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ABSTRACT Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at
semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in
these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying
combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds.
Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacte-
rium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import sys-
tem into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-
vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also
show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD
are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show
that a �sepJ �fraC �fraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan
layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly
reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are
important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with
sucrose.

IMPORTANCE Anabaena and its relatives are filamentous cyanobacteria that exhibit a sophisticated form of prokaryotic multi-
cellularity, with the formation of differentiated cell types, including normal photosynthetic cells and specialized nitrogen-fixing
cells called heterocysts. The question of how heterocysts communicate and exchange metabolites with other cells in the filament
is key to understanding this form of bacterial multicellularity. Here we provide the first information on the intercellular ex-
change of a physiologically important molecule, sucrose. We show that a fluorescent sucrose analog can be imported into the
Anabaena cytoplasm by a sucrose import system. Once in the cytoplasm, it is rapidly and reversibly exchanged among all of the
cells in the filament by diffusion across the septal junctions. Photosynthetically produced sucrose likely follows the same route
from cytoplasm to cytoplasm. We identify some of the septal proteins involved in sucrose exchange, and our results indicate that
these proteins form structures functionally analogous to metazoan gap junctions.
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The filamentous cyanobacterium Anabaena sp. strain PCC 7120
(here Anabaena) is a multicellular prokaryote. Simultaneous

oxygenic photosynthesis and nitrogen fixation are achieved by
locating the oxygen-sensitive nitrogenase in specialized differen-
tiated cells called heterocysts. Heterocyst differentiation involves
complex metabolic and morphological changes (1, 2). During
combined-nitrogen starvation, heterocysts form at intervals of 10
to 20 cells, establishing a spacing pattern along the filament (3)
that may be controlled by a diffusible product of the patS gene
acting on the master regulator HetR (4–6). Heterocysts maintain a

microoxic cytoplasm by building extra envelope layers as diffu-
sion barriers to O2 (7) and by dismantling photosystem II and
activating respiration (1, 2). Heterocysts and vegetative cells are
mutually dependent: while vegetative cells supply carbon skele-
tons, heterocysts supply combined-nitrogen compounds (1, 2).
Likely vehicles for combined-nitrogen supply from heterocysts to
vegetative cells are glutamine (8, 9) and �-aspartyl-arginine, a
breakdown product of the storage compound cyanophycin (10,
11). The most likely carrier of fixed carbon is sucrose, since di-
azotrophic growth requires sucrose production in the vegetative
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cells and breakdown by invertases in the heterocysts (12–15).
However, amino acids such as glutamate and alanine may also be
transferred to heterocysts (16, 17).

In Anabaena, two routes of intercellular metabolite exchange
have been proposed (18–20): either via a continuous periplasm
(21, 22) or by diffusion from cytoplasm to cytoplasm via cell-cell
connections (23) involving the septal proteins SepJ (also known as
FraG) (24, 25), FraC, and FraD (26, 27). These proteins are likely
components of structures that have been termed microplasmod-
esmata (28, 29) or septosomes (30). Analyses of deletion mutants
show the importance of these proteins for filament integrity, di-
azotrophic growth, and intercellular communication, consistent
with the idea that SepJ, FraC, and FraD form structures that allow
the intercellular movement of small cytoplasmic molecules (23–
27). By analogy with metazoan gap junctions (reviewed in refer-
ence 31), these structures have been termed septal junctions (32).

The murein sacculus is generally thicker in cyanobacteria than
in the most widely studied Gram-negative bacteria, such as Esch-
erichia coli, but thinner than in Gram-positive bacteria (33–35).
Thus, the cyanobacterial murein sacculus is likely composed of
several peptidoglycan layers. In Anabaena, the thickness of the
murein sacculus may correspond to two interlinked peptidogly-
can layers (30). Murein sacculi have been isolated from several
heterocyst-forming cyanobacteria, and sacculi corresponding to
several cell units have been obtained (36–38). This implies that the
peptidoglycan layers of adjacent cells are fused in a substantial
fraction of the intercellular septa of a filament. In material isolated
from Nostoc punctiforme, the septal peptidoglycan can be seen by
electron microscopy as discs containing holes about 20 nm in
diameter that have been termed nanopores and are relevant for
intercellular communication (38). Nanopores in the intercellular
peptidoglycan would be required to accommodate protein struc-
tures linking the cytoplasms of adjacent cells. The low-density
areas observed by electron microscopy in the intercellular pepti-
doglycan of Anabaena (30), Anabaena variabilis (39), and Mas-
tigocladus laminosus (40) likely correspond to the septal pepti-
doglycan nanopores. Additionally, an electron tomographic study
of the septum between cells in Anabaena shows that these struc-
tures are also present between vegetative cells and heterocysts
(41). Cell wall amidases AmiC2 (NpF1846) and AmiC1 (Alr0092),
which have been recently characterized in N. punctiforme and
Anabaena, respectively (37, 42), are required to make the septal
peptidoglycan nanopores. Mutants lacking these proteins are im-
paired in cell differentiation and exchange of the fluorescent tracer
molecule calcein, suggesting that modification of the septal pep-
tidoglycan by these enzymes is essential for intercellular commu-
nication (38, 43).

Intercellular communication in filamentous cyanobacteria has
been studied by using fluorescence recovery after photobleaching
(FRAP). FRAP requires a suitable fluorescent tracer to be intro-
duced into the appropriate cell compartment. Periplasmic com-
munication was studied by expressing green fluorescent protein
(GFP) (22, 44) or the smaller fluorescent protein iLOV (45) ex-
ported into the periplasm via the twin-arginine translocation sys-
tem. GFP is not exchanged from cytoplasm to cytoplasm, but
cytoplasmic exchange could be examined by loading the smaller
fluorescent tracer molecules calcein and 5-carboxyfluorescein
(5-CF) into the cytoplasm of Anabaena (23, 46) and other fila-
mentous cyanobacteria (23, 38, 40) by using an esterified cell-
permeating precursor that is processed by cytoplasmic esterases to

release a hydrophilic fluorescent product. FRAP reveals rapid
transfer of calcein and 5-CF between the cytoplasms of adjacent
cells, impaired in mutants lacking SepJ, FraC, or FraD (23, 26, 46).

Plant sucrose uptake transporters (SUTs) (47) have been
studied by monitoring the uptake of the fluorescent coumarin
�-glucoside esculin (48, 49). Type I SUTs import esculin at a rate
similar to that of sucrose (47, 50), showing that esculin is recog-
nized and transported similarly to sucrose. Here we explore the
uptake and intercellular exchange of esculin in Anabaena. Fluo-
rescence microscopy and FRAP show that esculin is imported into
the cytoplasm and can then be exchanged rapidly and reversibly
among vegetative cells and between vegetative cells and hetero-
cysts. A triple mutant lacking SepJ, FraC, and FraD is impaired in
intercellular esculin exchange. Compared to the wild type, it
shows an altered peptidoglycan structure and a much lower fre-
quency of nanopores in the peptidoglycan at the intercellular cross
walls.

RESULTS
An Anabaena �sepJ �fraC �fraD triple mutant shows an al-
tered peptidoglycan structure and fewer nanopores in the septal
cross walls. Anabaena �sepJ and �fraC �fraD mutants have been
previously constructed (26, 27, 46). To test whether the simulta-
neous inactivation of fraC, fraD, and sepJ has any additional effect
compared to the inactivation of fraC and fraD or of sepJ, a triple
mutant was created by transfer of a sepJ-inactivating construct to
�fraC �fraD mutant strain CSVT22 (27). Strain CSVM141 has
the predicted deletions in the three genes and lacks wild-type cop-
ies of these genes (see Fig. S1 in the supplemental material). Sim-
ilarly to strains CSVT22 (�fraC �fraD) and CSVM34 (�sepJ),
strain CSVM141 grew well in medium with combined nitrogen
(nitrate or ammonium). In the presence of nitrate and culture
treatment in accordance with the protocol described in Materials
and Methods, CSVM141 formed filaments generally shorter than
those of the wild type but longer than those found in the �sepJ and
�fraC �fraD mutants (see Fig. S2 in the supplemental material).
Transfer to BG110 medium, which lacks combined-nitrogen
compounds, led to rapid fragmentation of CSVM141 filaments
(see Fig. S2B), resulting in very short filaments after 48 h (see
Fig. S2C). CSVM141 therefore cannot form heterocysts or
grow diazotrophically.

To assess whether the absence of the three septal proteins could
influence septal characteristics, we studied the intercellular septa
in CSVM141 and wild-type filaments grown with combined ni-
trogen. Transmission electron microscopy (TEM) showed that
the cell junctions in the triple mutant were significantly thinner
than in the wild type (Fig. 1A). The distance (mean � standard
deviation [SD]; n, number of junctions measured) between the
cytoplasmic membranes of adjacent cells was 27.7 � 1.12 nm (n �
16) for CSVM141 and 37.3 � 1.93 (n � 23) for the wild type
(Student’s t test, P � 3.3 � 10�23). In CSVM141, a particularly
electron-dense layer could be detected between the adjacent cells,
indicative of an increased density of septal peptidoglycan.

To study peptidoglycan in more detail, labeling with fluores-
cent vancomycin (Van-FL), which marks peptidoglycan that is in
the process of growth or remodeling (38), was performed. Van-FL
strongly labeled the intercellular septa in the wild type and the
�fraC �fraD mutant but much less strongly in the �sepJ and triple
mutants (Fig. 1B). In the wild type and the �fraC �fraD mutant,
there was a broad spread in the level of Van-FL labeling (see Fig. S3
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in the supplemental material). The �sepJ mutant and especially
CSVM141 showed very few highly labeled septa, implying lower
peptidoglycan turnover or remodeling rates in the intercellular
septa in the absence of SepJ.

We then investigated whether the arrays of septal peptidogly-
can nanopores that have been identified in N. punctiforme (38)
and Anabaena (43) are still present in the mutants lacking the
septal proteins. Isolated sacculi were visualized by TEM, and a
total of 5 to 10 septa of each mutant were inspected (examples
shown in Fig. 2; see Fig. S4 in the supplemental material). The
mean number of nanopores was considerably lower in the three
mutants than in the wild type (Fig. 2, histogram). Interestingly,
the septal peptidoglycan nanopores had significantly greater di-
ameter in the three mutants than in the wild type, and this was
particularly evident in the strains lacking FraC and FraD (see
Fig. S5 in the supplemental material). Thus, the septal proteins
(SepJ, FraC, and FraD) are involved in septal peptidoglycan nano-
pore formation, but it should be noted that some residual nano-
pores are still retained even in the triple mutant (Fig. 2).

The Anabaena �sepJ �fraC �fraD triple mutant is impaired
in intercellular molecular exchange of tracer dyes. The fluores-
cein derivatives calcein and 5-CF (Table 1) can be loaded into the
Anabaena cytoplasm and used to measure the kinetics of intercel-
lular molecular exchange in confocal FRAP measurements (23,
27). These artificial dyes move from cytoplasm to cytoplasm via
the septal junctions, and any involvement of the periplasm is un-
likely (23). The �sepJ mutant shows a decreased rate of calcein
exchange (23, 27, 46), and �fraC and �fraD mutants and the
�fraC �fraD double mutant show decreased rates of exchange of
both 5-CF and calcein (27). However, these mutants show a resid-

ual exchange activity of about 20% of the wild-type activity. To
determine whether this residual exchange is affected by a combi-
nation of these mutations, we studied the intercellular exchange of
calcein and 5-CF in the triple mutant by using the rate constant for
fluorescence recovery of the bleached cell (R) as a simple measure
of molecular exchange activity (27). Rates of calcein exchange
between vegetative cells of the triple mutant were similar to those
observed in the �sepJ and �fraC �fraD mutants, and 5-CF ex-
change rates were similar to those of the �fraC �fraD double
mutant (Table 2). These results imply the existence of an addi-
tional pathway or mechanism, independent of the known septal
proteins, for the intercellular exchange of calcein and 5-CF that
contributes about 20% of the wild-type activity. An obvious pos-
sibility is that there are additional, as yet uncharacterized,
channel-forming proteins responsible for this residual exchange
activity and associated with the small number of remaining septal
nanopores in the triple mutant (Fig. 2).

Uptake of esculin by Anabaena. Calcein and 5-CF are fluores-
cein derivatives with no resemblance to any metabolites known to
be physiologically important in Anabaena. Therefore, to provide
more physiologically relevant information on intercellular molec-
ular exchange, we set out to find a usable fluorescent analog of
sucrose, which appears to be a key vehicle for fixed carbon transfer
from vegetative cells to heterocysts (12–15). We reasoned that
such a molecule might be actively imported into the cytoplasm by
native sucrose uptake systems, thus removing the need to use cell-
permeant ester derivatives as with calcein and 5-CF (23, 27). Sev-
eral fluorescent sucrose analogs have been used to monitor su-
crose uptake in plants, including rutin, quercetin, and esculin
(50). We found that esculin was significantly incorporated and
retained in Anabaena cells (Fig. 3). Comparison of the distribu-
tions of esculin and chlorophyll fluorescence from the thylakoid
membranes shows that esculin fluorescence originates from the
cytoplasm (Fig. 3A). Esculin fluorescence could not be detected in
the periplasm, where fluorophores make a fluorescent halo out-
side the thylakoid membranes (22, 44, 45). Figure S6 compares
the distributions of esculin fluorescence with chlorophyll and
periplasmic GFP. Since the periplasm is a thin compartment, we
cannot exclude the presence of some esculin in the periplasm, but
it is clear that at least most of the esculin must be in the cytoplasm.
Similarly to calcein (23), esculin fluorescence is somewhat de-
pleted in the thylakoid membrane region (Fig. 3A; see Fig. S6 in
the supplemental material), confirming that esculin is located in
the cytoplasm rather than in the thylakoid lumen. Nearly all fila-
ments show esculin fluorescence, but significant variation in flu-
orescence intensity (Fig. 3A) indicates variation in esculin uptake
competence.

Esculin fluorescence is pH dependent (51), and fluorescence
emission spectra at pH 4.5 to 10 show that the fluorescence yield
increases with the pH (see Fig. S7A in the supplemental material).
The cytoplasmic pH of Anabaena vegetative cells is about 7.0 when
they are grown in BG11 medium (52). Assuming that the pH in
other cell compartments falls within the range of 6.5 to 8.0, esculin
fluorescence yield would be similar to within a factor of ~0.8 to 1.3
(see Fig. S7A). We found that esculin fluorescence is unaffected by
O2 concentration (see Fig. S7B), and therefore, comparison of
fluorescence in vegetative cells and heterocysts should not be
problematic.

Anabaena expresses sucrose transport activity (53). To test
whether esculin is taken up by a specific sucrose transporter, we

FIG 1 Ultrastructure and remodeling of the septal peptidoglycan in wild-type
Anabaena and mutant strains lacking septal proteins. (A) Transmission elec-
tron micrographs of the septum between two vegetative cells of wild-type
Anabaena (top) and between two vegetative cells of strain CSVM141 (�sepJ
�fraC �fraD) (bottom). Scale bars, 200 nm. (B) Fluorescence micrographs
showing labeling with Van-FL in wild-type Anabaena and mutants CSVM34
(�sepJ), CSVT22 (�fraC �fraD), and CSVM141 (�sepJ �fraC �fraD).
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developed a fluorometric assay for esculin uptake (Fig. 4). Esculin
was taken up linearly for at least 70 min. Addition of sucrose
greatly reduced the rate of esculin uptake, suggesting that both
molecules compete for the same uptake mechanism (Fig. 4).

Esculin as a fluorescent probe for intercellular communica-
tion. FRAP experiments to probe intercellular communication
use a confocal laser scanning microscope to bleach fluorescence in
one or more cells. The subsequent redistribution of fluorescence

between cells reveals the kinetics of intercellular exchange of the
fluorophore (23). Experiments with esculin were less straightfor-
ward than those with fluorescein derivatives. There is weak but
detectable background autofluorescence from the cells at the
wavelengths used for esculin detection (Fig. 3B), and esculin flu-
orescence is easily bleached while recording image series in the
confocal microscope. By using low laser power and a wide confo-
cal pinhole for efficient light collection at the expense of resolution

FIG 2 Septal nanopores in Anabaena. Shown are representative transmission electron micrographs of sacculi from wild-type Anabaena and mutants CSVM34
(�sepJ), CSVT22 (�fraC �fraD), and CSVM141 (�sepJ �fraC �fraD) (scale bars, 500 nm). For further examples, see Fig. S4 in the supplemental material. The
histogram shows the mean number of nanopores per septum � SD for the different strains. Student’s t tests showed that the differences between the wild type
and all of the mutants were significant (CSVT22, P � 5.9 � 10�3; CSVM34, P � 7 � 10�3; CSVM141, P � 3.7 � 10�3).

TABLE 1 Predicted physicochemical properties of esculin, sucrose, and the hydrolyzed intracellular forms of two fluorescein derivatives used to
probe intercellular communication in Anabaenaa

Parameter Sucrose Esculin Calcein 5-CF

Molecular mass (Da) 342.3 340.3 622.5 376.3
Polar surface area (Å2) 189.5 145.9 231.7 113.3
Solvent-accessible molecular surface area (Å2) 456.5 414.6 794.8 448.4
Van der Waals volume (Å3) 289.0 278.0 510.4 299.1
Minimal projection area (Å2) 57.1 45.8 67.0 59.2
Length perpendicular to minimal projection area(Å) 11.5 14.8 19.7 13.1
Maximal projection area (Å2) 78.0 90.1 139.1 91.0
Length perpendicular to maximal projection area (Å) 9.2 7.0 10.4 9.7
Charge(s) of different species at pH 7.0 (% abundance[s]) 0 (100) 0 (93), �1 (7) �3 (48), �2 (25), �4 (25), �5 (2) �1 (98), �2 (2)
a See references 23, 26, 27, and 46. Properties are predicted for pH 7.0, corresponding to the pH in the cytoplasm of vegetative cells (52).
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in the z direction, we could record repeat images with negligible
photobleaching. An important control is to test for the possibility
of spontaneous recovery from photobleaching by bleaching out
the entire filament, so that there is no possibility of fluorescence
recovery due to redistribution of the fluorophore. Such a control
indicates a spontaneous recovery of about 7.5% of the initial flu-
orescence (Table 3), which complicates data analysis. Finally, es-
culin FRAP measurements always showed incomplete fluores-
cence recovery, similarly to 5-CF (27). This incomplete recovery
indicates that a proportion of esculin cannot be exchanged be-
tween cells, accounting for ~50 to 75% of the esculin fluorescence
(Table 3). Esculin binds to some proteins (54), and there could be
specific sucrose-binding factors in the cytoplasm. Protein-bound
esculin will probably be unavailable for intercellular exchange by
any route. The septal junctions are impermeable to GFP and
therefore must have a pore size that excludes many (and possibly
all) proteins (4, 22). The immobile fraction precluded accurate
quantitation of the “exchange coefficient” E (23) among vegeta-
tive cells. E relates the rate of dye movement between two adjacent

cells to the difference in dye concentration between the cells, and
its quantitation requires fitting of the simulated time development
of dye distribution in the filament to the experimental data (23).
Here, we used a simpler way to quantify kinetics of esculin transfer
between vegetative cells by measuring the recovery rate constant R
as previously described (27; see Materials and Methods).

Intercellular diffusion of esculin in Anabaena filaments.
We used FRAP to probe the intercellular transfer of esculin in
Anabaena filaments by bleaching esculin fluorescence in a single
cell and monitoring its fluorescence recovery over time (Fig. 5). In
differentiated filaments, we bleached esculin fluorescence in veg-

TABLE 2 Rates of calcein and 5-CF exchange between wild-type and
mutant vegetative Anabaena cellsa

Anabaena strain

Mean R (s�1) � SD (n)

Calcein 5-CF

PCC 7120 (wild type) 0.097 � 0.023 (18) 0.080 � 0.013 (37)
CSVM34 (�sepJ) 0.023 � 0.007 (12) 0.054 � 0.007 (54)
CSVT22 (�fraC �fraD) 0.015 � 0.003 (21) 0.017 � 0.003 (42)
CSVM141 (�sepJ �fraC �fraD) 0.028 � 0.006 (21) 0.022 � 0.002 (84)
a Calcein and 5-CF were loaded into cells of BG11-grown filaments of the strains
indicated, the tracer was bleached in one cell, and the fluorescence recovery rate
constant, R, was determined as described in Materials and Methods. Data are mean
values � SDs (12 to 84 filaments were analyzed for each strain and tracer). Student’s
t tests indicate that differences in calcein transfer between strains PCC 7120 and
CSVM34 and between PCC 7120 and CSVT22 are significant (P � 10�4) and the
difference between CSVM141 and CSVT22 might also be significant (P � 0.04).
Differences in 5-CF transfer between strains PCC7120 and CSVM34, PCC7120 and
CSVT22, CSVM34 and CSVT22, and CSVM141 and CSVT34 are all significant (P �
10�5).

FIG 3 Uptake of esculin by wild-type Anabaena filaments. (A) Esculin-labeled cells (grown in BG11). (B) Control with unlabeled cells. Scale bars, 10 �m. Esculin
fluorescence (443 to 490 nm) is cyan (left), chlorophyll fluorescence (670 to 720 nm) is magenta (center), and overlaid images are shown on the right.

FIG 4 Time course of esculin uptake in Anabaena cells and effect of sucrose
competition. Cells were grown in BG11 or BG110 medium with or without
combined nitrogen. Uptake of esculin (100 �M) was measured with or with-
out sucrose at 10 mM. Error bars represent SDs (n � 3 to 5). Rates of uptake
differed significantly for BG11 with or without sucrose (P � 0.00003), BG110

with or without sucrose (P � 0.002), and BG11 versus BG110 without sucrose
(P � 0.05). Absolute esculin uptake values assume that the intracellular fluo-
rescence yield is similar to that in the buffer.
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etative cells and in heterocysts, which could be distinguished by
their enlarged size and reduced chlorophyll fluorescence. Both cell
types show recovery under all of the conditions tested, indicating
that esculin can be transferred between vegetative cells (Fig. 5A
and B) and from vegetative cells to heterocysts (Fig. 5C and D).
Fluorescence recovery greatly exceeds the spontaneous recovery
of esculin fluorescence (Table 3), showing that there is intercellu-
lar molecular exchange. Esculin transfer shows the characteristics
of diffusion rather than active transport, since fluorescent esculin
always flows down the concentration gradient and the transfer
runs to equilibrium (Fig. 5). Reversibility of esculin transfer from
vegetative cells to heterocysts was tested by bleaching vegetative
cells neighboring a heterocyst. If a single vegetative cell next to a
heterocyst is bleached, fluorescence recovery mainly reflects mo-
lecular exchange with the next vegetative cell rather than with the
heterocyst because of the faster exchange among vegetative cells
(Table 3). Therefore, we chose a short filament of Anabaena with
a terminal heterocyst and bleached esculin fluorescence in all of
the vegetative cells. The subsequent decay of heterocyst fluores-
cence (Fig. 5E and F) shows that esculin can be transferred from
heterocysts to vegetative cells. Esculin transfer occurs at compara-
ble rates in both directions (Fig. 5D and F), indicating intercellular
diffusion of esculin without significant active transport. Esculin
fluorescence is not observed conspicuously or consistently at the
periphery of the cells (Fig. 3A; see Fig. S6 in the supplemental
material), suggesting that exchange occurs predominantly from
cytoplasm to cytoplasm, resembling the previously characterized
intercellular diffusion of calcein and 5-CF (23, 27).

Kinetics of esculin exchange and influence of septal proteins
SepJ, FraC, and FraD. In wild-type Anabaena filaments, esculin
exchange is significantly faster among vegetative cells than be-
tween vegetative cells and heterocysts (Table 3), although the dif-

ference is less pronounced than with calcein (23). Esculin ex-
change among vegetative cells did not become significantly faster
following combined-nitrogen removal (Table 3), in contrast to
calcein (23). Esculin influx into heterocysts is not significantly
faster in a mutant that lacks the cyanophycin synthetase CphA1
and is therefore unable to form cyanophycin plugs at the hetero-
cyst cell poles (55) (Table 3). This indicates that esculin transfer is
not retarded by any cyanophycin plugs that may be present. Con-
sistent with this finding, we could not detect any interaction be-
tween esculin and cyanophycin in vitro (see Fig. S8 in the supple-
mental material).

SepJ, FraC, and FraD are important for the intercellular ex-
change of fluorescent tracers (23, 27, 46). We investigated the
influence of these proteins on the intercellular transfer of esculin
by using �sepJ, �fraC �fraD, and �sepJ �fraC �fraD mutants as
described above. These mutants show filament fragmentation un-
der some conditions (24, 26) (see Fig. S2 in the supplemental
material); however, we always chose filaments at least 5 cells long
for FRAP measurements. In BG11-grown cultures, all of the mu-
tants showed lower fluorescence recovery rates than the wild type
(Table 3), consistent with the involvement of these septal proteins
in the exchange of esculin among vegetative cells. However, slower
residual esculin exchange was observed even in the triple mutant
(Table 3), as is also the case with calcein and 5-CF (Table 2). The
�sepJ mutant does not grow diazotrophically and is arrested early
in heterocyst differentiation (46) and so cannot be used to test for
the involvement of SepJ in esculin exchange between vegetative
cells and heterocysts. However, while the �fraC �fraD mutant is
also incapable of sustained diazotrophic growth, it survives for
more than 48 h following a nitrogen step down, producing het-
erocysts during this time (27). This allows a test for the involve-
ment of FraC and FraD in heterocyst–vegetative-cell exchange.
FRAP shows that the transfer of esculin into �fraC �fraD hetero-
cysts is slower than in the wild type by a factor of �3 (Table 3).

Loss of metabolic communication in older heterocysts. In
wild-type Anabaena grown diazotrophically for 48 h, some het-
erocysts show no esculin fluorescence, despite the presence of es-
culin in the neighboring vegetative cells (Fig. 6A and B). This
suggests that some heterocysts are deficient in esculin exchange
with their vegetative neighbors. We quantified esculin equilibra-
tion between heterocysts and vegetative cells by dividing the escu-
lin fluorescence intensity in each heterocyst by the mean fluores-
cence intensity in its immediate vegetative neighbors (IH/IV ratio).
The IH/IV ratio should be ~1 for “communicating” heterocysts,
where esculin equilibrates across the cell junctions, but ~0 for
heterocysts that are deficient in esculin exchange and also incapa-
ble of direct esculin uptake. The IH/IV ratio shows a bimodal dis-
tribution with peaks close to 0 and 1 (Fig. 6C), consistent with two
such populations of heterocysts. Fluorescence in the noncommu-
nicating heterocysts was not significantly above the background
seen in unlabeled cells. Communicating and noncommunicating
heterocysts are sometimes present in the same Anabaena filament
(Fig. 6B). The frequency of communicating heterocysts is almost
100% 24 h after a nitrogen step down but then drops to ~70% at
48 h and subsequently remains at that level (Fig. 6D). Therefore,
young heterocysts are nearly all capable of esculin exchange, but
during continued diazotrophic growth, a population of ~30% of
noncommunicating heterocysts builds up. Communicating and
noncommunicating heterocysts are equally likely to be located at
the terminus of the filament: we found that at 48 h after a nitrogen

TABLE 3 Kinetics of esculin exchange from FRAP measurements on
Anabaena filamentsa

Measurement (no. of replicates)
Mean R
(s�1) � SD

Mean
Fi � SD

Vegetative cells in presence of nitrate
Wild-type Anabaena (29)* 0.137 � 0.050 0.518 � 0.143
CSVM34 (�sepJ) (25)† 0.099 � 0.042 0.571 � 0.145
CSVT22 (�fraC �fraD) (30)‡ 0.069 � 0.029 0.605 � 0.072
CSVM141 (�sepJ �fraC �fraD) (21)§ 0.069 � 0.030 0.671 � 0.068

Vegetative cells of wild-type Anabaena 48 h
after nitrogen deprivation (38)¶

0.142 � 0.046 0.507 � 0.110

Heterocysts 48 h after nitrogen deprivation
Wild-type Anabaena (33)** 0.060 � 0.054 0.757 � 0.069
CSVT22 (�fraC �fraD) (18)†† 0.017 � 0.024 0.736 � 0.097
CSS7 (cphA1::C.S3) (24) 0.074 � 0.069 0.640 � 0.160

Spontaneous fluorescence recovery of
wild-type Anabaena (21)

0.925 � 0.049

a The mean exponential recovery rate constants (R) and immobile fractions (Fi) for
filaments grown with or without combined nitrogen were measured. R values were
standardized by dividing by 2 for cells with two connecting junctions (i.e., all of the cells
except those at the terminus of the filament). Fi is defined by (II � IE)/(II � I0), where
II is the initial fluorescence intensity before bleaching, I0 is the fluorescence intensity
immediately after bleaching, and IE is the final fluorescence intensity. The extent of
spontaneous fluorescence recovery is given by 1 � Fi. Student’s t tests show that R is
significantly different between * and † (P � 0.004), * and ‡ (P � 0.00001), * and § (P �
0.00001), † and ‡ (P � 0.004), † and § (P � 0.008), ** and †† (P � 0.002), * and **
(P � 0.00001), ‡ and †† (P � 0.00001), and ¶ and ** (P � 0.00001). R values for cells
showing 1 � Fi � �0.075 (equivalent to the spontaneous fluorescence recovery in the
absence of diffusion) were considered to be 0.
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FIG 5 Examples of FRAP experiments monitoring intercellular exchange of esculin in wild-type Anabaena filaments. A and B, esculin exchange among
vegetative cells; C and D, esculin transfer from vegetative cells to a terminal heterocyst; E and F, esculin transfer from a terminal heterocyst to vegetative cells. (A,
C, and E) Fluorescence images from FRAP time series showing esculin fluorescence prior to bleaching (pre), immediately after bleaching (t � 0), and at the later
time points indicated. Scale bars, 5 �m. (B and D) Fluorescence recovery curves for bleached cells. Fluorescence is expressed in consistent arbitrary units (a.u.).
(E and F) Esculin movement from a terminal heterocyst (arrowhead) to the neighboring vegetative cells, observed by monitoring heterocyst fluorescence after
bleaching of all of the vegetative cells. Filled circles, heterocyst fluorescence in successive images prior to bleaching. Open circles, heterocyst fluorescence versus
time after bleaching fluorescence in the vegetative cells. Heterocyst fluorescence at t � 0 is already lowered by diffusion of esculin out of the heterocyst during
bleaching, probably combined with some direct bleaching of the heterocyst esculin due to scattered light.
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step down, 52% of noncommunicating heterocysts were terminal
(n � 42) and also that 52% of communicating heterocysts were
terminal (n � 149). This suggests that loss of communication is
not a consequence of filament breakage. A cphA1 mutant deficient
in cyanophycin synthetase (52) showed a similar frequency of
noncommunicating heterocysts (see Fig. S9 in the supplemental
material), indicating that cyanophycin plugs are also not the cause
of heterocyst noncommunication. Heterocysts are incapable of
further cell division and have a limited lifetime before they senesce
and die (56). To test the possibility that the noncommunicating
heterocysts are senescent, we restored combined nitrogen to a
diazotrophic culture. This prevents the generation of new het-
erocysts, therefore leading to an aging heterocyst population
and the gradual disappearance of heterocysts from the culture
(57). Heterocyst frequency decreases following combined-
nitrogen addition, with a simultaneous decrease in the propor-
tion of communicating heterocysts (Fig. 6E). This suggests that
the noncommunicating heterocysts are those in the early stages of
senescence, prior to any obvious morphological changes (Fig. 6A).

DISCUSSION

Esculin is a fluorescent tracer that closely resembles sucrose (Ta-
ble 1). We found that esculin is imported into the cytoplasm of
Anabaena cells by a sucrose uptake system (Fig. 4), as it is in plants
(48). Therefore, imaging of esculin fluorescence in Anabaena
should give a good guide to the behavior of sucrose. Esculin in the
Anabaena cytoplasm includes a mobile pool that rapidly and re-
versibly exchanges among vegetative cells and between vegetative
cells and heterocysts (Fig. 5). Esculin fluorescence could not be

detected in the periplasm (Fig. 3 and 6; see Fig. S6 in the supple-
mental material), and exchange is reduced in mutants lacking sep-
tal junction proteins, suggesting that the major route for intercel-
lular transfer of esculin is diffusion from cytoplasm to cytoplasm
across cell junctions. Communicating heterocysts showed, on av-
erage, levels of esculin fluorescence similar to those of their vege-
tative neighbors (Fig. 6C), suggesting full equilibration of esculin
across the cell junction. Reversible heterocyst–vegetative-cell ex-
change is also indicated by the similar kinetics of esculin move-
ment in both directions (Fig. 5).

Our findings on the ultrastructure and molecular exchange
characteristics of a mutant lacking septal proteins shed light on the
mechanism of intercellular esculin exchange. Structures that have
been termed microplasmodesmata or septosomes have long been
known to be present in the intercellular septa of the filaments of
heterocyst-forming cyanobacteria (29, 58–60). Cell wall perfora-
tions that have been termed nanopores, recently reported to be
present in septal peptidoglycan discs (38), may be the places where
these structures traverse the murein sacculus (30, 32, 39, 40, 43).
Three known proteins that are required for making long filaments
in Anabaena, SepJ, FraC, and FraD, are located at the intercellular
septa where they appear to play a role in cell-cell adhesion and
facilitating communication between adjacent cells (23, 24, 26).
Such functions would require a physical interaction between the
proteins contributed by each of the adjacent cells, implying that
these proteins traverse the septal peptidoglycan. We found a sig-
nificantly decreased number of nanopores in mutants lacking
combinations of SepJ, FraC, and FraD compared to the wild type.

FIG 6 Esculin labeling of Anabaena heterocysts. (A and B) Fluorescence micrographs showing esculin-labeled wild-type Anabaena filaments 48 h after a
combined-nitrogen step down. Communicating heterocysts are indicated by white arrows, and noncommunicating heterocysts (defined by an IH/IV ratio of
�0.2) are indicated by yellow arrows. IH, esculin fluorescence intensity in the heterocyst; IV, mean esculin fluorescence intensity in immediately neighboring
vegetative cells. Chlorophyll fluorescence is magenta, esculin fluorescence is cyan, and the bright-field image is in grayscale. Panels A (bottom) and B are merged
images. Scale bars, 5 �m in panel A and 10 �m in panel B. (C) Frequency distribution of IH/IV ratios for heterocysts in filaments esculin labeled as in panels A and
B. (D and E) Frequencies of communicating (black) and noncommunicating (gray) heterocysts versus time following a combined-nitrogen step down (D) and
after the addition of combined nitrogen to a diazotrophic culture (E). Detached heterocysts were not included in the statistics.
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The mutants lack the typical nanopore array seen in the wild type
and instead show just a few randomly placed nanopores. A
straightforward hypothesis is that SepJ, FraC, and FraD are com-
ponents of the septal junctions and that septal junction complexes
containing these proteins influence the activity of the AmiC type
amidases to form a septal nanopore array. However, the presence
of a few residual nanopores in the �fraC �fraD �sepJ triple mu-
tant indicates either that there are peptidoglycan hydrolases that
can form some pores in the absence of any septal junction proteins
or that other septal junction proteins, yet to be identified, are
present in the intercellular septa. Interestingly, the residual nano-
pores have a significantly greater mean diameter than those seen
in the wild type (see Fig. S5 in the supplemental material). This is
consistent with the idea that the residual septal channels in the
�sepJ �fraC �fraD triple mutant have a molecular composition
different from that of the majority of the channels seen in the wild
type, which are likely to include SepJ, FraC, and FraD among their
components.

In the �sepJ �fraC �fraD triple mutant, the cytoplasmic mem-
branes of the adjacent cells are very close to each other, and a
highly electron-dense layer (presumably peptidoglycan) is ob-
served between them. Intercellular junctions that are thinner than
in the wild type have also been observed in the �sepJ single mutant
strain CSVM34 (30). As with metazoan gap junctions (31), septal
junction complexes might determine a fixed distance between the
cytoplasmic membranes of the adjacent cells, and the absence of
those complexes might produce the collapse of the septum be-
tween those cells. Mutants lacking SepJ show lower labeling with a
fluorescent vancomycin derivative (Fig. 1; see Fig. S3 in the sup-
plemental material), which is indicative of a lower rate of septal
peptidoglycan remodeling (38) in the absence of this protein.

Mutants lacking SepJ, FraC, and FraD are all impaired in in-
tercellular esculin exchange (Table 3), consistent with the idea
that the septal junctions are crucial for sucrose exchange between
cells. Loss of FraC and FraD slows esculin exchange between veg-
etative cells and heterocysts by about 70% and slows esculin ex-
change among vegetative cells by about 50% (Table 3). FraC and
FraD are involved in the organization of SepJ at the septa (26),
which may explain why esculin exchange is as strongly affected in
the �fraC �fraD mutant strain as in the �sepJ �fraC �fraD triple
mutant (Table 3). SepJ, FraC, and FraD (and possibly other pro-
teins) may form a family of intercellular channels with different
selectivities for molecular size and charge. Residual intercellular
exchange of esculin and fluorescein derivatives in the triple mu-
tant may be due to additional, uncharacterized channels better
capable of transmitting esculin than larger and more negatively
charged molecules (Table 1). This is consistent with the residual
septal nanopores in the triple mutant (Fig. 2).

A route for exchange of carbon and nitrogen compounds be-
tween heterocysts and vegetative cells could involve diffusion
through a continuous periplasm (22), followed by active import
into the cytoplasm (57). However, the rapid exchange of esculin at
heterocyst–vegetative-cell septal junctions suggests that diffusion
from cytoplasm to cytoplasm across these junctions is the main
route for sucrose transfer. Metazoan gap junctions provide a prec-
edent for a protein family (in this case, connexins) forming a range
of diffusion channels with different permeability characteristics
(31). Some Anabaena septal junction structures could be opti-
mized for the exchange of sucrose, consistent with the idea that

sucrose is the principal metabolite used to supply heterocysts with
photosynthate (12–15).

During prolonged diazotrophic growth, ~30% of heterocysts
do not show esculin fluorescence (Fig. 6). Although heterocysts
might be capable of direct sucrose uptake (57), the noncommu-
nicating heterocysts must be incapable of esculin uptake by this
route, and from the neighboring vegetative cells, since their escu-
lin fluorescence is negligible (Fig. 6). Changes in the noncommu-
nicating population following removal and readdition of com-
bined nitrogen (Fig. 6) suggest that this population consists of
heterocysts in the early stages of senescence. Heterocysts can con-
sume ~50% of the filament’s photosynthate (1), so it must be
important to supply only fully functional heterocysts with su-
crose. It may be crucial for survival to close communication
with a dying heterocyst before it lyses, to avoid rapid leakage of
metabolites into the medium. Loss of communication could
result from closure of half-channels on either side of the
heterocyst–vegetative-cell septal junction, perhaps comparable to
the regulation of metazoan gap junction activity (61). The parti-
tioning of sucrose between communicating cells in the filament
may be controlled by sucrose metabolism in individual cells, a
simple but effective way to ensure that the photosynthate supply
meets the photosynthate demand of individual vegetative cells and
heterocysts.

MATERIALS AND METHODS
Strains, growth conditions, and PCR analysis. The sepJ, fraC, and fraD
genes are open reading frames alr2338, alr2392, and alr2393 of the
Anabaena genome, respectively (62). Mutant strains CSS7 (cphA1::C.S3),
CSVT22 (�fraC �fraD), and CSVM34 (�sepJ) have been previously de-
scribed (27, 46, 55). Strain CSVM141 was constructed by transferring an
inactivating sepJ construct to mutant CSVT22 as previously described for
the construction of CSVM34 from strain PCC 7120 (46). CSVM141 car-
ries unmarked deletions in fraC, fraD, and sepJ. DNA was isolated from
Anabaena as described in reference 63. PCR was performed by standard
procedures (64), and the PCR products were resolved by electrophoresis
in 0.8% agarose gels. For the oligodeoxynucleotide primers used, see Ta-
ble S1 in the supplemental material.

Anabaena strains were grown in liquid BG11 medium (65) with anti-
biotics appropriate for mutant strain CSS7 in conical flasks with shaking
(80 to 100 rpm) at 30°C in white light at ~15 to 75 �E · m�2 · s�1.
Heterocyst formation was induced by growth in BG110 medium (65),
which lacks combined nitrogen. For transfer between media, cells were
harvested by centrifugation (3,000 � g) and washed three times in the
appropriate medium. To determine filament length, flasks containing
BG11 medium were inoculated with material from plates and incubated
for 3 to 4 days at 30°C (80 to 90 rpm, 25 �E · m�2 · s�1). The cultures were
then harvested, adjusted to 2 �g of chlorophyll a (Chl) · ml�1 and incu-
bated in fresh BG11 medium for 24 h. Filaments were counted at that time
or harvested, washed, and resuspended in BG110 medium and further
incubated under the culture conditions described above. Samples were
taken with great care to prevent disruption of the filaments and placed on
solidified medium (BG11 or BG110). Samples were visualized and photo-
graphed by standard light microscopy.

Electron microscopy. Ultrathin section preparation was done as de-
scribed in reference 40. Briefly, filaments of the strains indicated that were
grown in BG11 medium were harvested by gentle centrifugation and fixed
with 4% (wt/vol) glutaraldehyde and 2% (wt/vol) KMnO4, dehydrated
with increasing concentrations of ethanol, and embedded in araldite, and
ultrathin sections were prepared and poststained with uranyl acetate and
lead citrate (66). The samples were examined with a JEOL JEM-1230
electron microscope at 80 kV. The sacculi were isolated and analyzed as
previously described (38, 67). In brief, after breakage of the cells by soni-
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cation and subsequent homogenization with glass beads, the broken fila-
ments were added dropwise to boiling SDS and boiled for several hours.
After ultracentrifugation (Beckmann 75 Ti rotor, 322,000 � g, 25°C,
45 min), the pellet was dissolved in H2O and boiled again with SDS. After
the procedure was repeated, the sacculi were treated with chymotrypsin
and again boiled in SDS. After being washed with H2O, the purified sacculi
were put on Formvar/carbon film-coated copper grids, stained with ura-
nyl acetate, and visualized with a Philips Tecnai-10 microscope at 80 kV
(37, 67).

Van-FL staining. Vanc-FL staining of BG11-grown filaments of the
strains indicated was performed as previously reported (38). Samples
were visualized in a Leica DM6000B fluorescence microscope with an
ORCA-ER camera (Hamamatsu). Fluorescence was monitored with a flu-
orescein isothiocyanate L5 filter (excitation, 480/40-nm band-pass [BP]
filter; emission, 527/30-nm BP filter). Images were treated with the Leica
Application Suite Advanced Fluorescence software and merged with Im-
ageJ 1.47i software (http://imagej.nih.gov/ij).

Labeling, fluorescence microscopy, and FRAP with esculin. Fila-
ments were harvested, resuspended in 500 �l of fresh growth medium,
mixed with 15 �l of saturated (~5 mM) aqueous esculin hydrate solution
(Sigma-Aldrich), and incubated for 30 min in the dark with gentle shaking
at 30°C prior to being washed three times in growth medium, followed by
incubation in the dark for 15 min in 1 ml of medium at 30°C with gentle
shaking. Cells were then washed again and spotted onto a BG11 or BG110

agar plate (1% [wt/vol]), and excess medium was removed. Heterocyst
counts (Fig. 6; see Fig. S9 in the supplemental material) used alcian blue
staining to highlight the heterocysts (68); this did not perturb fluorescence
imaging. Five microliters of 0.5% (wt/vol) alcian blue 8GX solution in
50% (vol/vol) ethanol (Acros Organics) was added to the esculin-labeled
cell suspension (68). Samples were prepared as described above but with-
out the final washing step. Small blocks of agar with cells adsorbed onto
the surface were placed in a custom-built, temperature-controlled sample
holder under a glass coverslip at 30°C. Cells were visualized with a confo-
cal laser scanning microscope (Leica TCS SP5) with a 63� oil immersion
objective (numerical aperture [NA] 1.4). Fluorescence was excited at
355 nm, and esculin was detected at 443 to 490 nm and Chl was detected
at 670 to 720 nm. High-resolution imaging used 6� line-average with an
optical section of ~0.7 �m. FRAP measurements were made without line
averaging and with a wider pinhole giving an optical section of ~4 �m.
After capturing a prebleaching image, the fluorescence of the defined re-
gion of interest (ROI) was bleached out by scanning the ROI at an ~6�
higher laser intensity, and recovery was then recorded in a sequence of
full-frame images. To investigate the efficiency of heterocyst labeling, we
used additional excitation at 488 nm for better bright-field imaging. Im-
ages were processed with ImageJ software (69).

Labeling, fluorescence microscopy, and FRAP with calcein and
5-CF. For calcein and 5-CF transfer assays, calcein and 5-CF staining and
FRAP analysis were performed as previously reported. Calcein and 5-CF
were loaded into cells as esterified precursors (calcein acetoxymethylester
and 5-CF diacetate acetoxymethylester) (23, 27). Cell suspensions were
spotted onto agar and placed in a custom-built temperature-controlled
sample holder with a glass coverslip on top. All measurements were car-
ried out at 30°C. For both calcein and 5-CF, cells were imaged with a Leica
HCX Plan Apo 63� NA 1.4 oil immersion objective attached to a Leica
TCS SP5 confocal laser scanning microscope as previously described for
calcein (23) with a 488-nm line argon laser as the excitation source. Flu-
orescence emission was monitored by collection across windows of 500 to
520 or 500 to 527 nm in different experiments with a 150-�m pinhole.
After an initial image was recorded, bleaching was carried out by an au-
tomated FRAP routine that switched the microscope to X-scanning mode,
increased the laser intensity by a factor of 10, and scanned a line across one
cell for 0.137 s before reducing the laser intensity, switching back to XY
imaging mode, and recording a sequence of images typically at 1-s inter-
vals.

FRAP data analysis. The “exchange coefficient” E relates the rate of
dye movement between two adjacent cells to the difference in dye concen-
tration between the cells (23). However, the high immobile fraction (Fi)
for esculin and 5-CF (27) (Table 3) prevented the quantitation of E for
exchange among vegetative cells, which requires fitting of the simulated
time development of dye distribution in the filament to the experimental
data (23). We therefore used a simpler way to quantify kinetics of esculin
transfer between vegetative cells by measuring the recovery rate constant
R from the formula CB � C0 	 CR(1 � e�2Rt), where CB is fluorescence in
the bleached cell, C0 is fluorescence immediately after bleaching and tend-
ing toward C0 	 CR after fluorescence recovery, R is the recovery rate
constant, and t is time (27). For valid comparison of terminal cells (with
one cell junction) with cells in the middle of filaments (with two cell
junctions), the formula CB � C0 	 CR(1 � e�Rt) was used in the former
case.

Esculin uptake and sucrose competition. Anabaena cultures grown
in BG11 medium were, when indicated, harvested by centrifugation,
washed with BG110 medium, and incubated for 18 h in BG110 medium
under culture conditions. Cells were harvested, washed, and resuspended
in growth medium supplemented with 10 mM HEPES-NaOH buffer
(pH 7) with or without 10 mM sucrose. Esculin was added to 100 �M, and
suspensions were incubated at 30°C in the light (~170 �E · m�2 · s�1).
One-milliliter samples were withdrawn and filtered. Cells on the filters
were washed and resuspended in 2 ml of 10 mM HEPES-NaOH buffer
(pH 7). Fluorescence was measured in a Varian Cary Eclipse Fluorescence
Spectrophotometer (excitation wavelength, 360 � 10 nm; emission wave-
length, 462 � 10 nm). Esculin solutions in the same buffer were used as
standards.

Physicochemical properties of dyes. Tools at http://www.chemical-
ize.org/ and Marvin 6.0.2 (ChemAxon) were used to predict molecular
properties.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
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