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1 Introduction and summary

The topic of quantization in soliton sectors is a rich one with a long list of applications.

Foundational work on this subject was carried out in the mid 70’s and includes [1–9]. For

thoroughly pedagogical reviews we refer the reader to [10, 11].

In [1] Tomboulis quantized a simple two-dimensional scalar theory in the one-soliton

sector by introducing a canonical transformation from the original fields to a dynamical

modulus — i.e. a collective coordinate — plus fluctuations around the classical soliton

solution, while imposing a set of constraints which preserves the total number of degrees of

freedom. A key assumption in that work was that the soliton solution has a single modulus

associated with translations in the spatial direction, as is the case e.g. for a kink in φ4

theory. This greatly simplifies some conceptual and calculational aspects of the analysis.

Similarly, other contemporary approaches to soliton quantization around static classical

solutions, including canonical transformations with unconstrained variables as well as path

integral techniques, primarily dealt with systems in which all collective coordinate degrees

of freedom correspond to translational modes.1

Several years later, a more geometrical framework for understanding collective coor-

dinates emerged from studies of the Bogomolny equation, describing ‘t Hooft-Polyakov

monopoles [12, 13] in four-dimensional Yang-Mills-Higgs theory in the BPS limit of van-

ishing potential [14, 15]. In this theory, the minimal-energy solution set of the static field

1Some aspects of the analysis of [7], in particular the derivation of the soliton sector Hamiltonian,

are more general and do not require the linear motion assumption for the collective coordinates made

elsewhere in the paper — an assumption which is based on an identification of the collective coordinates

with translational degrees of freedom.
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equations with fixed boundary conditions, corresponding to a particular topological charge

sector, is a finite-dimensional Riemannian manifold, (M, G). The metric is the natural

one induced from the (flat) metric on field configuration space. The framework suggested

by Manton [16] is that, for slowly varying field configurations, the dynamics of the full

system is well approximated by promoting the moduli to time-dependent variables — the

collective coordinates — in which case the field theory equations of motion reduce to the

geodesic equation on M. The usefulness of this framework was beautifully demonstrated

by Atiyah and Hitchin’s analysis of two-to-two monopole scattering [17].

Generically, M has curvature and not all moduli correspond to broken symmetries

such as translations. Nevertheless in asymptotic regions of M, corresponding to field

configurations with well-separated and localized lumps of energy, one can associate the

parameters with locations and internal phases of constituent solitons. This suggests that

Manton’s paradigm of motion on moduli space is applicable in any theory admitting static

multi-soliton solutions.

It should be emphasized that Manton’s prescription is for constructing approximate

time-dependent solutions to classical field equations. However, as demonstrated earlier

by Gervais, Jevicki, and Sakita [8], it is also natural to assume small velocities for the

collective coordinates in the semiclassical analysis of a soliton sector of a quantum the-

ory. The approximate classical solution provides an approximate saddle point for the

semiclassical expansion of the path integral. One would like the corrections coming from

performing the saddle-point approximation to be comparable to those due to expanding

around an approximate solution; the latter are controlled by the collective coordinate ve-

locities.2 Hence the geometry (M, G) provides a natural starting point for the quantum

analysis of a soliton sector, and the Manton approximation is incorporated as part of the

semiclassical expansion.

This point of view was first considered in [19] and has since been used to great effect,

e.g. in the context of N = 2 supersymmetric four-dimensional gauge theory [20–22] where

semiclassical results can be compared against the quantum-exact ones of Seiberg and Wit-

ten [23, 24]. In these analyses one typically truncates the classical degrees of freedom to the

collective coordinates and then quantizes the resulting finite-dimensional system, yielding

a (supersymmetric) quantum mechanical sigma model with target M. This is sufficient

for answering basic questions about the original quantum field theory, such as the exis-

tence of soliton states and what charges these carry. The first corrections to masses and

charges, obtained from one-loop determinants, have also been considered [25, 26]. How-

ever, to our knowledge, the exact quantum Hamiltonian describing the full dynamics of

a quantum field theory around a (multi-) soliton sector has not been studied within the

general geometrical framework.

In this work we extend the canonical transformation of [1] to multi-component scalar

field theories with general multi-soliton moduli spaces. This naturally requires using geo-

2In the rare circumstance where the time-dependent classical solution is exact, one can employ the more

powerful method of [2], which takes the form of a WKB approximation; see e.g. [18]. Our focus here will

be on the semiclassical expansion around static soliton solutions, since this is typically all one has to work

with in going beyond the two-dimensional kink.

– 2 –



J
H
E
P
0
6
(
2
0
1
4
)
0
0
3

metric quantities on the moduli space of classical solutions. Our primary goal is to extract

the quantum Hamiltonian for this system, which may be useful in various contexts, such

as the study of scattering processes involving both solitons and perturbative particles [27].

Our secondary goal is to establish a formalism that facilitates extending this inquiry to

(supersymmetric) theories with gauge fields and fermions, e.g. involving monopoles in four

dimensions or instanton-solitons in five dimensions. While we intend to return to this in

the near future, the restriction to scalar fields helps highlight the main qualitative results

against the added technical details required for those applications.

In that vein, we emphasize several conceptual points as they arise in the explicit

analysis. We demonstrate how one recovers a reparameterization-invariant theory for the

dynamical moduli when the fluctuations are switched off. This sector has knowledge of

both the intrinsic and extrinsic geometry of the system. Furthermore, we show how the

full quantum Hamiltonian of the field theory can be expanded in the perturbative coupling,

when one additionally requires the solitons to be slowly moving. We organize and present

this semiclassical expansion to the first few orders and briefly discuss how Lorentz invariance

can be recovered in perturbation theory. Finally, we exhibit how, when restricting to

incoming and outgoing states which do not involve perturbative excitations, the leading-

order dynamics reduce to quantum mechanics on the soliton moduli space.

We would like to point out that a detailed reduction to the quantum mechanics on

the soliton moduli space has also been performed from the point of view of embedded

submanifolds [28, 29]. This approach is based on the formalism developed for studying

quantum mechanical systems constrained to move on a sumbanifold of their full config-

uration space [30, 31]. It can be extended to quantum field theory in the presence of a

soliton, by viewing the moduli space as embedded inside the infinite-dimensional space of

field configurations. The quantum mechanics on moduli space then emerges by solving the

functional Schrödinger equation in the Born-Oppenheimer (or ‘thin-layer’) approximation.

This effectively integrates out the massive modes and produces geometric corrections due

to both the intrinsic and extrinsic curvature, which are missed by a naive truncation. Our

quantum mechanics, obtained via conventional second quantization, exactly agrees with

that of [28, 29].

The rest of this paper is organized as follows: In section 2 we set up the background,

introduce the change of variables and canonically quantize the theory. In section 3 we

obtain the quantum Hamiltonian. Section 4 deals with the reparameterization invariance

of the collective coordinate sector, while in section 5 we present the semiclassical expansion.

Finally, section 6 discusses the reduction to quantum mechanics on the moduli space.

2 The change of variables

We begin with a general class of real scalar field theories with classical Lagrangian

L =

∫

dx

{

1

2
Φ̇ · Φ̇− 1

2
∂xΦ · ∂xΦ− V (Φ)

}

. (2.1)

We work in flat D-dimensional Minkowski space, with x a (D − 1)-dimensional position

vector and dx shorthand for dD−1x. Φ is an n-tuple and · denotes the Euclidean inner
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product on R
n. When necessary we will use indices a, b, ... to label components of n-

tuples. Let Mvac = {Φ | V (Φ) = 0} ⊂ R
n denote the space of vacua where the potential

energy function vanishes. A finite-energy field configuration must approach some point in

Mvac as x → ∞ in any direction. Thus the space of static, finite-energy field configurations

decomposes into topological sectors labeled by πD−2(Mvac), the set of homotopy equivalence

classes of maps from the (D − 2)-sphere at spatial infinity into the vacuum manifold. A

(multi-) soliton solution3 will be a field configuration of minimal energy in a nontrivial

topological sector. In particular,Mvac should have multiple components in order for solitons

to exist when D = 2.

The Hamiltonian, H[Φ,Π] associated with the Lagrangian L[Φ, Φ̇] is

H =

∫

dx
[1

2
Π ·Π+

1

2
∂xΦ · ∂xΦ+ V (Φ)

]

. (2.2)

We assume that Φ,Π at fixed time t are Darboux coordinates on phase space

{Φa(t,x),Φb(t,y)} = {Πa(t,x),Πb(t,y)} = 0

{Φa(t,x),Πb(t,y)} = δabδ(x− y) , (2.3)

where δ(x − y) is a (D − 1)-dimensional Dirac delta function and the Poisson bracket is

given by

{F [Φ,Π], F̃ [Φ,Π]} :=

∫

dz

{

δF

δΦ(z)
· δF̃

δΠ(z)
− δF

δΠ(z)
· δF̃

δΦ(z)

}

. (2.4)

In the quantum theory, Φ,Π are promoted to operators4 Φ̂, Π̂ and the Poisson bracket to

a commutator

{ , } → [ , ] = i{ , } , (2.5)

such that

[Φ̂a(t,x), Π̂b(t,y)] = iδabδ(D−1)(x− y) . (2.6)

We consider a fixed topological sector and assume there exists a finite-dimensional

smooth family of classical static soliton solutions, parameterized by moduli UM ,

Φ(x) = φ(x;UM ) , (2.7)

where M runs over the dimension of the moduli space dimRM, such that

− ∂2xφ+
δV

δΦ

∣

∣

∣

∣

Φ=φ

= 0 , −∂2x +
δ2V

δΦδΦ

∣

∣

∣

∣

Φ=φ

=: ∆(U) ≥ 0 . (2.8)

3Although Derrick’s theorem [32, 33] precludes the existence of soliton solutions for D > 2, it is no more

difficult to leave D arbitrary. Doing so will facilitate the extension to theories with gauge interactions where

one can have D > 2.
4For added clarity in this section we use hats to distinguish quantum operators from their classical

counterparts. In later sections we will be working exclusively at the quantum level and will drop this

convention in favor of brevity.
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The inequality ∆(U) ≥ 0 is meant to signify that ∆(U) is a positive operator, such that

all of its eigenvalues are non-negative, and the notation is to emphasize that this operator

depends on where we are in moduli space.

In order to study the behavior of the theory around the soliton configuration (2.7), one

makes a change of variables from the original field Φ(x) to collective coordinates UM =

UM (t) and fluctuations χ(x;UM (t)) about the solution:

Φ(x) = φ(x;UM (t)) + χ(x;UM (t)) . (2.9)

To preserve the number of degrees of freedom, there should be as many constraints on

these new variables as there are coordinates UM . We note that ∂Mφ will be a zero-mode

of the linear differential operator ∆. One would like to exclude such zero-frequency modes

from the mode expansion of χ. This can be done by imposing the constraints

ψ
(1)
M =

∫

dx χ · ∂Mφ = 0 . (2.10)

We introduce momentum variables (pM , π(x;U
M )) conjugate to (UM , χ) and extend

this transformation to phase space. We treat these as Darboux coordinates in an extended

phase space

{UM (t), pN (t)}′ = δMN , {χa(t,x;U(t)), πb(t,y;U(t))}′ = δabδ(x− y) , (2.11)

with Poisson structure { , }′, defined by

{F [U, χ; p, π], F̃ [U, χ; p, π]}′ := ∂F

∂UM
· ∂F̃
∂pM

− ∂F

∂pM
· ∂F̃

∂UM
+

+

∫

dz

{

δF

δχ(z)
· δF̃

δπ(z)
− δF

δπ(z)
· δF̃

δχ(z)

}

. (2.12)

We also extend the coordinate transformation (2.9) to a phase space transformation with

the ansatz

Π(x) = ΠM
0 [U, χ; pM , π] ∂Mφ(x;U(t)) + π(x, U(t)) , (2.13)

where the functionals ΠM
0 will be determined below. In analogy with (2.10) we impose

ψ
(2)
M =

∫

dx π · ∂Mφ = 0 . (2.14)

The constraints are second-class as the Poisson brackets are non-vanishing:

{ψ(1)
M , ψ

(1)
N }′ = {ψ(2)

M , ψ
(2)
N }′ = 0 ,

{ψ(1)
M , ψ

(2)
N }′ =

∫

dz ∂Mφ · ∂Nφ =: GMN (U) . (2.15)

Here GMN (U) is the metric on the moduli space of soliton solutions. Restriction of the

dynamics to the constraint surface is achieved through the introduction of Dirac brackets,

{F, F̃}′D := {F, F̃}′ + {F, ψ(1)
M }′GMN{ψ(2)

N , F̃}′ − {F, ψ(2)
M }′GMN{ψ(1)

N , F̃}′ . (2.16)
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Geometrically, the Dirac bracket is the pullback of the Poisson bracket to the constraint

surface and satisfies all the properties of the ordinary Poisson bracket. The appearance of

the moduli space metric GMN in the Dirac bracket is quite natural and can be viewed as

a motivation for choosing the momentum constraint as in (2.14).

One can straightforwardly work out the Dirac brackets of our Darboux coordinates.

The nonzero brackets with the constraints are

{ψ(1,2)
N , pM}′ = ∂Mψ

(1,2)
N

{χ, ψ(2)
M }′ = ∂Mφ

{ψ(1)
M , π}′ = ∂Mφ , (2.17)

so that we have

{UM , pN}′D = δMN ,

{pM , pN}′D = −(∂Mψ
(1)
P )GPQ(∂Nψ

(2)
Q ) + (∂Mψ

(2)
P )GPQ(∂Nψ

(1)
Q ) ,

{pM , χ(x)}′D = −∂Mχ(x) + (∂Mψ
(1)
P )GPQ∂Qφ(x) ,

{pM , π(x)}′D = −∂Mπ(x) + (∂Mψ
(2)
P )GPQ∂Qφ(x) ,

{χa(x), πb(y)}′D = δabδ(x− y)− ∂Mφ
a(x)GMN∂Nφ

b(y) , (2.18)

with the rest vanishing. Here we suppressed all non-essential arguments of the fields.

These brackets appear complicated at first, but we have not yet specified the functional

dependence of χ, π on UM . One can freely do this, since the degrees of freedom contained

in χ should comprise a basis for L2[RD−1] and not L2[RD−1 × M]. Indeed, it is always

possible to choose the U -dependence of χ, π such that

∂Mψ
(1,2)
N ≈ 0 , (2.19)

where ≈ denotes ‘upon restriction to the constraint surface’; see appendix A for details.

Having done so, the non-vanishing Dirac brackets become

{UM , pN}′D = δMN

{pM , χ(x)}′D ≈ −∂Mχ(x)
{pM , π(x)}′D ≈ −∂Mπ(x)

{χa(x), πb(y)}′D = δabδ(x− y)− ∂Mφ
a(x)GMN∂Nφ

b(y) . (2.20)

We remind that for systems with second-class constraints it is the Dirac bracket that is

promoted to the commutator in the quantum theory

{ , }′D → [ , ]′ = i{ , }′D . (2.21)

In order for the quantum theory in the old and new variables to be equivalent, we

must require that the transformation (Φ;Π) → (UM , χ; pM , π) defined by (2.9) and (2.13)

be canonical. Then { , } = { , }′D and hence [ , ] = [ , ]′.5 This latter condition can

5In particular, the restriction of the new extended phase space to the constraint surface should give back

the original phase space.
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be used to fix the functionals ΠM
0 in (2.13). In order to implement this requirement we

compute {Φa(x),Φb(y)}′D, {Φa(x),Πb(y)}′D, and {Πa(x),Πb(y)}′D by inserting the change

of variables (2.9), (2.13) and using the brackets (2.20). In the process, we find ΠM
0 such

that the results are consistent with (2.3). The full computations are tedious but straight-

forward; some intermediate results are recorded in appendix B for the reader interested in

the derivation.

We summarize these results as follows. The [Φ̂, Φ̂] commutator is trivial since Û , χ̂ are

commuting operators. Thus

[Φ̂a(x), Φ̂b(y)]′ = [φa(x; Û) + χ̂a(x; Û), φb(y; Û) + χ̂b(y; Û)]′ = 0 . (2.22)

The calculation of [Φ̂, Π̂]′ fixes the form of ΠM
0 . At the classical level one finds

ΠN
0 ≈

(

pM −
∫

dzπ(z;U) · ∂Mχ(z;U)

)

[(G− Ξ)−1]MN , (2.23)

where

ΞMN (U) :=

∫

dzχ(z;U) · ∂M∂Nφ(z;U) . (2.24)

At the quantum level one must be careful about operator ordering in eq. (2.13). The

symmetrized ansatz

Π̂(x) =
1

2

(

âM∂Mφ(x; Û(t)) + (∂Mφ(x; Û(t)))ˆ̄aM
)

+ π̂(x; Û(t)) , (2.25)

where

âM := (p̂N − ∫ π̂ · ∂N χ̂) [(Ĝ− Ξ̂)−1]NM

ˆ̄aM := [(Ĝ− Ξ̂)−1]MN (p̂N − ∫ ∂N χ̂ · π̂) , (2.26)

provides a natural generalization of the ansatz in [1]. Here we have begun using the

shorthand
∫

dzπ(z;U)·∂Nχ(z;U) =
∫

π·∂Nχ. It is also useful to introduce the combination

ĈMN := [(Ĝ− Ξ̂)−1]MN . (2.27)

Note that ĈMN = Ĉ(MN) and that (2.25) reduces to (2.23) when the operators become

commuting fields. With the form of the change of momentum variables fixed, it is now a

nontrivial task to check whether [Π̂, Π̂]′ = 0. Explicit evaluation leads to the expected re-

sult.6

6In place of (2.9) one could have also used an alternative change of variables as in [7] — see also [28]

— where the fluctuation field χ can be directly expanded in terms of only non-zero-modes. Then one does

not need to impose constraints and the p plus π-modes are canonically conjugate to the U plus χ-modes. It

can be explicitly seen that this approach also leads to the relation (2.23) and hence the same soliton sector

Hamiltonian.
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3 The soliton sector Hamiltonian

We are now in a position to implement the change of variables (2.9) and (2.25) in the

Hamiltonian (2.2). Squaring (2.25) leads to7

∫

dx Π ·Π = AMGMNA
N +

∫

π · π − 1

4
CMPCNQ

∫

∂M∂Pφ · ∂N∂Qφ

+
1

2
CMPCNQΓMNRC

RS
(

ΓPQS + 2ΓQSP −
∫

χ · ∂P∂Q∂Sφ
)

− 1

2
CMPCNQ∂PΓQMN , (3.1)

where

AM :=
1

2
(aM + āM ) . (3.2)

All terms beyond the first two result from the evaluation of two commutators and should

be thought of as O(~2). We have also introduced

ΓPMN :=
1

2
(∂MGPN + ∂NGPM − ∂PGMN ) =

∫

∂Pφ · ∂M∂Nφ (3.3)

to define Christoffel symbols on the moduli space.

At this point we note that, in the special case where the moduli space consists of a

single modulus associated with translations, M = R, all terms in the second and third lines

vanish. The terms in the first line then reproduce the analogous result in [1], including the

‘quantum correction’ term ∫(∂2φ)2.
The full Hamiltonian follows trivially from (3.1) by adding the potential, which can be

expanded around the solution Φ = φ:

H = v(U) +
1

2
AMGMNA

N − 1

8
CMPCNQ

(

∫

∂M∂Pφ · ∂N∂Qφ
)

+

+
1

4
CMPCNQ

[

− ∂PΓQMN + ΓMNRC
RS
(

ΓPQS + 2ΓQSP −
∫

χ · ∂P∂Q∂Sφ
)]

+

∫

[1

2
π · π + s(x;U) · χ+

1

2
χ ·∆(x;U)χ+ VI(χ)

]

. (3.4)

In the above

v(U) :=

∫

(1

2
∂xφ · ∂xφ+ V (φ)

)

, s(x;U) := −∂2xφ+
∂V

∂Φ

∣

∣

∣

∣

Φ=φ

(3.5)

and VI(χ) denotes cubic and higher-order interaction terms in the fluctuations χ coming

from the original potential. If φ(x, U) parameterizes a family of exact static solutions then:

a) v(U) will be a constant, by definition the classical soliton mass and b) the source term

s(x;U) will vanish. However, we will see shortly that it is natural to also allow for a small

deviation from an exact solution. In that case M is not really a true moduli space, as

evidenced by the appearance of the potential v(U).

7From now on we will drop hats as well as the ≈ notation, since all expressions are understood as

restricted to the constraint surface.
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Eq. (3.4) is the final, exact result for the quantum Hamiltonian8 of the theory. It is

valid for all values of soliton moduli UM and conjugate momenta pN .

4 Covariance

Given the form of (3.4), it appears that the Hamiltonian is not invariant under arbitrary

reparameterizations of the moduli U . This is not the case and the manifestly invariant form

of the Hamiltonian can be recovered once we properly order the kinetic term operators.

The canonical change of variables in configuration space (2.9) from Φ to U, χ — plus

constraints — effectively maps a Cartesian coordinate system to a curvilinear one. This

map describes how the curved moduli space is embedded in the total infinite-dimensional

space of modes. The orthogonal directions to M, within the constraint surface, are param-

eterized by the massive oscillator modes of χ. It is possible to use the theory of embedded

surfaces in order to construct the exact metric for the infinite-dimensional Cartesian space

in the new curvilinear coordinate system. This was explicitly done by Fujii et al. in [28],

who found that the Hamiltonian can be expressed in terms of the Laplace-Beltrami opera-

tor in the curvilinear coordinate frame. Hence the full theory, in the new set of variables,

is reparameterization invariant as expected.

It is interesting to see how covariance becomes manifest in the subsector of the theory

with all fluctuations switched off. We have, from (3.4),

H|χ,π=0 =
1

2
pMG

MNpN + v(U) +
1

8
(∂PG

PM )GMN (∂QG
QN )− 1

4
∂M∂NG

MN+

− 1

4
GMPGNQ

[1

2

∫

∂M∂Pφ∂N∂Qφ+ ∂PΓQMN

]

+

+
1

4
ΓPQS

[

ΓPQS + 2ΓQSP

]

, (4.1)

where the last two terms in the first line are obtained from commutators upon appropriately

ordering the momentum operators in the kinetic term. This expression can be manipulated

as follows. First note that

− 1

8
GMPGNQ

∫

∂M∂Pφ∂N∂Qφ = −1

8

∫

(∇2φ)2 − 1

8
ΓRM

MΓR
N

N
. (4.2)

Second, we have

∂M∂NG
MN = 4Y −R+ ΓRMSΓ

SMR , (4.3)

where R is the scalar curvature on moduli space

R = GMPGNQRMNPQ

= GMPGNQ
[

∂NΓQMP − ∂MΓQNP + ΓR
NPΓRQM − ΓR

MPΓRQN

]

(4.4)

8We have suppressed the appearance of counter-terms in our discussion, as they are model dependent. A

renormalizable theory will require a finite number of local counter-terms to be added to the action. These

counter-terms can be determined from the UV divergences in the perturbative sector of the theory. The

resulting counter-term Hamiltonian should also be transformed to the soliton sector and included in (3.4).

It is a nontrivial test of renormalizability that the resulting counter-term Hamiltonian is sufficient to cancel

all UV divergences for processes computed in the soliton sector.
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and [28]

Y := −1

2
∂M (GMNΓS

NS)−
1

4
ΓSN

SΓ
R
NR . (4.5)

Using this definition we can re-express (4.3) as

−1

4
∂M∂NG

MN = − 1

2
Y +

1

4
R− 1

4
ΓRMSΓ

SMR+

+
1

4
∂M (GMNGSRΓRNS) +

1

8
ΓSN

MΓR
NR . (4.6)

Substituting (4.2) and (4.6) into (4.1), one finds that all bilinears in the Γ’s as well as the

terms involving derivatives of Γ’s mutually cancel to leave

H|χ,π=0 =
1

2
pMG

MNpN + v(U)− 1

2
Y +

1

4
R− 1

8

∫

(∇2φ)2

=
1

2
G−1/4pMG

1/2GMNpNG
−1/4 + v(U) +

1

4
R− 1

8

∫

(∇2φ)2 . (4.7)

In the last step we noted that

G−1/4pMG
1/2GMNpNG

−1/4 = pMG
MNpN − Y . (4.8)

The l.h.s. of (4.8) is in fact a covariant quantity when understood as a Hamiltonian

acting on a wavefunction Ψ with canonical normalization
∫

M ddUΨ∗Ψ = 1. The time-

independent Schrödinger equation takes the form

1

2
G−1/4∂M (G1/2GMN∂N (G−1/4Ψ)) = EΨ , (4.9)

Redefining Ψ = G1/4Ψ̃ leads to the correct curved space normalization
∫

M ddU
√
GΨ̃∗Ψ̃ = 1

and modifies (4.9) to
1

2
G−1/2∂M (G1/2GMN∂N (Ψ̃)) = EΨ̃ , (4.10)

where the l.h.s. is now the Laplace-Beltrami operator on the soliton moduli space.

Hence we have arrived at the explicitly covariant expression

H|χ,π=0 =
1

2
G−1/4pMG

1/2GMNpNG
−1/4 + v(U) +

1

4
R− 1

8

∫

(∇2φ)2 . (4.11)

In fact, the quantity ∫(∇2φ)2 has a nice geometric interpretation. Using the results of [28]

one finds that9 ∫

(∇2φ)2 = d2H2 , (4.12)

whereH is the extrinsic mean curvature and d = dimRM. This curvature invariant encodes

information about how the moduli space M is embedded as a submanifold into the infinite-

dimensional flat configuration space.

9The notation of [28] is rather different from the one used here, so it is useful to describe the precise map:

We have ∂Pφ
a(x) → BAx

a . Then ∇2φa(x) → gab∇aB
Ax
b = nH

Ax
and the integration over x is performed

by contracting the H’s with ηAx,By.
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Our covariant result is then simply

H|χ,π=0 =
1

2
G−1/4pMG

1/2GMNpNG
−1/4 + v(U) +

1

4
R− d2

8
H2 . (4.13)

This Hamiltonian defines a quantum mechanics with target M; we will refer to (4.13) as

the ‘truncated Hamiltonian’ in the following. The curvature terms are O(~2) effects and

may be viewed as intrinsic and extrinsic ‘quantum potentials.’ The appearance of the Ricci

scalar is well documented in background-independent approaches to quantum mechanics on

curved spaces. In that context, it has been observed that the coefficient of the Ricci scalar

term is ambiguous, depending on the operator ordering prescription [34]. Here there is no

ambiguity because the correct ordering prescription is inherited from the parent theory,

which is defined on a flat configuration space. It is also interesting to observe that even in

the limit where the fluctuations have been completely decoupled, the Hamiltonian for the

collective coordinates encodes information about the extrinsic geometry [28].

5 Semiclassical analysis

Up to this point we have not explicitly kept track of powers of coupling constants. As is

typical in the soliton literature [4, 10, 11], we will assume that there is effectively a single

coupling g such that, in terms of the canonically normalized field Φ̃, the potential Ṽ (Φ̃; g)

has the scaling property

Ṽ (Φ̃; g) =
1

g2
Ṽ (gΦ̃; 1) =:

1

g2
V (gΦ̃) . (5.1)

Thus, if we define the rescaled field Φ = gΦ̃, then then the entire coupling dependence of

the Lagrangian (2.1) becomes

L(Φ̃, ˙̃Φ; g) =
1

g2
L(Φ, Φ̇; 1) . (5.2)

We will assume that we have been working with the rescaled field Φ all along and that we

previously set the coefficient of g−2 in front of (2.1) to one. Note that if φ is the rescaled

classical solution, it will be independent of g and hence the canonically normalized classical

solution φ̃ will go as g−1, which is the usual behavior we expect from a soliton configuration.

Under the assumption (5.2), it is clear from the path integral point of view that g2

plays the role of ~ and the semiclassical expansion is a g expansion. Once the factor of g−2

is restored in front of the Lagrangian, the Hamiltonian, (2.2), becomes

H =

∫

dx

[

g2

2
Π ·Π+

1

g2

(

1

2
∂xΦ · ∂xΦ+ V (Φ)

)]

. (5.3)

Meanwhile, the definitions of the metric and potential on moduli space read

GMN :=
1

g2

∫

∂Mφ · ∂Nφ , ΞMN :=
1

g2

∫

χ · ∂M∂Nφ (5.4)
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and

v(U) :=
1

g2

∫

(1

2
∂xφ · ∂xφ+ V (φ)

)

, s(x;U) :=
1

g2

(

− ∂2xφ+
∂V

∂Φ

∣

∣

∣

∣

Φ=φ

)

. (5.5)

The canonical transformations are given by

Φ = φ+ g χ

Π =
1

2

(

aM∂Mφ+ ∂Mφ ā
M
)

+
1

g
π , (5.6)

where

aM =
1

g2
(pN − ∫ π · ∂Nχ)CMN , āM =

1

g2
CMN (pN − ∫ ∂Nχ · π) , (5.7)

with CMN = [(G− gΞ)−1]MN . In the above we have rescaled the fluctuations χ, π so that

they are canonically normalized fields, while the power of g−2 in (5.7) originates from the

definitions (5.4).

Setting AM = 1
2(a

M + āM ) as before, our full quantum Hamiltonian (3.4) can now be

re-written as

H =
g4

2
AMGMNA

N + v(U)− 1

8g2
CMPCNQ

∫

∂M∂Pφ · ∂N∂Qφ

+
1

4
CMPCNQ

[

− ∂PΓQNM + ΓMNRC
RS
(

ΓPQS + 2ΓQSP − 1

g

∫

χ · ∂P∂Q∂Sφ
)]

+

∫

[1

2
π · π + g s · χ+

1

2
χ ·∆χ+ VI(χ)

]

. (5.8)

We can then expand the AMGMNA
N term in powers of the coupling as follows:

g4AMGMNA
N = pM

(

GMN + 2g(G−1ΞG−1)MN + 3g2(G−1ΞG−1ΞG−1)MN +O(g5)
)

pN

+

[

1

4
(∂PG

PM )GMN (∂QG
QN )− 1

2
∂M∂NG

MN +O(g3)

]

− 1

2

[

pM

(

GMN + 2g(G−1ΞG−1)MN +O(g4)
)

∫

[∂Nχ
a, πa]+

+

∫

[πa, ∂Mχ
a]+

(

GMN + 2g(G−1ΞG−1)MN +O(g3)
)

pN

]

+
1

4

∫

[πa, ∂Mχ
a]+

(

GMN +O(g3)
)

∫

[πb, ∂Nχ
b]+ , (5.9)

where [A,B]+ := AB+BA. Note that, as in (4.1), the terms in the second line come from

commutators when expanding AMGMNA
N and moving pM to the far left and pN to the

far right of the expression.

Notice also that the first line contains a term linear in the fluctuations χ through Ξ.

The presence of this tadpole is due to the fact that φ(x;U(t)) is not an exact solution

to the time-dependent equations of motion, irrespective of whether or not φ(x;U) is an

exact solution to the time-independent ones. This is what motivates the small velocity

assumption: As it stands, (5.9) is valid for all values of soliton momenta but makes little
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sense in perturbation theory, since the scalar propagator would be higher order in the

coupling compared to the tadpole. However, if one considers appropriately slowly-moving

solitons, p2χ can be viewed as a legitimate interaction term.

In a similar vein, since we do not solve the time-dependent equations of motion exactly,

there is no need to insist on an exact solution to the time-independent equations. We

merely require an approximate solution so that the tadpole term, s(x;U) · χ, coming from

the potential may also be viewed as an interaction term.

Thus we will continue by making the assumptions

U̇M ∼ O(g) ⇒ pM ∼ O(1/g) , s(x;U) ∼ O(1) , (5.10)

so that we are expanding around an approximate solution to the time-dependent equations

of motion. Note that the latter condition implies that

v(U) =Mcl + δv(U) , where Mcl ∼ O(1/g2) , δv(U) ∼ O(1) . (5.11)

In other words, the integral of the potential evaluated on the classical solution is constant

up to O(g2)-suppressed corrections, which may be moduli dependent. The constant Mcl is

interpreted as the classical — or leading order — contribution to the soliton mass, while

the corrections give a U -dependent potential on the moduli space.

In this small-velocity and small-potential approximation, the semiclassical expansion

of the full Hamiltonian becomes

H = H(−2) +H(0) +H(1) +H(2) +O(g3) , (5.12)

where

H(−2) = Mcl ,

H(0) =
1

2
pMG

MNpN + δv(U) +
1

2

∫

(π · π + χ ·∆χ) ,

H(1) =

∫
{

1

g
pMG

MP (χ · ∂P∂Qφ)GPNpN + g s · χ+
g

3!
V

(3)
abc (φ)χ

aχbχc

−1

4

(

[πa, ∂Mχ
a]+G

MNpN + pMG
MN [πa, ∂Nχ

a]+

)

}

,

H(2) =
3g2

2
pM
(

G−1ΞG−1ΞG−1
)MN

pN +
g2

4!

∫

V
(4)
abcd(φ)χ

aχbχcχd

−g
2

(

[πa, ∂Mχ
a]+
(

G−1ΞG−1
)MN

pN + pM
(

G−1ΞG−1
)MN

[πa, ∂Nχ
a]+

)

+
1

8

(
∫

[πa, ∂Mχ
a]+

)

GMN

(
∫

[πb, ∂Nχ
b]+

)

+
1

4
R− 1

2
Y − 1

8g2

∫

(∇2φ)2 . (5.13)

Here, H(n) is O(gn) provided that (5.10) and (5.11) hold, and we recall that GMN ∼ O(g2).

V (3,4)(φ) denote the third and fourth derivatives of the potential, evaluated on the soliton

solution φ. Finally, we have used the results of section 4 to simplify the terms in H(2) that

are zeroth order in fluctuations.
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Let us briefly discuss the issue of Lorentz invariance. Eq. (5.12) is in principle a double

expansion: a quantum expansion in the coupling, as well as an expansion in small soliton

velocities. A subset of the collective coordinates, {U i}D−1
i=1 ⊂ {UM}, correspond to the

center-of-mass position of the soliton solution φ. The conjugate variables, pi, correspond

to the center-of-mass momentum. One expects that any observable computed exactly in

the quantum theory should be covariant under Lorentz transformations. On the one hand,

expanding around slowly-moving solitons — in particular pi ∼ O(1/g) — naturally breaks

the Lorentz symmetry of the original theory. On the other, the scaling (5.10) suggests that

relativistic corrections should appear as quantum effects associated with the p2iχ tadpoles.

In fact, it can be explicitly seen for the case of kink solitons in two-dimensional φ4 theory

that re-summing all the tree-level diagrams obtained by gluing together the p2iχ tadpole

interactions restores Lorentz invariance for the soliton energy [8, 35]. This computation

should be extendable to the class of theories we are studying, but we will not explicitly

consider it here.

6 Reduction to QM on the soliton moduli space

It is straightforward to use our results for the semiclassical expansion of the Hamiltonian

to determine the behavior of the leading-order dynamics. Keeping terms in H through

O(1), we have

H =Mcl +
1

2
pMG

MNpN + δv(U) +
1

2

∫

(π · π + χ ·∆χ) +O(g) . (6.1)

Let us focus on the fluctuation terms. We make a mode expansion

χ(x;U) =

∫

dk

(2π)D−1

1√
2ωk

[

ak(t) + a†−k
(t)
]

ζk(x;U)

π(x;U) =

∫

dk

(2π)D−1
(−i)

√

ωk

2

[

ak(t)− a†−k
(t)
]

ζk(x;U) , (6.2)

where the ζ’s are eigenfunctions of the operator ∆(U) with strictly positive eigenvalues ω2
k
:

∆(U)ζk = ω2
k
(U)ζk. They are orthonormal

∫

dx ζk(x;U)ζk′(x;U) = (2π)D−1δ(k− k′) (6.3)

and satisfy the completeness relation
∫

dk

(2π)D−1
ζk(x;U)ζk(y;U) = δ(x− y)− 1

g2
∂Mφ(x;U) ·GMN∂Nφ(y;U) . (6.4)

The modified completeness relation is due to the fact that we have excluded the zero-

eigenvalue modes from the expansion. The ζk(x, U) form a basis for the subspace of

configuration space orthogonal to the tangent space TUM. Using (6.4), one can show

that the commutator [χ, π], (2.20), is equivalent to the standard creation and annihilation

commutators

[ak, ak′ ] = [a†
k
, a†

k′ ] = 0 , [ak, a
†
k′ ] = (2π)D−1δ(k− k′) . (6.5)
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We have written the mode expansions (6.2) as though the non-zero spectrum of ∆ is

purely continuous. While the spectrum of ∆ is guaranteed to have a continuous compo-

nent,10 there could additionally be a discrete component beyond the zero-modes. Strictly

positive discrete eigenvalues correspond to breather-like modes, and the mode expansion

should include a sum over them. We will understand ‘
∫

dk’ in the above and following

expressions as representing the integral over the continuous spectrum plus the sum over

the breather-like modes, if present.

Using (6.2), (6.3), and (6.5), it is then easy to see that

1

2

∫

dx (π · π + χ ·∆χ) =
∫

dk

(2π)D−1
ωk

(

a†
k
ak +

1

2
[ak, a

†
k
]
)

(6.6)

so that the full Hamiltonian is

H ≃Mcl +
1

2
pMG

MNpN + δv(U) +

∫

dk

(2π)D−1
ωk

(1

2
[ak, a

†
k
] + a†

k
ak

)

. (6.7)

In particular, when acting on a state which does not involve massive fluctuations, the

last term above vanishes and one is left with the zero-point energy of the fluctuation fields.

In a renormalizable theory, the divergent part of this quantity can be removed, after vacuum

energy subtraction, by mass renormalization; see footnote 8. The finite piece then generates

a one-loop correction to the potential Mcl + δv(U) → M1-loop + δv(U)1-loop [1–3]. Hence,

the final result for the leading contribution in the semiclassical approximation and when

restricting to incoming and outgoing states that do not contain perturbative excitations is

Hs.c. =M1-loop +
1

2
pMG

MNpN + δv(U)1-loop , (6.8)

which is a quantum mechanics on the soliton moduli space. We will refer to (6.8) as the

‘semiclassical Hamiltonian’.

This quantum mechanics, as written, is not covariant with respect to general coor-

dinate transformations on M. However, following the discussion around (4.9), it can be

trivially made covariant by replacing pMG
MNpN → G−1/4pMG

1/2GMNpNG
−1/4. These

two quantities differ by Y , which is higher order in the g-expansion and hence can be

neglected in (6.8).

It is interesting to note that, even after this replacement, the two quantum mechanical

systems on M defined by the truncated Hamiltonian (4.13) and the semiclassical Hamil-

tonian (6.8) are different. Although the intrinsic and extrinsic quantum potentials of the

truncated Hamiltonian are present in the semiclassical expansion (5.12), it would be in-

consistent to include them in the semiclassical Hamiltonian (6.8), without first accounting

10 This statement can be justified as follows: Since classical solitons are localized objects, we expect

the difference between the operator ∆(U) and the operator ∆0 := −δab∂
2
x
+ V

(2),∞
ab (x̂), to be a compact

operator. Here V
(2),∞
ab (x̂) ≥ 0 is the asymptotic form of the second derivative of the potential evaluated on

the soliton solution as x → ∞, and x̂ parameterizes the (D − 2)-sphere at infinity. Weyl’s theorem then

implies that the continuous part of the spectra of ∆(U) and ∆0 must agree. If minx̂ V
(2),∞
ab (x̂) > 0, then

the continuous spectrum of ∆0 will have a mass gap, while if minx̂ V
(2),∞
ab (x̂) = 0 it will extend down to

zero. In either case there will be a continuous spectrum that we can label by k.
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for all O(g) and O(g2) corrections from integrating out the fluctuations. Furthermore, the

semiclassical approximation demands that the O(1), ‘one-loop’ corrections from χ, π be ac-

counted for in the semiclassical Hamiltonian: They are of the same order as the kinetic term

and moduli-dependent classical potential δv(U), due to the necessity of imposing (5.10)

and (5.11).
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A Mode expansions for χ, π

For a fixed value of the moduli, χ and π are simply n-tuples of scalar fields on R
D−1; they

can be expanded in any complete basis for the Hilbert space L2[RD−1,Rn]. A particular

basis that is naturally adapted to the problem is the basis of eigenfunctions of the Hermitian

operator ∆(U), defined in (2.8). Since the form of this operator depends on the moduli,

so will its eigenfunctions; we denote the complete set of eigenfunctions by {ζI(x;U)},
where I runs over an indexing set. This set will include both the continuous part of the

spectrum, as well as the discrete part of the spectrum, which includes the zero-modes and

may additionally contain other massive breather-like modes. We write schematically

χ(x;U) =
∑

I

χI(t)ζI(x, U) , π(x;U) =
∑

I

πI(t)ζI(x, U) , (A.1)

where χI(t), πI(t) comprise the complete set of degrees of freedom in χ(x;U), π(x;U). The

ζI satisfy

∫

dxζI(x;U) · ζJ (x, U) = δIJ , δabδ(x− y) =
∑

I

ζaI(x;U)ζbI(y;U) , (A.2)

where by ‘δIJ ’ and ‘
∑

I ’ we mean (2π)D−1δ(k − k′) and
∫

dk
(2π)D−1 in the case of the

continuous spectrum.

Let eA = eAM dUM be a vielbein for the moduli space such that δABe
A
Me

A
N = GMN ,

where δAB is the flat Euclidean metric on the tangent space, and let eA
M denote the

inverse vielbein satisfying δABeA
MeB

N = GMN . Then we know that the orthonormal

eigenfunctions for the zero-modes are

ζI=A(x;U) = eA
M (U)∂Mφ(x;U) . (A.3)
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Then, substituting (A.1) into the constraints and using (A.2), we have

ψ
(1)
N = χAeA

M (U)

∫

∂Mφ(x;U) · ∂Nφ(x;U) = χAeA
M (U)GMN (U) = χAe

A
N (U) , (A.4)

and similarly

ψ
(2)
N = πAe

A
N (U) . (A.5)

From here we can explicitly see that the constraint surface corresponds to χA = πA = 0.

Meanwhile,

∂Mψ
(1)
N = χA∂Me

A
N (U) ≈ 0 , ∂Mψ

(2)
N = πA∂Me

A
N (U) ≈ 0 . (A.6)

Another identity that follows trivially from (A.1) and (A.2) and will be useful below is

∂M

(
∫

dxχ(x;U) · π(x;U)

)

= ∂M

(

∑

I

χIπ
I

)

= 0 , (A.7)

or ∫ ∂Mχ · π = −∫ χ · ∂Mπ. Finally, if I, J index the non-zero modes, which include the

continuous spectrum and any possible breather-like modes, then the commutator of the

fields χ, π is equivalent to

[χI , χJ ] = [πI , πJ ] = 0 , [χI , πJ ] = iδIJ . (A.8)

These can be used to show, for example, that

[χa(x;U), ∂Mχ
b(y;U)] ≈ 0

[πa(x;U), ∂Mπ
b(y;U)] ≈ 0 . (A.9)

More generally, the commutator of any U -derivative of χ with another U -derivative of χ is

zero, and similarly for π.

B Some details on the canonical transformation

First let us consider {Φ(x),Π(y)}′D in order to derive the classical form of ΠM
0 as given

in (2.23). Substituting in (2.9), (2.13) for Φ,Π and using (2.20), we can write the result as

{Φa(x),Πb(y)}′D ≈ δabδ(x− y) + ∂Mφ
a(x)

(

∂ΠN
0

∂pM
−GMN

)

∂Nφ
b(y)

− ∂Qχ
a(x)

∂ΠN
0

∂pM
∂Nφ

b(y)

+

∫

dz
(

δacδ(x− z)− ∂Mφ
a(x)GMQ∂Qφ

c(z)
) δΠN

0

δπc(z)
∂Nφ

b(y) . (B.1)

The first term is what we want; thus we must choose the functional ΠM
0 so that the

remaining terms vanish. Consider the x dependence of these remaining terms. The term

in the first line is tangential to TUM ⊂ L2[RD−1
(x) ] since it is proportional to the zero-mode

∂Mφ(x), while the term in the last line is in the orthogonal complement (TUM)⊥ since it
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involves the projection operator δ(x−z)−∂Mφ(x)GMQ∂Qφ(z). The term involving ∂Qχ(x)

can be decomposed into a piece along TUM and a piece orthogonal to it. Substituting this

into (B.1), we find that {Φ(x),Π(y)}′D = δ(x−y) if and only if both of the following hold:

0 ≈ ∂ΠN
0

∂pM
−GMN − ∂ΠN

0

∂pM
GMP

∫

∂Pφ · ∂Qχ ,

0 ≈ ∂Qχ
c(z)

∂ΠN
0

∂pM
+

δΠN
0

δπc(z)
. (B.2)

Note that we can write
∫

∂Pφ · ∂Qχ = ∂Qψ
(1)
P −

∫

χ · ∂P∂Qφ ≈ −
∫

χ · ∂P∂Qφ = −ΞPQ , (B.3)

where ΞPQ was defined in (2.24). The first of (B.2) implies

∂ΠN
0

∂pM
≈
[

(G− Ξ)−1
]MN

=: CMN (B.4)

whence the second equation implies that

ΠN
0 ≈

(

pM −
∫

π · ∂Mχ
)

CMN . (B.5)

Here we have omitted the possible addition of a term depending only on the coordinates

(U, χ). Consideration of {Π(x),Π(y)}′D shows that it is consistent to set this term to zero.

We observe that if we set χ, π = 0, then the momentum transformation (2.13)

with (B.5) reduces to Π(x) = pM∂Mφ(x;U). This is exactly what one would expect

for the classical momentum density of the moving soliton.

At the quantum level we take the change of momentum variables to be (2.25). The

basic commutators are the right-hand sides of (2.20), multiplied by a factor of i. Using

these we have

[f(U), aM ]′ = [f(U), āM ]′ = iCMN∂Nf(U) ,

[χ(x;U), aM ]′ = [χ(x;U), āM ]′ ≈ i
(

GMN − CMN
)

∂Nφ(x;U) , (B.6)

where f is any function of U . Then one easily obtains the desired relation,

[Φa(x),Πb(y)]′ ≈ iδabδ(x− y) . (B.7)

For [Π(x),Π(y)]′ we first note that

[π(x), CMN ] = −iCMP (∇P∂Qφ(x))C
QN , (B.8)

from which it follows that

[π(x), aM ]′ ≈ −iΘPNC
NMGPQ∂Qφ(x)− iaNCMP∇N∂Pφ(x) ,

[π(x), āM ]′ ≈ −i (∇P∂Nφ(x))C
MP āN − i (∂Qφ(x))G

QPCMNΘNP (B.9)
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and where we have defined

ΘMN :=

∫

π · ∂M∂Nφ . (B.10)

Note that ΘMN = Θ(MN). Using this, one can express [Π,Π] in the form

[Πa(x),Πb(y)]′ ≈ − iaPCQ[MΓ
N ]
PQ∂Mφ

a(x)∂Nφ
b(y) + i∂Mφ

a(x)∂Nφ
b(y)Γ

[M
PQC

N ]P āQ

+ i
(

CΘG−1 −G−1ΘC
)[MN ]

∂Mφ
a(x)∂Nφ

b(y)

+
1

4
[aM , aN ]∂Mφ

a(x)∂Nφ
b(y) +

1

4
∂Mφ

a(x)∂Nφ
b(y)[āM , āN ]

+
1

4
∂Nφ

b(y)[aM , āN ]∂Mφ
a(x)− 1

4
∂Nφ

a(x)[aM , āN ]∂Mφ
b(y) . (B.11)

What one needs is then the commutators of the a’s and ā’s. Equations (B.6) and (B.9)

together with

[pQ, C
MN ] = − CMR[pQ, GRS − ΞRS ]C

SN = iCMR (∂QGRS − ∂QΞRS)C
SN (B.12)

can be used to show

[

CPM , pQ − ∫ π · ∂Qχ
]

=
[

CPM , pQ − ∫ ∂Qχ · π
]

≈
≈ −iCPRCMSSQRS + iCPRCMSΓT

RS(C
−1)TQ , (B.13)

where we have defined

SQRS := ∂QGRS + ΓQRS − ∫ χ · ∂Q∂R∂Sφ , (B.14)

which is totally symmetric, SQRS = S(QRS). Making note of the comment below (A.9) and

using (A.7), one also finds that

[(pP − ∫ π · ∂Pχ), (pQ − ∫ π · ∂Qχ)] ≈ − 2iΘ[P |RG
RS(C−1)S|Q] ,

[(pP − ∫ ∂Pχ · π), (pQ − ∫ ∂Qχ · π)] ≈ 2i(C−1)[P |RG
RSΘS|Q] ,

[(pP − ∫ π · ∂Pχ), (pQ − ∫ ∂Qχ · π)] ≈ iΘQRG
RS(C−1)SP − i(C−1)QRG

RSΘSP

+ i

∫

[∂Q∂Pχ
a, πa]

−
∫

dz dw[∂Qχ
b(w), πa(z)][∂Pχ

a(z), πb(w)] . (B.15)

These imply

[aM , aN ] ≈ 2i
(

aPCQ[MΓ
N ]
PQ + (G−1ΘC)[MN ]

)

[āM , āN ] ≈ −2i
(

Γ
[M

PQC
N ]P āQ + (CΘG−1)[MN ]

)

(B.16)
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and

[aM , āN ] ≈ iaPCQMΓN
PQ − iΓM

PQC
NP āQ + i

(

CΘG−1 −G−1ΘC
)NM

− iaPCMQCNRSPQR + iSPQRC
MPCNQāR

− CNQ

{

ΓR
SPΓ

S
RQ + CRSCTV SRTPSSV Q − 2ΓR

(P |SC
STSTR|Q)

−
∫

[∂Q∂Pχ
a, πa] +

∫

dz dw[∂Qχ
b(w), πa(z)][∂Pχ

a(z), πb(w)]

}

CMP .

(B.17)

When substituting (B.17) into (B.11), the last two lines of (B.17) do not contribute

because they commute with ∂Mφ and are symmetric in M,N . Furthermore, after com-

muting all a’s to the far left and all ā’s to the far right, and using the symmetry properties

of CMN , SMNP , there are additional cancellations and one is left with

∂Nφ
b(y)[aM , āN ]∂Mφ

a(x)− ∂Nφ
a(x)[aM , āN ]∂Mφ

b(y) ≈
≈ 2iaPCQ[MΓ

N ]
PQ∂Mφ

a(x)∂Nφ
b(y)− 2i∂Mφ

a(x)∂Nφ
b(y)Γ

[M
PQC

N ]P āQ

+ 2i
(

G−1ΘC − CΘG−1
)[MN ]

∂Mφ
a(x)∂Nφ

b(y) . (B.18)

Using (B.16) and (B.18) in the calculation of (B.11) leads to complete cancellation on the

constraint surface:

[Πa(x),Πb(y)]′ ≈ 0 . (B.19)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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