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Abstract—In the last years, large-scale graph processing has
gained increasing attention, with most recent systems placing
particular emphasis on latency. One possible technique to improve
runtime performance in a distributed graph processing system
is to reduce network communication. The most notable way to
achieve this goal is to partition the graph by minimizing the num-
ber of edges that connect vertices assigned to different machines,
while keeping the load balanced. However, real-world graphs are
highly dynamic, with vertices and edges being constantly added
and removed. Carefully updating the partitioning of the graph
to reflect these changes is necessary to avoid the introduction of
an extensive number of cut edges, which would gradually worsen
computation performance.

In this paper we show that performance degradation in
dynamic graph processing systems can be avoided by adapting
continuously the graph partitions as the graph changes. We
present a novel highly scalable adaptive partitioning strategy,
and show a number of refinements that make it work under the
constraints of a large-scale distributed system. The partitioning
strategy is based on iterative vertex migrations, relying only
on local information. We have implemented the technique in a
graph processing system, and we show through three real-world
scenarios how adapting graph partitioning reduces execution
time by over 50% when compared to commonly used hash-
partitioning.

I. INTRODUCTION

The importance of large-scale graph analytics has given rise
to a variety of distributed graph processing architectures [17],
[11, [5], [16], [30]. Graph partitioning is crucial to the scala-
bility and efficiency of these systems. The distribution of the
underlying graph across machines directly impacts communi-
cation overhead and load balancing, and may indirectly affect
aspects such as memory usage by the graph management layer.
Although graph partitioning is a well studied subject [12], [20],
the massive scale of graphs available today and the emergence
of such graph processing systems have renewed the interest in
this problem [29], [34], [6], [13].

Most graph analytics system so far have been designed for
batch processing. However, recently we have been observing
a shift toward dynamic graph programming paradigms and
processing architectures. This reflects the fact that in many
real-world scenarios the underlying graph data are naturally
dynamic and analytics is a continuous process, often requiring
real-time responses to graph changes. For instance, the Twitter
graph may receive thousands of updates per second [3], and
systems like [7] are designed to accomodate such graph
mutations during processing and keep the analysis results up-
to-date with low latency. These new models diverge from the
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batch paradigm, as graphs are loaded and partitioned across
the machines, and kept in memory for a long period of time.

In this paper we argue that retrofitting partitioning algo-
rithms designed for static graphs in such systems impedes
their operation, by hurting performance. Figure 1 shows the
evolution of partitioning over time in a graph created from
mobile CDR (Call Detail Records) (details in Section IV).
Partitioning quality is measured as the fraction of cut edges.
Starting from an initial partitioning, as the graph changes
over time, static approaches like standard hash-partitioning
(HSH) and deterministic-greedy (DGT)[29], a state-of-the-art
partitioning algorithm, do not adapt to the changes, allowing
the partitioning quality to gradually degrade.

Maintaining a high quality partitioning can have high
impact on continuous analytical applications that require low
latency [7]. Currently the standard practice is to schedule full
graph repartitions. Although this rectifies the problem seem-
ingly, repartitioning may actually be an expensive task that
takes hours in large-scale graphs [31], practically prohibiting
frequent adaptation.

We believe that these new graph management systems call
for partitioning techniques that embrace the dynamic nature
of graphs. Toward this, we propose a partitioning algorithm
that scales to large graphs and produces partitions with good
locality and, importantly, efficiently adapts the partitioning
upon graph changes. Our algorithm is based on decentralised,
iterative vertex migration. Starting from any initial partitioning,
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Figure 1. Evolution of the ratio of cuts over time on a dynamic graph

generated by processing CDR data over a sliding window. We compare three
algorithms: hash partitioning (HSH), deterministic greedy (DTG) and our
adaptive repartitioning (ADP) approach. The initial point for each algorithm
shows the cut ratio after processing 24 hours of CDR data.



the algorithm migrates vertices between partitions based on a
heuristic that minimises the number of cut edges, while at the
same time keeping partitions balanced. The migration heuristic
uses only local per-vertex information and requires no global
coordination, affording a scalable distributed implementation.

Furthermore, we go beyond just an algorithmic solution
and investigate the challenges of integrating such an algo-
rithm into a real graph processing system. For instance, any
practical adaptive partitioning scheme must ensure that vertex
migrations do not cause inconsistencies during operation and
that routing information is efficiently maintained. In particular,
we describe the design of a Pregel-like system extended
for continuous graph analytics that integrates our approach
and addresses these challenges. We show that by efficiently
maintaining an optimal partitioning, our system can sustain a
processing latency that is 5 times lower than a non-adaptive
approach.

In this paper, we make the following contributions:

1) We propose a scalable graph partitioning heuristic
based on iterative vertex migration that produces
partitions with good locality and can efficiently adapt
the partitioning to dynamic graph changes.

2)  We describe the design of a Pregel-like graph process-
ing system for continuous graph analytics, and study
the challenges of integrating an adaptive partitioning
algorithm into a real system. We show how we extend
the core heuristic to address these challenges and
make this integration possible.

3)  We present an extensive evaluation of our approach.
Using synthetic and real graphs, we show that our
algorithm produces partitionings with good locality,
improving application performance. Further, we show
that our algorithm can adaptively maintain a good
partitioning upon graph changes with minimum cost.
Finally, through the deployment of a real Twitter-feed
analysis application we show that the integration of
our adaptive approach inside our system can sustain
a processing latency up to 5 times lower than a static
partitioning approach.

The rest of the paper is organised as follows. In Section II,
we describe our heuristic in more detail. Section III describes
the design decisions that we took for implementing the heuris-
tic on a real system with scalability requirements. The heuristic
is then tested at scale in a series of lab experiments and real-
world use cases in Section IV. Section V presents related
work on partitioning dynamic graphs. We present the main
conclusions and discussion in Section VI.

II. ADAPTIVE ITERATIVE PARTITIONING

In this section, we present the core of our approach, an
algorithm that iteratively applies a greedy vertex migration
heuristic to find a partitioning with good locality. Before we
present the algorithm, we proceed with a few definitions.

A. Problem statement

Definition A dynamic graph G(¢t) = (V(¢), E(¢t)) is a graph
whose vertices V' and edges F can change over time ¢, either
with addition or removal of elements. Let P(t) be the set of

partitions on V' at time ¢ and P(t) the individual partition 1,

. ko
with | P?| = k. These partitions will be such that | J P*(t) =V
it
and Pi(t)NP7(t) = () for any i # j. The edge cut set E. C E
is the set of edges which endpoint vertices belong to different
partitions.

A distributed graph processing system splits the partitions
between compute nodes. Every vertex belonging to the graph
has an assigned partition. At time ¢ = 0, the graph is
loaded with an initial partitioning. New vertices appearing
at t > 0 also have to be assigned to a partition according
to a strategy. The most commonly used strategy in large-
scale graph processing systems is hash partitioning. Given a
hashing function H (v), a vertex is assigned to partition P*(0)
if H(v) mod k = i. Hash partitioning is popular because it
is a highly scalable, lightweight technique that balances the
vertices across partitions, as long as the values generated by
H() function are uniformly distributed.

The ideal repartitioning strategy for dynamic graphs should
work on the following assumptions: 1) changes are not pre-
dictable and partitions need to be updated to prevent perfor-
mance degradation; 2) partitioning should be updated on graph
changes as fast as possible in order to prevent performance
degradation; 3) partition optimisation decisions should be
highly scalable; requiring shared global state brings additional
overhead from synchronising multiple worker machines.

B. Greedy vertex migration

We have defined a heuristic for dynamically adapting graph
partitions that considers the assumptions above. Our heuristic
is based on label propagation [23], which has also been
adopted for optimising the initial load in memory of static
graphs [34]. Vertices iteratively adopt the label of the majority
of their neighbours (no global state needed) until no new labels
are assigned (convergence is reached).

On every iteration t! after the initial partitioning, each
vertex will make a decision to either remain in the current
partition, or to migrate to a different one. The candidate
partitions for each vertex are those where the highest number
of its neighbours are located. Formally, for a vertex v, the
list of candidate partitions is derived as follows: cand(v,t) =
{Pi(t) € P(t),3 w, w € (P{(t)NT(v,t))}, where T'(v,t) is
the set of v plus its neighbours at iteration ¢. Since migrating
a vertex potentially introduces an overhead, the heuristic will
preferentially choose to stay in the current partition if it is one
of the candidates.

At the end of the iteration, all vertices who decided to
migrate will change to their desired partitions. Video 1% shows
how the heuristic evolves partitioning over time in a 2d slice
of a 3d cube of a 10% vertices mesh graph, where every vertex
is physically surrounded by its neighbours. As time goes, the
initial hash partitioning across 9 partitions (represented with a
different colour each) is improved by increasing locality.

INote that we measure time in number of iterations, decoupling the heuristic
from implementation considerations. The actual time taken by an iteration to
complete will depend on the system and the specific load of the system at
that iteration.

Zhttps://dl.dropbox.com/u/5262310/reducedCuts.avi



The heuristic relies on local information, as each vertex v
chooses its destination based only on the location of its neigh-
bours. Dynamism comes natively in this iterative approach.
New vertices are initially assigned a partition according to a
strategy (we opted for the de facto standard, hash modulo) and
the heuristic will automatically attempt to move them closer
to their neighbours (see Figure 4 and related text below for
more details on this). Note that the partitioning algorithm is
executed in the background, inside the processing engine and
in a fully transparent fashion with respect to the applications
running in the system.

C. Maintaining balanced partitions

The greedy nature of the presented heuristic will naturally
cause higher concentration of vertices in some partitions. We
refer to this phenomenon, common to general label propagation
algorithms [23], as node densification. As our goal is to obtain
a balanced partitioning, we set a capacity limit for every
partition.

Definition (Partition Capacity). Let C* be the capacity con-
straint on each partition. At all times ¢, for each partition 1,
[Pt < C.

In order to control node densification, vertices need to be
aware of the maximum partition capacities C*. The remaining
capacity of each partition i at iteration t is C(t) = C% —
|P%(t)]. These values change every iteration, forcing to relax
our local information constraint.

The local and independent nature of migration decisions
make these capacity limits difficult to enforce. At iteration ¢
the decision of a vertex to migrate can only be based on the
capacities C(t) computed at the beginning of the iteration.
These capacities will not be updated during the iteration,
which implies that without further restrictions all vertices will
be allowed to migrate to the same destination, potentially
exceeding the capacity limit.

We ensure these limits will not be surpassed by indepen-
dent decisions by working on a worst case basis. We split the
available capacity for each partition equally and we use these
splits as quotas for the other partitions. Hence, the maximum
number of vertices that can migrate from partition ¢ to partition
j over an iteration t is defined as: Q%7 (t) = %; j #i.
See Section III for system implementation details

This strategy introduces minimum coordination overhead.
Vertices base their decision on the location of their neighbours,
and the partition-level current capacity information, which
must be available locally to every node. Propagating capacity
information is scalable, as it is proportional to the total number
of partitions k.

D. Ensuring convergence

The independent nature of the migration decisions may
delay convergence. Local symmetries in the graph may cause
pairs (or higher cardinality sets) of neighbour vertices inde-
pendently decide to “chase each other” in the same iteration,
as the best option is to join its neighbour.
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Figure 2. Effect of s on Convergence (time per iteration) and Number of

Cuts (normalised to the total number of edges in the graph). Average of 10
experiments performed over two graphs: 64kcube (A) and Epinions(B) from
Table I, partitioning over 9 nodes.

We have addressed these issues by introducing a random
factor to the migration decisions. At each iteration, each vertex
will consider migration with probability s, 0 < s < 1. A value
of s = 0 causes no migration whatsoever, while s = 1 allows
vertices to migrate on every iteration they attempt to.

We explored the effect of different values of s with an
extensive set of experiments on different graphs, assessing
convergence time and node densification. Details about the
selected graphs are provided in Section IV-A. We assumed
full convergence when the number of vertex migrations was
zero for more than 30 consecutive iterations. Figure 2 shows
the effect of s on convergence time and normalised number
of cuts for two different graphs. In both cases, there was no
statistical difference in the number of cuts achieved by the
heuristic, regardless of the value of s. Similar results were
obtained for the remaining graphs used in our study, shown in
Table 1.

However, s can have a significant impact on convergence
time. Low values of s limit the number of migrations ex-
ecuted per iteration, potentially increasing the time required
for convergence. On the other side, high values fail to fully
compensate the neighbour chasing effect, introducing wasted
migrations per iteration that delay convergence and increase
computation time. This is particularly evident in Figure 2 (B).
From our experience, a constant intermediate value (s = 0.5)
will have adequate performance over a variety of graphs: the
reduced message overhead makes processing differences (due
to variations in s) negligible. This is specially true in the
context of long running (continuous) processing systems.

III. SYSTEM DESIGN

In this section, we present our large-scale dynamic graph
processing system. We provide an overview of the compu-
tational model, the distributed system architecture, and finally
detail how we have integrated the iterative adaptation heuristic.

A. Computation model

The main design goals of the system are dynamic graph
adaptation, failure tolerance, and optional snapshotting of inter-
mediate results. The system implements a continuous dynamic
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grayed sets of boxes are executed in parallel in multi-core machines.

graph processing model, following the Bulk Synchronous
Parallel [35] computational model and Pregel’s “think like a
vertex” philosophy. A job is composed of a sequence of one
or more user-defined functions to be executed at each vertex in
the graph. Messages propagate to vertex neighbors at the end
of each superstep. The job executes continuously on the graph
(in order to update the results according to graph changes),
with execution concluding only with an explicit request of the
user, e.g. for maintenance purposes.

When the system starts, the graph is loaded into the system
with an initial partitioning (modulo hash). The system provides
an API for modifying the topology of the graph at any time
(adding and removing vertices and edges from the graph).
Topology change requests are added to a change queue, and
are processed at the end of every job iteration (therefore
after all the functions of a job iteration have completed, in
n supersteps). The system exports this API as an external
interface, allowing other applications to modify the graph in a
streaming fashion. Changes to the graph topology are applied
at the end of each job iteration.

At the start of every superstep, the adaptive migration
heuristic runs over the graph, potentially triggering decisions
to adapt the graph to the last changes to the graph.

Some algorithms are insensitive to changes in the topology
of the graph while the computation is running. For instance
PageRank computation on a changing graph will be inaccurate,
but the algorithm achieves what we refer to as asymptotic
convergence, meaning that the error is progressively reduced
(although never zero). Other algorithms (e.g. single source
shortest path) are very sensitive to changes in the topology
of the graph. For this second type of algorithms, our system
buffers changes while the job iteration is running so that they
do not affect the structure of the graph.

B. System implementation

The main system elements are the Master and the Workers,
as shown in Figure 3. Master and workers communicate syn-
chronously (RMI) to enforce the global synchronisation barrier.
Similarly to Pregel, our system implements an abstract Vertex

class that hides all the complexity from the user, with the
system orchestrating the vertex-level computations in parallel
across the workers. An execution controller creates a number
of threads, depending on the number of CPUs available.

Workers keep input and output message queues for inter-
worker vertex communications, sending messages through
a loosely coupled asynchronous delivery method (we used
RabbitMQ and ZeroMQ as interchangeable message handlers).
Workers group messages sharing the same source and destina-
tion workers, in order to improve transmission efficiency.

The system stores computation snapshots (for failure-
tolerance or for keeping the intermediate results of the running
function) on a distributed-column store cluster (Cassandra
nodes with replicated configuration), keeping balance between
writing speed and consistency. Frequent snapshotting and high
write-throughput are especially important for dynamic graphs,
since intermediate analysis results must be kept for the external
applications to show the output and its evolution.

Workers exchange two types of messages. Application
(vertex to vertex) messages, containing data related to the
computation, and system messages, to support information
exchange (e.g. notifying current capacity to other workers).
While system messages routing is straightforward, dynamic
vertex migration makes routing of application messages more
complicated. A Vertex Locator in each of the workers is
responsible of finding the current location of a vertex.

Each worker has a partitioner that allocates new vertices
to one of the workers. We employ hash partitioning for
this initial decision due to its flexibility. These new vertices
will be later migrated by the heuristic to maximise locality.
A more complex initial placement strategy would involve
more coordination and potentially delay the next computing
iteration. The partitioner contains a migration manager, which
attends the migration requests from local vertices, and allows
them to occur unless there is no capacity quota left for the
desired destination. Buffers are in charge of dampening new
requests to add/delete graph elements. Queues for vertex or
edge deletion/addition can be prioritised. A new vertex can
initially be placed in any of these queues.

C. Vertex migration support

In this subsection we provide the main insights derived
from our experience implementing the system.

Deferred vertex migration At any iteration ¢, vertices
make independent migration decisions, and potentially send
messages to be processed by their neighbours. At ¢, a vertex
does not know the destination of neighbour vertices at ¢ + 1.
Migrating a vertex at the very next iteration after its decision
would require one of the following strategies to avoid losing
messages (see Figure 4 (top)): either forwarding the incoming
messages to the new destination of the vertex, or updating
the messages in the outgoing queues of the other workers
with the updated destination. However, these solutions require
additional synchronisation and coordination capabilities that
would challenge the scalability of the heuristic.

Instead, we solved this coordination problem with no
additional overhead: we force vertices to wait for one iteration
before they migrate. The vertex requests the migration at
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Figure 4. Deferred Vertex Migration to Ensure Message Delivery. Top:
Failed message delivery due to incorrect synchronisation. Bottom: Correct
delivery. The dashed-red circle indicates when the vertex is in a “migrating”
state waiting for one iteration (step) before actually migrating.

iteration ¢, and at the end of the migration the worker sends a
message to the other workers about the upcoming migration.
At the start of the following iteration ¢+ 1 all the workers have
been notified, and the new messages produced during iteration
t 4+ 1 can be sent directly to the new destination (see Figure
4 (bottom)). This way the computation is not directly affected
by the migrations.

Worker to worker capacity messaging The heuristic re-
quires the system to maintain an extra element of global
information: each worker must notify the |C%(¢)| of its par-
titions to the other workers. For scalability purposes, these
messages are sent asynchronously, so that they will be received
and processed at the start of the next iteration. Workers send
information about their predicted future capacity at iteration
t+ 1, ensuring partial freshness. The predicted capacity will be
C'(t+1) = C'(t) -V}, (t+1)+ Vi (t+1), where Vi (t) C V
are the vertices migrating to i in ¢t + 1, and V{,(¢t) C V
are the vertices migrating from ¢ to other partitions in ¢ + 1.

.4 (t +1) is known by the worker as it is based on local
decisions. V! (¢ + 1) is also known by the worker at iteration
t+1 as deferred vertex migration ensures that the workers will
be aware of this value.

IV. EVALUATION

In this section, we evaluate the ability of our technique
to efficiently maintain good quality partitions in the face of
graph changes. We compare our results with state-of-the-art
algorithms. Further, we evaluate our approach by deploying
real-world applications on a Pregel-like continuous graph
processing system that integrates our partitioning algorithm,
and measuring the impact on application performance.

A. Datasets

For our evaluation we use a diverse collection of synthetic
and real-world graphs with varying sizes of up to 300 million
edges and different edge distributions: homogeneous finite-
element meshes (FEM) and power-law degree distribution.

Table I summarizes the dataset. The synthetic mesh graphs
have a 3d regular cubic structure, modelling the electric
connections between heart cells [32]. The power law synthetic
graphs have been generated with networkX [9], using its power
law degree distribution and approximate average clustering
[10]; the intended average degree is D = log(|V]), with
rewiring probability p = 0.1.

We mimic dynamic changes to the synthetic graphs by
adding nodes and vertices using the well-known “forest fire”
model [14], updating the graph with these additions in a single
step.

Table 1. SUMMARY OF THE EVALUATION DATASETS.
Name V] |E| Type Source
Ied 10000 27900 FEM synth
64kcube 64000 187200 FEM synth
1e6 1000000 2970000 FEM synth
1e8 10°% 2.97 %« 105 | FEM synth
3elt 4720 13722 FEM 28]
delt 15606 45878 FEM 28]
plc1000 1000 9879 pwlaw | synth
plc10000 10000 129774 pwlaw | synth
plc50000 50000 1249061 pwlaw | synth
wikivote 7115 103689 pwlaw [15]
epinion 75879 508837 pwlaw 24]
livejournal | 4847571 68993773 pwlaw [2]

In addition to these graphs, we use three real-world sources
of dynamic data:

1)  We processed tweets from Twitter’s streaming API
in real-time for a week, generating nodes from users
and edges from user mentions in tweets.

2)  We processed one-month of anonymised Call Detail
Records from a European mobile operator. Processing
these data in chronological order, results in a dynamic
graph of call interactions, consisting of 21 million
vertices and 132 million edges.

3) We run a biomedical simulation of cell apoptosis
during a cardiac infarction, modelling the human
heart as a FEM. Each cell computed over 70 differ-
ential equations per step in a graph of 100M vertices,
occuping 3TB in RAM.

We ran all the experiments from this section on a datacenter
with 10Gb ethernet. The machines for the experiments had
8-12 cores each, and 64-96GB of RAM. Depending on the
size of the graph, and the complexity of each algorithm, we
involved a proportionate amount of computing nodes, aiming
at 90% memory occupation by the graph partition at the set
capacity. We tried to report our results in a hardware-agnostic
manner (in number of iterations, and relative values) to ease
comparison with other systems.

B. Comparison to State-of-the-art

As we showed in Figure 1, static partitioning approaches
allow the partitioning quality to degrade as the graph changes.
In order to compare them with our heuristic, we would need to
repartition the graph from scratch each time the graph changes.
Hash partitioning, which is the most common practice, does
not change the assigned partition regardless of changes to the
graph, as the assignment depends purely on the id of the vertex
and the number of workers.



Deterministic Greedy (DGR) is a state-of-the-art algorithm
that produces partitions with good locality. It is a streaming
technique that makes a single pass through the whole graph.
Repartitioning our largest graph, which has a size of 3TB in
memory, using this technique, would require a whole pass
on the graph, incurring in overheads that would cancel the
potential benefits from the improved partitioning. See Section
V for more details on the limitations of scratch-map for
dynamic graphs.

Minimum Number of Non-neighbours (MNN) is an alter-
native heuristic that attempts to minimise the number of non-
neighbours when assigning the partition to a vertex [21] instead
of maximising the number of neighbours. We implemented an
iterative migration version of MNN and compared its results
with our heuristic. MNN behaves similarly to our heuristic
for small sized graphs, but its scalability is limited, as most
vertices have a large number of non-neighbours that we need to
locate and count, resulting in 3-5 times slower iteration times
on average for the graphs under study.

Because of these restrictions, in all reported experiments
we compare our adaptive heuristic with the industry standard
hash partitioning.

C. Evaluation of Heuristic

In this section we explore different aspects of the perfor-
mance of our heuristic. We measure how fast and with what
overhead it can (i) converge to a good partitioning, and (ii)
adapt to graph changes.

1) Convergence speed and overhead: Here we explore how
the partitioning quality and the cost of our heuristic change
during its execution. In particular, we measure the evolution
of the ratio of cut edges across iterations, as well as the cu-
mulative number of vertex migrations at each iteration. Figure
5 shows the cut ratio (dashed red), and ratio of migrations
completed (solid blue) for the Livejournal graph. The graph
was initially partitioned using modulo hash. The number of
vertex migrations grows quickly in the initial iterations, with
more than 50% of the migrations completed until the tenth
iteration. During this stage the cut ratio is also improved to
less than 0.7 from the initial 0.9. The rate of migrations slows
down rapidly, and it takes to iteration 47 for the heuristic to
migrate 90% of the vertices. At this stage, 90% of the ratio of
cuts improvement has been achieved.

We observed similar behaviour in the improvement of
cut ratio and number of migrations with different graphs
and initial partitioning strategies. The first iterations of the
heuristic trigger the majority of the migrations, as well as a
significant part of the improvement in the partitioning. This has
an important impact in performance. As the cut ratio decreases,
computation performance improves thanks to the reduced
communications cost. However, migrating vertices brings an
additional overhead that might cause performance bottlenecks
if too many migrations happen at the same iteration. The
dampening factor of s, migration quotas, and the deferred
migration technique, help to smoothen the initial peak of
migrations.

From a performance point of view, the initial iterations will
be affected the most by the additional overhead. Execution
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times quickly decrease as the cut ratio improves, and later it-
erations quickly improve computation execution performance.
As the overhead from vertex migrations decreases and the qual-
ity of partitioning improves, the computation execution time
is optimized. We present the observed relationship between
migrations, quality of the partitioning and performance in the
following subsection.

2) Adapting to graph changes: Next, we evaluate the
efficiency in adapting to changes in the graph. We loaded
the Livejournal graph to our system, partitioned initially with
modulo hash, and ran an analytical query that calculates an
estimation of the diameter, using the algorithm in [13]. Every
50 iterations we inject to the graph a burst of new vertices
based on a forest-fire expansion. Each addition increases the
current graph size by 1, 2, 5 and 10%, respectively. Figure 6
shows the average time per step in seconds on LiveJournal with
a static hash-partitioning approach and our dynamic heuristic
(red). Time is divided in five regions, where we can observe
the adaptation of the heuristic to the initial partitioning, and
each one of the changes to the graph.

At the initial stage (0%), we observe the performance
impact of the convergence behaviour of the algorithm we just
discussed. Over the initial 10 iterations, where 50% of mi-
grations take place, the overhead from migrations significantly
affects computation performance, with the first five running
almost 80% slower than the hash baseline, and the following
five at roughly the same time. The next five iterations show a
substantial improvement, with the average time decreasing to
54% of the time required by the hash baseline. The following
iterations show considerably smaller improvements in the
iteration execution time.

By observing the effect on a static partitioning we can
conclude that the performance overhead from the heuristic
is strongly dependent on vertex migrations. The heuristic
is executed at every iteration, and does not overweight the
benefits from an improved partitioning.

Now, let us observe the changes on execution time when we
perform graph changes. First, looking at the static partitioning,
execution time increases, growing up to an increase over 50%
from the initial execution time. On the other hand, the adaptive
heuristic shows similar behaviour for each graph injection.
Initially execution time degrades due to the migrations over-
head, but quickly the graph is adapted, and the execution time
returns to figures almost identical to the ones obtained with the
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Figure 6. Execution time evolution after injecting changes to the Livejournal
graph. Vertical lines show when changes were injected to the graph, as well
as the percentage of additional nodes and edges that were injected in each
case.

initial graph (0%). Larger additions to the graph inflict higher
performance degradation over the first subsequent iterations,
although after 10 iterations the heuristic has returned to values
close to the optimal. The exact nature of the migrations
overhead is heavily system dependent, but it becomes more
taxing to the system when more abrupt changes occur.

The more abrupt the graph changes are, the more migration
decisions will be potentially triggered in a single migration,
therefore increasing the transient overhead of adaptive migra-
tion. It must be noted that we have tested the heuristic under
the arrival of abrupt changes, whereas changes to dynamic
graphs from real world sources tend to be considerably more
gradual. We show details of these real world experiments in
the following section.

D. Real-world Use Cases

We validated our system with a set of real-world use
cases. We aimed at testing the scalability of the system,
and the capability to cope with dynamic graphs in different
scenarios. We believe that the diversity in the workloads of
each application helps to support the general validity of our
approach.

In all three cases, we ran the same experiments on two
deployments of our system. One with the adaptive partitioning
heuristic, and one with static hash partitioning.

1) Adaptation in real-time Social Network Analysis:
Our first use case evaluates the capability of the system to
analyse a dynamic graph modelled after a continuous stream
of information. We aim to assess the adaptation capabilities of
the heuristic, with respect of the evolution in the quality of the
partitioning, and the impact in execution time.

We captured tweets in real-time from Twitter Streaming
API, and built a graph where edges are generated from
mentions of users. Over this power law graph, we continuously
estimated the influence of certain users by using the TunkRank
heuristic [33]. In this test, execution time is bound by the
number of messages sent over the network at any point in
time (over 80% of the iteration time)
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Figure 7. Throughput and performance obtained by processing the incoming
stream of tweets originated from London. Each point represents the average
of 10 min of streaming data.

We ran the experiment simultaneously in two separate
clusters: One cluster used the adaptive heuristic, while the
other used static hash partitioning instead. In Figure 7 we can
observe the average results from processing tweets collected
in the London area over a whole day (Friday, 5th Oct 2012),
after running continuously for 4 days. The yellow line shows
the rate at which tweets are received and processed by the
system, while the blue and red lines show average execution
times per iteration, with and without adaptation, respectively.
The sudden drop in throughput and iteration time is due to a
failure in one of the workers that led to triggering recovery
mechanisms. Note that the fact that it is represented as a 0
value does not mean it was faster, but it indicates the iteration
was stopped to get back to a previous snapshot.

As can be observed, the average execution time is signif-
icantly improved when applying the adaptive heuristic, with
mean of 0.5 secs instead of 2.5 secs, including the added
overhead.

2) Adaptation in Mobile Network Communications: The
second use case shows how our system can support online
querying over a large-scale dynamic graph. We used a dataset
from a mobile operator, with one month of mobile telephone
calls. The dynamic graph was created by applying a sliding
window to the incoming stream of calls as follows: Nodes
represent users and calls are modelled as edges between these
users. Therefore, new calls add nodes and vertices to the graph
and both are removed from the graph if they are inactive
for more than the window length (one week). The window
size yielded weekly addition/deletion rates of 8 and 4%,
respectively, which is higher than those reported in previous
studies due to the shorter period of analysis [8].

Over this graph, we continuously computed the maximum
cliques of each node. The maximum clique was obtained as
follows: In the first iteration, each vertex sends its lists of
neighbours to all its neighbours. On the next iteration, given a
vertex ¢ and each of its neighbours j, ¢ creates j lists containing
the neighbours of j that are also neighbours with ¢. Lists
containing the same elements reveal a clique. As these lists can
get large, this heuristic produces heavy messaging overhead for
large graphs, especially if these are dense, and not negligible
CPU costs, although not as much as the biomedical use case
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Figure 8. Evolution of the ratio of cuts (Left) and average iteration (step)

time (Right) during the 4 weeks of available data. The experiments were
performed in a cluster of 5 workers (96GB RAM, 10 GbE, 12 cores).

described later. The main problem of applying the iterative
heuristic to this use case is that optimising message passing in
iteration 1 places neighbours together and creates hotspots (all
the members of a clique will be calculating the same cliques
in parallel on the same host). To reduce duplicate calculations
(reduce “hot zones”) only lists for 7 > ¢ are created and only
neighbours of neighbours with ID j > 7 are added to those
lists.

In contrast with the previous scenario, this application
requires freezing the graph topology until a result is obtained,
therefore buffering all the graph changes until the computa-
tion finishes (for two iterations instead of one). Meanwhile,
adaptation occurs at every iteration. This characteristic makes
the scenario more challenging than the previous one, as every
iteration will trigger the adaptation to a batch set of changes
to the graph. Call data was streamed into the system with
a speed up factor of 15, to increase the amount of buffered
changes per cycle, further testing the adaptation capabilities
of the heuristic.

We ran the clique finding application in two separate clus-
ters, with and without the adaptive heuristic. Figure 8 shows
weekly average figures for both cut ratio and throughput, in
order to trace the performance impact. It can be seen that the
adaptive partitioning heuristic maintained a stable number of
cuts, resulting in consistently higher throughput (more than
twice the throughput provided by hash partitioning). Moreover,
weekly trends show that the static scenario experiences further
performance degradation over time due to the higher cut ratio.

3) Adaptation in Biomedical Simulations: The final sce-
nario assesses the suitability of the proposed system and
heuristic for implementing large scale biomedical simulations.
Biomedical simulations require long-running computations,
with heavy CPU usage. Simulations are often implemented
on specialised clusters, using message-passing libraries such
as MPI. The use case presents a different type of application
(long-running simulations), that operates at a considerably
higher scale than the previous scenarios.

The input graph is a 100 million vertex/300 million edges
FEM representing the cellular structure of a section of the
heart. Each vertex computes more than 32 differential equa-
tions on one hundred variables representing the way cardiac
cells are excited to produce a synchronised heart contraction
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Figure 9. Cumulative execution time after expanding the heart cell FEM

using a forest fire model (extra 107 vertices and 3 % 107 edges). Results were
obtained in a cluster of 63 workers (64GB RAM, 10GbE and 12 Cores)

and blood pumping [32]. The graph state occupies a total of
3TB in memory among the 63 worker machines running the
simulation. Using static hash partitioning (without the adaptive
heuristic), simulation time is still dominated by the exchange of
messages (more than 80% of the time), even though CPU time
is not negligible (more than 17%). The iterative heuristic works
in this use case similarly to the other experiments, achieving
a final speedup of 2.44 after convergence.

At a certain point in the simulation, we mimic the effect
that adding stem cells differentiating into cardiac tissue would
have. These new cells are injected to the graph as an additional
10M vertices and 30M edges, joining the tissue in the border
of the infarcted region, based on preferential attachment. These
changes bring the total memory usage close to full occupation
in the cluster.

We show in Figure 9 the cumulative execution time, from
the instant changes were added to the graph structure, for both
a static hash partitioning (blue) and our iterative heuristic (red).
As expected, the first iterations are affected by the overhead
from the triggered vertex migrations, but in the long term
the improved partitioning significantly shortens simulation
time. Comparing these results with previous use cases the
heuristic performs better on continuously changing graphs. It
will be worth to adapt to abrupt changes in the graphs only
when facing long-running computations, such as biomedical
simulations.

V. RELATED WORK

The idea of dynamically adapting a static graph to changes
in load of the graph was pioneered by the high performance
computing (HPC) for FEMs. Dynamic partitioning methods
can be broadly classified as: scratch-map, those that create
a new partition from scratch, and diffusive, those that take
previous partitions into account (see [27], for example).

Scratch-map Partitioning heuristics are executed at load
time to improve performance in massive graphs [34]. Another
example of initial load optimisation heuristics are stream
partitioning techniques [29]. Streaming heuristics process a
stream of graph nodes and assign each node to a partition
based on the knowledge of previous decisions (accumulating



global knowledge as the graph is streamed). The streaming
finished once the graph file has been completely read.

Being executed only once, scratch-map techniques cannot
prevent performance degradation arising from changes to the
graph structure over time. In the FEM graphs community the
proposed approach to adapt to graph changes is to execute
partitioning periodically, creating a whole new set of partitions
each time [27]. However, recomputing from scratch and creat-
ing new sets of partitions is not only time consuming because
the whole graph needs to be re-evaluated, but also implies a
huge overhead in object deletion and creation.

Recently more sophisticated techniques have been in-
troduced to optimise graph reloading (assuming not many
changes have occurred) [19]. These re-streaming mechanisms
make a new pass of the graph every time adaptation is needed,
which may not scale even when partition parallelisation is
doable in separate workers (streaming the whole graphs is still
required on every parallel worker). Also, there is a high volume
of communication between workers between restreams: each
worker reports on their share of the partitioning and this
compiled list is distributed to all workers for the next restream.

Summing up, scratch-map partitioning produces poorer
results when adaptation is light or changes are scattered across
the whole graph, since the new partitioning may be totally
different to the old one. They also require some degree of
global knowledge that calls for synchronisation mechanisms
in parallel settings. In the context of FEMs, scratch-map
geometrical, spectral or multi-level methods require global
visibility of the graph to make the best partition decision [27].
Streaming techniques accumulate previous partitions to make
decisions more accurate on incoming vertices, but still require
keeping track of already “seen” vertices at a global level. Also,
scratch partitioning of large graphs may take a few hours (see
[31]), which shows how costly this may be.

Diffusive Partitioning methods work under the assumption
that only a small fraction of the graph has changed and most of
the work done in partitioning, loading and instantiating objects
can be reused.

Most diffusion-based repartitioners for FEMs are based on
Sflow solutions that prescribe the amount of vertices to be trans-
ferred between partitions, which requires global knowledge
of the graph, the partitions and the work performed by each
vertex (see [27]). Multilevel local partitioning solutions exist
for FEMs [26], [4], but these assume the initial coarsening
phase has already been done and work on a static mesh graph
where load needs to be balanced and partitions consequently
change but no new entities are introduced in the graph at
runtime.

ParMETIS [20] is arguably the most salient example,
it moves vertices belonging to the borders of neighbouring
partitions trying to minimise edge-cuts across partitions while
keeping partitions balanced until no additional gain can be ob-
tained. ParMETIS leverages parallel processing for partitioning
the graph, through multilevel k-way partitioning and parallel
multi-constrained partitioning schemes. While its hierarchical
approach is excellent for FEM networks, it requires global
visibility during the initial partitioning phase: all the pieces
of the graph are scattered to all threads using an all-to-all
broadcast operation.

As mentioned above, ParMETIS relies on the Fiduccia-
Mattheyses algorithm, which makes heavy use of a bucket
data structure to sort all possible vertex moves per descending
edge cut gain. Candidate vertices are taken out of the bucket
to check whether moving them would preserve balanced par-
titions. If not, the vertex is put aside and the next one is
taken out of the bucket. Once a vertex has been moved all the
vertices kept aside are reintroduced in the bucket. While this
works well for a single partitioning, it is extremely ineffective
when applied to repartitioning. This heavy cost of re-executing
for repartitioning the graph as its topology changes explains
why ParMETIS has been used by some systems for initial
partitioning only [13].

Beyond FEMs, GPS [25] lets vertices move to the partition
where most of their neighbours are. To simplify location of a
migrated vertex its ID (used to determine in which machine
the vertex has been placed) is changed when the vertex is
migrated. Adding new vertices would required fine grained
synchronisation between workers, so that the IDs of new
vertices do not conflict with migrated ones.

Other Dynamic Approaches. While we focused on
changes in the topology of the graph, other works focus
on different aspects of graph dynamism. For instance, some
systems dynamically adapt the partitioning of the graph to the
bandwidth characteristics of the underlying computer network
to maximise throughput [6].

Dynamic replication techniques replicate parts of the par-
tition or whole partitions to load balance work across repli-
cas, preserving low latency in responses [36], [22]. These
approaches cannot cope with a continuous stream of changes in
the topology and their initial static partitions would eventually
be obsolete, making replication too fragmented.

Enabling graph mining applications in real-world envi-
ronments calls for scalable partitioning heuristics that take
dynamic changes in the topology of the graph into consid-
eration to mitigate performance degradation. Current parallel
diffusive/scratch-map partitioning methods do not scale well
since they some degree of require global knowledge and
coordination.

Algorithms for Dynamic Graphs In our experiments we
have shown how our system applies algorithms to dynamic
graphs in two ways. Some algorithms, such as TunkRank, can
operate on a changing graph, whereas in other cases we have to
buffer graph changes and freeze the graph during computation.
As information becomes more dynamic, and results are needed
in a shorter time, a new breed of algorithms that can cope with
changes in the topology of the graph is needed.

Previous approaches on algorithms for dynamic graphs
were based on observing the discrete evolution of classic
topological metrics of the graph (such as time-respecting paths,
connectivity, network efficiency, centrality, patterns/motifs),
see [11] for a recent review. More recent work tries to redefine
some of these metrics to take dynamism into account [18].

VI. CONCLUSIONS

To the best of our knowledge, there is no system that con-
tinuously processes large-scale dynamic graphs, while adapting
the internal partitioning to the changes in graph topology. Our



system adapts to large-scale graph changes by repartitioning
while 1) greatly reducing the number of cut edges to avoid
communication overhead, 2) producing balanced partitioning
with capacity capping for load balancing, and 3) relying only
on decentralised coordination based on a local vertex-centric
view. The heuristic is generic and can be applied to a variety
of workloads and application scenarios.

Real world graphs are dynamic, and mining information
from graphs without considering the evolution of their structure
over time can have a significant impact on system performance.

In this work we have focussed on adapting to graph
changes in a highly scalable way, while working under the
challenges of migrating vertices in a distributed system. The
presented heuristic adapts the graph partitioning to graph
dynamics at the same time as computations take place. We
show through our experiments that the heuristic improves
computation performance (with higher than 50% reduction
in iteration execution time), adapting to both continuous and
abrupt changes.

A key performance factor for adapting to graph changes
is the tradeoff between the additional overhead incurred by
repartitioning the graph, and the effective performance im-
provement from a better graph partitioning. We have found
vertex migration to be the predominant source of overhead
(specially when migrating a high number of vertices), and
we will work on further system optimisations for efficient
vertex creation and migration and characterisation of graph
growth/shrinkage.

REFERENCES

[1] Apache giraph, http://giraph.apache.org.
[2] Laboratory for Web  Algorithms.
http://law.di.unimi.it/datasets.php.

Universita de  Milano,
[3] Tweets about steve jobs spike but don’t break twitter peak record,
http://searchengineland.com/tweets-about-steve-jobs-spike-but-dont-

break-twitter-record-96048.

[4] J. G. Castaios and J. E. Savage. Repartitioning unstructured adaptive
meshes. In IPDPS, pages 823-832. IEEE Computer Society, 2000.

[5] B. Chao, H. Wang, and Y. Li. The trinity graph engine, March 2012.

[6] R. Chen, X. Weng, B. He, M. Yang, B. Choi, and X. Li. Improving large
graph processing on partitioned graphs in the cloud. In SoCC, 2012.

[7]1 R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang,
L. Zhou, F. Zhao, and E. Chen. Kineograph: taking the pulse of a fast-
changing and connected world. In EuroSys, 2012.

[8] C. Cortes, D. Pregibon, and C. Volinsky. Computational methods for
dynamic graphs. Journal of Computational and Graphical Statistics,
2003.

[9]1 A. Hagberg, P. Swart, and D. S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos
National Laboratory (LANL), 2008.

[10] P. Holme and B. J. Kim. Growing scale-free networks with tunable
clustering. Phys. Rev. E, 65, Jan 2002.

[11] P. Holme and J. Saramaki. Temporal networks. Phys. Rep. 97-125,
2012.

[12] G. Karypis and V. Kumar. Metis - unstructured graph partitioning and
sparse matrix ordering system, version 2.0. Technical report, 1995.

[13] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In EuroSys, Apr. 2013.

[14] J. Leskovec, S. Dumais, and E. Horvitz. Web projections: learning from
contextual subgraphs of the web. In WWW, 2007.

[15] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and
negative links in online social networks. In WWW, 2010.

[16] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Graphlab: A new framework for parallel machine learning.
In UAI 2010.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In PODC, 2009.

[18] V. Nicosia, J. Tang, M. Musolesi, C. Mascolo, G. Russo, and V. Latora.
Components in time-varying graphs. AIP Chaos: An Interdisciplinary
Journal of Nonlinear Science, 22, 2012.

[19] J. Nishimura and J. Ugander. Restreaming graph partitioning: simple
versatile algorithms for advanced balancing. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’13, pages 1106-1114, New York, NY, USA, 2013.
ACM.

[20] ParMETIS. Parmetis - parallel graph partitioning and fill-reducing ma-
trix ordering, http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview,
October 2012.

[21] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-
dasan. Managing large graphs on multi-cores with graph awareness. In
USENIX ATC, 2012.

[22] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez. The little engine(s) that could: scaling online social
networks. In Proceedings of the ACM SIGCOMM 2010 conference,
SIGCOMM ’10, pages 375-386, New York, NY, USA, 2010. ACM.

[23] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm
to detect community structures in large-scale networks. Physical Review
E, 76(3), 2007.

[24] M. Richardson, R. Agrawal, and P. Domingos. Trust Management for
the Semantic Web. 2003.

[25] S. Salihoglu and J. Widom. Gps: A graph processing system. Technical
report, Santa Clara, CA, USA, 2012.

[26] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel diffusion
algorithms for repartitioning of adaptive meshes, 1997.

[27] K. Schloegel, G. Karypis, and V. Kumar. Wavefront diffusion and Imsr:
Algorithms for dynamic repartitioning of adaptive meshes. IEEE Trans.
Parallel Distrib. Syst., 12(5):451-466, May 2001.

[28] A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary
search and multilevel optimisation approach to graph partitioning. J.
Global Optimization, 29, 2004.

[29] I Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In KDD, 2012.

[30] P. Stutz, A. Bernstein, and W. Cohen. Signal/collect: graph algorithms
for the (semantic) web. In ISWC, 2010.

[31] Y. Tian, A. Balmin, S. Corsten, S. Tatikonda, and M. J. From think like
a vertexto think like a graph- The Proceedings of the VLDB Endowment
(PVLDB), 77(5-6):185-195, 2014.

[32] K. Ten Tusscher, D. Noble, P. Noble, and A. Panfilov. A model for
human ventricular tissue. Am J Physiol Heart Circ Physiol, 2004.

[33] D.  Tunkelang. A twitter analog to  pagerank,
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank.

[34] J. Ugander and L. Backstrom. Balanced label propagation for parti-
tioning massive graphs. In Proceedings of the sixth ACM international
conference on Web search and data mining, WSDM ’13, 2013.

[35] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8), 1990.

[36] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective partition





