
J
H
E
P
1
2
(
2
0
1
5
)
1
0
2

Published for SISSA by Springer

Received: October 20, 2015

Accepted: November 29, 2015

Published: December 16, 2015

Infrared divergences and harmonic anomalies in the

two-loop superstring effective action

Boris Piolinea,b,c and Rodolfo Russod

aCERN PH-TH,

Case C01600, CERN, CH-1211 Geneva 23, Switzerland
bSorbonne Universités,
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1 Introduction

Supersymmetry and duality provide strong constraints on the possible higher derivative

corrections to the low-energy effective action in flat type II string vacua with maximal

supersymmetry. Combined with explicit scattering amplitude calculations at low order in

string perturbation theory, these constraints sometimes completely determine the depen-

dence of these couplings on all moduli, including the string coupling, through a suitable

U-duality invariant automorphic function. Expanded at weak coupling, this function re-

veals, along with the few perturbative contributions which it was designed to reproduce,

an infinite series of non-perturbative instanton effects, providing useful constraints on an

eventual non-perturbative definition of string theory.

This line of research has been carried through with great success for four-graviton

couplings in type II string compactified on a d-dimensional torus down to any dimension

D = 10 − d ≥ 3 [1–17]. The leading term in the low-energy expansion corresponds to

the Einstein-Hilbert term R and its supersymmetric completion, which is protected from

quantum corrections. Subleading terms correspond to terms schematically of the form

E(d)
(m,m)D

4m+6nR4, where D4m+6nR4 denotes a specific combination of 4m+ 6n space-time

derivatives and four powers of the Riemann tensor [8], and E(d)
(m,m) is a function on the

symmetric moduli space Ed+1/Kd+1, invariant under the action of the U-duality group

Ed+1(Z) (here Ed+1 refers to the split real forms of the exceptional Lie groups E6, E7, E8

for d ≥ 5, or of the classical Lie groups A1, A1 × A2, A4, D5 for d < 5). The coefficients

E(d)
(0,0) and E(d)

(1,0) of the next-to-leading and next-to-next-to-leading terms are known to be

given by suitable (residues of) Langlands-Eisenstein series for the U-duality group. This is
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consistent with the fact that supersymmetry requires these functions to be eigenmodes of

the Laplacian on the moduli space Ed+1/Kd+1 with a specific eigenvalue (up to anomalous

terms for special values of the dimension d where the local and non-local parts of the

effective action mix) [11, 18] (see [16, 17, 19] for new perspectives on these supersymmetry

constraints). Moreover, the non-vanishing perturbative contributions (up to one-loop for

E(d)
(0,0), and up to two-loop for E(d)

(1,0)) are themselves known to be (residues of) Langlands-

Eisenstein series for the T-duality group SO(d, d,Z) [7, 11, 20, 21], consistently with the

fact that the full non-perturbative couplings are (residues of) Langlands-Eisenstein series

for the U-duality group.

In particular, the two-loop contribution to D4R4 is given by the modular integral

E(d,2)
(1,0) (G,B) =

π

2
R.N.

∫
F2

dµ2 Γd,d,2(Ω;G,B) , (1.1)

where F2 is the fundamental domain of the moduli space M2 of compact Riemann sur-

faces of genus 2, parametrized by the period matrix Ω = Ω1 + iΩ2, dµ2 is the invariant

measure on M2 normalized as in [22],1 and Γd,d,h(Ω;G,B) is the genus h Narain lattice

partition function defined in (2.2), which depends on Ω and the metric Gij and Kalb-

Ramond field Bij on the internal torus T d. The symbol R.N. stands for a renormalization

prescription, which is necessary in dimension d ≥ 3 due to infrared divergences (see be-

low). By construction, the modular integral (1.1) is an automorphic form on the Grass-

mannian SO(d, d,R)/(SO(d)× SO(d)) parametrized by (G,B), invariant under T-duality.

It is proportional to the spinor Eisenstein series E
SO(d,d)
S,s=2 when d > 4 (or to the sum

Ê
SO(d,d)
S,s=2 + Ê

SO(d,d)
C,s=2 of the two regularized spinor Eisenstein series when d ≤ 4) [7], and

satisfies the Laplace equation(
∆SO(d,d) + d(d− 3)

)
E(d,2)

(1,0) = 24ζ(2) δd,3 + 4E(d,1)
(0,0) δd,4 , (1.2)

where E(d,1)
(0,0) is the one-loop contribution to the R4 coupling,

E(d,1)
(0,0) (G,B) = πR.N.

∫
F1

dµ1 Γd,d,1(τ ;G,B) . (1.3)

We shall refer to the anomalous terms appearing on the r.h.s. when d = 3 or d = 4 as ‘har-

monic anomalies’. They follow from similar anomalous terms appearing in the U-duality

invariant Laplace-type equation for full D4R4 coupling E(d)
(0,0), which were determined in [23]

using general consistency requirements and confirmed in [24]. They can also be extracted

from the poles of the unregulated Eisenstein series E
SO(d,d)
S,s and E

SO(d,d)
C,s at s = 2.

Our first aim in this note will be to give a precise renormalization prescription for

the integral (1.1), which is divergent when d ≥ 3, and show that it indeed satisfies the

differential equation (1.2), with the correct coefficients of the harmonic anomalies. The

renormalization prescription requires a careful treatment of the contributions from degen-

erate Riemann surfaces, corresponding to primitive two-loop divergences, one-loop sub-

divergences and overlapping subdivergences. From the proof it will transpire that the

anomalous terms on the right-hand side of (1.2) originate from these degenerations.

1dµh = (det Im Ω)−h−1∏
I≤J i dΩIJ ∧ dΩ̄IJ

– 2 –
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Unlike the R4 and D4R4 couplings, the next term in the low-energy expansion of the

four-graviton scattering amplitude, namely the D6R4 coupling E(d)
(0,1), is not a residue of

Langlands-Eisenstein series for the U-duality group. Indeed it must satisfy a U-duality

invariant Laplace-type equation with a source term proportional to the square of the R4

coupling E(d)
(0,0) [11, 18, 19, 25, 26] (up to harmonic anomalies linear in E(d)

(0,0) and E(d)
(1,0) in

special dimensions, computed in [23] and confirmed in [24]). In particular, the two-loop

contribution to D6R4 is given by the modular integral [22, 27]

E(d,2)
(0,1) (G,B) = πR.N.

∫
F2

dµ2 Γd,d,2(Ω;G,B)ϕ(Ω) , (1.4)

where ϕ(Ω) is the Kawazumi-Zhang invariant, a real-analytic Siegel modular function in-

troduced in the mathematics literature in [28, 29]. As before, the integral (1.4) is divergent

when d ≥ 2, and requires a renormalization prescription. The Laplace-type equation for

E(d)
(0,1) implies that the renormalized two-loop contribution must satisfy2

(
∆SO(d,d) − (d+ 2)(5− d)

)
E(d,2)

(0,1) =−
(
E(d,1)

(0,0)

)2
−
(
π

3
E(2,1)

(0,0) +
7π2

18

)
δd,2

+
70

3
ζ(3)δd,5 +

20

π
E(6,1)

(1,0) δd,6 ,

(1.5)

where E(d,1)
(1,0) are is the one-loop contributions to the D4R4 couplings,

E(d,1)
(1,0) (G,B) = 2πR.N.

∫
F1

dµ1 Γd,d,1(τ ;G,B)E?(2, τ) , (1.6)

where E?(s, τ) is the non-holomorphic Eisenstein series for SL(2,Z), normalized as in [22].

The appearance of the quadratic term −(E(d,1)
(0,0) )2 on the r.h.s. of (1.5) makes it clear that

E(d,2)
(0,1) cannot be a residue of a Langlands-Eisenstein series. Indeed, a candidate for the non-

perturbative completion of the D6R4 couplings is only available for d ≤ 4 [11, 23, 25, 30–32].

As for the modular integral (1.1), we shall give a precise renormalization prescription for

the modular integral (1.4), and establish the differential equation (1.5) by a careful analysis

of the contributions from degenerate Riemann surfaces. In particular, it will transpire that

the quadratic term on the r.h.s. of (1.5) originates from a logarithmic singularity of the

Kawazumi-Zhang invariant ϕ(Ω) in the separating degeneration limit, while the remaining

terms originate from primitive two-loop divergences and one-loop subdivergences.

It is important to stress that these results depend on essential properties of the

Kawazumi-Zhang invariant, which were originally guessed by trying to derive the differen-

tial equation (1.5) from the modular integral (1.1), but which have been since then estab-

lished independently with mathematical rigor [22, 33]. In particular, the fact that the mod-

ular integral (1.1) is an eigenmode of the Laplacian ∆SO(d,d) with eigenvalue (d+ 2)(5−d),

up to harmonic anomalies, strongly pointed to the fact that ϕ(Ω) had to be an eigenmode

of the Laplacian ∆Sp(4) on the Siegel upper half plane of degree 2 with eigenvalue 5 [22].

2The harmonic anomaly for d = 2, unlike for d = 5 and d = 6, turns out to depend on the renormalization

scheme. It can be removed by adding to E(d,2)

(0,1) a suitable multiple of E(d,1)

(0,0) and a constant.
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Similarly, the fact that logarithmic divergences occur only in d = 2, 5, 6 was a strong indica-

tion about the asymptotics of ϕ(Ω) in the non-separating degenerations, eventually leading

to the discovery of the Theta lift representation of the Kawazumi-Zhang invariant [33].

The outline of this work is has follows. In section 2, we give a precise renormalization

prescription for the modular integrals (1.1), (1.3), (1.4), (1.6), which are naively divergent

for large enough values of the dimension d. The renormalization of the one-loop ampli-

tudes (1.3), (1.6) is standard, but the renormalization of the two-loop amplitudes (1.1)

and (1.4) requires a careful treatment of the minimal and maximal non-separating degen-

erations. In section 3, we establish the differential equations satisfied by these renormalized

couplings, and compute the precise coefficients of the harmonic anomalies, confirming the

values predicted by U-duality. In section 4 we close with some open questions.

Note added: while this article was being finalized, we received the preprint [43], which

has some overlap with the present work.

2 Renormalised couplings

The couplings E(d)
(m,n)D

4m+6nR4 of interest in this work refer to local terms in the low-

energy expansion of the one-particule irreducible effective action of type II string theory

compactified on a torus T d. In dimension D = 10− d > 4, the 1PI effective action is finite,

both in the ultraviolet and in the infrared. Due to massless thresholds however, it is a non-

analytic function of the momenta. In order to isolate the local part of the effective action,

it is convenient to introduce an infrared cut-off Λ to separate the contribution of massless

supergravity states from those of massive string states, and take the low-energy expansion

of each parts separately [8, 34, 35]. The supergravity contribution leads to non-local terms

in the effective action, supplemented with a set of local counterterms depending on Λ, which

act as a ultraviolet cut-off for the supergravity modes, while the string theory contribution

leads to local interactions only, which also depends on Λ. The sum of the string theory

and supergravity contributions to the coefficients of the local interation D4m+6nR4 has a

finite limit as the cut-off Λ is removed, and defines the renormalized coupling E(d)
(m,n).

In more detail, the string theory contribution to the coefficient of the D4m+6nR4 term

at h-loop is given by ∫
MΛ

h

dµh F
(d,h)
(m,n) Γd,d,h(Ω;G,B) (2.1)

where F(m,n) is a specific function on the moduli space Mh of compact Riemann surfaces

of genus h. The lattice partition function Γd,d,h is

Γd,d,h(Ω;G,B) = (det Ω2)d/2
∑

mIi n
i,I∈Zhd

e−πL
IJΩ2,IJ+2πimIi n

i,JΩ1,IJ (2.2)

where LIJ is a positive-definite quadratic form in the momentum and winding numbers

mI
i , n

i,I , i = 1 . . . d, I = 1 . . . h, given in terms of the metric Gij and Kalb-Ramond two-form

Bij on the torus T d via

LIJ = (mI
i +Bijn

j,I)Gik(mJ
k +Bkln

l,J) + ni,IGijn
j,J . (2.3)
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In writing (2.1) we have reduced the integral over the moduli space of super-Riemann

surfaces of genus h to an integral over Mh. The integrand is independent of the choice

of projection up to total derivatives, which we assume do not contribute in this highly

supersymmetric set-up. The integration domain MΛ
h is a subset of Mh which removes a

neighborhood of the singular locus in Mh where the Riemann surface develops a node,

such that limΛ→∞MΛ
h =Mh. In this limit, the integral (2.1) generally grows as finite sum

of positive powers of the cut-off Λ, up to logarithms,

∫
MΛ

h

dµh F
(d,h)
(m,n) Γd,d,h(Ω;G,B) ∼ e(d,h)

(m,n)(Λ;G,B) =
∑̀
k=1

ak(G,B) Λαk(log Λ)mk . (2.4)

The coefficients ak(G,B) are controlled by the behavior of F(m,n) near the singular locus.

Near a separating divisor (relevant for h > 1 only), Σh degenerates into the product of

two Riemann surfaces Σh′ and Σh′′ with h = h′ + h′′, joined by a long tube. Accord-

ingly, ak(G,B) will be proportional to the product of two modular integrals over Mh′ and

Mh′′ . Near a non-separating divisor, Σh degenerates into a Riemann surface Σh−1 with

two punctures joined by a long tube, and ak(G,B) is proportional to a modular integral

over Mh−1.

The supergravity contribution, corresponding to the integral over the complement of

MΛ
h inside Mh, cancels these power-like terms, leaving a finite coefficient for the term

D4m+6nR4 in the local effective action

E(d)
(m,n) = lim

Λ→∞

[ ∫
MΛ

h

dµh F(m,n) Γd,d,h(Ω;G,B)− e(d,h)
(m,n)(Λ;G,B)

]
(2.5)

which defines the renormalized integral R.N.
∫
Mh

dµh F
(d,h)
(m,n)Γd,d,h(Ω;G,B). Notice that the

supergravity contribution includes loop diagrams with insertions of counterterms cancelling

divergences at lower order in string perturbation theory.

In this paper, our main interest is on the two-loop contributions E(d,2)
(1,0) and E(d,2)

(0,1) . As a

warm-up however, we briefly discuss the renormalisation of the one-loop contributions to

E(d)
(0,0) and E(d)

(1,0), as they also enter as subdivergences of the two-loop amplitudes mentioned

above. We shall briefly comment on three-loop contributions to E(d)
(0,1) in section 4.

2.1 One-loop renormalization

At one-loop, infrared divergences potentially come from the region ρ2 →∞ in the standard

fundamental domain F1 = {ρ ∈ H1, |ρ| > 1,−1
2 < ρ1 ≤ 1

2}. As in [8, 20, 36], they can be

regulated by truncating the fundamental domain to F1
Λ = F1 ∩ {ρ2 ≤ Λ}. Note that the

measure is normalized to dµ1(ρ) = 2dρ1dρ2/ρ
2
2. Using the following estimates for large ρ2,

valid up to exponentially suppressed corrections,

Γd,d,1(ρ,G,B) ∼ ρ
d/2
2 , E?(s; ρ) ∼ ζ?(2s) ρs2 + ζ?(2s− 1)ρ1−s

2 , (2.6)

– 5 –
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where ζ?(s) = π−s/2Γ(s/2)ζ(s) satisfies ζ?(s) = ζ?(1−s), it is straightforward to determine

the divergent part of the regulated integrals,∫
FΛ

1

dµ1 Γd,d,1 ∼
2Λ

d
2
−1

d
2 − 1

Θ(d− 2) + 2δd,2 log Λ , (2.7a)

∫
FΛ

1

dµ1 Γd,d,1E
?(2, ρ) ∼ 2ζ?(4)Λ

d
2

+1

d
2 + 1

+
2ζ?(3)Λ

d
2
−2

d
2 − 2

Θ(d− 4) + 2ζ?(3)δd,4 log Λ (2.7b)

where Θ(x) = 1 if x > 0 and zero otherwise. These divergent parts originate from contri-

butions of massless modes, and are cancelled by the supergravity counterterms. Thus, the

renormalised couplings in (1.3), (1.6), are given by

E(d,1)
(0,0) = lim

Λ→∞

[
π

∫
FΛ

1

dµ1 Γd,d,1(ρd; ρ)− 2π

(
Λ
d
2
−1

d
2 − 1

Θ(d− 2) + δd,2 log Λ

)]
, (2.8a)

E(d,1)
(1,0) = lim

Λ→∞

[
2π

∫
FΛ

1

dµ1 Γd,d,1(ρd; ρ)E?(2, ρ)− 4π (2.8b)

×

(
ζ?(4)

Λ
d
2

+1

d
2 + 1

+ ζ?(3)
Λ
d
2
−2

d
2 − 2

Θ(d− 4) + ζ?(3)δd,4 log Λ

)]
.

This renormalization prescription is a special case of the general method developed in [36].

2.2 Two-loop renormalization, generalities

At genus 2, the moduli space of Riemann surfaces can be identified with a fundamental

domain F2 for the action of the modular group Sp(4,Z) on the complement of the separating

divisor D in the Siegel upper-half plane H2. The latter is parametrized by the period matrix

Ω, a symmetric complex valued two-by-two matrix whose imaginary part is positive definite.

The separating divisor corresponds to the locus Ω12 = 0, along with all its images under

Sp(4,Z). We choose the same fundamental domain F2 as in [22, A.15],

(1) − 1

2
< Re (Ω11), Re (Ω12), Re (Ω22) ≤ 1

2

(2) 0 < 2 Im (Ω12) ≤ Im (Ω11) ≤ Im (Ω22)

(3) | det(CΩ +D)| > 1 for all

(
A B

C D

)
∈ Sp(4,Z)

(2.9)

Infrared divergences originating from the separating degeneration can be regulated by

enforcing a cut-off |Ω12| > ε. As we shall see below, the modular integrals (1.1) and (1.4)

are in fact convergent in this region, but the action of the Laplace operator ∆SO(d,d) on

the integrand of (1.4) renders the integral divergent, and is responsible for the quadratic

anomalous term on the r.h.s. of (1.5).

For what concerns the non-separating degeneration limit, it is useful to parametrize

the period matrix as follows:

Ω =

(
ρ u1 + ρu2

u1 + ρu2 σ1 + i(t+ ρ2u
2
2)

)
, (2.10)

– 6 –
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Figure 1. The cut-off fundamental domain domain FΛ
2 and its splitting into regions 0, I and II is

depicted in (t, ρ2) coordinates (left) and (V, τ2) coordinates, assuming that the off-diagonal entry

τ1 = ρ2u2 vanishes. Region III denotes the complement of FΛ
2 inside F2.

where ρ is a complex modulus in the Poincaré upper half-plane H1, t ∈ R+ and u1, u2, σ1

are real. The non-separating degeneration limit corresponds to t → ∞ keeping the other

variables fixed. In this region, the inequalities (2.9) defining the fundamental domain

reduce to

0 < u2 ≤
1

2
, −1

2
< ρ1, u1, σ1 <

1

2
, |ρ|2 > 1 , ρ2(1− u2

2) ≤ t , t > 0 . (2.11)

In particular, ρ takes values in the one-loop fundamental domain F1 and ρ2 cannot exceed

4t/3. To regulate potential divergences from the non-separating degeneration, it is therefore

sufficient to truncate the integration domain to F2
Λ = F2 ∩ {t ≤ Λ}.

To disentangle the contributions from the minimal non-separating degeneration limit,

where the Riemann surface develops only one non-separating node, from the maximal non-

separating degeneration limit or leading singularity, where the Riemann surface develops

three non-separating nodes, it is useful to further split F2
Λ into three regions (see figure 1):

F2
0 =F2

Λ ∩ {ρ2 ≤ t+ u2
2ρ2 ≤ Λ1} ,

F2
I =F2

Λ ∩ {ρ2 ≤ Λ1 ≤ t+ u2
2ρ2} ,

F2
II =F2

Λ ∩ {Λ1 ≤ ρ2 ≤ t+ u2
2ρ2} ,

(2.12)

where Λ1 regulates the infrared divergences associated to the coefficient of the one-loop

subdivergence (also known as overlapping divergences). The sum of the contributions of

the three regions is of course independent of Λ1, while mixed terms depending on both Λ

and Λ1 cancel in the sum of regions I and II.

To describe the contributions from the region F2
II, which is associated to primitive

two-loop divergences, it is convenient to use yet a different set of variables for the imaginary

– 7 –
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part of the period matrix, introduced in [25, 37, 38],

Ω =

(
ρ1 u1

u1 σ1

)
+

i

τ2V

(
1 τ1

τ1 |τ |2

)
(2.13)

The two parametrizations (2.10) and (2.13) are related by

V =
1√
tρ2

, τ2 =

√
t

ρ2
, τ1 = u2 , (2.14)

while the integration measure in either set of variables reads

dµ2(Ω) = 4
dt

t3
dµ1(ρ) du1 du2 dσ1 = 8V 2dV dµ1(τ) dρ1 du1 dσ1 . (2.15)

In the region V → 0, where all entries in Ω2 are scaled to infinity at the same rate, the

inequalities (2.9) defining the fundamental domain F2 reduce to

0 < τ1 ≤
1

2
, |τ |2 ≥ 1 , −1

2
< ρ1, u1, σ1 ≤

1

2
, V > 0 , (2.16)

so that τ lies in the fundamental domain F1/Z2 of the action of GL(2,Z) on H1 (the latter

consisting of the usual fractional linear transformations of τ , along with the involution

Z2 : τ → −τ̄). The region II of the truncated fundamental domain FΛ
2 enforces two

additional inequalities,

F II
2 = F2 ∩

{
τ2 ≤

√
Λ

Λ1
,

τ2

Λ
< V <

1

τ2Λ1

}
. (2.17)

In particular, V is bounded from below by
√

3/(2Λ) and from above by
√

2/(3Λ1).

For later reference, we compute, for α 6= −3, α + β 6= −2 and α − β 6= −4, under

the assumption that Λ1 is large enough so that the inequalities defining the fundamental

domain F2 simplify to (2.11),∫
F0

2∪F I
2

dµ2V
ατβ2 = 8

∫ 1/2

0
du2

∫ 1/2

−1/2
dρ1

∫ Λ1

√
1−ρ2

1

ρ
−α+β

2
−2

2 dρ2

∫ Λ

ρ2(1−u2
2)
t
β−α

2
−3dt

=
16Λ

−α+β+2
2

1 Λ
β−α−4

2

(α+ β + 2)(4 + α− β)
−

16c(α−β+4
2 )Λ−3−α

1

(α+ 3)(4 + α− β)

−
32c(α+β+2

4 )Λ
β−α−4

2

(4 + α− β)(α+ β + 2)
+

32c(α−β+4
4 ) c(α+3

2 )

(α+ 3)(4 + α− β)

(2.18)

∫
F II

2

dµ2V
ατβ2 = 16

∫ 1/2

0
dτ1

∫ √Λ/Λ1

√
1−τ2

1

τβ−2
2 dτ2

∫ 1/(τ2Λ1)

τ2/Λ
V 2+αdV

=
16c(−α+β+2

2 )Λ−3−α

(α+ 3)(α+ β + 2)
+

16c(α−β+4
2 )Λ−3−α

1

(α+ 3)(4 + α− β)
− 16Λ

−α+β+2
2

1 Λ
β−α−4

2

(α+ β + 2)(4 + α− β)

(2.19)
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where

c(γ) =

∫ 1
2

0
(1− x2)−γdx =

1

2
2F1

(
γ,

1

2
;

3

2
;

1

4

)
. (2.20)

We note the special values c(0) = 1
2 , c(

1
2) = π

6 , c(−1) = 11
24 . As expected, the Λ1 dependence

cancels in the sum, leaving only∫
FΛ

2

dµ2V
ατβ2 ∼ −

32c(α+β+2
4 )Λ

β−α−4
2

(4 + α− β)(α+ β + 2)
+

16c(−α+β+2
2 )Λ−3−α

(α+ 3)(α+ β + 2)
, (2.21)

where we have neglected Λ-independent terms. It is worth noting that the O(Λ
β−α−4

2 ) term

in (2.21) originates from the boundary at t = Λ in (2.18), while the O(Λ−3−α) originates

from the boundary at V = τ2/Λ in (2.19).

2.3 Renormalized D4R4 coupling at two-loop

We are now ready to compute the divergent part of the modular integral (1.1). In region

I where t � ρ2, it is clear from (2.2) that the lattice partition function can be approxi-

mated as

Γd,d,2 ∼ td/2Γd,d,1(ρ) , (2.22)

up to exponentially suppressed corrections in Λ. Thus we have

π

2

∫
F2

I
dµ2 Γd,d,2 ∼ 2π

∫ 1/2

0
du2

∫
FΛ1

1

dµ1(ρ) Γd,d,1(ρ)

∫ Λ

ρ2(1−u2
2)
t
d
2
−3dt . (2.23)

Using (2.8a) and focusing only on the divergent contributions as Λ →∞ we have

π

2

∫
F2

I
dµ2 Γd,d,2 ∼

[
Λ
d
2
−2

d
2 − 2

Θ(d− 4) + log Λ δd,4

]E(d,1)
(0,0) +

4Λ
d
2
−1

1

d− 2
Θ(d− 2)

 (2.24)

In region II, where all entries of Ω2 are large, we can instead approximate

Γd,d,2 ∼ (det Ω2)d/2 = V −d , (2.25)

corresponding to the contributions of the massless supergravity modes. Using (2.19),

we find

π

2

∫
F2

II
dµ2 Γd,d,2 ∼

8π c(d2 − 1)Λd−3

(d− 2)(d− 3)
Θ(d− 3) +

4π2

3
log Λ δd,3

− 8πΛ
d−4

2 Λ
d−2

2
1

(d− 2)(d− 4)
Θ(d− 4)− 2πδd,4 Λ1 log Λ

(2.26)

As expected, the terms depending on both Λ1 and Λ, corresponding to overlapping diver-

gences, cancel in the sum of the contributions of regions I and II. The Λ-dependent terms,

on the other hand, must cancel against the counterterms. The term proportional to Λ
d
2
−2

in (2.24) corresponds to a one-loop subdivergence, while the term proportional to Λd−3,

which originates from the boundary V = τ2/Λ in the integral over V in (2.26), corresponds
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to the primitive two-loop divergence. Its coefficient is recognized as 4πId/(d − 3), where

Id is the renormalized integral

Id = R.N.

∫
F1/Z2

dµ(τ) τ3−d
2 =

2 c(d2 − 1)

d− 2
. (2.27)

This integral converges for d > 2, and its renormalized value is defined for any d 6= 2

by analytic continuation.3 The renormalized D4R4 coupling at two-loop is defined by

subtracting these divergent terms,

E(d,2)
(1,0) = lim

Λ→∞

[
π

2

∫
FΛ

2

dµ2 Γd,d,2(Ω)− e(d,2)
(1,0)

]
,

e
(d,2)
(1,0) =

Λ
d
2
−2

d
2 − 2

E(d,1)
(0,0) Θ(d− 4) + log Λ E(4,1)

(0,0) δd,4 +
4π Id Λd−3

d− 3
Θ(d− 3) +

4π2

3
δd,3 log Λ .

(2.28)

2.4 Renormalized D6R4 coupling at two-loop

In order to compute the divergent part of the two-loop D6R4 coupling (1.4), we need to

control the behavior of the Kawazumi-Zhang invariant ϕ(Ω) in the various degeneration

limits. In the separating degeneration v = u1 + ρu2 → 0, one has [39, 40]

ϕ(Ω) = − log
∣∣2πv η2(ρ)η2(σ)

∣∣+O(|v|2 log |v|) . (2.29)

Fortunately, this logarithmic singularity is integrable, so for the purpose of defining the

renormalized integral (1.4), we do not need to excise the region near v = 0 (however this

will be necessary for establishing the differential equation (1.5)).

The complete asymptotic expansion of ϕ(Ω) in the non-separating degeneration was

established in [33], based on a representation of ϕ(Ω) as a one-loop modular integral of an

almost weakly holomorphic Jacobi form times a lattice partition function of signature (3,2).

The upshot of this analysis is that, in the minimal non-separating degeneration t → ∞,

the Kawazumi-Zhang invariant behaves as

ϕ(Ω) =
π

6
t+ ϕ0 +

ϕ1

t
+O(e−t) , (2.30)

where

ϕ0 =
1

2
D1,1(ρ;u1, u2) , ϕ1 =

5

16π2ρ2
D2,2(ρ;u1, u2) +

5

2π
E?(2; ρ) (2.31)

are expressed in terms of the non-holomorphic Eisenstein series E?(s; ρ) and the Kronecker-

Eisenstein series

Da,b(ρ;u1, u2) ≡ (2iρ2)a+b−1

2πi

∑
(m,n) 6=(0,0)

e2πi(nu2+mu1)

(mρ+ n)a(mρ̄+ n)b
. (2.32)

3In (2.27), τ3−d
2 denotes the modular invariant (but not smooth) function which is equal to τ3−d

2 in the

fundamental domain F1/Z2.
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Importantly, the integrals of Da,b(ρ;u1, u2) with respect to u1 and u2 in the domain (2.16)

vanish when a+ b is even. Using the approximation (2.22) for Γd,d,2, the divergent part of

the integral over region I is therefore

π

∫
F2

I
dµ2 Γd,d,2 ϕ ∼ 2π

∫
FΛ1

1

dµ1(ρ)

∫ Λ

dt t
d
2
−3 Γd,d,1(ρ)

(
πt

6
+

5

2πt
E?(2; ρ)

)

∼ π

3

Λ
d
2
−1

d
2 − 1

E(d,1)
(0,0) + 2π

Λ
d
2
−1

1
d
2 − 1

 (2.33)

+
5

π

Λ
d
2
−3

d
2 − 3

1

2
E(d,1)

(1,0) + 4πζ?(4)
Λ
d
2

+1

1

d+ 2
+ 2πζ?(3)

Λ
d
2
−2

1
d
2 − 2

 .

Since we focused on the divergent terms as Λ → ∞, one should read this equation disre-

garding the values of d that yield a negative power of Λ; the values of d∗ for which we have

Λα(d∗)/α(d∗) with a vanishing denominator should be interpreted as limits d → d∗ where

only the finite terms are kept. This produces terms that depends on the logarithm of the

cutoffs. We will reinstate explicitly the conditions on d and the logarithmic terms in the

final result.

In region II, one has instead [33]

ϕ(Ω) =
π

6V
A(τ) +

5ζ(3)V 2

4π2
+O(e−1/V ) (2.34)

where

A(τ) =
|τ |2 − τ1 + 1

τ2
+ 5

(τ2
1 − τ1)(|τ |2 − τ1)

τ3
2

. (2.35)

Using the approximation (2.25) for Γd,d,2, each term in the integrand reduces to the fol-

lowing generalization of (2.19),∫
F II

2

dµ2V
α τβ2 τ

2n
1 = 16

∫ 1/2

0
dτ1 τ

2n
1

∫ √Λ/Λ1

√
1−τ2

1

τβ−2
2 dτ2

∫ 1/(τ2Λ1)

τ2/Λ
V 2+αdV

=
16cn(−α+β+2

2 )Λ−3−α

(α+ 3)(α+ β + 2)
+

16cn(α−β+4
2 )Λ−3−α

1

(α+ 3)(4 + α− β)
(2.36)

− 2−2n

2n+ 1

16Λ
−α+β+2

2
1 Λ

β−α−4
2

(α+ β + 2)(4 + α− β)
.

where

cn(γ) =

∫ 1
2

0
x2n(1− x2)−γdx =

4−n−1

n+ 1
2

2F1

(
γ, n+

1

2
;n+

3

2
;
1

4

)
. (2.37)

As clear from (2.34), we are interested in the cases where either n or n + 1
2 is integer. In

this second case the hypergeometric function in (2.37) reduces to an elementary function,

while in the first case we can use

2F1 (a, c; c+ 1; z) =
c

z(c− a)
2F1 (a, c− 1; c; z)− c

z(c− a)
(1− z)1−a (2.38)
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to collect the different contribution in terms of c0(γ) ≡ c(γ). Thus we have

π

∫
F2

II
dµ2 Γd,d,2 ϕ ∼ −

2π2Λ
d
2

+1

1

9(d+ 2)

Λ
d
2
−3

d
2 − 3

− 8π2

3

Λ
d
2
−1

(d− 2)

Λ
d
2
−1

1

(d− 2)
+

4π2I ′d Λd−2

3(d− 2)

+
20ζ(3) c(d2 − 2) Λd−5

π(d− 4)(d− 5)
− 5ζ(3)

Λ
d
2
−3

d
2 − 3

Λ
d
2
−2

1
d
2 − 2

(2.39)

where the coefficient of Λd−2 is proportional to

I ′d =
4(d− 2)c

(
d
2 + 1

)
(d− 1)(d+ 2)

+
6(3d− 4)

(
−d−2

3 (4
3)

d
2 + 2

3(d− 1)
)

(d− 2)(d− 1)d(d+ 2)
. (2.40)

As in (2.27), this term originates from the boundary at V = τ2/Λ in the integral over V .

The coefficient I ′d is recognized as the renormalized integral

I ′d =R.N.

∫
F1/Z2

dµ1(τ) τ2−d
2 A(τ) . (2.41)

Here the integral converges absolutely for d > 2, and its renormalized value for d < 2, d 6=
−2 is defined by analytic continuation in d. Note that I ′d has simple poles at d = 2,

d = −2, but is finite at d = 0 and d = 1, since the apparent poles in (2.41) cancel. For

future reference, we record the behavior around d = 2, I ′d = 1
d−2 + 1

12 +O(d− 2).

It is straightforward to check that the divergent terms depending on both Λ and Λ1,

corresponding to overlapping divergences, cancel after summing (2.33) and (2.39). As

mentioned after (2.33), the power-like divergences become logarithmic divergences for the

values of d where the coefficient has a pole. The renormalized D6R4 two-loop coupling is

then defined by subtracting the divergent terms,

E(d,2)
(0,1) = lim

Λ→∞

[
π

∫
FΛ

2

dµ2ϕ(Ω) Γd,d,2(Ω)− e(d,2)
(0,1)

]
(2.42)

where

e
(d,2)
(0,1) =

π

3

Λ
d
2
−1

d
2 − 1

E(d,1)
(0,0) Θ(d− 2) +

π

3
log Λ δd,2 E

(2,1)
(0,0)

+
5

2π

Λ
d
2
−3

d
2 − 3

E(d,1)
(1,0) Θ(d− 6) +

5

2π
log Λ δd,6 E

(6,1)
(1,0)

+
10ζ(3) Id−2

π(d− 5)
Λd−5 Θ(d− 5) +

10ζ(3)

3
log Λ δd,5 (2.43)

+
4π2I ′d Λd−2

3(d− 2)
Θ(d− 2) +

(
2π2

3
(log Λ)2 +

π2

9
log Λ

)
δd,2 .

For later use, it will be useful to rewrite the renormalized integral I ′d defined

in (2.40), (2.41), as follows. Using the fact that the function A(τ) defined in (2.35) and

the factor τ2−d
2 satisfy

∆τA = 12A , ∆ττ
2−d
2 = (d− 1)(d− 2)τ2−d

2 , (2.44)
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where ∆τ = τ2
2 (∂2

τ1 + ∂2
τ2) and the first identity holds away from the separating boundary

at τ1 = 0 [25], we have

I ′d =
1

12

∫
F1/Z2

dµ1(τ) τ2−d
2 ∆τ A(τ)

=
(d− 1)(d− 2)

12

∫
F1/Z2

dµ1(τ) τ2−d
2 A(τ) +

1

12

∫
∂(F1/Z2)

τ2−d
2 ? dA−A ? dτ2−d

2 .

(2.45)

The normal derivative ?dA vanishes on the boundaries at |τ | = 1 and τ1 = 1
2 , while it

equals 6dτ2/τ2 on the boundary τ1 = 0. The normal derivative ?dτ2−d
2 = (d − 2)τ1−d

2 dτ1

vanishes on the boundaries τ1 = 0 and τ1 = 1/2. Thus we get, from the boundaries τ1 = 0

and |τ | = 1,(
1− (d− 1)(d− 2)

12

)
I ′d =

∫ ∞
1

dτ2 τ
1−d
2 − (d− 2)

6

∫ 1/2

0
dτ1 (1− τ2

1 )
1−d

2 A

(
τ1,
√

1− τ2
1

)
(2.46)

or equivalently,

I ′d = − 12

(d− 2)(d+ 2)(d− 5)
+

2(d− 2)

(d+ 2)(d− 5)

∫ 1/2

0
dτ1 (1− τ2

1 )
1−d

2 A

(
τ1,
√

1− τ2
1

)
.

(2.47)

The first term in this expression is responsible for the pole of I ′d at d = 2, while the apparent

pole at d = 5 cancels between the two terms in (2.47). For general d the integral over τ1

can be performed by using (2.37). Rewriting the hypergeometric function (obtained from

the terms where n in (2.37) is integer) in terms of c(d2 + 1) by using (2.38) and

2F1

(
1

2
,
d

2
,
3

2
,
1

4

)
=

d

d− 1
2F1

(
1

2
,
d

2
+ 1,

3

2
,

1

4

)
− 1

d− 1

(
4

3

) d
2

, (2.48)

one recovers (2.41). The decomposition (2.47) will however play an important role when

computing the action of the Laplacian in section 3.3.

3 Laplace equations

Having defined the renormalized couplings in any dimension, we now proceed to the deriva-

tion of the differential equations (1.2) and (1.5). Our strategy is simple: we use the following

property of the lattice partition function [7](
∆SO(d,d) − 2∆Sp(2h) +

1

2
dh(d− h− 1)

)
Γd,d,h(Ω) = 0 (3.1)

in order to convert the action of the Laplacian ∆SO(d,d) on Γd,d,h into an action of the

Laplacian ∆Sp(2h). Upon integration by parts, one recovers a multiple of the original

regularized integral, except for boundary contributions from degenerate Riemann surfaces,

which are responsible for the anomalous terms on the r.h.s. of (1.2) and (1.5).
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3.1 One-loop R4 and D4R4

As a warm-up, let us apply this procedure to derive the differential equations satisfied by

the renormalized one-loop couplings [23](
∆SO(d,d) +

1

2
d(d− 2)

)
E(d,1)

(0,0) = 4π δd,2 , (3.2a)(
∆SO(d,d) +

1

2
(d+ 2)(d− 4)

)
E(d,1)

(1,0) = 12ζ(3) δd,4 . (3.2b)

We focus on the coupling E(d,1)
(1,0) , whose integrand is slightly more complicated, since the

calculation for E(d,1)
(0,0) easily follows along the same lines. By using (3.1) in (3.2b) we obtain

(
∆SO(d,d) +

1

2
(d+ 2)(d− 4)

)
E(d,1)

(1,0) = 4π lim
Λ→∞

[∫
FΛ

1

dµ1E
?(2; ρ)

(
∆Sp(2) − 2

)
Γd,d,1(ρ)

−
(

(d− 4)ζ?(4)Λ
d
2

+1 + (d+ 2)ζ?(3)Λ
d
2
−2Θ(d− 4)

)]
. (3.3)

Upon integrating by parts the action of the Laplacian ∆Sp(2) = ρ2
2(∂2

ρ1
+ ∂2

ρ2
) and using(

∆Sp(2) − s(s− 1)
)
E?(s; ρ) = 0, we see that the contribution of the integral on the right-

hand side localises on the boundary at ρ2 = Λ. Recalling that dµ1 = 2dρ1dρ2/ρ
2
2, the r.h.s.

of (3.3) can be rewritten as

4π lim
Λ→∞

[
2

∫ 1
2

− 1
2

dρ1

[
E?(2; ρ)∂ρ2Γd,d,1(ρ)− Γd,d,1(ρ)∂ρ2E

?(2; ρ)
]
ρ2=Λ

(3.4)

−
(

(d− 4)ζ?(4)Λ
d
2

+1 + (d+ 2)ζ?(3)Λ
d
2
−2Θ(d− 4)

)]
= 12ζ(3)δd,4 ,

establishing the differential equation (3.2b).

3.2 Two-loop D4R4

We now turn to the analysis of the differential equation (1.2) for the two-loop cou-

pling (2.28). Again by using (3.1) we find

(
∆SO(d,d) + d(d− 3)

)
E(d,2)

(1,0) = lim
Λ→∞

[
π

∫
FΛ

2

dµ2 ∆Sp(4)Γd,d,2(Ω)

− 4πd Id Λd−3Θ(d− 3)−
(
∆SO(4,4) + 4

)
E(4,1)

(0,0) δd,4 log Λ

− Λ
d
2
−2

d
2 − 2

(
∆SO(d,d) + d(d− 3)

)
E(d,1)

(0,0) Θ(d− 4)

]
. (3.5)

– 14 –



J
H
E
P
1
2
(
2
0
1
5
)
1
0
2

Thanks to (3.2a) the last term in the second line vanishes and the last line is equal to

−Λ
d
2
−2d E(d,1)

(0,0) Θ(d− 4). Thus,(
∆SO(d,d) + d(d− 3)

)
E(d,2)

(1,0) = lim
Λ→∞

[
π

∫
FΛ

2

dµ2 ∆Sp(4)Γd,d,2(Ω) (3.6)

− 4πd Id Λd−3Θ(d− 3)− Λ
d
2
−2d E(d,1)

(0,0) Θ(d− 4)

]
.

The contribution of the first line localizes at the boundary of FΛ
2 . Decomposing FΛ

2 into

F0
2 ∪ F I

2 ∪ F II
2 as in (2.12), the boundary t = Λ of region I corresponds to the minimal

separating degeneration, while the boundary V = τ2/Λ of region II corresponds to the max-

imal separating degeneration. Contributions from the boundary ρ2 = Λ1 of region I, and

V = 1/(τ2Λ1) of region II, cancel when the results are expressed in terms of renormalized

couplings as we saw in section (2.3).

To analyze the boundary contribution from either region, we note that the Laplacian

∆Sp(4) in the coordinates adapted to each region decomposes into

I : ∆Sp(4) = t2∂2
t − t∂t + ρ2

2

[
∂2
ρ1

+ ∂2
ρ2

]
+ . . . (3.7)

II : ∆Sp(4) =
1

2
V 2∂2

V + 2V ∂V +
τ2

2

2

[
∂2
τ1 + ∂2

τ2

]
+ . . . (3.8)

where the omitted terms vanish when acting on functions of (t, ρ) and (V, τ), respectively.

It follows that, for d 6= 2,

π

∫
FΛ

2

dµ2 ∆Sp(4)Γd,d,2 = 2

[
1

t
∂t t

d/2

]
t=Λ

E(d,1)
(0,0) − 4π

∫
F1/Z2

dµ1(τ)
[
V 4∂V V

−d
]
V=τ2/Λ

= dΛ
d
2
−2 E(d,1)

(0,0) + 4πd Id Λd−3 . (3.9)

For d = 2, the last term is replaced by a term proportional to 1/Λ, which is irrelevant in

the limit Λ → ∞. Comparing with (3.6), we see that the divergent Λ-dependent terms

cancel so that (
∆SO(d,d) + d(d− 3)

)
E(d,2)

(1,0) = 24ζ(2) δd,3 + 4E(d,1)
(0,0) δd,4 . (3.10)

This establishes eq. (1.2), with the correct value of the anomalous terms, and makes it

clear that the anomalous terms for d = 3 and d = 4 originate from primitive divergences

and one-loop subdivergences, respectively.

3.3 Two-loop D6R4

The analysis of (1.5) follows similar steps starting from the definition of the renormalized

coupling (2.42). Using (3.1) to turn the action of ∆SO(d,d) on Γd,d,h into the action of ∆Sp(4)

on the same, we find(
∆SO(d,d) − (d+ 2)(5− d)

)
E(d,2)

(0,1) = lim
Λ→∞

[
2π

∫
FΛ

2

dµ2 ϕ(Ω)(∆Sp(4) − 5)Γd,d,2(Ω)

−
(
∆SO(d,d) − (d+ 2)(5− d)

)
e

(d,2)
(0,1)(Λ)

]
.

(3.11)
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Integrating by parts and using the key property the Kawazumi-Zhang invariant [22](
∆Sp(4) − 5

)
ϕ = 0 , (3.12)

valid away from the separating degeneration, we get contributions from i) the boundary t =

Λ of region I, corresponding to the minimal non-separating degeneration, ii) the boundary

V = τ2/Λ of region II, corresponding to the maximal non-separating degeneration and iii)

from the boundary v = 0 of region 0, corresponding to the separating degeneration:

2π

∫
FΛ

2

dµ2 ϕ(Ω)(∆Sp(4) − 5)Γd,d,2(Ω) = δI + δII + δS . (3.13)

The contributions to δI originate from the O(t) and O(1/t) terms in (2.30),

δI =
2π

3

(
d

2
− 1

)
Λ
d
2
−1 E(d,1)

(0,0) Θ(d− 2)

+
5

π

(
d

2
+ 1

)
Λ
d
2
−3 E(d,1)

(1,0) Θ(d− 6) +
20

π
E(6,1)

(1,0) δd,6 .

(3.14)

The contributions to δII originate from the O(1/V ) and O(V 2) terms in (2.34),

δII =
4π2I ′d

3
(d− 1)Λd−2Θ(d− 2) +

4π2

3
δd,2 log Λ

+ 16π2Λd−2

(
1

(d− 2)2
−
I ′d
d− 2

)
Θ(d− 2)− 4π2

3
log Λ δd,2

+
10ζ(3)

π
(d+ 2) Id−2 Λd−5 Θ(d− 5) +

70ζ(3)

3
δd,5 ,

(3.15)

where I ′d was defined in (2.41). Finally, the contribution to δS originates from the loga-

rithmic singularity (2.29) of the Kawazumi-Zhang invariant,

δS = −

[
E(d,1)

(0,0) + 2π
Λ
d
2
−1

d
2 − 1

Θ(d− 2)

]2

− 4π log Λ δd,2 E
(2,1)
(0,0) − 8π2(log Λ)2δd,2 . (3.16)

It is worth stressing that the contribution of the O(1/V ) term in ϕ(Ω) to δII, dis-

played on the first two lines of (3.15) involves two distinct contributions. The first line,

proportional to I ′d, arises upon integrating by parts the term 1
2V

2∂2
V + 2V ∂V inside the

Laplacian (3.8), and retaining the boundary term at V = τ2/Λ. The second line arises in-

stead by integrating by parts the term 1
2τ

2
2 (∂2

τ1 + ∂2
τ2) in (3.8), and retaining the boundary

term at τ2 = ΛV . To see this, we rewrite the integration domain (2.16) so as to integrate

first on τ2 and then on V and τ1,

FΛ,II
2 =

{
0 ≤ τ1 ≤

1

2
, |τ |2 ≥ 1 , τ2 ≤ min

(
1

V Λ1
,ΛV

)
,

√
1− τ2

1

Λ
< V <

1

Λ1

√
1− τ2

1

}
.

(3.17)

The integral over τ2 reduces to a boundary term at τ2 = ΛV whenever V < 1/
√

ΛΛ1,

− 4π2

3

∫ 1/2

0
dτ1

∫ 1/
√

ΛΛ1

√
1−τ2

1 /Λ
2dV V 1−d ∂τ2A(τ1, τ2)

∣∣∣
τ2=ΛV

= −8π2

3
Λd−2

∫
F1/Z2

dτ1dτ2 τ
1−d
2 ∂τ2A(τ1, τ2)

(3.18)
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where in the second line we renamed ΛV = τ2 and dropped again Λ1-dependent terms.

Integrating by parts and using (2.41), this is

− 4π2

3
(d− 1)Λd−2I ′d +

8π2

3
Λd−2

∫ 1/2

0
dτ1 (1− τ2

1 )
1−d

2 A

(
τ1,
√

1− τ2
1

)
. (3.19)

The integral can be expressed in terms of I ′d using (2.47), leading to

− 4π2

3

[(
d− 1− (d+ 2)(d− 5)

d− 2

)
I ′d −

12

(d− 2)2

]
Λd−2 . (3.20)

This explains the second line of (3.15).

Finally, the second line of (3.11), which we shall denote by δe, evaluates to

δe =−
[
∆SO(d,d) + (d+ 2)(d− 5)

]
e

(d,2)
(0,1)

=
πd

3
Λ
d
2
−1 E(d,1)

(0,0) Θ(d− 2)− 4π2

3
log Λ δd,2

− (d+ 2)(d− 5)

[
π

3

Λ
d
2
−1

d
2 − 1

E(d,1)
(0,0) Θ(d− 2) +

π

3
log Λ δd,2 E

(2,1)
(0,0)

]

− 10ζ(3)

π
(d+ 2)Id−2 Λd−5Θ(d− 5) +

(
1

2
(d+ 2)(d− 4)− (d+ 2)(d− 5)

)
×

[
5

2π

Λ
d
2
−3

d
2 − 3

E(d,1)
(1,0) Θ(d− 6) +

5

2π
log ΛE(6,1)

(1,0) δd,6

]
(3.21)

− 4π2

3

(d+ 2)(d− 5)

d− 2
I ′d Λd−2 Θ(d− 2) + 8π2(log Λ)2 δd,2 + 4π2 log Λ δd,2 .

Here we used the one-loop results (3.2), and refrained from simplifying some terms in order

to make it easier to trace their origin either from the constant term or the action of the

Laplacian. Summing (3.21) and (3.13), all Λ-dependent terms cancel, and we find the

differential equation for the renormalized D6R4 coupling,(
∆SO(d,d) − (d+ 2)(5− d)

)
E(d,2)

(0,1) = −
(
E(d,1)

(0,0)

)2
+

70

3
ζ(3)δd,5 +

20

π
E(6,1)

(1,0) δd,6 (3.22)

This establishes (1.5), with the correct coefficients for the anomalous terms in d = 5 and

d = 6, originating from the primitive two-loop divergences and one-loop subdivergences,

respectively.

It is worth noting however that no anomalous terms appears in d = 2 within our

renormalization scheme. The reason is that unlike the anomalous terms in d = 5 and

d = 6, which are annihilated by the operator ∆SO(d,d)− (d+ 2)(5− d), the anomalous term
π
3E

(2,1)
(0,0) + 7π2

18 is not, and can be removed by shifting E(d,2)
(0,1) by a suitable multiple of E(d,1)

(0,0)

and a suitable constant. At the level of the non-perturbative D6R4 coupling, this amounts

to a shift of E(2)
(0,1) by a multiple of E(2)

(0,0) and an additive constant, and must be accompanied

by a shift of E(2,1)
(0,1) by a constant and a shift of the non-analytic part of E(2)

(0,1) by a multiple

of log g8. The anomalous term on the r.h.s. of (1.5) for d = 2 was dictated by a choice of

renormalization scheme such that no anomalous term appears in the U-duality invariant

differential equation for E(2)
(0,1), while the current scheme ensures that no anomalous term

appears in the T-duality invariant differential equation for E(2,2)
(0,1) .
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4 Discussion

The main point of this paper is to show how to explicitly derive the couplings in the low-

energy superstring effective action starting from string amplitudes. We focused on the R4,

D4R4 and D6R4 terms in the effective action of toroidally compactified type II superstring.

These terms can be obtained from the four graviton amplitude by expanding up to O(p14)

in momenta. While the string amplitude is both UV and IR finite for generic values

of the graviton momenta, it is convenient to study the low-energy limit by separating

the contributions involving the propagation of massless states from the purely stringy

contributions. This also provides a natural splitting between the local and the non-local

part of the effective action.

This can be efficiently done by introducing appropriate IR cutoffs on the period matrix

of the complex structure of the string worldsheet, which can be interpreted as UV cutoffs

on the Schwinger parameters of the corresponding field theory diagrams. At two loops and

higher some care is required because the string worldsheet can degenerate into a worldsheet

of lower genus decorated by propagators of massless supergravity states. The resulting IR

divergences need to be subtracted in order to define the stringy contribution to the effective

action. At the two-loop level, this is summarised in figure 1, where region I contains the

1-loop subdivergences while region II contains the primitive divergence.

Having defined the local terms of the superstring effective action in this fashion, we

have shown that they satisfy Laplace-type differential equations with respect to the moduli

of the internal torus, and found perfect agreement with predictions from U-duality. This

supports the existing conjectures for the exact non-perturbative D4R4 and D6R4 couplings.

Further support could be gained by studying the behavior of the two-loop couplings in the

limit where the radius of one circle inside T d is taken to be much larger than the string

scale, and reproducing the pattern of decompactification limits found in [23].

One reason to focus on the two-loop D6R4 amplitude is the conjecture made in [23]

that E(d,2)
(0,1) for d = 5 provides the exact D6R4 coupling in M-theory compactified on T 5 —

largely thanks to the fact that the T-duality group SO(d, d,Z) coincides with the U-duality

group Ed′+1(Z) for d = 5, d′ = 4. In order to extract the non-perturbative corrections

predicted by this conjecture, we have to study the limit in which T 5 degenerates into

T 4 × S1, which is an instance of the decompactification limit mentioned above. In this

work, we have laid the ground for this study, by giving a mathematically precise definition

of the renormalized coupling E(5,2)
(0,1) .

Clearly, it is also desirable to extend this analysis to the three-loop contribution to the

D6R4. The latter is proportional to the modular integral of the lattice partition function

Γd,d,3 over the Siegel upper half-plane of degree three [22, 41], but the latter diverges when

d ≥ 4 while one-loop subdivergences and two-loop divergences set in when d = 5 and

d = 6, respectively. We plan to investigate the differential equation satisfied by E(d,3)
(0,1) and

its decompactification limits in future work.

Finally, it would be very interesting to extend the methods of this work to a more

general class of two-loop amplitudes beyond the simple BPS-saturated amplitudes consid-

ered here, such as D8R4 amplitudes in type II theories, or two-loop amplitudes in heterotic
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string theory. A particularly interesting example is the D2H4 amplitude in type IIB com-

pactified on K3, which is shown to satisfy a differential equation similar to (1.5), and

conjectured to be given non-perturbatively by a two-loop heterotic modular integral where

the integrand has a pole on the separating divisor [42].
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