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Figure 17. Perturbed density, δρ/ρ, in the meridional plane at φ = π/8 (upper three panels) for the 3D simulation T1R-0–3D. Note that we have effectively
stretched the grey-scale by plotting the quantity sign(δρ) × |δρ/ρ|1/4 in the upper panels. The lower panels show the relative density perturbations δρ/ρ at the
disc mid-plane. No grey-scale stretching has been applied to these lower panels.

as our starting model set. The equations for axisymmetric dynamics
in that setting are

du

dt
− 2�0v = −c2

s

∂�

∂x
− ∂c2

s

∂x
+ 3�2

0x,

dv

dt
+ 2�0 u = 0,

dw

dt
= −c2

s

∂�

∂z
− g,

d�

dt
+ ∂u

∂x
+ ∂w

∂z
= 0, (28)

where � = ln ρ and �0 = constant. The remaining expressions
are defined for convenience below. Lower case letters are used
for the radial, azimuthal and vertical velocities (i.e. u, v, w) in
the Cartesian shearing box in order to distinguish them from the
ones used to describe dynamics in a cylindrical geometry examined
in Appendix A. In general, the vertical component of gravity is
vertically varying and is given by g = �2

0z, but for this analysis it
is treated as a constant.

As done in GS67, one can do a point expansion (see the discussion
of GS67 immediately before equation 17 of that work) around any
nominal level z = z0. We start by considering the mean states which
we represent with overbars. Radial and vertical equilibria give

−2�0V = −c2
s

∂�

∂x
− ∂c2

s

∂x
,

0 = −c2
s

∂�

∂z
− g.

Note that the mean azimuthal flow state v̄ has been decomposed
into a Keplerian component (the term −(3/2)�0x) plus a deviation

about that state V , i.e. v̄ = −q�0x + V , and c2
s is the sound speed

(implicitly a function of x because of the radial dependence of the
vertically isothermal temperature profile). In steady state, we find
that

∂�

∂z
= − g

c2
s

,

and, most importantly, the mean gradient of the azimuthal flow is

V̄z ≡ ∂V̄

∂z
= g

2�0

∂ ln c2
s

∂x
. (29)

Perturbations of � and all other variables around their reference
mean states are introduced with prime notation, e.g. � → �̄ + �′,
etc. We assume an isothermal equation of state for the perturbations
as well. Linearized perturbations of the equations of motion (28)
lead to the following expressions:

∂u′

∂t
− 2�0v

′ = −c2
s

∂�′

∂x

∂v′

∂t
+ �0

(
1/2 + V x

)
u′ + V zw

′ = 0

∂w′

∂t
= −c2

s

∂�′

∂z

∂�′

∂t
+ u′ ∂�

∂x
+ w′ ∂�

∂z
+ ∂u′

∂x
+ ∂w′

∂z
= 0. (30)

Note we have utilized the shortened notation V x ≡ ∂V /∂x. To
emphasize, the analysis we carry out here departs from that done
in GS67 in two respects: (i) we assume an isothermal equation of
state for the disturbances and (ii) we allow for compressibility (cf.
equation 29 of GS67). Since g is constant, the above equations are

 at Q
ueen M

ary, U
niversity of L

ondon on M
arch 17, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



Vertical shear instability in discs 2625

easily combined into a single one for �′ yielding
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∂z
+ ∂

∂z

)
c2
s

∂

∂z
+
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∂�
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+ ∂

∂x

)
c2
s

∂

∂z
−κ2

0

]
∂2�′

∂t2

+
[

2�0V̄z

(
∂�

∂x
+ ∂

∂x

)
c2−κ2

0

(
∂�

∂z
+ ∂

∂z

)
c2
s

]
∂�′

∂z
= 0,

(31)

where the epicyclic frequency is represented by κ0 and is related to
the steady-state quantities by

κ2
0 = 2�2

0(1/2 + V̄x).

Paraphrasing directly from GS67 (prior to equation 17 of that work),
the next step is to expand the unperturbed variables and their deriva-
tives in Taylor series about some point x = x0 and z = z0. Discarding
terms of order (x − x0)/x0 and (z − z0)/z0, the perturbation vari-
ables may be expanded in plane waves of the form ∼ ei(ωt+kxx+kzz),

revealing the dispersion relationship

ω4 − [
c2

0(k2
x + k2

z ) + igkz + κ2
0

]
ω2

−2�0V̄zc
2
0kxkz + κ2

0 (c2
0k

2
z + ikzg) = 0,

in which c2
0 is the sound speed at the point in question and where

κ0 → �0. As is standard for problems of atmospheres, we can
recast the vertical wave dependence to have a complex character
(indicating a basic wavy pattern) by defining kz → kz − ig/(2c2

0)
which renders the dispersion relation into the form

ω4 − [
c2

0(k2
x + k2

z ) + κ2
0 + N2

0

]
ω2

−2�0V̄zc
2
0kxkz + κ2

0 (c2
0k

2
z + N2

0 ) = 0, (32)

where we have defined the Brunt–Vaisaila frequency

N2
0 = g2

4c2
0

.

Solutions for ω are easy to obtain and write down. It is more instruc-
tive, however, to assess the stability characteristics straight from an
analysis of equation (32) itself.

The classical GSF instability is one in which the modes pass
through zero frequency before becoming unstable and they describe
the influence that the vertical shear gradient has upon inertial modes.
In our dispersion relation, this amounts to the instability condition

−2�0V̄zc
2
0kxkz + κ2

0 (c2
0k

2
z + N2

0 ) < 0. (33)

When c2
0k

2
z � N2

0 the condition reduces to

−2�0V̄z + κ2
0

kz

kx

< 0,

which is essentially the first term appearing in equation 33 of GS67.
Also, this condition is identical to that found in equation 20 of Urpin
(2003). These latter correspondences follow from realizing that

V̄z ↔ ∂�

∂z
,

κ2
0

2�0
↔ 1

R2
0

(
∂R2�

∂R

)
R=R0

and, thus, recovering the classical GS67 condition. The dispersion
relation (32) has the general form

ω4 − Bω2 + C = 0,

where B and C are obviously identified with the terms in (32). This
equation has imaginary solutions for ω if (i) C < 0 with B > 0 or (ii)
B2 − 4C < 0. The GSF criterion (33) is essentially the condition that

C < 0. Condition (ii) is for acoustic-inertial modes to be unstable.
This amounts to[
c2

0(k2
x + k2

z ) + κ2
0 + N2

0

]2

−4
[−2�0V̄zc

2
0kxkz + κ2

0 (c2
0k

2
z + N2

0 )
]

< 0. (34)

A detailed examination of the behaviour of this condition shows that
it does not occur for reasonable values of the parameters leading us
to conclude that the acoustic modes (per se) do not become unstable
as well.

Denoting σ as the growth rate, we find that the inertial mode
response is roughly given by

σ 2 = −κ2
0 (c2

0k
2
z + N2

0 ) + 2�0c
2
0krkz

∂V̄
∂z

c2
0(k2

z + k2
r ) + κ2

0 + N2
0

, (35)

kz and kr are the corresponding vertical and radial disturbance
wavenumbers, respectively (note that we have changed notation
so that kx → kr and have reinstated the vertical velocity gradient
so that it is now explicit). The quantity ∂V̄ /∂z scales of the order
of magnitude of (q/2)�0(H0/R0), where q is the same exponent of
the radially varying isothermal sound speed discussed in Section 2.
Supposing for this discussion that N0 is negligible, it follows from
this expression that if H0/R0 is small, then instability can only hap-
pen if the radial wavenumber conspires to be correspondingly large.
In that limit, the above expression implies

σ 2 ∼ 2�0
kz

kr

∂V̄

∂z
− κ2

0

k2
z

k2
r

, (36)

indicating that instability is possible if kz/kr ∼ O (qH0/R0). The
analysis of Arlt & Urpin (2004), for example, also similarly in-
dicates that for the same rough conditions the growth rate ought
to scale as O (q�0H0/R0). The simulations we have performed
are consistent with this tendency where the radial length-scales
of the emerging structures are significantly shorter than the ver-
tical ones with growth rates of the instability �4 orbit times for
H0/R0 ∼ 1/20 and q = −1.

The goal of our extended analysis discussed below is to develop
a better physical understanding of the processes responsible for
this instability beyond invoking Solberg–Høiland criteria. In this
respect, we notice from Fig. 1 that the integrated radial energies are
smaller in magnitude than the corresponding integrated meridional
energies during the growth phase of the linear instability. Further-
more, in Fig. 10 we showed that the ratio of meridional to radial
energies observed in the simulations scales as eθ /er ∼ (H/R)−2. We
now examine whether or not this conforms to what is expected of
the GSF instability.

If we combine the time-scales (∼q�0H0/R0) and length-scales
(kz ∼ krH0/R0) implied by the unstable mode with equations (30)
describing the point analysis found in GS67, then we find that the
relative orders of magnitude of the various terms in the perturbed
continuity equations (30) are

− w′ g

c2
s

+ ∂w′

∂z
+ ∂u′

∂x
= O

(
w′ H0

R0

)2

, (37)

where u′, w′ are the perturbed (cylindrical) radial and vertical ve-
locities, respectively. Now since c2

s /g ∼ O (H0) and if we assume
that the vertical perturbation scales k−1

z are similarly ∼H0, then we
find the following: because in order for the instability to operate we
need kr ∼ kz(H0/R0)−1, it necessarily follows that the only way to
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non-trivially get the sum of the order 1 terms on the LHS of (37) to
be approximately zero is for

u′ = O
(

w′ H0

R0

)
.

In other words, the radial perturbation velocities must be a fac-
tor of H0/R0 smaller than the perturbed vertical velocities while
the instability is growing.1 This immediately points out that those
growing disturbances are largely anelastic rather than just simply
incompressible – a fact we shall examine further in Appendix A.
More importantly, if we define re = er/ez to be the ratio of the
corresponding domain-integrated radial to vertical (perturbation)
energies while the linear instability is active, then we expect that it
should scale according to

re =
er ≈

∫
Vol

ρu′2d3x

ez ≈
∫

Vol
ρw′2d3x

∼ O
(

H0

R0

)2

,

all other quantities being equal.

6.2 An extended linear analysis: approximate solutions
and double instability

With these considerations in mind, in Appendix A we re-examine
the linear instability without adopting the point-analysis strategy of
GS67. Instead, we seek to express in a relatively simplified way
the dynamics occurring when the radial length-scales are much
smaller than the vertical scales assumed to be of the order of
H0. Through careful scaling analysis we show how, subject to the
adopted assumptions that are outlined below, the processes involved
in bringing about the instability are largely anelastic and radially
geostrophic – by the latter expression we mean to indicate dynamics
which are in constant radial force balance between Coriolis effects
and pressure gradients (note that these conditions are also implicit
within the GS67 analysis). Related to this, we show how the pre-
ceding considerations based on the GS67 theory carry over: namely
that while the instability is in its linear phase, the vertical velocities
exceed the corresponding perturbed radial velocities by a factor of
H0/R0.

In Appendix A, we detail and motivate an asymptotic scaling
analysis of the inviscid equations of motion by making use of the
above observations. A short summary of what is assumed is the
following: we examine radially propagating wave solutions about
the fiducial radius R0 which have radial length-scales of the or-
der of H 2

0 /R0 and represented by the non-dimensional variable x,
while the vertical length-scales are of the order of H0 and denoted
similarly by z. Times are scaled by (2π/�0)(R0/H0), i.e. a factor
of R0/H0 longer than the local orbit time, and denoted by τ . The
vertical and azimuthal velocities are assumed to scale by cs and the
radial velocity is scaled by cs(H0/R0), and denoted, respectively,
by ũ, v, w. We dynamically follow the density/pressure response
as disturbances of the function � ≡ ln ρ, so that the linearization
of this quantity �′ = ρ/ρ0. Formally, in the expansion procedure
�′ scales as a factor of H0/R0 of the non-dimensionalized vertical
and azimuthal velocities and is represented in the calculation of �̃.
These assumed relative scalings are implemented into the equations

1 Technically speaking one could satisfy (37) if u′ were much smaller than
O (

w′H0/R0
)

but that would imply disturbances with no perturbed vertical
momenta since the remaining terms could be combined into a single expres-
sion ∂ρw′/∂z = 0, where ρ is the steady-state density profile. We revisit
this in the subsequent subsections.

of motion which are then solved order by order in powers of H0/R0

until a non-trivial reduction is achieved. The fruit of this procedure
results in the simpler system expressed in equations (A15)–(A18)
which contains the aforementioned radial geostrophy vertical hy-
drostasy. These equations may be combined into a single equation
for the pressure perturbation �̃:

∂2

∂τ 2

∂2�̃

∂x2
= −∂2�̃

∂z2
+

(
1 + q

∂

∂x

)
z
∂�̃

∂z
. (38)

It is worth emphasizing here that a point analysis of equation (38),
i.e. assuming that z = z0 is fixed and making a wave ansatz and
proceeding similarly to Section 6.1 above, recovers the content of
the asymptotic growth rates contained in equation (36), indicating
the consistency of the scaling arguments we have exploited to obtain
this equation with the analysis in GS67.

Unfortunately, a summary examination of equation (38) indi-
cates it to be challenging to solve despite it appearing so simple.
This is because it is fundamentally inseparable between the x and
z coordinates owing to the q∂/∂x term on the RHS of the expres-
sion. However, we generate approximate solutions by assuming that
disturbances have the form

�̃ = �(z)eikx+στ + c.c.

turning (38) into a boundary value problem for the unknown eigen-
value σ

d2�

dz2
− (1 + ikq) z

d�

dz
+ σ 2k2� = 0, (39)

allowing us to explore the vertical structure of the associated eigen-
modes. The above is supplemented by the boundary condition that
there is no vertical flow at the top and bottom of the disc. Since
the bulk of the simulations of this study have implemented no-flow
boundaries at five scaleheights, we impose that

d�

dz
= 0, at z = ±5.

So long as the eigenvalue σ �= 0, the vertical velocity vanishes
at z = ±5 if the vertical gradient of � vanishes there too (see
equation A17). Solutions of the ordinary differential equation (39)
subject to the above boundary conditions involve manipulating Her-
mite and hypergeometric functions of complex arguments which of-
fer very little in the form of insight or ease of analysis. Instead, we
opt for solving the above system on a Chebyshev collocation grid
(N = 177 points) and solving the resulting linear matrix eigenvalue
problem for σ .

Generally speaking (except see below), the eigenvalues take on
the general form

σ (k) = ±(|σr | + sgn(k)|σi |),
so that for each left or right going wave, there are two responses
of the system, one being decaying while the other is growing.
The response of the system is composed primarily of body modes
which correspond to ‘corrugation’ or ‘breathing’ modes depend-
ing upon the vertical symmetry of the corresponding pressure per-
turbation eigenfunction (odd for corrugation and even for breath-
ing modes). In the figures and corresponding eigenvalue portraits
found in Fig. 19, these modes are denoted by Cn and Bn, respec-
tively, where the subscript n is a positive index starting from 1. C1

and B1 are, respectively, referred to hereafter as the ‘fundamental’
corrugation and breathing modes. All higher indices are referred
to as ‘overtones’ indicating (in general) an increasing number of
vertical nodes in the basic structure function. The body modes are
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Figure 18. Distribution of growth rates σ (k) = ±(|σr | + sgn(k)|σi |) corre-
sponding to wave solutions of equation (38), where k = 1.74 (corresponding
to a disturbance of wavelength ∼0.009R0) and q = −1 with H0/R0 = 0.05.
The growth rates and oscillation frequencies are given in units of local orbit
times. The response is broadly grouped into (i) body modes constituting cor-
rugation modes (odd symmetry with respect to the disc mid-plane, labelled
Cn) and breathing modes (even symmetry, labelled with Bn); (ii) surface
modes given by S

(±)
1,2 . The fundamental corrugation mode C1 has the fastest

growth rate of ∼0.12 orbit−1, which corresponds to an energy growth rate
of ∼0.24 orbit−1. The surface modes appear to correspond to the instability
structures appearing in the beginning of the simulations.

classical inertial-gravity mode responses of an atmosphere. The
other response (discovered rather unexpectedly) is the presence of
a pair what we call surface modes (equivalent to the finger modes
discussed earlier) which are labelled S

(±)
1,2 . Unlike the body modes,

the growth rates of a given pair of surface modes are not distinct:
in other words, the growth rate σ associated with S

(+)
1 is the same

as S
(−)
1 (but different from both S

(±)
2 ) although the structure of their

eigenfunctions is different. This is why the surface mode eigenval-
ues are plotted exactly on top of one another in Fig. 18.

In Fig. 18, we depict the response of the system assuming a
horizontal wavelength similar to the wavelength response seen in
our simulations ∼0.009R0 for H0/R0 = 0.05 and q = −1 (in our
system of study, this wavelength corresponds to a wavenumber
k ∼ 1.74). We note immediately that the growth rate of the funda-
mental corrugation mode, the mode that is dominant at late times
in our simulations, is given to be |σ r| ∼ 0.12 orbit−1. If instead
the growth rate is measured in terms of the kinetic energy, then the
fundamental mode’s growth rate would be =2|σ r| ∼ 0.24 orbit−1,
which compares closely to what we measure in our highly perturbed
simulations discussed in Section 5.1 where the corrugation mode is
seen to quickly dominate the dynamics. We also note, however, that
the growth rates in Fig. 18 indicate that the fundamental breathing
mode has a growth rate (for the energy) of ∼0.4 orbit−1 and the
first overtone breathing mode has a growth rate of ∼0.6 orbit−1. As
discussed in Section 5.5, where models with smaller initial velocity
perturbations were presented, the simulations seem to concur with
the expectation that B2 modes will appear at early times, followed
by the B1 modes and then the C1 mode. One puzzle that we have not
addressed in this paper is the fact that many higher order modes are
also predicted to be unstable by the analysis, and these modes are
not obviously observed in the simulations. Furthermore, low-order
overtones of the corrugation modes are also not easily picked out
by eye when plotting contours of vZ. Given the approximations in-
herent in our analysis, we will present a more complete exploration
of these issues in a future paper where we consider solutions to the
coupled radial and vertical eigenvalue problem that do not assume a

Figure 19. Corresponding depiction of body modes for the problem with
the same parameters described in Fig. 18. The solid and dashed lines rep-
resent real and imaginary parts, respectively. Panel (a): the fundamental
corrugation mode, (b) the first overtone corrugation mode, (c) the funda-
mental breathing mode and (d) the first overtone breathing mode. In panel
(a), we show in the inset the distribution of the grid points as one approaches
the domain boundary. The inset found in panel (d) depicts how close to zero
the eigenfunctions get near the mid-plane (z = 0). All eigenfunctions drawn

are normalized so that
∫ 5

−5

∣∣∣�∣∣∣2
dz = 1.

Figure 20. Same as Fig. 19 except the surface modes are depicted. Panel (a)
shows S

(+)
1 , (b) S

(1)
1 , (c) S

(+)
2 and (d) S

(−)
2 . The insets are provided to illus-

trate the extreme scale disparities exhibited by these functions, especially
when comparing the amplitudes near the boundaries to those within two
scaleheights of the mid-plane. Note the marked lack of mid-plane symmetry
associated with mode S

(−)
2 .

radial wave ansatz. Portraits of the eigenfunctions that correspond to
the eigenvalues C1, C2, B1 and B2 in Fig. 18 are displayed in Fig. 19,
where the solid lines depict the real parts of the eigenfunctions and
the dashed lines show the imaginary parts.

Compared to all of the body modes, the two pairs of surface
modes have the fastest growth rates of the collection. They grow at
nearly four to six times the rate of the fundamental corrugation mode
(S(±)

1 ↔ |σr | ∼ 0.58 while S
(±)
2 ↔ |σr | ∼ 0.42). Moreover, Fig. 20

displays how, indeed, the power associated with these modes is
concentrated near the boundaries. It is interesting to note that all
the surface modes show clear expression of strictly even or odd
symmetry with respect to the mid-plane except for S

(−)
2 which has

power strongly concentrated on the top boundary. (The correspond-
ing S

(−)
2 mode for k = −1.74 shows power concentrated at the

bottom boundary, not shown in the figure.) This particular mode
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is strongly asymmetrical. In all cases, the power of the surface
modes within the inner two scaleheights of the disc is considerably
diminished compared to the surface amplitude by anywhere from
three to five orders of magnitude. Qualitatively speaking, these sur-
face modes appear to be expressions of the fast growing boundary
disturbances we witness during the outset of the numerical sim-
ulations. Although we plot the mode amplitudes in terms of the
density/pressure perturbation �(z), we note that the perturbed ver-
tical velocity is related to this quantity through equation (A17),
which demonstrates that the velocity perturbation will similarly be
confined near the disc surfaces.

We conclude this section with some cautionary comments. (1)
These calculations were done assuming radial wave-like solutions
and any true calculation will require a proper analysis of the funda-
mental partial differential equation (38) wherein the simple Fourier
wave-mode assumption is replaced with a bona fide treatment in
the radial direction including proper implementation of boundary
conditions. (2) The asymptotically reduced equations are likely to
become invalid once k becomes too large or too small. Similarly,
a breakdown in validity is expected if the node number signifi-
cantly increases. (3) What is important is to develop a theoretical
construction in order to see and understand if the dependence of
the growth rates can be tracked reliably as a function of the hor-
izontal wavenumber. (4) We do not yet understand the origins of
the surface modes nor have we developed a physically transparent
mechanism explaining them. (5) Although the GSF instability re-
quires kZ/kR ≤ H0/R0, we notice that for fixed kR Fig. 18 shows
the existence of a large number of unstable modes as the num-
ber of vertical nodes (and kZ) increases, and this issue needs to
be explored using a more accurate calculation of the eigenfunc-
tions and their associated growth rates. (5) Lastly, it is not yet
clear why the fundamental corrugation mode appears to be the pre-
ferred vehicle of the growing instability at late times before satura-
tion. This short list of outstanding issues comprises those that need
addressing and will be considered in our follow-up studies.

7 D I S C U S S I O N A N D C O N C L U S I O N

7.1 Application to protoplanetary discs

As our non-linear simulations have shown, the vertical shear in-
stability is most likely to arise in discs that do not support strong
levels of internal angular momentum transport. It is precisely the
ability of fluid elements to travel small distances in the disc without
changing their angular momenta that enables the vertical shear in-
stability described originally by GS67 to operate by tapping into the
angular momentum gradient generated by the combination of radial
and vertical shear. We suggest that the most likely setting for the
vertical shear instability is therefore in the magnetically decoupled
dead zones in protoplanetary discs.

Before discussing the thermal time-scales expected in protoplan-
etary discs, we comment on the theoretically expected and observa-
tionally inferred temperature profiles in these discs. The passively
irradiated disc model computed by Chiang & Goldreich (1997) leads
to a radial temperature profile in the disc interior T(R) = (R/au)−3/7

120 K, which lies in the range of radial temperature profiles that we
have shown support the vertical shear instability. Submillimetre ob-
servations of circumstellar discs presented by Andrews & Williams
(2005) indicate that the range of radial temperature power-law in-
dices lies between −0.4 and −0.7, which is again within the range
of unstable profiles. Vertical temperature profiles are difficult to ob-
tain from observations, but theoretical calculation of discs heated by
their central stars has been presented by D’Alessio et al. (1998) and

Dullemond, van Zadelhoff & Natta (2002). An optically thick disc
with grey opacities shows a characteristic two-component vertical
temperature profile, with a warm surface layer and a cooler, verti-
cally isothermal region near the mid-plane. A full radiative transfer
calculation that adopts frequency-dependent opacities shows a mod-
erate departure from this simple thermal structure, and the vertically
isothermal inner region develops a modest temperature gradient,
with temperature decreasing towards the mid-plane. A model cal-
culated by Dullemond et al. (2002) for the outer disc at 17.2 au, for
example, leads to a warm upper layer with T ∼ 85 K and an interior
region covering a few scaleheights where the temperature drops
from T ∼ 40 K to 20 K at the mid-plane. A positive thermal gradient
implies that the vertical entropy profile will provide a stabilizing
influence. Given our results on the thermal relaxation time required
for the vertical shear instability to operate in vertically isothermal
discs, this suggests that a short cooling time ≤0.01 local orbital
periods is likely to be required for the vertical shear instability to
operate under these conditions.

We now consider the radiative cooling times expected in the outer
regions of protoplanetary discs. A similar discussion to the one that
follows is found in Umurhan, Nelson & Gressel (2013). According
to the standard theory of frequency-integrated radiative transfer
with Rosseland mean opacities (Kippenhahn & Weigert 1990), the
thermal time-scale due to radiative diffusion is

tr = �2(3Cp/4ac)(ρ2κ
R
/T 3),

where κ
R

is the Rosseland mean opacity and c, a and Cp are the speed
of light, radiation constant and specific heat at constant pressure.
� measures the perturbation length-scale of interest. Model values
of T and ρ representing minimum mass solar models are drawn
from the previously mentioned irradiated disc models of Chiang &
Goldreich (1997), which compare favourably to the more detailed
disc structure calculations of D’Alessio et al. (1998) and Dullemond
et al. (2002). Using

ρ ≈ ρmid = 2.7 × 10−9(g/cm3)F · (R/au)−39/14

and

T = (R/au)−3/7 120 K,

we find that the thermal time-scale is given approximately by

tr/Porb = 168F 2
(
κ

R
/cm2/g

)
(�/R)2 (R/20 au)−53/14,

Porb ≡ 2π/�K, (40)

where F represents the mass fraction of the protoplanetary disc
relative to a minimum mass solar nebula model. Noting that the
vertical wavelength of the instability λZ ∼ H and that grow-
ing modes satisfy kR/kZ > R/H, we adopt a radial length-scale
� ≡ λR ≈ H2/R. This gives �/R ≈ 0.0025. From the calcula-
tions of Henning & Stognienko (1996), opacities in the temperature
range 50−150 K hover below 1–5 cm2 g−1. Using the lower value
as fiducial,2 we find that at R = 10 au, tr/Porb = 0.015F2 while at

2 The frequency-averaged opacities calculated in Henning & Stognienko
(1996) assume a grain mixture of amorphous silicates as typical of the
interstellar medium. As part of the general paradigm of long-term disc
evolution, the sizes of these grains grow quickly (∼104 yr) and achieve sizes
of about 102–103 μm (Dullemond & Dominik 2005). With grain size growth
comes a reduction of opacities (Pollack, McKay & Christofferson 1985).
D’Alessio et al. (1998) argue that spectral energy distributions of T-Tauri
stars support the presence of grains ∼ 3 mm. Thus, referencing figs 6 and
7 of Pollack et al. (1985) shows that grains with 300 μm radii correspond
to Rosseland mean opacities of 0.2 cm2 g−1 in the temperature range of
interest; it is therefore fair to assume a fiducial upper bound for κ

R
of

1 cm2 g−1.
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R = 20 au, tr/Porb = 0.001F2. To check that thermal time-scales
based on the diffusion approximation are valid, we have calculated
the optical depth in the radial direction across the mode length-scale
assumed above and find that the optical depth is ∼2 at 10 au. This
justifies adoption of the diffusion approximation for radii less than
or equal to this value. For larger disc radii, however, radial heat
transport over length-scales characteristic of the unstable modes
will be in the optically thin regime.

We conclude that for the perturbation length-scales on which the
vertical shear instability is active, the thermal time-scales of mini-
mum mass solar nebula discs are sufficiently short to accommodate
the process, provided one is investigating disc dynamics out be-
yond ∼10 au – a region that is expected to be within the dead zone.
Furthermore, although the dead zone may transition to a region
of active MRI turbulence further out in the disc beyond ∼20 au
(Armitage 2011), we note that there may also be a region towards
the outer edge of the disc beyond �50 au where thermal time-scales
are short and MRI turbulence is quenched by ambipolar diffusion.
This may also be a region where the vertical shear instability can
operate. On long evolution time-scales, the growth of dust grains
reduces opacity and the disc surface density decreases due to accre-
tion on to the star. Both of these processes lead to the vertical shear
instability being more likely to manifest itself, provided that fully
developed MRI turbulence does not arise in the disc because of these
very same effects. Given the inherent uncertainties contained in the
estimates derived above, the issues discussed here ultimately need
to be investigated with more sophisticated disc models that include
radiation transport, magnetic fields and a self-consistent ionization
model.

7.2 Concluding remarks

We have presented results from a large suite of 2D axisymmetric
and 3D simulations, using two independent hydrodynamic codes,
that examine the stability and dynamics of accretion disc models in
which the temperature or entropy is a strict function of the cylindri-
cal radius. Such thermal profiles lead to equilibrium angular velocity
profiles that depend on radius and height because of the baroclinic
nature of the flow. We find that these disc models are unstable to
the growth of two distinct types of modes. The first are seen to
grow rapidly at high latitudes in the disc before descending down
towards the mid-plane, and they have wavenumber ratio satisfying
|kR/kZ| � 1. The second set of growing modes arise over slightly
longer time-scales and occupy the main body of the disc, including
the mid-plane regions. They manifest themselves early on as fun-
damental breathing modes, but as symmetry about the mid-plane
is broken they become corrugation modes that cause the disc mid-
planes to develop a pattern of vertical oscillations in the non-linear
saturated state. These two mode types are only seen to grow when
the thermal evolution time is comparable to or shorter than the dy-
namical time, and as such the conditions in the simulations match
those that are required for operation of the GSF instability which
predicts the occurrence of modes with |kR/kZ| � 1. The growth and
dominance of corrugation modes, however, is a new result that has
not been described in the literature previously.

The potential for the GSF (or vertical shear) instability to oper-
ate in accretion discs has been investigated previously by Urpin &
Brandenburg (1998), Urpin (2003) and Arlt & Urpin (2004) using
the Boussinesq approximation. We have confirmed this with our
own analysis that applies to fully compressible flows for a locally
isothermal equation of state. We have also extended the analysis by

introducing a number of assumptions motivated by the simulations,
where we also relax the purely local assumption adopted previously
in favour of one that accounts for the global nature of perturbations
in the vertical direction. This simplified analysis leads to the pre-
diction of two types of growing modes, one concentrated at high
latitudes near the disc surface and the other occurring throughout the
body of the disc, in agreement with the non-linear simulations. The
growth rates derived from this analysis also match the simulations
with good accuracy.

The non-linear saturated state in the 2D axisymmetric simula-
tions arises from the interaction between the two types of growing
modes. It appears to consist of a rather complex hydrodynamic flow
that combines turbulence with a clear pattern of alternating ver-
tical oscillations. A full 3D simulation computed using a locally
isothermal equation of state indicates that the instability generates
a turbulent flow that exhibits non-negligible transport of angular
momentum through a Reynolds stress with corresponding viscous
alpha value α ∼ 10−3.

We have shown that the instability is damped in viscous flows
with stress parameter α ≥ 4 × 10−4, so disc regions where the
instability operates need to be stable against the MRI (the instabil-
ity is not observed in global simulations of discs supporting fully
developed MHD turbulence). Combining this constraint with the
requirement for rapid thermal relaxation times suggests that the in-
stability may operate in the outer regions of protoplanetary discs
within the dead zone. A simple analysis based on thermal diffusion
times across the characteristic length-scales of unstable GSF modes
suggests that instability may arise in the dead zone at radii exte-
rior to 10 au in discs with masses and surface densities similar to
minimum mass solar nebula models. It is also likely that the MRI
is quenched by ambipolar diffusion in the very outermost regions
of protostellar discs (Armitage 2011), so these may also provide
low-density, magnetically inactive regions where the vertical shear
instability can operate.

The vertical shear instability is an example of a baroclinic insta-
bility because the required vertical shear in a disc only occurs if
the pressure is a function of both density and temperature, P(ρ, T).
An important question that we have not addressed in this work is
how a disc would evolve that is subject to both the vertical shear
instability and the SBI studied by Petersen et al. (2007) and Lesur
& Papaloizou (2010). The conditions required for the SBI to op-
erate and be sustained strongly are a radial entropy gradient and a
fairly rapid thermal relaxation time, and we have shown that the
vertical shear instability operates under these conditions also. Both
Petersen et al. (2007) and Lesur & Papaloizou (2010) report that
a strongly sustained instability is obtained for thermal time-scales
close to the local orbital period, leading to a highly complex flow
in which long-lived vortices are formed, and an effective viscous
stress of α ∼ few × 10−3 is maintained by the Reynolds stress in
compressible flows. The 3D simulation we presented in Section 5.8
used a locally isothermal equation of state, and so is not subject
to the SBI, but it seems likely that the combined action of the two
instabilities in a disc with longer thermal evolution time and ap-
propriate entropy gradient will generate a complex flow containing
long-lived vortices and vertical motions that correspond to corru-
gation of the disc, accompanied by a Reynolds stress that leads
to efficient outward angular momentum transfer. It is worth not-
ing that the vertical shear instability is linear, whereas the SBI is
a finite-amplitude instability, so it is possible that the SBI may be
stimulated by perturbations generated during the development of
the vertical shear instability. We will present a study of these two
instabilities operating in tandem in a future publication to explore
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these hypotheses. Given the role that vortices may play in the trap-
ping of solids during planet formation (e.g. Barge & Sommeria
1995; Klahr & Bodenheimer 2003), and the influence of turbulence
on the growth of dust (Dullemond & Dominik 2005) and planetesi-
mals (Nelson & Gressel 2010), this is clearly an important issue for
further investigation.
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A P P E N D I X A : E QUAT I O N S O F M OT I O N
REVI SI TED AND STEADY STATES
R E D E R I V E D

The equations of motion for axisymmetric inviscid dynamics in a
cylindrical geometry are given by(

∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

)
U − V 2

R
= − 1

ρ

∂c2
s ρ

∂R
− ∂�

∂R
, (A1)

(
∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

)
V + UV

R
= 0, (A2)

(
∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

)
W = − 1

ρ

∂c2
s ρ

∂Z
− ∂�

∂Z
. (A3)

Note that the (R, φ, Z) velocity components are given here by
(U, V, W). We dispense with the subscripted scheme (vr, vφ , vZ)
used in previous sections in order to simplify the notation. The
corresponding equation of mass continuity is

∂ρ

∂t
+ 1

R

∂RρU

∂r
+ ∂ρW

∂Z
= 0. (A4)

As mentioned above, we focus here on dynamics that are locally
isothermal with an infinitely short cooling time (τ relax → 0). This
then is to be considered in the context of simulations T1R-0 to T4R-0
summarized in Table 1. Reciting therefore from Section 2, it means
that the square of the sound speed is given by c2

s = c2
0(R/R0)q ,

where R0 is the fiducial reference disc position and c0 is the scaled
sound speed at that point. The gravitational potential emanating
from the central object is � = −GM/(R2 + Z2)1/2.

The general equilibrium state solutions are found in
equations (12) and (13) but, as we mentioned earlier, perturbations
superposed on this base state are difficult to analyse because the
resulting equations are fundamentally inseparable so that a typical
normal-mode analysis is out of the question. In order to facilitate
some kind of tractable analysis, we make the one and only approxi-
mation here: the radial and vertical gradients of the potential � are
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expressed in terms of their corresponding first-order Taylor Series
expansions, i.e.

∂�

∂R
≈ −GM

R2
0

(
R0

R

)2

= −�2
0R0

(
R0

R

)2

,

∂�

∂Z
≈ −GM

R3
0

(
R0

R

)3

Z = −�2
0

(
R0

R

)3

Z,

in which �0 = (GM/R3
0)1/2 is the reference Keplerian rotation rate

at radius R0. The mid-plane density is chosen to be of the form
ρmid = ρ0(R/R0)p , where ρ0 is the reference density and p is an
arbitrary index (as referenced earlier). In the following analysis, it
will be convenient for our discussion to refer to the natural logarithm
of the density instead of directly to the density itself; thus, we define
� ≡ ln ρ. Because we shall be concerned with perturbations around
the steady states implied by the above equations, we shall represent
these states by overbars. As such, we have that

� = ln ρmid − 1

2

Z2

H 2
0

(
1

H2

)
, (A5)

V =�0R0

(
R

R0

)−3/2
[

1+ε(R) + q

4

(
H0

R0

)2 (
Z

H0

)2 (
R

R0

)−2
]
,

(A6)

where H0 ≡ c0/�0 is the local vertical scaleheight as referenced
near the end of Section 2. The non-dimensionalized scaleheight H
is accordingly given via the relationship H2 ≡ (R/R0)3+q as found
in Section 2. The non-dimensional quantity ε is given by

ε ≡
(

H0

R0

)2

C2

(
R

R0

) [
R0

∂ ln ρmid

∂R
+ R0

∂ ln C2

∂R

]

= (p + q)

(
H0

R0

)2 (
R

R0

)1+q

,

where C2 ≡ (R/R0)q .

A1 Linearized perturbations and non-dimensionalization

We introduce perturbations by writing for each dependent quantity

U → u′, V → V + v′, W → w′, � → � + �′,

and inserting these into the governing equations (A1)–(A4). Lin-
earizing results in the expressions

∂u′

∂t
− 2

V

R
v′ = −c2

s

∂�′

∂R
,

∂v′

∂t
+ u′ 1

R

∂RV

∂R
+ w′ ∂V

∂Z
= 0,

∂w′

∂t
= −c2

s

∂�′

∂Z
(A7)

and

∂�′

∂t
= − 1

R

∂Ru′

∂R
+ ∂w′

∂Z
− u′ ∂�

∂R
− w′ ∂�

∂Z
. (A8)

It will now be made more transparent if we non-dimensionalize the
above equations according to the quantities appearing. We see that
a natural time unit is given by the Keplerian rotation time �−1

0 . The

radial and vertical length-scales are naturally scaled by R0 and H0,
respectively. Thus, we write for the these quantities

t → �−1
0 t, Z → H0z, R → R0r, (A9)

where t, r, z are the corresponding non-dimensionalizations of the
independent variables representing, respectively, time, radius and
height. It is very important to note that the radial and vertical length-
scales are disparate with respect to each other by a factor of H0/R0.
Because in all of our simulations this ratio is quite small (∼0.05), we
shall treat this ratio as one of our ‘small parameters’ and formally
represent it by ε ≡ H0/R0 [not to be confused with ε(R) defined
earlier]. This disparity must be kept in mind when the scalings
invoked to recover the GSF instability are formally made in the
next section.

Judging from the dynamics observed in the simulations, the struc-
tures appearing tend to be radially and vertically constrained. These
spatial constraints (especially the radial confinement) indicate that
perturbation velocities ought not to exceed the sound speed (at
least initially). This is typical of the scalings frequently used to de-
rive equations appropriate to the dynamics in a small box of a disc
(Goldreich & Lynden-Bell 1965; Umurhan & Regev 2004) although
we are not, technically, considering the dynamics on such small
scales yet. In sum, therefore, we scale the dependent perturbation
velocities by

u′ → c0 u, v′ → c0v, w′ → c0 w,

where, as before, u, v, w represent the corresponding non-
dimensionalized component velocities in the radial, azimuthal and
vertical directions. Therefore, the perturbation equations now take
on the following more transparent appearance:

∂u

∂t
= 2

v̄

r
v − εrq ∂�′

∂r
, (A10)

∂v

∂t
= −u

1

r

∂rv

∂r
− εw

(
1

2
qzr−7/2

)
(A11)

∂w

∂t
= −rq ∂�′

∂z
, (A12)

and

∂�′

∂t
= −ε

(
u

r
+ ∂u

∂r

)
− ε

∂�

∂r
u − ∂w

∂z
− w

∂�

∂z
, (A13)

where the non-dimensionalization of the mean azimuthal flow V is
given in terms of the other redefined variables

� ≡ p

r
− z2 1

2H2
,

v ≡ V

�0R0
= r−3/2

(
1 + ε(r) + q

4
ε2z2r−2

)
, (A14)

with ε(r) = ε2(p+q)r1 + q andH2(r) = r3+q . We have written (A11)
in a seemingly curious way: the last term on the RHS of that equation
is the product of the vertical gradient of the mean azimuthal flow
term, i.e. −w∂v/∂z. We have chosen to write it out explicitly in
order to bring to the fore the leading-order scaling that sits in front
of it as it will affect how we proceed towards the reduced model
(see the next section).

A2 Asymptotic scalings and resulting reduced equations

The linearized equations of motion (A10)–(A13) are, despite our
efforts to simplify, still inseparable between the r and z variables.
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In order to proceed asymptotically, we must make further scaling
choices. These are guided by both the results of the numerical
solutions and the discussion at the beginning of Section 6. At this
stage, we shall list them once again.

(i) As established by GS67, Urpin (2003) and Arlt & Urpin
(2004), growth rates scale as ∼q�0H0/R0 which is, in our non-
dimensionalized time units, ∼εq.

(ii) For growth rates slow on the time-scale of the local disc
rotation, the emerging structures have radial dimensions (�r) con-
siderably smaller than the corresponding vertical dimensions (�z).
That is to say, for εq � 1 the scaling analysis of both GSF67 and
Urpin (2003) indicate that �r/�z � 1.

(iii) The numerical solutions also clearly indicate that during
the growth of the instability, the radial velocity fluctuations are
significantly smaller than the corresponding meridional velocity
fluctuations (see Fig. 1).

In the following, we describe scalings of (A10)–(A13) that sim-
plify them into a set which is both more transparent and more
amenable to further analysis while retaining the essential physical
processes involved in the instability. We assume that ε � 1 and treat
q as an order 1 quantity (although a more general analysis can be
done without this a priori assumption achieving, in the end, much of
the same results discussed hereafter). Furthermore, we consider the
analysis around the fiducial radius r = 1. Since interest is in radial
scales that are much smaller than the vertical scales and recalling
that the r scales dimensionally represent physical length-scales that
are longer than the dimensional vertical scales z by a factor of
ε−1( = R0/H0 ∼ 20), we consider radial disturbances

r − 1 = ε2x,

where x is of order 1. We leave the z scales untouched as these are
the de facto reference scales of the analysis. Because the growth
rates are long by a factor of ε−1, we introduce a new long-time
variable τ given by

t = τε−1.

With this long time-scale assumed, we find that in order to bring
about non-trivial pressure balancing with the inertial term in the
vertical momentum equation, it must follow that the pressure fluc-
tuations must relatively scale by ε as well. This can be confirmed
by examining (A12) and noticing that for w order 1 and the time
derivative scaling as order ε, that the only way balance occurs
is if the pressure is correspondingly small by a factor of ε. This
means introducing a new pressure fluctuation reflecting this scaling
through

�′ = ε�̃,

where �̃ is the scaled pressure.
Finally as we have just intimated, in addition to the vertical

velocity being of order 1 we assume that the azimuthal velocity
fluctuations are also unscaled (i.e. remaining order 1) in accordance
with our numerical observations. We note here that scaling v of order
1 is also consistent with the pressure scalings assumed because it

leads to a balance between the radial pressure gradient and the
Coriolis term in (A10).

However, we suppose that the radial velocities are small in com-
parison to the other velocity components and we propose that its
relative smallness is similar to the pressure field’s scaling, i.e.

u = εũ,

where ũ is the correspondingly scaled radial velocity. Applying
these scalings assumptions to equations (A10)–(A13) results in the
following equations at lowest order,

0 = 2v − ∂�̃

∂x
, (A15)

∂v

∂τ
= −1

2
ũ − 1

2
qzw, (A16)

∂w

∂τ
= −∂�̃

∂z
, (A17)

0 = ∂ũ

∂x
+ ∂w

∂z
− zw, (A18)

with corrections to the above equations appearing at order ε2. In
this form, these reduced equations contain insight with regard to two
very important physical implications. The first of these follows from
the interpretation of equation (A15) which says that the dynamics
of the instability occur under radially geostrophic conditions, that
is to say, that the processes develop under conditions in which
radial Coriolis effects balance radial pressure gradients. The second
observation is that the linear dynamics are anelastic rather than
incompressible in character. By this we mean to say the following:
since on these radial/vertical length-scales the mean (scaled) density
profile has the form ρ̄ = e−z2/2, equation (A18) may be equivalently
written as

∂ρ̄ũ

∂x
+ ∂ρ̄w

∂z
= 0. (A19)

The fact that the dynamics here are not incompressible in the usual
sense is perhaps less surprising given that vertical stratification
is non-negligible under these spatial constraints – had we been
interested in vertical scales that were equally as short as the radial
scales, stratification would not figure prominently.

The other two equations describing the vertical and azimuthal
momentum balances retain their inertial terms and are largely un-
affected (directly) by these scalings.

Before analysing the solutions to these equations, it is important
to keep in mind that the essential effect giving rise to the instability is
present in the guise of the final term on the RHS of equation (A16).
Additionally, in reflecting upon these equations, it should be kept
in mind that ũ and �̃ indicate real quantities that are intrinsically
smaller (but not zero) compared to the other terms.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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