1)) . (4.59)

We now employ this formula to find plausible coefficients for the log δ terms appearing in

Z0. The constraint equation (4.59) immediately suggests that these take the form,6

A log(−(n− 1 n)) +B log(−(n 1)) . (4.60)

6Recall that in the soft limit pn → δpn.
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Relabelling symmetry ensures that it suffices to predict coefficient A. We make the ansatz,

A = S(0)h(〈a b〉, [a b]) , (4.61)

where a, b take values in {n − 2, n − 1, n, 1, 2}. Unlike the Z−2 and Z−1 cases considered

above, there is no rigorous argument for this assumption, since the log δ terms do not only

emerge from cusp diagrams. Nevertheless it seems plausible to expect that such divergent

terms only involve particles close to n. In section 5 we shall see that this ansatz holds for

MHV amplitudes, but not in the NMHV sector.

A general one-loop amplitude in N = 4 SYM theory involves functions of transcenden-

tality 2. Therefore we expect the soft anomaly Z0 to contain functions of transcendentality

1 and 0. We may hence deduce from (4.59) a constraint on h by examining the coefficient

of log(−(n− 1 n)), namely

(Kαα̇)O(δ0) h = −|n− 1]〈n− 1|
(n 1)

(n− 1 1)
− |n]〈n|+ |1]〈1|

(n− 1 n)

(n− 1 1)
. (4.62)

Equations (B.11) and (B.12) hence suggest that

Z0|log δ =

(

(n 1)

(n− 1 1)
+

(n− 2 n)

(n− 2 n− 1)
−

(n− 2 1)(n− 1 n)

(n− 2 n− 1)(n− 1 1)

)

S(0) log(−(n−1 n))+(i ↔ n−i) .

(4.63)

We now proceed to verify this prediction by explicitly computing the subleading soft

anomaly in the MHV and NMHV sectors. Beware that Z0 itself does not suffice to recon-

struct the subleading soft behaviour of an n-point amplitude; we must also remember feed-

down terms (see the discussion near (3.12)). We consider this nicety in detail in section 5.3.

5 Extracting the infrared-finite soft behaviour at one loop

5.1 Summary of results

In this section we determine the subleading soft contribution for n-point one-loop MHV

amplitudes and for six-point and seven-point one-loop NMHV amplitudes. We first present

the subleading soft behaviour of some low-point MHV cases, extracted via the unitarity

method. We then use momentum twistor technology to derive a surprisingly compact

expression for the subleading soft term at n-point modulo Atree
n , namely7

〈n− 1 1〉

〈n− 1 n〉

n−4
∑

j=4

log

(

y2n−1j

y21j

)

〈n− 2 n− 1 j − 1 j〉〈n− 2 n− 1 n 1〉

〈n− 2 n− 1 1 j − 1〉〈n− 2 n− 1 1 j〉

+
〈n− 1 1〉

〈n 1〉

n−3
∑

j=5

log

(

y22j
y21j

)

〈n− 1 n 1 2〉〈j − 1 j 1 2〉

〈n− 1 1 2 j〉〈n− 1 1 2 j − 1〉
+ boundary terms ,

(5.1)

The boundary terms have a universal form for all n ≥ 7. In particular, the log δ dependence

is simply
(

(n 1) + (n 2)

(1 2)
−

sn−1,1,2(n 1)

(n− 1 1)(1 2)

)

log(−(n 1)) + (i ↔ n− i) . (5.2)

7See appendix E for a crash review of momentum twistors. Round brackets such as (6) appearing below

represent the dual superconformal R-invariants, and are defined in (5.30) and (5.36).
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where sabc := (pa + pb + pc)
2 denotes a three-particle invariant. We finally investigate the

possibility of universality carrying over to NMHV amplitudes by identifying the subleading

log δ terms in low-point cases. Again intricate cancellations yield a remarkably simple

result, but of a slightly different form to the MHV sector. Explicitly we find terms at six

and seven points,

1

2

〈n− 1 1〉

〈n− 1 n〉
(6)

〈2 3 4 5〉〈4 5 6 1〉

〈1 2 4 5〉〈3 4 5 1〉
log(−(6 1)) + (i ↔ n− i) , (5.3)

1

2

〈n−1 1〉

〈n−1 n〉

[

(5)
〈2 3 4 6〉〈5 6 7 1〉

〈3 4 6 1〉〈1 2 5 6〉
+(3)

〈2 4 5 6〉〈5 6 7 1〉

〈4 5 6 1〉〈1 2 5 6〉

]

log(−(7 1))+(i↔n−i) , (5.4)

respectively. We conjecture that the log δ terms display universal behaviour for arbitrary

n within each NkMHV sector, but not between different sectors.

Throughout this section we employ the approach of [22], with a symmetric momentum

conservation prescription eliminating |n − 1] and |1]. In particular this implies that the

feed-down terms from Taylor-expanding S(0)A1-loop
n−1 in the soft parameter exactly cancel the

contribution from S(1)A1-loop
n−1 . Therefore the form of the lower-point amplitude becomes

irrelevant to the calculation of the subleading soft anomaly. We also neglect a factor of cΓ
for brevity — this may be reinserted easily afterwards.

5.2 MHV amplitudes via unitarity

All planar one-loop MHV amplitudes in N = 4 SYM theory may be written as [69]

A1-loop
n = Atree

n

∑

channels

F 2me , (5.5)

where F 2me is a (possibly degenerate) two-mass easy box function. Generically,

F 2me(K,L) = −
1

ǫ2
[

(−s)−ǫ + (−t)−ǫ − (−K2)−ǫ − (−L2)−ǫ
]

+ Li2

(

1−
K2

s

)

+ Li2

(

1−
K2

t

)

+Li2

(

1−
L2

s

)

+Li2

(

1−
L2

t

)

−Li2

(

1−
K2L2

st

)

+
1

2
log2

(s

t

)

,

(5.6)

while, for degenerate cases,

F 0m = −
1

ǫ2
[

(−s)−ǫ + (−t)−ǫ
]

+
1

2
log2

(s

t

)

+
π2

2
, (5.7)

F 1m(K) = −
1

ǫ2
[

(−s)−ǫ+(−t)−ǫ−(−K2)−ǫ
]

+Li2

(

1−
K2

s

)

+Li2

(

1−
K2

t

)

+
1

2
log2

(s

t

)

+
π2

6
, (5.8)

where K and L denote the momenta of massive corners and (s, t) are defined by

(vertical, horizontal) cuts respectively.

To calculate the subleading soft behaviour, we must in principle Taylor expand all

box functions. Many may be immediately discarded, along the lines outlined in section 3.

Specifically the only nonzero terms emerge from boxes corresponding to Wilson loop dia-

grams in which the internal gluon ends on particle lines n− 1, n or 1.
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Five-point amplitude. The simplest non-trivial subleading soft behaviour appears at

five points. In this case, the two-mass easy boxes degenerate to one-mass boxes. The

subleading soft five-point infrared-finite term divided by Atree
5 is

−
〈4 5〉[2 5]

〈3 4〉[2 3]
log

(

(4 5)

(1 5)(2 3)

)

−
〈1 5〉[3 5]

〈1 2〉[2 3]
log

(

(1 5)

(2 3)(4 5)

)

, (5.9)

For compactness we have implicitly recombined terms using four-point momentum conser-

vation where appropriate. We have checked this result numerically using the Mathematica

package documented in appendix C.

The simplifications required to reach (5.9) involve intricate cancellations between

roughly 20 terms from different boxes. This suggests that box functions are poorly adapted

to the calculation of subleading soft behaviour.

Six-point amplitude. At six points we discover new structure associated with the ap-

pearance of non-degenerate two-mass boxes. The subleading soft infrared-finite contribu-

tion modulo Atree
6 is

(3 4)(1 6)

(1 2)(1 5)

[

1 + log

(

(1 2)(1 5)

(1 6)(3 4)

)]

+
(2 3)(5 6)

(4 5)(1 5)

[

1 + log

(

(1 5)(4 5)

(2 3)(5 6)

)]

−
〈1 6〉[3 4](〈3 4〉[4 6] + 〈3 5〉[5 6])

(1 2)〈1 5〉[4 5]
log(−(1 2))−

〈5 6〉[2 3](〈1 3〉[1 6] + 〈2 3〉[2 6])

(4 5)〈1 5〉[1 2]
log(−(4 5))

+
((1 6) + (2 6))

(1 2)

[

log

(

−
(1 6)(3 4)

(1 5)

)

− 1

]

+
((4 6) + (5 6))

(4 5)

[

log

(

−
(2 3)(5 6)

(1 5)

)

− 1

]

+
[2 6]〈5 6〉

〈1 5〉[1 2]
log

(

−
(1 5)(2 3)

(3 4)

)

+
[4 6]〈1 6〉

〈1 5〉[4 5]
log

(

−
(1 5)(3 4)

(2 3)

)

. (5.10)

As in the five-point case, very non-trivial simplifications take place — the Taylor expansion

initially produces some 200 terms. Mathematica numerics exactly confirm our concise

formula.

It is instructive to perform a consistency check that the six-point result (5.10) re-

produces the five-point result (5.9) when we make particle 3 soft. Taking the limit and

relabelling appropriately we obtain
(

〈4 5〉[2 5]

〈1 4〉[1 2]
+
〈1 5〉[3 5]

〈1 4〉[3 4]

)

log(−(1 4))+
(1 5)+(2 5)

(1 2)
log(−(1 5))+

(3 5) + (4 5)

(3 4)
log(−(4 5)) .

(5.11)

Näıvely it looks impossible to equate (5.11) and (5.9), however we only require them to

match when a consistent momentum conservation prescription is applied to both. The

relatively simple form of (5.9) is a consequence of the special four-point kinematics, [1 2] =

〈3 4〉[2 3]/〈1 4〉 .

log δ terms. To complete our analysis we concentrate on terms involving a log δ. Recent

evidence [23] shows that these may be universal in QCD processes. Indeed these terms are

truly infrared divergent, so intuitively one might expect enhanced universality to ensure

such quantities cancel in any physical observable. At five points we have from (5.11)

(1 5) + (2 5)

(1 2)
log(−(1 5)) +

(3 5) + (4 5)

(3 4)
log(−(4 5)) , (5.12)
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s

t

i

j

Q

P

Figure 5. A generic two-mass easy box with massless corners i and j corresponding to the end

edges of the internal gluon in the Wilson loop picture.

while at six points (5.10) yields

(1 6)+(2 6)

(1 2)
log(−(1 6))+

(4 6) + (5 6)

(4 5)
log(−(5 6))−

(3 4)(1 6)

(1 2)(1 5)
log(−(1 6))−

(2 3)(5 6)

(1 5)(4 5)
log(−(5 6)) .

(5.13)

The chances of a simple universal result look slim based on this evidence. In (5.13) new

structures appear, in addition to a generalisation of (5.12). However, we shall see in

section 5.3 that the complexity of log δ terms does not grow with particle number in general.

From the perspective of box functions, this is reasonable: a new type of box function enters

at six points, after which no further new functions appear in the MHV sector.

5.3 MHV amplitudes via momentum twistors

We saw in section 3.2 that two classes of Wilson loop diagrams contribute to the subleading

soft behaviour. Cusp diagrams give rise to the infrared-divergent piece of any one-loop SYM

amplitude,

−
1

ǫ2

n
∑

i=1

(

−(i i+ 1)
)−ǫ

. (5.14)

Non-cusp diagrams with an internal gluon ending on at least one δ-dependent edge also

feature. In the MHV sector these correspond to the finite parts of the two-mass easy

boxes in figure 5. Note that i and j must be separated by at least one intervening particle

cyclically. For the symmetric momentum conservation prescription eliminating (|n−1], |1]),

we can restrict to diagrams where i or j is in {n− 1, n, 1}.

We must sum over boxes to produce the full amplitude. This yields large cancellations,

particularly between non-degenerate boxes in which i and j are separated by at least two

intermediate particles. In appendix D we show that the n-point one-loop MHV amplitude
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may be written at O(ǫ0) as

A1-loop
n

Atree
n

=
1

2

∑

i

∑

j 6∈{i−2,i−1,i,i+1,i+2}

(

−Li2(1− uij) + log x2ij log uij
)

+
∑

i

log(x2ii−2) log





x2i+1i−2

x2i+1i−1

√

x2ii−2



 ,

(5.15)

where uij denotes the dual conformal invariant cross-ratio,

uij =
x2ij+1x

2
i+1j

x2ijx
2
i+1j+1

, (5.16)

and the square root arises from the infrared divergent pieces (5.14). The formula (5.15)

phrases the MHV one-loop amplitude in a form which illuminates dual conformal proper-

ties. For example, it is particularly easy to verify that (2.6) holds. Presently, we shall see

that this expression is especially convenient for extracting subleading soft behaviour. We

anticipate that this form of the amplitude may find useful further applications.

We should point out that our description (5.15) is not entirely new; partial results of

a similar flavour exist in the literature, confirming our observations. The double sum,

1

2

∑

i

∑

j 6∈{i−2,i−1,i,i+1,i+2}

(

−Li2(1− uij) + log x2ij log uij
)

, (5.17)

emerges from considering only non-degenerate two-mass easy-boxes, and accords with the

results of [70]. The remaining sum,

∑

i

log(x2ii−2) log





x2i+1i−2

x2i+1i−1

√

x2ii−2



 , (5.18)

comprises degenerate box and infrared divergent contributions, which were recognised but

not calculated in [71].

Note that although (5.17) and (5.18) look symmetric under reversing the polygon

labelling, this is not the case. On careful inspection, we see that this asymmetry is a

consequence of our particular choices in arriving at (D.19). Of course, the symmetry is

restored when generic terms and edge cases are summed.

We first compute the subleading soft behaviour of the generic terms (5.17). Without

loss of generality we consider only those terms in which i ∈ {n−1, n, 1}. It is convenient to

use momentum twistor variables [72]; see appendix E for a brief review of twistor definitions

and identities. In such variables the soft limit may be expressed as [48]

Zn → αZ1 + βZn−1 + δZn . (5.19)

To be precise, (5.19) corresponds to the antiholomorphic soft limit with the symmetric

elimination (|n − 1], |1]) as proved in [48]. Of course box functions transform with zero
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weight under little group scaling. Hence we may freely switch between holomorphic and

antiholomorphic soft limits without affecting our results. For consistency with the Cachazo-

Strominger subsitution (3.7) we must choose

α =
〈n− 1 n〉

〈n− 1 1〉
(1− δ) and β =

〈n 1〉

〈n− 1 1〉
(1− δ) . (5.20)

We have calculated the soft expansion of (5.17) by employing formulae in appendix E.

There are significant telescopic cancellations, yielding bulk terms,

1

α

n−4
∑

j=4

log

(

y2n−1j

y21j

)

〈n− 2 n− 1 j − 1 j〉〈n− 2 n− 1 n 1〉

〈n− 2 n− 1 1 j − 1〉〈n− 2 n− 1 1 j〉

+
1

β

n−3
∑

j=5

log

(

y22j
y21j

)

〈n− 1 n 1 2〉〈j − 1 j 1 2〉

〈n− 1 1 2 j〉〈n− 1 1 2 j − 1〉
,

(5.21)

and boundary contributions,

−
(n− 1 1 2)(n 1)

(n− 1 1)(1 2)

[

log

(

(n− 1 1 2)(n 1)

(n− 1 1)(1 2)

)

− 1

]

+

(

(n 1) + (n 2)

(1 2)

)[

log(−(n 1))− 1

]

+
(n− 1 1 2)〈n 1〉 ([n 1]〈1 3〉+ [n 2]〈2 3〉)

(1 2)〈n− 1 1〉 ([n− 1 1]〈1 3〉+ [n− 1 2]〈2 3〉)
log

(

(1 2)

(n− 1 1 2)

)

−
〈n− 1 n〉[n 1]〈3 4〉[2 3]

[1 2]〈n− 1 1〉([1 2]〈2 4〉+ [1 3]〈3 4〉)
log

(

(2 3)

(1 2 3)

)

+

(

(n 1) + (n 2)

(1 2)
−

〈n− 1 n〉[n 2]

〈n− 1 1〉[1 2]

)

log(−(n− 1 1)) + (i ↔ n− i) .

(5.22)

We have verified this result using box functions and Mathematica numerics in the case

n = 7. The computations are available as a package, documented in appendix C.

Observe that the log δ terms take a universal and simple form in the MHV sector for

all n, namely

(

(n 1) + (n 2)

(1 2)
−

sn−1,1,2(n 1)

(n− 1 1)(1 2)

)

log(−(n 1)) + (i ↔ n− i) . (5.23)

where sabc := (pa + pb + pc)
2 denotes a three-particle invariant. These structures were

already visible at six points in (5.13). Note also that the purely rational terms have a

similar universal behaviour.

We must now check that (5.23) is consistent with the coefficients of Z0 predicted

in (4.63). To see this, we first recall the ansatz (3.13), implicitly eliminating (|n − 1], |1])

as discussed in section 5.1.

A1-loop
n →

(

1

δ2
S(0)1-loop +

1

δ
Z

)

Atree
n−1 . (5.24)
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We focus exclusively on infrared finite δ−1 log δ terms. Then the left hand side is given by

Atree
n times (5.23). The right-hand side comprises the feed-down term8

−
(n 1) + (n− 1 n)

(n− 1 1)
S(0) log(−(n 1)) + (i ↔ n− i) , (5.25)

and the soft anomaly

Z0|log δ =

(

(n− 1 n)

(n− 1 1)
+

(n 2)

(1 2)
−

(n− 1 2)(n 1)

(1 2)(n− 1 1)

)

S(0) log(−(n 1)) + (i ↔ n− i) . (5.26)

Summing (5.25) and (5.26) yields
(

(n 1) + (n 2)

(1 2)
−

(n 1)

(1 2)
−

(n 1)

(n− 1 1)
−

(n− 1 2)(n 1)

(1 2)(n− 1 1)

)

S(0) log(−(n 1)) + (i ↔ n− i) ,

(5.27)

which is identical to (5.23) up to S(0), as expected.

5.4 NMHV amplitudes via ratio functions

In the NMHV sector tree-level superamplitudes can be conveniently expressed in terms of

dual superconformal R-invariants [58, 73, 74] as

ANMHV,tree
n = AMHV,tree

n

∑

j,k

R1jk , (5.28)

with 1 < j − 1 and j < k − 1. A general R-invariant is most naturally written in terms of

momentum supertwistors as [75]

Rijk =
δ(4)

(

〈j − 1 j k − 1 k〉χA
i + cyclic

)

〈i j − 1 j k − 1〉〈j − 1 j k − 1 k〉〈j k − 1 k i〉〈k − 1 k i j − 1〉〈k i j − 1 j〉
,

(5.29)

motivating the five-bracket notation,

Rijk := [i j − 1 j k − 1 k] . (5.30)

It is natural to ask whether the R-invariants have simple subleading soft behaviour, a study

partially undertaken in [48]. There it was shown that in the supersoft limit,

Zn → αZ1 + βZn−1 + δZn , (5.31)

the R-invariants R1jk vanish at subleading order. Indeed when k 6= n, clearly R1jk is inde-

pendent of δ, so there is no subleading contribution. For k = n, the denominator becomes

δ2〈1 j−1 j n−1〉〈j−1 j n−1 1〉〈j n−1 n 1〉〈n−1 n 1 j−1〉〈n−1 1 j−1 j〉+O(δ3) , (5.32)

while the argument of the δ function is

α〈j−1 j n−1 1〉χ1+β〈n−1 1 j−1 j〉χn−1+〈1 j−1 j n−1〉(αχ1+βχn−1)+O(δ) . (5.33)

8This is obtained by expanding S(0)1-loop to subleading order in δ, with the given momentum conservation

prescription. For a full treatment of such subtleties, see section 3.1 and in particular equation (3.12).
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Notice that the leading term in (5.33) exactly vanishes, hence the leading contribution of

the numerator is O(δ4). Therefore R1jn certainly vanishes at subleading order, as claimed.

Recall that for appropriate α and β the momentum conservation prescription associ-

ated with (5.31) is exactly the symmetric elimination of (|n − 1], |1]) (see appendix E for

details). With this prescription the subleading term for tree amplitudes vanishes. Hence

we conclude that each R1jk individually obeys the amplitude soft theorem.

At one loop we may write a general planar NMHV amplitude in terms of dual conformal

ratio functions R as

ANMHV,1-loop
n = AMHV,1-loop

n Rtree + AMHV,tree
n R1-loop . (5.34)

Rtree is the sum of R-invariants appearing in (5.28). R1-loop may be expressed in

terms of general R-invariants and dual conformal combinations of box integrals called

V -functions [58, 73, 76].

We now investigate the subleading soft behaviour of the R-invariants and V -functions

appearing at one loop for six- and seven-point amplitudes, leaving general results to future

work. More precisely we will focus on terms of order δ log δ in R1-loop which, taking into

account the AMHV,tree
n prefactor lead to terms of order (1/δ) log δ. For illustration we

outline the soft expansion of the various terms in (5.34),

AMHV,1-loop
n ∼

1

δ2
+

1

δ
log δ +

1

δ
, Rtree ∼ 1 + δ2 , (5.35)

AMHV,tree
n ∼

1

δ2
, R1-loop ∼ 1 + δ log δ + δ ,

where we employ a symmetric momentum conservation prescription that eliminates |n−1]

and |1]. The particular behaviour for Rtree was first observed in [48].

Six-point amplitude. At six points each five-bracket necessarily omits exactly one mo-

mentum twistor. This naturally provides a more concise notation by virtue of the cyclic

symmetry of five-brackets. For example we write

(2) = [1 3 4 5 6] . (5.36)

The six-point tree-level ratio function may then be written as9

Rtree = (1) + (3) + (5) = (2) + (4) + (6) , (5.37)

which in the soft limit takes the form,

Rtree = (6) +O(δ2) , (5.38)

noting that (6) = [12345] has no δ dependence. The six-point one-loop ratio function is

explicitly [78],

R1-loop =
1

2

(

[

(1) + (4)
]

V3 +
[

(2) + (5)
]

V1 +
[

(3) + (6)
]

V2

)

, (5.39)

9The equivalent representations are best understood to arise from Grassmannian contour integration [77].
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where the dual conformal V -functions are naturally expressed in terms of cross-ratios,

V1 = − log(u36) log(u25) +X , (5.40)

V2 = − log(u36) log(u14) +X , (5.41)

V3 = − log(u14) log(u25) +X , (5.42)

X =
1

2

3
∑

i=1

(

log(uii+3) log(ui+1i+4) + Li2(1− uii+3)

)

− 2ζ2 , (5.43)

and indices in X are implicitly modulo six. We know from tree-level reasoning that

(2) = O(δ2), (3) = O(δ2), (4) = O(δ2) . (5.44)

Therefore in the soft limit the ratio function (5.39) becomes

R1-loop =
1

2

(

(6)
2

∑

i=1

Li2(1− uii+3) + [(6)− (1)] log(u36) log(u25) + [(6)− (5)] log(u36) log(u14)

)

+O(δ2) .

(5.45)

From appendix E observe that

log(u36) =
δ〈1 3 5 6〉

αβ〈1 2 3 5〉〈1 3 4 5〉
(β〈2 3 4 5〉 − α〈1 2 3 4〉) +O(δ2) . (5.46)

Hence we need only expand the R-invariants to leading order, viz.

(1) = (6)
α〈1 2 3 4〉

α〈1 2 3 4〉 − β〈2 3 4 5〉
+O(δ) , (5.47)

(5) = (6)
β〈2 3 4 5〉

β〈2 3 4 5〉 − α〈1 2 3 4〉
+O(δ) . (5.48)

Thus (5.45) reduces to

R1-loop=
1

2
(6)

(

2
∑

i=1

Li2(1−uii+3) +
δ〈1 3 5 6〉〈2 3 4 5〉

α〈1 2 3 5〉〈1 3 4 5〉
log(u25)+

δ〈1 3 5 6〉〈1 2 3 4〉

β〈1 2 3 5〉〈1 3 4 5〉
log(u14)

)

+O(δ2) .

(5.49)

It is instructive to extract the δ log δ terms, for these have the best hope of universal

behaviour. Explicitly we find the contribution,

1

2

〈n− 1 1〉

〈n− 1 n〉
(6)

〈2 3 4 5〉〈4 5 6 1〉

〈1 2 4 5〉〈3 4 5 1〉
log(u25) + (i ↔ n− i) . (5.50)

Seven-point amplitude. At seven points we employ the formulae of [76], namely

R1-loop =
1

2

(

RtreeV tot +R147V147 +R157V157 + cyclic
)

, (5.51)

where the V -functions are defined by

7V tot = −Li2(1−u−1
1246)+

1

2

[

Li2(1−u14)+Li2(1−u15)

]

−log(u47) log(u26)+cyclic , (5.52)

V147 = Li2(1− u2476) + Li2(1− u2146) + log(u2476) log(u2146)− ζ2 , (5.53)
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V157 = V147 + Li2(1− u2745)− Li2(1− u1254)− log(u7145) log

(

u1256
u2467

)

, (5.54)

and general cross-ratios are written as

uijkl =
x2ikx

2
jl

x2ilx
2
jk

=
〈i− 1 i k − 1 k〉〈j − 1 j l − 1 l〉

〈i− 1 i l − 1 l〉〈j − 1 j k − 1 k〉
. (5.55)

We first examine the soft behaviour of the fourteen R-invariants explicitly entering (5.51).

Eight of these have no O(δ) term, namely

R147, R157, R261, R372 ∼ O(δ2) , (5.56)

R362, R524, R625, R635 independent of δ . (5.57)

We obtain terms linear in δ from the remaining six, which are

R251, R514, R473, R413, R736, R746 . (5.58)

At six points, we had no need to expand such R-invariants, courtesy of convenient behaviour

of the V -functions. We must ask whether this property continues to hold at seven points.

Hence we list the δ dependence of the relevant V -functions,

V251 ∼ O(δ) , V736 ∼ O(δ) ,

V514 ∼ nonzero +O(δ) , V473 ∼ nonzero +O(δ) ,

V746 − V736 ∼ nonzero +O(δ) , V413 − V473 ∼ O(δ) .

(5.59)

We also note that

V746 − V514 ∼ O(δ) . (5.60)

Therefore the only non-trivial R-invariants we must expand to O(δ) are the combinations,

R413 +R473 and R514 +R746 . (5.61)

Remarkably, through an intricate series of twistor bracket identities, both of these combi-

nations have zero subleading soft dependence. Thus it only remains to expand the relevant

V -functions explicitly. Henceforth we shall only look for δ log δ terms, these being the best

candidates for universal behaviour.

It is convenient to express the V -functions only in terms of our earlier uij cross-ratios,

defined by

uij =
x2ij+1x

2
i+1j

x2ijx
2
i+1j+1

. (5.62)

whose soft expansions are collected in appendix E. Observe that

u−1
ii+1jj+2 = uijuij+1 , (5.63)

and we trivially have relations,

uijkl = u−1
ijlk = uklij . (5.64)
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Thus we may write

7V tot = −Li2(1−u14u15)+
1

2

[

Li2(1−u14)+Li2(1−u15)

]

−log(u47) log(u26)+cyclic , (5.65)

V147 = Li2(1− u62u63) + Li2(1− u14u15) + log(u62u63) log(u14u15)− ζ2 , (5.66)

V157 = V147 + Li2(1− u47u41)− Li2(1− u14) + log(u74) log

(

u62u63
u15

)

. (5.67)

We only obtain log δ terms from the invariants u15 and u26. By relabelling symmetry it

suffices to determine only the log(u26) terms. The leading behaviour of the R-invariants

involved is

R473 +R413 → (5), R625 → (3), R635 → (1) , (5.68)

R413 →
β〈2 3 4 6〉

β〈2 3 4 6〉 − α〈1 2 3 4〉
(5) , (5.69)

R251 →
β〈2 4 5 6〉

β〈2 4 5 6〉 − α〈1 2 4 5〉
(3) . (5.70)

On expanding the relevant V -functions many terms are produced. Quite unexpectedly,

when multiplying by the respective R-invariants a highly non-trivial simplification takes

place, yielding the expression,

Rtree δ

α

(

〈3 5 4 6〉〈7 6 1 4〉

〈6 1 3 4〉〈6 1 4 5〉
+
〈3 4 5 6〉〈1 2 6 7〉

〈3 4 6 1〉〈1 2 5 6〉
+
〈2 3 4 5〉〈1 2 6 7〉

〈1 2 4 5〉〈2 3 6 1〉
−
〈1 2 6 7〉〈2 3 5 6〉

〈1 2 5 6〉〈2 3 6 1〉

)

+ (5)
〈2 3 4 6〉〈5 6 7 1〉

〈3 4 6 1〉〈1 2 5 6〉
+ (3)

〈2 4 5 6〉〈5 6 7 1〉

〈4 5 6 1〉〈1 2 5 6〉
. (5.71)

All that remains is to extract the log(u26) pieces from V tot. These come from

− log(u47u41) log(u26)− Li2(1− u25u26)− Li2(1− u62u63) + Li2(1− u26) , (5.72)

yielding subleading soft terms,

−
δ

α

(

〈3 5 4 6〉〈7 6 1 4〉

〈6 1 3 4〉〈6 1 4 5〉
+

〈2 3 4 5〉〈1 2 6 7〉

〈1 2 4 5〉〈2 3 6 1〉
+

〈3 4 5 6〉〈1 2 6 7〉

〈1 2 5 6〉〈3 4 6 1〉
−

〈1 2 6 7〉〈2 3 5 6〉

〈1 2 5 6〉〈2 3 6 1〉

)

.

(5.73)

Miraculously these terms exactly cancel terms in (5.72). Hence we arrive at the final

expression for subleading log δ contributions,

1

2

〈n− 1 1〉

〈n− 1 n〉

[

(5)
〈2 3 4 6〉〈5 6 7 1〉

〈3 4 6 1〉〈1 2 5 6〉
+ (3)

〈2 4 5 6〉〈5 6 7 1〉

〈4 5 6 1〉〈1 2 5 6〉

]

log(u26) + (i ↔ n− i) . (5.74)

Observe that these terms have the same overall structure as we found at six points in equa-

tion (5.50). Furthermore, one may immediately perform a consistency check that (5.74)

reduces to (5.50) as we make particles 3 and 4 collinear. These terms seem amenable to

an n-point generalisation, which we leave to future work.

We note finally that the coefficients in (5.74) were not predicted in section 4.8; indeed

they involve particles other than {n − 2, n − 1, n, 1, 2} which were considered in deriv-

ing (4.63). It would be interesting to investigate whether the constraint equation (4.59),

perhaps supplemented with further physical reasoning, is sufficently powerful to determine

the NMHV one-loop subleading soft anomaly in general.
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6 Conclusions

The (sub)leading soft behaviour of one-loop amplitudes has received much attention re-

cently. However, obtaining general results for the infrared-finite terms of amplitudes in

non-abelian gauge theories has proved to be difficult [22–24, 33]. In this work we computed

the subleading soft behaviour of infrared-finite parts of all one-loop MHV amplitudes in

planar N = 4 SYM, exposing surprising hidden simplicity. Moreover, we determined the

subleading soft contributions of NMHV one-loop ratio functions at six and seven points,

finding evidence that universality holds within but not between helicity sectors.

Interestingly, none of the available representations of the one-loop amplitudes makes

the subleading soft behaviour manifest. Indeed, in both MHV and NMHV sectors highly

non-trivial cancellations occur, which lead to compact formulae for the soft limits. We

speculate that amplitudes may admit a recasting in “soft friendly” form, perhaps along the

lines of [79]. At higher loops this might yield a subleading soft-improved BDS ansatz [64].

We also used the known one-loop dual superconformal anomaly of amplitudes to derive

constraints on one-loop soft limits of generic amplitudes. In this respect we introduced the

soft anomaly Z in (3.15), which we then studied up to and including infrared-finite terms,

thus predicting the general form of the (1/δ) log δ terms, see (4.63). This constraint turned

out to be sufficiently powerful to predict the complete MHV soft anomaly, and provided a

valuable consistency check in other sectors. It would be fascinating to understand in greater

detail how quantum corrections to soft theorems interact with the asymptotic symmetries

of N = 4 SYM [80].

Soft theorems lie at a crossroads of theory and phenomenology. Consequently several

avenues for further work naturally present themselves. From a mathematical perspective,

we might hope to derive our results from recent ambitwistor formulae [36, 81]. The sub-

leading soft anomaly may also find application in bootstraps for amplitudes [77, 82, 83] and

effective field theories [84]. Extensions to double soft emission and supergravity theories

are obvious goals, particularly in light of the subtle connections with spontaneously broken

symmetry [85].

Moving towards experiment, our results could provide a stepping stone towards im-

proved soft-gluon approximation for QCD amplitudes. Such an objective would require

examining further helicity sectors and theories with less supersymmetry, possibly making

contact with [23]. Finally, it would be profitable to apply our methods to form factors,

developing the results of [52], and to amplitudes and form factors at higher loops. In par-

ticular such computations would be useful in cases where the form factors are related to

Higgs amplitudes appearing in effective field theory approaches (see for example [86–88]).
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A Spinor conventions

Our index convention for spinors is

λα
i = |i〉α , λ̃iα̇ = |i]α̇ , λiα = 〈i|α = ǫαβ |i〉

β , λ̃α̇
i = [i|α̇ = ǫα̇β̇|i]

β̇
, (A.1)

with σ matrices chosen such that

(i j) = 〈i j〉[j i] , (A.2)

where (i j) = 2 (pi · pj). Spinor differentiation is defined to obey

∂

∂|i〉α
|i〉β = δβα ,

∂

∂|i]α̇
|i]

β̇
= δα̇

β̇
. (A.3)

Note that the helicity operator for particle i takes the form,

hi = −
1

2

(

|i〉 ·
∂

∂|i〉
− |i] ·

∂

∂|i]
− ηAi

∂

∂ηAi

)

, (A.4)

and acts as the identity on superamplitudes, since each superparticle has helicity 1 by

construction. This is of importance in section 4.5.

B Action of the dual conformal boost generator

We collect various formulae outlining the action of the dual conformal boost generator on

spinors and multiparticle invariants used in sections 4 and 5. To adapt the formulae to

(Kαα̇)O(δ0) replace all
∑

j by
∑′

j .

Suppose a < b cyclically in {3, 4, . . . 2}. Then we have

−K(〈a b〉) =
a−1
∑

j=3

|j]〈j|〈a b〉+
b−1
∑

j=a+1

|j]〈b|〈a j〉 , (B.1)

−K([a b]) =
b

∑

j=3

|j]〈j|[a b] +
b−1
∑

j=a+1

|a]〈j|[b j] , (B.2)

−K((a b)) = 2
a−1
∑

j=3

|j]〈j|(a b)+
b

∑

j=a

|j]〈j|(a b)+
b−1
∑

j=a+1

|j]〈b|〈a j〉[b a]−
b−1
∑

j=a+1

|a]〈j|[b j]〈a b〉 .

(B.3)

In particular if a and b are adjacent then

−K(〈a b〉) =
a−1
∑

j=3

|j]〈j|〈a b〉 , (B.4)
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−K([a b]) =
b

∑

j=3

|j]〈j|[a b] , (B.5)

−K((a b)) = 2

a−1
∑

j=3

|j]〈j|(a b) +
∑

j=a,b

|j]〈j|(a b) . (B.6)

The following corollaries are of particular use in section 4.8.

[

(

Kαα̇

)

O(δ0)
−

n−1
∑

j=3

|j]〈j|

](

[2 n]

[2 1]〈1 n〉

)

= −
|n]〈1|

〈n 1〉
, (B.7)

[

(

Kαα̇

)

O(δ0)
−
n−1
∑

j=3

|j]〈j|

](

[n− 2 n]

[n−2 n−1]〈n−1 n〉

)

= −
|n]〈n−1|

〈n−1 n〉
, (B.8)

[

(

Kαα̇

)

O(δ0)
−

n−1
∑

j=3

|j]〈j|

](

[1 n]

[1 n− 1]〈n− 1 n〉

)

= −|n− 1]〈n− 1|
[n 1]

〈n− 1 n〉[n− 1 1]
,

(B.9)
[

(

Kαα̇

)

O(δ0)
−

n−1
∑

j=3

|j]〈j|

](

[n− 1 n]

[n− 1 1]〈1 n〉

)

= −|1]〈1|
[n− 1 n]

[n− 1 1]〈n 1〉
, (B.10)

(

Kαα̇

)

O(δ0)

(

(n 1)

(n− 1 1)

)

= −|n− 1]〈n− 1|
(n 1)

(n− 1 1)
, (B.11)

(

Kαα̇

)

O(δ0)

(

(n− 2 n)

(n−2 n−1)
−

(n− 2 1)(n− 1 n)

(n−2 n−1)(n−1 1)

)

= −|n]〈n|+ |1]〈1|
(n− 1 n)

(n− 1 1)
. (B.12)

C SubSoft.m package documentation

SubSoft.m is a Mathematica package for the automated calculation and verification of sub-

leading soft theorems. A separate Mathematica file contains sample calculations, pertinent

to our results in section 5. The package extends Bourjaily’s bcfw.m [90]. The relevant

Mathematica files are included with the submission of this posting on the arXiv.10

Setup. First ensure that both SubSoft.m and bcfw.m are saved to the same directory as

the notebook you are writing. To initialize the package, simply call

Glossary. We collect descriptions of the most important expressions. The definitions of

related expressions may be inferred, or determined by direct inspection of the source code.

10From the abstract page, follow the link to download “other formats”, download the source and unzip

it. The files SubSoft.m and bcfw.m are required, and SubSoft Examples.nb is an optional walkthrough.
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Expression Type Description

ab[i,j] object represents the angle bracket 〈i j〉.

sb[i,j] object represents the square bracket [i j].

MHVTreeAmplitude[{i,j},n] function returns the tree amplitude

with helicity configuration

1+ · · · i− · · · j− · · ·n+.

F[i,n] function returns the ith box function for n-

point kinematics.

useRandomKinematics[n] function sets up n-point random kinematics

for numerical evalulation.

NEvalute[expr] function numerically evaluates an expres-

sion featuring ab and/or sb.

deltaDependence[n] rule introduces holomorphic δ depen-

dence for particle n.

momentumConservation

WithDelta[n,a,b]

rule performs the substitution (3.7) as-

suming that particle n carries δ de-

pendence.

VerifySoftTheorem

TreeLevel[An, An−1, n, a, b]

function verifies the tree-level subleading

soft theorem for given An, An−1

with the elimination of |a] and |b].

VerifySoftTheorem1LoopIRFinite

Term[Alpn, Alpn−1, Atrn−1, n, i, j]

function verifies the one-loop subleading

soft term at finite order in ǫ for

given A1-loop
n , A1-loop

n−1 , Atree
n−1 with

the elimination of |a] and |b].

Z0[n] function returns the predicted infrared-

finite subleading soft anomaly, by

default defined for MHV ampli-

tudes with n = 5, 6, 7.

Strictly speaking, the verification functions compute the difference between subleading

terms on the l.h.s. and r.h.s. of (3.10) or (3.13) at tree level or one loop respectively.

Hence the subleading soft theorems are verified if the resulting quantity is within machine

precision of zero.

D Generic two-mass easy box cancellations via symbology

The finite part of a two-mass easy box may compactly be defined as [91]

F 2me,fin(P,Q, s, t) = Li2(1− aP 2) + Li2(1− aQ2)− Li2(1− as)− Li2(1− at) , (D.1)

where

a =
P 2 +Q2 − s− t

P 2Q2 − st
. (D.2)
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It is convenient to write the momentum invariants in terms of differences of dual momenta,

P 2 = x2i+1j , Q2 = x2ij+1 , s = x2ij , t = x2i+1j+1 . (D.3)

We may derive a more compact form for the sum over generic boxes by introducing the

symbol [92]. This is a map taking transcendental functions to tensor products of their

rational arguments. In particular,

Sym [log(Ra) log(Rb)] = Ra ⊗Rb +Rb ⊗Ra , (D.4)

Sym [Li2(1−Ra)] = −Ra ⊗ (1−Ra) . (D.5)

The target space is defined modulo the identifications,

RaRb ⊗RcRd = Ra ⊗Rc +Rb ⊗Rc +Ra ⊗Rd +Rb ⊗Rd , (D.6)

constant⊗Ra = Ra ⊗ constant = 0 , (D.7)

Ra ⊗ (Rb)
−1 = (Ra)

−1 ⊗Rb = −Ra ⊗Rb . (D.8)

We evaluate the symbols,

Sym
[

Li2(1− aP 2)
]

= a⊗ (P 2Q2 − st) + P 2 ⊗ (P 2Q2 − st)

− a⊗ (s− P 2)(P 2 − t)− P 2 ⊗ (s− P 2)(P 2 − t) ,

Sym
[

Li2(1− aQ2)
]

= a⊗ (P 2Q2 − st) +Q2 ⊗ (P 2Q2 − st)

− a⊗ (s−Q2)(Q2 − t)−Q2 ⊗ (s−Q2)(Q2 − t) ,

Sym [Li2(1− as)] = a⊗ (P 2Q2 − st) + s⊗ (P 2Q2 − st)

− a⊗ (P 2 − s)(Q2 − s)− s⊗ (P 2 − s)(Q2 − s) ,

Sym [Li2(1− as)] = a⊗ (P 2Q2 − st) + t⊗ (P 2Q2 − st)

− a⊗ (P 2 − t)(Q2 − t)− t⊗ (P 2 − t)(Q2 − t) .

(D.9)

The first and third terms in each symbol cancel in the sum defining the symbol of F 2me,fin.

The second terms combine to yield

P 2Q2

st
⊗ (P 2Q2 − st) =

x2ij+1x
2
i+1j

x2ijx
2
i+1j+1

⊗ (x2i+1jx
2
ij+1 − x2ijx

2
i+1j+1) . (D.10)

It is convenient to write the fourth terms in dual variables,

P 2 ⊗ (s−P 2)(P 2−t) = x2i+1j ⊗ (x2ij − x2i+1j) + x2i+1j ⊗ (x2i+1j − x2i+1j+1) , (D.11)

Q2 ⊗ (s−Q2)(Q2−t) = x2ij+1 ⊗ (x2ij − x2ij+1) + x2ij+1 ⊗ (x2ij+1 − x2i+1j+1) , (D.12)

s⊗ (P 2−s)(Q2−s) = x2ij ⊗ (x2i+1j − x2ij) + x2ij ⊗ (x2ij+1 − x2ij) , (D.13)

t⊗ (P 2−t)(Q2−t) = x2i+1j+1 ⊗ (x2i+1j−x2i+1j+1)+x2i+1j+1 ⊗ (x2ij+1−x2i+1j+1) . (D.14)

To produce the complete finite part of the amplitude we must sum over all distinct boxes.

This corresponds to summing over all i and j not adjacent and dividing by a factor of 2.

We now apply this procedure to the symbols (D.10)–(D.14) to exhibit hidden cancellations.
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Consider for fixed i the telescoping sum,

∑

j 6∈{i−1,i,i+1}

Aij+1 −Aij = Aii−1 −Aii+2 . (D.15)

We may employ this formula to find the contribution of (D.11)–(D.14) to the full symbol.

The resulting term is

∑

i

Sym
[

log2(x2ii−2)
]

. (D.16)

We now massage (D.10) into a form we can integrate, writing

x2ij+1x
2
i+1j

x2ijx
2
i+1j+1

⊗ (x2i+1jx
2
ij+1 − x2ijx

2
i+1j+1) = uij ⊗ (1− uij) + uij ⊗ x2ijx

2
i+1j+1 . (D.17)

We immediately identify the first term as the symbol of −Li2(1 − uij). The second term

expands to give neatly paired contributions,

x2ij+1 ⊗ x2ij + x2i+1j ⊗ x2i+1j+1 + x2ij+1 ⊗ x2i+1j+1 + x2i+1j ⊗ x2ij

− x2ij ⊗ x2ij − x2i+1j+1 ⊗ x2i+1j+1 − x2ij ⊗ x2i+1j+1 − x2i+1j+1 ⊗ x2ij .
(D.18)

Performing the sum over non-adjacent i and j we find that

∑

i

∑

j 6∈{i−2,i−1,i,i+1}

Sym
[

log(x2ij) log(x
2
ij+1)

]

+
∑

i

∑

j 6∈{i−1,i,i+1,i+2}

Sym
[

log(x2ij) log(x
2
i+1j)

]

−
∑

i

∑

j 6∈{i−1,i,i+1}

Sym
[

log(x2ij) log(x
2
i+1j+1)

]

−
∑

i

∑

j 6∈{i−1,i,i+1}

Sym
[

log(x2ij) log(x
2
ij)

]

. (D.19)

Combining the terms (D.16) and (D.19), integrating the symbol and dividing by 2 yields

∑

i





1

2

∑

j 6∈{i−2,i−1,i,i+1,i+2}

log(x2ij) log(uij) + log(x2ii−2) log

(

x2i+1i−2

x2i+1i−1

)



 . (D.20)

We finally split our expression for the finite part of the amplitude into generic terms,

1

2

∑

i

∑

j 6∈{i−2,i−1,i,i+1,i+2}

(

−Li2(1− uij) + log x2ij log uij
)

, (D.21)

and edge cases,
∑

i

log(x2ii−2) log

(

x2i+1i−2

x2i+1i−1

)

. (D.22)

Note that the edge cases comprise the full finite part of the amplitude at five-point, which

we have verified by comparison with [69].
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E Momentum twistors: identities and soft limits

Identities. Momentum supertwistors form the fundamental representation of dual super-

conformal symmetry, and are natural variables in which to express amplitudes in N = 4

SYM [72]. We define

Zi := (ZI
i ;χ

A
i ) = (λα

i , µ
α̇
i ; χ

A
i ) , (E.1)

with the incidence relations

µα̇
i = xα̇βi λiβ , χA

i = θβAi λiβ . (E.2)

Here ZI
i denotes the bosonic part of the supertwistor, with I = (α, α̇). This definition

yields a twistor correspondence [93] relating points and straight lines. More explicitly,

dual momentum space ←→ momentum twistor space , (E.3)

point xi ←→ line through Zi−1 and Zi , (E.4)

line through xi and xi+1 ←→ point Zi . (E.5)

Importantly the on-shell variables λ̃i and ηi can be obtained from Zi using the relations

(see for example [75, 94])

λ̃i =
µi−1〈i i+ 1〉+ µi〈i+ 1 i− 1〉+ µi+1〈i− 1 i〉

〈i− 1 i〉〈i i+ 1〉
,

ηi =
χi−1〈i i+ 1〉+ χi〈i+ 1 i− 1〉+ χi+1〈i− 1 i〉

〈i− 1 i〉〈i i+ 1〉
. (E.6)

The canonical bosonic dual conformal invariant quantity is the four-bracket,

〈i j k l〉 = ǫIJKLZ
I
i Z

J
j Z

K
k ZL

l , (E.7)

while the definition of the holomophic spinor bracket requires the use of the infinity twistor

I such that

〈i j〉 = ǫαβλ
α
i λ

β
j = ǫIJKLZ

I
i Z

J
j I

KL . (E.8)

These objects obey various identities, which we employ in section 5.3. From the defini-

tion (E.1) one can show for example that

〈i j − 1 j k〉 = 〈j − 1 j〉〈i|xijxjk|k〉 . (E.9)

The four-brackets obey a five-term Schouten identity,

Za〈b c d e〉+ cyclic = 0 , (E.10)

which yields formulae for computing intersections of projective lines and planes,

(i j) ∩ (a b c) = Zi〈j a b c〉 − Zj〈i a b c〉 , (E.11)

(i j k) ∩ (a b c) = ZiZj〈k a b c〉+ ZjZk〈i a b c〉+ ZkZi〈j a b c〉 , (E.12)

where we have introduced the notation (a b) = Za ∧ Zb. Finally we have the important

relation,

〈x y (i j k) ∩ (a b c)〉 = 〈(x y) ∩ (a b c) i j k〉 . (E.13)
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Soft limits. The supersoft limit of an amplitude may be implemented in momentum

twistor variables by taking [48]

Zn → αZ1 + βZn−1 + δZn . (E.14)

For generic α and β four spinors gain δ-dependence, namely |n − 1], |n], |n〉 and |1]. In

section 5 we require the antiholomorphic supersoft limit,

|n〉 → |n〉 , |n] → δ|n] , ηn → δηn , (E.15)

with the symmetric elimination of |n− 1] and |1]. By comparing (E.6) to (3.7) this stipu-

lation forces

α =
〈n− 1 n〉

〈n− 1 1〉
(1− δ) and β =

〈n 1〉

〈n− 1 1〉
(1− δ) . (E.16)

The δ-dependence of α and β is present to ensure that |n〉 remains fixed.

Soft expansion of cross-ratios and x2

ij. The dual conformal cross-ratio uij may be

expressed as a ratio of twistor four-brackets, namely

uij =
〈i− 1 i j j + 1〉〈i i+ 1 j − 1 j〉

〈i− 1 i j − 1 j〉〈i i+ 1 j j + 1〉
. (E.17)

To evaluate the soft behaviour of relevant cross-ratios we will require the δ expansion of

the four-brackets

〈n 1 j − 1 j〉 = β〈n− 1 1 j − 1 j〉+ δ〈n 1 j − 1 j〉 , (E.18)

〈n− 1 n j − 1 j〉 = α〈n− 1 1 j − 1 j〉+ δ〈n− 1 n j − 1 j〉 . (E.19)

Using twistor identities we can then derive simple forms for

un−1j = vn−1j

(

1−
δ〈j − 1 j j + 1 n− 1〉〈n− 1 n 1 j〉

α〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉

)

for 3 ≤ j ≤ n− 4 , (E.20)

u1j = v1j

(

1−
δ〈j − 1 j j + 1 1〉〈n− 1 n 1 j〉

β〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉

)

for 4 ≤ j ≤ n− 3 , (E.21)

unj = 1 +
δ〈j − 1 j + 1 j n− 1〉〈n n− 1 1 j〉

α〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉
+

δ〈j − 1 j + 1 1 j〉〈n− 1 n 1 j〉

β〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉

for 3 ≤ j ≤ n− 3 , (E.22)

valid through subleading order in δ, where the vij are cross-ratios evaluated in (n−1)-point

kinematics. In addition we have special cases of cross-ratios that vanish in the soft limit

u1n−2=
δ〈n 1 n− 2 n− 1〉〈1 2 n− 3 n− 2〉

β〈1 2 n− 1 n− 2〉〈n− 1 1 n− 3 n− 2〉

(

1−
δ〈n 1 n− 3 n− 2〉

β〈n− 1 1 n− 3 n− 2〉

)

, (E.23)

un−12=
δ〈n− 2 n− 1 2 3〉〈n− 1 n 1 2〉

α〈n− 2 n− 1 1 2〉〈n− 1 1 2 3〉

(

1−
δ〈n− 1 n 2 3〉

α〈n− 1 1 2 3〉

)

. (E.24)

Since these appear as arguments of logarithms we require these quantities through order δ2

in order to extract terms subleading in δ. The multiparticle invariants x2ij may be written

as a ratio of a four-bracket to two holomorphic spinor brackets,

x2ij =
〈i− 1 i j − 1 j〉

〈i− 1 i〉〈j − 1 j〉
, (E.25)
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which breaks conformal symmetry due to the presence of the infinity twistor in the definition

of the spinor brackets. The expansions of the only δ-dependent invariants are

x2nj = y21j + δ
〈n− 1 n j − 1 j〉

〈n− 1 n〉〈j − 1 j〉
for 2 ≤ j ≤ n− 2 , (E.26)

x21j = y21j + δ
〈n 1 j − 1 j〉

〈n 1〉〈j − 1 j〉
for 3 ≤ j ≤ n− 1 , (E.27)

through subleading order in δ, where the y2ij are multiparticle invariants with (n−1)-point

kinematics.
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