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Abstract—Satisfiability Modulo Theories (SMT) is a decision
problem for logical formulas over one or more first-order theories.
In this paper, we study the problem of finding all solutions of
an SMT problem with respect to a set of Boolean variables,
henceforth All-SMT. First, we show how an All-SMT solver can
benefit various domains of application: Bounded Model Checking,
Automated Test Generation, Reliability analysis, and Quantitative
Information Flow. Secondly, we then propose algorithms to
design an All-SMT solver on top of an existing SMT solver,
and implement it into a prototype tool, called aZ3. Thirdly, we
create a set of benchmarks for All-SMT in the theory of linear
integer arithmetic QF LIA and the theory of bit vectors with
arrays and uninterpreted functions QF AUFBV. We compare
aZ3 against MathSAT, the only existing All-SMT solver, on our
benchmarks. Experimental results show that aZ3 is more precise
than MathSAT.
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I. INTRODUCTION

Satisfiability Modulo Theories [1] (SMT) is a decision problem
for logical formulas over one or more first-order theories.
Given a first-order formula ϕ, an SMT solver will try to
construct a model for ϕ, and return SAT if such a model is
found.

The SMT solver MathSAT, from version 4 [2], provides a
functionality, called All-SMT, such that given a formula ϕ
and a set VI of important Boolean variables, MathSAT in All-
SMT mode computes all models of ϕ with respect to the set VI .
The All-SMT functionality has been used to compute predicate
abstraction in [3] and [4]. It was also proposed for installation
optimization in [5].

In this paper, we extend the All-SMT problem with a set VR of
relevant, possibly non-Boolean, variables. The extended All-
SMT(ϕ, VI , VR) problem is to compute all models of ϕ with
respect to the set VI and the models include value assignments
for variables in VR. We show how this All-SMT problem can
be used to analyse the correctness, reliability and security of
programs:

• Bounded Model Checking [6]: SMT-based Bounded
Model Checking can only return a single error trace,
the user has to fix the error, then runs the model
checker again for other error traces. This is because
the SMT solver can return only one model. Combining
Bounded Model Checking with an All-SMT solver, we

can compute multiple counterexamples in one run of
the model checker.

• Automated Test Generation: an All-SMT solver can
be combined with a Bounded Model Checker or
Symbolic Execution tool for automated test input
generation. Although traditional Symbolic Execution
with an SMT solver is already capable of generating
test inputs, it needs to make hundreds or thousands of
calls to the SMT solver. In our approach, the Symbolic
Execution tool needs to make only one call to the All-
SMT solver for any program.

• Reliability analysis: we can combine an All-SMT
solver with a Symbolic Execution tool to enumerate all
path conditions of the program, then use the Barvinok
model counting technique [7] to compute the number
of inputs that go into each symbolic path. In this way,
we can compute the reliability of the program, which
means the probability that the program successfully
accomplishes its task without errors.

• Quantitative Security [8]: the problem of computing
channel capacity, i.e. maximum leakage in a program,
can be casted into #SMT, the problem of computing
the number of models of ϕ with respect to a set VI . An
All-SMT solver thus can be used to compute channel
capacity.

Although the All-SMT functionality of MathSAT has been
used in [3] and [4], apart from a brief description in [5], its
algorithm is not documented. When using MathSAT for our
analysis, we found that MathSAT was imprecise in several
benchmarks. Hence, we propose a lightweight technique for
the implementation of an All-SMT front-end on top of an off-
the-shelf SMT solver. Our technique is based on depth-first
search on important variables, and it is more efficient than
the straightforward and well-known blocking clauses method.
We implement our technique into a prototype tool, called aZ3,
built on top of the SMT solver z3 [9].

In order to evaluate aZ3 and MathSAT, we create two sets of
benchmarks. The first one are formulas in the theory of linear
integer arithmetic, QF LIA [10], which are generated using
the symbolic execution platform Symbolic PathFinder [11].
The second set of benchmarks are formulas in bit vector with
array, QF AUFBV [10], generated using the model checker
CBMC [12] and case studies in the literature of Quantification
of Information Leaks.



A. Contribution

In summary, our contribution is threefold:

• We propose four new applications of an All-SMT
solver: (i) computation of multiple counterexamples
for Bounded Model Checking, (ii) generation of test
inputs using either Symbolic Execution or Bounded
Model Checking, (iii) reliability analysis of programs,
and (iv) measurement of insecurity of programs.

• We introduce a general and lightweight approach for
solving All-SMT.

• We provide standard benchmarks for the evaluation of
All-SMT solvers.

The rest of the paper is organized as follows. Section II
provides mathematical preliminaries on first-order theories and
a brief introduction of SMT solver and the DPLL algorithm.
In Section III, we demonstrate the use of an All-SMT solver in
different application domains. Then in Section IV, we propose
a technique to build an All-SMT solver, and implement into the
prototype tool aZ3. We evaluate aZ3 and MathSAT in Section
V. Section VI discusses the related work, and Section VII
concludes our work.

II. PRELIMINARIES

A. Propositional logic

Definition 1 (Propositional atom): A propositional atom or
Boolean atom is a statement or an assertion that must be true
or false.

Examples of Boolean atoms are: “all humans are mortal” and
“program P leaks k bits”. Boolean atoms are the most basic
building blocks of propositional formulas, each Boolean atom
Ai is also a formula.

Propositional formulas are constructed from Boolean atoms
using logical connectives: not (¬), and (∧), or (∨), and
imply (→). That means if ϕ1 and ϕ2 are formulas, then
¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, and ϕ1 → ϕ2 are also formulas. For
example, (¬A1 ∧A2)→ A3 is a propositional formula.

A Boolean atom Ai or its negation ¬Ai is called a literal. We
denote by Atom(ϕ) the set {A1, A2, . . . An} of Boolean atoms
that occur in ϕ. The truth of a propositional formula ϕ is a
function of the truth values of the Boolean atoms it contains.

We denote by > and ⊥ the truth values of true and false,
respectively. The set B = {>,⊥} is called Boolean domain.

Definition 2: Given a propositional formula ϕ, a truth assign-
ment µ of ϕ is defined as a function which assigns each
Boolean atom of ϕ a truth value:

µ : Atom(ϕ)→ B

A partial truth assignment of a formula ϕ is a function µ :
A → {>,⊥} where A is any subset of Atom(ϕ). A (partial)
truth assignment µ satisfies a propositional formula ϕ, denoted
by µ |= ϕ , if ϕ is evaluated to > under µ. For example
µ : A3 7→ ⊥ satisfies the formula (¬A1 ∧A2)→ A3.

A formula ϕ is satisfiable if there exists a (partial) truth
assignment such that µ |= ϕ. If µ |= ϕ for every truth

assignment µ, then ϕ is valid. Either a formula is valid or
its negation is satisfiable.

Definition 3: A propositional formula ϕ is in Conjunctive
Normal Form (CNF) if and only if it is a conjunction of
disjunctions of literals:

ϕ =

N∧
i=1

Mi∨
j=1

lij

Any propositional formula can be converted to CNF by an
algorithm with worst-case linear time [13], [14].

B. First-order logic

We assume countable sets of variable V , function symbols
F and predicate symbols P . A first-order logic signature is
defined as a partial function Σ : F ∪ P → A (A ⊂ N). Each
a ∈ A corresponds to an arity of an symbol. Obviously, a 0-
ary predicate is a Boolean atom, and a 0-ary function symbol
is called a constant.

A Σ-term τ is either a variable x ∈ V or it is built by applying
function symbols in F to Σ-terms, e.g. f(τ1, . . . , τn) where
f ∈ F and Σ(f) = n. For example, f(x, g(x)) is a Σ-term if
Σ(f) = 2 and Σ(g) = 1.

Definition 4: If τ1, . . . , τn are Σ-terms, and p ∈ P is a
predicate symbol such that Σ(p) = n, then p(τ1, . . . , τn) is
a Σ-atom.

A Σ-atom or its negation is called Σ-literal. We use the infix
equality sign “=” as a shorthand for the equality predicate.
If τ1 and τ2 are Σ-terms, then the Σ-atom τ1 = τ2 is called
Σ-equality. ¬(τ1 = τ2) or τ1 6= τ2 is called Σ-disequality.

Σ-atoms are the most basic building blocks of Σ-formulas,
each Σ-atom p(τ1, . . . , τn) is also a Σ-formula. Similar to the
construction of propositional formulas, Σ-formulas are con-
structed from Σ-terms which are connected by universal
quantifiers (∀), existential quantifiers (∃),
and logical connectives. That means if ϕ1 and ϕ2 are Σ-
formulas, then ∀x : ϕ1, ∃x : ϕ1, ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,
and ϕ1 → ϕ2 are also Σ-formulas.

A quantifier-free Σ-formula does not contain quantifiers; a
sentence is a Σ-formula without free variables. A first-order
theory is defined as follows:

Definition 5 (First-order theory): A first-order theory T is a
set of first-order sentences with signature Σ.

We call a Σ-atom in the theory T as T -atom in short. A
Σ-structure M is a triple (|M |,Σ, I) consisting of a non-
empty domain |M |, a signature Σ, and an interpretation I. The
interpretation I assigns meanings to symbols of Σ: for each
function symbol f ∈ F such that Σ(f) = n, f is assigned
a n-ary function I(f) on the domain |M |; for each predicate
symbol p ∈ P such that Σ(p) = n, p is assigned a n-ary
predicate I(p), represented by a subset of |M |n. For each
variable x ∈ V , I(x) ∈ |M |.

A Σ-structure M is a model of the Σ-theory T if it satisfies
all sentences in T . If a Σ-formula is satisfiable in a model of
T , then it is called T -satisfiable.



Definition 6 (The SMT problem): Given a Σ-formula ϕ and
a theory or a combination of theories T , the Satisfiability
Modulo Theories problem (SMT) is the problem of deciding
T -satisfiability of ϕ.

Most of the work on SMT focus on quantifier-free formulas,
and decidable first-order theories. Following [15], we define
a bijective function BA (Boolean abstraction) which maps
Boolean atoms into themselves and Σ-atoms in theory T into
fresh Boolean atoms. The Boolean refinement function BR is
then defined as the inverse of BA, which means BR = BA−1.

Definition 7 (The All-SMT problem): Given a Σ-formula ϕ
and a theory or a combination of theories T , All-Solution
Satisfiability Modulo Theories (All-SMT) is the problem of
enumerating all models M of T with respect to a set of
Boolean variables VI such that ϕ is T -satisfiable in M .

Here we also require that each of the resulting models includes
the value assignments for all elements of the set VR of relevant
(possibly non-Boolean) variables.

C. The DPLL algorithm

At a high level, an SMT solver is the integration of two
components: a SAT solver and T -solvers. SMT solving can be
viewed as the iteration of the two following steps. First, the
SAT solver searches on the Boolean abstraction of the formula,
ϕP = BA(ϕ), and returns a (partial) truth assignment µP . The
T -solvers then check the Boolean refinement of the candidate,
BR(µP ), whether it is consistent with the theories T .

function DPLL(ϕ){
µ← TRUE;
status = BCP(ϕ, µ);
if (status = SAT) return SAT;
else if (status = UNSAT) return UNSAT;
while (TRUE) {

l = choose_literal(ϕ);
µ = µ ∧ l;
status = BCP(ϕ, µ);
if (status == SAT) return SAT;
else if (status == UNSAT)

if (all_states_are_explored())
return UNSAT;

else backtrack(ϕ, µ);
} }

Fig. 1. DPLL algorithm on the propositional formula ϕ

The dominant approach for SAT solvers is the DPLL family
of algorithms [16]. The simplest form of DPLL is depicted in
Figure 1, its input is a propositional formula in Conjunctive
Normal Form (CNF), which means ϕ takes the form:

ϕ =

N∧
i=1

Mi∨
j=1

lij

A (finite) disjunction of literals (l1 ∨ l2 · · · ∨ lk) is called a
clause, and a literal li is an atom or its negation. A clause that
contains only one literal is called a unit clause. At a high level,
DPLL is a stack-based depth-first search procedure which
iteratively performs the two following steps: first, choose
a literal li from the remaining clause, then add it to the

current truth assignment; secondly, apply Boolean Constraint
Propagation (BCP), and backtrack if there is a conflict. These
two steps are repeated until a model is found or all states are
explored without finding a model.

The procedure BCP for a literal li removes all the clauses
containing li, and removes ¬li from the remaining clauses. If
the removals result an empty clause, the search encounters a
conflict.

III. APPLICATIONS

In this section, we discuss some of the applications of All-SMT
that have not been studied prior to this work.

A. Multiple Counterexamples for BMC

The aim of Bounded Model Checking [6] (BMC) is to find
bugs or to prove their absence up to some bounded k number
of transitions. In BMC, a program P is modelled as a transition
system:

P = (S, I, F, T )

where S is the set of program states; I ⊆ S is the set of initial
states; F ⊆ S is the set of final states; and T ⊆ S × S is the
transition relation. Under this setting, a trace of execution of
the program P is represented by a sequence of states: σ =
s0s1..sk such that s0 ∈ I, sk ∈ F and 〈si, si+1〉 ∈ T for all
i ∈ {0, .., k − 1}.
A state se is called an error state if the program reaches an
error, e.g. buffer overflow, or it violates a specification at se.
A trace σe that contains one or more error states is called an
error trace.

A trace can be also seen in logical form: the set I and the
relation T can be written as their characteristic functions: s0 ∈
I iff I(s0) holds; 〈si, si+1〉 ∈ T iff T (si, si+1) holds. In this
way, a trace σ is represented by the formula:

I(s0) ∧
k−1∧
i=0

T (si, si+1) (1)

In order to finds bugs (or prove their absence) up to some
bounded k number of transitions, BMC encodes all error traces
σe of the program P into a formula, and checks the satisfiability
of this formula with a SAT or SMT solver. For each error trace
σe = s0s1..sk, sk needs not to be in F, and there is an error
state se ∈ σe.

Since a SAT or SMT solver can only return a single model,
state-of-the-art SAT-based or SMT-based Bounded Model
Checker can only return a single error trace per run. The user
has to fix the error, then runs the model checker again to
find other error traces. On the other hand, All-SMT solver
can return all models w.r.t. a set of Boolean variables, it can
be exploited to find multiple counterexamples for BMC.

To illustrate our approach, we reconsider an example in Figure
2 from [17], which was used to illustrate CBMC [12], a
popular BMC tool for ANSI-C. We made a small modification
by adding the assertion (y > 1), so that the program P
contains more than one error. At the first step, the program is
transformed into Static Single Assignment (SSA) form [18],
variables are renamed when they are reassigned.



x=x+y;
if(x!=1){

x=2;
if(z) x++;
assert(y > 1);

}
assert(x ≤ 3);

→

x1=x0+y0;
if(x1!=1){
x2=2;
if(z0) x3=x2+1;
assert(y0 > 1);

}
assert(x3 ≤ 3);

→

C := x1 = x0 + y0 ∧
x2 = ((x1 6= 1)?2 : x1) ∧
x3 = ((x1 6= 1 ∧ z0)?x2 + 1 : x2)

P := (x1 6= 1→ y0 > 1) ∧ (x3 ≤ 3)

Fig. 2. Example, modified from [17]: the program is transformed into Static
Single Assignment form, and then encoded into a logical formula

CBMC transforms a program P and a guard g into logical
formula using two functions: C(P, g) transforms the program
constraints, and P(P, g) transforms the program specification,
namely assertions. Both functions are defined by induction on
the syntax of program as in Figure 3 (interested readers are
pointed to [17] for full details):

C(“if(c) I1 else I2”, g) := C(I1, g∧ρ(c))∧C(I2, g∧¬ρ(c))
P(“if(c) I1 else I2”, g) := P(I1, g∧ρ(c))∧P(I2, g∧¬ρ(c))
C(“I1; I2”, g) := C(I1, g) ∧ C(I2, g)
P(“I1; I2”, g) := P(I1, g) ∧ P(I2, g)
P(“assert(a)”, g) := g → ρ(a)
C(“v = e”, g) := (vα = (g?ρ(e) : vα−1))

Fig. 3. The two functions C(P, g) and P(P, g) for program transformation.
ρ(c) is expression c after being renamed as per SSA form; vα−1 and vα are
value of v before and after the assignment respectively.

As shown in Figure 2, applying C and P on the SSA program
results in the set of guards (x1 6= 1) and (z0 6= 0). We denote
Boolean variable g1 and g2 such that g1 := BA(x1 6= 1) and
g2 := BA(z0 6= 0).

A model of the formula C ∧ ¬P will correspond to a trace
of the program that violates the specification P . By asking
an All-SMT solver to return all models of ϕ = C ∧ ¬P with
respect to the set of Boolean abstractions of variables in the
guards, i.e. VI = {g1, g2}, we can get a set of all models, each
one corresponds to an error trace.

Since a single trace represents a set of concrete executions, to
get the inputs for just one representative concrete execution
that triggers the error, we set them as the relevant variables to
be included in the models, which means VR = {x0, y0, z0}.
In this case hence VI and VR represents the guards and the
inputs of the program respectively.

B. Automated Test Generation

This section shows how an All-SMT solver can be used in two
different approaches for Automated Test Generation (ATG),
namely Bounded Model Checking and Symbolic Execution.

1) ATG using Bounded Model Checking: We use the same
trick as in the previous section. The goal is to compute all
models of a formula, each one corresponds to a program trace
in the program. Take an example as in Figure 4. Different from
the one in Figure 2, the program contains no error, thus it will

go through CBMC without any solver being called. CBMC
will not generate a formula either.

void foo(int x, y){
if(x > 5){
x++;
if (x < 3)
x--;

else
y = x + 1;

}
return;

}

(g1 = x1 > 5) ∧
(x2 = 1 + x1) ∧
(g2 = x2 < 3) ∧
(x3 = −1 + x2) ∧
(x4 = x2) ∧
(y2 = 1 + x4) ∧
(x5 = g2?x3 : x4) ∧
(y3 = g2?y1 : y2) ∧
(x6 = ¬g1?x1 : x5) ∧
(y4 = ¬g1?y1 : y3)

Fig. 4. A simple program encoded into a formula

In order to generate test inputs that cover all program paths (to
a given bound), we instrument the program with a fake error
“assert (0);” at the end of the program. Since this error
is reachable by all program paths, CBMC will include all the
paths into the formula.

The box in the right in Figure 4 shows the formula encoded
by CBMC. We run the All-SMT solver on the formula with
VI = {g1, g2}, VR = {x1, y1}. The result is a set of solutions,
each one contains value assignments for x1 and y1, which can
be used as test inputs for the function foo.

2) ATG using Symbolic Execution: Symbolic Execution [19]
(SE) is a programming analysis technique which executes
programs on symbolic inputs instead of concrete data. For
each executed program path, a path condition pc is built which
represents the condition on the inputs for the execution to
follow that path, according to the branching conditions in the
code. The satisfiability of the path condition is checked at
every branching point, using off-the-shelf solvers. In this way
only feasible program paths are explored. Test generation is
performed by solving the path conditions.

Here we propose another approach for Symbolic Execution
using an All-SMT solver. We use SE with the constraint solver
turned off, to compute the set of all possible program paths:
pc1, pc2, . . . pcM . Since there is no constraint solving, a pci can
be infeasible. Hence, the program under test can be viewed as
corresponding to the following formula pc1 ∨ pc2 · · · ∨ pcM .

To illustrate, let us consider again the program in Figure
4, which can be viewed as corresponding to the following
formula:

ϕ := ((x > 5) ∧ (x+ 1 < 3)) ∨
((x > 5) ∧ ¬(x+ 1 < 3)) ∨
¬(x > 5)

(2)

Notice that the path (x > 5) ∧ (x + 1 < 3) is infeasible.
However, it is still included in the formula, since we do not
check the condition at each branching point. Applying Boolean
abstraction on ϕ leads to:

BA := ((C1 = (x > 5)) ∧ (C2 = (x+ 1 < 3)))

Similar to the case of using BMC for ATG, we run the All-
SMT solver to find all the models of the formula ϕ ∧ BA
with VI = {C1, C2} and VR = {x, y}. The result is a set of
solutions, each one contains value assignments for x and y,
which can be used as test inputs for the function foo.



In summary, in either the case of using Symbolic Execution
or using Bounded Model Checking for ATG, VI represents
the guards of the program and VR holds the test vector to be
generated.

C. Reliability analysis

Reliability analysis [20] aims to compute the probability that
a program successfully accomplishes its task without errors.
Most previous work perform reliability analysis at early stages
of design, on an architectural abstraction of the program, and
thus they are not applicable to source code.

In [21], Filieri et al. introduced the first approach that can
compute the reliability of program from Java bytecode. Their
approach is to use SE to enumerate each of the symbolic paths
(and its path condition pci). The symbolic path is then labelled
as: (i)T if the program accomplishes the task; (ii) F if the
program reaches an error state; (iii) G if we cannot decide
because the path is not fully explored (G stands for grey).

From the path condition pci, Filieri et al. use the tool Latte [7]
to compute the number of inputs #(pci) that satisfies the path
condition pc. The reliability of the program, i.e. the probability
that the program accomplishes its task, is then computed as:

R =
Σ#(pcT )

Σ#(pcT ) + Σ#(pcF ) + Σ#(pcG)

This section introduces an alternative implementation for the
approach in [21] by using our All-SMT-based SE instead of
classical SE. The improvement is that we only need to make
one call to the All-SMT solver to explore all feasible paths.

void foo(int x, y){
if(x > 5){
x++;
if (x < 3)

x--;
else {

y = x + 1;
assert false;

}
}
return;

}

Fig. 5. A simple program

Let us consider again the previous example with only one
difference: we add an error for the path x ≥ 3. Similar to the
previous section, we use SE with the constraint solver turned
off to encode the program into a logical formula ϕ as in (2).
Moreover, the two paths ((x > 5)∧(x+1 < 3)) and ¬(x > 5)
are labelled with T as the program finishes normally in these
two paths. On the other hand, the path ((x > 5)∧¬(x+1 < 3))
is labelled with F since an error is reachable in this path.

Similar to the previous section, using an All-SMT solver on
ϕ ∧ BA with VI = {C1, C2} and VR = {x, y} will eliminate
the infeasible path ((x > 5) ∧ (x+ 1 < 3)). We then can use
the Latte tool to count the models for each paths, and compute
the reliability of the program.

D. Measurement of Information Leaks

There has been active research in recent years in the area of
Quantitative Information Flow (QIF) [8], [22], which aims to
measure the amount of information that a system leaked to an
external observer.

Adversary

tries to infer

H from L and O

H

L
O

f

Fig. 6. Attacker model [23].

int check(int L, H){
int O;
if (H == L)
O = ACCEPT;

else O = REJECT;
return O;

}

Fig. 7. Password Check

In the attacker model for QIF, pioneered by Denning [24], a
system is represented as a probabilistic function f that maps
a high security input H and a low security input L to an
observable output O. An adversary tries to guess the high input
by providing the low input and observing the output. A well-
known example is the password check program in Figure 7,
every time the adversary tries to guess the password with his
input, the program leaks a small amount of information, and
eventually leaks all information if the adversary is allowed
to make enough number of attempts. The QIF problem is to
“measure” the amount of information leaked by a system using
information-theoretic metrics, e.g. Shannon entropy.

Let XH , XL and XO be random variables representing the
distribution of H , L, and O in the sample spaces ΩH , ΩL and
ΩO, respectively. If the adversary already knows H = h then
ΩH = {h}. If the adversary only knows that H is a 32-bit
variable, then ΩH = {0, 1, .., 231}. Given a function E(X) of
uncertainty of X , leakage of information is computed as the
reduction of uncertainty after observation.

∆E(XH) = E(XH)− E(XH |XL = l,XO)

where l is the low input chosen by the adversary, E(XH) is
his initial uncertainty about H , and E(XH |XL = l,XO) is
the remaining uncertainty.

A fundamental result in QIF is the theorem of channel capacity
[25] [26], which states that the leakage of a program over all
possible distributions is always less than or equal to the log of
the number of observables of the program. In other words:

∆E(XH) ≤ log2(N)

where N is the number of possible values of the output O.
This theorem was proved for both of the cases E is Shannon
entropy [25] and E is Rényi’s min-entropy [26]. This result
frees us from the tedious and expensive task of calculating
conditional probabilities on software data. Hence, counting the
number of observables N is the basis of state-of-the-art QIF
methods, e.g. [27], [28], [29], [30], [31], [32], [23].

QIF as #SMT: The problem of counting the number of
observables N can be casted into a model counting problem
over first-order formula, defined as follows:

Definition 8 (The #SMT problem [33]): Given a theory or a
combination of theories T and a Σ-formula ϕ, Model Counting
Modulo Theories (#SMT) is the problem of counting all



models M of T with respect to a set of Boolean variables
VI such that ϕ is T -satisfiable in M .

Obviously All-SMT solver can be used for #SMT. Assuming
the program P is in SSA form, and is transformed into a first-
order formula ϕP in the theory of bit vector QF_AUFBV. This
can be done automatedly using the model checker CBMC as
we have described in the previous section. In SSA form, each
variable is renamed when it is re-assigned. We denote by OF

the variable in ϕP that holds the final value of the output O
after the execution of the program. Our setting is for integer
variable of 32 bits, thus OF is a 32-bit vector.

We instrument ϕP by adding a set of Boolean variables VI =
{p0, p1, . . . p31}, each one tests the value of a bit of OF . For
example:

(assert (= (= #b1 ((_ extract 0 0) OF )) p0))

This statement in SMT-LIB v2 asserts that p0 is equal to the
value of the first bit of the bit vector OF . Similar settings are
applied for p1 . . . p31. By running an All-SMT solver on the
instrumented ϕP with respect to the set of important variable
VI , we can count all possible values of OF , and infer the
maximum leakage of the program.

In the case of QIF, VI represents the output bits of the program
and VR is empty.

IV. ALGORITHMS

We build our algorithms from a number of API functions
provided by the SMT solver, which we list below.

API function Description
Assert(ϕ) Assert formula ϕ into the solver.
Check() Check consistency of all assertions.
Model() Get model of the last Check.
Eval(t) Evaluate expression t in current model.
Push() Create a backtracking point.
Pop(n= 1) Backtracks n backtracking points.

A key feature of SMT solvers for our algorithms is that of
being incremental and backtrackable. The following example
shows a sequence of API calls and their effects to the solver.

Assert(ϕ1); Check(); ϕ1 ⇒ SAT
Push(); ϕ1

Assert(ϕ2); Check(); ϕ1 ∧ ϕ2 ⇒ SAT
Push(); ϕ1 ∧ ϕ2

Assert(ϕ3); Check(); ϕ1 ∧ ϕ2 ∧ ϕ3 ⇒ UNSAT
Pop(2); ϕ1

Assert(ϕ4); Check(); ϕ1 ∧ ϕ4 ⇒ SAT

It is possible for an incremental SMT solver to add additional
assertions to the original formula. Moreover, when Check
is being called several times, the solver can remember its
computation from one call to the other. Thus, when being
called to check ϕ1 ∧ϕ2 after checking ϕ1, it avoids restarting
the computation from scratch by restarting the computation
from the previous state. Backtrackable means that the solver
is able to undo steps, using Push and Pop, and returns to a
previous state on the stack in an efficient manner.

Both z3 [9] and MathSAT [2] provide similar API functions
to interact with the solver in incremental mode. Beside these

functions, we develop a function filter(m, VI , VR) such that:
given a model of the formula ϕ, a set of important Boolean
variable VI , and the set of relevant variables VR, the function
will return a subset mir of m that only contains literals from
VI and VR. This function will be used in both algorithms.

A. Blocking clauses method

A straightforward approach for All-SMT is to add clauses that
prevent the solver from finding the same solution again.

function ALL-BC(ϕ, VI , VR) {
N ← 0;
Ψ ← ε;
Assert(ϕ);
while (Check() = SAT) {

N ← N + 1;
m ← Model(ϕ);
mir ← filter(m, VI , VR);
Ψ ← Ψ ∪ {mir};
block ← FALSE;
for all pi ∈ VI {

block← block ∨ (pi 6= Eval(pi));
}
Assert (block);

}
return N, Ψ ;

}

Fig. 8. Blocking clauses All-SMT

The pseudo-code for the blocking clauses method is shown in
Figure 8. Every time the solver discovers a solution m of ϕ such
that m = l0 ∧ l1 ∧ · · · ∧ ln ∧ . . . , in which only l0, l1 . . . ln are
literals of p0, p1 . . . pn in VI . The negation of l1∧ l2∧ · · ·∧ ln
would be, by De Morgan’s law, as follows:

block = ¬l0 ∨ ¬l1 ∨ · · · ∨ ¬ln
A literal li in the model can be viewed as a mapping pi
to {TRUE, FALSE}, thus the negation ¬li is pi 6= Eval(pi).
By adding this clause to the formula, by Assert(block), a
solution with l0 ∧ l1 ∧ · · · ∧ ln will not be discovered again.
This procedure repeats until no other solution is found. At that
point, we have enumerated all the solutions of ϕ with respect
to VI . All solutions are stored in Ψ , and N = |Ψ | is the result
for the corresponding #SMT problem.

The blocking clauses method is straightforward and it is simple
to implement. However, adding a large number of blocking
clauses will require a large amount of memory. Moreover,
increasing the number of clauses also means that the Boolean
Constraint Propagation procedure is slowed down. Despite
these inefficiencies, the blocking clauses method can be used
to verify the results of other techniques.

B. Depth-first search

To address the inefficiencies caused by adding a large number
of clauses, we introduce an alternative method which avoids
re-discovering solutions using depth-first search (DFS).

We divide the set of variables of ϕ into two sets: VI is the set of
important Boolean variables, and VU is the set of unimportant,
possibly non-Boolean, variables (VR ⊆ VU ). Hence, with some



function ALL-DFS(ϕ, VI , VR) {
N ← 0;
Ψ ← ε;
Assert(ϕ);
if (Check() 6= SAT) return N, Ψ ;
depth ← 0;
finished ← FALSE;
while (finished = FALSE) {

l← choose_literal(VI );
Push();
Assert(l);
depth ← depth + 1;
if (Check() = SAT) {

if (depth = |VI |) {
N ← N + 1;
m ← Model(ϕ);
mir ← filter(m, VI , VR);
Ψ ← Ψ ∪ {mir};
backtrack();

} }
else backtrack();

}
return N, Ψ ;

}

Fig. 9. Depth-first search All-SMT

abuse of notation the formula ϕ can be viewed as the function
fϕ(VI , VU ) with codomain B. Our All-SMT procedure is the
integration of two components: the first component is a simple
SAT solver to enumerate all possible partial truth assignments
µI of VI ; the second component is the SMT solver to check
the consistency of ϕ ∧ µI .

The pseudo-code for DFS-based All-SMT is depicted in Figure
9. The method choose_literal chooses the next state
to explore from VI in a DFS manner, and the variable
depth keeps the number of important variables that have been
chosen. That means, choose_literal will select a literal
VI [depth] or ¬VI [depth]. This literal is then “pushed” to the
formula as a unit clause. Recall that the plain DPLL algorithm
[16] is a depth-first search combining with the BCP procedure.
Here we do not perform BCP, however by adding all literals of
µI as unit clauses to ϕ, we force the SMT solver to perform
BCP on those literals.

When all important variables have been assigned a truth value,
i.e. depth = |VI |, and the formula in the solver is consistent,
then the search has found a model. It then backtracks to find
another one. The method backtrack implements a simple
chronological backtracking, it “pops” the unit clauses and sets
the variable finished to TRUE when all states are explored.
It is also called when the formula in the solver is inconsistent.

Compared to the blocking clauses method, the DFS-based
method is much more efficient in term of memory usage.
The reason is that the blocking clauses method needs to add
N blocking clauses to find all models while the DFS adds
maximum |VI | of unit clauses. This memory efficiency leads
to timing efficiency when there are a large number of models.

C. Implementation

We have implemented both of the algorithms discussed above
in a prototype tool, called aZ3. The tool is built in Java, using
the API functions provided by the SMT solver z3 [9]. aZ3
supports standard SMT-LIB v2 with two additional commands:
the first one is check-allsat, also supported by MathSAT,
to specify the list of important variables; and the second one is
allsat-relevant to specify the list of relevant variables.

V. BENCHMARKS

The benchmarks, the aZ3 solver, and the wrapper of MathSAT
for #SMT can be found at: https://github.com/qsphan/aZ3.

The first group of benchmarks are formulas in QF LIA (integer
linear arithmetic). These benchmarks are used to evaluate All-
SMT solvers in the context of test input generation. They
are generated using the symbolic execution tool Symbolic
PathFinder [11] (SPF). SPF has a parameter, symbolic.dp,
to set the constraint solver for it. This parameter is allowed
to be set as no_solver, which makes the tool run without
constraint solving. The architecture of SPF enables us to attach
a “listener” to it. When SPF executes a program, the listener
collects the path conditions, and outputs them to a QF LIA
formula. The models of the integer variables can be used as
test inputs for the original programs.

The second group of benchmarks that we considered are
QF AUFBV (bit vector with array) formulas. The source of
these benchmarks are case studies in the QIF literature, mostly
collected in [28]. We use CBMC with the option --smt2
to transform the programs into QF AUFBV formulas, and
then instrument the resulting formulas to make them #SMT
problems. There are no relevant variables in these benchmarks.

Evaluation. Figure 10 summaries our experiments with aZ3
and MathSAT 5 on the benchmarks. In order to compare with
MathSAT, we commented out the relevant variables in the
QF LIA benchmarks.

As shown in the Figure 10, MathSAT is faster than aZ3, but
it is imprecise in several benchmarks (benchmarks with N in
bold). This is not surprised, since we built the tool from the
front-end, while the All-SMT functionality of MathSAT is built
from the back-end, making use of the internal data structure.
However, this back-end technique is only applicable for the
DPLL(T ) framework [36], and MathSAT returns incorrect
models for bit vector formulas, whose solver is not DPLL(T ).
Especially, in the benchmark “Mix and duplicate” MathSAT is
significantly faster than aZ3, but it is also extremely imprecise
at the same time. Note that benchmarks in QF AUFBV are
derived from the QIF literature, and their numbers of models
were already reported in other papers. For example “Mix and
duplicate” was reported in [37] and [28] to have 216 models.

The blocking clauses method is comparable, or even faster
than the DFS-based method when the number of models is
small. However, for example, for the benchmarks with 216

models, adding 216 blocking clauses is obviously not efficient
in both time and memory. As a result, the method failed to
provide the answer for such benchmarks. On the other hand,
the DFS-based method was still able to provide the answer in
a reasonable time.



Benchmark Expected N MathSAT 5 aZ3
N Time BC time DFS time

Q
F
_
L
I
A

Example in Figure 2 2 2 0.007 0.021 0.013
Function foo in Figure 4 3 3 0.005 0.008 0.007
Flap controller [21] 5 5 0.031 0.020 0.012
Red-black tree [34] 31 31 0.016 0.054 0.073
Bubble sort [35] 541 541 0.136 1.850 2.069
Array false [35] 1370 1370 0.037 3.008 2.650
Sum array false [35] 1024 1024 0.026 0.899 0.792
Linear search false [35] 1024 1024 0.028 0.899 0.604

Q
F
_
A
U
F
B
V

Sanity check, base:0x00001000 [28] 16 16 0.008 0.036 0.085
Sanity check, base: 0x7ffffffa [28] 16 16 0.009 0.040 0.087
Implicit flow [28] 7 7 0.012 0.029 0.049
Population count [28] 33 71 0.012 0.074 0.398
Mix and duplicate [28] 65536 162087 4.648 - 136.947
Masked copy [28] 65536 65536 1.319 - 18.630
Sum query [28] 28 64 0.010 0.055 0.133
Ten random outputs [28] 10 10 0.014 0.038 0.093
CRC (8) [32] 8 12 0.018 0.041 0.099
CRC (32) [32] 32 36 0.019 0.075 0.325

Fig. 10. N is the number of models, numbers in bold indicate incorrect results returned by MathSAT. BC time and DFS time are the time of aZ3 using the
blocking clauses method and depth-first search-based method respectively. Times are in seconds. “-” means “timed out in 1 hour”. Notice that for both aZ3
implementations the number of models is Expected N.

Benchmark Leaks sqifc [32] Our new technique
CBMC time aZ3 time Total time

Sanity check, base = 0x00001000 [28] 4 6.672 0.163 0.085 0.248
Sanity check, base = 0x7ffffffa [28] 4 114.760 0.170 0.087 0.257
Implicit flow [28] 2.81 5.033 0.169 0.049 0.218
Population count [28] 5.04 17.278 0.162 0.398 0.560
Mix and duplicate [28] 16 - 0.154 136.947 137.101
Masked copy [28] 16 - 0.175 18.630 18.805
Sum query [28] 4.81 64.557 0.162 0.133 0.295
Ten random outputs [28] 3.32 64.202 0.160 0.093 0.253
CRC (8) [32] 3 2.551 0.184 0.099 0.283
CRC (32) [32] 5 7.755 0.193 0.325 0.518

Fig. 11. Comparing our technique with the sqifc tool in [32]. Leaks are in bits. aZ3 runs with the DFS-based algorithm. Times are in seconds, “-” means
timeout in one hour.

VI. RELATED WORK

The whole content of this paper has previously appeared as a
chapter in the PhD thesis of the first author [33].

A. Multiple Counterexamples

The most relevant work to ours is that of Bhargavan et al. [38]
embodied in the Verisim testing tool for network protocols.
When an error trace is found to violate the specification, which
is an extended LTL formula φ, Verisim uses a technique, called
tuning, to replace φ with ϕ that ignores the violation. Tuning
is not fully automatic.

Another technique introduced by Ball et al. [39] is embodied
in the SLAM tool-kit. The algorithm uses a model checker as
a sub-routine. When the model checker finds an error trace,
SLAM localizes the error cause, modifying the source code
with a halt statement at the error cause. The model checker
is then invoked again, and the halt statements instruct the
model checker to stop exploring paths at the previously found
error causes. This procedure is very expensive, it requires
comparing the error trace with all correct traces to localize

the error, and requires to run the model checker several times.
Our work is much simpler, and faster but there is a possibility
that multiple error traces come from one cause.

B. Automated Test Generation

The closest to our work is FShell [40], which also uses
CBMC for automated test generation. FShell transforms the
program under test into a CNF formula, and solves it using
an incremental SAT solver. Every time the SAT solver finds a
solution representing a symbolic path, FShell adds a blocking
clause to prevent that path from being explored again. As our
experiments have shown, the blocking clauses method suffers
from space explosion.

Traditional Symbolic Execution also uses SMT solvers to
check the satisfiability of path conditions. In this approach,
the SMT solver is called whenever a conditional statement is
executed, hence it may be called hundreds or thousands of
times. In our approach, the symbolic executor makes only one
call to the All-SMT solver. This idea has been presented in a
student workshop [41].



C. Reliability analysis

Our approach to reliability analysis is based on the paper
of Filieri et al. [21] that uses classical Symbolic Execution
and Barvinok model counting tool. We extend the approach
using our new All-SMT-based Symbolic Execution instead of
classical Symbolic Execution. The main difference is the same
as in the case of test generation, our approach only makes one
call to the All-SMT solver in the whole analysis.

D. Quantitative Information Flow

The closest to the approach in this paper is our own recent
work [32], which introduced an SMT-based approach for QIF,
casting the problem into #SMT. However, the definition of
#SMT in [32] requires that the set of important variable
VI are Boolean abstractions of T -atoms. Here we relax that
requirement, making the definition more general.

In [32], we did not build a #SMT solver either. Suppose, for
example, we want to check if ϕ ∧ p0 is satisfiable, where ϕ
is the program constraints, and p0 corresponds to the first bit
of output O. We make a driver to extract p0 using bitwise
operators of C, and make an assertion that ¬p0. If CBMC
returns a counterexample for this assertion, then ϕ ∧ p0 is
satisfiable.

As such, in [32] the source code of the driver was modified
several times, and CBMC was called after each modification.
Figure 11 compares the performance of our All-SMT based
technique with the tool sqifc in [32]. The results show that
our implementation with the All-SMT solver can significantly
outperform sqifc for analysis of leakage.

E. All-Solution SAT Modulo Theories

As we have discussed throughout the paper, MathSAT is
the only SMT solver that supports All-SMT. Its algorithm is
briefly described in [5], and it was used to compute predicate
abstraction in [3] and [4]. However, this approach is only
applicable for the DPLL(T ) framework [36], while bit vector
formulas are solved by flattening into propositional formulas.
For this reason, as shown by our experiments, MathSAT is
imprecise in bit vector benchmarks.

Also in the context of predicate abstraction, Lahiri et al. [42]
proposed several techniques using the SMT solver Barcelogic
to generate the set of all satisfying assignments over a set of
predicates. However, we are not able to include Barcelogic
in our experiments, since the solver provided to us by the
author does not support All-SMT. These techniques are also
only applicable for the DPLL(T ) framework.

A principal difference between the work mentioned above and
ours is that we implemented from the front-end of an SMT
solver. As a result, our approach does not depend on theory-
specific implementation, and thus we can handle bit vector
formulas precisely. Our approach can also be implemented
even for closed-source SMT solvers that do not support All-
SMT but provide the API functions used in Section IV.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the use of an All-SMT
solver in four different domains of application: Bounded Model

Checking, Automated Test Cases Generation, Quantitative
Information Flow and Reliability analysis. We also introduce
a lightweight technique for All-SMT using the API functions
provided by an SMT solver. Future work include integrating
the All-SMT solver with CBMC to localize error causes using
similar idea in [39]. Models of ϕ1 = C ∧ P correspond to
correct traces that satisfy the specification, and models of
ϕ2 = C ∧ ¬P correspond to error traces that violate the
specification. Using an All-SMT solver, we can compute the
sets of all models of ϕ1 and ϕ2 with respect to the set of
guards. Comparing the two sets of models, we can localize
the transitions that only appear in error traces.
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