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ABSTRACT
We present the results of 2D and 3D hydrodynamic simulations of idealized protoplanetary
discs that examine the formation and evolution of vortices by the vertical shear instability
(VSI). In agreement with recent work, we find that discs with radially decreasing temperature
profiles and short thermal relaxation time-scales, are subject to the axisymmetric VSI. In three
dimensions, the resulting velocity perturbations give rise to quasi-axisymmetric potential
vorticity perturbations that break up into discrete vortices, in a manner that is reminiscent of
the Rossby wave instability. Discs with very short thermal evolution time-scales (i.e. τ ≤ 0.1
local orbit periods) develop strong vorticity perturbations that roll up into vortices that have
small aspect ratios (χ ≤ 2) and short lifetimes (∼ a few orbits). Longer thermal time-scales
give rise to vortices with larger aspect ratios (6 ≤ χ ≤ 10), and lifetimes that depend on the
entropy gradient. A steeply decreasing entropy profile leads to vortex lifetimes that exceed the
simulation run times of hundreds of orbital periods. Vortex lifetimes in discs with positive or
weakly decreasing entropy profiles are much shorter, being 10s of orbits at most, suggesting
that the subcritical baroclinic instability plays an important role in sustaining vortices against
destruction through the elliptical instability. Applied to the outer regions of protoplanetary
discs, where the VSI is most likely to occur, our results suggest that vortices formed by the
VSI are likely to be short-lived structures.

Key words: accretion, accretion discs – hydrodynamics – instabilities – turbulence – proto-
planetary discs.

1 IN T RO D U C T I O N

The presence of long-lived vortices in protoplanetary discs has long
been considered as a means of enhancing the planet building process
because of the ability of these anticyclonic structures to capture and
concentrate dust grains (von Weizsäcker 1944; Barge & Sommeria
1995; Johansen, Andersen & Brandenburg 2004). The presence of
vortices in discs can also lead to significant transport of angular mo-
mentum through the excitation of spiral density waves (Johnson &
Gammie 2005). In spite of the potential importance of vortices for
the evolution of protoplanetary discs and planet formation, how-
ever, the following questions do not yet have definitive answers:
If vortices exist in protoplanetary discs, what are their formation
mechanisms?; Which regions of protoplanetary discs can support
the existence of vortices?; What are the lifetimes of vortices in
protoplanetary discs?

⋆ E-mail: samuel.richard@qmul.ac.uk (SR); r.p.nelson.qmul.ac.ul (RPN);
orkan.m.umurhan@nasa.gov (OMU)

A number of hydrodynamic instabilities have been suggested as
vortex formation mechanisms. The Rossby wave instability (RWI;
Lovelace et al. 1999; Li et al. 2000, 2001) has been shown to pro-
duce large-scale vortices from an initial axisymmetric state when a
non-self-gravitating disc has a sufficiently strong local minimum in
the potential vorticity (Umurhan 2010; Lovelace & Hohlfeld 2013;
Yellin-Bergovoy, Heifetz & Umurhan 2015). The extremum can be
due to a local maximum in surface density, such as can appear at the
edge of the dead zone where a sharp change in effective disc viscos-
ity arises (e.g. Varnière & Tagger 2006), or because a planet opens
a gap in the disc (de Val-Borro, Artymowicz, D’Angelo & Peplin-
ski 2007). Another way to produce vortices is through baroclinic
instability. Klahr & Bodenheimer (2003) introduced the concept of
the global baroclinic instability (GBI), and suggested that a disc
with a global negative entropy gradient could form vortices. More
recently, Petersen, Julien & Stewart (2007a) and Petersen, Stewart
& Julien (2007b) have shown that vortices can form when the disc
has an unstable radial stratification and undergoes thermal relax-
ation (or ‘cooling’). Lesur & Papaloizou (2010) showed in their
study that this instability is actually a non-linear instability (requir-
ing finite amplitude perturbations to be activated) and called it the

C⃝ 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at Q
ueen M

ary, U
niversity of London on M

arch 29, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



3572 S. Richard, R. P. Nelson and O. M. Umurhan

subcritical baroclinic instability (SBI). The non-linearity of the in-
stability means that the finite amplitude perturbations need to be
generated by another unspecified process. A linear instability that
has been suggested as a possible source for these perturbations is
the ‘convective overstability’, in which the growth of epicyclic os-
cillations is powered by the same unstable stratification and thermal
relaxation required for the subcritical instability, leading to the for-
mation of long-lived vortices (Klahr & Hubbard 2014; Lyra 2014).
Finally, there have been recent suggestions that a zombie vortex
instability may arise in stably stratified flows by the formation of
a critical layer which rolls up into vortices, which then excite new
critical layers and vortices, leading eventually to space filling tur-
bulence that is dominated by large vortices (Marcus et al. 2013,
2015).

In this paper, we examine the possibility that vortices may be
formed by the vertical shear instability (VSI). This is a linear in-
stability that was first studied by Goldreich & Schubert (1967) and
Fricke (1968) in the context of differentially rotating stars. The
presence of vertical shear in protoplanetary discs must arise when
there is a radial temperature gradient, and this can lead to the desta-
bilization of inertial-gravity waves (oscillations for which rotation
and buoyancy provide restoring forces) when thermal time-scales
are shorter than viscous time-scales, and are of the order of, or
shorter than, dynamical time-scales (Urpin & Brandenburg 1998;
Urpin 2003; Nelson, Gressel & Umurhan 2013; Barker & Latter
2015; Umurhan, Nelson & Gressel 2015). The recent study by
Nelson et al. (2013) adopted simple equations of state and cool-
ing prescriptions, and showed that this instability can lead to sus-
tained hydrodynamic turbulence with a Shakura–Sunyaev angular
momentum transport parameter α ∼ 10−3 for very short cooling
times. Stoll & Kley (2014) performed non-linear hydrodynamic
simulations with radiation transport and showed that the instabil-
ity operates in the presence of a more complete description of the
gas thermal evolution, albeit with a reduced efficiency of angular
momentum transport. The requirement for very short cooling times
suggests that this instability is most likely to operate in the outer
regions of protoplanetary discs beyond ∼10 au (Nelson, Gressel &
Umurhan 2013; Umurhan, Nelson & Gressel 2013). An analysis
of linear growth rates in discs with energy transport in both the
optically thick and thin regimes presented by Lin & Youdin (2015)
suggests that the VSI should operate at radii in the range 10–50 au.

This paper is organized as follows. In Section 2, we review the
different processes and instabilities that can lead to the formation
and destruction of vortices in discs, and in Section 3 we describe
the disc models that are the basis of our study and the numerical
scheme used in the simulations. The results of two-dimensional,
axisymmetric simulations are presented in Section 4, and the results
of three-dimensional runs that examine the formation and evolution
of vortices are presented in Section 5. Finally, we discuss our results
and draw conclusions in Section 6

2 TH E O R E T I C A L BAC K G RO U N D A N D
E X P E C TAT I O N S

Before presenting our simulation results, we discuss a number of
theoretical results that are of relevance to this numerical study of
the VSI. We make use of both spherical (r, θ , φ) and cylindrical
(R, φ, Z) coordinates in this paper. The cylindrical coordinates are
used in the formulae giving the disc structure (density, temperature
and velocity profile) for convenience, while the spherical coordi-
nates are used for the simulations because they fit better with the
shapes of the disc models.

2.1 RWI

The first vortex-forming instability that has been studied in the
context of protoplanetary discs with near-Keplerian rotation profiles
is the RWI. Using a combination of linear analysis and non-linear
numerical simulations, Lovelace et al. (1999), Li et al. (2000) and
Li et al. (2001) showed that a non-axisymmetric instability may
develop, leading to the formation of a number of vortices, when the
disc contains a local extremum in the function:

L = '

ωz

(
P

'γ

)2/γ

, (1)

where ωz is the vertical component of the vorticity, ' is the surface
density and P is the pressure (ωz/' is the potential vorticity and
P/'γ is related to the entropy). It has been observed that these
vortices often merge to form a single vortex during the advanced
stages of non-linear evolution. Considered within the context of pro-
toplanetary discs, the RWI is normally observed to develop when a
local pressure or density maximum is present in the disc, such as
may occur at the edge of a planet-induced gap (de Val-Borro et al.
2006, 2007) or at the edge of a dead zone where there is a sharp
transition in the disc viscosity (Lyra & Mac Low 2012). Vortices
have also been observed to develop spontaneously in global mag-
netized disc models that sustain the magnetorotational instability
(Fromang & Nelson 2005). Although this latter phenomenon has
not been explored in detail, a possible explanation is that the vor-
tices arise because the RWI feeds off the so-called zonal flows that
are observed to arise in discs with MHD turbulence (Steinacker &
Papaloizou 2002; Papaloizou & Nelson 2003; Johansen, Youdin &
Klahr 2009; Bai & Stone 2014).

2.2 SBI

The existence of a vortex-forming baroclinic instability operating in
protoplanetary discs was first suggested by Klahr & Bodenheimer
(2003), based on a series of non-linear simulations conducted us-
ing disc models with negative radial entropy gradients. The lin-
ear properties of this GBI were investigated by Klahr (2004) and
Johnson & Gammie (2005), who found evidence for only transient
growth. The non-linear evolution was investigated using shearing
box simulations by Johnson & Gammie (2006), who found no in-
stability. Petersen et al. (2007a) examined disc stability using global
anelastic simulations of baroclinic discs with prescribed cooling and
observed the growth of vortices that were found to survive for hun-
dreds of orbits (Petersen et al. 2007b). In a subsequent paper, Lesur
& Papaloizou (2010) used both incompressible and compressible
shearing box simulations to examine the growth and survival of
vortices in discs with radial entropy gradients and imposed cooling,
finding that these discs are unstable to a finite-amplitude instability
that leads to the formation of long-lived vortices – the SBI.

The SBI is a non-linear convective instability that leads to the
formation and amplification of vortices when the radial stratification
satisfies the Schwarschild instability criterion:

N2
R < 0 (2)

and when the flow undergoes thermal relaxation. NR is the radial
Brunt–Vaisala frequency and is defined by

N2
R = − 1

Cpρ

∂P

∂R

∂S

∂R
, (3)

where ρ is the density, P is the pressure, S = Cpln (P1/γ ρ−1) is
the entropy per unit mass, and Cp is the specific heat capacity at
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constant pressure. The thermal relaxation time-scale must be of the
order of one orbital period. Too short a time-scale prevents vortex
formation, while too long a time-scale does not allow vortices to
be amplified. When the stratification is stable (N2

R > 0) vortices are
observed to form, but instead of being amplified they decay and
dissolve into the background flow. The non-linear character of this
instability implies that sufficiently strong perturbations are required
to trigger it.

2.3 Convective overstability

The convective overstability is a linear instability that depends on
having N2

R < 0 and thermal relaxation on ∼ dynamical time-scales
(Klahr & Hubbard 2014; Lyra 2014). The instability involves the
growth of horizontal epicyclic oscillations, hence the name by which
it is known, and according to the study by Lyra (2014) it leads to the
formation of long-lived vortices. It has been suggested as a possible
source of the finite amplitude perturbations required for the SBI to
operate. Vertical buoyancy has not been included in the analysis of
this instability so far, so its behaviour in vertically stratified discs
remains unexplored.

2.4 VSI

The Rayleigh criterion for hydrodynamic stability is satisfied by
discs with strictly Keplerian rotation profiles because

dj 2

dR
> 0, (4)

where j = R2+(R) is the specific angular momentum. More gen-
erally, a disc with angular velocity varying with both radius and
height, +(R, Z), that is subject to adiabatic, axisymmetric perturba-
tions is stable according the Solberg–Hoiland criteria (e.g. Tassoul
1978). For accretion discs with negative radial and vertical pressure
gradients these stability criteria can be written

1
R3

∂j 2

∂R
+ 1

ρCp

(∣∣∣∣
∂P

∂R

∣∣∣∣
∂S

∂R
+

∣∣∣∣
∂P

∂Z

∣∣∣∣
∂S

∂Z

)
> 0 (5)

∂j 2

∂R

∂S

∂Z
− ∂j 2

∂Z

∂S

∂R
> 0. (6)

For a nearly inviscid disc in which perturbations are no longer adia-
batic, the thermal evolution of perturbed fluid elements can remove
the stabilizing influences of entropy gradients when the cooling time
is short enough. This leads to the well-known Goldreich–Schubert–
Fricke instability (Goldreich & Schubert 1967; Fricke 1968), which
in the context of accretion discs is known as the VSI (Urpin 2003).
The VSI develops when the flow is vertically sheared and almost
locally isothermal. The instability criterion is

∂j 2

∂R
− kR

kZ

∂j 2

∂Z
< 0. (7)

Vertical shear is always present in a protoplanetary disc, unless
the flow is isothermal or homentropic, and |∂j 2/∂R| ≫ |∂j 2/∂Z|,
so the instable modes have kR ≫ kZ (radial wavelengths are much
shorter than vertical wavelengths). In the locally isothermal limit,
the maximum growth rate of the VSI depends on the temperature
profile and the scaleheight:

,max ∼ |q|
(

H

R

)
+, (8)

where q is the temperature profile power-law index. In a recent
study, Nelson et al. (2013) showed that the VSI can cause a disc
to become highly turbulent in the locally isothermal regime, with
velocity perturbations having very short radial wavelengths such
that there are strong local gradients in the flow. The only simulations
conducted in 3D in that work utilized a locally isothermal equation
of state, and the resulting turbulence led to the excitation of spiral
density waves in the flow but no obvious signs of long-lived vortices.
It therefore remains an open question whether or not the VSI can
lead to the formation of perturbations that generate vortices when
thermal relaxation is not treated as being instantaneous, perhaps
through the RWI or the SBI acting on the primary perturbations
generated by the VSI.

2.5 Elliptical instability

Lesur & Papaloizou (2009), using a local approach, showed that 3D
elliptical vortices may be unstable. The vertical modes (k = kzez)
are the dominant modes in vortices with an aspect ratio 1.5 < χ < 4,
and have a growth rate given by

, = S

√

−
(

2+

S
− χ

χ − 1

) (
2+

S
− 1

χ (χ − 1)

)
, (9)

where S is the shear and χ the aspect ratio of the vortex. In the
case of a Keplerian protoplanetary disc S = 1.5 +, and the growth
rate is

, = 3
2
+

√

−
(

4
3

− χ

χ − 1

) (
4
3

− 1
χ (χ − 1)

)
. (10)

The fact that the mode is purely vertical and the growth rate is
independent of the wavelength makes the instability quite easy to
capture and very high resolution simulations are not required for it
to be resolved. It should be noted that this result, however, is valid
in the local approximation and is not true for long wavelengths.

The case of larger aspect ratio vortices is more complex because
the instability is fully three dimensional. The instability is due to
the resonance between inertial waves in an unstratified flow or
high-frequency buoyancy waves in a stratified flow and the turnover
frequency of the vortex. As no inertial modes can match the turnover
frequency in a vortex with 4 < χ < 5.9, these vortices are stable
when the flow is not stratified, while in a stratified flow vortices are
always unstable.

However, despite the unstable character of vortices in that case,
the elliptical instability is difficult to observe because of the high
resolution needed to resolve it. The unstable mode will have kmax

φ ∼
kz and kmax

r ∼ χkz, so the radial resolution needed to resolve it
depends on the aspect ratio. Moreover, the growth rate for χ > 6
is about 50 time smaller than for vortices with χ < 4. These two
points make the elliptical instability difficult to observe in numerical
simulations that contain large aspect ratio vortices.

2.6 Streaming instability

Although the streaming instability applies to a disc composed of in-
terpenetrating gas and solids, rather than to the single fluid system
considered here, we discuss it briefly for completeness. It arises as a
linear instability when aerodynamic drag causes inwards radial drift
of solid particles, and the backreaction on the gas is included in the
dynamics (Youdin & Goodman 2005). The linearly growing modes
consist of particle density enhancements with growth times that lie
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between fast dynamical time-scales and slower radial drift time-
scales, and maximal growth rates arise for particle stopping times
comparable to dynamical time-scales and when the local solids-to-
gas ratio is of the order of unity. Non-linear simulations indicate that
it can lead to severe clumping of solids, such that particle concentra-
tions are able to collapse directly to form planetesimals (Johansen
et al. 2007). As such, this provides an alternative to the concen-
tration of dust in vortices as a means of forming planetesimals in
protoplanetary discs.

3 N U M E R I C A L M E T H O D

The equations of motion are for a compressible and inviscid fluid
subject to a central gravitational potential:

∂ρ

∂t
+ ∇. (ρV ) = 0, (11)

∂ρV
∂t

+ ∇. (ρV V ) = −∇P − ρ∇-, (12)

∂ρE

∂t
+ ∇.V (ρE + P ) = ρV .∇- − ρ

γ − 1
T − T0

τ
. (13)

Here ρ is the density, V the velocity, P the pressure and E the total
energy per unit mass, and - = −GM/r the gravitational potential
due to the central star. The system is closed using the perfect gas
equation of state: ρE = P/(γ − 1) + 1/2ρV 2, where we adopt
γ = 7/5. The last term in the energy equation (13) is a thermal
relaxation term: the temperature relaxes to the initial temperature
T0 with a relaxation time τ . τ is assumed to be a function of R,
the cylindrical radius, being a fixed multiple or fraction of the local
Keplerian orbital period.

We adopt a radial power law for the disc temperature while as-
suming that the disc is initially isothermal in the vertical direction,
and we also adopt a radial law for the mid-plane density:

T (R) = T0

(
R

R0

)q

ρ(R, 0) = ρ0

(
R

R0

)p

, (14)

where R0 is a reference radius. Other quantities of interest are deter-
mined using the equations of force balance in the radial and vertical
directions:
∂P

∂R
= −GMR

r3
+ R+2 (15)

∂P

∂Z
= −GMZ

r3
, (16)

where r =
√

R2 + Z2 is the spherical radius.
The equilibrium solutions for density and angular velocity give

ρ(R,Z) = ρ0

(
R

R0

)p

exp
(

GM

c2
s

[
1
r

− 1
R

])
(17)

+(R,Z) = +k

√

1 + (p + q)
(

H

R

)2

+ q

(
1 − R

r

)
(18)

where +k =
√

GM/r is the Keplerian velocity and H is the scale-
height defined through:

H = cs

+k

. (19)

cs is the isothermal sound speed defined through:

c2
s = P

ρ
, (20)

and we define the local disc aspect ratio h = H/R.
In the disc model considered here, the Brunt–Vaisala frequency

in the mid-plane is

N2
R = T

γR2
(p + q)(p(γ − 1) − q) (21)

then the radial stratification is stable when q < p(γ − 1) and unstable
otherwise.

These equations are solved in spherical coordinates (r, θ , φ) using
a finite volume code using the MUSCL Hancok method (Richard,
Barge & Le Dizès 2013) We choose reflecting boundary conditions
at the radial and vertical boundaries because of their ease of imple-
mentation, and because Nelson et al. (2013) have shown that the
boundary conditions appear to have no effect on the development
of the VSI.

The computational domains of our simulations are as follows. In
radius the inner boundary is located at r = 1 and the outer boundary
at r = 1.5, and the azimuthal domain runs between φ = 0 and
φ = π/4. The meridional domain extends ±5 × h above and below
the disc mid-plane. In all simulations except those with h = 0.05, we
use 500 grid cells in the radial direction. For models with h = 0.05,
we double the radial resolution and use 1000 grid cells. All runs
use 300 grid cells in the azimuthal direction and 200 cells in the
meridional direction. The equilibrium state is perturbed by adding
10−6cs amplitude white noise to each component of the velocity in
all simulations presented in this paper.

4 AXISYMMETRIC SIMULATIONS

An investigation of the potential for the VSI to generate vortices
in discs clearly requires 3D simulations to be performed. The fact
that the unstable VSI modes have radial wavelengths much shorter
than vertical scales indicates that high-resolution simulations are
required, leading inevitably to long simulation run times. In light of
this, most of the simulations presented in this paper adopted density
and temperature power-law profiles p = −1.5 and q = −2, where
the adoption of the steep temperature profile reduces the growth
time-scale for the VSI, hence allowing a suite of 3D simulations to
be undertaken. We note that these disc models are stable accord-
ing to the Solberg–Hoiland criteria given by equations (5) and (6)
and have imaginary values of the radial Brunt–Vaisala frequency
NR. Depending on the adopted thermal relaxation time-scale, these
models may be unstable to the SBI and the convective overstability.
It is therefore possible that any vorticity perturbations generated
by the VSI may be amplified and sustained by the SBI, leading to
long-lived vortices.

Given that the parameters used for the simulations in this paper
were not considered in the study presented by Nelson et al. (2013),
we have undertaken a suite of 2D axisymmetric simulations to
examine the growth times of the VSI in these models, and to also
examine the critical cooling times that allow the VSI to operate. We
consider models with h = 0.2, 0.1 and 0.05 with different thermal
relaxation times.

Following Nelson et al. (2013), the total kinetic energy is defined
by the volume integral of the sum of the radial and meridional
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Figure 1. Kinetic energy for a disc with a h/r = 0.05 and different values
of the cooling time.

Figure 2. Kinetic energy for a disc with a h/r = 0.1 and different values of
the cooling time.

kinetic energies, normalized by the volume integral of the initial
azimuthal kinetic energy:

Ec =
∫

V
ρ(v2

θ + v2
r ) dV∫

V
ρv2

φ0
dV

. (22)

The results of the 2D simulations are shown in Figs 1–3, which
display the evolution of the total kinetic energy in the disc models
with h = 0.05, 0.1 and 0.2 respectively. For each value of h the
growth rate decreases when the cooling time increases, in agreement
with Nelson et al. (2013), and for a critical value of the cooling time
the disc becomes stable to the VSI. This critical value depends
strongly on the scaleheight. For h = 0.05, the disc become stable
for a cooling time 0.05 < τ < 0.1, for h = 0.1 it stabilizes for
0.3 < τ < 0.5, and for h = 0.2 the disc remains unstable for a
cooling time as large as one orbital period.

We notice that the level of saturation also depends on the cooling
time: the total kinetic energy during the saturated state is higher for a
shorter cooling time, and decreases for longer cooling times. In other
words, higher amplitude velocity and vorticity perturbations are
expected for shorter cooling times when we consider 3D simulations
below.

Figure 3. Kinetic energy for a disc with a h/r = 0.2 and different values of
the cooling time.

5 3 D SI M U L ATI O N S

5.1 Fiducial model

The primary goal of this paper is to examine whether or not the non-
linear development of the VSI leads to the formation of vortices.
Secondary goals include determining the range of conditions under
which vortices form, understanding the nature of these vortices
as a function of system parameters, and the possible roles of the
RWI and the SBI in creating and maintaining vortices. Given our
interest in the potential role of the SBI, we have chosen a disc model
which in principle allows the development of the VSI and SBI. Both
instabilities are more efficient in thick discs, so we choose h = 0.2.
Our 2D runs described in Section 4 indicate that this model remains
unstable to the VSI even for relatively long cooling times, which
are necessary for the SBI to operate (Lesur & Papaloizou 2010).

Our fiducial model has a thermal relaxation time τ = 0.1 local
orbits. The 2D simulations described in Section 4 indicate that the
growth rate of the VSI should be quite large in this case, and that this
cooling time is significantly shorter than the critical value for which
the VSI no longer operates. During the early phases, the VSI in 3D
remains axisymmetric and so develops very similarly to 2D simula-
tions (Nelson et al. 2013). The axisymmetric velocity perturbations
correspond naturally to axisymmetric vorticity perturbations which
grow with time. When these axisymmetric vorticity bands reach a
critical amplitude, they tend to destabilize and vortices are formed.
This evolution is illustrated by Fig. 4 which shows contours of the
perturbed vertical component of the vorticity in the mid-plane (top
panels) and in a slice along the meridional plane (bottom panels).
As discussed in Nelson et al. (2013), the VSI is first observed at
high latitudes in the disc and descends down towards the mid-plane,
as seen in Fig. 4.

The bottom panels of Fig. 4 also show that the break-up of the
initially axisymmetric vorticity perturbations into discrete vortices
produces structures with relatively small length scales in the vertical
direction. In other words, the vortices formed in this simulation
are not large-scale columnar structures, but instead appear to be
coherent over vertical length scales that are significantly shorter
than the vertical scaleheight (i.e. ∼0.1 H). Although we only plot
the vorticity in the disc mid-plane, we find that vortices form at all
heights in the disc.
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Figure 4. Vorticity profile in the mid-plane and meridional plane after 34, 54 and 64 orbital periods, with H/R = 0.2 and τ = 0.1.

Looking in particular at the first and last of the top panels in
Fig. 4, we see that the vortices have relatively small aspect ratios
when projected in the R–φ plane. Detailed measurements indicate
that the aspect ratio χ ∼ 2 for these vortices. As expected from
our discussion of the elliptical instability presented in Section 2.5,
these vortices do not survive for very long, and we measure a
typical lifetime of between 2 and 3 orbits. Inspection of animations
of the mid-plane vorticity indicates that this disc model develops a
vigorous turbulent flow in which vortices continuously appear and
disappear on time-scales of a few orbits.

Examination of Fig. 4 indicates that the formation mechanism
of the vortices is the creation of narrow, axisymmetric vorticity
perturbations that then break up into discrete vortices when the per-
turbation amplitude becomes large enough. From our discussion of
the RWI in Section 2.1, we can see that perturbations to the verti-
cal component of the vorticity that are narrowly confined in radius
correspond to the creation of extrema in the quantity L defined by
equation (1). As such, it appears that vortices form in this simula-
tion because the VSI generates narrow vorticity perturbations and
extrema in L that destabilise through the RWI. The SBI does not
appear to play an important role in this particular simulation.

Regarding the mechanism of roll-up observed in our simula-
tions, the axisymmetric VSI is accompanied by radial azimuthally
symmetric pressure perturbations which induces jets in the zonal
(azimuthal) direction. Such jets are characterized by narrow abut-
ting azimuthal strips of positive/negative vertical vorticity (recall
vorticity anomalies are here understood to be with respect to the
background Keplerian frame). When the amplitude of the jet gets
large enough, the RWI induces the roll-up of the negative vorticity

Figure 5. Profiles of the quantity L demonstrating the development of
extrema in this quantity and hence the conditions required for the RWI to
operate and form vortices.

strip leaving the positive vorticity strip more or less intact since
positive vorticity anomalies in non-self-gravitating discs are stable
to the RWI (Umurhan 2010). An examination of the top row of
figures in Fig. 4 shows exactly this pattern, where the negative vor-
ticity anomalies created by the VSI eventually roll up into localized
vorticity while leaving the positive vorticity strips alone. The profile
of L at different times during this simulation is shown in Fig. 5,
illustrating the development of the secondary RWI as caused by the
VSI throughout many stages and radial locations of the simulation.
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Vertical shear instability and vortices 3577

Figure 6. Kinetic energy for a disc with a h/r = 0.2, τ = 0.1 and different
viscosity.

5.2 Dependence on viscosity

In this section, we investigate the role of viscosity in the devel-
opment of the instability. We have performed several simulations
using the same disc model described in the previous section, but
adding viscous stresses and varying the kinematic viscosity, ν. Fig. 6
shows the growth of the instability for different values of ν. As ex-
pected, it shows that the viscosity has a stabilizing effect on the
VSI. The growth rate increases when the viscosity decreases until
ν = 2.5 × 10−8, for which the behaviour is close to the inviscid case.
A large viscosity totally inhibits the development of the VSI. The
vorticity contours for the different viscosities are plotted in Fig. 7
after simulation run times of 26 orbits. For ν = 2.5 × 10−6, the flow
is still axisymmetric and the vortices have not yet formed, while for
the lower viscosity (ν = 2.5 × 10−8) the vorticity profile is very
similar to the inviscid case. This suggests that the numerical diffu-
sion is of the order of 10−8. This value correspond to a Reynolds
number Re = Hcs/ν ≈ 106 and a Shakura–Sunyaev viscous stress
parameter α = 2.5 × 10−7 (Shakura & Sunyaev 1973). This value
is too small to be responsible of the short lifetimes of the vortices,
so we are confident that the disappearance of the vortices has a
physical origin rather than a numerical one.

5.3 Dependence on cooling time

In this section, we investigate how vortex formation depends on the
thermal relaxation by considering the cooling times τ = 0.05 and
0.5, while keeping all other disc parameters the same. Inspection of
Fig. 3 shows that the τ = 0.05 run should lead to rapid growth of the

VSI, and the generation of relatively large velocity of vorticity per-
turbations. A cooling time of τ = 0.5 should lead to a longer growth
time for the VSI and weaker velocity and vorticity perturbations.

Fig. 8 shows contours of the vertical vorticity perturbations for the
τ = 0.05 run. Comparing the spectrum bars for the contours shown
in Figs 4 and 8 shows that the latter run generates significantly
larger vorticity perturbations. The consequence of this is that the
vortices formed in the non-linear saturated state of this simulation
have smaller aspect ratios, χ , and shorter lifetimes. Close inspection
of the top panels in Fig. 8 and of sequences of snapshots similar to
these panels indicates that χ ∼ 1.5 for this run, with vortex lifetimes
being approximately one orbit.

Fig. 9 show the results of the simulation with τ = 0.5. Inspection
of the spectrum bar that indicates the amplitude of the vorticity per-
turbations shows that this run produces significantly weaker vortic-
ity perturbations than the runs with τ = 0.1 and 0.05. Consequently,
the nature of the flow is very different in this case, consisting of elon-
gated and long-lived vortices. We estimate that the typical vortex
aspect ratio in this run is χ ∼ 6 and the average lifetime exceeds
the simulation run times. Close inspection of the vortices indicates
that they maintain a turbulent core throughout the evolution, pre-
sumably due to the elliptical instability operating in this case. The
long-lived nature of these vortices suggests that their survival is due
to the action of the SBI, that continuously attempts to increase the
amplitude of the vortices in opposition to the elliptical instability
which attempts to destroy them. Note, however, that this statement
is somewhat speculative since we may not be able to fully resolve
the elliptical instability in this case.

Examining the vertical structure of the vortices in this case, we
note that they occupy a greater height in the disc than those observed
in the runs with τ = 0.1 and 0.05. The vortices shown in the
upper panels of Fig. 9 extend above and below the mid-plane by
approximately one scaleheight.

In summary, we find that the VSI gives rise to relatively large
amplitude axisymmetric vorticity perturbations when the cooling
time is short (i.e. τ ≤ 0.1 orbits), and this leads to the formation
of small aspect ratio (χ ≤ 2) vortices that form through the RWI
and which extend only a small distance in height (approximately
10 per cent of the local scaleheight). The lifetimes of these vortices
is found to be very short, being of the order of a few orbital periods.
A longer cooling time of τ = 0.5 orbits gives rise to lower ampli-
tude vorticity perturbations, leading to the formation of elongated
(i.e. χ ∼ 6) vortices that extend in height by approximately 2 scale-
heights and have lifetimes that exceed the simulation run times.
These vortices are observed to have turbulent cores, presumably
due to the elliptical instability, suggesting that their long lifetimes
are due to the action of the SBI maintaining the integrity of these
structures. Table 1 summarize the growth rate of the instability and
the vorticity and the aspect ratio of the resulting vortices for each
simulations.

Figure 7. Vorticity in the mid-plane after 26 orbits and for ν = 2.5 × 10−6, 2.5 × 10−7, 2.5 × 10−8 and 0.
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3578 S. Richard, R. P. Nelson and O. M. Umurhan

Figure 8. Vorticity contours in the mid-plane and meridional plane after 33, 41 and 74 orbital periods, with h = 0.2 and τ = 0.05.

5.4 Dependence on scaleheight

In the previous simulations the scaleheight was set to h = 0.2,
which corresponds to a rather thick disc that may be unrealistic
for a typical protoplanetary disc. Here, we investigate the evolution
of two thinner disc models. As shown in Section 4, for thinner
discs we need shorter cooling times to trigger the VSI. We present
a simulation with h = 0.1 and τ = 0.2. Inspection of the results
described in Section 4 indicates that the growth time of the VSI
in this case will be quite long as the cooling time is relatively
close to the critical value for which the VSI switches off. Thus, we
might reasonably expect behaviour that is similar to that shown by
the run with h = 0.2 and τ = 0.5 in this case. We also present a
simulation with h = 0.05 and τ = 0.01. The results presented in
Section 4 indicate that this model should experience rapid growth of
the VSI as the cooling time is much shorter than the critical thermal
relaxation time-scale. We might reasonably expect results similar
to those observed for the runs with h = 0.2 and τ = 0.1 and 0.05
in this case. In order to resolve the smaller length scale features
expected in this run the simulation was conducted with double the
resolution in the radial direction.

The results of the simulation with h = 0.1 and τ = 0.2 are
shown in Fig. 10. As expected, the growth time of the instability
is long in this case and the vorticity perturbations that arise are of
relatively low amplitude. The vortices that form are observed to have
aspect ratios χ ∼ 10, smooth non-turbulent cores, and lifetimes that
exceed the simulation run time of 695 orbits. The vertical heights of
the vortices formed near the disc mid-plane again appear to extend
approximately plus-and-minus one scaleheight about the mid-plane,

as observed for the long-lived vortices formed in the run with h = 0.2
and τ = 0.5.

The results for the simulation with h = 0.05 and τ = 0.01 are
shown in Fig. 11. The short growth time of the VSI leads to the
formation of vortices with small aspect ratios χ ∼ 1.5 with lifetimes
of the order of one orbital period.

5.5 Positive entropy gradient

One of the original goals of this paper was to see if the VSI could
produce strong enough vorticity perturbations to trigger the SBI.
In their study of vortex growth in astrophysical discs, Petersen
et al. (2007a) showed that vortices can form in the presence of
applied cooling, whether or not the radial entropy stratification was
stable or unstable. They also showed that vortices are amplified and
maintained over long time-scales when the stratification is unstable,
but decay when the stratification is stable. They found that vortex
amplification is more efficient for short cooling time, but vortex
formation through the SBI is more efficient if the cooling time is
long.

In the previous simulations, we observed the formation of vor-
tices even for cooling times as short as τ = 0.01. As discussed
earlier in the paper, vortices appear to form from the axisymmetric
perturbations to the vorticity that are generated by the VSI, indi-
cating that vortex formation occurs as a secondary process driven
by the RWI acting on the perturbations generated by the VSI. This
suggests that the SBI is not responsible for vortex formation, but
may none the less play a role in amplifying and maintaining long
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Vertical shear instability and vortices 3579

Figure 9. Vorticity profile in the mid-plane and meridional plane after 201, 317 and 401 orbital periods, with h = 0.2 and τ = 0.5.

Table 1. Results for the h = 0.2, q = −2, p = −1.5 simulations. First col-
umn shows cooling time, second column shows growth rate of the VSI, third
column shows peak vorticity perturbation (in units of the local orbital an-
gular velocity), and fourth column shows mean aspect ratio of the emerging
vortices.

Cooling time Growth rate Vorticity Vortex aspect ratio
(orbits) (orbits)−1 ωz/+

0.5 0.31 −0.3 6
0.1 0.9 −1.1 2
0.05 1.7 −3 1.5

lived vortices in the flow if appropriate conditions are present in the
disc.

In an attempt to clarify this point, we present two simulations
that have either a positive or negative mid-plane entropy gradient,
respectively. The model with a positive entropy gradient has disc
parameters h = 0.2, q = −1, p = −3 and τ = 0.1 (note the shallower
temperature profile). Fig. 12 shows the evolution of the vorticity in
this simulation. The results of this run are very similar to those de-
scribed earlier in the paper (which all had negative entropy gradients
in the mid-plane): the VSI develops axisymmetrically, and vortices
are formed from the band of perturbed vorticity that is created by
the VSI. We find that these vortices have quite large aspect ratios
(χ ∼ 8), but the vortex lifetimes measured in the simulation are
typically in the range 15–20 orbital periods, considerably shorter
than those measured in the runs discussed earlier in this paper where
large aspect ratio vortices were formed.

The simulation with a negative mid-plane entropy gradient that
was run to compare with the previous run with positive entropy
gradient had identical parameters (h = 0.2, q = −1, τ = 0.1) except
for the mid-plane density power law which was set to p = −2.
Nelson et al. (2013) showed that the density power-law index makes
essentially no difference to the growth rate of the VSI, so we expect
the VSI to develop in much the same way during the early stages
of these two runs. This is exactly what we observe, and in fact
the long-term outcome of the simulation is very similar to the one
with positive entropy gradient: vortices with aspect ratios χ ∼ 8 are
formed, and these live for approximately 15 orbital periods before
dissolving into that background flow. This result indicates that for
this particular set of disc parameters, the SBI has essentially no
influence on the formation or amplification of vortices.

The results obtained in this section are somewhat puzzling as it
is to be expected that the SBI should cause the amplification of the
vortices that are formed by the VSI. Furthermore, the run described
earlier in Section 5.3 with h = 0.2, p = −1.5, q = −2 and τ = 0.5
showed evidence that vortices formed by the VSI were maintained
against decay by the action of the SBI. In order to explore this issue
further, we allowed the simulation with negative entropy gradient
described earlier in this section to evolve until it had reached a
saturated state, and we then restarted it with longer cooling times
(both τ = 0.5 and τ = 1). In both cases, we observed that the
vortices decayed and the VSI stopped operating, such that the disc
evolved towards a laminar state. This suggests that either the cooling
time-scale needs to be fine tuned in order to observe the SBI in this
model, or perhaps a more likely explanation is that the disc model
with h = 0.2, p = −1.5, q = −2 and τ = 0.5 has a steeper entropy
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Figure 10. Vorticity profile in the mid-plane and meridional plane after 331, 555 and 694 orbital periods, with h = 0.1 and τ = 0.2.

Figure 11. Vorticity profile in the mid-plane and meridional plane after 100, 120 and 130 orbital periods, with h = 0.05 and τ = 0.01.
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Vertical shear instability and vortices 3581

Figure 12. Vorticity profile in the mid-plane and meridional plane after 207, 237 and 295 orbital periods, in a disc with a positive entropy gradient in the
mid-plane.

gradient which allows the SBI to operate more strongly in that disc,
whereas in a disc with weaker entropy gradient the SBI at best
operates very weakly and has little influence on the formation and
lifetimes of vortices.

5.6 Disc with more realistic density and temperature profiles

In this section, we investigate what might be thought of as a disc with
a more realistic density and temperature profile than the previous
models. We adopt p = −1.5, q = −1, h = 0.05 and τ = 0.01.

In the previous simulations, the parameters of the disc were cho-
sen to favour rapid growth of the instability. The temperature power
law was set to q = −2 because the growth rate of the VSI is
proportional to |q|, and it gives a strong negative entropy gradi-
ent in the mid-plane. The scaleheight was set to h = 0.2 to obtain
faster growth of the VSI and to increase the entropy gradient. These
parameters also lead to a disc that is unstable to the VSI with a
cooling time that is long enough to also allow the development
of the SBI. Our previous simulations, however, show that vortices
more likely form due to the RWI rather than the SBI, so a strong
entropy gradient and long cooling time is not necessary to form
vortices.

Fig. 13 shows the result of the simulation with h = 0.05, p =−1.5,
q = −1 and τ = 0.01. As for the previous simulations with
a thin disc, the radial resolution is doubled from Nr = 500 to
Nr = 1000. As usual, the VSI develops axisymmetrically. When
the rings of vorticity destabilise, they give rise to vortices that
survive for approximately two orbits and the disc displays small-
scale turbulence. This turbulence tends to decay and after a few

orbits the disc relaminarizes. Then new VSI modes start to grow,
and the process resumes, resulting in intermittent behaviour in
which turbulence and small-scale vortices regularly appear and
disappear.

5.7 Transport properties

We now investigate the accretion rate resulting from the turbulence
generated by the VSI. We defined the Reynolds stress through

Tr(r, θ ) = 1
φmax

∫ φmax

0
ρδvrδvφ dφ, (23)

where δvr and δvφ correspond to the local radial and azimuthal
velocity fluctuations:

δvr = vr − ⟨vr⟩φ
δvφ = vφ − ⟨vφ⟩φ . (24)

The local stress parameter α is obtained by dividing the Reynolds
stress by the density-weighted mean pressure:

P̄ (r) =
∫ ∫

ρP sin(θ ) dφ dθ∫ ∫
ρ sin(θ ) dφ dθ

. (25)

The volume- and time-averaged α value for each simulation is
listed in Table 2, where the time average was taken over the last
20 orbits of each run. There is a general tendency for the Reynolds
stress to decrease as the cooling time increases, due to the veloc-
ity fluctuations generated by the VSI decreasing with increasing
cooling time. We also note that the simulation with h = 0.1, which
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3582 S. Richard, R. P. Nelson and O. M. Umurhan

Figure 13. Vorticity profile in the mid-plane and meridional plane after 198, 254 and 291 orbital periods, with H/R = 0.05, q = −1 and τ = 0.01.

Table 2. The first column gives the cooling time, the second column the
disc aspect ratio, the third and fourth columns the temperature and density
power-law indices, and the last column gives the effective viscous stress
parameter α obtained in the simulations.

τ h q p α

0.05 0.2 −2 −1.5 2.65 × 10−4

0.1 0.2 −2 −1.5 5.33 × 10−5

0.5 0.2 −2 −1.5 2.8 × 10−5

0.2 0.1 −2 −1.5 2.8 × 10−6

0.01 0.05 −2 −1.5
0.1 0.2 −1 −3 2.8 × 10−6

0.1 0.2 −1 −2 3.5 × 10−6

0.01 0.05 −1 −1.5

sustains smooth long-lived vortices in a relatively quiet background
flow without strong turbulence has the lowest α value.

We also plot the temporal evolution of the mean α value for each
of the simulations with h = 0.2, q = −2 and p = −1.5 in Fig. 14.
The simulation with τ = 0.05 is shown in the top-left panel, which
displays a peak value of α = 6 × 10−4. The simulation with τ = 0.1
is plotted in the top-right panel, and shows a peak value of α ∼ 10−4.
The evolution of α for the run with τ = 0.5 is shown in the bottom-
left panel and displays a peak value of α ∼ 8 × 10−5, with typical
values α ∼ 5 × 10−5. Finally, the evolution of α for the run with
h = 0.1, q = −2 and τ = 0.2 is shown in the bottom-right panel of
Fig. 14. Here, we see that the smooth flow associated with this run
containing long lived and high elongated vortices produces a small
Reynolds stress that has a stress parameter that has typically values
of α ∼ 2 × 10−6 during the simulation.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a series of customized and idealized simulations
to examine the non-linear saturated state of astrophysical discs un-
dergoing the VSI, with the focus being on the formation and evolu-
tion of vortices. The results of these simulations may be summarized
as follows.

(i) We find that the VSI readily leads to the formation of vortices
in a broad range of disc models.

(ii) The formation mechanism of the vortices is the generation
of axisymmetric vorticity perturbations by the VSI that destabilize
into discrete vortices through the RWI. Specifically speaking, the
VSI generates pressure perturbations that induces the formation of
narrow azimuthal jets. These jets are characterized by azimuthally
symmetric strips of positive/negative vertical vorticity. As a given
jet grows in amplitude, that side of it with the negative vorticity
anomaly becomes unstable to the RWI and rolls-up into localized
vortices, while the positive anomaly remains intact since it itself
is not unstable to the RWI. As a given simulation progresses and
the VSI reaches out to larger radii, more and more unsteady vor-
tices are produced eventually spreading across the totality of the
computational domain.

(iii) For steep temperature profiles and short cooling times
(h = 0.2, q = −2, τ ≤ 0.1 orbits), we observe that vortices form with
small aspect ratios (χ ≤ 2) and extend in height over length scales
much smaller than the local scaleheight (∼0.1H). These vortices
have short lifetimes of only a few orbital periods before dissolving
into the background flow, after which new generations of vortices
form and dissolve in a repetitive cycle.

(iv) For longer cooling times and steep temperature (and entropy)
profiles (h = 0.2, q = −2, τ = 0.5 orbits), we observe the formation
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Vertical shear instability and vortices 3583

Figure 14. Mean α value for : a disc with a h/r = 0.2 and τ = 0.05 (top left), a disc with a h/r = 0.2 and τ = 0.1 (top right), a disc with a h/r = 0.2 and
τ = 0.5 (bottom left) and a disc with a h/r = 0.1 and τ = 0.2 (bottom right).

of elongated vortices (χ ∼ 6) that live for hundreds of orbits (longer
than the simulation run times). These vortices live with a noticeably
turbulent core, indicating that there is a balance between the ellipti-
cal instability try to destroy the vortex and the SBI maintaining the
vortex over long time-scales. This suggests that the SBI can play an
important role in maintaining long-lived vortices when the negative
entropy profile is sufficiently steep.

(v) Similar behaviour is observed for thinner discs with h = 0.1
and 0.05 when the temperature profile has a steep power-law index
q = −2.

(vi) Changing the temperature power-law index to q = −1 results
in vortices that do not live for more than a few tens of orbits at
most. Simulations performed with either weakly positive or negative
entropy profiles produce very similar results, indicating that the
influence of the SBI is significantly diminished when the entropy
profile is weaker than that obtained with q = −2.

(vii) Analysis of the volume averaged Reynolds stresses associ-
ated with the VSI shows that the efficiency of angular momentum
transport depends strongly on the thermal relaxation time-scale. In
line with our observation that the VSI generates stronger velocity
fluctuations for short cooling times, we obtain an effective Shakura–
Sunyaev α value (Shakura & Sunyaev 1973) of αSS ∼ 2 × 10−4

when τ = 0.05 for a model with q = −2 and h = 0.2. When τ = 0.5
we obtain αSS ∼ 3 × 10−5. These values should be contrasted with
the value αSS ∼ 10−3 obtained by Nelson et al. (2013) for a locally
isothermal disc model, indicating that the inclusion of a finite cool-

ing time-scale significantly reduces the strength of the VSI. This
point has also been noted by Stoll & Kley (2014), who performed
simulations with radiation transport and obtained αSS ∼ 10−4.

The requirement of short cooling times for the VSI to operate
indicates that it is most likely to be present in the outer regions
of protoplanetary discs, between ∼10 and 50 au (Nelson et al.
2013; Umurhan et al. 2013; Lin & Youdin 2015), although the
short cooling times expected at higher disc latitudes may allow it
to also operate there at smaller stellocentric radii (Lin & Youdin
2015). The potential role of vortices in protoplanetary discs as
sites for the trapping of solids and growing planets has been well
documented (Barge & Sommeria 1995), and it is of interest to
address the question of whether or not the vortices formed by the
VSI are likely to play an important role in planet building. The main
difficulty with the VSI vortices trapping solids is their apparent
short lifetimes in the absence of a sufficiently steep entropy profile.
To assess the expected mid-plane entropy profiles in protoplanetary
discs, we assume that the disc surface density profile may be written
as '(R) = '0Rδ , and that the requirement for a negative entropy
gradient to exist locally at the mid-plane (such that the SBI can
play some role in extending vortex lifetimes) can be written as
q + p(1 − γ ) < 0. Then we can examine which values of δ arise
for reasonable values of the temperature power-law index such that
the radial Brunt–Vaisala frequency obeys N2

R < 0. We note that
the requirement for N2

R < 0 can be written more conveniently as
p > q/(γ − 1).
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The minimum mass solar nebula model has T(R) =
280 K(R/au)−1/2 (Hayashi 1981). The more sophisticated passively
irradiated disc model of Chiang & Goldreich (1997) has T(R) =
120 K(R/au)−3/7, i.e. the temperature profile is slightly shallower
than the q = −1/2 value obtained from the Hayashi model. Ob-
servational constraints in the outer regions of discs indicate that
−0.7 ≤ q ≤ −0.4 (Andrews & Williams 2005), covering the the-
oretically expected range. Adopting q = −1/2 and γ = 7/5, we
require p > −5/4 for a negative entropy gradient at the mid-plane.
Writing ' ∼ Hρmid, where H is the scaleheight and ρmid is the
mid-plane density, and using p = −5/4 and H(R) ∝ R(3 + q)/2 (from
the definition H = cs/vk), we see that the power-law index for the
surface density δ = 0 for this model. In other words, a disc that has
q = −1/2 and just supports a large-scale negative entropy gradient
in its outer regions must have a flat or outwardly increasing surface
density profile. Observations suggest that surface density power-law
values in the outer regions of discs are typically δ ∼ −1 (Williams
& Cieza 2011), such that the entropy profile is increasing and not
decreasing outwards. Our simulations indicate that just having a
modestly decreasing entropy profile is unlikely to be sufficient for
maintaining long-lived vortices, and that the entropy gradient needs
to be reasonably steep. The above discussion suggests that the glob-
ally inferred temperature and surface density profiles in the outer
regions of protoplanetary discs are unlikely to support the existence
of long-lived vortices maintained by the SBI. We note, however, that
we cannot rule out the possibility that shadowing or other effects
may increase the temperature gradient locally such that vortices
can exist as long-lived structures around the mid-plane. We note
recent work studying particle growth in evolving protoplanetary
discs (Estrada, Cuzzi & Morgan 2015) wherein discs with complex
temperature and opacity profiles are found – ones in which the VSI
is likely to be active in several localized radial sections, including
places near to various ice lines.

We conclude that although the VSI may operate in the outer re-
gions of discs, and produce vortices, these are likely to be relatively
short-lived structures that at best play a moderate role in trapping
solids and assisting in the building of planets. The presence of a
quasi-turbulent flow arising from the VSI may indeed provide a
source of stirring that could act to hinder the formation of planetesi-
mals and planets (Gressel, Nelson & Turner 2011, 2012) or perhaps
restrict it into places in the disc where the VSI is either weak or
entirely absent.

Having presented a set of idealized models with simple cooling
prescriptions to examine the evolution of the VSI in protoplane-
tary discs, the next step is to undertake multidimensional radiation-
hydrodynamic simulations with realistic opacities to examine the
non-linear outcome of the VSI in more realistic disc models. These
calculations will be the subject of future publications.
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von Weizsäcker C. F., 1944, Z. Astrophys., 22, 319
Williams J. P., Cieza L. A., 2011, ARA&A, 49, 67
Yellin-Bergovoy R., Heifetz E., Umurhan O. M., 2015, preprint

(arXiv:1503.08470)
Youdin A. N., Goodman J., 2005, ApJ, 620, 459

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 456, 3571–3584 (2016)

 at Q
ueen M

ary, U
niversity of London on M

arch 29, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 


