
J
H
E
P
0
2
(
2
0
1
0
)
0
0
5

Published for SISSA by Springer

Received: October 20, 2009

Accepted: January 11, 2010

Published: February 2, 2010

Soft terms from broken symmetries

Matthew Buicana and Zohar Komargodskib

aDepartment of Physics, CERN Theory Division,

CH-1211, Geneva 23, Switzerland
bSchool of Natural Sciences, Institute for Advanced Study,

Princeton, NJ 08540, U.S.A.

E-mail: matthew.buican@cern.ch, zoharko@ias.edu

Abstract: In theories of phyiscs beyond the Standard Model (SM), visible sector fields

often carry quantum numbers under additional gauge symmetries. One could then imagine

a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry

breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper

we present a general formalism for studying the resulting hidden sectors and calculating the

corresponding gauge mediated soft parameters. We find that a large class of generic models

features a leading universal contribution to the soft scalar masses that only depends on the

scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis,

we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We

also discuss possible phenomenological applications.

Keywords: Supersymmetry Breaking, Spontaneous Symmetry Breaking

ArXiv ePrint: 0909.4824

Open Access doi:10.1007/JHEP02(2010)005

mailto:matthew.buican@cern.ch
mailto:zoharko@ias.edu
http://arxiv.org/abs/0909.4824
http://dx.doi.org/10.1007/JHEP02(2010)005


J
H
E
P
0
2
(
2
0
1
0
)
0
0
5

Contents

1 Introduction 1

2 The supermultiplet of global symmetries 4

2.1 Correlation functions 4

3 Gauging the symmetry 7

3.1 Scalar masses 10

4 Toy model 12

5 Discussion and phenomenological applications 13

1 Introduction

Low-scale supersymmetry (SUSY) breaking offers a viable and attractive scenario for

physics beyond the Standard Model (SM). However, the specific details of the new

physics are model-dependent. A particularly well-motivated approach is to consider field-

theoretical supersymmetry breaking and its gauge mediation [1–6] to the visible sector.

From the theoretical standpoint it is well defined and often calculable. It is also appealing

phenomenologically, as it automatically addresses the flavor puzzle and in addition may

help to elucidate the hierarchy between the weak scale and the Planck scale [7].

Armed with these motivations, one is driven to study the predictions of gauge medi-

ation in more detail. To that end, the authors of [8] gave a general definition of gauge

mediation. The basic idea, dubbed “General Gauge Mediation” (GGM), is to define gauge

mediation as a scenario in which a theory splits into a sector consisting of a supersymmetric

extension of the Standard Model (SSM) and a separate, decoupled, SUSY-breaking hidden

sector, H, as one takes the various SSM gauge couplings gr → 0. The labels r = 1, 2, 3

represent the U(1)Y , SU(2)W , and SU(3)C factors of the SSM gauge group respectively.

Even under this broad definition, the authors of [8] found that the soft scalar masses

arising in theories of gauge mediation obey two sum rules1

Tr
(
Y m2

)
= 0 , Tr

(
(B − L)m2

)
= 0 . (1.1)

In fact, one can show that the two sum rules are the only constraints generically obeyed

by the scalar masses [9].

One can generalize these discussions from the case of pure gauge mediation to the

case in which there are also direct couplings between the Higgs sector of the SSM and

1The masses are then subject to renormalization group evolution from the scale, M , at which the sum

rules are defined down to the infrared.
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H. Studying these couplings, one can deduce various features of the soft parameters (for

some recent works see [10–12]). In many cases, however, the sum rules (1.1) for the scalar

masses are essentially unaffected by the details of the Higgs couplings. Given this picture,

it is tempting to conclude that the scalar sum rules may constitute a proverbial “smoking

gun” for gauge mediation.

However, our discussion thus far has been rooted in the assumption that the SSM

matter fields are only charged under SU(3)C × SU(2)W × U(1)Y . There are a few reasons

to study a specific extension of this ansatz. Many constructions in string theory and field

theory lead to scenarios in which the SSM matter fields are charged under additional gauge

groups which are Higgsed above the electroweak scale. These could be various different

U(1) gauge symmetries or the more conventional U(1)B−L. The literature on this subject

is vast, see the recent review [13] for details and references. The scale of breaking of these

additional symmetries depends upon the assumptions of the model and can be in a range

of energies from the electroweak scale to the GUT scale. In this paper we investigate the

effects of such Higgsed symmetries on gauge mediation. We will see that the inclusion

of Higgsed symmetries leads to changes in the scalar masses and (partial or complete)

violation of the sum rules. On the other hand, we will show that the inclusion of additional

Higgsed symmetries leads to certain universal predictions.

In order to proceed with our discussion, we first generalize the definition of gauge

mediation given above to accommodate the presence of additional, spontaneously broken,

symmetries. To that end, let us define

GSSM ⊃ SU(3)C × SU(2)W × U(1)Y (1.2)

to be the gauge group under which the SSM fields are charged. Then, we define gauge

mediation to be a scenario in which our theory splits into the SSM and a decoupled SUSY-

breaking hidden sector, H, whose vacuum spontaneously breaks

GSSM → SU(3)C × SU(2)W × U(1)Y (1.3)

in the limit that we take the gauge couplings of GSSM to zero. This definition implies that

GSSM can be embedded in the global symmetry group, G, of H.

A prototype of the scenario we are interested in is when the symmetry group is GSSM =

SU(3)C × SU(2)W × U(1)Y × U(1). Our goal is to calculate the observable soft masses in

this setup as well as to uncover the structure of the hidden sector. Certain aspects of this

problem have been discussed before in some limiting cases [14–16]. Here we will try to be

as general as possible and to encompass a large class of models.

Since a main theme here is the spontaneous breaking of global symmetries (and thus

the presence of massless particles), one has to have control over the IR behavior of various

current correlation functions in H. In section 2 we explore the IR properties of these

correlation functions. It turns out that this discussion is also relevant to the original setup

of GGM, since there is always at least one massless particle when SUSY is broken (the

Goldstino), and one has to make sure that it does not render the observable scalar masses IR
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sensitive. In particular, for models of SUSY breaking that do not have a “messenger parity”

symmetry, we provide a direct argument for the IR safety of the visible sector observables.2

In section 3 we further define and discuss the general setup we are interested in and

explain its predictions. We identify the scales at which various aspects of the dynamics

take place, and we find that the leading contribution to the soft scalar masses in these

theories is under full control even when the hidden sector is not perturbative. The crucial

point is that the leading contribution to the scalar masses is controlled by the universal

IR properties of the correlation functions we discuss in section 2. This situation is unlike

the usual case of gauge mediation, where the scalar masses are often incalculable. In other

words, to calculate the scalar masses in the usual scenario of gauge mediation one has to

have control over energy ranges where intricate dynamics may take place. In our case we

find that there are contributions from various energy scales, but the dominant contribution

(in a systematic expansion in the gauge coupling) comes from the deep IR.

The result is that by expanding the scalar masses in the coupling, g, of the additional

U(1) symmetry, we find that the leading term is

δm2
soft =

3q2g4

16π2
log(g2)f2

π , (1.4)

where fπ is the decay constant of the pion of the spontaneously broken U(1) and q is the

U(1) charge of the sparticle of interest. Note that (1.4) contains a logarithm of the gauge

coupling and is therefore conceptually different from the usual gauge mediation scenario.

Furthermore, the contribution (1.4) is negative and, as a result, can be used to lower the

soft scalar masses. This is phenomenologically desirable. We will explain the origin of

this universal result in detail and comment on the form of subleading model dependent

corrections to (1.4).3

A single additional (Higgsed) U(1) symmetry always retains one of the two sum

rules (1.1).4 In the case that we identify U(1) = U(1)B−L, the first sum rule is still

satisfied, but the second sum rule is violated. Nevertheless, we know exactly how it is

violated at leading order in g. For example, we can predict that

Tr
(
(B − L)m2

)
> 0 . (1.5)

In section 4 we describe a toy example where many of the ideas we discuss are

manifest. In section 5 we conclude with a discussion and comments on possible

phenomenological applications.

Note: While completing this project, we learned of closely related work by K. Intriligator

and M. Sudano [21].

2Models without exact messenger parity are often viable, see e.g. [17].
3Another important — though fundamentally different — logarithmic contribution to the scalar masses

arises in theories that have non-vanishing messenger supertrace [9, 18]. Some phenomenological conse-

quences of this effect have been discussed, for example, in [19] and [20].
4Strictly speaking, this statement is true when the mixed contributions from the two U(1) factors are

small. This could be due to exact or approximate messenger parity of either of the U(1) factors, or the

embedding of either of them in some non-Abelian group.
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2 The supermultiplet of global symmetries

For the purposes of this section, we will imagine that our hidden sector, H, has a sin-

gle characteristic scale, M . This assumption is made for simplicity and can be relaxed

straightforwardly. Furthermore, we specialize to the case that H is endowed with a global

symmetry G = U(1) and study the correlation functions of the associated symmetry current

superfield, J .

To begin our study, let us recall that the conserved U(1) current, jµ, is packaged in a

current superfield, J , that satisfies the SUSY generalization of current conservation

D2J = 0 . (2.1)

This condition in turn implies that J can be expanded in superspace as

J = J + iθj − iθ j − θσµθjµ +
1

2
θ2θσµ∂µj −

1

2
θ
2
θσµ∂µj −

1

4
θ2θ

2
∂2J , (2.2)

where jµ is conserved, i.e., ∂µjµ = 0. From (2.2) one can read off all the SUSY transfor-

mations of the component fields. For instance, we see that

δαjβ = 0 , δα̇jβ̇ = 0 . (2.3)

Notice that our discussion so far accommodates the case in which the U(1) is Higgsed,

since (2.1) is an operator equation and is therefore independent of the particular vacuum

we find ourselves in.

2.1 Correlation functions

Let us now consider the simplest Euclidean correlation functions. The constraints we

impose are consistency under the Euclidean isometry group and current conservation. The

only allowed one-point function is

〈J〉 = ζ . (2.4)

Some theories have an unbroken messenger parity symmetry under which J → −J . In

this case we see that ζ = 0. Here we do not assume unbroken messenger parity, although

it will play an important role in our phenomenological discussions later.

Additionally, we find that there are, in principle, five allowed two-point functions

〈J(x)J(0)〉 =
1

x4
C0(x

2M2) ,

〈jα(x)jα̇(0)〉 = −iσµ
αα̇∂µ

(
1

x4
C1/2(x

2M2)

)
,

〈jµ(x)jν(0)〉 = (ηµν∂2 − ∂µ∂ν)

(
1

x4
C1(x

2M2)

)
,

〈jα(x)jβ(0)〉 = ǫαβ
1

x5
B1/2(x

2M2) ,

〈jµ(x)J(0)〉 = cM2 ∂µ

(
1

x2

)
, (2.5)
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where M , as mentioned above, is the typical scale of the hidden sector.

The last correlation function, 〈jµ(x)J(0)〉, is special because its functional dependence

is fixed. From the long distance power-law behavior of the 〈jµ(x)J(0)〉 correlator, we see

that it must arise from the exchange of a massless boson. In particular, this massless boson

should be created from the vacuum by acting with jµ. If the U(1) symmetry is not Higgsed

this cannot occur and therefore we conclude that in this case c = 0, as mentioned in [8].

The more interesting situation is when the symmetry is Higgsed and a pion is created

from the vacuum by acting with jµ. It turns out that for the case we discuss here, G = U(1),

〈jµ(x)J(0)〉 still vanishes as we shall now explain. The formal proof proceeds as follows.

From the last line of (2.5) we see that

〈j0(x)J(0)〉 ∼ cM2 x0

x4
. (2.6)

To calculate the commutator from this Euclidean correlation function we integrate over

x0 = ǫ and subtract the integral over x0 = −ǫ. We get the equal time commutator in

Minkowski signature 〈[∫
d3xj0(~x), J(~0)

]〉∣∣∣∣
x0=0

∼ cM2 . (2.7)

The fact that J is neutral under the U(1) charge implies that c = 0 and that, therefore,

the last correlation function in (2.5) is zero. This proof goes through as long as the group

is Abelian.

Unlike the 〈jµ(x)J(0)〉 correlation function, the first four correlators in (2.5) are in

general non-vanishing. In the presence of massless particles, their long-distance behavior

is governed by the exchanges of these particles.

Generally speaking, the massless particles fall into one of two categories:

1. Particles associated with spontaneously broken symmetries of the hidden sector, i.e.,

the goldstino and the Goldstone boson(s) (including, possibly, an R-axion).

2. Massless fermions required for anomaly matching. We will sometimes refer to these

particles as ’t Hooft fermions.

Of course, in theories with various sectors decoupled from the SUSY breaking, there could

be additional massless particles not of the type above. This rather baroque possibility will

be ignored here.

Our goal is to elucidate the IR properties of the four nontrivial correlation functions

in (2.5). To accomplish this let us first study the IR behavior of correlation functions

involving the supercurrent. The reason we study these correlators is that they will be

helpful in understanding the effects of the Goldstino.

Recall that the supercurrent Sµα is conserved, ∂µSµα = 0, and that in the deep low-

energy regime it becomes the Goldstino, i.e. Sµα ∼ Fσµαα̇G
α̇
. Indeed, the spin 3/2 com-

ponent of the supercurrent decouples from the low energy physics (up to a possible im-

provement term) and therefore can be ignored in our analysis. We will be interested in the

– 5 –
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following correlation functions

〈S
µ
α̇(x)jβ(0)〉 = σµ

βα̇∂2g(x2M2) − σν
βα̇∂ν∂µg(x2M2) ,

〈Sµ
α(x)jβ(0)〉 = c̃ǫαβ∂µ

(
1

x2

)
+ σµν

αβ∂ν g̃(x2M2) , (2.8)

where we have written the most generally allowed decomposition of these correlation func-

tions consistent with current conservation.

We can further restrict the form of the second correlator in (2.8) by repeating the logic

around (2.7). Due to (2.3) and the fact that the term proportional to c̃ leads to a nonzero

commutator of the supercharge with jβ we conclude that c̃ = 0. Hence,

〈Sµ
α(x)jβ(0)〉 = σµν

αβ∂ν g̃(x2M2) . (2.9)

In order, to say something about the unknown functions g, g̃ we use the fact that at large

separation the supercurrent becomes the Goldstino and thus

lim
|x|→∞

〈S
µ
α̇(x)jβ(0)〉 ∼ σµγ

α̇ 〈Gγ(x)jβ(0)〉 = σµ
βα̇fGj(x

2M2) ,

lim
|x|→∞

〈Sµ
α(x)jβ(0)〉 ∼ σµ

αγ̇〈G
γ̇
(x)jβ(0)〉 = σµ

αγ̇σνγ̇
β ∂νfGj(x

2M2) . (2.10)

The free equation of motion of the Goldstino (alternatively, a comparison with (2.8)

or current conservation) yields fGj = 0. In addition, since in (2.9) we showed that only

the anti-symmetric combination survives we get that fGj = 0 as well. We conclude that

neither the Goldstino Gγ nor Gγ̇ mix with jβ and that therefore the IR behavior is free of

one particle exchanges at long distances.

We can now go back to the IR behavior of the correlation functions in (2.5). Using

the information we have gathered so far, we can immediately say something about the

long distance behavior of 〈J(x)J(0)〉. The fact that c = 0 in (2.6) implies that J has no

overlap with a one pion state. One can use an analogous argument to show that, in the

case of a spontaneously broken R-symmetry, J has no overlap with a single R-axion state.

Therefore, the x−2 term at large x in 〈J(x)J(0)〉 is absent, or, in other words,

〈J(x)J(0)〉connected = O(x−4) , (2.11)

where the left hand side is the connected part of the two-point function.5

Next, let us consider the 〈jα(x)jβ̇(0)〉 and 〈jα(x)jβ(0)〉 correlators. In the absence

of other massless fermions the only dangerously singular IR behavior of 〈jα(x)jβ(0)〉 and

〈jα(x)jβ̇(0)〉 could arise from single Goldstino exchange. We have seen above that this

does not happen.

The only remaining correlation function to discuss is the two-point function of the

spin-1 current 〈jµ(x)jν(0)〉. On general grounds, however, this correlator will receive a

5There can also be a disconnected contribution given by 〈J〉2 = ζ2. In addition, one can show that the

actual decay rate of the correlation function in (2.11) is faster than the conservative bound we presented

in (2.11).
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contribution from an exchange of a pion at tree level. Indeed, we expect at long distances

lim
|x|→∞

〈jµ(x)jν(0)〉 ∼ ∂µ∂ν

(
1

x2

)
. (2.12)

Thus, this is the only correlation function in which there is a long distance contribution

from a single particle exchange.

Throughout the analysis we have assumed that the massless particles are a pion, a

Goldstino, and possibly an R-axion. To complete our discussion we would like to comment

on the case in which there are additional massless ’t Hooft fermions. ’t Hooft fermions are,

of course, charged under some unbroken global symmetries. Since jα is neutral under all

the unbroken global symmetries it can not mix with charged fermions, and therefore these

fermions do not lead to single particle exchange diagrams at large separation.

This argument fails for unbroken R-symmetry. ’t Hooft fermions with R-charge −1 can

mix with jα and lead to a term of the form ∂(x−2) in the correlation function 〈jα(x)jα̇(0)〉

at long distances. Of course, an exact unbroken R-symmetry is undesirable phenomeno-

logically, but this possibility should be kept in mind.6

3 Gauging the symmetry

In the previous section we treated the symmetry G as global. In this section we would

like to weakly gauge it and consider the resulting gauge-mediated soft terms for visible

sector fields charged under G. In the discussion that follows, we will identify G with an

additional U(1) gauge symmetry of the visible sector. Therefore, our previous emphasis

on studying the effects of Higgsing will turn out to be of immediate relevance, since any

additional U(1) gauge symmetry of the type we are interested in must be Higgsed above

the electroweak scale. Furthermore, we will find that the IR contributions to the two-point

functions we discussed in the previous section will play a starring role in our discussion of

the soft terms below.

In order to proceed, we must give a prescription for how to weakly gauge G. The

essential technique for carrying out this procedure in the case of un-Higgsed symmetries was

laid out in [8] and follows from the definition of gauge mediation given in the introduction.

The basic idea is to couple the corresponding global current superfield, J , to a vector

superfield, V, and to work perturbatively in the resulting coupling g. The relevant SUSY

breaking data of the hidden sector is summarized in the exact one and two-point functions

of J discussed in the previous section.

In this section we will study the soft masses induced in the presence of Higgsed sym-

metries. Since our vacuum by definition has at least two massless particles, the goldstino

and the pion of U(1), we will need to exercise extra care regarding the finiteness and IR

safety of the contributions to the visible soft masses.

6A phenomenological scenario with unbroken R-symmetry was suggested in [22]. The presence of such

R = −1 massless fermions should play a crucial role in this case. See [23, 24] and references therein for

more recent works.
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For simplicity we assume that the spectrum of H has a typical scale M at which

the dynamics takes place. In the deep IR, we find the goldstino, the Goldstone boson,

and, potentially, some massless fermions. Since the U(1) is Higgsed at the scale M , the

associated vector field will have a mass of the order gM . The mass splittings in the vector

superfield, together with the mass splittings in the hidden sector itself, will then generate

the soft scalar masses.

To begin our discussion, let us couple the vector superfield V to the hidden sector

current superfield, J

Lint = 2g

∫
d4θJV = g(JD − λj − λ j − jµVµ) . (3.1)

We have chosen to write the vector superfield in WZ gauge. This choice is natural even if

G is Higgsed since we are interested in the physics at high scales as well as at low scales.

Integrating out the hidden sector in (3.1) leads to the following effective action for the

vector multiplet

δLeff = gξD +
g2

2
C̃0(p

2)D2 − ig2C̃1/2(p
2)λσµ∂µλ −

g2

4
C̃1(p

2)FµνFµν

−
g2

2
(MB̃1/2(p

2)λλ + c.c.) . . . (3.2)

In the previous section we analyzed the low momentum behavior of the different func-

tions C̃i, B̃ appearing above. We concluded that generic SUSY breaking theories lead to

C̃0(p
2) = C̃0(0) + O(p2/M2) ,

C̃1/2(p
2) = c1/2

M2

p2
+

̂̃
C1/2(p

2) ,

C̃1(p
2) = c1

M2

p2
+

̂̃
C1(p

2) ,

B̃1/2(p
2) = B̃1/2(0) + O(p2/M2) . (3.3)

The functions
̂̃
C1/2(p

2),
̂̃
C1(p

2) are by definition regular at zero momentum. Note that C̃0

is a regular function at zero momentum, as follows from our discussion in section 2. As

long as the U(1) is spontaneously broken we know that c1 6= 0. On the other hand, c1/2 6= 0

only when there is an unbroken R-symmetry and a massless fermion with charge −1 under

the R-symmetry.7

Let us now analyze the effective action (3.2) in more detail. We notice that in the case

of interest c1 6= 0 so Leff contains singular terms. If c1/2 6= 0 then the gaugino propagator is

also seemingly singular. The appearance of singular terms is due to the fact that there are

massless particles in the hidden sector. However, this framework is still legitimate because

we making an expansion in g ≪ 1.

7We assume genericity here. As we remarked in section 2, specific models, perhaps with multiple sectors,

can violate this statement. For example, one can include a separate supersymmetric sector. Since this setup

is not well motivated, we ignore this possibility. All our statements are easily adaptable to more peculiar

cases.
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To understand the meaning of the singular terms in (3.2), we can study various tree

level two-point functions of the vector multiplet. We fix the remaining gauge freedom by

choosing a Feynman gauge.8 The vector boson propagator is

〈V µV ν〉 =
gµν

p2(1 + g2C̃1(p2))
. (3.4)

Now, expanding the denominator of (3.4), we find p2 + g2c1M
2 + O(p2g2). We therefore

see that the vector boson acquires a mass via the Higgs mechanism

m2
V = g2c1M

2 + O(g4) . (3.5)

Similarly, we can compute the gaugino propagators

〈λαλβ̇〉 = −
pµσµ

αβ̇

p2(1 + g2C̃1/2(p2)) +
g4|M eB1/2(p2)|2

1+g2 eC1/2(p2)

,

〈λαλβ〉 = −ǫαβ

g2MB̃1/2(p
2)

p2(1 + g2C̃1/2(p2))2 + g4|MB̃1/2(p2)|2
. (3.6)

Expanding the denominator to O(g2), we find p2 + g2c1/2M
2 + O(p2g2, g4). In particular,

if c1/2 6= 0 (as can happen if the R-symmetry is unbroken and there is a massless fermion

with R-charge −1), the gaugino is mostly a Dirac particle with mass

m2
λ = g2c1/2M

2 + O(g4) . (3.7)

The situation in which c1/2 = 0 is slightly more subtle. In the case that R-symetry

is unbroken, B̃1/2 = 0. From the first line of (3.6), we then see that 〈λαλβ̇〉 has a zero

momentum pole and so the U(1) gaugino remains massless.

If, on the other hand, c1/2 = 0 and R-symmetry is broken, the gaugino must be a

Majorana particle whose mass is expected to scale as g2M . Note that in theories with

perturbative control, this mass is expected to arise without a 1/16π2 factor. The rea-

son for this behavior is that the current jα generally mixes directly with massive hidden

sector fermions.

We conclude that in generic theories of the type we are interested in, there is a hierar-

chical cascade of scales: The hidden sector dynamics occurs at the scale M . The mass of

the U(1) gauge boson is gM , and the mass of the U(1) gaugino is g2M . To complete this

picture, we will discuss the contributions to the soft scalar masses in the next subsection.

As a final note before proceeding, let us comment on the expansion in g. The effective

theory (3.2) is valid up to but not including corrections of order O(g4). Our expressions for

the propagators (3.4), (3.6) are meaningful within this perturbation theory. For instance,

the denominator of (3.4) is expected to have g4 corrections which we can safely ignore for

our purposes here.

8More precisely, we choose the gauge fixing part of the Lagrangian to be

δLgf = −
1

2
(1 + g

2 eC1(p
2))(∂µA

µ)2 .

– 9 –
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3.1 Scalar masses

From the effective theory (3.2) we can evaluate the soft scalar masses. If there is no

messenger parity we expect ζ 6= 0 and the contribution to the scalar masses to arise at

tree-level. The result would be δm2
soft ∼ g2ζ. The more interesting option is when ζ = 0

due to unbroken messenger parity (or when ζ is very small due to approximate messenger

parity).9 If this is the case, the leading source for soft scalar masses comes from loops

involving the effective theory (3.2). Our purpose in this section is to analyze the loop

integrals which determine the leading contribution to the soft scalar masses. Thus, in the

rest of this subsection, we assume that ζ = 0.

Since we wish to extract the leading order result in a systematic expansion of the scalar

masses in terms of the coupling g, we have to pick only the relevant piece of the propaga-

tors (3.4), (3.6). Due to the zero-momentum singularity in C̃1, we cannot naively expand

the propagator (3.4) in g. Summing the one-loop integrals in the effective theory (3.2) we

get the following expression for the soft scalar masses

m2
soft = −q2g2

∫
d4p

(2π)4

∑

i

(−1)2i+1Ni

p2
(
1 + g2C̃i

) , (3.8)

where N0 = 1, N1/2 = 4, N1 = 3 and q is the U(1) charge of the corresponding sparticle.

If the functions C̃i were all nonsingular, we could have expanded in g and rediscovered

the familiar expression of GGM. In our case, although C̃0 is generically a well behaved

function around zero momentum, C̃1/2 and C̃1 are potentially singular. Let us assume for

simplicity that R-symmetry is broken (spontaneously or explicitly). Then, it follows from

our discussion in section 2 that C̃1/2 is regular at zero momentum. On the other hand, C̃1

is necessarily singular at zero momentum.

Let us focus on the integral involving C̃1

3q2g2

∫
d4p

(2π)4
1

p2
(
1 + g2C̃1(p2)

) . (3.9)

At very small p, C̃1(p
2) can be approximated by c1/p

2. Thus, the contribution that we get

from this region is

3q2g2

∫
d4p

(2π)4
1

p2 + g2c1
. (3.10)

This integral is convergent at small momentum, and if we integrate from p = 0 to |p| = Λ

we get that the g dependence is g4c1 log
(

g2c1
Λ2+g2c1

)
. The approximation of C̃1(p

2) by c1/p
2

is valid for momentum much smaller than the typical scale M . Thus, we can still take the

cutoff of the integral to be Λ ≫ g2c1. We see that the integral becomes g4c1 log
(

g2c1
Λ2

)
.

This dependence on g, which does not arise in the usual setup of GGM, is a clear sign of

the Higgsed case. It reflects the bad behavior of C̃1 at low momentum.

9The former option is not appealing phenomenologically as it would require an unnatural choice of the

gauge coupling to make δm2
soft comparable to or smaller than the usual gauge mediated contributions.
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Figure 1. The most general set of diagrams contributing to the soft mass of a scalar Q has as

the leading contribution an exchange of the U(1) pion. This can also be thought of as a diagram

with an insertion of the gauge field mass term. The logarithmic divergence is canceled by massive

particles in the hidden sector. The remaining signature of the leading diagram is a nonanalytic

contribution g4 log(g2) to the soft mass of Q.

As we see explicitly in our above discussion, there is a logarithmic sensitivity to the

cutoff scale Λ. This expression is regulated by contributions to the various C̃i from states

at the scale M . These corrections remove the logarithmic divergence, but they are analytic

in g and therefore cannot cancel the log(g2) piece.

The coefficient of g4 log(g2) depends only on c1 which is directly related to the mass

of the vector field and in this sense is universal. We can easily read the precise coefficient

from (3.10) with the result

δm2
soft =

3q2g4

16π2
log(g2)c1 + O(g4) =

3q2g2

16π2
log(g2)m2

V + O(g4) . (3.11)

The O(g4) corrections to the formula (3.11) stand for terms that do not contain a logarithm

of g2 and are therefore parameterically suppressed. We see that the sign of the leading

term in the soft scalar mass (3.11) is negative and, as mentioned above, depends only on

the scale of Higgsing.

Another important difference from the un-Higgsed case is that the leading term

in (3.11) has only one factor of 16π2 in the denominator, while in the un-Higgsed case

there are two such factors. Moreover, since the logarithmic sensitivity we have seen above

also comes with one 16π2 in the denominator, the threshold corrections which remove the

logarithm will have one factor of 16π2.

Finally, there are threshold corrections at the scale M which are genuine two-loop

diagrams. These resemble the usual gauge mediated contributions and have a similar

dependence on g and two 16π2 factors. These contributions are negligible compared to the

universal term (3.11) and the threshold corrections mentioned above.

The basic physical reason for this structure can be understood heuristically as follows:

There are two sources for non-supersymmetric multiplets. One is the gauge multiplet and

the other is the hidden sector itself. The universal result (3.11) can be derived from the

one-loop diagrams associated with the non-supersymmetric vector superfield, as in figure 1.

Other one-loop diagrams containing hidden sector fields will have to come in at the scale M

to cancel the logarithmic divergence. Finally there are genuine two-loop diagrams involving

hidden sector fields which give rise to contributions that are similar to the ones found in

the usual gauge mediated scenarios. In our case these contributions are negligible.
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Our results, including the universal contribution (3.11) and the existence of hidden

sector threshold corrections which come with a single 16π2 factor, are completely general.

We finish this section by commenting that if, for instance, C̃1/2 has a singularity at

zero momentum the discussion above has to be modified in a straightforward way. We have

already emphasized that this looks highly non-generic and phenomenologically undesirable.

So, we view the prediction (3.11) and the various consequences we have discussed as robust.

4 Toy model

We would like to illustrate some of the points in the previous section in a specific weakly

coupled example that involves spontaneous supersymmetry and global symmetry breaking.

To that end, consider the following O’Raifeartaigh-like model

W = X(f − φ+φ−) + m η+φ− + m φ+η− . (4.1)

This theory has a global U(1) symmetry and a U(1)R symmetry under which the fields

have the following charges

U(1) U(1)R
φ+ 1 0

φ− −1 0

η+ 1 2

η− −1 2

X 0 2

(4.2)

In addition, the theory has a messenger parity symmetry under which φ+ → φ−, η+ → η−.

We can take all the parameters of the superpotential to be real and positive without

loss of generality. We will be interested in the regime f > m2 where the U(1) symmetry is

spontaneously broken.

To find the minimum of the potential we can set Fφ+,φ−
= 0. This gives the follow-

ing relations

mη+ = Xφ+ , mη− = Xφ− . (4.3)

The remaining terms in the scalar potential have a SUSY-breaking minimum (which is also

the global minimum of the potential) with

φ+ = φ∗
− , |φ+|

2 = f − m2. (4.4)

This describes the S1 associated with the spontaneous breaking of the U(1) symmetry.

We conclude that the lowest lying SUSY-breaking solution is part of a classical moduli

space consisting of an S1 fibered over the complex plane described in (4.3).10 A convenient

coordinate on this complex plane is the expectation value of X. The vacuum energy is

V0 = m2(2f − m2).11

10Complex flat directions are ubiquitous in such theories, see [25, 26].
11At f = m2 there is a transition to a symmetry restoring vacuum in which 〈φ+〉 = 〈φ−〉 = 0. The

vacuum energy changes continuously across this transition.
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The complex flat direction parameterized by (4.3) is lifted at one-loop. As a result, X is

stabilized at the origin, 〈X〉 = 0. Consequently, η± are also stabilized at the origin.12 This

means that the U(1)R symmetry remains unbroken. Moreover, messenger parity symmetry

also remains unbroken in this vacuum.

The unbroken U(1)R symmetry renders this model unrealistic but this problem is very

easy to take care of by making the model slightly more complicated. Our purpose here is

merely to illustrate some of the general results we discussed in the previous section, so for

this sake the simple model (4.1) suffices.

In accord with our general discussion, c0 = 0 in this theory and c1 is given by the

decay constant of the pion, c1 ∼ f − m2. It is easy to check that besides the Goldstino

there are no other massless fermions and so c1/2 = 0.13

The current superfield of the U(1) symmetry is

J = J0 + J2 ,

J0 = φ†
+φ+ − φ†

−φ− ,

J2 = η†+η+ − η†−η− . (4.5)

We have separated the current superfield into two pieces J0 and J2 with indices cor-

responding to the R-charges of the various chiral fields appearing in (4.5). The unbroken

R-symmetry guarantees that J0 and J2 do not mix to the order we are interested in.

The general formula for the scalar masses is given by

m2
soft = q2g4 f − m2

4π2

(
4 log 2 + 3 log

2g2(f − m2)

m2

)
+ O

(
g4

(16π2)2

)
. (4.6)

The first term in (4.6) corresponds to threshold corrections from the hidden sector which are

responsible for the cancelation of the logarithmic divergence we described in the previous

section. As the general discussion in section 3 implies, these threshold corrections arise

from one-loop diagrams. In the language of our specific weakly coupled hidden sector,

the threshold corrections which remove the logarithm come from particles in the “pion

supermultiplet”. In general these corrections are model dependent. The second term

in (4.6) contains the universal term we derived in (3.11). It comes from the one-loop

diagram involving the massive vector field. For small enough gauge coupling g this is the

leading term and it contributes negatively to the soft scalar masses.

5 Discussion and phenomenological applications

As we have seen in our discussion, under very general assumptions, the dynamics of the

hidden sector occurs at the scale M , the U(1) gauge field acquires a mass of order gM , the

gaugino of this additional U(1) acquires a mass of order g2M , and the visible sector scalars

acquire a new contribution to their mass-squared of order
(
g2M/4π

)2
(where we drop the

12Eventually, when we gauge the U(1) symmetry, this is assumed to be weak enough such that the vacuum

is almost not shifted.
13In particular, although R-symmetry is unbroken, there is no massless fermion with R-charge −1.
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Figure 2. The general cascade of scales in a theory where the dynamics of the hidden sector

happens at a scale M . As we have explained, the precise formulae may also include logarithms of

g and a specific dependence on the charges of the visible particles under the U(1) symmetry.

logarithm for simplicity). It is also rather straightforward to determine the scale of the

A-terms that are induced in our setup. Indeed, the A-terms are generated at one-loop and

are of the form

A ∼
g4

16π2
M . (5.1)

The cascade of scales we encounter in this class of models is represented in figure 2.

Our entire discussion fits naturally into the scheme of low-scale SUSY breaking. Taking

g ∼ 10−1 (which is of the same order as other gauge couplings in the SSM) and assuming

the hidden sector scale is M ∼ 100 TeV, we find that the gauge boson has a mass of

order 10 TeV, the gaugino of the new U(1) has a mass of order 1 TeV, the scalars receive

a contribution to their soft mass-squared of order 104 GeV2, and the A-terms are of or-

der 100 MeV. As usual in gauge mediation, the A-terms we generate are parameterically

small. We see that this natural choice of parameters leads to sizeable modifications of the

soft scalar masses. Therefore, the presence of additional (Higgsed) gauge symmetries can

significantly alter the spectrum of the sparticles.

The fact that the leading contribution is fixed and negative provides a potential mech-

anism for lowering the scalar masses in gauge mediation, which is phenomenologically de-

sirable. On the other hand, the fact that the scalar masses are negative forces the new con-

tributions to be tightly bounded, otherwise some of the sparticles may become tachyonic.

It is also interesting to note that these contributions from additional U(1) symmetries

violate the sum rules of gauge mediation. If there is only one additional U(1) symmetry,

one sum rule always remains.14 The form of the sum rule depends on the charges of the

visible particles under the U(1) symmetry. For example, if we choose the additional U(1)

to be U(1)B−L then we find that the only remaining sum rule is Tr(Y m2) = 0.15 Since

14As noted in the introduction, this statement is true if the correlation functions 〈J (x)JY (0)〉 are small

due to, e.g., exact or approximate messenger parity, or either of the gauge symmetries being embedded in

a non-Abelian structure.
15For completeness, we quote here the general remaining sum rule

m
2
Q(3q

2
U − 3q

2
D − q

2
E) + m

2
U (−3q

2
Q + 3q

2
D + 3q

2
L − q

2
E) + m

2
D(3q

2
Q − 3q

2
U − 3q

2
L + 2q

2
E)

+m
2
L(−3q

2
U + 3q

2
D + q

2
E) + m

2
E(q2

Q + q
2
U − 2q

2
D − q

2
L) = 0 . (5.2)

The qi represent the charges of the corresponding matter fields under the Higgsed U(1) symmetry. This

result is in agreement with [16].
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the term violating the Tr((B − L)m2) sum rule has a fixed sign at leading order in g this

implies that (at leading order)

Tr
(
(B − L)m2

)
> 0 . (5.3)

In our estimates above we have assumed that the vacuum respects messenger parity.

For completeness we would like to mention what happens if this assumption is relaxed. It

is still true that the gauge fields have mass of the order gM . The U(1) gauginos have mass

gM or g2M depending on whether c1/2 6= 0 or c1/2 = 0, respectively. Due to the fact that

we do not have messenger parity, a D-term is generically induced. Therefore the scalar

masses typically arise at order gM . This scenario, where everything is essentially induced

at tree-level, does not seem appealing because it requires rather small values of the gauge

coupling constant. One should bear in mind that more elaborate models with more scales

may lead to different behavior. Here we just present the tools and methods to address

these questions, emphasizing the universal results.

Finally, let us discuss some open questions. First, it would be nice to build explicit

calculable models of the kind we discussed — including the full SSM gauge group and a

broken R-symmetry — and study the masses of the sparticles explicitly. It would also be

interesting to embed such models in string theory and study how generically scenarios like

the one we have described occur. Perhaps the significant, negative, contributions to the

sfermion mass squareds that we have identified could constrain the string constructions in

some interesting ways.

Of course, we would also like to study different classes of models than the ones we

have studied here. Notice that the models we discussed, with parametrically small gauge

coupling, fit naturally into low scale gauge mediation. However, there is another class of

models in which the parameter of SUSY breaking F/M2 ≪ 1 is the smallest quantity in

the theory, not the gauge coupling. These models appear naturally in high scale gauge

mediation. It would be interesting to understand models of this type in some generality

and compare them to models of the kind we study. A closely related problem is to study

theories where the gauging of the global symmetry of the hidden sector has important

effects on the dynamics.16 The expansion in g is perplexing in these cases and it would be

useful to have a framework for such models.17
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