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Abstract 

Self-organised ferromagnetic nanowires encapsulated by multiwalled carbon nanotubes 

produced by CVD methods based on the thermal decomposition of ferrocene commonly 

contain the elemental phases: -Fe, -Fe, and the carbide Fe3C. A continuous -Fe nanowire 

and control of nanowire and nanotube length and diameter are desirable. High -Fe nanowire 

content has been achieved through synthesis temperature modification, vapour flow-rate, and 

post-synthesis heat treatment.  Length and diameter are intimately related to the self-

organisational growth processes; reported approaches include regulation of the vapour supply 

to minimise dispersion in the nucleation process and introduction of other growth-modifying 

precursor elements. High vapour flow-rate produces downstream fluctuation resulting in 

discontinuous nanowires and diameter dispersion, or external decoration with spherical 

particles, results from rapid evaporation of the ferrocene precursor. We report a low vapour 

flow-rate and constant evaporation temperature method which achieves continuous -Fe 

nanowires on the same scale as the nanotube for lengths >10 m without the necessity of 

post-synthesis heat-treatment or introduction of other precursor elements. The low vapour 
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flow-rate regime has the advantage of sustaining the intrinsic temperature gradient at the tip 

of the forming structure which drives the vapour feedstock to the growth front to guarantee 

continuous nanowire formation. 

 

1. Introduction 

Ferromagnetic nanowires encapsulated by multiwalled carbon nanotubes are synthesised by 

CVD methods in which the species produced by the thermal decomposition of metallocenes 

provide nucleating metal droplets and the chemical feedstock for self-organised growth of 

structures perpendicular to an inert substrate at elevated temperature [1-18]. Such in situ 

carbon nanotube filling restricts the ferromagnetic nanowire to those transition metals (and 

alloys thereof) which catalyse the hydrocarbon decomposition and graphitic carbon formation 

that are central to the self-organisational process (Fe, Ni, Co). Confinement of the nanowire 

within the central capillary of the nanotube can result in unusual compositions not readily 

obtainable in the bulk. The carbon nanotube chemically passivates the nanowire and prevents 

its mechanical degradation. Applications follow from the ability to tune the magnetic 

response through the composition and shape anisotropy of the nanowire [19]: microwave 

absorption materials [20], nanocomposite filler particles [21], biomedical [22-27], nanoscale 

inductors [28], magnetic force microscopy probes [29], and magnetic paper [30].   

The majority of effort has focussed on encapsulation of elemental - Fe, owing to both the 

characteristically high saturation magnetisation and coercivity, by thermal decomposition of 

ferrocene (Fe (C5H5)2) at high temperature, Fe (C5H5)2 → Fe +H2 + CH4 + C5H6 + … [17]. 

The reaction product is a closely-packed array of individual multiwalled-carbon-nanotube-

encapsulated single-crystal nanowires oriented perpendicular to the substrate.  The most 

commonly observed encapsulated nanowires contain crystallites of α-Fe, γ-Fe, and Fe3C [11, 

12, 15-17]. The presence of -Fe is surprising since it is a high temperature phase in the bulk. 
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In many reports, the nanowires are not continuous but comprise isolated 10s-100s nm length 

crystallites with a much greater intermediate spacing and the nanotubes have low graphitic 

quality (as judged by the straightness of the structure.)  The growth mechanism is 

controversial but there is consensus for the general features, usually expressed within a 

vapour-liquid-solid framework: liquid droplets of elemental Fe accumulate on the substrate, 

hydrocarbons from the vapour then decompose on its catalytic surface; carbon is absorbed 

until the solubility limit of carbon in iron is reached; upon saturation, surface carbon is 

catalytically graphitised by the Fe resulting in multiwalled carbon nanotube growth 

perpendicular to the substrate. Subsequent growth is driven by supply of iron and carbon 

species from the vapour either to the base of the structure or to the open tip, or both [17]. 

The CVD systems employed in the production of these structures generally comprise a 

horizontal quartz tube inside a two-zone reactor; ferrocene powder is evaporated in the lower-

temperature first zone, the vapour is conveyed downstream to the higher-temperature second 

zone by flowing inert gas (Ar, N2) where the structures nucleate and grow on the substrates. 

The temperature of the first zone is selected to favour a controlled evaporation to ensure a 

regular supply of vapour feedstock to the second zone; that of the second is chosen to 

thermally decompose the ferrocene, activate the catalytic decomposition of the resultant 

hydrocarbon species on the surface of substrate-supported Fe droplets, and to promote a high 

degree of graphitisation in the nanotube walls. The lower temperature limit for the first zone 

is fixed by the melting point of ferrocene, 175 ⁰C, that of the second zone is dictated by the 

temperature range for the decomposition of Fe3C into α-Fe and graphitic carbon when in 

contact with a graphitic phase, 600-750 ⁰C [31]. The fundamentals of this Fe3C into α-Fe 

process are unclear but are of great interest in the context of steel corrosion in carbonising gas 

atmospheres [32].  Direct observation suggests that diffusion of carbon from the nanowire to 

the nanotube is rate-limited by an intermediate amorphous layer [12].  
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The presence of Fe3C in the encapsulated nanowire is, therefore, the result of incomplete 

diffusion of carbon from within the nanowire to the junction with the nanotube; consequently, 

quenching of the reaction products has been used to intentionally capture high Fe3C content 

[2]. The presence of -Fe, which transforms to -Fe below 912 ⁰C according to the standard 

Fe-C phase diagram, usually as a minority component is thought to result from suppression of 

the - transition, which results in a 9% volume increase, by confinement of the internal 

nanowire by the high elastic modulus of the carbon nanotube walls (~1 TPa) [12].  

Consequently, post-synthesis heat treatment has been the route to both minimising the 

nanowire carbide content and maximising the Fe content by providing the thermal energy 

to promote the - transition [33, 34].  

A continuous, completely -Fe nanowire is desirable for some important applications, as is 

control of both nanowire and nanotube length and diameter.  The numerous reports 

concerning nanowire content control suffer from several major shortcomings: i) the zone-two 

(synthesis) temperature is expressed as a wide range since the ferrocene vapour is consumed 

in the sharp temperature gradient at the entrance to the second zone, ii) the post-synthesis 

cooling rate of the reactor, which could play a critical role in determining the phase content 

of the nanowire owing to the C-diffusion and - transition arguments expressed above, is 

seldom quantified or controllable, and iii) little attention is paid to the origin of local 

diffusion gradients which drive the vapour feedstock to the growth front; often, the tacit 

assumption is that it is simply concentration driven and occasionally the system-specific, 

radial temperature gradient between the axis of the vapour-containing tube and substrate is 

evoked. The temperature-gradient driven model could favour base or tip growth depending 

on whether the substrate or the vapour is the hotter.  

The recent report of a radial Fe-filled carbon nanotube structures departing from a central 

particle synthesised in fluctuating, flowing vapour produced by the thermal decomposition of 
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ferrocene points to the temperature gradient produced by hydrocarbon decomposition 

(exothermic) and graphitic carbon formation (endothermic) at an open tip as that which 

drives the feedstock to the active growth front when the vapour flow rate is low (~10 sccm) 

[35]. This conclusion follows from the radial symmetry and analysis of the nanowire 

composition, full discussion is contained within Ref. 35. Essentially, a low vapour flow-rate 

facilitates continuous growth by not damping this temperature gradient; thus the balance of 

growth control is toward the intrinsic features of hydrocarbon decomposition and away from 

external process parameters. This work is essentially an equivalent study with heterogeneous 

nucleation (i.e. the nucleating iron particle is formed on a surface) rather than homogeneous 

nucleation (i.e. nucleating iron particle is formed in the vapour). 

 Boi et al recently concluded that high vapour flow-rate (~100 sccm) promotes high -Fe 

content as consequence of driving deposition into a higher temperature region of the reactor 

to promote C-diffusion and -transitions but at the expense of poor nanowire continuity 

[36]. 

 With horizontal vapour flow and a perpendicular growth front there will clearly be 

perturbation of downstream feedstock vapour by upstream structures resulting in degradation 

of quality. It is known that the nanowire diameter is proportional to that of the nucleating Fe 

particle and that diffusion of carbon from the nanowire feeds the growth of the nanotube so 

there is also a scaling of the number of nanotube walls (i.e. nanotube diameter) with 

encapsulated nanowire diameter [7, 17]. Independent control of these diameters can be 

achieved either by ex situ nanotube filling or introduction of a chlorine-containing precursor 

and hydrogen [37, 38]. Numerous reports have addressed the question of poor nanowire 

continuity; Leonhardt et al. reported that continuity of is improved by simply increasing the 

zone-two (synthesis) temperature [7]. Shamsudin et al. observed that magnetic properties 

were highly dependent on changes of synthesis temperature [18]. The diameter of both the 
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nanowires and nanotubes has been found to scale with the ferrocene evaporation temperature 

(zone one) close to the melting point temperature, but elevation to ~400 ⁰C  results in vapour-

phase nucleation of spherical particles which deposit on the exterior of the nanotube [9,39].  

Given the multiple considerations for the selection of the synthesis temperature, the unknown 

source of to-growth-front diffusion of vapour feedstock, system-specific reporting, and 

coupled variables, it is not surprising that there is little consensus for universal optimum 

growth conditions.  

We contend that in view of the evidence for the open-tip temperature gradient model at ~10 

sccm flow rates, synthesis conditions which favour this condition are desirable since, freed of 

the necessity to provide a temperature gradient which drives vapour feedstock to the growth 

front, it facilitates fine-tuning of the synthesis temperature to favour decomposition of Fe3C 

into α-Fe and graphitic carbon [35]. Low rates of supply of vapour feedstock also favour low 

carbide content and the desirable  transition owing to the associated longer residence 

times (time exposed to elevated temperature). By a similar logic, this regime will guarantee 

nanowire continuity by providing a local, rather than global, temperature gradient to drive the 

vapour feedstock to the active growth front. Here, we outline a systematic study of length-

diameter, and nanowire content based on ~10 sccm flow rate and a constant close-to-melting-

point temperature for the evaporation of ferrocene. The latter consideration is intended to 

avoid dispersion in the diameter of the nucleating Fe droplet. The synthesis temperature is 

fixed in narrow range 880 - 950 ⁰C to encourage C-diffusion but minimise damping of the tip 

temperature gradient by the natural gradient in the reactor.  Under these constrains, the key 

variable is the mass flow rate of ferrocene vapour into the second zone of the reactor.  

Here we report a low vapour flow-rate and constant evaporation temperature method which 

achieves continuous -Fe nanowires on the same scale as the nanotube for lengths greater 

than 10 m without the necessity of post-synthesis heat-treatment or introduction of other 
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precursor elements. The magnetic response is comparable to those for structures produced by 

more complicated syntheses. For initially mixed-phase nanowires of length less than 10 m, 

we confirm that continuous -Fe nanowires can be achieved by post-synthesis heat treatment. 

 

2. Experimental 
 

2.1. Synthesis 

 

The structures were grown on silicon substrates with a thin native oxide layer held within the 

second zone of a two-zone horizontal CVD reactor. The source vapour was produced by 

evaporation of ferrocene in the first zone using a coil preheater of low thermal mass to 

minimise on-off times. The temperature of the preheater was kept constant at 185 ⁰C by 

manually adjusting the electrical power delivered to the preheater. The ferrocene vapour was 

carried from the first to the second zone in an argon flow of 10±2 sccm at atmospheric 

pressure. The substrates were placed in the second zone in a region in which the lateral 

temperature gradient was 10 ⁰C/cm from 880 ⁰C to 950 ⁰C. The radial temperature gradient 

between the axis of the quartz tube and its surface is unknown. The rates of ferrocene vapour 

mass flow used here (30-50 mg/min.) were calculated by dividing the mass of ferrocene 

powder loaded into the preheater by the duration time as measured from onset of supply of 

power to the preheater to the time at which complete evaporation occurred (determined by 

visual inspection). After the synthesis, the reactor was cooled to room temperature at the 

natural rate of the furnace (11 hours) and the structures mechanically removed from the 

substrates.  

2.2. Characterization 

 X-ray diffraction (XRD) analyses were performed using a Siemens D5000 diffractometer 

and an Xpert-Pro diffractometer (both with Cu Kα source). The Rietveld refinement method, 
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which applies the least-squares approach to match a theoretical line profile to the 

diffractogram, was used to identify, and estimate the relative abundances of, the phases 

contained within the sample from the area enclosed by diffraction peaks. Scanning electron 

microscopy (SEM) and backscattered electron investigations were performed using an FEI 

Inspect F system. Transmission electron microscopy (TEM) was performed using a 200 kV 

Jeol Jem 2010. High resolution transmission electron microscopy (HRTEM) was performed 

using a 100 kV Nion UltraSTEM 100.The samples for TEM were prepared by dropping small 

volumes of material dispersed in ethanol onto carbon-coated copper grids followed by drying 

in ambient conditions. The magnetic measurements were performed at 5 K with a Quantum 

Design MPMS-7 SQUID magnetometer on the material mechanically removed from the 

substrates. 

3. Results and discussion 

Fig. 1 shows typical SEM images of as-grown structures vertically aligned on silicon 

substrates. Mass flow rates (duration time in brackets) 30 mg/min (1.16 min), 34 mg/min 

(1.16 min), 39 mg/min (1.5 min), 44 mg/min (1.5 min), and 50 mg/min (1.5 min) has an 

approximately linear relationship with the nominal length obtained from visual inspection: 3 

μm, 5 μm, 10 μm, 15 μm, and 20 μm, respectively. 
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Fig.1. Representative SEM micrographs of structures produced by various rates of ferrocene mass 

flow: (A) 30 mg/min, (B) 34 mg/min, (C) 39 mg/min, (D) 44 mg/min, and (E) 50 mg/min. The image 

is of a cross-section through the silicon produced by cleaving through the centre of the substrate.  

Compositional analysis of as-grown structures was performed by Rietveld analyses of XRD 

data, Fig. 2. The common peak at 26.2⁰ corresponds to the characteristic 002 reflection of 

graphitic carbon structure of the multi-walled carbon nanotube, the symmetry and the 

narrowness of this peak is indicative of the high degree crystallinity. This conclusion is 

supported by the uniformity and integrity of the nanotube walls directly imaged by HRTEM, 

Fig. 4 (D, E). The main encapsulated phases were revealed to be those commonly observed, 

namely α-Fe, -Fe and Fe3C. The presence of the α-Fe in the samples is revealed by 

observation of the 110 reflection at 44.8⁰ while the presence of the -Fe is revealed by the 

111 and 200 reflections at 43.8⁰ and 50.8⁰, respectively. Multiple reflections indicative of 

Fe3C were observed along with 200, 121 and 211 reflections at 35.3⁰, 37.7⁰ and 42.9⁰, 

respectively. The dependence of the nanowire composition on length is summarised in Table 

1.   

mailto:m.baxendale@qmul.ac.uk


*Corresponding author. Email address: m.baxendale@qmul.ac.uk (Mark Baxendale) 

    

  

 

Fig. 2 Typical X-ray diffraction data (red), and Rietveld refinement (green), for lengths 3 µm (A), 5 

µm (B), 10 µm (C), 15 µm (D), and 20 µm (E). The refinement was made with the following 

components α-Fe (Im -3m, Crystal Open Database Ref.64998), γ-Fe (Fm-3m, Crystal Open Database 
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Ref.9008469), Fe3C (Pmna, Crystal Open Database Ref.16593), graphitic carbon (P63/mmc, Crystal 

Open Database Re. 53781), Fe3O4 (space group Fd -3m).  The origin of oxide components is 

oxidation of residual elemental iron when the sample is removed from the reactor and handled in 

air.  

Length (m) α-Fe (wt.%) -Fe (wt.%) Fe3C (wt.%) 

3 70 24 6 

5 74 22 4 

10 94 3 3 

15 87 10 3 

20 94 5.7 0.3 

    
 

Table1. Relative abundances of the nanowire phases extracted from the Rietveld refinement of 

the XRD data in Fig. 2 

Clearly there is a step change in -Fe content, from ~70% to ~90%, as the length increases 

from 5 m to 10 m. The diminution of the -Fe and carbide with increasing length is likely 

to be the consequence of the longer residence time (the length of time at elevated 

temperature) increasing the probability of α transitions and facilitating carbon diffusion 

from nanowire to nanotube. An alternative explanation for the diminution of -Fe is that these 

crystallites occur at the ends of the nanowire where confinement effects could be expected to 

dominate.  

The nanowire and nanotube diameter distributions of the 5 µm and 10 µm length were 

determined from TEM micrographs (examples in Fig.4) of the 5 µm and 10 µm length, Fig.3.  
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Fig. 3. Diameter distributions for lengths 5m and 10 m obtained from direct observation of TEM 

micrographs: (A) nanowire and (B) nanotube, the dotted lines are guides to the eye. For length 

5m, the average nanowire diameter is 18 nm and that of the nanotube is 48 nm. For the 10 µm 

structure, the average nanowire diameter is 30 nm and that of the nanotube is 90 nm. 

 

Clearly, there is approximate doubling of both the nanowire and nanotube diameters as the 

length increases from 5 m and 10 m, which is likely to result from the larger nucleating 

droplet diameter that is the consequence of ferrocene vapour partial pressure as the mass flow 

rate is increased from 36 mg/min to 44 mg/min. The encapsulating nanowires in the 5 μm and 

10 μm length structures are continuous for at least 3 μm and 6 μm, respectively, (Fig. 4 (A-

C); the latter value was confirmed by back-scattered electron images of randomly oriented 

structures, an example is given in Fig. 4(C); the upper encapsulated nanowire (bright region) 

is continuous for 6 μm.  HRTEM images Fig. 4(D, E) show detail of the crystalline structure 

of the nanowires and nanotube. Note that in contrast to previous reports of intermediate 

amorphous layers, there is an abrupt interface between the nanowire and nanotube, Fig. 4(E) 

[12]. 
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The principle of carbide and -Fe reduction through post-synthesis heat-treatment mixed-

phase nanowires was demonstrated by annealing a powder of 10 µm-long structures at 500 

⁰C and for 12 hours. The post-heat-treatment XRD and Rietveld analyses revealed a slight 

increase of α-Fe content from 94%  to 98.4% after  but reduction of the other phases to 

negligible amounts, -Fe (0.65%) and Fe3C (0.95%). 
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Fig. 4 TEM images 5 µm long structures showing the continuity on the nanowire (A). (B) A 

sequence of transmission electron micrographs following an individual filled multi-walled carbon 

nanotube (MWCNT); the filling is continuous for   ̴ 5 µm. (C) Back-scattered electron image of 

randomly  oriented 10 µm long structures showing the encapsulated nanowire (bright regions), 

and (D,E) Typical HRTEM images of the 5 µm and 10 µm long samples, respectively; the inter-

planar distances of in the nanowire and nanotube, 2 Å and 3.4 Å, correspond to the (110) planes of 

α-Fe and (002) planes of graphitic carbon, respectively. 

The magnetic field dependence of the magnetization of as-grown material in randomly 

oriented powder form exhibited ferromagnetic hysteresis at 5 K, Fig.5. The saturation 

magnetization, Ms and coersivity Hc show length dependence. We observed a slight increase 

of the saturation magnetization with increasing length and a slight decrease of the coercivity, 

Ms (5µm) = 42 emu/g and Ms (10 µm) = 51.5 emu/g, Hc (5 µm) = 910 Oe and Hc (10 µm) = 

846 Oe.  Using the same Rietvelt refinement method outlined in Fig.2, the relative 
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abundances of the components found in the powder comprising 5 µm long structures 

expressed as wt.% are 65% carbon nanotube, 24% α-Fe, 0.4% -Fe, 0.6% Fe3C, and 10% 

Fe3O4, whereas for 10 µm long structures, 53% carbon nanotube, 32% α-Fe, 0.39% -Fe, 

0.49% Fe3C, and 14% Fe3O4. Note that the oxide components are a consequence of the 

oxidation of residual external elemental iron when the sample is removed from the reactor 

and handled in air; this conclusion follows from direct observation of unencapsulated, 

approximately spherical, external Fe3O4 crystallites by TEM. Based on these result we can 

say that the increase of the saturation magnetization with increasing the length may be 

attributed to the greater abundance of ferromagnetic phases (-Fe, Fe3C, and Fe3O4) in the 10 

µm structures compared to that of the 5µm length sample. The coercivity difference can be 

explained with the increase of the nanowire diameter since the external oxide particles are 

approximately spherical. A coercivity increase with reduced the diameter has been previously 

reported [40, 41].  The observed coercivities of 846 Oe and 910 Oe are much higher than that 

for the bulk polycrystalline Fe (~1 Oe) and nanocrystalline Fe (~23 Oe). The large shape 

anisotropies of the nanowires can account for the large coercivity. As can the well-known 

dependence on crystallite dimension (d); for d>30 nm, coercivity is proportional to 1/d and 

for d<30 nm, coercivity varies as d -6 [42, 43].                              
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Fig. 5 The magnetic field dependence of dc magnetization at T = 5 K for powder comprising 5 µm 

long structures (red line) and 10 µm long structures (black line).  

The saturation magnetisation (Ms = 51.5 emu/g) is the 10 μm length sample at an applied 

field of 15 kOe. Subtracting the weighted diamagnetic contribution of the carbon nanotube 

walls, (Ms = -0.7 emu/g) we calculate the combined saturation magnetization of the 

ferromagnetic material present in our sample (α-Fe, Fe3C and Fe3O4) to be Ms ~ 112 emu/g at 

5 K. This value is lower than the estimated saturation magnetization Ms ~181 emu/g at 5 K 

for a bulk sample corresponding to the same fraction of ferromagnetic components calculated 

by taking the weighted sum of the saturation magnetization of bulk α-Fe (Ms ~220 emu/g; Tc 

= 1043 K), Fe3C (Ms ~169.3 emu/g; Tc = 483 K), and Fe3O4 (Ms = 92-100 emu/g; Tc = 850 K) 

[44, 45, 46]. The lower than expected value of the saturation magnetization has been 

attributed to the presence of the -Fe, which is reported to be antiferromagnetic below 150 K 

[47]. Since we observe quite low relative abundances of -Fe we suggest that geometric 

factors (grain size, shape, high surface/volume ratio), structural disorder, and surface effects, 

could contribute to the lowering of Ms below the expected value [48]. Furthermore, 

superparamagnetism in Fe crystallites below the critical dimension would tend to decrease 
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the measured Ms. Nevertheless the measured Ms values are comparable to those reported in 

literature by Karmakar et al., Dillon et al., and Leonhardt et al. [47, 49, 50].  

4. Conclusion  

We conclude that this simple approach to production of continuous -Fe nanowires 

encapsulated by multiwalled carbon nanotubes of length greater than 10 m through thermal 

decomposition of ferrocene without the necessity of post-synthesis heat treatment or the 

introduction of other precursor elements yields magnetic responses comparable to those of 

structures produced by the more complicated synthetic methods. In agreement with previous 

reports, we confirm that the structures with length less than 10 m which contain mixed-

phase nanowires can be converted to high -Fe content through post-synthesis heat-

treatment. 
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