
 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 

DEPARTMENT OF ENVIRONMENT, 

TECHNOLOGY AND TECHNOLOGY MANAGEMENT 

 

A variable neighbourhood search algorithm to 
generate first species counterpoint musical scores 

 

Dorien Herremans & Kenneth Sörensen 

 
 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

UNIVERSITY OF ANTWERP 
Faculty of Applied Economics 

Stadscampus 

Prinsstraat 13, B.226 

BE-2000 Antwerpen 

Tel. +32 (0)3 265 40 32 

Fax +32 (0)3 265 47 99 

http://www.ua.ac.be/tew  



  

 

 

 

FACULTY OF APPLIED ECONOMICS 
 

 

 

 

 

 

 

 

 

DEPARTMENT OF ENVIRONMENT, 
TECHNOLOGY AND TECHNOLOGY MANAGEMENT 

 

A variable neighbourhood search algorithm to 
generate first species counterpoint musical scores 

 

Dorien Herremans & Kenneth Sörensen 

 

 

RESEARCH PAPER 2011-017 

OCTOBER 2010 

 

 
 
 
 

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium 

Research Administration – room B.226 

phone: (32) 3 265 40 32 

fax: (32) 3 265 47 99 

e-mail: joeri.nys@ua.ac.be  

 
The papers can be also found at our website: 

www.ua.ac.be/tew (research > working papers) & 

www.repec.org/ (Research papers in economics - REPEC) 

 

 
 

D/2011/1169/017 

mailto:joeri.nys@ua.ac.be
http://www.ua.ac.be/tew
http://www.repec.org/


A variable neighbourhood search algorithm to
generate first species counterpoint musical

scores

Dorien Herremans & Prof. Dr. Kenneth Sörensen
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In this paper a variable neighbourhood search (VNS) algorithm is developed that
can generate musical fragments of arbitrary length consisting of a cantus firmus and
a first species counterpoint melody. The objective function of the algorithm is based
on a quantification of existing counterpoint rules. The VNS algorithm developed in
this paper is a local search algorithm that starts from a randomly generated melody
and improves it by changing one or two notes at a time.

A thorough parametric analysis of the VNS reveals the significance of the algo-
rithm’s parameters on the quality of the composed fragment, as well as their optimal
settings.

The VNS algorithm has been implemented in a user-friendly software environment
for composition, called Optimuse. Optimuse allows a user to specify a number of
characteristics such as length, key, and mode. Based on this information, Optimuse
“composes” both a cantus firmus and a first species counterpoint melody. Alter-
natively, the user may specify a cantus firmus, and let Optimuse compose only an
accompanying first species counterpoint melody.

1. Introduction

Computers and music go hand in hand these days: music is stored digitally and often played
by electronic instruments. Computer aided composing (CAC) is a relatively new research area
that takes the current relationship between music and computers one step further, allowing
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the computer to aid a composer or even generate an original score. The idea of automatic music
generation is not new, and one of the earliest “automatic composition” methods is due to Mozart.
In his Musikalisches Würfelspiel (Musical Dice Game), a number of small musical fragments are
combined by chance to generate a Minuet [Boenn et al., 2009].

In this paper an algorithm is developed for automatic composition of first species counterpoint
music. It is argued that composing music can—at least partially—be regarded as a combinatorial
optimisation problem, in which one or more melodies are “optimised” to adhere to the “rules” of
their specific musical style. To this end, these rules need to be formalised and quantified, so that
the algorithm can judge whether one automatically composed melody is better than another.
Although every musical genre has its own rules, these have generally not been formally written
down, nor are they usually very strict. The main reason for the choice of the counterpoint
style, is that in this style there do exist formal, written rules [Fux and Mann, 1971] that are
not too difficult to quantify. This paper therefore focuses on automatic composition of one or
two melodies that adhere to all Fuxian counterpoint rules. A similar algorithm could then in
principle be used to compose melodies from other styles, using rules that have been data-mined
from a musical database, but this is beyond the scope of this paper.

Composing music is computationally complex, especially since the number of possible melodies
rises exponentially with the length (number of notes) of the melody to compose. Heuristic
or metaheuristic optimisation algorithms therefore present the most promising approaches to
generate high-quality melodies in a reasonable amount of time. Contrary to exact methods,
(meta)heuristics do not necessarily return the optimal (i.e., best possible) solution [Blum and
Roli, 2003], but use a variety of strategies, some of which seemingly unrelated to optimisation
(such as natural selection or the cooling of a crystalline solid), to find good solutions. A large
number of metaheuristics has been proposed, which can be roughly divided into three categories.
Local search metaheuristics (tabu search, variable neighbourhood search, iterated local search,
. . . ) iteratively improve a single solution. Constructive metaheuristics (GRASP, ant colony
optimisation, . . . ) build a solution from its constituting parts. Population-based metaheuristics
(genetic/evolutionary algorithms, path relinking, . . . ) maintain a set (usually called population)
of solutions and combine solutions from this set into new ones.

Most methods for CAC found in the literature belong to the class of population-based, more
specifically evolutionary, algorithms [Nierhaus, 2009] that find inspiration in the process of nat-
ural evolution. The use of other types (constructive and/or local search) of metaheuristics has
remained relatively unexplored.

Several CAC methods rely on user input. GenJam [Biles, 2001] uses an evolutionary algorithm
to optimise monophonic jazz solos, relative to a given chord progression. The quality of a solo
is calculated based on feedback from a human mentor. This creates a bottleneck because the
mentor needs to listen to each solo and take the time to evaluate it. A comparable human
fitness bottleneck also arises in the CONGA system, a rhythmic pattern generator based on an
evolutionary algorithm. According to the authors of the system, the lack of a quantifiable fitness
function slows down the composing process and places a psychological burden on the user who
listens and has to determine the fitness value [Tokui and Iba, 2000].

Other CAC algorithms have attempted to eliminate the human bottleneck and define an ob-
jective function that can be automatically calculated. Geis and Middendorf [2007] develop a
function that indicates how well a given fragment adheres to five harmonic rules of baroque mu-
sic. This function is then used as the objective function of an ant colony metaheuristic. Orchidée
is a multiobjective genetic algorithm that combines musical fragments (from a database) in order
to efficiently orchestrate them. The goal of this approach is to find a combination of samples
that, when played together, sounds as close as possible to the target timbre [Carpentier et al.,
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2010].
Notwithstanding the above examples, very little research can be found on the automatic scoring

of a melody. As mentioned, formal, written-down rules for a given musical style typically do not
exist. An exception is counterpoint music: the formalised and restrictive nature of this style is
exemplified by the fact that very formal rules exist for both a single melody and the harmony
between several melodies. Counterpoint music starts from a single melody called the cantus
firmus (“fixed song”), composed according to a set of melodic rules and adds a second melody
(the counterpoint). The counterpoint is composed according to a similar set of melodic rules,
but also needs to adhere to a set of harmonic rules, that describe the relationship between the
cantus firmus and the counterpoint [Norden, 1969]. Aguilera et al. [2010] use probabilistic logic to
generate counterpoint music in C major, based on a given cantus firmus. This application only
assesses the harmonic characteristics of counterpoint, the melodic aspect is ignored. GPmuse
implements a genetic algorithm that “optimises florid counterpoint in C major, by using a fitness
function based on the homework problems described by Fux [Polito et al., 1997].

Although other studies have used Fux’s rules in order to calculate the counterpoint-quality of
a musical fragment, the exact way in which they are quantified is usually not mentioned. Some
studies only focus on a few of the most important rules instead of looking at the entire theory
[Anders, 2007]. The next section will discuss the Fuxian rules for first species counterpoint and
how they have been quantified to determine the “quality” (i.e., adherence to the rules) of a
fragment consisting of a cantus firmus and a counterpoint melody. This quality score will be
used as the objective function of a local search metaheuristic, that is developed in Section 3.

2. Quantifying musical quality

This paper focuses on a specific type of polyphonic classical music called first species counterpoint.
A polyphonic musical fragment consists of two or more voices, also called parts or melodies.
The term “counterpoint” refers to the relationship between those melodies. The complexities
that arise from playing different notes at the same time has given rise to a very restrictive and
formalised set of rules on how to compose polyphonic music.

The species counterpoint rules written by Johann Fux in 1725 are one of the most restrictive
sets of rules for composing classical music. This system was originally developed as a pedagogical
tool, for students learning how to compose. It consists of five species or levels (first, second, third,
fourth and the most complex is called florid counterpoint) that are taught in sequence. Each
species adds more complexity to the music, e.g., more notes per part, or different rhythmical
structure. The Fuxian counterpoint rules shape the basis of much of the classical music that is
composed today [Norden, 1969].

First species counterpoint is the most restrictive species. It is often referred to as “note-against-
note” counterpoint because only whole notes are allowed [Adiloglu and Alpaslan, 2007]. The rules
of first species counterpoint apply to a polyphonic musical fragment consisting of two parts or
melodies: a cantus firmus and a counterpoint melody. The cantus firmus is a base melody to
which the counterpoint melody is added. This latter melody takes into account not only the
melodic transitions between notes within the melody (i.e., the horizontal aspect of the music),
but also the harmonic interplay between the two melodies (i.e., the vertical aspect) [Aguilera
et al., 2010]. The fact that Fux’s rules are the most restrictive set of rules that exist in music
theory, makes them ideal to use as quantifiers of quality in an optimisation context.

In this work, the Fuxian rules as described by Salzer and Schachter [1969] are used to model
the objective function of a music composition optimisation problem. Contrary to existing work,
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the objective function developed in this paper spans Fux’s complete theory, and is based on
the qualitative Fuxian rules formalised by Salzer and Schachter [1969]. Full details are given in
appendix A. Some examples rules are listed below.

• Each large leap should be followed by stepwise motion in the opposite direction.

• Only consonant intervals are allowed.

• The climax should be melodically consonant with the tonic.

• All perfect intervals should be approached by contrary or oblique motion.

In order to determine how well a generated musical fragment s, consisting of a cantus firmus
(CF) and a counterpoint (CP) melody, adheres to the counterpoint style, the Fuxian descriptive
rules are quantified. The objective functions for the CF and CP melodies are represented in
equations (1) and (2) respectively. The objective function for the entire fragment is the sum of
these two, as shown in equation (3). Both objective functions are the sum of several subscores,
one per rule, whereby each subscore takes a value between 0 and 1. The lower the score, the
better the fragment adheres to the rule. A “perfect” musical fragment therefore has an objective
function value of 0. The relative importance of a subscore is determined by its weight. The
weights ai (for the subscores of “horizontal” rules) and bi (for the subscores of “vertical” rules)
can be set by the composer to calculate the total score. The score for the CF melody (fCF) only
consists of a horizontal aspect, whereas that of the CP melody (fCF), takes into account the
horizontal scores of the CP melody as well as the vertical scores, that evaluate the interaction
between the two melodies.

fCF(s) =
�

i

ai.subscore
H

i (s)

� �� �
horizontal aspect CF

(1)

fCP(s) =
�

i

ai.subscore
H

i (s)

� �� �
horizontal aspect CP

+
�

j

bj .subscore
V

j (s)

� �� �
vertical aspect CP

(2)

f(s) = fCF(s) + fCP(s) (3)

The rules used in the above objective function, can be seen as “soft” constraints. Although
the algorithm developed in the next section tries to find a musical fragment that violates as few
of these rules as possible (and by as little as possible) a fragment that breaks some of the rules is
not necessarily “infeasible”. For pieces of arbitrary length, it is additionally not known whether
it is possible to adhere to all the rules. Music theory also imposes a set of “hard rules”, that have
been implemented as constraints in the optimisation problem. These rules, such as “all notes
are from the tonal set” and “all notes are whole notes”, always need to be satisfied, in order to
obtain a feasible fragment.

The very restrictive nature of counterpoint and the large number of rules that all need to be
satisfied at the same time, make it a difficult craft for human composers to master. For several
of the rules, it is not easy to see or hear if they are fulfilled. E.g., it takes an extremely trained
ear or a laborious manual counting of the intervals to check whether the rule “the beginning and
the end of all motion needs to be consonant” has been satisfied. However, the quantification
of the counterpoint rules allows them to be objectively assessed by a computer, and allows a
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Figure 1: Cantus firmus and counterpoint example with objective score f(s) = 1.589

computer to judge whether one fragment is “better” than another. This information is used in
the algorithm developed in the next section.

As an example, the score on the objective function of the counterpoint example given by Salzer
and Schachter [1969] (see Figure 1) is calculated. As expected, both the horizontal (respectively
0.44 and 0.64) and the vertical part (0.5) of the score are very good and close to the optimum
(f(s) = 0), yet not totally optimal. This shows that even experienced composers have difficulty
in composing a fragment that obeys all Fuxian rules.

3. Variable neighbourhood search to generate counterpoint
fragments

Most of the existing research on the use of metaheuristics for CAC revolves around evolutionary
algorithms. The popularity of these algorithms can partially be explained by their “black-box”
character. Essentially, an evolutionary algorithm only requires that a “fitness” (objective) func-
tion can be calculated. Other components, such as the recombination operator or the selection
operator, do not require any knowledge of the problem that is being solved. This makes it very
easy to implement an evolutionary algorithm, but the resulting algorithm is not likely to be
efficient, compared to other metaheuristics that exploit the specific structure of the problem.
Moreover, evolutionary algorithms generally use a lot of randomness, which brings them more
into the “computer art” domain.

Local search heuristics, on the other hand, are generally more focused on the specific problem
and use far less randomness to search for good solutions. These methods typically operate by
iteratively performing a series of small changes, called moves, on a current solution s. The
neighbourhood N(s) consists of all feasible solutions that can be reached in one single move from
the current solution. The type of move therefore defines the neighbourhood of each solution. The
local search algorithm always selects a better fragment, i.e., a solution with a better objective
function value, from the neighbourhood. This solution becomes the new current solution, and
the process continues until there is no better fragment in the neighbourhood. It is said that the
search has arrived in a local optimum [Hansen et al., 2001]

To escape from a local optimum, the local search metaheuristic called VNS (variable neigh-
bourhood search) uses two mechanisms. First, instead of exploring just one neighbourhood, the
algorithm switches to a different neighbourhood (defined by a different move type) if it arrives in
a local optimum [Mladenovic and Hansen, 1997]. The underlying idea is that a local optimum is
specific to a certain neighbourhood. By allowing other move types, the search can continue. A
second mechanism used by VNS is a so-called perturbation, that randomly changes a relatively
large part of the current solution.
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3.1. Components of the VNS algorithm

The VNS algorithm that is developed in this paper, operates in two sequential phases. First, the
cantus firmus is generated, then the first species counterpoint melody. The algorithm used to
generate both melodies is identical, and differs only in the objective function used. A “solution” in
our algorithm is a musical fragment consisting of a cantus firmus and a first species counterpoint
melody. The algorithm takes as its input the key and length of the fragment that is to be
composed. A fragment that has the correct number of notes, all of which are in the specified key,
is called feasible. The functioning of the VNS algorithm ensures that no infeasible fragments are
generated.

Three types of moves have been defined, they are represented in Table 1 and Figure 2.
The first neighbourhood (N1) is defined by the Swap move type and is generated by swapping

every pair of notes, starting from the current fragment. An example of a swap move is shown in
Figure 2(b). N1 will thus contain all possible fragments that can be obtained by swapping two
notes in the current fragment.

Neighbourhoods N2 and N3 are respectively defined by move types Change1 and Change2. The
Change1 move will change the pitch of any one note to any other allowed pitch. The last move,
Change2, is an extension of the previous one whereby the pitch of two sequential notes is changed
simultaneously to all possible allowed pitches. These last two moves are illustrated in Figures 2(c)
and 2(d).

G ¯ ¯ ¯ ¯
(a) Original

G ¯ ¯ ¯ ¯
(b) Swap move

G ¯ ¯ ¯ ¯
(c) Change1 move

G ¯ ¯ ¯ ¯
(d) Change2 move

Figure 2: Moves

For each neighbourhood, N1, N2 and N3, the algorithm generates all possible feasible fragments
s by applying the corresponding move and selects the one with the best value in the objective
function f(s). This strategy is called a steepest descent and typically ensures a fast improvement
of the value of the objective function.

When no improving fragments can be found in any of the neighbourhoods of the current
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Ni Name Description

N1 Swap Swap two notes
N2 Change1 Change one note
N3 Change2 Change two notes

Table 1: neighbourhoods

fragment, the VNS algorithm uses a perturbation strategy to allow the search to continue. The
perturbation is implemented by reverting back to the current best fragment and changing a
predefined percentage of the notes to a new, random note from the key. The reason for performing
the perturbation move from the current best fragment, and not from the current fragment, is
that this strategy was found to lead to better fragments faster.

Often, the current fragment scores optimally with respect to a large majority of subscores,
but performs badly with respect to some others. The VNS therefore also uses an adaptive
weight adjustment mechanism in order to steer the optimisation in the right direction. This
mechanism adapts the weights of the subscores of the objective function at the same time a
random perturbation is performed. The default setting for all of the weights is 1, although this
can be changed by the user, in order to favour specific rules. The adaptive weight mechanism
works by increasing the weight of the subscore that has the highest value (i.e., the subscore on
which the current fragment has worst performance) by 1 immediately after the perturbation move.
The algorithm then uses the score based on these new weights (called the adaptive score fa(s))
to determine the quality of fragments in the neighbourhoods. In order to determine whether
a fragment is considered as the new current best, however, the algorithm always considers the
original weights. This weight adjustment strategy helps to keep the search strategy in the right
direction, by increasing the impact of otherwise insignificant moves with little impact on the
objective function. After the perturbation, the VNS always uses the Swap move first. The reason
for this is that this neighbourhood does not introduce new notes, and therefore the search cannot
immediately converge back to the previous local optimum.

To prevent the algorithm from getting trapped in cycles (i.e., revisiting the same local optimum
again and again), a simple short term memory structure is introduced. This tabu list [Glover
and Laguna, 1993] prohibits specific moves, more specifically, the ones that have been performed
within the previous iterations. These “forbidden” moves are referred to as tabu active. The num-
ber of iterations that a move remains tabu active is called the tabu tenure. Each neighbourhood
has its own tabu list, including its own tabu tenure. The tabu tenure is expressed as a fraction
of the length of the melody in number of notes.

3.2. General outline of the implemented VNS algorithm

The VNS algorithm starts by generating a fragment s consisting of random notes from the key.
This fragment is set as the initial global best solution sbest.

For the current solution s, the Swap neighbourhood (N1) is generated. Moves on the tabu
list of N1 and infeasible fragments are excluded. The best solution s� of this neighbourhood is
selected as the new current solution s, if its objective function with adaptive weights is better
than that of s (fa(s�) < fa(s)). The move applied to obtain s� is added to the tabu list of the
Swap neighbourhood on a first in first out basis. This procedure is repeated as long as a better
current solution is found, based on the objective function with adaptive weights. Each time a
move is performed, the current solution s is compared to the best global solution sbest, based on
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the original objective function f(s). If f(s) is better than f(sbest), the current solution s becomes
the new global best solution sbest.

If no better current solution, based on fa(s), is found in the first neighbourhood, the algo-
rithm switches to the Change1 neighbourhood (N2) and repeats the same procedure. If it again
cannot find a better current solution in the Change1 neighbourhood, it switches to the Change2
neighbourhood (N3).

If the algorithm goes through all three of the neighbourhoods without finding a better current
solution (based on fa(s)), then a perturbation is performed. r% of the notes of s are randomly
changed to form the new current solution s. The weight of the subscore of the best solution
(sbest) that has the highest value is also increased by one. If f(s) is better than f(sbest), the
current solution s becomes the new global best solution sbest.

The algorithm continues to repeat these steps (generating the three types of neighbourhoods),
until either the optimum is found or it has reached the maximum number of iterations without
improving the best global solution sbest, as specified by the user through the maxiters parameter.

4. Implementation

The VNS algorithm has been implemented in C++. To improve the usability of the software,
a plug-in for the open source music composition and notation program MuseScore has been
developed in JavaScript using the QtScript engine (Figure 3). This allows for easy interaction
with Optimuse (the implementation of the VNS algorithm) through a graphical user interface.
A cantus firmus can either be generated from a menu link, or composed on screen by clicking on
the staff. When the cantus firmus has been generated, the counterpoint melody can be generated
from a second menu link. The user can specify the input parameters such as the key (i.e.,
G# minor) and the weights for each subscore in an input file (input.txt). Other parameters
of the algorithm, such as the ones discussed in the next section can optionally be passed as
command line arguments. The resulting counterpoint music is displayed in score notation and
can immediately be played back. MuseScore also provides easy export to midi, pdf, lilypond
and other popular music notation formats. The fragment is also automatically exported in
the MusicXML format, a relatively new format that is designed to facilitate music information
retrieval. MuseScore can be downloaded at musescore.org. Optimuse is available for download
at antor.ua.ac.be/optimuse.

Figure 3: MuseScore
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5. Experiments

The VNS algorithm described in Section 3 has several components. In this section, an experiment
is described that has been set up to test the effectiveness of the different parts of the developed
VNS and to determine their optimal parameter settings. In this way, components of the algorithm
that do not contribute to the final solution quality can be removed. Separate experiments were
performed for the generation of cantus firmus and of counterpoint. The different parameters that
have been tested are displayed in Table 2. In Section 5.3, a small fragment is generated with the
best parameter settings.

Parameter Values Nr. of levels

N1 - Swap on with tt1=0, tt1=
1
4 , tt1=

1
2 , off 4

N2 - Change1 on with tt2=0, tt2=
1
4 , tt2=

1
2 , off 4

N3 - Change2 on with tt3=0, tt3=
1
4 , tt3=

1
2 , off 4

Random move (randsize) 1
4 changed, 1

8 changed, off 3
Adaptive weights (adj. weights) on, off 2
Max. number of iterations (iters) 10, 50, 100 3
Length of music (length) 16, 32, 48, 64 notes 4
tti = tabu tenure of the tabu list of neighbourhood Ni, expressed as a fraction of the total number of notes

Table 2: Parameters

A full-factorial experiment was performed for each of the experimental groups (cantus firmus
and counterpoint). The total number of runs for both groups is n = 4068 (2 × 32 × 44). The
results of these 4068 runs of the algorithm were analysed by performing a Multi-Way ANOVA
(Analysis of Variance). Using the open source statistical software R [Bates D., 2011], a model was
estimated that takes into account these basic variables (see Tables 3 and 4) and analyses their
impact on the musical quality of the end result, as well as on the running time of the algorithm.

5.1. Cantus Firmus

Measure Value

R2 0.2605
R2 Adj 0.2577
F-statistic 95.1
p-value < 2.2e−16

Table 3: Model without interactions (CF) - Summary of Fit

When including only the main effects, the R2 statistic of the linear regression (Table 3) shows
that approximately 26% of the total variation around the mean value of the objective function
can be explained by the model. However, the value of the R2 statistic and therefore also the
quality of the model can be increased by including interaction effects. In order to determine
which parameters have a significant influence on the quality of the generated music, a model was
calculated that takes into account the interaction effects of the significant factors (p < 0.05). This
high quality model has an R2 statistic of approximately 96% (Table 5), which means that it can
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Parameter Df Sum Sq Mean Sq F value Prob (>F)

N1 1 37.47 37.465 220.3070 < 2.2e−16 *
N2 1 62.78 62.778 369.0956 < 2.2e−16 *
N3 1 124.50 124.501 731.9956 9.702e−06 *
tt1 2 0.01 0.006 0.0373 0.9634
tt2 2 0.21 0.107 0.6274 0.5340
tt3 2 0.22 0.110 0.6477 0.5233
randsize 2 37.93 18.964 111.4955 < 2.2e−16 *
adj. weights 1 3.34 3.335 19.6100 9.718e−06 *
iters 2 4.82 2.412 14.1792 7.261e−07 *
length 3 3.71 1.235 7.2613 7.406e−05 *

Table 4: Multi-Way ANOVA model without interactions (CF)

explain 96% of the variation. The most important influential factors of the model are displayed
in Table 10 in appendix B.

Measure Value

R2 0.9612
R2 Adj 0.9556
F -statistic 171.8
p-value < 2.2e−16

Table 5: Model with interactions (CF) - Summary of Fit

A similar Multi-Way ANOVA test has been performed, using the computation time of the
algorithm as the dependent variable. The results of this analysis are displayed in Table 6 and
show that all factors, except for the tabu list tenure for N1 and N3, have a significant influence
on the running time.

Examination of the results of the ANOVA Table with interaction effects reveals that most of
the factors have a very low p-value. This means that they have a significant influence on the
result. The large number of small p-values indicates that most of the factors make a contribution
to the model. Only tt1, the tabu tenure of N1 does not seem to have a significant influence
on the quality of the result. We will take a more extensive look at the exact effect that the
different parameters settings have on the objective function of the end result, by also taking into
account their means plots (Figure C in appendix C). The means plots visualise the impact of
each parameter setting in one graphical overview.

The ANOVA Table (Table 10) shows that parameters N1, N2 and N3 all have a significant
influence on the quality of the generated music (p-value< 2e−16). Figures 6(a), 6(b) and 6(c) show
that activating one of the neighbourhoods will have a decreasing effect on the score. However,
they also show that adding a neighbourhood increases the mean running time for both N1 and
N3. According to Table 6 this effect on the running time is significant. In deciding the optimal
parameter settings, the primary objective was the musical quality; the computing time was
considered a secondary objective. The three neighbourhoods will therefore be included in the
optimal parameter set.

From Tables 6 and 10, it is clear that the tabu tenure for N1 does not have a significant effect
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Parameter Df Sum Sq Mean Sq F value Prob (> F )

N1 1 37397 37397 36.6801 1.503e−9 *
N2 1 13568 13568 13.3081 0.0002672 *
N3 1 22921 22921 22.4816 < 2.186e−6 *
tt1 2 617 308 0.3025 0.7389918
tt2 2 7782 3891 3.8164 0.0220770 *
tt3 2 3225 1612 1.5815 0.2057780 *
randsize 2 445875 222938 218.6638 < 2.2e−16 *
adj. weights 1 18610 18610 18.2537 1.973e−5 *
iters 2 429998 214999 210.8771 < 2.2e−16 *
length 3 2114993 704998 691.4822 < 2.2e−16 *

R
2=0.3981

Table 6: Multi-Way ANOVA model for Time

on the quality or the computing time (p-values 0.535733 and 0.7389918). The tabu tenures for
N2 and N3 do have a significant influence. The means plots 6(e) and 6(f) show that tabu tenures
of respectively 1

4 and 1
2 (i.e., 25% and 50% of the length of the number of notes of the melody

respectively) contribute most to a higher result quality.
With p < 2e−16, the random perturbation size clearly has a significant effect on the solution

quality. Plot 6(g) indicates that a perturbation will result in music of better quality, and that a
perturbation of 12.5% offers the best results in the objective score, although this has a significant
negative effect on the computing time.

Table 10 demonstrates that the adaptive weights parameter also has a significant influence
on the musical quality if we take the interaction effects into account. Figure 6(h) shows that
activating this parameter has a significant lowering effect on the mean computing time as well
as the objective function. This means that the adaptive weights procedure makes a positive
contribution to the general effectiveness of the VNS.

The maximum number of iterations is a significant factor in the algorithm (p < 2.2e−16).
The means plot 6(i) clearly shows that solution quality improves when the maximum number of
iterations is higher. However, as expected, this is paired with a significant increase in computing
time.

5.2. Counterpoint

The same full factorial experiment was run on the VNS algorithm to generate the counterpoint
melody. This time, the algorithm generates the counterpoint melody, given a cantus firmus
melody. As discussed in Section 2, a vertical aspect comes into play when generating the objective
function.

Table 7 indicates that the model with interactions can explain approximately 91% of the total
variation around the mean value of the objective function. The detailed results of this model
are displayed in the ANOVA Table with interactions (Table 8). The ANOVA model shows
the same significant parameters as the analysis in the previous section. The mean plots for
the cantus firmus (Figure D in appendix D) also show a strong resemblance to the ones with
the counterpoint results (Figure C). The conclusions of the previous section can therefore be
extended to the counterpoint results.
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Measure Value

R2 0.9122
R2Adj 0.9062
F -statistic 152.4
p-value < 2.2e−16

Table 7: Model with interaction effects (CP) - Summary of Fit

Parameter Df Sum Sq Mean Sq F value Prob (> F )

N1 1 323.99 323.99 1173.4292 < 2.2e−16 *
N2 1 723.12 723.12 2618.9755 < 2.2e−16 *
N3 1 1794.21 1794.21 6498.1957 < 2.2e−16 *
randsize 2 1441.36 720.68 2610.1349 < 2.2e−16 *
iters 2 61.69 30.84 111.7095 < 2.2e−16 *
length 3 104.29 34.76 125.8989 < 2.2e−16 *
tt1 2 0.76 0.38 1.3815 0.2513093
tt2 2 4.17 2.09 7.5519 0.0005321 *
tt3 2 104.13 52.07 188.5756 < 2.2e−16 *
adj. weights 1 5.13 5.13 18.5697 1.675e−05 *

Interactions of all significant factors are included in the model, but omitted in the Table for clarity.

Table 8: Multi-Way ANOVA model with interaction effects (CP)

5.3. Optimal parameter settings

The means plots and ANOVA analysis give a good indication of the significant parameters and
their optimal setting. Table 9 summarises the optimal parameter settings. As mentioned, these
parameters were set in a way that always favoured solution quality over computing time. In other
words, the effect of a parameter on the computing time was only taken into account if the means
plot did not show any effect on the quality.

Parameter Values

N1 - Swap on with tt1=0
N2 - Change1 on with tt2=

1
4

N3 - Change2 on with tt3=
1
2

Random move 1
8 changed

Adaptive weights on
Max. number of iterations 100
Length of music 64 notes

tti = tabu tenure of the tabu list of neighbourhood Ni, expressed as a fraction of the total number of notes

Table 9: Best parameters

The algorithm was run again with these optimal parameter settings. Figure 4 shows the
evolution of the solution quality over time, which is characterised by a fast improvement of
the best solution in the beginning of the algorithm. After several iterations, the improvements
diminish in size, especially in the case of counterpoint. The random perturbations can be spotted
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on the graph as peeks in the objective score. They are usually followed by a steep descent which
often results in a better “best solution”, confirming the importance of the random perturbation
factor.
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Figure 4: Evolution of the VNS with optimal parameter settings

An example of the music that is generated by the algorithm with these settings is displayed in
Figure 5. With an objective score as low as 0.371394, this fragment can be considered as good
first species counterpoint music.

Figure 5: Generated counterpoint with score of 0.371394
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6. Conclusions

In this paper, an efficient VNS algorithm has been developed to automatically “compose” musical
fragments consisting of a cantus firmus and a first species counterpoint melody. To this end the
first species counterpoint rules have been quantified and used as an objective function in a local
search algorithm. The different parameter settings of the VNS were extensively analysed by
means of a full factorial experiment, which resulted in a set of optimal parameter settings. The
resulting algorithm was then implemented in a user-friendly way. The musical output of the VNS
has a good objective score and is pleasing to the ear.
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An interesting extension of this work would be to evaluate different styles and types of music.
A rhythmic component can be added to the music, by working with other species of counterpoint,
such as florid counterpoint. The number of parts can also be increased, to allow more voices at
the same time. Three part counterpoint offers a logical starting point for this expansion.

An analysis of a large database of existing music could also result in more detailed style
characteristics, for instance specific to a composer. This could expand the objective function, so
that more complex music can be generated. It is also interesting to compare the current VNS
algorithm with other methods, such as a genetic algorithm, and compare their efficiency. This
could be the subject of future research.
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A. Detailed breakdown of objective function

Horizontal Score

These rules apply to a tonal cantus firmus consisting of L × 16 whole notes. L is the length of the fragment
expressed in units of 16 notes.

1. Notes should not be repeated immediately. In the case of counterpoint, maximum two times two
tied notes per L are allowed

2. Only consonant horizontal intervals are permitted. Horizontal intervals of 0, 1 ,2, 3, 4, 5, 7, 8, 9, 12,
15 and 16 semitones are consonant. The largest allowed consonant interval between two consecutive
notes is the perfect octave.

3. Conjunct: stepwise movement should predominate, 2 to 4 leaps per L are optimal. Stepwise motion
is an interval of 1 or 2 semitones. If the context is prevailing stepwise (90%), an exception can be
made.

4. Each large leap should be followed by stepwise motion. A leap is an interval of more than 2 semitones.
A large leap is an interval of more than 4 semitones.

5. Change direction after each large leap.

6. There should be one climax (high note).

7. Climax should be melodically consonant with tonic.

8. No more than two large leaps per L.

9. No more than two consecutive leaps.

10. Do not move too long, stepwise, in same direction.

11. The direction needs to change several times (min 3 times per L).

12. The starting note should be the tonic. In the case of counterpoint, the starting note can also be the
dominant.

13. The ending note should be tonic and in same octave as starting note.

14. The penultimate note should be the leading tone for CP and the supertonic for CF. The leading
tone is the 7th note of the scale. In the case of a minor scale it should be raised by half a tone.
When the previous note is the sixth note of the scale, it is also allowed to be raised by half a tone.

15. The beginning and the end of all motion should be consonant. A motion interval is the interval
between the start and end note of an upward or downward movement.
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16. There should be a good balance between ascending and descending motion. Large motion intervals
(> 9 semitones) should be avoided.

17. No frequent repetition of a single note (maximum 3 times per L).

18. No repetition of sequences within a 16 note interval. A sequence is a group of at least two notes.

subscoreH1 (s) =

�
#repeated notes

L if #repeated notes ≤ L,

1 if #repeated notes > L.
(4)

subscoreH1 (s) =
#2 repeated notes− 2× L

length − 2 × L
(5)

subscoreH2 (s) = 1− #consonant intervals

#intervals
(6)

subscoreH3 (s) =






0 if 2×L ≤ #leaps ≤ 4×L,
#leaps−(4×L)

length−1−(4×L) if 4×L < #leaps,
#leaps

length−1−(4×L) if 2×L > #leaps.

(7)

subscoreH4 (s) =

�
0 if ≥ 90% of intervals are 1 or 2 semitones,
#large leaps not foll. by stepw. mot.

#large leaps if < 90% of intervals are 1 or 2 semitones.
(8)

subscoreH5 (s) =
#large leaps not followed by ∆direction

#large leaps
(9)

subscoreH6 (s) =
#occurences of highest note− 1

length
(10)

subscoreH7 (s) =

�
0 if climax is consonant with tonic,

1 if climax is not consonant with tonic.
(11)

subscoreH8 (s) =

�
0 if #large leaps ≤ 2×L,
#large leaps−(2×L)
length−1−(2×L) if #large leaps > 2×L.

(12)

subscoreH9 =
# of 3 consecutive leaps

length− 3
(13)

subscoreH10(s) =

�
0 if longest stepwise sequence ≤ 5,
length of longest stepwise sequence

length−6 if longest stepwise sequence > 5.
(14)

subscoreH11(s) =

�
0 if # direction changes ≥ 3×L,

1− # direction changes
3×L if # direction changes < 3×L.

(15)

subscoreH12(s) =

�
0 if start note is tonic (or dominant in the case of CP),

1 if start note is not tonic.
(16)

subscoreH13(s) =






0 if end note is tonic in same octave as start note,

0.5 if end note is tonic, but is not equal to start note,

1 if end note is not tonic.

(17)

subscoreH14(s) =






0 if pen. is leading note (CP) or supertonic (CF) in same oct. as end note,

0.5 if pen. is leading note (CP) or supertonic (CF), not in same oct. as end note,

1 if pen. is not leading note (CP) or supertonic (CF).
(18)
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subscoreH15(s) =
#times that start and end of motion are dissonant

#motion intervals
(19)

subscoreH16(s) =
#motion intervals > 9 semitones

#motion intervals
(20)

subscoreH17(s) =
#notes repeated more than (3× L) times

length
(21)

subscoreH18(s) =
#notes that are part of a rep. seq. within a 16 note interval

length
(22)

Vertical Score

1. Only consonant vertical intervals are permitted. Vertical consonance is determined by the tonal
distance between the cantus firmus (CF) and the counterpoint (CP). Vertical intervals of 0, 3, 4, 7,
8, 9, 12, 15 and 16 semitones are consonant.

2. All perfect intervals should be approached by contrary or oblique motion. Intervals of 0, 5, 7 and
12 semitones are considered perfect. There are four types of motion:

• Contrary motion: CP and CF move in a different direction.

• Similar motion: CP and CF move in the same direction.

• Parallel motion: CP and CF move in the same direction at a constant (or virtually constant)
distance. Thirds, sixths and tenths are considered parallel, even if the quality of the interval
changes (minor vs major).

• Oblique motion: one voice remains stationary and the other voice moves.

3. Avoid the overlapping of parts. Overlap occurs when the CF is 1 or 2 semitones higher than the
previous note of the CP. Or when the CP is 1 or 2 semitones lower than the previous note of the
CF.

4. The maximum allowed distance between voices is one tenth (16 semitones). With the exception of
the climax.

5. There should be no crossing. Crossing occurs when the lower voice is above the upper voice.

6. Unison is only allowed in the beginning and end

7. Avoid leaps simultaneously in the cantus firmus and counterpoint. Especially leaps larger than one
fourth (6 semitones) in the same direction.

8. Use all types of motion.

9. From unison to octave (and vice versa) is forbidden.

10. The ending should be unison or octave.

11. The beginning should be unison, octave or fifth above cantus.

12. Contrary motion should predominate slightly.

13. Thirds, sixths and tenths should predominate.

14. There can be no more than 3 successive parallel thirds, sixths and tenths.

15. The climax of the CF and CP should not coincide.

subscoreV1 (s) = 1− #consonant intervals

#intervals
(23)

subscoreV2 (s) =

�
#perfect intervals not appr. by contr. or obl. motion

#perfect intervals if #perfect intervals �= 0,

0 if #perfect intervals = 0
(24)
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subscoreV3 (s) =
#overlaps

#length-1
(25)

subscoreV4 (s) =
#distances > 16 semitones

length
(26)

subscoreV5 (s) =
#crossed notes

length-1
(27)

subscoreV6 (s) =
#unisons (excl beginning and end)

length-2
(28)

subscoreV7 (s) =
(#sim leaps not in same dir) + 2× (#sim leaps > 6 semitones in same dir)

2×#intervals
(29)

subscoreV8 (s) = 1− #different types of motion used

4
(30)

subscoreV9 (s) =
#motion from unison to octave and vsvs

length
(31)

subscoreV10(s) =

�
1 if end is not unison or octave,

0 if end is unison or octave.
(32)

subscoreV11(s) =

�
1 if beginning is not unison, octave or fifth above cantus,

0 if beginning is unison, octave or fifth above cantus.
(33)

subscoreV12(s) =

�
1 if # contrary motion ≤ all other motion,

0 if # contrary motion > all other motion.
(34)

subscoreV13(s) =

�
0 if # thirds, sixths and tenths ≥ 50%,

1 if # thirds, sixths and tenths < 50%.
(35)

subscoreV14(s) =
#sequences of parallel thirds, sixths and tenths > 3

length-3
(36)

subscoreV15(s) =

�
1 if the climax of the CF and CP coincide,

0 if the climax of the CF and CP do not coincide.
(37)
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B. Multi-Way ANOVA model with interactions (CF)

Parameter Df Sum Sq Mean Sq F value Prob (> F )

N1 1 37.465 37.465 3685.4635 < 2.2e−16 *
N2 1 62.778 62.778 6175.4618 < 2.2e−16 *
N3 1 124.501 124.501 12247.2613 < 2.2e−16 *
tt1 2 0.013 0.006 0.6242 0.535733
tt2 2 0.213 0.107 10.4974 2.837e−05 *
tt3 2 0.22 0.11 10.8363 2.025e−05 *
randsize 2 37.927 18.964 1865.4689 < 2.2e−16 *
adj. weights 1 3.335 3.335 328.102 < 2.2e−16 *
iters 2 4.823 2.412 237.2371 < 2.2e−16 *
length 3 3.705 1.235 121.4919 < 2.2e−16 *
N1:N2 1 79.381 79.381 7808.7883 < 2.2e−16 *
N1:N3 1 97.219 97.219 9563.5288 < 2.2e−16 *
N2:N3 1 190.144 190.144 18704.564 < 2.2e−16 *
N1:randsize 2 0.8 0.4 39.3468 < 2.2e−16 *
N2:randsize 2 5.144 2.572 252.9978 < 2.2e−16 *
N3:randsize 2 17.73 8.865 872.0523 < 2.2e−16 *
N1:adj. weights 1 0.017 0.017 1.6866 0.1941202
N2:adj. weights 1 0.025 0.025 2.4398 0.1183666
N3:adj. weights 1 0.046 0.046 4.5202 0.033557 *
randsize:adj. weights 2 5.591 2.795 274.9924 < 2.2e−16 *
N1:iters 2 0.844 0.422 41.4913 < 2.2e−16 *
N2:iters 2 2.203 1.102 108.369 < 2.2e−16 *
N3:iters 2 4.32 2.16 212.4846 < 2.2e−16 *
randsize:iters 4 0.359 0.09 8.8365 4.225e−07 *
adj. weights:iters 2 0.122 0.061 6.0082 0.0024806 *
N1:length 3 1.395 0.465 45.7464 < 2.2e−16 *
N2:length 3 0.196 0.065 6.4358 0.0002411 *
N3:length 3 0.964 0.321 31.5985 < 2.2e−16 *
randsize:length 6 0.168 0.028 2.7547 0.0112953 *
adj. weights:length 3 0.018 0.006 0.5819 0.6268833
iters:length 6 0.024 0.004 0.3941 0.8832212
N1:N2:N3 1 238.596 238.596 23470.7999 < 2.2e−16 *
N1:N2:randsize 2 2.539 1.27 124.8853 < 2.2e−16 *
N1:N3:randsize 2 2.501 1.251 123.0317 < 2.2e−16 *
N2:N3:randsize 2 16.622 8.311 817.5753 < 2.2e−16 *
N1:N2:adj. weights 1 0.025 0.025 2.4761 0.1156635
N1:N3:adj. weights 1 0 0 0.0013 0.9709671
N2:N3:adj. weights 1 0.001 0.001 0.1372 0.711064
N1:randsize:adj. weights 2 0.132 0.066 6.4709 0.001564 *
N2:randsize:adj. weights 2 0.004 0.002 0.2066 0.8133344
N3:randsize:adj. weights 2 0.205 0.102 10.064 4.367e−05 *
N1:N2:iters 2 2.026 1.013 99.6471 < 2.2e−16 *
N1:N3:iters 2 1.941 0.97 95.4637 < 2.2e−16 *
N2:N3:iters 2 7.03 3.515 345.7817 < 2.2e−16 *
N1:randsize:iters 4 0.248 0.062 6.0981 6.875e−05 *
N2:randsize:iters 4 0.11 0.028 2.7069 0.0287158 *
N3:randsize:iters 4 0.301 0.075 7.4022 6.164e−06 *
N1:adj. weights:iters 2 0.005 0.003 0.25 0.7787971
N2:adj. weights:iters 2 0.01 0.005 0.4876 0.614123
N3:adj. weights:iters 2 0.063 0.032 3.1004 0.0451376 *
randsize:adj. weights:iters 4 0.219 0.055 5.3779 0.0002567 *
N1:N2:length 3 2.794 0.931 91.6277 < 2.2e−16 *
N1:N3:length 3 3.088 1.029 101.2698 < 2.2e−16 *
N2:N3:length 3 0.347 0.116 11.3937 1.942e−07 *
N1:randsize:length 6 0.256 0.043 4.2001 0.0003224 *
N2:randsize:length 6 1.025 0.171 16.7981 < 2.2e−16 *
N3:randsize:length 6 1.296 0.216 21.245 < 2.2e−16 *
N1:adj. weights:length 3 0.008 0.003 0.2673 0.8490325

Interactions of all significant factors are included in the model, but omitted in the Table for clarity.

Table 10: Multi-Way ANOVA model with interactions (CF)
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C. Means plot for cantus firmus
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D. Means plot for Counterpoint
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