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Abstract—We address the problem of anomaly detection in
machine perception. The concept of domain anomaly is introduced
as distinct from the conventional notion of anomaly used in
the literature. We propose a unified framework for anomaly
detection which exposes the multifacetted nature of anomalies
and suggest effective mechanisms for identifying and distinguish-
ing each facet as instruments for domain anomaly detection.
The framework draws on the Bayesian probabilistic reasoning
apparatus which clearly defines concepts such as outlier, noise,
distribution drift, novelty detection (object, object primitive),
rare events, and unexpected events. Based on these concepts
we provide a taxonomy of domain anomaly events. One of the
mechanisms helping to pinpoint the nature of anomaly is based
on detecting incongruence between contextual and noncontextual
sensor(y) data interpretation. The proposed methodology has
wide applicability. It underpins in a unified way the anomaly
detection applications found in the literature. To illustrate some of
its distinguishing features, in here the domain anomaly detection
methodology is applied to the problem of anomaly detection for
a video annotation system.

Index Terms—Domain anomaly, anomaly detection framework,
machine perception, anomaly detection mechanisms

I. INTRODUCTION

Machine perception systems are invariably designed to

deliver a specific functionality and consequently, they are

domain dependent. Their design involves collecting a lot of

training data and all the modules needed to accomplish a

required task are trained as part of the design exercise. If the

application domain changes, such systems are paralysed. They

cannot adapt to a new scenario, even if there is a considerable

degree of commonality between the existing competence and

the desired new competence.

When the system is exposed to a new experience, some

or all of the current models used by the system will fail to

relate observed sensor(y) data to a correct meaning. This will

be reflected in the support for various hypotheses allowed by

each model becoming weak. We shall refer to this phenomenon

as anomaly, which should trigger other mechanisms to initiate

transfer of learning, so that the system can regain its useful

functionality.

We address the problem of anomaly detection in machine

perception. Building on the current state of the art in detecting

anomalous events [39], [50], [58], the main goal of the paper

is to develop a general framework for anomaly detection. We
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introduce the concept of domain anomaly, which differs from

the conventional meaning of anomaly in the sense that it relates

to a set of models characterising a domain. By a domain

anomaly we understand a situation when none of the existing

models can explain observed data. Using a mathematical ap-

paratus drawing on Bayesian probabilistic reasoning, existing

anomaly detection approaches are presented in a unified way

and novel detection mechanisms are proposed. The innovative

feature of the framework is that it exposes the multifacetted

nature of anomaly and makes it possible to identify the

diverse causes that can give rise to anomalous events, as

well as corresponding detection mechanisms. The proposed

extension of known anomaly detection mechanisms in the

literature is very important as it enables the anomaly detection

system to select an appropriate response. In particular, we

shall distinguish between measurement outliers, distribution

contamination, distribution model drift, new objects composed

of known primitives, and new primitive model vocabularies.

These nuances will allow us to introduce a taxonomy of

domain anomaly events.

The contributions in this paper can be summarised as

follows:

• We develop a unified framework for anomaly detection.

This framework is a major extension of the conventional

anomaly detection approaches reviewed in the papers of

Markou and Singh [35], [36] and encompasses the recent

important contributions to the anomaly detection problem

presented in [58].

• We identify the concept of sensor data quality and model

drift as essential elements of anomaly detection, facilitat-

ing understanding of its underlying causes.

• We argue that anomaly can also be caused by a model

drift which is not necessarily observable in terms of out-

liers, and suggest mechanisms for model drift detection

and classification.

• We propose a novel methodology for anomaly detection

which draws on these criteria. The methodology uses

jointly i) the concept of observation likelihood, ii) de-

cision reject option, iii) congruence [58] of multiple (e.g.

noncontextual and contextual [60], [33]) interpretations,

iv) sensor data quality [34], v) and model drift to detect,

identify and categorise different anomalies.

• We argue that Bayesian surprise [25] is not an ideal con-

cept to measure incongruence of multiple interpretations

and propose an alternative which obviates the pitfalls of

Bayesian surprise.
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• We identify and distinguish a number of different

anomaly scenarios based on the proposed approach.

Some aspects of the proposed methodology are illustrated

on the problem of anomaly detection in the context of transfer

learning from automatic interpretation of videos of tennis

singles to tennis doubles. We show that even in this relatively

simple case, more than one model of the application domain

triggers anomaly. We demonstrate that the proposed method-

ology successfully identifies the nature of these anomalies.

The paper is organised as follows. In the next section we re-

view the literature on anomaly detection. However, in machine

perception there are only a few examples of anomaly detection,

mainly dealing with the discovery of new objects. Section

III introduces the concept of domain anomaly and discusses

various mechanisms for anomaly detection categorised by the

type of model (generative in Section III-A or nongenerative

in Section III-B) adopted for automatic sensor(y) data inter-

pretation. We discuss the role of incongruence between the

interpretations generated by multiple experts as an anomaly

flagging mechanism in Section III-C. Most commonly multiple

sensor(y) data interpretations are derived by contextual and

non-contextual experts. A typical example of contextual deci-

sion schemes is presented in Section IV. A unified framework

for anomaly detection is introduced in Section V where we

elaborate some of the nuances of anomaly and how they relate

to concepts such as unexpected event, rare event, outlier, out of

vocabulary object, and out of vocabulary object primitive. The

framework and anomaly detection methodology are applied

to the task of domain anomaly detection in a sports video

annotation system in the context of transfer of learning in

Section VI. The paper is drawn to conclusion in Section VII.

II. RELATED WORK

The problem of anomaly detection has received considerable

interest in the literature because of its practical potential. Our

aim is to look at anomaly detection in the context of com-

plex machine perception systems performing reasoning using

multiple hierarchical models where the notion of anomaly

assumes new levels of complexity. We shall draw on the

existing surveys to define a baseline for anomaly detection

and a platform from which more complex notions can be

developed.

The early interests in abnormality, see e.g. [15], recorded

in the statistical literature in the nineteen century, were moti-

vated by problems of normal distribution parameter estimation

caused by discordant observations. This seminal work even-

tually led to the theory of robust estimation [24]. Although

solving a different problem, the byproduct of robust estimation

methodology is the identification of outliers, which can be

used for anomaly detection [44], [7].

The classical view of anomaly as an outlier from some

known distribution [6], [1] which represents normality is re-

ferred to as point anomaly. The basic classification of anomaly

detection approaches applicable to point anomaly, which has

been introduced in preceding surveys [35], [36], [22], [2],

identifies the following categories:

• statistical [7], [21], [41], [37]

• nearest neighbour [31]

• classification [42], [55], [26], [38], [49], [27], [12]

• clustering [19], [20]

A recent comprehensive and influential review [10] augments

this classification by two other categories of methods, namely

• information theoretic [4]

• spectral [61]

These approaches use different criteria to define abnormality

but basically they relate to the same notion of anomaly.

Learning of normality depends on the training data avail-

able. It can be based on samples representing the mundane

(normal) process, or both normal data and samples of abnor-

mal observations. The statistical approaches normally model

the distribution functions, whereas the classification methods

strive to delineate normal observations by a boundary of

normality. This can be learnt from one class training data

(set of positive training instances) [52], [53], [54], [46],

[40] or using negative samples as well (negative, anomalous

instances) [43], [50]. The learning process can be supervised,

semi-supervised or unsupervised. Often the training data is

corrupted by anomalies. A learning scheme that takes labelling

impurities into account has been proposed e.g. in [16]. The

relative merits of learning a positive instances detector rather

than a negative instances detector has been investigated by

[17].

The point anomaly does not capture anomalous situations

such as those where individual observations may be consistent

with normal data, but collectively, behaviourally or in context,

the observations deviate from normality. In their survey, Chan-

dola et al. [10] and [45] do identify this notion of anomaly

and review the existing literature as a separate category, with

one of the solutions being a conversion of these notions of

anomaly into a point anomaly detection problem. A typical

example of anomaly in context is an ordered sequence of

observations, such as time series, where any single observation

in the sequence may appear normal, but as a group, or jointly

with its neighbours, the observation is an outlier [28], [8],

[47], [33]. Anomalies in sequences of symbolic data have been

studied in [13] and spatial outliers in [51]. A Markov chain

model has been applied in [60].

More complex situations arise in multisensor systems where

it is important to discriminate between corrupted data, faulty

sensor nodes, and interesting events such as intrusion [18],

[14], [11], [48], [62]. The various scenarios cannot be dis-

tinguished by simple point anomaly detection, but more so-

phisticated reasoning is required [39]. Often the detection of

anomaly is motivated by the need to adapt to new environ-

ments [63].

In systems with multilevel representation of knowledge,

each phenomenon will have more than one model (reference),

depending on the number of levels of knowledge representa-

tion. This gives rise to a completely new notion of anomaly, a

compound anomaly. The recent paper on rare events detection

[23] is tackling such a problem, but under the assumption

that some examples of rare classes are available for learning.

Our approach draws on the fact that in the case of compound

anomalies the respective interpretations of observations based
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on the models at the different levels of representation disagree.

This disagreement is referred to as incongruence. There is very

little work in this emerging problem area, with the exception

of speech recognition.

Incongruence detection is the focus of a European Union

project Dirac, concerned with the detection of rare events.

The idea advocated in [57], [56], [58] is to compare the

outputs of weak and strong classifiers. A discrepancy in

their output is flagged as incongruence. The approach follows

the efforts in out-of-vocabulary word detection [9]. In this

case the weak classifier, i.e. the phoneme detector, may

be delivering phoneme hypotheses with confidence, but the

sequence of detected phonemes is rejected by the strong,

contextual classifier, because the word they correspond to does

not exist in the system vocabulary. This discrepancy would

suggest that an out-of-vocabulary word has been encountered,

rather than a noisy speech segment which would produce

low confidence phoneme hypotheses. Other examples include

anomaly detection in multi-modal systems, where discord is

manifest in the inconsistency of evidence provided by different

data channels (modalities) [5].

The work in [57] and [65] uses the notion of compound

anomaly detectable via incongruence for the detection of new

subcategories of objects by measuring the disparity between a

generalised context classifier (when giving a low confidence

output) and a combination of ’specific-level’ classifiers (gen-

erating a high confidence output).

These pioneering efforts in detecting anomalous observa-

tions in perception systems have identified new problems

that require novel notions of anomaly and the corresponding

formulations of the anomaly detection problem. It is our aim in

this paper to develop a comprehensive framework for anomaly

detection which will expose the deficiencies of the existing

solutions. More positively, the framework will identify all the

mechanisms needed for determining the true nature of anomaly

and its detection. This framework is developed in the next

section.

III. ANOMALY DETECTION MECHANISMS

In general, any domain will be characterised by a set of

models M ,

M = {Mi|i = 1, ..., ND} (1)

where Mi is a specific model relating to an element of domain

D, and ND represents the number of models characterising

the domain. The set, M , will be referred to as the domain

model and it will be assumed that it has been loaded into the

system operational memory to enable the interpretation system

to function. It should be noted that each element of domain D

may consist of multiple submodels, thus forming a subdomain.

For instance, one of the elements of the tennis video domain

is a set of objects pertinent to the domain. Recognising these

objects will require object appearance models and the set of

such models will form a subdomain.

We are interested in detecting domain anomaly, by which

we understand the failure of the domain models to explain the

observed data. The functional form of a model depends on

the modelled phenomenon. In very broad terms, all models

used in machine perception can be categorised into generative

and nongenerative. In the case of generative models, there is

a transparent relationship between observations and models.

Nongenerative models lose the direct link to observations.

This is exemplified by discriminative models which aim to

identify the class identity of a sensory stimulus. However,

a class identity is not sufficient to synthesise any specific

observation which conveyed the class identity information

in the first instance. Nongenerative models transform the

interpretation problem from modelling observations to parti-

tioning the observation space. The latter invariably introduces

extrapolation which makes it difficult, if not impossible, to

detect anomalies.

In the following we shall look at these two types of models

from the anomaly detection point of view in more detail. Most

importantly, neither generative, nor nongenerative methods

directly detect domain anomaly, which arises when none of

the domain models is able to explain the observed data.

Nevertheless, they are the key instruments in domain anomaly

detection and after their overview in the rest of the section,

their role in domain anomaly detection will be discussed in

Section V.

A. Generative models

Generative methods link model identity and measurements

in a direct manner. In general the measurements will be derived

from the sensor(y) data in some fashion. In computer vision,

at the lowest level we may be dealing directly with image

pixels, or with some higher level representations, such as

image descriptors, or shape primitives. A generative model

specifies how measurements are generated. By the same token,

given a measurement, we can hypothesise a model and verify

whether the measurement could have possibly been generated

by the model by computing the likelihood of the observation.

Typically, especially when dealing with signals captured by a

sensor, the assumed generative process will be probabilistic.

However, there are other generative models, e.g. grammatical

models, which also link a model directly to observations but

in this case via a set of deterministic generative rules. For the

moment, we shall confine our discussion to probabilistic gen-

erative models which are defined by probability distributions.

We shall refer to them as distributional models.

A distributional model p(x) applies to a phenomenon where

the process, generating members of a population, is char-

acterised by a probability distribution over all its possible

multidimensional outcomes, x, i.e. x is a random vector

variable. An anomaly is an observation that is not consistent

with our model. In general, an anomaly is manifest in a very

low likelihood value of observation x, and can be detected by

measuring p(x).
An outlier relates to a single observation. In many inter-

pretation tasks, instantiation of a model involves multiple

observations. We can still apply the notion of outlier to

all the observations {x1, ..., xk} jointly, by using the joint

distribution p(x1, ..., xk) as our model. By assuming that our

observations are independent, identically distributed (i.i.d.)

random variables, we we can measure the log likelihood of
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their occurrence using

log p(x1, ...., xk) =

∫
p̂(x) log p(x)dx (2)

where p̂(x) is the empirical distribution modelling the obser-

vations, while p(x) is the hypothesised model distribution.

or using the Kulback-Leibler divergence

ΔKL =

∫
p̂(x) log

p̂(x)

p(x)
dx (3)

Comparing the two measures in (2) and (3) we note that they

are related. The advantage of the Kulback-Leibler divergence

is that it goes to zero when the empirical and model distri-

butions are identical. In contrast, the optimum value of log

likelihood, which will be achieved when the two distributions

are identical, will be distribution dependent. This may cause

some problems in setting anomaly detection threshold.

For multiple observations, the test in (3), which we shall

refer to as Distribution anomaly, is more powerful than the

likelihood test in (2), as each observation individually may be

consistent with the model distribution and therefore, it would

not be flagged as outlier. However, together the observations

define an empirical distribution p̂(x), which may deviate from

the model distribution.

It cannot be over-emphasised that neither outlier anomaly

nor distribution anomaly necessarily imply domain anomaly.

They simply indicate whether one or more observations are

consistent with a hypothesised model. Observations that are

anomalous with respect to a given model may be perfectly

consistent with another model. Thus observations are anoma-

lous with respect to a domain (subdomain) if and only if they

cannot be explained by any of the models characterising the

domain (subdomain).

B. Nongenerative Models

Nongenerative models do not explicitly estimate the mea-

surement distributions. Consequently they do not facilitate

any testing for measurement consistency with a hypothesised

model. This renders anomaly detection rather difficult. A

typical scenario where nongenerative models are used for

sensory data interpretation is data classification. Nongenerative

models are favoured in pattern classification because they

focus on the classification task, rather than on modelling

the class conditional measurement distributions. Owing to the

emphasis on classification, rather than on generative mod-

elling, the resulting solutions tend to yield better classification

performance.

To formalise the discussion, consider a domain Ω with

elements ωi, i = 1, r each representing a class. Suppose

the elements of Ω are not directly observable, i.e. they are

observable only indirectly via a vector of measurements x.

Then the interpretation of an observation becomes a standard

pattern recognition problem where x is assigned to that class

which is most probable, i.e.

x → ωi if P (ωi|x) = max
l

P (ωl|x) (4)

It has been suggested in [58] that instead of working directly

with the a posteriori class probabilities, it may be preferable

to use a normalised version, Δc(x), referred to as decision

confidence, which is defined as

Δc(x) =
P (ωi|x)− ei

1− 2ei
(5)

where ei is the average probability of objects belonging to

class ωi being misclassified. However, either measure, (eq. (4)

or (5)), may suggest false confidence as an aposteriori class

probability can be high even when p(x) → 0, i.e. when the

measurement is an outlier. This explains why discriminative

classification methods cannot detect an anomaly reliably. They

will always identify the most probable hypothesis whether

they are competent to make a decision or not. Thus alternative

solutions are required, as suggested in [58] (see the paragraph

on incongruence below).

It is evident that if discriminative models are to be used

to get better classification performance, they need a gating

channel that will use one of the observation anomaly detection

methods described in Subsection III-A to establish whether the

output of a discriminative model procedure can be accepted

or rejected. Alternatively, this gating could be accomplished

using a discriminative method such as [52], [53], [54], [46].

However, these one-class classifiers would have to learn the

domain of the measurement distribution p(x), rather than the

classification task itself. Thus even in this case one would need

a separate method for anomaly detection and for classification.

This is an important conclusion which contributes to the

understanding of the anomaly detection problem. We shall

return to this point in Section V.

Note also that although the decision confidence measure

discussed above cannot be used alone for anomaly detection,

it is a useful measure for characterising the sensory data inter-

pretation landscape, especially helping to distinguish anomaly

from labelling errors due either to genuine ambiguity, or noisy,

or otherwise corrupted measurements.

C. Incongruence

Although a single expert does not have the capacity to detect

and or qualify unexpected events, the ability to detect anomaly

improves dramatically when more than one expert is involved

in decision making [58]. In the past decade or so, we have

seen the tendency to engage more than one expert for sensory

data interpretation for a multitude of reasons. Multiple experts

improve performance by exploiting

• multiple modalities of sensing

• multiple representations

• contextual information

• interpretation process structuring

If a domain is characterised by more than one model type, the

chance of two models reacting in exactly the same way to an

anomaly is quite low.

Let P̃ (ωj |x) and P (ωj |x) denote the aposteriori probabil-

ities associated with the hypothesis that model ωj explains

the input data, which have been generated by two experts.

The idea of measuring incongruence emerged in the context

of speech recognition where one of the challenges is to detect

out-of-vocabulary words, and this is achieved by comparing
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noncontextual and contextual phoneme classifiers [29]. This

idea has been considerably developed within the European

project DIRAC where it has been extended and applied to

other multiple classifier scenarios to detect incongruence of

multimodal experts [5] and to the problem of detecting novel

subclasses of objects [57]. By considering the aposteriori

class probability distribution output by one of the experts as

a reference, one can detect incongruence by measuring the

Kulback-Leibler divergence between the two distributions [29]

as

ΔBS =

r∑
j=1

P̃ (ωj |x) log
P̃ (ωj |x)

P (ωj |x)
(6)

which is known as the Bayesian surprise [25]. A close in-

spection of the measure reveals that it goes to infinity for

any hypothesis ω for which P (ω|x) → 0 while P̃ (ω|x) �= 0.

This can occur even for insignificant hypotheses and result in

producing false alarms of incongruence. To avoid the problems

associated with the Bayesian surprise measure we propose

an alternative which focuses on the dominant hypotheses

flagged by the two experts. Let us denote these hypotheses

by μ̃ = argmaxω P̃ (ω|x) and μ = argmaxω P (ω|x). Then

an incongruence indicator can be defined as

Δmax =
1

2
[|P̃ (μ̃|x)− P (μ̃|x)|+ |P̃ (μ|x)− P (μ|x)|] (7)

though other norms could be used as well. This incongruence

measure has several advantageous characteristics. It is sym-

metric, i.e. its value does not depend on an arbitrary choice

of one of the experts as a reference. It eliminates the noise

injected by the nondominant classes. Its values are not driven

to infinity, but are confined to the interval (0, 1).
It should be noted that any incongruence detected between

the outputs of experts only flags potential anomalies, rather

than pinpointing their origin and nature. For that a follow-up

analysis using observational anomaly detectors would have to

be carried out. This will further be explored in Section V.

D. Overview of findings

It is pertinent to summarise the key points of the discus-

sion so far. The classical methods of anomaly detection are

concerned with observational anomalies, which are of two

types: likelihood anomaly (outliers) or distributional anomaly,

depending on whether we are dealing with single or multiple

measurements. Detectors based on these notions of anomaly

do not directly flag a domain anomaly, but are the means of

detecting domain anomaly.

Commonly, data interpretation processes make use of non-

generative models which are often preferred to generative ones

because of their focus on decision boundaries and their speed

of execution. However, they also have a disadvantage; they

lack the capacity to detect domain anomalies. However, when

the interpretation process involves multiple experts for each

decision, the situation changes. In particular, incongruence

between the outputs of multiple nongenerative models is

indicative of potential domain anomaly. Incongruence can also

help to qualify the type of anomaly, even in the case of gener-

ative classifiers. It can be measured using Bayesian surprise.

Once incongruence is detected, the cause of anomaly and its

nature must be analysed using supplementary techniques based

on observational anomaly detection.

IV. CONTEXTUAL CLASSIFIERS

In the previous section we showed that nongenerative mod-

els do not have the capacity to detect domain anomaly, with

the exception of the cases when more than one expert is

involved in the instantiation of a hypothesis. Incongruence of

the expert outputs is a sufficient condition for anomaly, the

nature of which has to be established by further processing.

In the list of scenarios where multiple experts might be

engaged in interpretation, the contextual classifier category is

a particularly important family. It encompasses classification

approaches where sensor(y) data is represented hierarchically

in the process of deriving a symbolic representation of the

sensor(y) signals, as in the application discussed in Section

VI. At each level of representation we then have two opinions

on the class identity of a segment of data, voiced by a

noncontextual expert, using only the measurements relating

to the data segment, and a contextual expert which bases the

decision on the information drawn from both the segment and

its neighbours. The noncontextual classifiers are often referred

to as weak classifiers and contextual ones are known as strong

classifiers.

Contextual classifiers [60], [33] are important not only

because of their prevalence in machine perception, but also

because they provide information that facilitates a deeper

analysis of anomalous situations. From the methodological

point of view they are interesting because contextual decision

making can be formulated in many different ways.

Hierarchical models are composed of objects (object prim-

itives) which are combined at the next level to construct

higher level concepts. Let a meaningful group be constituted

by k components with associated measurements xi, i =
1, ..., k and their labels θi. Then apart from noncontex-

tual interpretation of each component based on P (ωi|xi),
we can also interpret objects in context by computing

P (θi|x1, .., xk, θ1, ...., θi−1, θi+1, .., θk), which can be be ex-

pressed as

P (θi|x1, .., xk, θ1, ...., θi−1, θi+1, .., θk) =
p(x1,...,xk|θ1,..,θk)P (θ1,..,θk)∑

λ
p(x1,...xk|θ1,..,θi=λ,...,θk)P (θ1,..,θi=λ,...,θk)

(8)

where P (θ1, ...θi, .., θk) is the prior world model of object

configurations, and p(x1, ..., xk|θ1, .., θk) denotes the joint

measurement distribution. We can see that anomaly detection

becomes quite complex. First of all, individual object detectors

can produce anomalous results either because of the associated

measurement is an outlier, or the primitive concept is missing

from the list of primitives. We can also have an anomaly

caused by a missing item in the world model. Low values of

the joint measurement distribution could also be flagging an

outlier. Thus there are four drivers behind anomalous situations

and, to understand the meaning of anomaly, these have to

be properly differentiated. We shall explore these different

situations further in Section V.

As anomalies of different kinds can occur jointly, meth-

ods for pinpointing their cause is required. The observation
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anomaly and incongruence measures discussed in Section III

can be used as anomaly detection mechanisms, and help

to identify different anomaly scenarios from the combinato-

rial list of possibilities generated by the four main drivers

of anomaly. There are various ways this can be accom-

plished. For instance, for each primitive, i, we would ex-

pect an agreement between the probability, P (θi|xi), as-

signed by a weak (non contextual) expert and P̃ (θi|xi) =
P (θi|x1, .., xk, θ1, ...., θi−1, θi+1, .., θk) assigned by a strong

(contextual) classifier. The sequence of incongruence measure

values Δ(i), i = 1, ..., k would need to be further analysed

to discriminate between different scenarios. There are some

simple scenarios which are indicative of, for instance, the

existence of an unknown class, or (the case) of noisy mea-

surements. However, the complexity of the anomaly landscape

is quite high, especially taking into account the role of

measurement likelihoods in identifying outliers. There are no

comprehensive anomaly measures at the moment which could,

in a systematic way, reflect all the different anomaly scenarios.

When the labels on the neighbouring primitives are not

available, the computation of the strong classifier probability

P̃ (θi|xi) = P (θi|x1, .., xk) involves compounding the sup-

porting evidence for a particular hypothesis over all contextual

interpretations. This will be illustrated in Section VI-A where

we discuss an example application exercising features of the

proposed framework.

As already pointed out in Section III-A, in many cases

objects or phenomena constituted by primitives do not have

a fixed structure, as for instance, do words in a vocabulary,

which are defined in terms of specific sequences of charac-

ters. The structure will be determined by a grammar, or a

probabilistic model capable of generating different structures.

There are many models that fall into this category, with a

Markov model being the most common. Under the Markovian

assumption the computation of the contextual probabilities

of the class identity of the successive primitives can be

considerably simplified.

V. ANOMALY DETECTION FRAMEWORK

One of the key mechanisms of anomaly detection exploited

in many of the scenarios is outlier detection. In almost all

cases outlier detection relates to probability distributions,

but domain anomaly arises when one or more observations

cannot be explained by our world models. As a result of the

unified treatment of the anomaly detection problem in different

scenarios, a number of important conclusions emerge, which

facilitate the development of an appropriate anomaly detection

methodology for machine perception applications.

The various output states of anomaly assessment are sum-

marised in Table I. They can be identified by analysing the

relevant factors which include the likelihoods of measurements

made on objects (components), the distribution of aposteriori

probabilities for the various object/component hypotheses,

aposteriori probabilities of contextual labelling of components,

or unconditional likelihood of joint observations on multiple

components. Anomaly can also be caused by distribution

drift, and this can in principle happen without any individual

observation being an outlier. An anomaly can be also a

manifestation of some measurement corrupting processes such

as noise. This situation should be recognised by means of

auxiliary measurements such as image (sensor data) quality

measures.

Referring to the multiplicity of the factors that can lead

to anomaly, the identification of the different situations is far

from trivial. We can clearly conclude that none of the papers

reviewed in Sections II and III are capable of detecting and

distinguishing all the nuances of anomaly. The key approach

used in the literature, which effectively defines a reject class,

makes use of only one of the measures listed in Table I, i.e.

the distributions of posteriori class probabilities. The work in

[32] supports a more sophisticated detection and analysis of

anomaly, but it does not take into account all the cues identified

in Table I. In principle it is extendible to identify certain

other anomaly cases. However, even this approach is limited in

scope, as it does not take the measurement distributions into

account and has no mechanism for independent assessment

of the quality of observational data to avoid generating false

anomaly positives.

We propose a comprehensive methodology for anomaly

detection which builds on the evaluation measures suggested

for the various anomaly factors in the literature. The key

contribution here is that all the relevant factors have to be

evaluated jointly. Thus for single entities, we have to assess

measurement likelihood, decision ambiguity and sensory data

quality. For structures, in addition, we have to measure incon-

gruence between noncontextual and contextual interpretations

of the structural primitives, as well as the likelihood of joint

observations of these primitives. The bag of tools therefore

comprises:

1) Observation anomaly (outlier) detector- using likeli-

hood (e.g. p(xi|θi), p(xi), ∀i, p(x1, ..., xk). An outlier

can be identified using any of the standard methods

suggested in the literature (viz a comprehensive review

in [35]), such as likelihood falling below a certain

threshold.

2) Reject option detector- The lack of convincing support

for any of the hypotheses associated with an application

domain, whether relating to single entities or structures.

A reject option can be flagged by measures defined

in terms of aposteriori probabilities of the various hy-

potheses, such as the decision confidence measure [58]

introduced formally in (5) or an entropy measure. Note

that a lack of confidence in a decision may be due

entirely to genuine ambiguity, and can be observed even

in the case of good quality sensor data.

3) Incongruence detector- Any inconsistency between the

interpretations suggested by two experts in general,

and by noncontextual and contextual labelling processes

relating to the components of a structure in particular,

is potentially indicative of anomaly. The nature of an

anomaly flagged by incongruence will depend on the re-

spective confidences in these two decision outcomes. In-

congruence can be measured as suggested, for instance,

in (7) in Section III, or using machine learning [32].

The anomaly types associated with incongruence include

6

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



Fig. 1. Domain anomaly detection system architecture. The sensor(y) data
to be interpreted feeds into a discriminative object/primitive (noncontextual)
classification system. The output of the noncontextual decision making system
is then channelled to a contextual classifier. The ”noncontextual model” stands
for object/primitive/component model, and the contextual model captures
the ”scene” (configuration) information. Both classifier outputs are fed into
decision incongruence detector and model drift monitor.The sensor(y) data
is also processed by generative models to measure the marginal and joint
likelihoods of the observations. These likelihoods help to detect and qualify
anomalous situations, with the help of data quality estimates and decision
confidence measurements.

unexpected event, where a given component is out of

context, a rare event, where a given configuration of

components occurs very infrequently, and an unknown

structure (out of vocabulary word).

4) Sensory data quality gauge- An independent assess-

ment of sensory data quality is necessary to disam-

biguate some of the anomaly cases where the above

detectors alone would not be able to judge whether,

for instance, incongruence between noncontextual and

contextual labelling of structural components is caused

by model inadequacy or by measurement errors. This is

a largely unexplored area, but it is evident that sensory

data quality is a multifacetted concept. Standard mea-

sures of, e.g., signal to noise ratio, resolution, bandwidth,

contrast, etc. and their combination, will be indicative

of various aspects of quality and can be used for this

purpose (see e.g. [34]).

A schematic diagram of the overall anomaly detection

system is shown in Figure 1. The system is illustrative of

the case when the multiple (two) discriminative models re-

late to noncontextual and contextual labelling of individual

objects/primitives. For other scenarios, such as multimodal

experts, the system would have to be suitably adapted. The

anomaly detection subsystem engages five different mecha-

nisms: Observation outlier detection, and decision confidence

estimation for the contextual and non contextual classifiers,

data quality gauging, decision incongruence detection, and

model drift monitoring. The anomaly detection system dia-

gram subsumes the noncontextual decision-making scenario

where the scene model would not exist, and congruency would

not be measurable. It cannot be over-emphasised that the

detection of an anomaly and its comprehensive qualification

cannot be successfully accomplished without all these sources

of information contributing to the final inference. We do not

detail the actual anomaly analysis processes as they will be

problem specific. The anomaly analysis stage of the system

in Figure 1 can identify different states of the sensor(y) data

interpretation (model instantiation) process and can detect

different types of anomaly, depending on the information

provided by the different gauging systems, which have been

identified and suitable measures suggested. In the following

the various output states will be briefly elaborated.

a) No anomaly: This refers to the normal mode of

operation when a good quality observation supports a distinct

hypothesis from the available set of possible interpretations.

b) Noisy measurement: When the measurements are

affected by noise, the interpretation of a single entity will

inevitably become more ambiguous. The ambiguity will be

reflected in the entropy of the aposteriori class probability

distribution. This case should be flagged by a quality mea-

surement extracted from the sensory data.

c) Unknown object: When sensory data relates to an

object which has no model in the existing model database,

the likelihoods of the unconditional measurement distributions

will be low or even report outliers. This will inevitably lower

the entropy of aposteriori class probabilities and consequently

the decision confidence. However, these two indicators alone

cannot differentiate between the noisy measurement scenario

discussed in Paragraph b above and the case of an unknown

object. While the latter should trigger a learning mode during

which the model database is augmented by a new object

model, the former should simply issue a warning about the low

confidence in interpretation, as a result of noisy observation.

These two types can be discriminated with the help of a

suitable measure of sensory data quality. The case of unknown

object would be reflected in the sensory data quality measure

indicating good quality signal.

d) Measurement model drift: Unrepresentative training

data, or changes in environmental conditions, may result in

measurement model drift when the designed system is de-

ployed operationally. Such a drift will not necessarily be mani-

fest in the detection of outliers. These changes can be detected

by monitoring the measurement distributions over time and by

comparing them with the learnt models. Potentially there are

two main situations of interest. Either the underlying models

remain conceptually the same and a drift simply signifies that

the measurement model should be adapted to accommodate

the range of operational conditions. Alternatively, the drift is

a result of semantic domain changes which call for learning

new domain models.
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e) Measurement ambiguity: Genuinely ambiguous

measurement will give rise to low confidence decisions.

f) Congruent labelling: A structure is formed by its

components (primitives). Different configurations of compo-

nents define different structures. If noncontextual and contex-

tual labelling of the components are congruent, then the obser-

vations are deemed to be consistent with the domain models

and the conduct of the interpretation process is considered to

be normal. Some configurations of components may occur less

frequently than others. Such configurations are congruent but

correspond to rare events.

g) Unknown structure: If the component labelling is

performed with confidence, but the resulting configuration

does not exist in the domain model base, the observations

most likely relate to an unknown structure. A typical exam-

ple of this situation is out-of-vocabulary word detection in

speech recognition. In this application words are composed

of phonemes, and the world of all the possible utterances

is modelled by a vocabulary, i.e. a list of valid words. If a

speech utterance contains a word which is not included in

the vocabulary, such as proper names of people and places,

the phoneme recogniser may function with confidence but fail

to output a sensible interpretation. However, the contextual

interpretation of the components will be incongruent with the

noncontextual interpretation. This incongruence observed in

the context of good quality sensory data will be indicative of

the configuration of components forming no known structure.

The model base will have to be updated to make it complete,

or potentially a new domain model will have to be created

(e.g. vocabulary for another language).

h) Unexpected structural component: Here the most

likely cause of the measurements on some components being

outliers is the absence of a relevant object/component model.

Although in this scenario the sensory data quality would be

high, the observational evidence would fail to support any

component model in the model base and the event would be

deemed to be unexpected, signifying a domain anomaly. Note

that unexpected event could also arise for instance when, for

computational expediency, only a subset of object models is in

active use. However, if the observed data cannot be interpreted

congruently using the active section of the model base, but

is interpretable using an extended or complete model base,

then the relevant event would not be anomalous. In fact it

would be a rare event. Unexpected event could also be caused

by spurious noise which affects only the measurements on a

single object/component. Such an event would be unexpected

by virtue of the prevalent context. The reasoning mechanism

(not elaborated herein) that analyses the various anomaly

qualifying measures would have to allow for all the possible

outcomes and, if necessary, instigate a follow up exploration

to disambiguate the various options.

i) Unexpected structure and structural components:

When the application domain of a machine perception system

is changed, neither component models, nor structure models

are relevant to observations. A simple example is an optical

character recognition system designed for automatic reading

and understanding (word level) text in English presented with

a text in Arabic. In such a case neither the world model

(vocabulary), nor the set of Latin character measurement

models will be relevant to the task. The domain change will be

characterised by most observations being classified as outliers

for all class conditional measurement distributions, accompa-

nied by a systematic failure of component interpretation. If, at

the same time, the sensory data quality is high, these anomaly

detection measures will be indicative of a major change in the

sensory data content and the system will have to switch to a

training phase to learn the new domain models.
j) Noisy joint measurements: If the anomaly detection

tools discussed in the previous paragraph exhibit similar symp-

toms, but the sensory data quality is deemed to be low, the

most likely interpretation of the situation is that more than one

observation are severely corrupted by noise or changes in the

sensory data acquisition conditions. The first corrective step in

this situation is to initiate a system diagnosis and environment

monitoring check to eliminate any malfunction.
k) Component model drift: Referring to our discussion

in Paragraph d above, the class conditional measurement

distributions relating to structural components may be subject

to drift. Again, this would not necessarily become obvious

from individual observations as these may perfectly well be

distribution inliers. However, monitoring these distributions

over time would give an opportunity to detect any drift that

requires adaptation, or alternatively, that may be indicative of

the underlying models being rendered irrelevant by a change of

sensory data content. The techniques suggested in Paragraph

d would be applicable to the problem of model drift and its

identification.
l) Ambiguous measurements: Ambiguous interpreta-

tion of components may give rise to false positive incongru-

ence. In such situations, the anomaly detection mechanism

should be disabled.

The domain anomaly cases discussed in the preceding

paragraphs are identified in Table I. Their taxonomy derives

from the type of subdomain they relate to, namely a component

subdomain or a configuration subdomain, resulting in the

following three categories:

1) Component Domain Anomaly CpntDomAn

2) Configuration Domain Anomaly CfgDomAn

3) Component and Configuration Anomaly

Cpnt&CfgDomAn

The observational and distributional anomalies are merely

some of the detection tools that are needed to flag and identify

a domain anomaly.

In Table I we cite one or two examples for each category of

anomaly, as well as the cases where data quality or decision

ambiguity measures are used to disable anomaly detection

mechanisms so as not to generate false positives. The examples

in the next section arise in interpreting a video of tennis

doubles using a system trained on tennis singles. The only

exceptions (no examples given) are Case i which would arise

in e.g. speech recognition where a change of language would

potentially involve both new component and new configuration

models, and Case l, where a detected drift of component

distributions could be accompanied with a change of high level

rules. For instance, analysing a badminton video with a tennis

game interpretation system would be a case in point.
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VI. ANOMALY DETECTION IN TENNIS VIDEO

INTERPRETATION

We shall demonstrate some elements of the architecture

discussed in the previous section on the problem of anomaly

detection in the domain of sports video annotation. The

anomaly detection problem arises in the context of an au-

tonomous system which has the ability to interpret video

of tennis singles, and the long term aim is to transfer this

competence to a new domain, such as game of badminton,

volleyball, or table tennis.

The tennis annotation system we use as a basis is quite

complex, comprising more than 15 modules, with each module

realising its functionality with the help of multiple models

[30], [59]. The modules perform, for instance, tennis court

localisation, the detection and tracking of players and the ball,

and detecting ball events that are identified by a rapid change

in the ball direction caused by a bounce, hit or net. The high

level modules of the system process the ball events and player

information to make decisions about the match score.

An integral part of the system operation is the ability to

flag anomalous situations and thereby identify when some of

the modules and/or models no longer have the competence to

interpret the incoming data. Thus every module is equipped

with an anomaly detection system engaging some or all the

elements of the general architecture introduced in Figure 1.

For simplicity we shall limit our discussion to a simple

scenario where the system, which has been designed to process

videos of tennis singles, is suddenly presented with a video

of tennis doubles. Clearly, in this simple situation many of

the system modules will function normally. The exceptions

are the player detection module which should report the most

apparent change between the domain of tennis singles and that

of tennis doubles, that is the number of players present. More

subtle is the change of rules relating to the definitions of the

play area in singles and doubles respectively. The detection of

these two anomalies will now be discussed in turn.

A. Number of players anomaly

As we use a very simple motion-based blob detector, the

number of people detected will vary from frame to frame, as

it will be affected by the presence of other agents (line judges,

ball boys). Thus, normality has to be modelled in terms of a

distribution of the number of players over time in a video shot,

rather than as an instantaneous count.

Anomaly will be manifest as a deviation from the distri-

bution learnt during the system design. This will be detected

by the model drift monitoring module in Figure 1. For tennis

singles and doubles, examples of the respective distributions

are shown in Figure 2. A number of similarity measures

could be used to compare a test histogram p(x) with a model

histogram p̂(x), both with D bins, but we use the simple mode

difference MD(p(x), p̂(x)) = argmaxx p(x)−argmaxx p̂(x)
We find the upper and lower thresholds for which none of the

shots in videos of singles is rejected. an upper thresholds are

required for anomaly detection. Two videos of tennis singles

are used; one for training and one for validation. In order

to estimate the thresholds, comparisons on validation sets of

normal (singles) videos were performed and the maximum
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Fig. 2. Normalised histograms of the number of moving agents detected per
frame in the games of singles (top) and doubles (bottom).

differences determined. By measuring the similarity of the

learnt model with the histogram of the player count for a test

video, any deviation from the norm can be detected.

We conducted evaluation experiments with the videos in

Table II. With each play shot lasting up to 2 minutes, we

tested the anomaly detector on more than 5 hours of footage.

TABLE II
TENNIS VIDEOS USED IN EXPERIMENTS AND THEIR DURATION

Label Tennis match # play noise
shots mean ±std

A03WS Australia03 Women’s Singles 76 1.9± 0.1

A03MS Australia03 Men’s Singles 143 3.1± 2.3

J09WS Japan09 Women’s Singles 100 1.6± 0.5

A08WD Australia08 Women’s Doubles 164 1.3± 1.0

U06WD USA06 Women’s Doubles 66 1.5± 1.9

The results obtained with test video histograms computed

from the shot frames as a function of the number of play shots

are shown in Figure 3. The results show that even from the

frames of one shot the system can detect anomalies most of the

time. We see that with a temporal integration, i.e. accumulating

the statistics over several play shots, a perfect detection of

player count anomaly can be achieved. However, for the

training configuration used in Figure 3(c), the zero positive rate

on test singles is recovered only for video segments exceeding

9 shots.

A closer analysis revealed the importance of data quality

estimation in anomaly detection. At each pixel the intensity

standard deviation, estimated using robust statistics over a se-

quence of motion compensated frames in one shot, is averaged

over all scene pixels and shots. Table II shows the mean noise

measure and its standard deviation for each of the videos used

in this paper. Note that the amount of noise in some of the

training and validation videos is very different, which leads

to relatively high thresholds to eliminate false positives. This

causes under-detection of true anomalies in doubles for low

levels of temporal integration in Figures 3 (a) and (b). The

temporal integration over several shots improves the anomaly

detection performance. Note that in Figure 3(c) the quality of

the two videos used for training is comparable, which yields

tighter thresholds and the need for much shorter temporal in-

tegration to achieve a perfect anomaly detection performance.

However, the temporal averaging initially increases the false
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Fig. 3. Percentage of anomalies detected as a function of the number of shots used for the analysis on games of singles and doubles, using different
combinations of two games of singles for training and to set thresholds.

positive rate on singles, before it recovers for long temporal

integration periods. The conclusion from this study is that

”normality” can be defined reliably only when the quality of

data used for the system design (both training and validation)

and in operation (testing) is comparable. Thus the training

configurations A03MS+J09WS and A03WS+A03MS should

not be used for the system design, and no anomaly detection

should be attempted with A03MS on a system trained with

A03WS+J09WS. The data quality estimation module in the

anomaly system architecture in Figure 1 is absolutely essential

to flag any discrepancy between the quality of the sources of

data used for design and to inactivate the anomaly detection

module for inputs corrupted by noise.

B. Out-of-play area anomaly

The evolution of a tennis game can be described entirely in

terms of tennis ball events. These are the points in a tennis ball

trajectory where the direction of motion changes dramatically,

caused either by a player action, or by the ball bouncing off

the ground or hitting the net. At the end of a normal play, the

exchanges between the players may continue for a little while

out of the inertia of behaviour. The ball activity may also

be driven by other agents, such as ball boys, before finally

stopping.

Depending on where the ball events take place (side of the

court) and their type (hit, bounce), they can be classified into

the following categories:

Notation Event type

hitA ball hit by playerA
bounce inA ball bounces in play areaA
bounce outA ball bounces outside play areaA
netA ball played by playerA hitting the net

serveA serve delivered by playerA

These states are duplicated for player¬A.

These ball events are measurable and detectable, with uncer-

tainties, using cues such as ball event vicinity to each player,

and their relationship to the court. For a ball event, i, this

information is conveyed by the measurement vector xi, with its

measurement distribution for event type θi given by p(xi|θi).
Note, that the interpretation of ball events is dependent on

the previous state. In other words, the label, θi of ball event

i, is given by θi = argmaxω P (θi = ω|xi, θi−1)where

P (θi = ω|xi, θi−1) denotes the aposteriori event class prob-

ability function. Using the above measurement distributions,

this aposteriori probability for label θi is given as

P (θi|xi, θi−1) =
p(xi|θi)P (θi|θi−1)∑
θi
p(xi|θi)P (θi|θi−1)

(9)

In spite of its dependence on the previous state, this ball

event labelling process can be considered as noncontextual,

as it lacks the capacity to capture the complete picture of

the tennis game evolution. The full understanding of the

game is provided by a contextual model that processes the

complete sequence of events from the initial ball event, i.e.

the serve. The admissible sequence of ball events is modelled

using a Markov chain with learnt state transition probabilities.

This Markov model is used to monitor the state of play and

to decide which player should be awarded a point. This is

described in detail in [30].

When a ball event signals the end of play, by being classified

as a bounce out or hit twice by the same player, both the

noncontextual and the Markov models detect illegal evolution

of the game and the play is expected to terminate. Due to the

inertia of the player action, a few normal exchanges between

the players may follow the game terminating event, followed

by other ball events associated with the ball(s) being collected

from the court by the ball boys/girls. While the first exchanges

between players (typically not more than 3) may comply with

the rules of the game, the latter ball events will not, and will

form an illegal sequence.

Let the ball event, i, be a game terminating event, ω. Then

we would expect the last ball event in the sequence to have

index i + n where n is low. For n > 3 the sequence of

observed ball events would contain illegal transitions from the

point of view of the rules of a tennis game proper. Thus a

contextual check on the decision that θi is an end of play event

can be made by looking ahead at events θi+1, ..., θi+n, and

computing P (θi = ω|xi+1, ....,xi+n). We compute P (θi =
ω|xi+1, ...,xi+4) as

P (θi = ω|xi+1, ...,xi+4) =

⎧⎨
⎩

1 n ≤ 3 legal exch.

0 n ≥ 4 legal exch.

1 illegal
(10)
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A measure of incongruence between the non-contextual and

contextual probabilities of a fault event is used to signal a

potential anomaly. We adopt the measure introduced in (7).

For our two class problem, the measure can be shown easily

to simplify to

Δmax = |P (θi = ω|xi, θi−1)− P (θi = ω|xi+1, ...,xi+4)|
(11)

The anomaly detection mechanism for this ball event in-

terpretation process also uses quality information, but as it

works with an intermediate representation (ball events, player

positions), rather than raw pixels, measuring the noise level

of the video is inappropriate. The notion of quality is task-

dependent and it must be defined for each process. As the

ball event detection and classification processes use local

contextual information, which to a large degree mitigates the

effect of noise, the data quality is satisfactory and the quality

assessment module does not report any quality issues. How-

ever, here the domain anomaly detection system engages the

confidence assessment modules as the ball event classification

is ambiguous close to bounce in and bounce out boundaries.

The ambiguity is the consequence of attempting to extract 3D

measurements from 2D projections. These measurement in-

accuracies lead to overlapping class conditional measurement

distributions, resulting in ambiguous noncontextual decisions.

These ambiguities could then cause incongruence between

contextual and non-contextual aposteriori class probabilities,

as measured in eq. (11). This is avoided by filtering out

incongruences associated with ambiguously determined class

labels. The decision confidence is determined by applying

measure (5) in Section III.B to the noncontextual probabilities

in (9). An experimentally determined confidence threshold

on the noncontextual posteriors carves out a 30 pixels wide

incongruence exclusion zone around the court boundaries.

The noncontextual decision-making threshold is determined

by training on matches of tennis singles, so that no anomaly

is detected in any singles videos. For any ball event in tennis

doubles, with quality measurement less than the threshold, no

anomaly is flagged either. Only ball events of ”good quality”

are analysed for incongruence. The details of the interpretation

process can be found in [3].

The game evolution module was evaluated on the same set

of videos discussed earlier. The training of the system was

carried out using tennis singles matches (A03MS, A03WS and

J09WS). The three videos were used in rotation as follows:

The first video was used to learn the module models. The

second video was used to set the confidence thresholds. The

third video was used for testing on unseen singles. The exper-

iment was performed three times for different combinations

of the videos. For each configuration, the system was then

run on two tennis doubles matches (A08WD,U06WD). The

anomaly detection results on unseen singles and doubles were

averaged over the three configurations. They are shown in

Table III where TP denotes true positive detections, FN false

negatives and FP false positive detections respectively. Note

that the resulting system detected no anomalies in the unseen

test tennis singles videos.

TABLE III
OUT-OF-PLAY ANOMALY DETECTION RESULTS.

Test video: TP FN FP
A08WD 7 37 0
U06WD 3 4 0.33

Ideally we would like to detect all the anomalies, i.e. the

sum of TP and FN . Unfortunately the decision confidence

filter set on tennis singles results in a relatively large number

of undetected anomalies, because many anomalous events fall

close to the inner tramline of the doubles play area. With

more sophisticated video processing techniques, or using a 3D

measurement system such as Hawkeye, the decision ambiguity

would be reduced considerably and a lower false negative rate

achieved. Nevertheless, the system detects a significant number

of anomalies which clearly indicate a domain change.

VII. CONCLUSIONS

We addressed the problem of anomaly detection in ma-

chine perception. We argued that the conventional notions

of anomaly such as outlier or distribution drift alone cannot

detect all anomalous events of interests in machine perception

where the key objective is to instantiate models to explain

observations. The inability to detect anomalies is aggravated

by the common use of nongenerative models for decision

making, which is motivated by their speed of processing and

better classification performance. However, such models lack

the inherent capacity to detect anomalous situations.

In order to clarify the anomaly landscape, we introduced the

concept of domain anomaly, which refers to the situation when

none of the models characterising a domain are able to explain

the data. We showed that a number of mechanisms are required

to detect a domain anomaly. They include detectors of outliers

of noncontextual and contextual measurement distributions,

detectors of incongruence of contextual and noncontextual sen-

sor(y) data interpretations, decision confidence estimation and

sensor(y) data quality assessment. These gauging mechanisms

jointly facilitate not only the detection of domain anomaly,

but also its identification. A taxonomy of domain anomalies,

which distinguishes between component, configuration, and

joint component and configuration domain anomaly events,

has been introduced.

We developed a unified framework for domain anomaly

detection. The framework draws on the Bayesian probabilistic

reasoning apparatus which clearly defines the concepts such

as outlier, noise, distribution drift, novelty detection (object,

object primitive), rare events, and unexpected events. The

proposed methodology has wide applicability and it underpins

in a coherent way the anomaly detection applications found

in the literature.

The proposed anomaly detection system architecture in-

cludes a mechanism for detecting incongruence between the

decisions of multiple classifiers, a measurement distribution

drift detector, data quality assessment and a decision ambiguity

monitor. The outputs from these modules are processed by a

reasoning mechanism to identify anomalies and their meaning.

Incongruence is gauged by a criterion related to the Bayesian
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surprise measure. The architecture is applied to two differ-

ent interpretation processes within a tennis video annotation

system to demonstrate the role of incongruence in domain

anomaly detection, and to emphasise the importance of data

quality and decision ambiguity assessment in distinguishing

genuine anomalies from false positives caused by noise or

ambiguous measurements.

According to the anomaly taxonomy introduced in Section

V, both applications in Section VI demonstrate Component

Domain Anomaly detection. In contrast to ”novelty” detection

studied in [56], the player count anomaly detects ”innovation”.

The out of play application flagged by incongruence detects

unexpected component in the context of the tennis game. Both

anomaly detectors distinguish and respond appropriately to

noise and ambiguity. We plan to demonstrate the detection of

Component and Configuration Domain Anomaly in the context

of transfer learning from tennis to badminton.
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