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ABSTRACT 

For a good THz waveguide, both low propagating loss and small mode width are usually very important. However, 

the high ohmic loss of metals and the high absorption loss of dielectric materials result in that it still remains a challenge 

to obtain the two capabilities at the same time. In this paper, planar dielectric-gap-metal (DGM) waveguides are 

presented to guide THz wave. According to the dispersion equations of the waveguides, we calculate their mode 

characteristics by numerical calculation, and we find that THz wave can propagate in the waveguides with low loss and 

simultaneously subwavelength mode width. When compared with the parallel-plate waveguide, the mode losses of the 

DGM waveguide can be 1-3 orders of magnitude lower, but the mode widths do not increase. The combination of low 

propagating loss and subwavelength mode width makes the DGM waveguides particularly useful for many THz 

applications such as sensing, communication, and imaging. 
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1. INTRODUCTION 

Recent years have witnessed a rapid development of research on THz waveguides for their great importance in the 

THz science and technology 
[1-3]

. For a good THz waveguide, low mode loss is a very important feature. A single metal 

wire can guide the broadband THz pulses with nearly no dispersion and with a loss of about 3 m
-1

 
[4]

, but the mode is 

weakly bound to the wire surface 
[5-8]

. The metal/dielectric-coated hollow waveguide with an aperture much larger than 

the wavelength shows a low propagating loss of THz wave, and the loss coefficient is 0.95 dB/m at the frequency of 2.5 

THz 
[9-12]

. Recently, the parallel-plate waveguide 
[13,14]

 and the dielectric-pipe waveguide 
[15-18]

 were presented to guide 

the THz wave with very low losses, and their mode losses can be as low as 2.6 dB/km and 0.08 m
-1

, respectively. 

 

On the other hand, small mode width is also very important for a good THz waveguide. However, all the low-loss 

waveguides mentioned above have mode widths much larger than the wavelength. Of course, one can reduce the mode 

widths of these waveguides, but the corresponding mode losses will increase largely 
[3,9,15,19]

. 

 

In this paper, we present planar dielectric-gap-metal (DGM) waveguides to guide THz wave. When compared with 

the low-loss waveguides mentioned above
 [4,5,13,15]

, the mode widths of the DGM waveguides are much smaller. 
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Compared with the parallel-plate waveguide 
[3]

 with small apertures, the mode widths of the DGM waveguide do not 

increase, but their mode losses can be 1-3 orders of magnitude lower. These results emphasize the high potential of the 

DGM waveguides for various THz applications including sensing, detection, communication, and imaging. 

 

2. PLANAR DGM WAVEGUIDE 

2.1 Dispersion equations of the planar DGM waveguide 

 
Fig. 1. The transverse cross-section of the planar DGM waveguide 

The transverse cross-section of the planar DGM waveguide is shown in Fig. 1, and the waveguide width in the 

y-direction is large enough. This waveguide can guide two kinds of modes: transverse-electric (TE) modes and 

transverse-magnetic (TM) modes. When THz wave propagates in the waveguide, the dispersion equations of the even 

modes can be written as follows 
[20]

: 
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where A is a coefficient related with the mode power, 
2 2 2

0n nh k   , 
0k is the wave vector in 

vacuum, 1 i     is the complex propagation constant, and 
1 , 

2 , and 
3 are relative permittivities of the 

dielectric, gap, and metal, respectively.  and
1

0

effn
k


 are the loss coefficient and effective refractive index of the 

guided modes, respectively. 

 

2.2 Mode characteristics of the planar DGM waveguide 

Copper is adopted as the material of metal plates, and its relative permittivity
3  can be obtained by the Drude 

model 
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where  is the angular frequency of THz wave,  is the high-frequency permittivity of copper, which is negligible in 

the THz region, and 
161.12 10 Hzp   and 131.38 10 Hz    are the plasma oscillation frequency and damping 

frequency of copper 
[21]

, respectively. The material of dielectric slabs is silicon, and its relative permittivity is adopted as 

1 11.7 0.0001i   . The gap between the copper plate and silicon slab is air of a relative permittivity
2 1  . 

 

When the frequency of THz wave is f = 0.5 THz and the interval between two copper plates is 0.3 mm
2

b


  , 

according to Eqs. (1) and (2), we numerically calculate the dependence of both loss coefficients (solid lines) and 

effective refractive indices (dashed lines) on the silicon slab thickness for the TE1 and TM1 modes, respectively, as 

shown in Figs. 2(a) and 2(b). From Fig. 2(a), one can observe that the mode loss is always lower than 0.30 m
-1

 in the 

range of a = 0.043~0.19 mm. The minimum loss is 0.21 m
-1

, which is 452 times lower than that of the corresponding TE1 

mode in the parallel-plate waveguide (95 m
-1

). 

   

(a)                                             (b) 

Fig. 2. The dependence of both loss coefficients (solid lines) and effective refractive indices (dashed lines) on the thickness of the 

silicon slab for (a) TE1 and (b) TM1 modes. 

 

As shown in Fig. 2(b), when the thickness of the silicon slab is in the range of a = 0.092~0.28 mm, the propagating 

loss of the TM1 mode is always lower than 0.30 m
-1

. The minimum mode loss is 0.17 m
-1

, which is seven times lower 

than that of the corresponding TM1 mode in the parallel-plate waveguide (1.2 m
-1

).  

 

We further calculate the transverse electric field distribution of the TE1 mode for a = 0.1 mm and the transverse 

magnetic field distribution of the TM1 mode for a = 0.15 mm, respectively, as shown by the solid lines in Figs. 3(a) and 

3(b). We also calculate the corresponding mode field distributions of the parallel-plate waveguide for comparison, as 

shown by the dashed lines in Figs. 3(a) and 3(b). As shown by the inset in Fig. 3(a), the electric field and the THz 

intensity at the interface for the DGM waveguide are much smaller than that for the parallel-plate waveguide, so the THz 
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power proportion inside copper plates for the former is much lower than that for the latter. As a result, the mode loss of 

the DGM waveguide is much lower than that of the parallel-plate waveguide. 

   

(a)                                             (b) 

Fig. 3. (a) The transverse electric field distributions of TE1 modes in the DGM waveguide (solid line) and parallel-plate waveguide 

(dashed line). (b) The transverse magnetic field distributions of TM1 modes in the DGM waveguide (solid line) and parallel-plate 

waveguide (dashed line). The inset in (a) or (b) shows the corresponding electric or magnetic field distributions in copper plates. 

 

As shown in Fig. 3(b), the transverse magnetic field of the TM1 mode in the parallel-plate waveguide is nearly 

unchanged between the two copper plates, but the mode field in the DGM waveguide decreases gradually from the slab 

center to the two copper plates. From the inset in Fig. 3(a), one can observe that the magnetic field and the THz intensity  

at the interface for the DGM waveguide are much smaller than those for the parallel-plate waveguide. Therefore, similar 

to the TE1 modes above, the loss of the TM1 mode in the DGM waveguide is also much lower than that for the 

parallel-plate waveguide. 

   

(a)                                            (b) 

Fig. 4. The dependence of the loss coefficients on the interval between two copper plates for (a) TE1 and (b) TM1 modes. 

 

When the frequency of THz wave is f = 0.5 THz, we calculate the dependence of the propagating losses of both TE1 

and TM1 modes in the DGM waveguide on the interval between two copper plates, as shown in Figs. 4(a) and 4(b). The 

thickness of the silicon slab is a = 0.1 mm for the TE1 mode and a = 0.15 mm for the TM1 mode, respectively. The 

dependence of the corresponding mode losses of the parallel-plate waveguide on the interval are also shown in Fig. 4 for 
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comparison. From Fig. 4(a), one can see that when the interval is smaller than 1.3, the mode loss of the DGM 

waveguide is lower than that of the parallel waveguide. When the interval is larger than 1.3, the mode loss for the 

former is higher than that for the latter. This is because the losses caused by copper plates for both TE1 modes are very 

low, and the absorption loss of the silicon slab in the DGM waveguide is larger. Therefore, when the interval is large 

enough, which means that the mode width is very large, the parallel-plate waveguide is a good choice for guiding the 

TE1 mode. However, when one wants to guide the TE1 mode with subwavelength width, the DGM waveguide is a better 

choice. For the TM1 modes, as shown in Fig. 4(b), the loss of the DGM waveguide is always lower than that of the 

parallel-plate waveguide. For both TE1 and TM1 modes, the smaller the interval is, the greater the advantage of the 

planar DGM waveguide is. 

 

3. CONCLUSION 

We propose the DGM waveguides to guide THz wave with low propagating loss and subwavelength mode width. 

For the planar DGM waveguide with an interval of 
2

b


 , the minimum losses of TE1 and TM1 modes are 0.21 and 

0.17 m
-1

, respectively, which are 452 and seven times lower than those of the corresponding modes in the parallel-plate 

waveguide; at the same time, the mode widths of the planar DGM waveguide do not increase. The combination of low 

propagating loss and subwavelength mode width emphasizes the high potential of the DGM waveguides for many THz 

applications including sensing, detection, communication, and imaging. 
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