FuX, an Android app that generates counterpoint
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Abstract—This paper describes the implementation of an An-
droid application, called FuX, that can continuously play a stream
of newly generated fifth species counterpoint. A variable neigh-
borhood search algorithm is implemented in order to generate the
music. This algorithm is a modification of an algorithm developed
previously by the authors to generate musical fragments of a
pre-specified length [28]. The changes in the algorithm allow the
Android app to play a continuous stream of music. The objective
function used to evaluate the quality of the fragment is based
on a quantification of the extensive rules of this musical style.
FuX is a user friendly application that can be installed on any
Android phone of tablet.

I. INTRODUCTION

In this research an algorithm is implemented that can
continuously play newly generated fifth species counterpoint
on an Android device. In order to do this, the composition
process is modeled as a combinatorial optimization problem.
The objective is to find the right combination of notes so that
the music can be considered as “good”. In general, a musical
fragment is considered to be good when it fits a certain style
as well as possible. The better a fragment fits a style, the
better the better its quality will be. The algorithm that underlies
the FuX app, called Optimuse, uses fifth species counterpoint
style, a type of polyphonic classical music [17]. In a previous
paper, the authors have quantified the extensive rules of this
style. This quantification can be used to determine the coun-
terpoint quality of a fragment [28]. A variable neighborhood
search (VNS) algorithm called Optimuse was developed and
implemented. This algorithm can efficiently generate musical
fragments of a pre-specified length on a pc [28]. In this
research the existing VNS algorithm was modified to generate
a continuous stream of new music. It was then ported to the
Android platform. The resulting Android app, called FuX,
is user friendly and can be installed on any Android phone
or tablet. Possible uses include playing an endless stream
of classical music to babies. Babies often calm down and
experience health benefits from listening to soothing music
[51]. It can be conjectured that the highly consonant style of
classical counterpoint is especially suitable for this purpose.
Moreover, parents who are tired of listening to the same tune
thousands of time might prefer the non-repetitiveness of the
music generated by FuX. FuX also provides an endless stream
of royalty-free music that could be played in elevators, lobbies
and as call center waiting music. Finally, it might offer an
endless source of inspiration to composers.
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The idea that computers could be used to compose music
was formed from the very conception of computers. Ada
Lovelace, the world’s first conceptual programmer [23] already
hinted at using computers to automate composition around
1840:

“[The Engine’s] operating mechanism might act upon other
things besides numbers [...] Supposing, for instance, that
the fundamental relations of pitched sounds in the signs of
harmony and of musical composition were susceptible of
such expressions and adaptations, the engine might compose
elaborate and scientific pieces of music of any degree of
complexity or extent.” — [8]

The research domain “computer assisted composing” or
CAC was born in the mid 20th century. One of the earliest
compositions made by a computer is the “Illiac Suite” from
Lejaren Hiller and Leonard Isaacson in 1957 [50]. They use a
rule-based approach to compose music [2]. Other applications
soon followed. An extensive overview is given by Burton and
Vladimirova [11] and Nierhaus [41].

A. Metaheuristics

Composing music is a computationally complex task, since
the number of possible fragments increases exponentially with
the length of the fragment. For instance, in this paper a set of
10 allowed pitches is defined depending on the selected key.
This means that a small fragment of 32 notes, without taking
into account rhythmic changes, already has 1032 possible com-
binations of pitches. Heuristic or metaheuristic optimization
techniques are very suitable for this type of combinatorial
optimization problem. Metaheuristics do not necessarily return
the optimal solution like exact methods [6], but use a variety of
strategies to find a good solution in a limited amount of time.
There are roughly three categories of metaheuristics [54].

Population-based metaheuristics (evolutionary/genetic algo-
rithms, path relinking,...) usually maintain a set of solutions
(population) and combine solutions from this set into new
ones. The first genetic algorithm applied in the field of music
was developed in 1991 [30]. In the following years, many
population based algorithms have been developed for CAC.
Topics include the generation of jazz solos [5], rhythmic
patterns [31, 55], counterpoint style music [14, 35, 45, 46],
evolving chords [40], combining fragments for orchestration
[13], and others.



Constructive metaheuristics, such as ant colony optimization
and GRASP, form a second class of metaheuristics that build
a solution from its constituent parts. This category is not as
popular as the previous class. In 2007, the first ant colony
algorithm was developed for harmonizing baroque music [18].

Local search techniques (tabu search, variable neighborhood
search,...) are considered to be a third class of metaheuris-
tics. They iteratively improve a single solution [54]. Music
constraint problems have been solved at IRCAM (Institut
de Recherche et Coordination Acoustique/Musique) by local
search techniques [56]. To the authors knowledge, the variable
neighborhood search algorithm for generating counterpoint
developed by the authors is the first VNS applied to this
problem [29]. In contrast to previous studies which often only
optimize a very limited set of rules (such as [14]), a fairly
complete set of counterpoint rules is used in this research.

B. Android

In order to make the implementation of the VNS accessible
and easily useable for a large audience, an Android application
(or app) called FuX is developed in this research. Android is a
software toolkit that runs on a large number of mobile devices.
Mobile phones and tablets have never been more popular and
are getting increasingly more powerful [36].

There are a plethora of other mobile operating systems
available. Symbian from Nokia, Windows Mobile from Mi-
crosoft, BlackBerry from RIM, iOS from Apple etc. According
to a Survey of Oliver [42] none of these operating systems
(including Android) are perfect for developers. The two most
used operating systems are iOS and Android [20]. The VNS
developed in this research is implemented on the Android
system, which allows it to run on a multitude of devices, not
only those from Apple, with many of these devices available at
a relatively low cost. An added advantage is Android’s “open”
nature and large support community compared to iOS’s lack
of developer tools [42]. Google reported that more than 500
million Android devices have been activated [4].

When exploring Google Play', the web based platform to
easily install new Android applications, the category “music”
displays thousands of entries. Many applications have been
developed to play music [58], recommend music based on a
user profile [32] or a travel location [9], assist in browsing
large music libraries [57], finding music by singing/humming
[43], and many more. Park and Chung [43] give an extensive
overview of music related Android applications.

Since Android 1.0 was only released in 2008 [21], the num-
ber of publications on the use of metaheuristics implemented
on this platform is still limited. Added to that, the trend to in-
vent different names for similar existing metaheuristics makes
it harder to get an overview of the entire field [53]. Fajardo
and Oppus [15] have implemented a genetic algorithm for
mobile disaster management. Zheng et al. [59] use simulated
annealing for WiFi based indoor localization on Android.

In the next sections, the objective function and the imple-
mented VNS algorithm are described in detail. Section IV

Thttp://play.google.com

explains the implementation (called FuX) of the VNS for the
Android platform.

II. QUANTIFYING COUNTERPOINT QUALITY

This research focuses on generating fifth species counter-
point music. Johann Fux wrote down the rules for species
counterpoint in 1725 in his Gradus at Parnassum [17]. Al-
though every musical style has its rules, these are often not
written down as formally as Fux’s rules [39]. The rules of
counterpoint are considered to be one of the most restric-
tive sets of rules for composing renaissance music. Fux’s
system was originally developed as a pedagogical tool for
student composers. Therefore strict counterpoint consists of
five species or levels (first, second, third, fourth and the most
advanced is called florid counterpoint) which are all taught in
sequence. With each level, more complexity is added to the
music, e.g., different rhythmical structure. The rules written
down by Fux are are foundational in music pedagogy, even
today [24]. The fact that they are reducible to a set of simple
rules [48] makes it easy to include them as quantifiers of
quality in an objective function.

The fifth species counterpoint in this research consists of a
cantus firmus (CF) and a counterpoint (CP) melody. The cantus
firmus is the melody to which the counterpoint is composed.
The algorithm described in the next section sequentially gener-
ates these two melodies. The counterpoint rules that evaluate
the cantus firmus focus on the melodic properties (i.e., the
horizontal aspect of the music). The rules for the counterpoint
also include the harmonic interplay between the two melodies
(i.e., the vertical aspect) [1]. Example rules are “each large
leap should be followed by stepwise motion in the opposite
direction” and “all perfect intervals should be approached by
contrary or oblique motion”. All of the Fuxian rules based
on Salzer and Schachter [49] were quantified and reduced to
a subscore between 0 and 1. The lower the score, the better
the fragment adheres to the rule. Therefore, the objective of
the VNS is to minimize f,,(s), whereby m = cf in the case
of cantus firmus and m = c¢p for the counterpoint. A full
description of the quantification of the 19 melodic and 19
harmonic subscores is given in [28].

The resulting objective function f,,(s) is used to evaluate
how well a fragment s fits into the counterpoint style is
represented in Equations 1 and 2.
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The relative importance of a subscore can be set by its
weight. Weights a; and b; can be set by the user to emphasize
the importance of certain rules. The default setting considers



all scores to be equally important. Therefore all default weights
are set to 1.

The rules mentioned above can be seen as “soft” rules.
Although the VNS will try to minimize these subscores as
well as possible, it is allowed that some rules are “broken”. In
fact, given the large number of rules, it is quite unlikely that
a fragment can be found that can satisfy them all at the same
time for a piece of arbitrary length.

These soft rules are extended with a set of “hard” rules.
Hard rules are implemented as constraints and can not be vio-
lated like soft rules. When any of the hard rules is violated, the
fragment is considered infeasible. Table I lists the implemented
hard rules.

TABLE 1
FEASIBILITY CRITERIA

No  Feasability criterium

1 All notes come from the correct key.
Only certain rhythmic patterns are allowed for a measure.

3 No rhythmic pattern can be repeated immediately or used
excessively.

4 The first measure is a half rest followed by a half note.

5  The penultimate measure is a tied quarter note,
followed by two eight notes and a half note.

6  The last measure is a whole note.

7  Ties can only exist between measures and notes of the
same pitch.

8 A half note can be tied to a half note or a quarter note.

9 Maximum two measures of the same note value (duration)
are allowed. Variations with eight notes do not count.

In the next section, a variable neighborhood search algo-
rithm is developed that uses f,,(s) as the objective function
and the hard rules as feasibility constraints.

III. VARIABLE NEIGHBORHOOD SEARCH

Most of the available literature in the domain of CAC uses
population-based algorithms (very often genetic/evolutionary
algorithms) to generate music. The “black-box” character of
these algorithms makes them appealing and easy to implement
[30]. However, because they do not rely on a specific problem
structure, they also fail to use it to their advantage. Phon-
Amnuaisuk and Wiggins [44] compare a rule-based system
with a genetic algorithm that was developed for harmonizing
four-part monophonic tonal music. Their conclusion was that
the rule-based system outputs superior quality compared to the
genetic algorithm and conclude that “The output of any system
is fundamentally dependent on the overall knowledge that
the system (explicitly and implicitly) possesses” [44]. Since
local search metaheuristics take into account problem-specific
knowledge, the previous claim supports that they might be
more efficient. Local search algorithms have been proven
efficient in many different fields such as vehicle routing and
scheduling [54].

A. VNS

Variable neighborhood search, or VNS, is a local search
strategy. It starts from an initial solution s and iteratively

makes small improvements (or moves) to the solution in order
to find a better one, i.e., a solution with a better objective
function value. The set of all solutions s’ that can be reached
from the current solution by making one move is called the
neighborhood N (s). The local search always selects a solution
with a better objective function value than the new current
solution. This process goes on until no better solution can
be found in the neighborhood, at which point the search has
arrived in a local optimum and the VNS strategy switches
to a different type of neighborhood. This will allow the
search to escape the local optimum [37]. When none of the
neighborhoods are able to let the search escape from the local
optimum, the VNS uses a perturbation strategy whereby a
relatively large part of the current solution is randomized. This
second strategy will allow the search to continue again [26].

The first implementations of variable neighborhood search
stem from the late 90s. The technique has been successfully
applied eversince. Its applications can be found in a wide
range of combinatorial problems [25] including vehicle routing
[10], project scheduling [16], finding extremal graphs [12], and
graph coloring [3]. For several problems, VNS outperforms
existing heuristics and is able to find the best solution in
moderate computing time [27].

The VNS developed in this research operates in two phases.
In the first phase, the cantus firmus is generated. After that,
the counterpoint is composed on top of this cantus firmus.
The algorithm used to generate the melodies in both phases
is identical, it only differs in the objective function that is
used. The cantus firmus is evaluated by the objective function
that focuses only on melodic rules (Equation 1). For the
counterpoint melody both melodic and harmonic rules are
evaluated (Equation 2). This two-phased design originated
from the fact that a counterpoint melody is usually composed
“against” an existing cantus firmus and also allows a user to
input her own cantus firmus, at least in the original Optimuse
implementation [28].

B. Components

Figure 1 visualizes the developed VNS. An initial random
fragment s is generated whilst taking into account the hard
rules specified in the previous section to ensure feasibility.

The core of the VNS algorithm consists of a local search
strategy in three neighborhoods. The three neighborhoods are
defined by three types of moves (see Figure 2). The change1
move changes the pitch of one note to any other allowed
pitch from the key. The change1 neighborhood (/V;) therefore
consists of the set of fragments that can be formed by changing
the pitch of any one note to any other allowed pitch. The
change2 move expands the previous move by changing two
sequential notes to any other allowed pitch. This move is used
to generate the change2 neighborhood (N3) from the current
fragment. The first two moves are illustrated in Figures 2(c)
and 2(d). The swap neighborhood (/N3) consists of feasible
fragments that can be created by swapping the pitch of two
notes. An example of a swap move is shown in Figure 2(b).



The VNS starts by performing a local search in the
change1 neighborhood. Once the neighborhood is generated,
the algorithm selects the fragment s’ with the best value for
the objective function f,,,(s’) as the new current fragment.
This steepest descent strategy ensures a fast improvement
of the solution quality. This process is repeated until no
better solution can be found in the neighborhood, i.e., a
local optimum is reached. When this happens the local search
switches to the next neighborhood.
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Fig. 1.

Overview of the developed VNS Algorithm

Not all fragments that can be reached by a certain move are
included in the corresponding neighborhood. Fragments that
violate the hard rules described in the previous section are
considered infeasible and excluded from the neighborhood.
Secondly, moves that change notes on places that are listed
on the tabu list are also excluded from the neighborhood.
A tabu list is a short term memory structure that prevents
the algorithm from getting trapped in cycles (i.e., revisiting
the same local optimum again and again) [19]. The tabu lists
work by storing the places of notes that have been changed
in previous iterations and prevents them from being changed
again by the same type of move. Each neighborhood has its
own tabu list, with its own tabu tenure. The tenure or length
determines the number of iterations that a move remains fabu
active.

A few mechanisms were added to the VNS in order to
help the local search escape from local minima. When no
better fragments can be found in any of the neighborhoods
of the current fragment, the VNS performs a perturbation.
This strategy is implemented by reverting back to the global
best fragment and changing r% of the notes to a random pitch
from the key.

Often, the current fragment reaches the optimum value
for a large majority of the subscores, but performs poorly
with respect to others. To correct this, the adaptive weights

adjustment mechanism is set to action at the same time of
the perturbation. This mechanism increases the weight of the
highest (i.e., worst) subscore of the objective function by 1.
The VNS uses the scores based on these new weights (called
the adaptive score f2,(s)) to assess the quality of fragments
during the local search. This weights adjustment mechanism
increases the likelihood of moves (with an otherwise little
impact on the original objective function) in order to improve
subscores that are otherwise ignored. To determine whether
a fragment should be the new global best solution, the score
based on the original weights (f,,(s)) is used.

The VNS will keep improving the solution until the maxi-
mum time limit is reached or the optimal solution f,,,(s) =0
is reached.
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TABLE II
NEIGHBORHOODS
N;  Name Description Neighbourhood size
N;  Changel  Change one note 16 X9 X L
N  Change2  Change two sequential notes 16 X 9X 9% L
N3 Swap Swap two notes (16; L)

L is the length of the fragment expressed in units of 16 notes.

The VNS algorithm described in Figure 1 has a number of
parameters that need to be set, such as the size of the random
jump and whether neighborhood ¢ is used or not. In order
to determine the significant factors and their corresponding
optimal settings, a full factorial experiment was conducted.
A Multi-Way ANOVA model with interaction effects was



constructed with the 2304 instances. The R? statistic of the
model is 0.98, which means that 98% of the variation around
the mean value of the objective function can be explained by
the model. The p-values of all of the factors, except the tabu
tenure of the change1 neighborhood, are smaller then 0.05,
which means they have a significant influence on the value of
the objective function. The optimal settings were determined
by examining the mean and interaction plots. This resulted in
the optimal settings displayed in Table III.

TABLE III
BEST PARAMETERS

Parameter Values

N1 - Changet on with t6; = Tls
N, - Change?2 on with ¢ty = -
N3 - Swap on with tt3 = %
Random move é changed
Adaptive weights on

Max. number of iterations 50

The VNS developed by the authors has been compared with
a random search and a genetic algorithm. It outperforms both
algorithms [29].

One example of static output from the described VNS
algorithm is displayed in Figure 3. The score for this music is
0.556776, which is reasonably good, considering the fact that
random initial fragment score around 10.

C. From Optimuse to FuX

The original VNS implementation is able to compose
fragments of any length, as long as they are a multiple of
16 measures. This version the VNS needs to be able to
sequentially generate new fragments that can be considered as
one large fragment. The implementation was therefore slightly
modified. The VNS is now able to generate 16 measures with
a time limit ¢;. This generated fragment is used as the starting
fragment of the continuously generated piece.

The subsequent fragments that are generated consist of 8
measures and are generated with a time limit ¢2. However
they are evaluated by also taking into account the last 8
measures of the previous fragment. This means that the VNS
always evaluates the last 16 measures. Doing so ensures that
no “breaks” in the music occur.

FuX needs to be able to sequentially generate fragments
that are played live. Thus, the speed of the algorithm becomes
increasingly important, especially since mobile devices often
have limited resources such as low-power CPUs, limited RAM
and slow I/O [42]. In order to speed up the VNS, the order of
the neighborhoods was changed from the previous implemen-
tation to the one listed in Table II. The new order described
in this paper favors the smaller neighborhoods because they
are often able to make large improvements in the beginning
of the run, which ensures that a “reasonable” quality can be
obtained fairly quickly.

IV. ANDROID IMPLEMENTATION

Android is a software toolkit for mobile phones based on the
Linux platform developed by Google and the Open Handset

TABLE IV

MULTITHREADING
Time  Generate Playback
-1 16 measures (file 1)
0Os 8 measures (file 2) file 1
16s 8 measures (file 3) file 2

24s 8 measures (file 4) file 3

Alliance. At the bottom of the Android software stack is the
Linux operating system (Kernel 2.6), this provides all basic
system functionality such as memory management and device
drivers [38]. On top of the OS, there is a set of native libraries
written in C/C++ that offer, for instance, audio and video
support [21]. The next step in the Android stack contains the
runtime engine —the Dalvik Virtual Machine (VM). Dalvik
runs applications written in Android’s variant of java [7].

Android developers can use the Android Software Develop-
ment Kit (SDK), to get access to the same framework that is
used by the core applications. These powerful libraries allow
the development of a wide range of java based applications
[21].

Since resources are typically limited on mobile devices, a
careful consideration had to be made on how to implement
the VNS. Son and Lee [52] recommend the use of Android
Native Development Kit (NDK) for computationally expensive
tasks. This is confirmed by benchmark experiments [34].
Android NDK provides a native development platform that
allows embedding components that use native code. With
NDK, developers can compile C/C++ code for the Android
development platform [47]. Since the previously developed
code for the VNS algorithm was in C++, this code could
be slightly altered and integrated in the Android app. More
details on the original C++ code are described in the author’s
previous paper [28].

A. Continuous generation

The app developed in this research can continuously gener-
ate counterpoint using a VNS. This is achieved by iteratively
generating small MIDI files and playing them consecutively.
Since the music is played by the device as it is being
generated, there should be (at least) two threads running at the
same time. A “generate” thread (thread1) and a “playback”
thread (thread2). This multithreading approach is described
in Table IV. When the app is initialized the VNS algorithm
generates the first 16 measures. These are saved as a MIDI
file. Whenever the user presses “Play”, thread1 generates
the next 8 measures whilst thread2 plays the first MIDI file.
Directly after the first MIDI file finishes playing, the second
MIDI file is played. If the file is not ready yet, thread2 waits
for thread1 to finish the generation process. This should be
avoided, since it causes an interruption in the playback. This
process is repeated until the user pauses or stops it.

The time cutoff for the VNS algorithm is currently set to
10 seconds for the initial generation. This time is divided
between the generation of the cantus firmus (3 seconds) and



Fig. 3.

the counterpoint (7 seconds). Because of the complexity of
the counterpoint, more time was allotted to its generation.
When the cantus firmus reaches an optimum before 3 seconds
are passed, the remaining CF time is added to the CP time.
The total time is divided by taking into account the following
relationship t., = 2 X t.y + 1. This formula doubles the
generation time for the counterpoint and adds one second to
fully exploit the available time. Another relationship might
also work, as long as t., is significantly larger then ;.

For the generation of the 8 measure fragments, 7 seconds
are alotted. This time is divided with the same formula: 2
seconds for the CF and 5 seconds for the CP. The speed of the
MIDI playback is set to 1 beat per second. This means that
the total time available for generating the file is 8 seconds.
The VNS algorithm uses 7 seconds to generate the fragment,
which means that 1 second is available as a buffer for actually
writing the MIDI file.

B. MIDI files

The VNS algorithm is executed in C++ and returns a native
java array. The newly generated music is contained entirely in
the jarray. This jarray is converted to a MIDI file using the
library Android-Midi-Lib [33]. The MIDI files are stored in
the cache folder of the device, so that they are automatically
removed periodically. When the VNS is run to generate the
next fragment, the previous jarray is passed as input to the
VNS algorithm, so that it can take into account the previous
8 measures when evaluating the next musical fragment.

Android’s MediaPlayer class is used to play the MIDI files.
The OnCompletionListener of this class offers a way to easily
play the next MIDI file when playback is finished. Although a
small delay between the files might be heard on older Android
devices, version 4.1 (Jelly Bean) advertises audio chaining
as one of its features [22]. This low latency audio playback
enables the files to be played continuously as if they were one
big file.

C. Implementation and results

Figures 4(a) and 4(b) show the evolution over time of the
objective function for cantus firmus and counterpoint. These
results were obtained by using an Eclipse Android Virtual

Generated fifth species counterpoint fragment

Device with Android 4.0.3, ARM processor and 512MB RAM.
The emulator was installed on an OpenSuse system with
Intel®Core™2 Duo CPU@ 2.20GHz and 3.8GB RAM. The
results show a fairly steady improvement of the objective
function that lessens somewhat over time. When generating
the second file, the initial objective score is better than when
generating file 1. This can be explained by the fact that the
initial fragment is based on 16 randomly generated measures.
The second file is formed by 8 “optimized” measures followed
by 8 randomly generated measures, which causes the starting
score to be better. This is confirmed by Figures 4(a) and 4(b).
When generating file 2 a better end score can be found than
with file 1 despite the lower cutoff times. The maximum cutoff
time of the algorithm is respectively 2 and 3 seconds for CF
and 7 and 10 seconds for CP, as described in section IV-A.
Figure 4(a) shows that the algorithm is able to find an optimal
cantus firmus before the maximum time is reached. This allows
the generation of the counterpoint to begin sooner (after 1.5
and 2 seconds respectively), thus expanding the time that the
VNS can use to generate CP.

The quality of the generated music depends highly on the
architecture of the mobile device on which it is installed. The
results described in the previous paragraph confirm that the
optimal objective score is reached for the cantus firmus. There
is also a significant improvement of the objective score for
counterpoint. While the objective score only measures how
well the generated music fits into the counterpoint style, it
is the subjective opinion of the authors that music sounds
pleasant to the ear even on lower-end devices. The reader
is invited to install the app and listen to the results of this
research.

While the music generated by FuX can be considered to
largely adhere to the counterpoint rules, it would be interesting
to expand the objective function in future versions. Human
baroque composers often base their work on the principles of
counterpoint, but a finished composition has a encompassing
theme and mixes the counterpoint rules with a composer’s
creative freedom. It could be argued that the fact that FuX does
not find the optimal solution, can be interpreted as a random
creative input. Still, an interesting future improvement could
be to add more complex rules to the objective function, thus
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endorsing for instance a recurring theme and more structure,
making the generated music sound more like a complete and
coherent composition.

An official .apk application package has been generated
called FuX. This package is freely available through Google
Play at http://play.google.com and can be installed on any
Android phone from version 2.1 and up. The user interface
for FuX version 1.0 is simple but functional (see Figure 5).
This user interface is currently being redesigned to allow a
user to specify more options such as: instrument, key.. ..

V. CONCLUSION

A user-friendly Android application was implemented that
can continuously play a stream of new counterpoint music. The
implemented app, FuX, uses a variable neighborhood search
algorithm to generate the music. The VNS is based on a similar
algorithm that generates musical fragments of a pre-specified
length on a pc. The original algorithm was adapted to allow
the continuous generation of music. In order to evaluate the
quality of a fragment, a quantification of the extensive rules
of Fux were used. This resulted in an Android app with a
user-friendly interface that can generate a continuous stream
of music that sounds pleasing to the ear.

Future extensions include improvements to FuX’s user

Play

Ready.

Exit

Fig. 5. FuX 1.0 user interface

interface, so that the user can change the key, choose the
instrument, etc. FuX might also be ported to the iOS platform.
Other possible extensions of this research include allowing
more voices at the same time, adding a recurring theme to the
music or working with different musical style. The authors
are currently working on composer-classification models. By
including these models in the objective function FuX could be
adapted to generate music with composer-specific characteris-
tics.
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