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Abstract: We consider the worldvolume theory of N D3-branes transverse to various

non-compact Calabi-Yau spaces, and describe subtleties in the counting of chiral primary

operators in such theories due to the presence of multiple branches of moduli space. Extra

branches, beyond those directly related to the transverse geometry, result in additional

terms in the generating functions for single- and multi-trace operators. Ideals in the N = 1

chiral ring correspond to various branches and, in the large N limit, the operator counting

reveals a product of Fock spaces, including the Fock space of bosons on the space transverse

to the branes.
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1 Introduction

The study of D3-branes transverse to conical non-compact Calabi-Yau spaces has a long

and storied past. As the transverse geometry has increased in complexity from C3 [1] to

the conifold [2] to orbifold singularities [3, 4] and beyond [5–7], our understanding of the

related worldvolume theories, as well as the techniques used to study them, has increased

dramatically. The motivations for these studies have ranged across a variety of themes:

the fundamentals of D-brane physics, matrix models [8], brane-engineering of gauge theory

dynamics, geometric engineering and reverse geometric engineering [9], and AdS/CFT [10–

12]. Nevertheless, despite so many years of study, many interesting and important questions

about these theories remain.

A particularly interesting part of any N = 1 supersymmetric theory is the set of

chiral gauge-invariant operators. These operators are annihilated by the supersymmetry

generators of one chirality, Q̄, and are usefully considered modulo an equivalence relation

where commutators with Q̄, i.e. Q̄-exact operators, are set to zero. With this equivalence,

derivatives can be set to zero. The ring formed by these operators, called the chiral ring,

will play a pivotal role in the current work. In SCFTs, chiral primary operators (the

lowest weight states in their representation of the conformal group) can be chosen as

representatives of the chiral ring equivalence classes. We will focus on the chiral ring

operators which are constructed from matter multiplets.

One particularly interesting question is how to derive the spectrum of chiral primary

operators. For D3-branes at the tip of a Calabi-Yau cone, the dimensions of such operators

can be computed with a-maximisation [13] (or, on the geometry side, Z-minimisation [14]).

Additionally, the dimension ∆ of two gauge-invariant chiral primary operators O1 and O2

are additive in the sense that ∆(O1O2) = ∆(O1) + ∆(O2). A central question about such

– 1 –



operators is then how many there are with a given dimension. This counting has been

achieved in many theories thanks to the “plethystic program” of [15, 16]. In many cases

of interest, the theories have a number of U(1) global symmetries. A basis of the chiral

ring can be formed from operators with definite charges, and generating functions can be

defined for this refined counting.

A closely related object of interest in a supersymmetric gauge theory is the moduli

space of constant (space-time independent) zero energy configurations of the scalar matter

fields. Since the energy is a sum of squares of F- and D-terms, these configurations solve D-

and F-term equations. Vacuum expectation values of gauge-invariant chiral ring operators

can be used to parameterize the moduli space. As a result, the chiral ring is expected to

be the ring of holomorphic polynomial functions on the moduli space (see e.g. [17, 18]).

This connection between the space and the ring is of the form one encounters in algebraic

geometry, where the study of ideals in the ring is an important part of the story.

It is natural to interpret the moduli space of the worldvolume theory of a stack of D3-

branes as the transverse geometry. For example, in the case of a single, flat D3-brane in R9,1,

the three (uncharged) chiral superfields in the worldvolume theory naturally correspond

to the coordinates on the transverse space C3. For multiple branes, the moduli space is

expected to be a symmetric product SymN (X), where X is the transverse space and N

is the number of branes; similarly, the gauge group of the worldvolume gauge theory is a

product of U(N) factors. The ring of functions on the symmetric product corresponds to

bosonic wavefunctions of an N -particle system on X. The explicit demonstration for C3 is

in [1] and for the conifold in [2]; the moduli spaces for orbifold theories are also considered

in [3, 19]. The appearance of symmetric products plays an important role in matrix theory

[8] as well as reverse geometric engineering [9]. In the large N limit, the ring of functions on

SymN (X) can be mapped to a Fock space of states obtained by acting on a vacuum with

oscillators, one for each holomorphic monomial function on the space X. The emergence of

Fock spaces at large N is central to the AdS/CFT correspondence. On the AdS side, the

Fock spaces arise from multi-particle states obtained from Kaluza-Klein reduction on the

base of the cone transverse to the 3-branes. The counting of Fock space states is related to

the counting of single particle states by the plethystic exponential and, as such, this has

played an important role in the plethystic program [15, 16, 20]. The problem of counting

chiral operators in M2-brane world-volume gauge theories transverse to orbifold geometries

was also considered in [21]. A similar problem of calculating the superconformal index

[22, 23] for D3-brane worldvolume gauge theories has been completed for the transverse

geometries C3 [22], the conifold [24], and other orbifold theories [25].

The goal of the present work is to explore these relationships between chiral rings,

moduli spaces, large N Fock spaces, and the transverse geometry in various examples of

D3-branes transverse to non-compact Calabi-Yau spaces. We will pay particular attention

to the fact that, even in very simple cases such as C3/Z2, the existence of multiple branches

of the moduli space brings additional subtleties to the web of inter-relations linking gauge

theory combinatorics to geometry. Along the way, we will also examine the close relation

observed [15] between the chiral ring of the U(1) theory and the single trace operators in

the large N theory (throughout this work, we will refer to the large N theory as the U(∞)

– 2 –



theory). In this paper we will only consider mesonic operators since the gauge group will

always be a product of unitary gauge groups. The baryonic branch has been considered

for similar theories with special unitary gauge groups in [26, 27].

The outline of the remainder of this paper is as follows. In Section 2, we review some

basic technology for quiver theories, chiral rings, and the generating functions that count

chiral primaries. The remaining sections then consider a variety of examples in increasing

order of complexity: N = 4 (Section 3), the conifold (Section 4), C3/Z2 (Section 5), C3/Zn
(Section 6), and C3/Ân (Section 7), where Ân is the order n cyclic subgroup of SU(2).

Finally, in Section 8, we briefly conclude, and various details are relegated to appendices.

2 Review

Throughout this paper we will be looking at gauge theories that live on the worldvolume

of a flat stack of D3-branes with a 3-complex dimensional transverse space. Our main goal

in this work is to describe the relationships between the following objects:

• The space transverse to the D3-branes

• The moduli space of the world-volume theory

• The U(1) (i.e., single-brane) chiral ring of the world-volume theory

• The set of single-trace operators of the world-volume theory

• The ring of multi-trace operators of the world-volume theory

• The generating functions for counting operators in these sets/rings

In this section, we review these concepts.

2.1 Moduli Space

It is common for supersymmetric theories to have a moduli space of supersymmetric vacua.

For a SUSY gauge theory with gauge group G, three different but equivalent ways of finding

the classical moduli space are:

1. Solve the D- and F-term relations modulo G transformations.

2. Solve the F-term relations modulo GC transformations, where GC is the complexified

gauge group.

3. Find the holomorphic gauge-invariant monomials modulo algebraic relations.

For a review, see e.g. [18, 28]. Throughout the present work, we will use methods 1 and

3. In the context of the moduli space, we will be talking about the ring of holomorphic

polynomials on the space, so we now introduce some basic ideas in ring theory.
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2.2 Rings, Ideals, and Quotient Rings

A ring R is a set of elements with two binary operations: addition and multiplication.

The ring is an abelian group under addition (R,+) and a monoid under multiplication

(R, ·), i.e. there is not necessarily a multiplicative inverse. Additionally, multiplication is

distributive under addition. The rings we consider in this paper will all be commutative

under multiplication.

An ideal I is any subset of a ring which along with the addition operation (I,+) forms

a subgroup of (R,+) and satisfies

∀x ∈ I,∀y ∈ R : x · y ∈ I and y · x ∈ I. (2.1)

The ideal generated by a set of elements {Xi}, is denoted 〈Xi〉 and is the minimal ideal

containing the elements Xi; more precisely, 〈Xi〉 is the intersection of all ideals containing

{Xi}. In other words the elements of an ideal generated by {Xi} are
∑

i aiXi for all possible

ai ∈ R.

For any ring R and ideal I, the quotient ring R/I is the ring R modulo an equivalence

relation which identifies two elements if their difference is an element of I. As a simple

example, consider C2 with coordinates (x, y). The space of holomorphic polynomials on

C2 with complex coefficients corresponds to the ring of polynomials in two variables with

complex coefficients, C[x, y]1. The space of holomorphic polynomials on C2 has as a linear

basis of monomials of the form xmyn, with m,n ∈ Z≥0. One ideal of C[x, y] is the ideal

generated by y, I = 〈y〉. This ideal contains y and anything with a factor of y in it. The

quotient ring C[x, y]/I has a linear basis monomials of the form xm, with m ∈ Z≥0. In

other words, C[x, y]/〈y〉 ∼= C[x].

2.3 Chiral Ring

We now review some basic facts about chiral rings. For reviews see [29, 30].

A chiral operator is any operator that is annihilated by the supersymmetry generators

of one chirality, Qα̇. The OPE of chiral operators is non-singular and thus we can define a

ring of chiral operators with a multiplication operation. Since an OPE of chiral operators

does not depend on the positions of the operators, cluster decomposition implies that the

OPE only depends on the vevs of fields. Thus, within the chiral ring, operators with the

same vev are considered equivalent. As a consequence of the vacuum being annihilated by

supersymmetry generators, chiral operators should be considered equivalent if they differ by

a term of the form {Qα̇, . . . ]; two operatorsO1 andO2 are equivalent ifO1 = O2+{Qα̇, X α̇].

In superspace, the condition that a superfield Φ is a chiral superfield is Dα̇Φ = 0.

Two chiral operators being equivalent if they differ by {Qα̇, ...] implies that the two chiral

superfields X1, X2 they belong to are equivalent if X1 = X2 + Dα̇D
α̇
Z. In Wess-Zumino

models the equation of motion of a chiral superfield Φ is

∂ΦW (Φ) = Dα̇D
α̇
Φ, (2.2)

1Throughout this paper when we refer to the ring of holomorphic polynomials on a space we mean the

space of holomorphic polynomials on this space with multiplication and addition defined in the usual way.

Also, we will discuss the generating function for the ring of holomorphic polynomials on a space. This

generating function will have one term for each basis holomorphic monomial in the ring.
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from which we can see that in the chiral ring the F-term relations

∂ΦW (Φ) = 0 (2.3)

are satisfied. If we take the gauge-variant F-terms and contract with all possible operators

that result in gauge-invariant terms then we can define the ideal, I0, which is generated

by these gauge-invariant terms. Then if R0 is the ring of chiral gauge-invariant operators,

R = R0/I0 is the chiral ring of a theory with nonzero superpotential. For a theory with

no superpotential there are no F-terms and so the chiral ring is R = R0.

For the theories we study in this paper, all elements of the chiral ring will be either

single- or multi-trace operators, i.e., a single trace of products of operators or several

single-trace operators multiplied by each other. We will not consider determinants because

the theories in questions will have unitary, not special unitary, gauge groups.

2.4 Generating Functions and Plethystics

In [15, 16] the authors describe a method of counting operators in a theory using generating

functions. Such a generating function typically looks like

f(t1, . . . , tk) =
∑
i1,...,ik

ci1,...,ikt
i1
1 . . . t

ik
k , (2.4)

where ti is the fugacity (chemical potential) for the i-th quantum number and ci1,...ik gives

the number of operators with quantum numbers (i1, . . . , ik).

A useful tool in [15] is the “plethystic exponential”, which is used to get the generating

function for multi-trace operators from the generating function for single-trace operators

at large N . If we have some function FS(ti), the plethystic exponential of the function is

defined to be

P.E. [FS(ti)] = exp

{ ∞∑
k=1

FS(tki )− FS(0)

k

}
. (2.5)

To see how this gives the multi-trace operator generating function from the single-trace op-

erator generating function, consider a generating function for single-trace operators where

each single-trace operator has a different chemical potential. In this case, FS(ti) =
∑

i ti.

The plethystic exponential is thus

FM (ti) = P.E. [FS(ti)] =
∏
i

1

1− ti
. (2.6)

This will give one term for each way the ti can be raised to different powers and multiplied,

so this is indeed the generating function for multi-trace operators.

In [15], the authors identify the set of large N single-trace operators with the set of

holomorphic polynomials on the moduli space, which in turn is identified with the set

of holomorphic polynomials on the transverse space. They use this logic to derive the

generating function for single-trace operators using results from algebraic geometry. We

will find that these relations between moduli space, transverse geometry and single traces

are only true modulo subtleties due to the existence of multiple branches of moduli space

which we will describe.
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3 N = 4 SYM

We begin with U(N) N = 4 SUSY Yang-Mills (SYM) as a particularly simple example

which will illustrate the ideas used throughout the remainder of the paper. This is the

worldvolume theory on a flat stack of N D3-branes, with transverse space C3. In N =

U(N)

X

Y Z

Figure 1. The N = 1 quiver diagram for N = 4 SYM.

1 language, we can write the theory as a U(N) gauge theory with three adjoint chiral

superfields X,Y, Z whose quiver diagram is given in figure 1. The N = 1 superpotential is

W = Tr (X [Y,Z]) , (3.1)

which yields the F-term equations

XY = Y X, XZ = ZX, Y Z = ZY, (3.2)

where we have suppressed gauge indices.

3.1 N = 1 Moduli Space

The F-terms enforce that the matrices X, Y and Z all commute. This means that they

can be simultaneously put in to upper triangular form by a unitary transformation. The

D-term constraint

[X,X†] + [Y, Y †] + [Z,Z†] = 0 (3.3)

then enforces that X, Y and Z must be diagonal. After diagonalising, there is still a

residual SN gauge symmetry which interchanges the eigenvalues, so the moduli space is

(C3)N/SN or SymN (C3).

For a single brane, N = 1, so the moduli space is just C3. This demonstrates the

first relationship we would like to highlight: the N = 1 moduli space of the D3-brane

worldvolume theory is the transverse space. For multiple branes, one can interpret the SN
action as swapping the positions of the N D3-branes in the transverse space C3, with the

same result.
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3.2 W = 0 Large N Chiral Ring

It is interesting to consider this theory when the superpotential is turned off but the

gauge coupling remains nonzero; this breaks N = 4 SUSY but preserves N = 1. In this

situation, we now look to find the generating function for multi-trace operators. Now,

the operators X,Y, Z do not commute. Thus, the single-trace operators in the theory

consist of various configurations of the adjoint chiral superfields with given orderings. The

generating function for single-trace-operators in the large N theory is then given by the

generating function for 3-ary necklaces of beads2, a problem whose solution can be found

in combinatorics. The generating function is found using the Pólya enumeration theorem

[31, 32]3, but before describing this theorem we first introduce a few ideas.

For a finite group G ⊆ Sn the cycle index is defined as

ZG(t1, t2, ..., tn) ≡ 1

|G|
∑
g∈G

t
j1(g)
1 t

j2(g)
2 ...tjn(g)

n , (3.4)

where ji(g) is the number of cycles of length i in g. Let X be a set of n objects and let

G be a finite group that acts on X. Additionally, let Y = {c1, ..., ck} be a set of |Y | = k

colours so that Y X is the set of coloured arrangements of these n objects. The colour

generating function is defined to be f(c1, ..., ck) ≡
∑k

i=1 ci. Then the Pólya enumeration

theorem counts the number of orbits under G of the coloured arrangements of n beads.

According to the theorem, the counting is given by the generating function

FG (c1, ..., ck) = ZG
(
f(ci), f(c2

i ), ..., f(cni )
)
. (3.5)

We are interested in counting k-ary necklaces of n beads so for this case the finite

group is the cyclic group G = Cn. The cyclic group Cn has ϕ(d) elements of order d for

each divisor d of n, where ϕ(d) is the Euler totient function4. Thus the cycle index is

ZCn (t1, ..., tn) =
1

n

∑
d|n

ϕ(d) (td)
n
d . (3.6)

This means that the generating function for k-ary necklaces of n beads is given by

FCn (c1, ..., ck) =
1

n

∑
d|n

ϕ(d)
(

Σk
i=1c

d
i

)n
d
, (3.7)

and the generating function for k-ary necklaces of any number of beads is

FC (c1, ..., ck) =

∞∑
n=1

1

n

∑
d|n

ϕ(d)
(

Σk
i=1c

d
i

)n
d

= −
∞∑
d=1

ϕ(d)

d
log
[
1−

(
Σk
i=1c

d
i

)]
. (3.8)

2A necklace is an arrangement of objects (or beads) that is invariant under the action of the cyclic group.

The generating function for k-ary necklaces of beads counts how many necklaces we can construct using

beads of k different colours.
3An introductory treatment of the theorem along with a wide range of applications can be found in [33].
4The Euler totient function ϕ(n) counts the number of positive integers less than or equal to n that are

co-prime to n.
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For the case of N = 4 SYM with W = 0, the generating function for single-trace

operators is exactly the generating function for 3-ary necklaces of beads (i.e., set k = 3 in

the previous formula):

F
(∞)
S (x, y, z) = −

∞∑
d=1

ϕ(d)

d
log
[
1−

(
xd + yd + zd

)]
. (3.9)

We can then get the generating function for multi-trace operators by taking the plethystic

exponential of this function

F
(∞)
M (x, y, z) = P.E.

[
F

(∞)
S (x, y, z)

]
= exp

{ ∞∑
k=1

1

k
F

(∞)
S

(
xk, yk, zk

)}
, (3.10)

so that we get

F
(∞)
M (x, y, z) =

∞∏
n=1

1

1− (xn + yn + zn)
. (3.11)

These results were originally found in [34].

We can get back to the single-trace operator generating function by using the plethystic

logarithm:

F
(∞)
S (x, y, z) = PE−1

[
F

(∞)
M (x, y, z)

]
=

∞∑
k=1

µ(k)

k
log
(
F

(∞)
M (xk, yk, zk)

)
(3.12)

and using the identity
ϕ(n)

n
=
∑
d|n

µ(d)

d
. (3.13)

3.3 W 6= 0 Large N Chiral Ring

We now look to find the generating function for multi-trace operators in the theory with

nonzero superpotential. Turning on the superpotential enforces the commutativity of the

adjoint chiral superfields. The generating function for single-trace operators with zero

superpotential in equation (3.9) is of the form

F
(∞)
S (x, y, z) =

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

cn1,n2,n3x
n1yn2zn3 , (3.14)

which counts the number cn1,n2,n3 of single-trace operators that we can make with n1 X’s,

n2 Y ’s and n3 Z’s. When we enforce the commutativity of operators, all these coefficients

are 1. Thus the single-trace operator generating function for large N N = 4 SYM with

nonzero superpotential is

F
(∞)
S (x, y, z) =

∞∑
n1=0

∞∑
n2=0

∞∑
n3=0

xn1yn2zn3 =
1

1− x
1

1− y
1

1− z
. (3.15)
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This generating function is equal to the generating function for the ring of holomorphic

polynomials on C3. We also could have obtained this formula using the Pólya enumeration

theorem with G = Sn; see Appendix A.

We can once again take the plethystic exponential of equation (3.15) to give us the

generating function for multi-trace operators in large N N = 4 SYM with nonzero super-

potential:

F
(∞)
M (x, y, z) =

∞∏
n=1

n∏
n1=0

n−n1∏
n2=0

1

1− xn1yn2zn−n1−n2
. (3.16)

This formula could have alternately been derived from first principles by using F
(∞)
M =∏

i (1− ti)−1, where the product is over all single-trace operators.

3.3.1 U(∞) Fock Space

In this example, the generating function for the chiral ring of the U(1) theory tells us the

operator content of the theory; for N = 4 SYM this generating function is the generating

function for holomorphic polynomials on C3. This generating function is also the generating

function for the Hilbert space of a single boson on C3 and gives a basis of wavefunctions

for a particle on C3. In the spirit of [8], we can interpret this Hilbert space in terms of

wavefunctions of a single brane moving on the transverse space.

Equation (3.16) tells us that the generating function for the large N chiral ring is equal

to the generating function for the multi-particle Fock space for bosons on C3 which is the

Fock space of the multiple branes moving on the transverse space. More explicitly, the

space of wavefunctions for the i-th boson on C3 is spanned by

ψi,p,q,r(x, y, z) = xp(i)y
q
(i)z

r
(i). (3.17)

The space of wavefunctions for two bosons is spanned by the symmetric sum

1

2

(
xp1(1)y

q1
(1)z

r1
(1)x

p2
(2)y

q2
(2)z

r2
(2) + xp1(2)y

q1
(2)z

r1
(2)x

p2
(1)y

q2
(1)z

r2
(1)

)
. (3.18)

This space has a one-to-one correspondence with the Hilbert space of two bosons on C3,

which is spanned by

B†p1,q1,r1B
†
p2,q2,r2 |0〉, (3.19)

where B†p,q,r is the creation operator for a particle with wavefunction xpyqzr, satisfying

[B†p1,q1,r1 , B
†
p2,q2,r2 ] = 0.

More generally, for n bosons the symmetrised wavefunctions

1

n!

(∑
σ∈Sn

n∏
i=1

xpiσ(i)y
qi
σ(i)z

ri
σ(i)

)
(3.20)

are in one-to-one correspondence with the Hilbert space of n bosons on C3 spanned by

B†p1,q1,r1 · · ·B
†
pn,qn,rn |0〉. (3.21)
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By inspecting equation (3.16) one can see that

F
(∞)
M (x, y, z) = FFock(C3). (3.22)

where FFock is the generating function for the Fock space of bosons on C3.

3.4 N = 1 Chiral Ring

The generating function for operators in the chiral ring of the U(1) N = 4 SYM theory

is simply equal to the large N single-trace operator generating function given in equation

(3.15). This is because there is a mapping which maps every operator in the U(1) N = 4

SYM theory to a single-trace operator in the U(∞) theory5. This mapping is

Xn1Y n2Zn3 → Tr(Xn1Y n2Zn3). (3.23)

Although this mapping is rather intuitive here, we will see in later sections that näıve

intuition fails for more complicated theories, and in fact the generating function for the

chiral ring of the U(1) theory is not equal to the large N single-trace operator generating

function.

This highlights two more relationships that are part of this story. The first is that

the U(1) chiral ring is equal to the ring of holomorphic polynomials on the transverse

space. The second is that the set of elements in the U(1) chiral ring is equal to the set of

single-trace operators in the large N gauge theory.

3.5 Conclusion

In this section, we observed the following relationships for U(N) N = 4 SYM:

1. The N = 1 moduli space is the same as the space transverse to the D3-branes.

2. The U(1) chiral ring is equal to the ring of holomorphic polynomials on the moduli

space, and thus equal to the ring of holomorphic polynomials on the transverse space.

3. The set of elements in the U(1) chiral ring is equal to the set of single-trace operators

in the U(∞) theory.

4. The multi-trace operator generating function for the U(∞) theory gives us a gener-

ating function for bosons moving on the transverse space.

In the coming sections we see while some of these relationships persist in more complicated

examples, some of them do not.

4 Conifold

Our next example is a stack of N D3-branes transverse to the conifold C, as studied in

[2]. The worldvolume theory is an N = 1 U(N) × U(N) gauge theory with two chiral

superfields, A1 and A2, in the (N,N) representation and two chiral superfields, B1 and B2,

in the (N,N) representation. The quiver for this theory is given in figure 2.

5We use the notation U(∞) to denote the large N theory.
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U(N) U(N)

A1

A2

B2

B1

Figure 2. N = 1 quiver diagram for the conifold theory.

The theory also has the superpotential

W = Tr (A1B1A2B2 −A1B2A2B1) , (4.1)

so the F-term relations are

B1A2B2 −B2A2B1 = 0, B1A1B2 −B2A1B1 = 0,

A1B2A2 −A2B2A1 = 0, A1B1A2 −A2B1A1 = 0. (4.2)

Gauge-invariant operators must consist of combinations of

W = A1B1, X = A1B2,

Y = A2B1, Z = A2B2, (4.3)

which are in the N⊗N representation of the one of the U(N) gauge groups, although we

have suppressed the indices.

The F-term relations expressed in terms of these are

[W,X] = [W,Y ] = [W,Z] = [X,Y ] = [X,Z] = [Y,Z] = 0 (4.4)

and

WZ = XY. (4.5)

4.1 N = 1 Moduli Space

In the N = 1 (i.e., U(1)2) theory, the superpotential vanishes. Thus we need only solve

the D-term equation

D = |A1|2 + |A2|2 − |B1|2 − |B2|2 = 0, (4.6)

which is the equation for the conifold. (We do not consider an FI term.) We once again

see that the N = 1 moduli space is exactly the same as the space transverse to the brane.

4.2 W = 0 Large N Chiral Ring

For the theory with zero superpotential, the generating function for single-trace operators

is given by the generating function for 4-ary necklaces:

F
(∞)
S (w, x, y, z) = −

∞∑
d=1

ϕ(d)

d
log
[
1−

(
wd + xd + yd + zd

)]
. (4.7)
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Rewriting w, x, y, and z in terms of a1,2 and b1,2 via the relations in (4.3), the generating

function is of the form

F
(∞)
S (a1, a2, b1, b2) =

∞∑
n=0

n∑
n1=0

n∑
n2=0

cn,n1,n2 , a
n1
1 bn2

1 an−n1
2 bn−n2

2 , (4.8)

where cn,n1,n2 counts the number of single-trace operators that can be constructed using

n1 A1 operators, n− n1 A2 operators, n2 B1 operators, n− n2 B2 operators. The number

of A operators and the number of B operators must be equal for the single-trace operator

to be gauge-invariant. The generating function for multi-trace operators is obtained by

taking the plethystic exponential of (4.7):

F
(∞)
M (x, y, z) =

∞∏
n=1

1

1− (wn + xn + yn + zn)
. (4.9)

This is in agreement with [35].

4.3 W 6= 0 Large N Chiral Ring

All single-trace operators in the conifold theory have alternating A’s and B’s, i.e. they

are of the form Tr(ABAB...AB). Turning on the superpotential means that the F-term

relations allow us to organise the trace so that the first n1 A operators are A1’s and the

last n − n1 A operators are A2’s, and similarly for the B’s. Thus the generating function

is just the function in equation (4.8) with all the coefficients set to 1:

F
(∞)
S (a1, a2, b1, b2) =

∞∑
n=0

n∑
n1=0

n∑
n2=0

an1
1 bn2

1 an−n1
2 bn−n2

2 . (4.10)

This formula has a closed form expression in terms of w, x, y and z:

F
(∞)
S (w, x, y, z) =

1

w − x− y + z

(
1

1− w
− 1

1− x
− 1

1− y
+

1

1− z

)
. (4.11)

The generating function for multi-trace operators can once again be found by taking the

plethystic exponential of equation (4.10):

F
(∞)
M (a1, a2, b1, b2) =

∞∏
n=0

n∏
n1=0

n∏
n2=0

1

1− an1
1 bn2

1 an−n1
2 bn−n2

2

, (4.12)

which can again be seen intuitively from F
(∞)
M =

∏
Φ (1− Φ)−1, where the product is

over single-trace operators. Also as before, F
(∞)
S can alternately be derived from the Pólya

enumeration theorem by taking the product of two generating functions for 2-ary necklaces.

If we take equation (4.11) and make the substitutions w → qa, x → qb, y → q
b , and

z → q
a we regain the form of the generating function presented in [15]:

F
(∞)
S (a, b, q) =

ab(q − 1)(q + 1)

(a− q)(aq − 1)(q − b)(bq − 1)
. (4.13)

This substitution is indicative of the relationships between the charges that we have chosen

here and the charges that are chosen in [15].
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4.3.1 U(∞) Fock Space

Equation (4.12) tells us that the generating function for multi-trace operators in the U(∞)

theory is equal to the generating function for the Fock space of bosons on the conifold:

F
(∞)
M (a1, a2, b1, b2) = F

(∞)
Fock(C). (4.14)

As was the case for N = 4 SYM, we can again interpret this as the Fock space for branes

on the transverse space.

4.4 N = 1 Chiral Ring

As with N = 4, there is a one-to-one mapping between operators in the U(1) theory and

single-trace operators in the U(∞) theory. This mapping is

An1
1 An−n1

2 Bn2
1 Bn−n2

2 → Tr(An1
1 An−n1

2 Bn2
1 Bn−n2

2 ). (4.15)

Thus the generating function for the chiral ring of the U(1) theory is equal to the generating

function for single-trace operators in the U(∞) theory given in equation (4.10).

4.5 Conclusion

We see from this slightly more complicated example many of the same phenomena that we

saw with N = 4 SYM. First, the moduli space is equal to the transverse space, and the

chiral ring of the U(1) theory is the ring of holomorphic polynomials on this space. The

chiral ring has the same elements as the set of single-trace operators in the large N theory.

Also, in the U(∞) theory we can identify a Fock space of bosons which we interpret as the

Fock space of the branes moving on the transverse space. In the next section, we will see

that some of these relationships do not hold more generally.

5 C3/Z2

We now consider the theory living on the worldvolume of N D3-branes probing a C3/Z2

singularity [19]. This theory has a quiver as in figure 3 and a superpotential given by

U(N)1 U(N)2

B1,2

A1,2

B2,1

A2,1

C1 C2

Figure 3. N = 1 quiver diagram for the C3/Z2 theory.

W = Tr [C1(A1,2B2,1 −B1,2A2,1) + C2(A2,1B1,2 −B2,1A1,2)] . (5.1)
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From the quiver and superpotential we can see that this theory is in fact an N = 2 theory,

and can flow to the conifold theory via mass terms for the adjoint chiral superfields. The

F-term relations are

C1A1,2 = A1,2C2, C1B1,2 = B1,2C2,

C2A2,1 = A2,1C1, C2B2,1 = B2,1C1,

A1,2B2,1 = B1,2A2,1, A2,1B1,2 = B2,1A1,2. (5.2)

It will prove useful to use the composite operators W = B1,2A2,1, X = A1,2A2,1, Y =

B1,2B2,1 and Z = A1,2B2,1 throughout the remainder of this section.

5.1 N = 1 Moduli Space

The F-terms equations have two branches of solutions:

1. {X,Y, Z,C1, C2 |XY = Z2, C1 = C2},

2. {X,Y, Z,C1, C2 |X = Y = Z = 0}.

On the first branch the moduli space is described by the gauge-invariant operators X, Y ,

Z and C (= C1 = C2) subject to XY = Z2; this is just the space C3/Z2. On the second

branch, C1 does not necessarily equal C2, and X = Y = Z = 0; this is the simply C2. The

two branches intersect along the line C1 = C2 when X = Y = Z = 0. For a cartoon of the

full moduli space, see figure 4.

X=Y=Z=0
C1≠C2

X=Y=Z=0
C1=C2

C1=C2

Figure 4. Moduli space of the C3/Z2 theory. The C1 = C2 branch is 3 complex dimensional and

the C1 6= C2 branch is 2 complex dimensional.

We denote the full moduli space C3/Z2 ∪C2, where the particular union that is meant

is the one where the two spaces share the line X = Y = Z = 0, C1 = C2. In other words

M = C3/Z2 ∪ C2, C3/Z2 ∩ C2 = C. (5.3)
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In contrast to the previous two examples, we see here that the moduli space is not

simply the space transverse to the D3-branes. There is one main branch which is the

transverse space, but we also see the existence of an extra branch which has a different

dimension than the main branch. This extra branch of moduli space is something we will

see in later examples and has been observed, e.g. in [20, 36].

5.2 W = 0 Large N Chiral Ring

The W = 0 large N single-trace operator generating function can be found using the Pólya

enumeration theorem, as in previous sections but this time counting 6-ary necklaces. One

wrinkle is that because the fields C1 and C2 are not charged under the same gauge group,

the fields should not be placed next to each other in a trace. In combinatorics language,

we cannot place the beads of colour c1 and c2 next to each other in a necklace. However,

this problem is easily solved by using the colour generating function

f(w, x, y, z, c1, c2) = w + x+ y + z + c1 + c2 − c1c2, (5.4)

where the final term subtracts the contribution from necklaces with adjacent c1 and c2

beads (w, x, y, z are as in the previous section). This yields

F
(∞)
S (w, x, y, z, c1, c2) = −

∞∑
k=1

ϕ(k)

k
log
[
1−

(
wk + xk + yk + zk + ck1 + ck2 − ck1ck2

)]
,

(5.5)

and taking the plethystic exponential gives us the multi-trace operator generating function

F
(∞)
M (w, x, y, z, c1, c2) =

∞∏
k=1

1

1−
(
wk + xk + yk + zk + ck1 + ck2 − ck1ck2

) . (5.6)

This matches the formula given in [35].

5.3 W 6= 0 Large N Chiral Ring

We now turn on the superpotential in equation (5.1). The F-term equivalences preserve

the number of A’s, the number of B’s, and the number of (C1’s +C2’s), so our single-trace

operator generating function can have at most three chemical potentials. All operators

can be arranged using the F-term relations so that they have the form Tr (Cn1 ), Tr (Cn2 )

or Tr (Cm1 A1,2A2,1A1,2B2,1B1,2...A1,2B2,1), with the order of A’s and B′s irrelevant. The

generating function is then

F
(∞)
S (a, b, c) =

∞∑
m=0

cm
∞∑
`=0

2∑̀
k=0

a2`−kbk +
∞∑
m=1

cm =
1 + ab

(1− c)(1− a2)(1− b2)
+

c

1− c
,

(5.7)

with plethystic exponential

F
(∞)
M (a, b, c) =

∞∏
n=0

∞∏
`=0

2∏̀
k=0

1

1− cma2`−kbk

∞∏
n=1

1

1− cn
. (5.8)
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Using the methods in [15], one can derive the single-trace operator generating function

F
(∞)
S (t) =

1 + t2

(1− t)3(1 + t)2
. (5.9)

We have included this short calculation in appendix B. To compare the with our answer,

we make the substitution a→ t, b→ t, c→ t, which yields

F
(∞)
S (t) =

t5 − 2t3 + t2 + t+ 1

(1− t)3(1 + t)2
, (5.10)

which is different than the earlier result.

It is straightforward to find the source of the discrepancy. In [15] it was assumed that

the set of single-trace operators was equal to the set of elements in the ring of holomorphic

polynomials on the moduli space and thus equal to the set of elements in the ring of

holomorphic polynomials on the transverse space. As we have seen for the C3/Z2 theory,

this is not quite correct. Instead we saw that the moduli space has two separate branches,

only one of which is the space transverse to the D3-branes. Indeed, we find that subtracting

the contribution from the C1 6= C2 branch reproduces the previous result.

We can alternatively see the difference in the two approaches from a ring theoretic

perspective. For the full worldvolume theory, the set of single-trace operators is not equal

to the set of elements in the ring of holomorphic polynomials on C3/Z2, since Tr(Ck1 ) and

Tr(Ck2 ) are not necessarily equal. Denoting the ring of gauge-invariant operators in the

W = 0 C3/Z2 theory by R0, we consider the ring RW = {R0|F-term equivalences}, while

the earlier work considered only R′W = {RW |C1 = C2}, which is the ring of holomorphic

polynomials on C3/Z2.

5.3.1 U(∞) Fock Space

For N = 4 SYM and the conifold, we saw that the multi-trace operator generating function

was equal to the generating function for the Fock space for bosons moving on the transverse

space. In the C3/Z2 theory, the extra branch of moduli space changes this story. Here, we

have the generating function for the Fock space for bosons moving on C3/Z2 multiplied by

the generating function for bosons moving on C:

F
(∞)
M (a, b, c) = FFock(C3/Z2)× FFock(C). (5.11)

This means that the multi-trace operator generating function gives the Fock space for

bosons moving on C3/Z2
∐

C, where
∐

indicates a disjoint union. So wavefunctions for

the bosons can be any function in the space of functions on C3/Z2 or any function on the

space of functions on C, with only one identity function.

5.4 N = 1 Chiral Ring

In our previous examples, the generating function for the U(1) chiral ring has been equal to

the generating function for single-trace operators in the largeN gauge theory. However, this

is not the case in the present example. In the U(∞) theory, we cannot have Tr(Cm1
1 Cm2

2 )
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operators since C1 and C2 transform in different gauge groups; however when N = 1 these

fields become uncharged so that the Cm1
1 Cm2

2 operator is gauge-invariant. This means

that we no longer have a one-to-one mapping between operators in the U(1) theory and

single-trace operators in the large N theory. The goal of this section is to derive the N = 1

chiral ring which includes the operators just mentioned.

We begin with the chiral ring of the U(1) theory with no superpotential, which we

denote R0. A basis for this ring is the set of gauge-invariant monomials built out of the

fields W,X, Y, Z,C1, C2, R0 = {Wn1Xn2Y n3Zn4Cn5
1 Cn6

2 |ni ≥ 0}. To enforce the F-terms,

we mod out by an ideal generated by the relevant constraints,

R = R0/I0, (5.12)

where I0 = 〈X(C1 −C2), Y (C1 −C2), Z(C1 −C2), XY − Z2,W − Z〉. Thus the full chiral

ring R is spanned by the basis

{Xn1Y n2Zn3Cn4
1 } ∪ {C

m1
1 Cm2

2 }, (5.13)

where n1, n2, n4 ∈ Z≥0, n3 ∈ {0, 1}, m1 ∈ Z≥0, and m2 ∈ Z+ and the rule for multiplication

is

(Xn1Y n2Zn3Cn4
1 ) · (Cm1

1 Cm2
2 ) = Xn1Y n2Zn3Cn4+m1+m2

1 , n1 + n2 + n3 > 0

= Cn4+m1
1 Cm2

2 , n1 = n2 = n3 = 0.(5.14)

From this way of expressing the basis we see that this ring is R[C3/Z2 ∪ C2], the ring

of holomorphic polynomials on the space C3/Z2 ∪ C2. The set of elements in this ring

is the union of the set of functions on C3/Z2 and the set of functions on C2. These sets

of functions have the bases {Xn1Y n2Zn3Cn4
1 } and {Cm1

1 Cm2
2 }, respectively, and share the

coordinate C1.

The generating function for the U(1) chiral ring is then

F (1) (x, y, z, c) =

∞∑
n4=0

∞∑
n1=0

∞∑
n2=0

1∑
n3=0

cn4xn1yn2zn3 +
∞∑

m1=0

∞∑
m2=0

cm1+m2 −
∞∑
m=0

cm. (5.15)

We can see from this expression that the generating function is the sum of the generating

functions for holomorphic polynomials on the two branches minus the generating function

for holomorphic polynomials on the intersection. This subtraction is necessary to avoid

double counting of operators.

We can further localize elements of R to the two branches of the moduli space by

modding out by

I1 = 〈C1 − C2〉 = {Cm1
1 (Cm2

1 − Cm2
2 )|m1 ∈ Z≥0,m2 ∈ Z+} (5.16)

for C3/Z2 or

I2 = 〈X,Y, Z〉 = {Xn1Y n2Zn3Cn4
1 |ni ∈ Z≥0, n1 + n2 + n3 > 0}. (5.17)
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for C2. The resulting quotient rings, R/I1 and R/I2, are identically the rings of holo-

morphic functions on the two branches. An alternate description of these two quotient

rings of functions utilises minimal prime ideals6. Although the ideal I0 that we originally

used to quotient R0 by is not a prime ideal, there exist two minimal prime ideals over I0,

I ′1 = 〈C1−C2, XY −Z2,W −Z〉 and I ′2 = 〈X,Y, Z,W −Z〉. If we instead quotient R0 by

I ′1 or I ′2 then we would have obtained R/I1 and R/I2, respectively. This is illustrated in

figure 5.

W=0 Chiral Ring

W≠0 Chiral Ring
I1

I2

I2

Ring of hol pols
on C2C2

Ring of hol pols 
on C3 /Z2C3 Z2

'I1
' I0

R

R0

Figure 5. Chiral rings for the C3/Z2 theory. Following an arrow means quotienting by an ideal.

5.5 Conclusion

In this section we described how some of the relationships found in previous sections no

longer hold. In particular:

1. The moduli space has two branches. One of these branches is the transverse space

C3/Z2 and the other is C2. This can be interpreted in terms of fractional branes as

in [20].

2. The U(1) chiral ring is equal to the ring of holomorphic polynomials on the moduli

space and is slightly “larger” that the ring of holomorphic polynomials on the trans-

verse space, in the sense that it contains the ring of holomorphic polynomials on the

transverse space as a quotient ring.

3. The set of elements in the U(1) chiral ring is different from the set of single-trace

operators in the large N theory due to the presence of adjoint fields.

4. The multi-trace operator generating function is equal to the generating function of

bosons moving on the space Transverse Space
∐

C.

We will build on the results that we have found here in the coming sections and further

elucidate these connections.

6An ideal I is prime if x · y ∈ I implies either x ∈ I or y ∈ I, and a prime ideal I is a minimal prime

ideal over I0 if there does not exist another prime ideal I′ satisfying I ⊃ I′ ⊃ I0.
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6 C3/Zn

We now consider the worldvolume gauge theory of N D3 branes probing a C3/Zn singu-

larity, with the Zn action on the coordinates of C3 given by

Zn =


ωkn ωkn

ω−2k
n

 , 1 ≤ k ≤ n

 . (6.1)

as studied in [19]. This theory has the quiver diagram in figure 6 and superpotential

U(N)1

U(N)2

A1,2

B1,2

A2,3

B2,3

U(N)3

U(N)4

An,1Bn,1

A3,4

A4,5

B3,4

B4,5

C3,1

C4,2

C5,3

C2,n

...
...

Figure 6. N = 1 quiver diagram for the C3/Zn theory. The quiver is a circle of n nodes.

W =
n∑
i=1

(Ai,i+1Bi+1,i+2 −Bi,i+1Ai+1,i+2)Ci+2,i. (6.2)

The F-term relations are

Ai,i+1Bi+1,i+2 = Bi,i+1Ai+1,i+2,

Bi+1,i+2Ci+2,i = Ci+1,i−1Bi−1,i,

Ai+1,i+2Ci+2,i = Ci+1,i−1Ai−1,i. (6.3)

6.1 N = 1 Moduli Space

To find the moduli space of this theory, we work with a set of gauge-invariant monomials

similar to those of the previous section. However, due to the structure of the quiver, we

must use slightly different sets for even and odd n. Useful coordinates are given by

Xa,b,c =

a∏
i=1

Ai,i+1

b∏
j=1

Ba+j,a+j+1

c∏
k=1

Ca+b+1+(k−1)(n−2),a+b+1+k(n−2) (6.4)
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so that essentially, Xa,b,c ∼ AaBbCc and all subscripts are modulo n. These parameters

are subject to the relation Xa1,b1,c1Xa2,b2,c2 = Xa1+a2,b1+b2,c1+c2 . The gauge-invariants for

n odd are

Xn,0,0 X2,0,1 X1,0,n+1
2

X0,0,n

Xn−1,1,0 X1,1,1 X0,1,n+1
2

... X0,2,1

X0,n,0

The space spanned by these coordinates subject to Xa1,b1,c1Xa2,b2,c2 = Xa1+a2,b1+b2,c1+c2 is

the space C3/Zn with odd n. For even n, we use

Xn,0,0 X2,0,1 X0,0,n/2

Xn−1,1,0 X1,1,1 Y0,0,n/2
... X0,2,1

X0,n,0

where Xa,b,c is as above, and we have added X0,0,n/2 = C1,n−1 . . . C3,1 and Y0,0,n/2 =

C2,n . . . C4,2. There is now an additional relation Xa,b,cY
m

0,0,n/2 ∼ Xa,b,c+nm/2 when a+b > 0.

The additional coordinate Y0,0,n/2 is required to account for the fact that there are

two distinct gauge-invariant operators with n/2 C’s. The moduli space for even n has two

different branches:

1. {Xn,0,0, . . . , X0,n,0, X2,0,1, X1,1,1, X0,2,1, X0,0,n/2, Y0,0,n/2} subject to Xa1,b1,c1Xa2,b2,c2

= Xa1+a2,b1+b2,c1+c2 and X0,0,n/2 = Y0,0,n/2,

2. {Xn,0,0, . . . , X0,n,0, X2,0,1, X1,1,1, X0,2,1, X0,0,n/2, Y0,0,n/2} subject to Xa,b,c = 0 when

a+ b > 0.

We see that, as with the C3/Z2 theory, there are multiple branches of moduli space.

Specifically, there is one main branch of the moduli space which is C3/Zn and an ex-

tra branch which is C2, with coordinates X0,0,n/2 and Y0,0,n/2. We denote this full moduli

space C3/Zn ∪ C2, where the union is defined so that the spaces share the line defined by

X0,0,n/2 = Y0,0,n/2 and Xa,b,c = 0 for a+ b > 0.

6.2 W = 0 Large N Chiral Ring

Using the Pólya enumeration theorem, the generating function for single-trace operators is

of the form

F
(∞)
S (xi) = −

∞∑
k=1

ϕ(k)

k
log
[
1− f

(
xki

)]
(6.5)

and the multi-trace operator generating function is of the form

F
(∞)
M (xi) =

∞∏
k=1

1

1− f
(
xki
) . (6.6)
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for some colour generating function f(xi). This function has a term for every closed loop in

the quiver. In combinatorics language, each closed loop constitutes a colour. We can make

necklaces (single-trace operators) by combining beads of different colours (closed loops

of operators) in a necklace (trace). However, in our colour generating function we must

subtract the product of any two loops that do not overlap and thus can not be placed beside

each other in a necklace. This means that we subtract the contributions from operators

where there is a product over two loops that do not share a node.

Similarly, it is necessary add terms to f
(
xki
)

that are cubic in non-intersecting loops,

subtract terms that are quartic, and so on. As an example, consider the colour generating

function for 3-ary necklaces of beads where none of the colours can be placed beside each

other. This is simply the sum of three generating functions of 1-ary necklaces:

F
(∞)
S (x,y, z) = −

∞∑
n=1

ϕ(d)

d
log [1− xn] + log [1− yn] + log [1− zn]

= −
∞∑
n=1

ϕ(d)

d
log [1− (xn + yn + zn − xnyn − xnzn − ynzn + xnynzn)] .

(6.7)

The colour generating function is then

f(x, y, z) = x+ y + z − xy − xz − yz + xyz. (6.8)

As we go to higher number of colours, we must continue this pattern of addition and

subtraction. This is in agreement with the formula found in [37]:

F
(∞)
M (x, y, z) = P.E.[F

(∞)
S (x, y, z)] =

∏
i

1

det(I−Xn(xi, yi, zi))
, (6.9)

where Xn is the weighted adjacency matrix for the graph described by the quiver.

6.3 W 6= 0 Large N Chiral Ring

We now describe the generating functions for even and odd n. As these derivations are

rather lengthy, we relegate them to appendix C and here simply summarize the results.

For general odd n the generating function is

F
(∞)
S (a, b, c) =

[ ∞∑
m=0

cnm

]n−1
2∑
j=0

∞∑
`=0

n`+2j∑
k=0

akbn`+2j−kcj + c
n+1
2

n−3
2∑
j=0

∞∑
`=0

n`+2j+1∑
k=0

akbn`+2j+1−kcj

 .
(6.10)

which has the rational form

F
(∞)
S (a, b, c) =

1

b− a
1

1− cn

[
b
(
−bncn −

(
b2c
)n+1

2 + bc
n+1
2 + 1

)
(1− b2c) (1− bn)

−
a
(
−ancn −

(
a2c
)n+1

2 + ac
n+1
2 + 1

)
(1− a2c) (1− an)

]
. (6.11)
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We can then get the multi-trace operator generating function using plethystics:

F
(∞)
M (a, b, c) =

∞∏
m=0

n−1
2∏
j=0

∞∏
`=0

n`+2j∏
k=0

1

1− cnm+jakbn`+2j−k

n−3
2∏
j=0

∞∏
`=0

n`+2j+1∏
k=0

1

1− cnm+n+1
2

+jakbn`+2j−k

 .
(6.12)

Taking a→ t, b→ t, c→ t in equation (6.10), we get

F
(∞)
S (t) =

−t2n − ntn+3 − t2n+3 − 2t
3(n+1)

2 + 2t
n+3
2 + ntn + t3 + 1

(t3 − 1)2 (tn − 1)2
, (6.13)

which agrees with the result which can be calculated using the methods in [15] for general

odd n.

For even n the generating function is

F
(∞)
S (a, b, c) =

∞∑
m=0

c
nm
2

n
2
−1∑
j=0

∞∑
`=0

n`+2j∑
k=0

an`+2j−kbkcj +

∞∑
m=1

c
nm
2 , (6.14)

which has the rational form

F
(∞)
S (a, b, c) =

1

(a− b)
(
1− cn/2

)
 a

(
1−

(
a2c
)n/2)

(1− a2c) (1− an)
−

b
(

1−
(
b2c
)n/2)

(1− b2c) (1− bn)

+
cn/2

1− cn/2
.

(6.15)

The multi-trace operator generating function is then

F
(∞)
M (a, b, c) =

 ∞∏
m=0

n
2
−1∏
j=0

∞∏
`=0

n`+2j∏
k=0

1

1− an`+2j−kbkcj+
nm
2

[ ∞∏
m=1

1

1− c
nm
2

]
. (6.16)

Taking a→ t, b→ t, c→ t in equation (6.14) yields

F
(∞)
S (t) =

n
(

1−(t3)
n/2
)
tn

(1−t3)(1−tn)2
+

1−(t3)
n/2

(1−t3)(1−tn)
+

2
(
− 1

2
nt3n/2+(n

2
−1)t

3n
2 +3+t3

)
(1−t3)2(1−tn)

1− tn/2
+

tn/2

1− tn/2
. (6.17)

While the first term is the one that can be found using the methods in [15], the second

term is new.

6.3.1 U(∞) Fock Space

We can see from equation (6.16) that the generating function for multi-trace operators in

the large N C3/Zn theory with even n is equal to the generating function for the Fock

space of bosons on the transverse space times an extra factor. More specifically, it is

F
(∞)
M (a, b, c) = FFock(C3/Zn)× FFock(C). (6.18)

Similarly to the C3/Z2 theory, this is the generating function for the Fock space of bosons

moving on C3/Zn
∐

C, where
∐

indicates a disjoint union. For odd n we do not have this

extra factor, and the multi-trace operator generating function is equal to the generating

function for the Fock space on C3/Zn.
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6.4 N = 1 Chiral Ring

For the case of odd n there is a one-to-one mapping between operators in the U(1) theory

and single-trace operators in the large N theory; this mapping is Xa,b,c → Tr(Xa,b,c).

Because of this the generating function for the U(1) chiral ring for this theory is simply

the generating function for single-trace operators in the large N theory, given in equation

(6.10). Here the chiral ring has the basis

{Xa,b,c|a+ b+ c(n− 2) ≡ 0 mod n}, (6.19)

with Xa,b,c as in section 6.1. This is the ring generated by the gauge-invariant operators

Xn,0,0 X2,0,1 X1,0,n+1
2

X0,0,n

Xn−1,1,0 X1,1,1 X0,1,n+1
2

... X0,2,1

X0,n,0

For even n, things are slightly different. The set of elements in the U(1) chiral ring

for this theory is not equal to the set of single-trace operators in the large N theory;

this is because for N > 1 the X0,0,n/2 and Y0,0,n/2 operators transform in the adjoint

representations of the U(N)1 and U(N)2 gauge groups, respectively. Thus we cannot have

single-trace operators of the form Tr(Xm1

0,0,n/2Y
m2

0,0,n/2) in the large N theory, though in the

U(1) theory operators of the form Xm1

0,0,n/2Y
m2

0,0,n/2 are allowed. This means that there is

not a one-to-one mapping between operators in the U(1) theory and single-trace operators

in the large N theory.

For even n, the U(1) chiral ring has the basis

{Xa,b,c|a+ b+ c(n− 2) ≡ 0 mod n} ∪ {X0,0,nm1/2Y0,0,nm2/2|m1 ∈ Z≥0,m2 ∈ Z+}, (6.20)

modulo the equivalenceXa1,b1,c1Xa2,b2,c2 ∼ Xa1+a2,b1+b2,c1+c2 andXa,b,cY0,0,nm/2 ∼ Xa,b,c+nm/2

when a + b > 0, with Y0,0,nm/2 = Y m
0,0,n/2 and Xa,b,c and Y0,0,n/2 as defined in section 6.1.

Again we see that the chiral ring is equal to the ring of holomorphic polynomials on the

moduli space, C3/Zn ∪ C2 and the counting function is given by

F (1)(a, b, c) =
∞∑
m=0

n
2
−1∑
j=0

∞∑
`=0

n`+2j∑
k=0

an`+2j−kbkcj+
nm
2 +

∞∑
m1=0

∞∑
m2=0

c
n
2

(m1+m2)−
∞∑
m=0

c
n
2
m. (6.21)

As was the case in the C3/Z2 example, this generating function is a sum of three terms.

The first is the generating function for the ring of holomorphic polynomials on C3/Zn. The

second is the generating function for the ring of holomorphic polynomials on C2. Finally,

the last term subtracts the generating function for the ring of holomorphic polynomials on

the intersection. This generating function then is the generating function for holomorphic

polynomials on the moduli space C3/Zn ∪ C2.

As was the case with the C3/Z2 theory we can go from the chiral ring, R = R0/I0,

to the ring of holomorphic polynomials on the two branches of moduli space by quoti-

enting by two ideals. In the case of the C3/Zn theory with even n the two ideals are
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I1 = 〈(X0,0,n/2 − Y0,0,n/2)〉 and I2 = 〈Xn,0,0, Xn−1,1,0, . . . , X0,n,0, X2,0,1, X1,1,1, X0,2,1〉. Al-

ternatively, we could have obtained these two rings from the W = 0 chiral ring using

minimal prime ideals. The ideal I0 is not a prime ideal and there are two minimal prime

ideals, I ′1 and I ′2 over I0. Quotienting R0 by these two ideals gives the ring of functions

on C3/Zn and C2. This is analogous to the situation depicted in figure 5.

6.5 Conclusion

In this section we have attempted to find out how the C3/Zn theory fits into our description

of moduli spaces, chiral rings, and Fock spaces of branes. For n odd, the C3/Zn theory fits

into this story in the same way as N = 4 and the conifold. The moduli space is simply

C3/Zn and the set of elements in the U(1) chiral ring is the set of functions on C3/Zn. This

set is equal to the set of single-trace operators, and the multi-trace operator generating

function is equal to the generating function for the Fock space of bosons moving on C3/Zn.

For n even, the story needs to be amended slightly:

1. The moduli space has one main branch where the space is simply C3/Zn, however it

also has an extra branch where the space is C2.

2. The set of elements in the U(1) chiral ring is then not quite the set of functions on

C3/Zn, but rather the set of functions on C3/Zn ∪ C2.

3. The set of elements in the U(1) chiral ring is also not equal to the set of single-trace

operators in the large N theory.

4. The multi-trace operator generating function is equal to the generating function for

the Fock space for bosons on C3/Zn
∐

C.

7 C3/ÂN

We now consider the C3/Ân theory studied in [3, 38], with the action of Ân defined by

Zn =


ωkn ω−kn

1

 , 1 ≤ k ≤ n

 . (7.1)

The N = 1 quiver diagram for this theory is as shown in figure 7, and the superpotential

is

W =
n∑
i=1

Ci (Ai,i+1Bi+1,i −Bi,i−1Ai,i−1) . (7.2)

The F-term relations are

Ai,i+1Bi+1,i = Bi,i−1Ai−1,i,

Bi+1,iCi = Ci+1Bi+1,i,

Ai,i+1Ci+1 = CiAi,i+1. (7.3)

The problem of counting multi-trace operators for this theory along with other N = 2

theories was also considered in [20] where they derive the Higgs and Coulomb branch

generating functions separately and then combine them.
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U(N)1

U(N)2

A1,2

B2,1

A2,3

B3,2

U(N)3

U(N)4

An,1
B1,n

A3,4

A4,5

B4,3

B5,4

C2

C3

C4

C1

...

...

Figure 7. The N = 1 quiver diagram for the the C3/Ân theory.

7.1 N = 1 Moduli Space

The moduli space of this theory is parametrised by the operators X = A1,2A2,3 . . . An,1,

Y = B1,nBn,n−1 . . . B2,1, Z = A1,2B2,1, C1,..., Cn−1, and Cn, subject to the relation XY =

Zn. As was the case for the C3/Zn theory with even n, there are two branches of solutions:

1. {X,Y, Z,C1, . . . , Cn} subject to XY = Zn, C1 = C2 = · · · = Cn.

2. {X,Y, Z,C1, . . . , Cn} subject to X = Y = Z = 0.

The first branch is simply C3/Ân, and the second branch is Cn. Again we see the presence

of one main branch identical to the transverse space to the D3-branes as well as an extra

branch. We denote this space as C3/Ân∪Cn, where the union is such that the two branches

share the line X = Y = Z = 0, C1 = C2 = · · · = Cn. The picture for this moduli space is

as in figure 4, except that now the extra branch is n-dimensional.

The first branch of this moduli space is a mixed branch since it contains both Higgs

and Coulomb branch operators. The second branch however is a purely Coulomb branch.

The first branch contains as a sub-space the Ci = 0, pure Higgs branch.

7.2 W = 0 Large N Chiral Ring

As in the previous section the single- and multi-trace operator generating functions are

F
(∞)
S (xi) = −

∞∑
n=1

ϕ(d)

d
log [1− f (xni )] ,

F
(∞)
M (xi) =

∞∏
n=1

1

1− f (xni )
, (7.4)

where the colour generating function is determined in the previous section, matching the

results of [37].
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7.3 W 6= 0 Large N Chiral Ring

When we have a non-zero superpotential the F-term relations tell us that any single-trace

operator with n1 A’s, n2 B’s and n3 C’s is equivalent to any other single-trace operator

with n1 A’s, n2 B’s and n3 C’s. The only exception to this rule is when n1 = n2 = 0.

In that case there are n different operators we can have of the form Tr(Cn3
i ). For the

first set of operators we can construct any gauge-invariant operator by inserting A1,2B2,1,

A1,2 . . . An,1, B1,n, . . . B2,1 and C1 into a trace recursively. This means that the generating

function will be

F
(∞)
S (a, b, c) =

n−1∑
m=0

∞∑
j=0

anj+m
∞∑
k=0

ck
∞∑
l=0

bnl+m + (n− 1)
∞∑
k=1

ck , (7.5)

with rational form

F
(∞)
S (a, b, c) =

1− (ab)n

(1− an)(1− bn)(1− c)(1− ab)
+

(n− 1)c

1− c
. (7.6)

Taking a, b, c→ t gives

F
(∞)
S (t) =

1 + tn

(1− tn)(1− t)(1− t2)
+

(n− 1)t

1− tn
. (7.7)

The first term of this formula matches the result given in [15]. The presence of the second

term is caused by considering the operators Tr(Cki ) and Tr(Ckj ) to be inequivalent for i 6= j

and is considered in [20].

We can use plethystics once again to get the multi-trace operator generating function:

F
(∞)
M (a, b, c) =

n−1∏
m=0

∞∏
j=0

∞∏
k=0

∞∏
l=0

1

1− anj+mbnl+mck

[ ∞∑
k=1

1

1− ck

]n−1

. (7.8)

7.3.1 U(∞) Fock Space

From equation (7.5) one can see that the large N set of single-trace operators is not equal

to set of elements in the ring of holomorphic polynomials on C3/Ân. As a consequence of

this, the multi-trace operator generating function is not equal to the generating function

for the Fock space of bosons on C3/Ân. Instead, as can be seen from equation (7.8) we

have

F
(∞)
M (a, b, c) = FFock(C3/Ân)× [FFock(C)]n−1 . (7.9)

This is the generating function for the multi-particle Fock space of bosons moving on

C3/Ân [
∐

C]n−1, i.e., it is the Fock space for bosons that can have wavefunctions either in

the ring of holomorphic polynomials on C3/Ân or in the ring of holomorphic polynomials

on any of n− 1 copies of C.
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7.4 N = 1 Chiral Ring

As was the case in the previous two sections the set of elements in the N = 1 chiral ring for

the C3/Ân theory differs from the set of single trace operators in the large N theory. This

is because there are operators of the form Ck11 . . . Cknn in the N = 1 theory whose analogue

in the set of large N single-trace operators, Tr(Ck11 . . . Cknn ) do not exist.

So, the chiral ring for the C3/Ân theory has the following basis:

{Xn1Y n2Zn3Cn4
1 |n1,2,4 ∈ Z≥0, n3 ∈ [0, n−1]∩Z}∪{Cm1

1 Cm2
2 · · ·Cmn

n |mi ∈ Z≥0,
n∑
i=2

mi > 0},

(7.10)

modulo the relation Xn1Y n2Zn3Cm4
1 Cm2

2 · · ·Cmn
n ∼ Xn1Y n2Zn3C

∑
imi

1 when n1+n2+n3 >

0. The counting function for this ring is

F (1)(x, y, z, c) =
∞∑

n1=0

∞∑
n2=0

∞∑
n4=0

n−1∑
n3=0

xn1yn2zn3cn4+
∞∑

m1=0

· · ·
∞∑

mn=0

cm1+...mn−
∞∑
m=1

cm. (7.11)

From this we can see once again that the generating function for the N = 1 theory is the

sum of the generating functions for the two branches minus the generating function for the

intersection.This also matches the result found in [20].

We can go from the N = 1 chiral ring, R, to the ring of functions on either of the two

branches by quotienting by the ideals

I1 = 〈(C2−C1), (C3−C1), · · · , (Cn−C1)〉 = {Cm1
1 · · ·Cmn

n −C
∑n

i=1mi

1 |mi ∈ Z≥0}. (7.12)

for C3/Ân and

I2 = 〈X,Y, Z〉 = {Xn1Y n2Zn3Cn4
1 |n1,2,4 ∈ Z≥0, n3 ∈ [0, n−1]∩Z, n1+n2+n3 > 0}. (7.13)

for Cn. As with the other cases we also could have obtained these two rings by quotienting

the W = 0 chiral ring by the the two minimal prime ideals over I0.

7.5 Conclusion

We have seen in this section another family of orbifold theories that have a very interesting

relationship between transverse space, moduli space, U(1) chiral ring and Fock space of

branes. In particular we saw that

1. The moduli space of this theory has two separate branches: one main branch where

the space is the same as the space transverse to the D3-branes, and one extra branch

which is Cn.

2. The chiral ring of the U(1) theory is equal to the ring of functions on the moduli

space, C3/Ân∪Cn, rather than the ring of functions on the transverse space, C3/Ân.

3. The U(1) chiral ring has a set of elements that is not equal to the set of single-trace

operators in the large N theory.

4. The multi-trace operator generating function gave us the generating function for the

Fock space of bosons moving on C3/Ân [
∐

C]n−1.
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8 Conclusions

In this work, we have described how certain seemingly simple relationships between chiral

rings, moduli spaces, generating functions, and transverse geometries get modified in all

but the most symmetric examples. While there is generally a main branch of moduli

space which is the geometry transverse to the branes, or its symmetric products, there

are often extra branches of moduli space. This is a source of subtleties in the generating

functions counting chiral ring operators. They also modify the näıve relationship between

the generating function of multi-trace operators and the Fock space of bosons moving on

the space transverse to the branes.

There are a number of natural questions for future work. Since we have here only

considered the N = 1 and N →∞ limits, it would potentially be interesting to understand

how our results are modified for finite N > 1. The explicit derivation of SymN (X) from

the chiral ring, where X is the transverse space, is only known in a few cases. From our

studies at N = 1 and N → ∞, we expect this structure to be present, but with subtle

modifications due to the extra branches. A systematic description and derivation of this

structure would be fascinating. Restricting attention to the N = 1 and N → ∞ cases,

is there a simple general mathematical/geometrical formulation (bypassing explicit gauge

theory computations), perhaps based on physical ideas around fractional branes, which can

start from the chiral ring and moduli space at N = 1 and derive the Fock space structure

at large N? As we have seen in the examples, the Fock space structure we find from the

gauge theory chiral operators always contains a factor which is the Fock space for the main

branch corresponding to the geometry transverse to the 3-branes. However, while the extra

Fock space factors are correlated with the existence of extra branches, there is no simple

rule like the existence of a Fock space at N → ∞ for every branch at N = 1. Is there a

clear rule which replaces this naive rule? Even if such a rule existed, what would be the

geometrical/mathematical meaning behind it?

One of the motivations behind the present work was to ask whether there is a simple

general algorithm to deform the large N counting formulae at zero superpotential to arrive

at those for non-zero superpotential. The latter have been the main focus of this work. The

former admit simple general expressions based on the weighted adjacency matrix of the

quiver graph [35, 37]. These expressions are also, somewhat surprisingly from a physical

point of view, related to some word-counting problems based on the quiver [37]. We might

hope that a deeper geometrical understanding of the role of multiple branches at N = 1

and N →∞ might provide useful hints in finding such an algorithm.

For the case of D3-branes at the tip of a general toric Calabi-Yau cone, all such

theories can be reached via Higgsing C3/Zm × Zn theories, so it would nice to understand

how the generating functions behave under the resulting flows. Similarly, one could hope

to understand the relationship of generating functions in theories connected by (relevant)

superpotential deformations. Although such deformations are in general complicated, and

can lead to vastly different solutions to the F-terms, it might be possible to understand

the effect of adding mass terms or other such very simple deformations.
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A Simplification of ST Generating Function for N = 4 SYM With W 6= 0

In section 3.3 it was said that the generating function for N = 4 SYM with non-zero

superpotential could be derived using the Pólya enumeration theorem with G = Sn. We

derive this now.

The symmetric group has

n!∏n
k=1(k!)jk

n∏
k=1

(
k!

k

)jk n∏
k=1

1

jk!
(A.1)

elements each with jk cycles of length k for each partition {jk} of n. Thus the cycle index

for the symmetric group is

ZSn (t1, ..., tn) =
∑
{jk}`n

1∏n
k=1 k

jk (jk!)

n∏
k=1

tjkk . (A.2)

The notation {jk} ` n means {jk} is a partition of n so the sum is over partitions of n.

This means that the generating function for large N N = 4 SYM single-trace operators

with nonzero superpotential is

F
(∞)
S (x, y, z) =

∞∑
n=1

∑
{jk}`n

n∏
k=1

(xk + yk + zk)jk

kjk (jk!)
. (A.3)

To show that this is equal to (1 − x)−1(1 − y)−1(1 − z)−1 we start by changing the sum

over n and the sum over partitions of n to a infinite number of sums

F
(∞)
S (x, y, z) =

∞∑
n=1

∑
{jk}`n

n∏
k=1

1

jk!

(
xk + yk + zk

k

)jk

=

 ∞∑
j1=0

∞∑
j2=0

...

 n∏
k=1

1

jk!

(
xk + yk + zk

k

)jk

=

 ∞∑
j1=0

1

j1!

(
x+ y + z

1

)j1 ∞∑
j2=0

1

j2!

(
x2 + y2 + z2

2

)j2 ...

=
∞∏
k=1

[ ∞∑
n=0

1

n!

(
xk + yk + zk

k

)n]
=

∞∏
k=1

exp

(
xk + yk + zk

k

)

= exp

( ∞∑
k=1

xk

k

)
exp

( ∞∑
k=1

yk

k

)
exp

( ∞∑
k=1

zk

k

)
=

1

1− x
1

1− y
1

1− z
(A.4)
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B Derivation of C3/Z2 Molien Series

Here we calculate the single-trace operator generating function in the C3/Z2 theory using

the methods given in [15]. In [15] it is said that the counting function for a C3/G theory

is given by the counting function for C3 polynomials that are invariant under the action of

the group G. It is also said that this is a classical problem and that the counting function

is given by the Molien series:

M (t;G) =
1

|G|
∑
g∈G

1

det (I− tg)
. (B.1)

Since Z2 has two elements whose action on the coordinates x, y, z is given by the matrices1 0 0

0 1 0

0 0 1

 ,

−1 0 0

0 −1 0

0 0 1

 , (B.2)

the Molien series is just

M (t;Z2) =
1

2

(
1

(1− t)3
+

1

(1− t)(1 + t)2

)
=

(
1 + t2

)
(1− t)3(1 + t)2

. (B.3)

This does not match the formula we have given in equation (5.10).

C Derivation of Generating Functions for C3/Zn

First let us consider single-trace operators that have no C operators in them. These are all

of the form Tr (A1,2B2,3A3,4A4,5...An−2,n−1Bn−1,nBn,1). As required by gauge-invariance

the number of A’s and B’s in the trace will be `n, where ` is the number of loops we

have traced around the quiver by following the arrows of the bifundamentals. The F-term

equations allow us to interchange A’s and B’s freely (e.g. A1,2B2,3 = B1,2A2,3) so that

operators with the same number of A’s and the same number of B’s are equivalent.

When constructing a gauge-invariant single-trace operator from A’s and B’s the A

and B operators move us from one node to the next and so we need n of them to get

back to the node we started at. The C operators move us forward n − 2 nodes. So for

general n the lowest lying single-trace operators have #A’s +#B’s +#C’s = 3 and are

Tr (A1,2A2,3C3,1), Tr (A1,2B2,3C3,1), and Tr (B1,2B2,3C3,1). The F-term relations tell us

that any operator with n1 A’s, n2 B’s, and n3 C’s is equivalent to any other operator with

n1 A’s, n2 B’s, and n3 C’s.

We can split the operators up into how many loops they form around the quiver.

Consider the example of the C3/Z5 theory and, for the moment, neglect the existence of

the B operators. At one loop there are 2 operators:

A5, A2C, (C.1)

At two loops we have 4 operators:

A10, A7C,A4C2, AC3, (C.2)

– 30 –



At three loops we have 6 operators:

A15, A12C,A9C2, A6C3, A3C4, C5. (C.3)

And so on for higher number of loops.

Each time we have started with `n A’s and gone from left to right by replacing n−2 = 3

A’s with a C. This means that the generating function will be

F
(∞)
S (a, c) =

(
1 + a5 + a10 + a15 + . . .

)
+ c

(
a2 + a7 + a12 + . . .

)
+ c2

(
a4 + a9 + . . .

)
+c3

(
a+ a6 + . . .

)
+ c4

(
a3 + a8 + . . .

)
+ c5

(
1 + a5 + a10 + . . .

)
+ . . .

=

[ ∞∑
m=0

cnm

] [ (
1 + a5 + a10 + a15 + . . .

)
+ c

(
a2 + a7 + a12 + . . .

)
+ c2

(
a4 + a9 + . . .

)
+ c3

(
a+ a6 + . . .

)
+ c4

(
a3 + a8 + . . .

) ]
.

(C.4)

For general odd n the generating function is then

F
(∞)
S (a, c) =

[ ∞∑
m=0

cnm

]n−1
2∑
j=0

cj
∞∑
`=0

an`+2j + c
n+1
2

n−3
2∑
j=0

cj
∞∑
`=0

an`+2j+1

 . (C.5)

When we re-introduce the B operators this becomes

F
(∞)
S (a, b, c) =

[ ∞∑
m=0

cnm

]n−1
2∑
j=0

∞∑
`=0

n`+2j∑
k=0

akbn`+2j−kcj + c
n+1
2

n−3
2∑
j=0

∞∑
`=0

n`+2j+1∑
k=0

akbn`+2j+1−kcj

 .
(C.6)

If we make the replacements a → t, b → t, c → t in equation (C.6) so that we only

have a chemical potential for the R-charge then we get

F
(∞)
S (t) =

−t2n − ntn+3 − t2n+3 − 2t
3(n+1)

2 + 2t
n+3
2 + ntn + t3 + 1

(t3 − 1)2 (tn − 1)2
. (C.7)

It can be shown that the result that can be obtained using the methods of [15] for general

odd n matches equation (C.7).

We can take the plethystic exponential to get the multi-trace operator generating

function:

F
(∞)
M (a, b, c) =

∞∏
m=0

n−1
2∏
j=0

∞∏
`=0

n`+2j∏
k=0

1

1− cnm+jakbn`+2j−k

n−3
2∏
j=0

∞∏
`=0

n`+2j+1∏
k=0

1

1− cnm+n+1
2

+jakbn`+2j−k

 .
(C.8)

Now, let’s consider even n, again simplifying to the case with only A and C operators.

For even n we have to deal with the complication that not all operators with the same

number of C’s will be equal, e.g., Tr(C1,n−1 . . . C3,1) 6= Tr(C2,n . . . C4,2). Operators with at
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least one A in the trace will not have this feature. That is, all operators with n1 A’s and

n2 C’s will be equal to one another when n1 > 0. Our generating function is then

F
(∞)
S (a, c) =

∞∑
m=0

(
c
n
2

)m ∞∑
`=0

an`

n
2
−1∑
j=0

cja2j +
∞∑
m=1

(
c
n
2

)m
, (C.9)

which, when we re-introduce the B’s, becomes

F
(∞)
S (a, b, c) =

∞∑
m=0

c
nm
2

n
2
−1∑
j=0

∞∑
`=0

n`+2j∑
k=0

an`+2j−kbkcj +

∞∑
m=1

c
nm
2 . (C.10)

When we make the substitution a→ t, b→ t, c→ t in equation (C.10) we get

F
(∞)
S (t) =

n
(

1−(t3)
n/2
)
tn

(1−t3)(1−tn)2
+

1−(t3)
n/2

(1−t3)(1−tn)
+

2
(
− 1

2
nt3n/2+(n

2
−1)t

3n
2 +3+t3

)
(1−t3)2(1−tn)

1− tn/2
+

tn/2

1− tn/2
. (C.11)

It can be shown that the result that can be obtained using the methods of [15] for general

even n is equal to the first term in equation (C.11). The second term accounts for the fact

that there are two single-trace operators with nm
2 C’s for every m ∈ Z+.

If we take the plethystic exponential of this then we get the multi-trace operator

generating function

F
(∞)
M (a, b, c) =

 ∞∏
m=0

n
2
−1∏
j=0

∞∏
`=0

n`+2j∏
k=0

1

1− an`+2j−kbkcj+
nm
2

[ ∞∏
m=1

1

1− c
nm
2

]
. (C.12)
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