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Public clouds have democratised the access to analytics for virtually any institution in the world. Virtual Machines (VMs) can
be provisioned on demand, and be used to crunch data after uploading into the VMs. While this task is trivial for a few tens of
VMs, it becomes increasingly complex and time consuming when the scale grows to hundreds or thousands of VMs crunching tens
or hundreds of TB. Moreover, the elapsed time comes at a price: the cost of provisioning VMs in the cloud and keeping them
waiting to load the data. In this paper we present a big data provisioning service that incorporates hierarchical and peer-to-peer
data distribution techniques to speed-up data loading into the VMs used for data processing. The system dynamically mutates the
sources of the data for the VMs to speed-up data loading. We tested this solution with 1000 VMs and 100 TB of data, reducing
time by at least 30 % over current state of the art techniques. This dynamic topology mechanism is tightly coupled with classic
declarative machine configuration techniques (the system takes a single high-level declarative configuration file and configures both
software and data loading). Together, these two techniques simplify the deployment of big data in the cloud for end users who may
not be experts in infrastructure management.
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I. INTRODUCTION

PROCESSING large data sets has become crucial in re-
search and business environments. Practitioners demand

tools to quickly process increasingly larger amounts of data
and businesses demand new solutions for data warehousing
and business intelligence.

Big data processing engines have experienced a huge
growth. One of the main challenges associated with processing
large data sets is the vast infrastructure required to store and
process the data. Coping with the forecast peak workloads
would demand large up-front investments in infrastructure.
Cloud computing presents the possibility of having a large-
scale on demand infrastructure that accommodates to varying
workloads.

Traditionally, the main technique for data crunching was to
move the data to the computational nodes, which were shared
[1]. The scale of today’s datasets have reverted this trend, and
led to move the computation to the location where data are
stored [2]. This strategy is followed by popular MapReduce
[3] implementations (e.g. Hadoop).

These systems assume that data is available at the machines
that will process it, as data is stored in a distributed file system
such as GFS [4], or HDFS. This situation is no longer true
for big data deployments on the cloud. Newly provisioned
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virtual machines (VMs) need to contain the data that will be
processed.

Loughran et al. exposed how different flavours of big data
processing applications could easily be provisioned in the
cloud using automated deployment and configuration tools. In
this approach, the computing software and data are deployed
on-the-fly over the provisioned VMs. For instance, deploying
a Hadoop cluster on demand requires installing Hadoop, con-
figuring and populating the Hadoop Distributed File System
(HDFS) with the data to be crunched [5]. In contrast, on a
physical cluster Hadoop is already predeployed and the data
has been populated beforehand.

The task of populating freshly deployed VMs with large
chunks of data may look trivial for small data sets, where
a simple sequential copy from a central repository to the
newly deployed VMs works well [6]. As data size grows
(and therefore the number of VMs to process it), data transfer
becomes one key performance bottleneck even within the same
data centre. Populating the newly deployed VMs may take
prohibitively long (1 TB of data sequentially loaded to 100
VMs on a 10 Gb ethernet network may take 1500 min1).
Sometimes this time may be 3-4 orders of magnitude longer
than the time it takes to make the actual computations (tens of
minutes to crunch data that takes days to load into the VMs).

1This number can be seen as a minimum boundary, since the performance
of VMs can significantly vary due to their lack of I/O isolation, which makes
data transfers susceptible to the interference of “noisy neighbours”
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Big Data exposed as a Service (BDaaS) on top of an
Infrastructure as a Service (IaaS) cloud is, thus, a complex
environment where data distribution plays a crucial role in the
overall performance.

In this paper we propose a solution based on combining
hierarchical and Peer to Peer (P2P) data distribution techniques
for significantly reducing the system setup time on an on-
demand cloud. Our technique couples dynamic topology to
speed-up transfer times with software configuration manage-
ment tools to ease the quality of experience for the end users.
As a result, we significantly decrease the setup time (VM
creation, software configuration and VM population with data)
of virtual clusters for data processing in the cloud.

The paper is structured as follows. Section II presents the
main steps required to enable BDaaS in the cloud. These
steps are enforced by an architecture (see Section III) whose
implementation is shown in Section IV. Section V presents an
evaluation of the proposed method and implementation. Our
method and system are compared to other relevant works in
Section VI. Finally, Sections VII and VIII discuss future work
and present the main conclusions of this work.

II. BIG DATA AS A SERVICE IN THE CLOUD

IaaS cloud providers offer computation and storage re-
sources to third parties [7]. These capabilities are exposed by
means of an imperative API that allows customers to deploy
VMs based on predefined virtual images, as well as persistent
storage services. In addition to the fundamental functionality
of providing computing and storage as a service, providers of-
fer an increasing catalogue of services (e.g. authentication, and
key management), although these do not provide functional
building blocks for setting up a generic Big Data Processing
infrastructure. Some attempts have been done at setting up
Hadoop in the cloud (see [5] and OpenStack Sahara).

In this section we examine the initial provision of a big
data service (e.g. MapReduce or a large scale graph analytics
engine) on top of the API exposed by the IaaS provider.
Assuming we have predefined VM images containing the
required software, we still need to configure the distributed
processing platform nodes and provide each node with data
for processing. This “data loading” process is often overlooked
by most research papers, but it would be essential for a
fair comparison on the results obtained in different cloud
infrastructures.

The sequence of tasks needed to prepare a big data job
for parallel analysis on a set of recently deployed VMs is as
follows:

• Partitioning: the data set is split and assigned to the
workers, so that data processing can occur in parallel.

• Data distribution: data is distributed to the VM where it
is going to be processed.

• Application configuration: the VMs have the big data
applications correctly configured

• Load data in memory: in some computing models, during
job preparation, the data must be loaded from the hard
disk to RAM.

We discuss each task in the following subsections. We
present design alternatives for the tasks, discussing the pros

and cons of each design. Discussion is grounded on exper-
imental results and assessment of the manageability of the
different alternatives. These preliminary experiments lead the
way for us to propose an architecture for offering BDaaS on
top of a virtualised infrastructure.

A. Data Partitioning

The key for most big data systems is scaling horizontally
(or scale out), in the hope that adding more resources (VMs)
will reduce the overall execution time. Therefore, partitioning
the data and assigning partitions to each VM is the first task
of the big data job configuration.

Placing the right data on each VM is an NP-hard problem
[8], with different constraints depending on the specific com-
putation model. There are numerous heuristics in the literature
that try to find partitioning schemas that can both: 1) keep
partitions balanced (so that all the VMs crunch an equivalent
portion of the data set) and 2) reduce the number of messages
exchanged between VMs to synchronise their state.

Depending on the selected partitioning heuristic, data par-
titioning can be a very time consuming task (see [9] for
instance).

B. Data Distribution

Deploying small data sets across a few servers (or VMs) is
a trivial task. However, deploying TBs of data across hundreds
or thousands of servers becomes substantially more challeng-
ing from a performance perspective. Substantial amounts of
data must be transferred to each newly created VM2.

Data distribution approaches should focus on reducing the
overall transfer time. Reducing the total amount of data
transferred around the local network reduces the impact of
deploying such a service on the network. However, the cost
factor from renting idle VMs waiting for the data transfer
is the dominating element in this analysis3. It must also be
considered that a data centre environment provides no guar-
antees of available traffic, which can render any prediction-
based strategies useless. In this subsection we analyse the
different approaches for performing data distribution among
the deployed VMs.

a) Centralised Approach: As a first naive approach, we
let all the VMs download the required dataset from a central
repository (Figure 1A on page 3). VMs contain an initialisation
script that connects them to the central repository so that they
can get the required data after boot (this approach is used by
most academic efforts [6]4).

Chaining sequential transfers from a central location will
render prohibitively high transfer times for the deployment
of BDaaS. The bandwidth to the central server can easily

2Data transfers are typically made to the local disk of the worker VMs.
Some authors propose using iSCSI Storage Area Networks as copy-on-write
logical volumes attached to all the VMs, like for instance [10]. This moves
the heavy load traffic from the local network to the Storage Area Network
(SAN), but the bandwidth limitation would be similar.

3We assume the data has already been loaded to the cloud and is available
from one of the many storage systems available in the cloud, like blob stores,
and databases.

4See also: http://thegraphsblog.wordpress.com/running-mizan-on-ec2/
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Fig. 1. Data distribution alternatives

TABLE I
NETWORK PERFORMANCE WITH ONE SERVER AND ONE CLIENT

10Gbit Ethernet Infiniband

1 TB 31 min 4 min

10 TB 3 h 47 min

100 TB 28 h 6.8 h

become a bottleneck for the whole transfer (see Table I). Also,
if the transfers are requested in parallel, the central server will
drop connections (due to throttling or denial of service effect)
and get a “flash crowd effect” caused by thousands of VMs
requesting blocks of data. We need smarter approaches to data
distribution.

b) Semi-Centralised Approach: In order to alleviate the
effect of all clients accessing simultaneously the same server
(flash crowd effect), and also potentially reduce the stress on
the networking infrastructure, it would be possible to shard
the dataset across different machines in the data centre (Figure
1B).

A perfectly orchestrated download of the shards (so that
the VMs do not get the same shard at the same time) would
reduce the figures on Table I by M , where M is the number
of shards.

This approach presents limitations when the data sets
change over time (which is the case for most companies). It
is very difficult to foresee the bias with which data sets may
grow. For instance, one could shard personal data based on the
initial letter of the family name, but family names do not have
a uniform distribution. Even if we accounted for the name
distribution bias, it may still be the case that more customers
whose first initial is ’E’ join our services. In that case, we
would need to re-shard the ’E’ shard again. Semi-centralised
solutions often require re-replicating or re-sharding, making
things hard to track and maintain in the long run5.

c) Hierarchical Approach: Semi-centralised approaches
are hard to maintain, specially if new data are continuously
added; centralised approaches do not scale well once you get
past a few hundred VMs (in our experiments we observed that

5http://gigaom.com/2011/07/07/facebook-trapped-in-mysql-fate-worse-
than-death/

the server containing the data starts dropping connections and
overall throughput decreases by 2-3 orders of magnitude).

A next logical step would be to benefit from the knowledge
IaaS providers have on the underlying network topology of
the data centre (Figure 1C). Building a relay tree where VMs
get data not from the original store, but from their parent node
in the hierarchy, which ideally is in the same rack. This way
N VMs will access the central server to fetch data, and as
soon as some blocks are downloaded by these N VMs, they
will provide the blocks to N additional VMs (ideally in their
same racks), and so on. This way we also confine most of the
traffic within top of the rack switches and avoid more utilised
routers. The VMs need to be finely configured to download
the data from the right location at the right time (see more on
the section on configuration below6).

Some P2P streaming overlays like PPLive or Sopcast are
based on hierarchical multitrees (a node belongs into several
trees), which may be used to implement this approach. In
practice their multi-tree nature has shown to evolve towards a
mesh-like topology similar to P2P approaches [11], [12].

d) P2P Approach: The downside of the hierarchical
approach is that it provides no fault tolerance during the
transfer. If one of the VM deployments fails or the VM gets
stuck after the transfers have been initiated, it is not easy to
recover from failure and reschedule transfers (all the branches
from the failing point need to be re-created and transfers re-
started). Failure of one of the upstream leaves in the hierarchy
dries the flow of data to the nodes that were supposed to be fed
from there. This also implies more synchronisation is required.

To deal with this issue, we adopted an approach that also
takes advantage of the fact that the data centre environment
presents low-latency access to VMs, no NAT or Firewall
issues, and no ISP traffic shaping to deliver a P2P (BitTorrent)
delivery approach for big data in the data centre (Figure 1D).

Also, since having thousands of VMs connecting to a
single repository will result in throttling mechanisms being
activated or the server dropping connections, we employ an
adaptive Bittorrent topology that evolves as block transfers
get completed.

C. Application Configuration

Before the data transfer has started, the VMs need to be
configured with the required software. For instance, we need
a system that takes care of installing and configuring the right
data transfer tools (e.g. BitTorrent) and in parallel gets the Big
Data application installed on the VMs, so that by the time the
data transfer is done, the application is ready to be started in
an automated manner requiring no user intervention.

D. In Memory Data Loading

As mentioned above, some big data frameworks require
loading the data from the local disk into the memory of the
VM for processing. Depending on the type of application,
these transfers from disk to memory can be really bulky (e.g.

6For now, it suffices to say that we need to create a mechanism for “rack
awareness” on the VMs so that they find each other in the rack and organise
that branch of the tree autonomously from VMs on other racks.
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TABLE II
SUSTAINED RATES FOR DISK WRITE AND READ OPERATIONS IN MB/S

HDD SSD

Sustained read rate 160 409

Sustained write rate 107 321

100 TB deployed over 1000 VMs is 0.1 TB per VM if the
whole data set is to be processed in memory). Disk read
performance can be critical for large datasets.

The rates shown in Table II may be misleading. VMs run a
virtualised memory hierarchy that includes virtual disks. This
hampers the actual performance obtained on real disks. The
exact sustained rate that can be achieved on a VM is hard to
obtain. The I/O is shared across VMs and there is a physical
limit that cannot be exceeded. If our VM happens to be co-
located with a “noisy neighbour” making extensive usage of
I/O operations (see [13] for an example on the importance of
noisy neighbours), then our read/write rates are going to be
nowhere near those in Table II.

Loading 1 TB of data from HDD into the memory of a
physical machine can take hours. In order to reduce this, some
well-known public cloud vendors offer VMs with SSDs, which
reduce the time it takes to read the file from disk and load it
in memory.

On the other hand, a quick look at some of the descriptions
of the available VM sizes in public cloud vendors reveal one
appalling fact: large disks are difficult to come by (only a few
instance types allow for more than 1 TB storage space) at
about $3 per hour (meaning that we will pay for hours while
files are being transferred and loaded in memory before we
can actually do any productive work).

The following section dives deeper into the design principles
that drove the system we implemented. It is structured in
different subsections/functions, each of them highlighting a
relevant design aspect.

III. DESIGN OF THE PROPOSED SOLUTION

A. User Input Processing

The user provides the parameters to size the virtual in-
frastructure, e.g. number and size of slave nodes, and the
cloud provider to use. In addition to the topology of the
virtual cluster, input files and output folder locations are
captured. Thirdly, software configuration parameters, i.e. total
number of machines, local directories where the data will
be located, data file names, etc. are captured. Finally, the
cloud provider credentials, i.e. username/password, token, and
the like. All these user provided configuration parameters are
further referred to as configuration parameters. This is the only
user interaction needed, the rest of the process is automatically
done by the proposed framework.

B. Centralised Partitioning

Data partitioning splits the data input into multiple chunks
(in principle as many as VMs). Partitioning can occur at two
points in the provisioning of the big data service. It could

Fig. 2. Main building blocks of the big data provisioning service. The main
innovation is the interaction between SF and BT, highlighted as a grey box,
to create a data loading overlay with a topology that dynamically evolves as
required.

be done initially at a central location with a “partitioning”
service. A second alternative would be copying the whole data
set to all the VMs involved in its processing and let the local
software pick the right data. There are parallel strategies for
partitioning the data (see [14] for a recent example) that can
take advantage of this approach. However, that requires the
leased VMs to have higher storage capacity, and also imposes
more stress on the data distribution task.

We have created a centralised partitioning service that runs
on top of where the original copy of the data is stored
(e.g. a logical volume on a SAN, attached to a partitioning
VM). When a new big data instantiation request arrives, the
partitioning VM is spawned and configured to partition the
data, determining a map of blocks to be transferred to each
new VM. The central partitioner is an integral part of the App-
specific management layer (see Figure 2).

The partitioner enables dynamic loading of different par-
titioning strategies. For instance, for very large datasets a
“binary” partitioning of the file may be enough, while more
specialised processing (e.g. large scale graphs [15] use the
modulus of the integer ID of the vertex to decide where
it needs to be allocated). At this stage, data is partitioned
logically (no actual movement of data is initially done, but
an index is kept that limits the beginning of a partition and
end of the previous one).

Using a central partitioner reduces the amount of data
transferred across the network from M (where M is the size
of the file containing the data set) to M/N . The same applies
to the local disk requirements of the computing VMs. Our
partitioner creates an overlap between partitions (see Figure
3 on page 5). The overlapped part, which belongs to other
partitions, is ignored by the data set loader on each of the
workers, but it is used to seed other peers which may need it.

The higher the overlap, the higher the consumption of
bandwidth and the lower the transfer time (assuming the actual
maximum capacity of the underlying network fabric has not
been reached). On the other hand, if the overlap is not big
enough (like in the example of Figure 3), some chunks of
the file will only be stored in one of the initial relay nodes
accessing the repository.

Since a full overlap is not possible, we assumed some
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Fig. 3. Chunk overlap to reduce overhead in relays.

chunks would only be located at the main repository. Access
to these chunks is randomised to reduce the likelihood of a
flash crowd effect.

C. Data Distribution

The logical partitions defined in the first step need to be
distributed among the VMs that will process the data. Data
distribution is a critical task; distribution should maximise
transfer rates and minimize information redundancy. We sup-
port this function of our architecture with two components.
The first component is a torrent controller, a lightweight httpd
server that hosts an announce path onto which BitTorrent
clients update their state. The second component is a central
data repository which has the files to be deployed onto all the
VMs.

The central partitioner decides how the original file is split
across machines (see above). After getting the global partition
index from the partitioner, each partition of the files is placed
into a directory and a new torrent is created per directory; this
directory is then compressed and packaged and transformed
into a .torrent file (small sized file with basic hash information
about the compressed directory). The BitTorrent tracker keeps
track of which .torrent files are currently being distributed.

Our configuration management tool sets a number of VMs
to play the role of initial relays (the number is dynami-
cally computed as log(N)3 where N is the total number of
VMs; this result was empirically determined to be the most
favourable, see results below). Initial relays connect to the data
repository and relay data to the rest of the peers. All other
machines will get blank information from the tracker until the
initial relays get some blocks of data, in which case peers
can connect to their assigned relay. Initial relays prevent the
initial avalanche that would happen if all peer VMs accessed
the repository at once while initialising the download (also
known as flash crowd).

The peers will receive the files and distribute the chunks
amongst themselves. Once a peer is done downloading its
assigned chunk, it will continue seeding for a configurable
amount of time (which depends on the size of the download)
to prevent a hotspot effect on its initial relay.

Since the number of initial relays is much smaller than the
total number of VMs, the relays get data from one or more
partitions to serve as initial relay for several peers. Once peers
start getting blocks and seeding them to other peers, relays are
automatically reconfigured by our configuration management

systems as normal peers. If the partitioning algorithm leaves
some chunks without replication and no relay gets data, the
peers can randomly connect to the central repository once they
do not have any other chunk left to download.

More formally we could express this as a Markov chain
model ([16], [17], [18]), which has as state variables the
populations of initial relays and “normal” peers in the system,
behaving as follows:

Peers arrive as a Poisson process of rate λ to their assigned
relay, stay in a leecher queue until completing the download,
and then in a relay queue for an exponential time of parameter
γ; the mean upload time for the file being 1/µ which leads to
a continuous time Markov chain.

We assume the mean upload time for a block is 1/µ, this
is capped by the 10 MB/s limit we impose to avoid crashing
the network. In our case λ is controlled by our configuration
management software so that the rate of arrival of peers is
controlled at the beginning. The tracker has been modified to
filter out responses from peers during the initial stages. Also
the 10 MB/s cap is indirectly limiting the value of λ (not just
initially, but throughout the whole transfer).

The number of initial relays accessing the repository is
constrained and controlled to prevent the “flash crowd effect”;
all other nodes are “capped leechers” as they are not allowed
to establish any connection until their assigned initial relay
has got some blocks from the initial repository. Thus, during
the load of the initial blocks we let x(t) denote the number
of capped leechers at time t, and y(t) the number of relays.
Therefore, the total upload capacity in the system in blocks
per second becomes:

Ωup = µ(y + x); since x(0) = 0 and y(0) = 0 since the
initial relays are not uploading anything, it turns out that
Ωup = 0

Let Ωdown denote the total download rate of the system, in
blocks per second:

Ωdown = µlog(N)3 where N is the total number of VMs.

After this, there is a transient period where initial relays
start to supply peers with data blocks and peers that finish
downloading some blocks start to seed themselves (leechers
do not leave the system, which is specially true for these
large data sets they need to download):

dx/dt = λ− Ωdown(x, y)

dy/dt = Ωdown(x, y)− γ(y)

where Ωdown(x, y) = min{Ωup, cx} states that Ωdown is
constrained (only) by either the available upload capacity or
the maximum download rate per peer, defined as c.

After this transient period, the system reaches a dynamic
equilibrium characterised by: a total upload capacity in the
system in blocks per second becomes:
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Ωup = µ(y + x);

since x(t) = M and y(0) = 0 since all VMs have turned
into seeders now, it turns out that

Ωup = µM .

It is easily checked that at an equilibrium of dx/dt and
dy/dt the number of seeders must be

y∗ = λ/γ.

In our case the number of leechers will tend to none after
the initial setup period, independently of the value of λ.

D. Automatic Deployment

This function performs the actual deployment of the virtual
infrastructure, installation, and configuration of the software
installed in the VMs (in our specific case it is our VMs and
the peers for distributing the partitioned file).

Firstly, the specified number of VMs are created and started
within the selected cloud provider. Our architecture includes
an Infrastructure Provider Abstraction Layer (see Figure 2
on page 4) to abstract the specifics of individual providers,
presenting a common high level interface to them all.

VMs are configured by the boot volume attached to them.
In the case of MapReduce in the cloud, most public cloud
providers use a preloaded boot volume which contains a pre-
configured MapReduce implementation for slave and master
nodes, i.e. a static provisioning of the MapReduce service.
As pointed out by Loughran et al. [5], this method is not
well suited for public clouds since: 1) it requires manual
maintenance of each image (patches, updates, mounting, etc.);
2) missing application configuration parameters or parameters
that do not fit the default values need to be manually set by
the user; 3) there is no runtime model with the current status
of the infrastructure and services.

Our proposal is sharing a boot volume across all VMs. The
volume contains a clean OS installation with a Configura-
tion Management Tool (CMT) and our modified BitTorrent
installed as daemons. There is a myriad of alternative CMT
tools for the shared boot volume. Puppet [19], Chef [20]
and CFEngine3 [21] are CMT solutions originally designed
for client-server distributed environments. Although they do a
good job at configuring software artifacts, they do not cope
well with dynamic relationships between components in cloud
environments, where virtual infrastructure is created as part of
the provisioning of services [5].

SmartFrog (SF) [22]7 is a pure peer-to-peer architecture
with no central point of failure that enables fault tolerant
deployment and dynamic reconfiguration to change infras-
tructure and services at runtime. Another crucial element
is that SF uses late binding configuration information to
configure services. This information becomes available after
a prerequired step has been completed but it is not readily
available at the beginning of the deployment. This is specially

7http://www.smartfrog.org/

important in cloud environments where users usually do not
have control over resource names, e.g. IP address.

The VMs start the SF daemons during boot time, see Figure
2 on page 4. After the VMs have started, the SF daemon
will dynamically provision the required services, following the
received software installation and configuration instructions
[23]. The deployment layer plays the role of an orchestrator
making sure the following actions occur when needed:

• SF setup: SF downloads the application configuration file
to some VMs and initiates the P2P distribution on a
software distribution overlay (thin lines in Figure 4 on
page 9). The VMs operating as masters (e.g. VM1 in
Figure 4) get the configuration file (user provided data
plus specific partitioning information) and start seeding
it to all other VMs in a P2P manner (#1 in Figure 4).

• Creation of the software distribution overlay: SF down-
loads required software from service catalogues (see
Figure 4), which are repositories with all needed con-
figuration files and software (#2 in Figure 4). These
repositories store the big data software packages to be
copied and executed on the VMs and the configura-
tion templates filled with the configuration parameters
and copied into the VM (see [23] for more details).
The software configuration files and binaries are also
distributed in a P2P manner. This approach speeds up
the distribution and prevents “flash crowd calls” against
the repositories when hundreds or thousands of VMs
are deployed. Some optimisations like reduced timeouts,
deactivate encryption, and keep files in memory for the
whole process have been made to get the maximum
throughput in the transfers of the software bundles (which
are in the order of a few hundred MB).

• Creation of the data distribution overlay: Once the down-
load of our modified BitTorrent from our git repositories
has finished, SF configures BitTorrent with the parts of
the data set that need to be processed by that specific host
(as specified by the central partitioner). Then, BitTorrent
is started by SF and the data transfers get started for the
relays (#4 in Figure 4) and later on by the peers (#5).
Remember that depending on the level of overlapping,
more of the servers will have to go to the central
data repositories, but this access is randomised so as to
minimise the number of concurrent calls and transfers
from a single central location. The overall bandwidth
for concurrent transfers was capped at 10 MB/s to avoid
outages in the data centre due to too many connections
exhausting the bandwidth. Note that many of these VMs
may be in the same rack or even in the same physical
host. However, big data VMs will have very high RAM
requirements, which minimises the possibility of having
too many of them co-located on the same physical host.

• Software downloads take much less time than data down-
loads (our distribution is about a few hundred MB),
see Tables III and IV. Thus, in parallel with the down-
load of the dataset, SF configures our installed software
(see Section IV below) from an automatically generated
configuration file. This file is created by the Automatic
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Deployment Layer using the configuration parameters
taken from the user. In this scenario one of the VMs is
randomly chosen to be the master and the others become
slaves of the application.

• Upon completion of all the transfers, the modified BitTor-
rent signals back to SF and SF initiates all the required
big data processes on the machine.

E. Monitoring

The Monitoring function tracks the progress of the appli-
cation so that SF can make any corrective action to keep the
desired state of the resources. In these big data applications
the desired state is “running”, so SF will check if some VMs
have failed and automatically spawn new ones if needed.

Monitoring information can either be periodically pulled
from the components or pushed to it. Different plugins can
be used to provide additional information depending on the
specific software stack and cloud provider.

F. Infrastructure Abstraction

The Infrastructure Provider Abstraction function in Figure
2 (page 4) homogenises the APIs exposed by the different
cloud infrastructure providers, presenting a high level view
across different public and private infrastructure providers. We
adopted OpenStack’s APIs as de facto standard to be used by
our Automatic Deployment Layer and built adapters for all
others. Additional providers can be added by supplying new
Infrastructure Provider mapper implementations.

IV. IMPLEMENTATION DETAILS

Parts of the proposed architecture have been implemented
as open source software and released publicly under LGPL8.

The application consists of two different components: A
RESTful web service offering the functionalities of the App-
Specific Management layer and a front-end web-based appli-
cation.

Classic big data applications involve using the MapReduce
abstraction for crunching different data sources (e.g. log files).
Hadoop is one of the most popular frameworks for this type
of processing. Graph analytics are also a popular application
that crunches large amounts of data. There are many systems
for processing very large scale graphs, like Pegasus, Pregel
and others [24], [15], [25], [26]. Most of them are based on
Valiant’s Bulk Synchronous Parallel (BSP) model, consisting
on processors with fast local memory connected via a com-
puter network [27]. A BSP computation proceeds in a series
of iterations (also known as supersteps). We tested our tool in
Hadoop scenarios (see [5] for more details), as well as with a
BSP graph processing system [26].

We loaded a graph with at least 600 million edges and
100 million nodes, each of which performs more than 100
differential equations that simulate the behaviour of the human
heart (see [26] for details).

The boot volume is composed of a clean installation of
Ubuntu 13.10 and SF v3.17. Additional components that SF

8http: //smartfrog.svn.sourceforge.net/viewvc/smartfrog/trunk/core/

TABLE III
DISTRIBUTION TIME OF THE SOFTWARE TO THE VMS VIA SMARTFROG.

100 VMs 1000 VMs

Centralised distribution 403 s 1400 s

SF distribution 15 s 18 s

TABLE IV
DISTRIBUTION TIME FOR THE DATA SETS TO THE VMS VIA OUR

MODIFIED BITTORRENT CLIENT. NA IS ASSIGNED FOR TRANSFERS
LONGER THAN 24H, WHICH WERE AUTOMATICALLY CUT OFF BY SF AND

MARKED FOR OPTIMISATION AND ANALYSIS. NS MEANS THERE IS NO
SPACE AVAILABLE ON THE VM DISK TO ATTEMPT THE TRANSFER.

100 VMs 1000 VMs
Centralised BitTorrent Centralised BitTorrent

1 TB dataset 1010 min 21 min NA 14 min

100 TB dataset NS NS NA 5 h

relies on have been added to the image. For example, apt-
get to install necessary Linux packages required by BSP and
Hadoop.

Furthermore the SF, BSP and Hadoop components have
been pre-installed9, which provides the necessary classes used
to map configuration parameters to the configuration file
format expected by the required application (BSP or Hadoop
in our case) and to control individual services (e.g. start, stop.
etc.). Both Hadoop and BSP have been used in the evaluation
of our architecture, although the key factor in performance is
the size of the files and the number of VMs involved.

To test the virtualisation abstraction capabilities of our
architecture, we developed a number of different cloud con-
nectors, namely HP Helion, HP Cells, VMWare, Mock, Open-
Nebula and Amazon EC2.

V. EVALUATION OF OUR DESIGN

A. Results of Our Data Distribution Methodology

Table III shows the measured time for software transfers
using our proposed methodology based on SF. The results
show the performance limitations of the central distribution
approach (caused by factors such as the previously described
“flash crowd effect”), with substantially longer times, and
linear increase of the distribution time with the number of
machines. With our SF methodology, the low distribution time
values (with small increase with ten times more machines),
make installation and configuration time the main factor.

Data transfer proved to be more demanding for the big data
applications deployed in our system. As can be observed in
Table IV, a central distribution from a single data repository
into a large number of VMs rapidly becomes infeasible. Using
this naive strategy may result in more time taken to distribute
data than doing the processing job that extracts value from the
data. Our modified BitTorrent technique distributes the data
across the VMs much more efficiently, with our experiments
going up to 100 TB of data distributed over 1000 VMs.

9The BSP service is a targz’ed file built on a periodic basis by our
continuous integration system. The same applies to our modified ver-
sion of BitTorrent, which is a slightly changed version of BitTornado,
https://github.com/effigies/BitTornado.
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In order to establish a fairer comparison with a centralised
approach we also tested a “centralised sharded” variant, where
we also used a central partitioner (instead of distributing the
whole file everywhere). We tested this approach for 1 TB
on 100 VMs, with network bandwidth limited to 10MB/s
(as in the case of BitTorrent). The distribution time in this
experiment was improved by a factor of 5, although our P2P
distribution approach completed 10 times quicker.

Figure 4 on page 9 shows (dashed lines) how some peers
play the role of seeder nodes connecting to the data repos-
itories (circled 5), while others play the role of pure peers,
contacting only other peers or seeders. This behaviour is
enabled by embedding our configuration management (SF)
technology in the architecture.

Initially our CMT restricts tracker access to only the relay
nodes, hence having an initial unchoke value k around one.
The value gradually increases as more peers become leechers
or seeders and the relays stop performing their role to become
normal seeders. At that point we get k = 4, which is the
default for most BitTorrent client implementations

Figure 5 on page 9 shows how the topology of the distribu-
tion network changes from a hierarchical (tree-like) structure
to a P2P one. The initial tree-like infrastructure avoids the
“flash crowd effect” of hundreds/thousands of VMs accessing
a single central repository at once, and the evolution to a
more decentralised P2P structure maximises throughput. After
4 minutes the system adopts the P2P organisation shown on the
right hand side panel on the Figure. Peers coordinate with the
configuration management system the cases where “exclusive”
chunk is needed (no other peer has the chunk). In these cases
the peer needs to directly go to the central repository (as
can be observed, there are always a few connections to this
repository). Central repository access is randomised by the
configuration management system upon starting BitTorrent.

In our experiments we found this approach to be about '40
times faster than a purely centralised approach (90th percentile
on more than 100 deployments of 100 VMs working on 1TB),
depending on the dataset and the deployment of VMs done by
the cloud scheduler.

In Section II above, we described several alternatives to
implement more sophisticated data distribution techniques (not
just a centralised approach). We compared our approach with
hierarchical and pure P2P options (Sharded approaches were
ruled out due to their complex maintainability and evolution).

Hierarchical techniques perform worse than our approach
(see Figure 6A on page 10), mainly due to the fact that the
level of data redundancy is very high (initially 2 machines
get 5% of the file, 50TB in our example). This is made even
worse in the light of failures in the propagation of the file in the
hierarchy: if the failure happens early (at the beginning of the
transfer, see Figure 6B, the throughput is reduced even further.
This is less relevant if the failure occurs late in the transfer
process (as the latest VMs handles only a minor fraction of
the original file).

Deploying the data in a HDFS-like fashion (data nodes
get blocks from HDFS client on a central storage) somewhat
resembles this hierarchical approach (only it is more efficient
since there are not many layers involved and it benefits

from rack awareness). Transferring data to 3 HDFS datanodes
resulted in very poor transfer rates (around 5 MB/s, see
in Listing 1 the results of a run of the standard Hadoop
HDFS benchmarking tool, TestDFSIO); this is substantially
slower than the same setup with our overlapped partitioner and
modified BitTorrent. Other authors report throughput around
50 MB/s for more optimised settings [28], which would still
be 2-3 times slower than our approach. These results are not
surprising, as HDFS is not optimised for speed of transfer.
It would be interesting to know if HDFS could be modified
so add coordination among the data nodes, so that they
collaborate to get the first block from each other, instead of
all of them accessing the client.

Listing 1. Capture of the output of the TestDFSIO Hadoop benchmark
TestDFSIO ----- :
write Date & time: Fri Dec 13 2013
Number of files: 1000
Total MBytes processed: 1000000
Throughput mb/sec: 4.989
Average IO rate mb/sec: 5.185
IO rate std deviation: 0.960
Test exec time sec: 1113.53
-----
TestDFSIO ----- :
read Date & time: Fri Dec 13 2013
Number of files: 1000
Total MBytes processed: 1000000
Throughput mb/sec: 11.349
Average IO rate mb/sec: 22.341
IO rate std deviation: 119.231
Test exec time sec: 544.842

We also compared our approach to a traditional P2P transfer
mechanism. We chose Azureus, a BitTorrent client, for its
capability of handling nodes that are overloaded with requests.
Azureus uses a Distributed Hash Table (DHT) that stores
values for a key in 10 alternate locations when the read rate
exceeds 30 reads per minute or when the current node hits
a global capacity limit of 64,000 keys or 4MB of storage. It
also limits any one key to at most 4kB of storage or no more
than 512 values, corresponding to a swarm with 512 members.
Crosby et al. observe fewer than 4 application messages per
second [29], but in our scenario we can have thousands of
peers connecting to a single machine, triggering replication of
values to 10 alternate locations.

At the start of our scenario all DHT clients try to connect
to the central repository. However, 60% of the established
connections do not achieve any data transfer, since they are
immediately terminated with a “too busy” message. As in
the initial stages there are not 10 alternate locations for the
requested content the rejected peers are unable to retrieve the
requested data. These results in an increased transfer time of
19% for 100 VMs and 1TB and 33% for transfers of 100 TB
to 1000 VMs compared to our hierarchical technique.

As can be seen in Figure 6, the P2P client is more resilient
to failure and performs better than a hierarchical approach.
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Fig. 4. P2P interactions between our SF/modified BitTorrent daemons and the Automatic Deployment Layer.

Fig. 5. Snapshots of the distribution process of 1TB into 100 VMs with 30% overlap. The red vertex is the central repository, and orange vertices illustrate
the initial seeder peers. Green dots are peers with less than 20% of their chunks transferred, and blue vertices have downloaded between 20 % and 40 % of
their assigned file.

B. Effect of Partition Overlapping

As can be seen in Table V, a low overlap shares the
limitations of a centralised approach; too many VMs connect
to the central repository at the same time and it starts dropping
connections, resulting in reduced throughput. As the level of
overlapping is increased, more P2P connections are established

and throughput is increased. Distribution time decreases up
to '45 % overlap, but the situation degrades as we increase
overlap further.

Our empirical tests yielded recommended values of 20-
30% overlap for getting the maximum speed up, although
the specific values will depend on the adopted scheduling
heuristics (see discussion below).
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Fig. 6. Performance Comparison of Different Techniques for Loading Large
Datasets on VMs on-demand in normal conditions (A), during an early failure
(B) and during a late failure (C) of one of the machines. Data represent the
90th percentile of n >= 20 repeated measurements. Hierarchical data are
based on a x2 expansion factor (each VMs serves two VMs downstream).

C. Effects of the Number of Relay VMs

The transfer rate increases as more relays are placed in the
system up to a point where it starts a steady decline due to
bandwidth limitations and additional synchronisation overhead
(see Figure 7 on page 11).

TABLE V
DISTRIBUTION SPEEDUP FOR VARYING OVERLAP LEVELS. MEASURED AS

THE DISTRIBUTION TIME FOR A CENTRALISED APPROACH DIVIDED BY
THE TIME TAKEN BY OUR APPROACH. FIGURES ARE GIVEN FOR THE 90TH

PERCENTILE OF MORE THAN 50 EXPERIMENTS.

% of overlap Speedup

10 5

30 98

50 12

0 10 20 30 40 50 60
0

.2
0

.4
0

.6
0

.8
1

.0

# of intermediate machines

N
o

rm
a

li
s
e

d
 t

ra
n

s
fe

r 
ra

te

Fig. 7. Effect of varying the initial number of intermediate servers for 1000
VMs and 100 TB transfers.

D. Detecting Poor Connectivity

A standard metric for measuring the global connectivity of
the peers is the second eigenvalue λ2 of the stochastic nor-
malisation of the adjacency matrix of the graph the peers form
during the transfer, values over 0.85 are typically considered
a sign of poor connectivity [30]. During the first phase (where
relays are in action), our system presents poor connectivity
(λ2 ' 0.9 during the first 2-3 min).

The nodes arrange in the initial stages in clusters of nodes
with few inter-cluster connections (as shown on the left hand
side of Figure 5 on page 9). This transient poor connectivity
limits the bandwidth consumed by thousands of nodes simul-
taneously connecting to a single data source. After this initial
transient period (which typically lasts only for a few minutes
(percentile 99.5th is 5 min) the λ2 value decreases to a final
average value of ' 0.66.

The fact that the topology is tree-shaped at the beginning
and evolves towards a P2P-like one as time goes by explains
why connectivity is poor. There is just one path between any
two nodes in different trees. Thus, this connectivity value
characterises the evolution in the graph topology as new
chunks of the file are made available by non relay peers. The
λ2 value is correlated (0.912±0.02) with the number of trees
in the topology at any given point in time 10. As soon as new
data chunks are made available, peers start getting their data
from other (not relay) sources and the connectivity changes
very rapidly. Thus, the number of trees decreases exponentially

10Simple recursive graph traversing algorithms can be applied here.
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with a time constant τ ' 3.5min.

VI. RELATED WORK

Data mining systems have typically run on distributed
clusters and grids, which assumed the processors are scarce
resources, and should hence be shared. When processors be-
come available, the data is moved there and the data crunching
process runs until all the results have been obtained [1].

This works well in practice for small data sets, but it soon
becomes intractable for larger data sets where an unacceptable
part of the time can be spent in moving data around.

In contrast, recent approaches claim data should be fixed
and computation should be moved wherever the data are.
The Google File System [4] and its open source counter
part, the Hadoop Distributed File System (HDFS)[28] sup-
port this model. Also based on this model, Grossman and
Gu [2] explained the design and implementation of a high
performance cloud specifically designed to archive and mine
large distributed data sets, highlighting the advantages of IaaS
clouds for processing large data sets.

None of these proposals consider the case where the infras-
tructure, the data and the software running on those data need
to be deployed on-demand. Other proposals such as Hadoop
on Demand (HOD) offer client-side alternatives for deploying
Hadoop without considering the potential bottlenecks of large-
scale data distribution.

There are also some systems that have the goal of allowing
cluster sharing between different applications, improving clus-
ter utilisation and avoiding per-framework data replication like
Mesos [31] and YARN (Yet-Another-Resource-Negotiator)
[32]. We believe these could be deployed together with our
approach, as we already support multiple data partitioning
strategies, which would be suitable for different types of
applications.

Structured P2P organises peers into an overlay network
and offers DHT functionality so that data is associated with
keys and each peer is responsible for a subset of the keys
[33], [34], [35]. In hierarchical DHTs, peers are organised
in groups with autonomous intra-group overlay network and
lookup services organised in a top-level overlay network.
To find the peer that is responsible for a key, the top-level
overlay first determines the group responsible for the key;
this group then uses its intra-group overlay to determine the
specific peer that is responsible for the key [36]. None of
them proposed a dynamic topology (initial tree/structure that
dynamically evolves into a P2P topology as more chunks
have been transferred), neither do they deal with dynamic
deployment of application/data into VMs in the cloud (the
application domain is usually restricted to routing overlays
for lookup services). Our technique also couples this dynamic
topology to software configuration management tools to ease
the quality of experience for the end user.

VII. DISCUSSION

Most public cloud vendors do not charge extra fees for intra-
cloud transfers, but the cost to upload the data to the public
cloud can be significant. In our work we assumed the data set

had been pre-uploaded to the public cloud and the population
of VM with the data occurs only within the cloud provider’s
network (no extra charge per new deployment). In case users
want to upload their data from their own facilities, they should
also attempt to balance the time it takes to upload data to the
cloud (possibly over highly asymmetric links) with the amount
of money charged by the cloud provider for uploading data into
the cloud. The associated costs for downloading the results
back to the user’s facilities might require similar analysis.

Existing big data processing platforms make assumptions
on latency and bandwidth that might not hold in a cross
data centre environment, severely hurting performance[37].
We have not explored cross data centre configurations of
our data distribution approach. We suspect some of the op-
timisations (low time out times, fewer retrials, agnosticism
regarding ISP traffic policies, and the like) will not apply
in this context and new challenges will be presented. Some
authors have successfully tested this idea [38], and we believe
some engineering optimisation work can make across-data-
center transfers more suitable for on demand big data service
instantiation than it is today.

While our approach scales well to a few thousand VMs,
it could be argued that tracker-less approaches are more
scalable. That would be a fair statement, but we know of
few systems that require more than ten thousand machines
today. In addition, our experiments with a DHT client show
that the flash crowd effect can be too large when 1000 VMs are
trying to get chunks of data from a single node. In the future,
we would like to improve the interaction between SF and a
trackerless BitTorrent deployment by, for instance, modifying
well known protocols to filter unauthorised peers out [39].

We have shown the performance of our system with rea-
sonably big data sets (TBs) and large number of VMs (100
and 1000). We did not include results at a smaller scale
as they would be less relevant in the context of big data
processing. On the other hand, scaling up to 10000 VMs and
1 PB would be impractical, as it would take too long to be
usable for on-demand data analytic tasks in the cloud (further
advances in data centre networking, e.g. optical connectivity
to the rack, are required). The limits on data size can also be
circumvented using complementary techniques. For instance,
many data analytics applications work on text files and very
good compression rates are easy to obtain (5:1 is not at all
uncommon, even more in structured logs). Thus, a 100 TB
file could be reduced to roughly 20 TB, which still would not
fit in our 100 VMs and would take a prohibitive amount of
time unless proper pre-partitioning and wiser transfers were
scheduled.

Highly consolidated physical infrastructures imply VMs
share room with many other neighbours. Some of these tenants
may be less desirable room mates, specially those that make
heavy use of the shared IO resources. Thus, VM allocation can
cause significant variability on the obtained results. Smarter
scheduling policies taking big data applications into account
are needed. The academic community has proposed several
alternatives for this type of smarter scheduling (see [40], [41]
for instance), but few of these works have been tested in large
scale environments, which makes transfer into products more
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complicated.
Object stores such as OpenStack’s Swift could be used as

a first hop (instead of having our initial relay nodes). This is
conceptually analogous to our approach. Assuming the object
store nodes would play the role of our relay nodes, then our
partitioner would need to upload the initial torrents to separate
buckets in the object store (as it happens now with the relay
VMs).

Debugging problems across logs distributed in thousands
of nodes is a labour intensive problem. Being able to re-
run a trace of all the events that occurred that lead to the
failure/problem is essential to be able to reproduce the problem
and fix it. Having smarter schedulers may pay off (see two
paragraphs above), but not at the expense of obscuring devops-
level understanding.

Uplink utilisation is critical for the performance of Bit-
Torrent clients in classic scenarios. Every 10 seconds a node
“unchokes” the k = 4 default nodes which have provided it
with the highest download rates during the previous 20 sec.
Each of the unchoked nodes is thus given an equal probability
of pulling the missing chunks of data. Some works have
reported 90 % utilisation of the uplink except for the initial
period where utilisation is very low. Some authors have tried to
use new protocols to improve the utilisation of the uplink [42].
Our technique is not constrained by limited asymmetric DSL
uplink connectivity and therefore, uplink capacity is not our
main concern. We limit the maximum transfer rates, though, so
that we ensure peers do not consume all the network capacity
in our data transfers.

Our approach works well in practice partly thanks to the
enforced coordination at the initial stages. Network coding
promises optimal utilisation of the available bandwidth [43].
Future work aims to explore the introduction of network
coding mechanisms as another tool for the partitioner to
schedule transfers of data to the right VMs.

VIII. CONCLUSION

Provisioning thousands of VMs with datasets to be crunched
by their big data applications is a non trivial problem. A big
data provisioning service has been presented that incorporates
hierarchical and peer-to-peer data distribution techniques to
speed up data loading into the VMs used for data processing.
The method is based on a modified BitTorrent client that is
dynamically configured by the software provisioning modules.
Peers are initially configured in a tree topology, where a subset
of VMs play the role of relay nodes (preventing flash crowd
effects on the permanent data storage). As soon as some data
chunks start to be ready in the leaves of the tree, the topology
evolves to a classic P2P mesh shape. Our implementation and
evaluation with hundreds of TB and thousands of VMs show
this is an effective method for speeding up dynamic provision
of big data applications in the cloud, obtaining improvements
on transfer times around 30 % over current state of the art
techniques. This may represent significant savings in the price
paid by users of public clouds. At the same time, our system
keeps a low entry barrier for users who may not be experts
in infrastructure management (they deal with a single high-

level declarative configuration file and the system takes care
of configuring software and data loading).
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