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Abstract—Video analysis often begins with background subtraction. This problem is often approached in two steps - a background
model followed by a regularisation scheme. A model of the background allows it to be distinguished on a per-pixel basis from the
foreground, whilst the regularisation combines information from adjacent pixels. We present a new method based on Dirichlet process
Gaussian mixture models, which are used to estimate per-pixel background distributions. It is followed by probabilistic regularisation.
Using a non-parametric Bayesian method allows per-pixel mode counts to be automatically inferred, avoiding over-/under- fitting. We
also develop novel model learning algorithms for continuous update of the model in a principled fashion as the scene changes. These
key advantages enable us to outperform the state-of-the-art alternatives on four benchmarks.

Index Terms—Background subtraction, Dirichlet processes, non-parametric Bayesian methods, confidence capping, video analysis

1 INTRODUCTION

ACKGROUND SUBTRACTION can be defined as a

binary segmentation of a video stream, into the
foreground, which is unique to a particular moment
in time, and the background, which is always present.
It is typically used as an interest detector for higher
level problems, such as automated surveillance, action
recognition, intelligent environments and motion analy-
sis. The etymology of background subtraction derives from
the original approach, where a single static image of just
the background is subtracted from the current frame, to
generate a difference image. If the absolute difference
exceeds a threshold the pixel in question is declared
to belong to the foreground. This approach performs
poorly because it assumes a static background with well
behaved objects - in practise this is almost never the case.
Many situations break these assumptions [1], [2]:
Dynamic background, where objects such as trees blow
in the wind, escalators move and traffic lights change
colour. These objects, whilst moving, still belong to the
background as they are of no interest to further analysis.
Noise, as caused by the image capturing process. It can
vary over the image due to photon noise and varying
brightness. In some cases, such as low light/thermal, it
can dominate.
Camouflage, where a foreground object looks very much
like the background, e.g. a sniper in a ghillie suit.
Camera shake often exists, a symptom of mount points
that are subject to wind or vibrations. This can be
considered to be a type of highly correlated global noise.
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Moved object (class transitions), where the foreground
becomes part of the background, or vice versa; e.g. a car
could be parked in the scene, and after sufficient time
considered part of the background, only to later become
foreground again when driven off.

Bootstrapping. As it is often not possible to get a frame
with no foreground an algorithm should be capable of
being initialised with foreground objects in the scene.
It has to then learn the correct background model over
time.

Shadows are cast by the foreground objects, but later
processing is typically not interested in them.
Illumination changes, both gradual, e.g. from the sun
moving during the day, and rapid, such as from a light
switch being toggled.

Addressing these challenges, particularly the first
three, leads to a number of considerations in designing
a background model. Specifically, on account of the
dynamic nature of backgrounds the model has to classify
a range of pixels as belonging to the background. This
can be represented with a multi-modal distribution, e.g.
a tree waving against the sky generates pixels that are
sky one moment and tree another, but both sets need
to modelled as background. How many modes exist
will need to be learnt, and can potentially change with
time, e.g. a windy day versus a calm day. Noise is
generated by both the image capture process and typical
small scale variations in the background colour. It is
primarily modelled using the variance of a probability
distribution, which needs to be set high enough to
capture the variation. Camouflage on the other hand is
when a foreground object looks like it belongs to the
background, either deliberately or accidentally. The ef-
fect of camouflage is interleaved with that of noise: noise
can increase the range of values considered to belong
to the background, allowing a camouflaged object to
remain undetected. Consequentially the variance of the
background representation is a trade-off - too low and



noise will trigger detection; too high and camouflaged
objects will be missed. Variance therefore needs to be
learnt from the data. Noting that as noise can vary with
both location and time (e.g. photon noise only matters
in the dark areas of an image, at night.), this needs to be
continuously calculated from the video feed, on a per-
region basis. A desirable background model thus should
learn the number of modes required to represent the
background, including the variance of each mode, such
that it handles noise without compromising its ability to
detect camouflaged entities.

To this end we propose to use a Dirichlet process
Gaussian mixture model (DP-GMM) [3] to provide a per-
pixel density estimate. This is a non-parametric Bayesian
method [4] that automatically estimates the number of
mixture components required to model the pixels back-
ground colour distribution, e.g. a tree waving backwards
and forward in front of the sky will generate single
mode pixels at the trunk and in the sky, but two mode
pixels in the area where the branches wave, such that
the pixels transition between leaf and sky regularly. If
it needs more modes to represent multiple leaf colours
this will occur automatically, and, of great importance
for long term surveillance, the model will update with
time as new evidence becomes available, e.g. on a calm
day when the tree is not moving it will revert to single
mode pixels throughout. As it is fully Bayesian it avoids
over-/under- fitting its model.

However, there are two issues that prevent a standard
DP-GMM from being used as a per-pixel background
model: 1) the existing model update techniques cannot
cope with the scene changes common in real-world
applications; 2) using the model for continuous video
streams is unscalable both in terms of memory usage
and computational cost. To solve the first issue and make
the DP-GMM suitable for background modelling, a set
of novel model update techniques are developed in this
work. More specifically, each mode in the model repre-
sents a range of colours, using a Gaussian distributio
The extent of this range is learnt from the data stream,
and is again updated as the scene changes. During the
day when pixels are almost constant it will select a tight
distribution, whilst at night it will expand as photon
noise pushes the range of expected values wider. A
visual scene typically evolves as time goes by, e.g. the
day/night cycle, a car parking, road works remodelling
a traffic junctions layout, with different speeds of change.
Consequentially the model needs to forget what it has
previously learnt and model the new background ef-
fectively and efficiently. For this we introduce a novel
model update concept that lets old information degrade
in a principled way, which we refer to as confidence
capping. It limits how confident it can be about any given
mode, which puts a constraint on how certain it can be
about the shape of the background distribution. As a

1. This is actually integrated out, such that a student-t distribution
is used in practise.

result, when a mode is no longer used it will slowly
fade away, whilst the new mode(s) start to dominate
the model. If during this period the scene reverts to
the old state it can start using its old modes again.
This allows a stationary object to remain part of the
foreground for a long time, as it takes a lot of information
for the new component to obtain the confidence of pre-
existing components, but when an object moves on and
the background changes to a component it has seen
before, even if a while ago, it can use that compo-
nent immediately. Updating the components for gradual
background changes (e.g. gradual illumination changes)
continues to happen, making sure the model is never left
behind by gradual changes. This also helps with bootstrap
performance, as it can quickly learn the model, even with
foreground objects.

To overcome the second issue on model scalability,
two measures are taken. First, we fit the model by Gibbs
sampling each sample only once. This would normally
compromise model convergence, but because of confi-
dence capping and the availability of a never ending
stream of data the model will converge regardless. In
addition to its computational saving it avoids the need
to store and process hundreds of previous video frames,
which can consume vast amount of memory [1], [5]. This
memory consumption problem is particularly noticeable
for approaches based on kernel density estimation [6],
[71, 18], 9], [10]. Second, to obtain real time performance,
we introduce a GPU based implementation.

To summarise the contributions are: 1) a new back-
ground subtraction technique is proposed [11] built on a
non-parametric Bayesian density estimate, which avoids
over-/under- fitting; 2) A novel model update is formu-
lated that is both principled and practical - the approach
is real time with a constant memory requirement; 3)
An exhaustive evaluation using four data sets [1], [2],
[12], [13] demonstrates top performance in comparison
with the state-of-the-art alternatives. The code, both a C
version and a GPU version, has been made availabld?]

1.1 Related Work

The background subtraction field is humongous, and
has many review papers [2], [14], [15], [16]. Stauffer &
Grimson [17] is one of the best known approaches - it
uses a Gaussian mixture model (GMM) for a per-pixel
density estimate (DE) followed by connected compo-
nents for regularisation. This model improves on using
a background plate because it can handle a dynamic
background and noise, by using multimodal probabil-
ity distributions. As it is continuously updated it can
bootstrap. Its mixture model includes both foreground
and background components - it classifies values based
on their mixture component, which is assigned to the
foreground or the background based on the assumption
that the majority of the larger components belong to
the background, with the remainder foreground. This

2. Accessible at http:/ /www.thaines.com
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assumption fails if objects hang around for very long,
as they quickly dominate the distribution. It has a fixed
component count, which does not match real variability,
where the number of modes differs between pixels. The
model is updated linearly using a fixed learning rate
parameter - consequentially the moved object problem
is an unhelpful trade between ghosting and forgetting
stationary objects too quickly. Connected components
converts the intermediate foreground mask into regions
via pixel adjacency, and culls all regions below a certain
size, to remove spurious detections. This approach to
noise handling combined with its somewhat primitive
density estimation method undermines camouflage han-
dling, as it often thinks it is noise, and also prevents it
from tracking small objects. No capacity exists for it to
handle illumination changes or shadows. The above can be
divided into four parts - the model, updating the model,
how pixels are classified, and regularisation; alternative
approaches for each will now be considered in turn.

The model: Alternative DE methods exist, including
different GMM implementations [9] and kernel density
estimate (KDE) methods, either using Gaussian kernels
[6], [7] or step kernels [8], [9], [10]. Histograms have also
been used [18]], and alternatives to DE include models
that predict the next value [1], use neural networks
[19], [20], [21], or hidden Markov models [22]. Alter-
natives to the GMM background model can improve
handling of dynamic background, noise and camouflage
by better reflecting the underlying variability of the
background. This can be particularly important with
relation to over-/under- fitting, as the model needs
to accurately generalise the data stream. All models
suffer from some degree of over-/under- fitting. KDE
and histogram methods are particularly vulnerable, as
they implicitly assume a constant density by using fixed
size kernels/bins. GMM methods should do better, but
the heuristics required for online learning, particularly
regarding the creation of new components, can result
in local minima in the optimisation, which is just as
problematic. He et al. [5] recently used DP-GMMs for
background subtraction, in common with the presented
approach. They failed to leverage the potential advan-
tages however (discussed below), and used computa-
tionally unscalable methods. It is block-based, which is
to say they ran the model at very low resolution to save
computation, and it has unbounded memory consump-
tion. Consequentially it is not applicable to real world
scenarios, and, despite their efforts, poor results were
obtained. Global models should in principal be better,
with techniques based on principal component analysis
(PCA) [23] having shown the most promise. They at-
tempt to model the background as a low dimensional
subspace of the vectorised input, with the foreground
identified as outliers. In practise such approaches have
struggled, due to high computational requirements and
limited capability to deal with many common problems,
e.g. camouflage. They tend to excel at camera shake
however, and recent variants have resolved many of the

issues [24], [25].

Model update: Most methods use a constant learning
rate to update the model, but some use adaptive heuris-
tics [9]], [10]], [26], whilst others are history based [1], [5],
[10], and build a model from the last n frames directly.
Adapting the learning rate affects the moved object issue -
if it is too fast then stationary objects become part of the
background too quickly, if it is too slow it takes too long
to recover from changes to the background. Adaptation
aims to adjust the rate depending on what is happening.
There is invariably a trade-off between quickly learning
when the background model has changed and accepting
foreground objects into the background when they stop
moving for a while (cars at traffic lights.) - trying to
minimise this trade-off is a key goal and no perfect
solution exists. In addition continuously learning the
model is required to handle the bootstrapping issue. We
present confidence capping (see above), which works
because non-parametric Bayesian models, such as DP-
GMMs, have a rigorous concept of a new mixture com-
ponent forming. Parametric models [9], [17] have to use
heuristics to simulate this, whilst a confidence cap is not
possible for KDE based approaches [6], [7], [8], [9], [10]
as they lack a measure of confidence.

Pixel classification: The use of a single density estimate
that includes both foreground (fg) and background (bg),
as done by Stauffer & Grimson [17] is somewhat unusual
- most methods stick to separate models and apply
Bayes rule [18], with the foreground model set to be the
uniform distribution as it is unknown. We follow this
convention, which results in a probability of being bg
or fg, rather than a hard classification, which is passed
through to the regularisation step. Instead of using Bayes
rule some works use a threshold [6], [10], which can
by dynamically learnt [10]. Attempts at learning a fore-
ground model also exist [7]], and some models generate
a binary classification directly [19], [20], [21].
Regularisation: Some approaches have no regularisation
step [27]], others have information sharing between adja-
cent pixels [19], [20], [21] but no explicit regularisation.
Techniques such as eroding then dilating are common
[2], and more advanced techniques have, for instance,
tried to match pixels against neighbouring pixels, to
compensate for background motion [6]. When dealing
with a probabilistic fg/bg assignment probabilistic meth-
ods should be used, such as the use of Markov random
fields (MRF) by Migdal & Grimson [28], Sheikh & Shah
[7] and Schick et al. [29]. We also use a MREF - the pixels
all have a random variable which can take on one of two
labels, fg or bg. The data term is provided by the model
whilst pairwise potentials encourage adjacent pixels to
share the same label. Differences exist - previous works
use Gibbs sampling [28] and graph cuts [7], [29], whilst
we choose loopy belief propagation [30]], as run time can
be capped, and also accelerated with a GPU implementa-
tion. We also use an edge preserving cost between pixels,
rather than a constant cost, which proves to be beneficial
with high levels of noise. Cohen [31] has also used a



Algorithm 1 Pseudo code for core algorithm
(Actual code available from http://www.thaines.com)

for frame in video:
frame = colour_convert(frame) # Subsection &
supplementary material.

model. update_global_prior (frame) # Subsection
model. correct_lighting (frame) # Subsection

for x,y in frame.coordinates():
pixel = frame[x,y]
pixel_sd = camera_shake(frame, x, y) # Eqn.

for t in [components] + [new]:
p_com[x,y,t] = model.p_draw_from_component(
pixel, t) # Equation
p_bglx,y] = sum(p_com[x,y,:
with P(bg)=0.5

t = draw(p_com|[x,y,:]) # Weighted draw
model . update(x,y, t) # Equations E] — E] &
model. cap_confidence(x,y) # End of subsection

/ 3.0 # Equation

subsection

p_bg = belief_propagation(p_bg) # Regularisation,
mask = threshold

p-bg)

Markov random field, to generate a background image
by selecting pixels from a frame sequence, rather than
for regularisation. Parks & Fels [32] provide a review of
regularisation for background subtraction.

Input: The vast majority of approaches, including this
one [11]], use the colours of the individual pixels directly.
Other approaches use alternative information sources
however, including optical flow [33]], depth [34], track-
ing [35] and object detection [35]. Additionally, only
foreground /background classification is provided by the
presented approach - other approaches may mark areas
as being in shadow [6], [35] or use other labelling
strategies [33].

2 METHODOLOGY

The presented method naturally splits into two - a per
pixel background model and a regularisation step. The
GPU implementation and further details are also given.
For an overview of the system Figure |1 gives a block
diagram, whilst Algorithm |1 gives pseudo code of the
core structure.

2.1

Each pixel has its own multi-modal density estimate,
used to model P(x/bg) where x is the vector of pixel
colour channels. The Dirichlet process Gaussian mixture
model (DP-GMM) [3] is used. It can be viewed as the
Dirichlet distribution extended to an infinite number of
components, which allows it to learn the true number of
mixtures required to represent the data. For each pixel
a stream of values arrives, one with each frame - the
model has to be continuously updated using incremental
learning.

Per-pixel Background Model

Colour Conversion

v

Cap Model Lighting Change

Certainty SEEELLD = Compensation

A Model Update E
E Loop v \ 4
Update == ====4 Calculate Frame
Mixture Models [€ Probability
2
Thresholding [« Regularisation
(Belief Propagation)

v

Fig. 1. Block diagram of the approach. The solid arrows
show the path of a frame through the system, whilst the
doted arrows show the update order of the model, which
loops around for the next frame.

We start by introducing the Dirichlet process, firstly
using the stick breaking construction then secondly us-
ing the Chinese restaurant process. The stick breaking
construction provides a clean explanation of the con-
cept, whilst the Chinese restaurant process integrates
out irrelevant variables and provides the formulation
we actually solve. Figure represents the DP-GMM
graphically using the stick breaking construction. It can
be split into 3 columns - on the left the priors, in the
middle the entities representing the Dirichlet process
(DP) and on the right the data for which a density
estimate is being constructed. This last column contains
the feature vectors (pixel colours) to which the model is
being fitted, x;, which come from all previous frames,
i € I. It is a generative model - each sample comes from
a specific mixture component, indexed by Z; € I, which
consists of its probability of being selected, V;, and the
Gaussian distribution from which the value was drawn,
Nk The conjugate prior, consisting of 1, a Gaussian over
its mean, and A, a Wishart distribution over its precision
(inverse covariance matrix), is applied to all ;. So far
this is just a mixture model; the interesting part is that /C,
the set of mixture components, is infinite. Conceptually
the stick breaking construction is very simple - we have a
stick of length 1, representing the entire probability mass,
which we keep breaking into two parts. Each time it is
broken one of the parts becomes the probability mass for
a mixture component - a value of V;, whilst the other is
kept for the next break. This continues forever. « is the
concentration parameter, which controls how the stick is
broken - a low value puts most of the probability mass in
a few mixture components, whilst a high value spreads
it out over many. Stick lengths are represented by the
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Fig. 2. Two representations of the DP-GMM graphical
model, each corresponding to a specific implementation
techniques.

random variable V},, which is defined as

Vi=vp [[ (1—w),

1€[0,k)

v ~ Beta(l, @) 1)

where Beta(-, ) is the beta distribution and k€ K is the
infinite set of sticks. In effect, the v, values are how
much of the remaining stick to use for probability mass
k, whilst V, is the remaining stick length, calculated from
the previous breaks, multiplied by the amount of the
remainder to use for stick k. Orthogonal to the stick
length, each stick is associated with a draw, 7, from
the DP’s base measure, which is the already mentioned
conjugate prior over the Gaussian.

Whilst the stick breaking construction offers a clean
explanation of the model the Chinese restaurant process
(CRP) is used for the implementation’| This is the model
with the middle column of Figure 2a integrated out, to
give Figure It is named by an analogy. Specifically,
each sample is represented by a customer, which turns
up and sits at a table in a Chinese restaurant. Tables rep-
resent the mixture components, and a customer chooses
either to sit at a table where customers are already
sitting, with probability proportional to the number of
customers at that table, or to sit at a new table, with
probability proportional to c. At each table (component)
only one dish is consumed, which is chosen from the

3. Variational methods [36] offer one approach to using the stick
breaking construction directly. This is impractical however as historic
pixel values would need to be kept.

menu (base measure) by the first customer to sit at that
table. Integrating out the draw from the DP leads to
better convergence, but more importantly replaces the
infinite set of sticks with a computationally tractable
finite set of tables. Whilst the theory behind Dirichlet
processes is deep, the actual implementation of a CRP
is fairly trivial, as it can be treated as the addition of a
dummy table, representing the creation of a new table,
to an otherwise standard mixture model. Note that when
the dummy table is used a new one is made available.
The DP-GMM density estimate for each pixel is up-
dated with each new frame. Updating proceeds by first
calculating the probability of the current pixel value, x,
given the current background model, then updating the
model with x, weighted by the calculated probability -
these steps are now detailed.
Mixture components: The per-pixel model is a set of
weighted mixture components, such that the weights
sum to 1, where each component is a Gaussian distribu-
tion. They are integrated out however, using the Chinese
restaurant process for the mixture weights and the con-
jugate prior for the Gaussians (student-t distribution).
Whilst the literature [37] already details this second part
it is included for completeness. z; € [0,1],7 € {0,1,2}
represents the pixels colour, and independence is as-
sumed between the components for reasons of speed
(Equivalent to a covariance matrix where off diagonal
entries are zero.). This simplifies the Wishart prior to a
gamma prior for each channel i, such that

_9 ZN0) 02'20 2 01‘2
Ui ~ F 2 9 é ) /~Lz|01 NN NJ’L',O» TO 9 (2)

:L‘iNN(MiaO.iQ)7 (3)

where N (u,0?) represents the normal distribution and
I'(«, 8) the gamma distribution. The parameters n; o and
oi0, @ € {0,1,2}, are the A prior from the graphical
model, whilst y; o and k; o are the p prior.

Evidence, x, is provided incrementally, one sample at
a time, which will be weighted by w, the probability that
it belongs to the background model. The model is then
updated from having m samples to m + 1 samples using

Nim41 = Ni,m + W, 4)
kim+1 = kim +w, ®)
ki tbim + WT;

Mim+1 = %77;;6%7"4»10 Z7 (6)

i,m

ki mw
Op a1 = O + ﬁ(% — pim)® )

i,m

Note that n;,, and k; ., have the same update, so one
value can be stored to cover both, for all i. Given the
above parameters, updated with the available evidence,
a Gaussian may be drawn, to sample the probability
of a colour being drawn from this mixture component.



Instead of drawing it the Gaussian is integrated out, to

give
kim +1
) 2
Ty ~ T (ni,ma Him, O-i7m )

ki,mni,m

®)

where T (v, u, 0?) denotes the three parameter student-t
distribution. Consequentially each mixture component is
actually a student-t distribution, to avoid the problem of
sampling the Gaussian distribution that is actually being
represented.

Background probability: The Chinese restaurant process
is used to calculate the probability of a pixel, x € [0,1]3
belonging to the background (bg) model. It integrates out
the stick weights, unlike the stick breaking construction,
which is essential to obtaining good performance. The
probability of x given component (table) ¢t € T is

St

P(x|t,bg) = 5 S‘P(a:|nt,kt,ut,af), 9)
ieT Si
ks + 1
P(x|ng, ke, pes07) = T T(ximt,i,utm kt’ " _Ut2,i>7
i€{0,1,2} 4,215, 10)

where s; is the number of samples assigned to com-
ponent ¢, and n, pt, k: and o, are the parameters of
the prior updated with the samples currently assigned
to the component. Note that s; is the offset from the
prior values for n; and k¢, so these latter two do not
need to be stored. By including a dummy component,
t = new € T, which represents creating a new component
(sitting at a new table) with s,,, = «, this is the Chinese
restaurant process. The student-t parameters for this
dummy component are the prior without update. Finally,
the mixture components can be summed out

P(xbg) =) _ P(xlt,bg).

teT

(11)

The goal is to calculate P(bg|x), not P(x/bg), hence
Bayes rule is applied,

P(x|bg)P(bg)
P(x[bg) + P(x|fg)

Note that pixels can only belong to either the back-
ground or the foreground (fg), hence the denominator.
P(x|bg) is given above, leaving P(bg) and P(x[fg).
P(bg) is an implicit threshold on what is considered
background and what is considered foreground, and is
thus considered to be a parameter. P(x|fg) is unknown
and hard to estimate, so the uniform distribution is used,
which is a value of 1, as the volume of the colour space
is 1 (see supplementary material).

Model update: To update the model at each pixel the
current value is assigned to a mixture component, which
is then updated - s; is increased and the posterior for the
Gaussian updated with the new evidence (Equations [4]
-[7). Assignment is done probabilistically, by randomly
drawing a component, weighted by P(x|t,bg) (Equa-
tion [0). The possibility of assignment to a new mixture
component is included - in the context of background

P(bg|x) = (12)

subtraction this is the possibility that the pixel represents
something we have not seen before. This is equivalent
to Gibbs sampling the density estimate, except we only
sample each value once, on arrival. In consequence
samples do not need to be stored. Updates are weighted
by their probability of belonging to the background
(Equation [I2), i.e. w is set to P(bg|x) in Equations [4}f7]
and s, is incremented by P(bg|x). Sampling each value
just once is not an issue, as the continuous stream of data
combined with confidence capping means the model
soon converges.

Confidence capping: A learning rate is not used; instead,
unique to a DP-GMM, we introduce the notion of cap-
ping the confidence of the model. This can be interpreted
as an adaptive update [9], [26], but it is both principled
and very effective. In effect we are building an online
density estimate with the ability to selectively forget,
allowing newer data to take over when the background
changes. If this was not done the model would get
more confident as time goes on - if it had seen the
background in its current state for 3 days then it would
require 3 days of data showing the background in a
different state before the new model became dominant.
Confidence capping effectively limits the confidence so
that a new model can always replace the old one in a
short amount of time; it also avoids numerical overflow
and allows single-sample Gibbs sampling to converge.
The cap is applied to the largest individual component,
rather than the distribution as a whole - this avoids
mixtures with more components being required to use
wider distributions to compensate.

Mathematically it works by capping how high s, can
go. When the cap is exceeded by any s, for a pixel then
a multiplier is applied to all s;, scaling the highest s;
down to equal the cap. Note that s; is tied to n; and
ki, so they are also adjusted. As o} is dependent on
k¢ (it includes k; as a multiplier) an update is avoided
by storing o7 /k; instead. The effectiveness is such that
it can learn the initial model with less than 30 frames
of data yet objects can remain still for many minutes
before being merged into the background. This does
not impede the ability of the model to update as the
background changes. Finally, in the limit as an infinite
number of frames arrives the Dirichlet process will have
an infinite number of components. This will exhaust
a computer’s memory; therefore the component count
is also capped. When a new component is created the
existing component with the lowest s; is replaced.

2.2 Probabilistic Regularisation

The per-pixel background model ignores information
from the neighbourhood of a pixel, leaving it susceptible
to locally occurring noise and camouflage. Additionally,
Gibbs sampling introduces a certain amount of noise,
meaning that the boundary between foreground and
background is subject to a dithering effect. To resolve
these issues a Markov random field is constructed, with a



node for each pixel, connected using a 4-way neighbour-
hood. It is a binary labelling problem, where each pixel
either belongs to the foreground or to the background.

The task is to select the most probable solution, where
the probability can be separated into two terms. Firstly,
each pixel has a probability of belonging to the back-
ground or foreground (data term), directly obtained from
the model as P(bglx) and 1 — P(bg|x), respectively.
Secondly, there is the probability of being the same
(smoothing term), which indicates how likely adjacent
pixels have the same assignment,

Pl,=1) = h

~ h+m=d(a,b)’ (13

where [, is the label of pixel y, h is a parameter that sets
the half life, i.e. the distance at which the probability
becomes 0.5, and d(a,b) is the Euclidean distance be-
tween the two pixels in colour space. Noise suppression
is greatly improved if at least one of the neighbours of
a pixel have a high probability of being assigned the
same label - this is the purpose of m. m is typically
1, but is decreased if a pixel is sufficiently far from its
neighbours that none provides a P(l(a) = [(b)) value
above a threshold. The decrease is such that at least one
of them matches the threshold.

Various methods can be considered for solving this
model. Graph cuts [38] would give the MAP solution,
however we use loopy belief propagation instead [30],
as it runs in constant time given an iteration cap, which
is important for a real time implementation; it also
runs considerably better on a GPU. A red-black [30]
update schedule is used to save memory - a checker-
board pattern is assigned to the pixels and then all
pixels of one colour send their messages, followed by all
pixels of the other colour, and so on, until convergence.
This results in half the memory consumption, as only
messages going in one direction need to be stored; it
additionally accelerates convergence [30]. Furthermore, a
hierarchical implementation is used, whereby the model
is first solved at a low resolution, before being scaled
up, such that the transferred messages accelerate conver-
gence at the higher resolution. This occurs over multiple
levels - the number is decided by halving the resolution
of the frame until either dimension drops below 32.

2.3 GPU Implementation

A background subtraction algorithm will have limited
practical use if it cannot be run in real time on a video
feed as it arrives. Accordingly, a GPU based implemen-
tation has been constructed. Because we have selected
a naturally parallel structure for the presented approach
adapting it to run on a GPU is relativity straightforward
- the model for each pixel is independent, whilst regu-
larisation with belief propagation can be implemented
via message passing. The following phases exist:

1) Calculate the probability of the current pixel being
drawn from each mixture component in the model,

and also the new component probability. These
computations are all independent.

2) Pull the probabilities together, to generate the
probability of each pixel coming from the current
model. Update the model using Gibbs sampling
- random number generation is handled via the
Philox algorithm [39]. This is independent on a per
pixel basis.

3) Calculate the costs for belief propagation - this is
naturally parallel.

4) Do message passing, over multiple hierarchical lev-
els. The use of a red-black update schedule means
that we can update half the pixels at each given
step.

5) Extract the final mask - an independent calculation
for each pixel.

Some approximations are made in the calculations to
accelerate run time - these are detailed in the supple-
mentary material.

Using the GPU implementation with a GeForce GTX
580 on a standard PC platform with a 4.4Ghz CPU, it
can obtain 28.5 frames per second on input that has a
resolution of 320 x 240 (Calculated for the problem cd-
baseline-highway - see Section [B). Note that only 41%
of the time is spent doing the background subtraction
- another 19% is expended on colour conversion whilst
25% is spent estimating the lighting change, with the
remainder on input/output. Neither colour conversation
nor lighting change estimation were run on the GPU,
and all processing occurs in sequence without any par-
allelism between the CPU and GPU.

2.4 Further Details

The core algorithmic details have now been given, but
other pertinent details remain.

The prior: The background model includes a prior on
the Gaussian associated with each mixture component.
Instead of treating this as a parameter to be set, it is
learnt from the data. Specifically, the mean and standard
deviation (SD) of the prior are matched with the mean
and SD of the pixels in the current frame, with the weight
set so it is equivalent to a single sample,

1
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where F' is the set of pixels in the current frame. To
change the prior between frames the posterior param-
eters must not be stored directly, instead offsets from
the prior are stored, which are then adjusted after each
update such that the model is equivalent.

Illumination change: The above helps by updating the
prior, but it does nothing to update the evidence. To
update the evidence a multiplicative model is used,
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Fig. 3. Geometry of the interpolation used to handle
camera shake. Each black dot is the centre of a pixel, for
which we know a value - the five values used are labelled,
with the compass directions. The standard deviation is
calculated for the region inside the black square.

whereby the lighting change between frames is esti-
mated as a multiplier, then the entire model is updated
by multiplying the means, 1; ,,, of the components ac-
cordingly. Light level change is estimated as in Loy et
al. [40]. This takes every pixel in the frame and divides
its value by the same pixel in the previous frame, as
an estimate of the lighting change. The mode of these
estimates is then found using mean shift [41], which is
robust to the many outliers.

Robustness to Shadows: Shadows are typically of no
interest to further processing, and hence should be ig-
nored by background subtraction. A simple approach is
to ignore luminance information [6], as this is the only
channel in which (white light) shadows appear, but this
throws away too much information. Instead a novel step
is taken which involves reducing the importance of lu-
minance, such that a wider range of brightness levels are
accepted as belonging to the background. Luminance re-
mains available for modelling by the background model.
This is achieved with a new shadow-insensitive colour
model - it is detailed in the supplementary material.
It allows the approach to classify softer shadows as
belonging to the background, but proves ineffective for
hard/deep shadows.

Camera Shake: With few exceptions [42], [43] back-
ground subtraction algorithms assume a fixed camera.
In practise even fixed cameras shake due to vibrations
in their mounting structure, which can be caused, for
instance, by the wind or passing traffic. To improve
vibration handling when updating the model we use
a region around each pixel, rather than the pixel value
directly. Going back to Equation |7| it updates the model
assuming a single point value - it can be modified to
accept a Gaussian distribution instead, to get
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where ¢ is the standard deviation of the measured pixel
value. Effectively it can be interpreted as the colour
variance in the region around the pixel, from which we
can randomly sample due to camera shake.

Assuming linear interpolation between adjacent val-
ues allows us to calculate the standard deviation of an

image region, which we do for a single 1 x 1 pixel region
around the point sampled. If we treat the image surface
as being made of square regions rather than triangular
regions we only need the values of three corners for each
square, which halves the number of pixels that need to
be fetched. Using Figure 3| the region being calculated
is given by the black square, which is split into four
sub-squares. Three corners of the top right sub-square
are given by z, h, = £ and h, = i the same
pattern applies to the other three. The standard deviation
of these four squares is hence given by

g_acg-l—hi-&-hz—i—hi—l-hfu

6
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8
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where p is the mean of the four squares, given by p =
buthethethe This has to be done for each of the three
colour channels. As a further detail we scale the standard
deviation with a parameter - a value of zero indicates
that there is no camera shake, whilst 1 indicates a camera
shake of about 1 pixel across. This approach will not
scale for large amount of shake, but proves effective for
the small quantities introduced by vibrations from, for
instance, passing traffic.
Bootstrapping: The algorithm learns continuously - it
does not need a learning period and can update as the
scene changes. However, during initialisation the algo-
rithm is not confident, and assumes everything belongs
to the background. This makes the algorithm appear to
be bad at bootstrapping - to obtain good performance
it is forced to be over-confident. This is the opposite of
confidence capping, in that it increases the confidence
to the cap by multiplication. It is only applied whilst
calculating P(bg|x) however - the actual parameters are
not updated. This bias term exists purely to make the
algorithm overconfident during initial model training,
because some of the tests in Section [3| require results
immediately from the first frame. For real world usage
this would be switched off.

17)

3 EXPERIMENTS

Four data sets are used for the experiments:

e sabs from Brutzer et al. [2]. This one is syntheti(ﬂ

o wallflower from Toyama et al. [1]ﬂ

o star from Li et al. [12f}]

o change detection (cd) from Goyette et al. [13]. This

has an online chart which is actively updatedﬂ

We perform extensive experiments using these data sets,
allowing us to compare against a large number of al-
ternative approaches. Brief summaries of many of the

4. Online at http://www.vis.uni-stuttgart.de/index.php?id=sabs!

5. Can be downloaded from http://research.microsoft.com/en-us/
um/people/jckrumm /WallFlower / Testimages.htm!

6. http:/ /perception.i2r.a-star.edu.sg/bk_model /bk_index.html,

7. Data set and chart online at http://www.changedetection.net,


http://www.vis.uni-stuttgart.de/index.php?id=sabs
http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm
http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://www.changedetection.net

confidence cap Equivalent to the learning rate in | 128
other approaches.

concentration Concentration parameter for the DP | 0.01
- controls new mixture component
creation.

min weight Minimum weight for mixing in new | 0.0001

samples, to accelerate learning time
when the background changes.

Size of blurring kernel used to negate | 0.6
light camera shake.
Maximum number of components for | 8
each pixel.

sd mult

component cap

TABLE 1
Descriptions of the parameters for the DP-GMM. The
final column contains the values used for the cd data set.

approaches we compare against can be found in Table 1
in the supplementary material. Results for the wallflower
data set are also available in the supplementary material,
as are parameter sweeps to demonstrate that perfor-
mance remains high regardless of parameters. Table
gives the approaches parameters.

3.1 SABS

Brutzer et al. [2] presented a synthetic evaluation of
background subtraction algorithms, consisting of a 3D
rendering of a road junction, traversed by both cars
and people - see Figure 5| Despite being synthetic it
simulates, fairly accurately, nine real world problems,
and has the advantage of having ground truth for all
frames. The nine real world problems are

e basic, a baseline test.

o dynamic background, which crops the area of analysis
to be the area of a waving tree.

o bootstrap, which has no training period, such that a
clean background plate is never seen.

o darkening, which simulates the sun setting.

o light switch, which has the street at night and a shop
switching its light off then on again.

o noisy night, which is the scene at night with heavy
noise.

o camouflage, where the cars and people have been
coloured similarly to the background, so they blend
in.

o no camouflage, same as camouflage, but with easy to
see colours, for comparison.

o H264, which compresses the video heavily, to gen-
erate typical compression artefacts.

The f-measure is reported for the various approaches in
Table |2} and is defined as the harmonic mean of the recall
and precision.

tp
tp+fn

P (18)

recall =
tp +fp

, precision =
recall - precision

f-measure = 2 —
recall 4 precision

(19)

using fp as the number of false positives, tn as the
number of true negatives etc.

(b) P(bg|model) - output of the DP-
GMM for each pixel.

(d) Ground truth foreground mask.

(C) Foreground mask generated by the
presented approach.

Fig. 5. Frame 545 from the bootstrap sequence of the
SABS data set [2].

For this test we used one set of parameters for all
scenarios, rather than tuning per problemﬂ As can be
seen, the presented approach takes first place for all
scenarios, and is on average 27% better than its nearest
competitor. In doing so it demonstrates that it is not
sensitive to the parameters chosen, as it can produce top
results in many scenarios without per-problem tuning.
Running without regularisation is also included in the
chart (denoted as DP, no postﬂ - in all cases a lack of
regularisation does not undermine its significant lead
over the competition, demonstrating that the DP-GMM
is doing most of the work, but that regularisation always
improves the score, on average by 13%. It can be noted
that the largest performance gaps between regularisation
being off and being on appears for the noisiest inputs,
e.g. noisy night, light switch, darkening and h264. These
are the kinds of problems encountered in typical surveil-
lance applications.

As a further point of comparison DP, con com is
included, where our MRF-based post-processing has
been swapped for the connected components method
of Stauffer & Grimson [17]. Interestingly for the simpler
problems it does very well, sometimes better than the
presented method, but when it comes to the trickier
scenarios the presented is clearly better. Figure ] shows
all the variants for a frame from noisy night. This
demonstrates the key advantage of our post-processor
- given a weak detection that falls below the implicit
threshold it can convert it into a complete object, by

8. The test procedure allows tuning one parameter per test - we have
thus put ourselves at a disadvantage.

9. The other algorithms on the chart have had their post-processing
removed, so it can be argued that this is the fairer comparison to
make, though Brutzer et al. [2] define post-processing such that our
regularisation method is allowed.
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(a) Input (b) Ground truth (c) DP (e) DP, con com (f) DP, no post
Fig. 4. Frame 990 from the noisy night sequence.
method basic dynamic bootstrap | darkening | light noisy | camouflage no h.264, mean
background switch | night camouflage | 40kbps

Stauffer [17] || .800(3) 704 (5) 642 (5) 404(7) 217 (6) | .194(6) 802 (4) .826 (4) 761(6) || .594(7)
Maddalena [19] || .766 (5) 715(3) 495 (7) .663 (5) 213(7) | .263(5) 793 (5) .811(5) .772(5) || .610(6)
Li1[18] || .766(5) 641 (6) 678 (4) .704 (3) 316(3) | .047(7) 768 (6) .803 (6) 773 (4) || .611(5)
Barnich [8] || .761(6) 711 (4) .685(3) 678 (4) 268(5) | .271(4) 741(7) 799 (7) 774(3) || .632(4)
Zivkovic [9] || .768 (4) .704 (5) .632(6) .620 (6) 300(4) | .321(3) .820(3) .829 (3) 748 (7) || .638(3)
DP-GMM, no post || .836(2) 827 (2) 717 (2) 736 (2) 499(2) | .346(2) 848 (2) .851(2) 781(2) || .715(2)
DP-GMM || .853(1) 853 (1) 796 (1) 861 (1) 603 (1) | .788(1) 864 (1) 867 (1) 827(1) || .812(1)

[ DP-GMM, con com [[ 855 | 872 [ 722 ] 818 [ 500 | 393 ] 847 [ 851 [ 838 [ 744

TABLE 2

SABS [2] results: F-measures for each of the 9 challenges. The results for other algorithms were obtained from the
website (As of Feb 2013), though algorithms that never got a top score in the original chart have been omitted.
Algorithm rank is given by the numbers in brackets. The mean column gives the average for all tests - the presented
approach is 27% higher than its nearest competitor.

utilising both colour consistency and model uncertainty.

The frame shown in Figure |5 has been chosen to
demonstrate two areas in which the algorithm performs
poorly. Specifically, its robustness to shadows is not very
effective - whilst this could be improved by reducing the
importance of luminance in the colour space this has the
effect of reducing its overall ability to distinguish be-
tween colours, and undermines performance elsewhere.
The second issue can be seen in the small blobs at the
top of the image - they are actually the reflections of
cars and people in the scene. Using a DP-GMM allows
it to learn a very precise model, so much so that it can
detect the slight deviation caused by a reflection, when
it would be preferable to ignore it. Further processing
could potentially avoid this.

3.2 Star

The star data set [12] is very similar to the wallflower
data set - bootstrap from wallflower is the same video as
br in this data set. To its advantage star has an improved
testing procedure however, as it provides multiple test
frames per problem, with performance measured using
the average similarity score for all test frames, where
similarity = tp/(tp + fn + fp). In addition the sequences
are generally much harder, due to text overlays, systemic
noise and some camera shake. Fewer algorithms have
been run on it. The presented approac takes 15t 7
times out of 9, beaten twice by Maddalena et al. [19],
though in both cases by a small margin. The light
switch test in this data set does not trip it up this time
- the library where it occurs has a high ceiling and

10. We tune per-problem, as all the competitors have done the same.
Results for a single set of parameters are also presented.

diffuse lighting, making multiplicative lighting much
more reasonable. Complex dynamic backgrounds clearly
demonstrate the strength of a DP-GMM, as evidenced by
its three largest improvements (cam, ft and ws).

3.3 Change Detection (cd)

The change detection [13] data set is much larger than
any of the others, and includes a dense ground truth
- masks are provided for all frames past some initial
training period. It additionally limits parameter tuning
such that a single parameter set must be used for all
31 videos. Video resolution is not great however, and
many of the videos are of dubious quality; many appear
to have been post-processed, often with a low quality de-
interlacing algorithm that leaves ghost he videos are
divided into six categories, which can be seen alongside
the results in Figure [/} Quantitative results can be found
in Table [ﬂ The online version considers many different
scoring mechanism, and then combines them in a non-
linear rank based syste Instead we present the f-
measure scores only, as it is the most used metric.
We now consider each test in turn.

o Baseline. A basic set of videos, with nothing unusual,
though pedestrians has saturated colour. All the top
algorithms get comparable scores for this test.

11. From Figure [7| the traffic video demonstrates ghosting; the aban-
doned box video is an example of another kind of defect. It should be
noticed that the other real data sets have similar issues.

12. The table is accurate as of February 2013 - an up to date version
can be found at http://changedetection.net

13. This is problematic - the addition of a new approach can cause
two unrelated algorithms to switch places. This can even occur when
the new algorithm is much better or worse than those it reorders.
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Fig. 6. Star results: On the top row is the image, on the second row the ground truth and on the third row the output
of the presented algorithm. We use the same frames as Culibrk et al. [44] and Maddalena & Petrosino [19], for a
qualitative comparison. The videos are named using abbreviations of their locations.

method cam ft ws mr 1b sc ap br ss mean
Ti2 [12] || -1596 (5) | .0999(6) | .0667(6) | .1841(6) | .1554(6) | .5209(6) | .1135(6) | .3079(6) | .1294(6) || .1930(6)
Stauffer [17] || .0757(6) | .6854(3) | .7948(4) | .7580(4) | .6519(2) | .5363(5) | .3335(5) | .3838(5) | .1388(5) || .4842(5)
Culibrk [44] || .5256(4) | .4636(5) | .7540(5) | .7368(5) | .6276(4) | .5696(4) | .3923(4) | .4779(4) | .4928(4) || .5600(4)
Maddalena [T9] || .6960(3) | .6554(4) | .8247(3) | .8178(3) | .6489(3) | .6677(2) | .5943(1) | .6019(3) | .5770(1) || .6760 (2)
DP-GMM || .7567(2) | 7049 (2) | .9090 (2) | .8203(2) | 5794 (5) | .6522(3) | .5484(3) | .6024(2) | .5055(3) || .6754(3)
DP-GMM, tuned || .7876 (1) | .7424(1) | .9298(1) | .8411(1) | .6665(1) | .6733(1) | 5675(2) | .6496(1) | .5522(2) || .7122(1)

TABLE 3
Star [12], [19] results: Refer to Figure [6]for exemplar frames, noting that /b has abrupt lighting changes. The average
improvement of DP, tuned over its nearest competitor is 5%.

task || Baseline | Dynamic Background | Camera Jitter | Intermittent Motion | Shadow | Thermal mean
Chebyshev [35] - .7656 (2) - - .8333(3) 7259 (6) -

KDE - ElGammal [6] 9092 (8) .5961 (18) 5720 (16) 4088 (20) .8028(7) 7423 (3) 6719 (11)
Chebyshev + static [35] || .8646(12) .7520(3) 6416 (12) .3863 (23) .8333 (4) 7230 (7) 7001 (9)
SGMM [45] || .8594(13) .6380 (14) 7251 (4) .5397 (10) 7617 (8) | .6481(18) 7008 (8)
SOBS [20] 9251 (4) 6439 (12) .7086 (8) .5628 (7) 7716 (11) | .6834(14) 7159 (7)
CDPS [46] 9208 (7) .7495 (4) 4865 (21) .7406 (1) .8092(6) | .6619(16) 7281 (6)
SC-SOBS [21]] .9333 (1) .6686 (10) .7051(9) 5918 (4) 7786 (10) | .6923 (13) 7283 (5)
PSP-MREF [29] 9289 (2) .6960 (5) .7502(2) .5645 (6) 7907 (9) | .6932(12) 7372(4)
PBAS [10] 9242 (5) .6829 (7) .7220(5) 5745 (5) 8597 (2) 7556 (2) 7532 (3)
SGMM-SOD [47] 9223 (6) .6826 (8) .7000 (10) .6957 (2) .8659 (1) 7081 (8) 7624 (2)
pROST [25] 799 (22) 595 (21) .792(1) 419 (21) .706 (23) 584 (23) 650 (16)
DP-GMM .9286 (3) .8137(1) .7477 (3) .5418 (9) 8127 (5) .8134(1) .7763 (1)

TABLE 4
CD [13] results: This chart only contains the most competitive algorithms - the online chart includes many more. The
rank after each f-measure takes into account the omitted approaches. Refer to Figure [7]for example frames.

o Dynamic Background. These videos have com- this situation, whilst we do not, putting us at a

plex multi-modal backgrounds, such as water. As
demonstrated previously, the presented excels at
such input, outperforming the competitors signifi-
cantly.

Camera Jitter. The camera is not properly mounted
for these videos, and as such shakes. This does
reduce the quality of our output - the output frames
tend to miss parts of objects due to the wider back-
ground model induced by the shaking. It also in-
correctly classifies the background during the worst
shakes, but we still manage a close second place.
Intermittent Motion. This involves objects being left
alone (static), and is our weakest result. Other ap-
proaches often have a specific code path to handle

disadvantage.

Shadow. These videos have shadows, and test the
ability of the approach to ignore them. In our case
we have some capability to handle soft shadows, as
seen in cubicle, but will typically detect hard shadow
regions. Interestingly our result remains among the
top approaches despite its limited capabilities.
Thermal. A somewhat unusual video source, this
demonstrates cameras for low light recording. Such
sources have a large amount of noise, which the
presented is expected to do well on. Unsurprisingly
it demonstrates a strong lead over the competition.
It actually suffers from being too sensitive - in
corridor it detects the thermal reflections when these
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(a) Baseline (b) Dynamic Background
(a.1) highway (a.2) office (a 3) pedestrlans (a.4) pets2006 (b.1) boats (b.2) canoe (b.3) fall (b.4) fountain01

(c) Camera Jitter (d) Intermittent Motion
(b.5) fountain02 (b.6) overpass (c.1) badminton (c.2) boulevard (c.3) sidewalk (c.4) traffic (d.1) abandoned box  (d.2) parking

(e) Shadow
(d.3) sofa (d.4) sofa (d.5) tram stop (d.6) winter drive (e.1) backdoor (e.2) bungalows (e.3) bus station  (e.4) copy machine

(f) Thermal
(e.5) cubicle (e.6) people in shade (f.1) corridor (f.2) dining room  (f.3) lake side (f.4) library (f.5) park

Fig. 7. CD results: Layout is identical to Figure [ with multiple rows. The ground truth includes various shades of grey
- a dark grey to indicate shadowed regions, a mid grey for areas that are ignored when scoring for all frames and a
light grey for areas ignored for just this frame. Mid grey is used to focus on the action being tested, whilst light grey
indicates areas where foreground/background assignment is ambiguous (typically presents as a thin line around each
segment).
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Fig. 8. Representations of the per-pixel mixture count -
see text for details.

should be considered background.

Overall we win on average for the cd data set (Table [).
This is because the DP-GMM model can handle back-
grounds that are complex and dynamic, due to its ability
to estimate mixture components automatically and avoid
over-/under- fitting. This ability, in combination with the
regularisation based on a Markov random field allows
it to effectively cope with heavy noise.

3.4 Mixture Count

The approach implicitly calculates a mixture count for
each pixeﬂ - Figure [8| visualises this. (a) - (d) show two
frames from the star data set, and their corresponding
per pixel mixture counts for the thousandth frame. The
images are coloured such that black is 0 components and
white is 4 - the majority of pixels in both frames have
been estimated to have 1 component. Trees moving in
cam create components where the movement is large,
though note that most areas can be handled using a
single wide variance component. In ss the escalators
again generate extra components, though being mostly
black they can often be covered by a single component.
The heavily used escalator on the right gets lots of
components because the approach forms one for the
people going past, in case they stop and become part of
the background. These components are never considered
to be part of the background as they don’t obtain enough

14. Because it is using a DPMM the mixture count is principally
always infinity, but a reasonable approximation can be obtained using
a threshold.
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weight. (e) demonstrates the mixture count changing
over time, with a synthetic video. The video shows 10
seconds of 1 mode, then 2 modes, and so on up to
4, then back again, at 24 fps - the ground truth mode
count is plotted/”| We can plot the mode count, averaged
over all the pixels - it follows ground truth, with lag as
expected. Note that the lag is very short when learning
a new mixture component - only about 2 seconds, but
very slow when it comes to forgetting a background
component, which is desirable.

4 CONCLUSIONS

We have presented a new background subtraction
method and validated its effectiveness with extensive
testing. The method is based on an existing model,
namely DP-GMMs, but with new model learning al-
gorithms developed to make it both suitable for back-
ground modelling, and computationally scalable. Whilst
the basic concept of per-pixel density estimate (DE) can
be traced back to Stauffer & Grimson [17], the use of
a non-parametric Bayesian model gives it a significant
advantage when it comes to handling dynamic back-
grounds. Specifically, our model is able to learn the num-
ber of mixture components more accurately and hence
better cope with a variety of scene changes, in compari-
son with the existing more heuristic DE methods. It also
proves itself to have good performance in many other
areas, particularly on dealing with heavy noise. Despite
its thorough theoretical basis implementation remains
relatively simpleEl

A number of improvements can be considered. Com-
bining information between pixels only as a regularisa-
tion step does not fully exploit the information available.
A more rigorous method of spatial information transmis-
sion would be desirable - a dependent Dirichlet process
could provide this. Sudden complex lighting changes
are not handled, which means it fails to handle some
indoor lighting changes. Furthermore, a more sophisti-
cated model of the foreground and an explicit model of
left objects could further improve our method. Solutions
to these problems from many of the existing methods

could be adapted to ours [6], [33], [35].
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