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Abstract!
Estimates of the fixation index, FST, have been used as measures of population 
differentiation for many decades. However, there have been persistent voices in the 
literature suggesting that these statistics do not measure true differentiation. In particular, 
the statistics Nei’s GST and Wier & Cockerham’s θ have been criticised for being 
‘constrained’ to not equal one in some situations that seem to represent maximal 
differentiation. Here we address the issue of how to evaluate exactly how much 
information a particular statistic contains about the process of differentiation. This 
criterion can be used to counter most concerns about the performance of GST (and related 
statistics), whilst also being reconciled with the insights of those who have proposed 
alternative measures of differentiation. In particular, the likelihood-based framework that 
we put forward can justify the use of GST as an effective measure of differentiation, but 
also shows that in some situations GST is insufficient on its own, and needs 
supplementing by another measure such as Jost’s D or Hedrick’s G’ST. This approach will 
become increasingly important in the future, as greater emphasis is placed on analysing 
large data sets. 
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Introduction!
One of the fundamental observations of genetics is that allele frequencies vary from one 
location to another in almost all species. The magnitude of this differentiation between 
demes (partially isolated sub-populations) has traditionally been quantified by the value 
FST (Wright, 1943, 1949), which can be estimated from genetic samples using the 
statistics GST (Nei, 1973, 1977, Nei and Chesser, 1983), θ (Weir and Cockerham, 1984) 
and a fleet of alternatives. However, there have been persistent voices suggesting that 
these methods are fundamentally flawed (e.g. Jost, 2008). One central concern is that 
these statistics are ‘constrained’ in the sense that they cannot equal one to indicate 
maximum differentiation between demes while there is still some polymorphism within 
demes. This argument, among others, has lead to the rejection of GST and related statistics 



 
 

by some authors (we refer to GST for brevity, but our arguments apply equally to related 
statistics). 
 
This paper asks whether we would actually be justified in rejecting GST purely because it 
does not have a fixed range between zero and one, and what might be meant by a ‘better’ 
measure? Practical principles for assessing genetic differentiation in real populations are 
then built on the foundations uncovered by answering these questions. It becomes clear 
that differentiation has acquired different meanings over the years, not all of which are 
quantities that lie between zero and one. We then use a likelihood-based perspective to 
ask how informative different measures are about these types of differentiation, and to 
ask if genetic differentiation is best summarised by the more established measures such 
as GST, one of the proposed alternatives, or some combination. 
 

Measurements*that*make*full*use*of*the*range*021*
Nei proposed a coefficient of gene differentiation, GST (Nei, 1973), which is a function of 
heterozygosity estimates obtained from a genetic sample drawn from several demes: 
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 (Nei, 1973) 
 
The H.e values are estimates of expected heterozygosity: the probability that two 
homologous genes sampled from a population would be different alleles. The value HSe is 
the estimate for two gene copies drawn from different individuals in the same deme, 
while HTe is for two gene copies drawn at random from the whole population. Nei had 
broad justifications for specifying this particular ratio, but for our current purposes it is 
sufficient to note that if the demes have different allele frequencies then the total genetic 
diversity will exceed the average diversity in a single deme, and hence the value of GST 
will be greater than zero. 
 
Hedrick (2005) pointed out that this estimate does not vary between zero and one, but 
rather between zero and GST(max), a maximum value that depends on HSe and the number 
of demes that were sampled (k). It seemed more appropriate to express GST as a 
proportion of the maximum possible value: 
 
!!"
� = !!"

!!"(max)
= !!" !

(!!!!!!!)
(!!!)(!!!!!)

  ,       (2) 

(Hedrick, 2005, equation 4b) 
 
(see also Meirmans and Hedrick (2011) for an alternative version corrected for sampling 
bias). This approach has some apparently desirable consequences: it means that estimates 
from loci with high mutation rates, such as microsatellites, fall in the same 0-1 range as 
other loci.  Otherwise, their inherently higher HSe values would mean that microsatellite 
surveys would consistently report lower genetic differentiation than other loci with lower 
mutations rates, such as SNPs. This is not to say that G’ST is completely insensitive to the 



 
 

value of HSe – for example, when there is no within-deme heterozygosity G’ST will 
always equal 1, irrespective of the value of HTe. 
 
Jost (2008) suggested a second alternative measure, which, unlike G’ST, can take on 
values between zero and one irrespective of the HSe value: 
 
! = !!!!!!!
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 (Jost, 2008, equation 12) 
 
which, for direct comparison with GST and G’ST, can be rearranged as  
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The genetic patterns that constitute ‘maximal’ differentiation under each of these 
statistics can be quite different, as can be seen in Figure 1. 
 
The fact that G’ST and D occupy the same 0-1 range, but are different, leads us to a simple 
conclusion – that having the desired range is an insufficient property, in itself, to guide a 
choice of one estimate over the other. We might be convinced by different criteria, such 
as the need to partition diversity in a multiplicative manner (Jost, 2008), yet there are 
further alternatives such as the statistic I (Dewar et al., 2011) supported by arguments 
regarding mutual information content. More importantly, we might ask whether any 
single metric can fully capture the evolutionary process of interest, or whether we should 
abandon the idea of choosing between different statistics completely. In order to 
adjudicate between these competing arguments it is helpful to ask if there is some 
underlying property of the populations that could be described as differentiation‚ and 
whether any of these measures provide useful estimates of it? 
 

What!is!Differentiation?!

Differentiation*and*inbreeding*
One possible description of differentiation is long established, namely Wright’s FST. The 
value of FST can be considered to be a parameter: a property of the group of populations 
being studied. In contrast values such as GST, G’ST and D are statistics, that is, values 
calculated from the observed genetic data. The definition of FST is founded on Wright’s 
earlier work (Wright, 1921b), in which he defines the inbreeding coefficient F as the 
correlation between the uniting gametes that make up a diploid individual. The term 
‘correlation’ can be understood, in broad terms, by first considering the case where there 
is no correlation between the gametes that formed a particular individual (F=0). We 
would then expect the genotypes at neutral loci to occur in Hardy-Weinberg proportions: 
the proportions that we would expect given independent sampling from the population in 
question.  On the other hand, the parents of a particular individual might be more closely 
related than average – the offspring of cousins for example – in which case there would 
be a positive value of F, indicating that the maternal and paternal homologous gene 



 
 

copies are more likely to match, making the individual more likely to be homozygous. In 
other words, the individual is likely to be genetically differentiated from the deme as a 
whole. 
 
The value of F is a property of individuals, but a similar logic can be applied to describe 
the differentiation of demes from each other.  In the same way that Wright used a 
correlation to characterise differentiation of individuals, he specified the inbreeding 
coefficient FST to describe this correlation between a pair of gametes drawn at random 
from a deme. The subscripts S and T indicate that this correlation involves a comparison 
between subpopulations (demes) and the total population. 
 
A careful, clear, modern definition of what is meant by correlation in this context is 
provided by Balding (2003) in the following form: 
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(Balding, 2003, equation 9) 
 
This value applies to a particular allele, l, in a single deme, in which the expected allele 
frequency is pl (more formally, it is the expectation of the allele frequency under the 
model of interest). In order to understand this notation, consider drawing two 
homologous gene copies from a deme – if they were both l alleles, then [ Il

ij I l
i’j’ ] would 

take the value one, otherwise zero.  To see the link between Wright’s F and FST, imagine 
we were creating a new individual from these genes; a value of 1 would then indicate an 
imaginary homozygote, a value of 0 an imaginary heterozygote. Under Hardy-Weinberg 
assumptions, the expectation, E[ Il

ij I l
i’j’ ], would therefore be the expected frequency of 

homozygotes for this allele in the deme.  Notice that the correlation is zero when E[ Il
ij I 

l
i’j’ ] =pl

2. In simple models pl would be the global allele frequency, in which case the 
relationship E[ Il

ij I l
i’j’ ] =pl

2 indicates that the expected homozygote frequency in the 
deme matches the global value, which in turn implies the allele frequency in the deme 
matches the global value – there is no differentiation.  
 

Correlation*and*the*probability*of*identity*by*descent:*confusion*over*terms*
This precise definition of FST, as a correlation, can be linked to the alternative perspective 
of FST as a description of identity by descent.  However, we find that different authors 
have followed two different paths in reasoning about identity by descent – and that this 
often-unappreciated divergence leads to two different ways of viewing genetic 
differentiation.    
In order to understand this difference, it is simplest to start with the relationship between 
genealogy and the individual-centred correlation, F. The basic logic is simple: the 
correlation between an individual’s homologous gene copies is increased by every chain 
of common ancestry that links the maternal and paternal lineages of that individual; 
hence the designation of F as the inbreeding coefficient. It follows that if we know the 
pedigree of an individual then we can compute a value of F for that individual by simply 
summing over all possible chains of common ancestry. Wright called this the ‘method of 
path coefficients’ (Wright, 1921a). 



 
 

 
Equivalently, the effect of a pedigree on genetic correlations can be framed in terms of 
the probability of shared ancestry. For example the child of two siblings might have 
inherited a copy of the same grand-parental gene – with a probability of 0.5 at any one 
locus. In the absence of any deeper relationships between the grandparents this is the 
value of F. A number of authors arrived at this same line of reasoning via slightly 
different routes (Haldane and Moshinsky, 1939, Cotterman, 1940, Malécot, 1948), 
leading to a diverse array of related terms and definitions. These terms were unified to 
some extent under the common name ‘probability of identity by descent’, P(IBD), put 
forward by Crow (1954). Unfortunately this term is not always used in the manner Crow 
specified, and this has led to ambiguity about the meaning of the parameters F and FST, 
and hence to confusion as to whether they capture what we would like to estimate as 
differentiation. This ambiguity can be traced right back to the term’s origin. Crow 
explicitly started with a distinction made by Malécot. He wrote that there are 
 

two ways in which a pair of alleles may be alike. I shall call them: (a) alike in 
state, i.e., both A, both a, or both ax; (b) identical by descent, i.e., both derived 
from a single gene in some common ancestor … it is possible for two genes to be 
alike in state but not identical [by descent]. Conversely, two alleles which are 
identical [by descent] may be unlike in state if there has been a mutation since 
their common origin. 

(Crow, 1954, p544) 
 
Hence, under Crow’s definition, two gene copies could be identical by descent, but not 
identical in state, if there has been a mutation since the common ancestor.  The concept of 
P(IBD) is independent of mutation. Malécot also makes this point explicitly (Malécot, 
1948, p7, Malécot, 1969, p8).  However, in the same text Malécot specifies a coefficient 
of coancestry for a locus which does not correspond to his earlier definition, or to Crow’s 
P(IBD), since the formula explicitly shows that the coefficient is eroded by mutation: 
 

!!!
!

!!!!! !!!!
!   ,          (6) 

(Malécot, 1948, p9, Malécot, 1969, p11) 
 
where u is the mutation rate. Many modern accounts conform to Crow’s definition; they 
include Crow and Kimura (1970, p65), Hartl and Clark (2007, p259) and Charlesworth 
and Charlesworth (2010, p36). Others follow Malécot, for example Holsinger (2012, p24) 
does so explicitly, and Balding’s formula (5) does so implicitly. A study could 
legitimately take either one of these viewpoints, but it is important to be clear which is 
being used. 
 

FST*with*and*without*mutation*
The fixation index FST is built upon F, and so the confusion over whether or not we 
should condition on a history of no mutations carries over into the study of population 
differentiation. We can conceive of a mutation-independent version of FST, and a 
mutation-dependent version. To clarify the distinction, consider a sub-population that has 



 
 

become isolated from the rest of a species range. Over time, coancestry will build up 
because breeding is restricted to this subpopulation. Given a sufficient period of isolation, 
all individuals would trace their ancestry back to their own subpopulation, and so the 
mutation-independent FST would tend to one. On the other hand, we would never expect 
the mutation-dependent FST to approach one – as there always remains a small chance 
that one or other lineage has picked up a mutation in the time since the common ancestor. 
Wright (1931) explored this exact scenario, concluding that the population tends towards 
an equilibrium between drift and mutation, such that 
 
!!" = !

!!!!"  .          (7) 
 
Unlike in the mutation-independent view, this value is strictly less than one.  (N.b. the 
model can be extended to populations experiencing migration, giving more familiar 
expressions for FST  e.g. Wright, 1949). 
 

Is*GST*constrained?*
The statistic GST is an estimator of the parameter FST, so a natural question is does it 
estimate the mutation-independent version or the mutation-dependent version?  The 
answer is apparent in Figure 2, which shows a simulation of the build up of FST (both the 
mutation-independent and the mutation-dependent versions) in a model of isolated 
populations, along with the observed value of GST calculated on a sample of individuals. 
It can be seen that GST is a reliable estimator of the mutation-dependent form of FST, 
tending towards Wright’s predicted value (7) as time goes on. On the other hand the 
mutation-independent form of FST diverges and eventually reaches one when all 
individuals are descended from the same common ancestor.  The correspondence 
between the mutation-dependent definition of FST and GST can be readily understood, 
since GST is based on the observed allele frequencies, which are in turn influenced by 
mutation. Whitlock (2011) gives an excellent account of the properties of FST and the 
statistics GST, G’ST and D, coming to broadly similar conclusions. 
 
There are reasons for wishing to estimate the mutation-independent version of FST: for 
example it describes the underlying pattern of ancestry in a sub-population – which can 
be used to predict patterns at loci with a range of different mutation rates, and which can 
act as a null distribution in the search for outliers that might be subject to selection 
(Beaumont & Nichols 1996, Antao et al 2008, Foll & Gaggiotti 2008).  As well as a 
description of the probability of identity by descent, it can be viewed as equivalent to a 
ratio of coalescence times for lineages within and among subpopulations – an approach 
which makes clear that in non-equilibrium populations FST is not a simple function of 
migration rate (Slatkin 1991). In fact, our definition of mutation-independent FST can be 
seen as equivalent to ‘coalescent FST’ (FST,coal) described by Whitlock (2011). 
 
In the remainder of this paper we ask about the utility of different statistics at estimating 
the mutation-independent version of FST. We use the shape of likelihood curves, 
calculated under a variety of evolutionary models, to evaluate the information provided 
by Jost’s D and Hedrick’s G’ST. We find that in some situations they convey 



 
 

complementary information to GST and are required in addition to it, rather than being 
effective replacements, while in other situations they contain little or no information. 
 

Methods!and!results!for!a!simple!equilibrium!model!
In evaluating GST, D and G’ST we use the criterion of information content: a good 
measure is one that contains a large amount of information about the underlying quantity 
of interest. The information contained in a measure can be evaluated using its likelihood 
function: an expression describing the probability of the observed data as a function of 
the unknown parameter(s) of the model (Edwards, 1984, provides a clear description of 
the approach, building on the foundations widely attributed to Fisher, 1921, 1956). When 
the likelihood curve is sharply peaked around its maximum (the maximum likelihood 
estimate of the parameters) it can be inferred that the measure used to produce this 
likelihood function contains a large amount of information about the unknown 
parameter(s). Conversely, when the likelihood curve falls off in a shallow slope about the 
maximum it can be inferred that the measure contains relatively little information. 
Crucially for our approach, a likelihood function can be produced based either on the full 
dataset, or some compressed version of the data – one or more statistics. It is therefore 
possible to produce a different likelihood curve based on each of the statistics that we are 
interested in, and by examining the shape of the resulting curves we can compare the 
information contained in each statistic directly. In this particular example we focus on 
estimating the scaled mutation rate θ=4Nµ (not to be confused with Weir and 
Cockerham’s θ), rather than the level of differentiation, as this allows us to give the most 
direct demonstration of the method. The problem of estimating the level of differentiation 
will be addressed in the next section. 
 
As a first step, we constructed a simple island model, in which five isolated 
subpopulations, each containing N=1000 diploid individuals, were assumed to be at 
equilibrium between infinite alleles mutation and genetic drift, and with no gene flow 
between subpopulations. The scaled mutation rate used when generating the data was θ=1 
(R script available in online Supplementary Materials). We sampled five diploid 
individuals from each subpopulation and obtained the raw data given in Table 1. From 
this data we calculated the following statistical values; GST=0.520, D=1 and G’ST=1. 
 
Next, we generated likelihood curves based on a number of different levels of 
compression of the original data. Our primary reason for choosing this particular setup is 
that it is relatively easy to write down a likelihood function for θ given the complete data 
set (see Appendix A for details). This likelihood function can be written as follows: 
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where nj denotes the number of gene copies sampled from deme j (in this example nj=10 
for all demes), and cj denotes the total number of different allelic states found in this 
sample (i.e. the values given in the final column of Table 1). 
 



 
 

The first summary statistic that we evaluated was the total number of distinct alleles 
present in the sample (Σcj). Returning to the likelihood function (8); notice that the 
observed data only enter into this function via the value Σcj (the values nj depend only on 
the sample design, and are assumed known). Therefore, as well as being the likelihood 
function given the complete data set, equation (8) can be considered the likelihood 
function conditional on knowing just the total number of distinct alleles in the sample. 
 
The second statistic that we evaluated was GST. Although a likelihood function for θ 
given GST cannot be written down in such a straightforward manner, it is relatively easy 
to reconstruct this likelihood curve via simulation. First, a particular value of θ, denoted 
θ*, was chosen from the interval [0, 5]. Second, 50,000 random data sets, of the same 
size as the observed data, were generated from the equilibrium model under this value of 
θ* by simply drawing from (8). Finally, GST was calculated for each of these random data 
sets, and compared against the observed value of GST =0.520. Only those data sets with a 
value of GST within a distance ε=0.01 of the true GST were retained. As long as ε is small 
enough (strictly in lim!→! !) the proportion of random data sets retained by this method is 
a quantity directly proportional to the likelihood, and so by carrying out this method for a 
range of θ* values (either drawing uniformly or in our case sampling at fixed intervals) 
we can reconstruct the likelihood curve to an arbitrary degree of accuracy. This approach 
has a strong statistical foundation, and is often considered a form of Approximate 
Bayesian Computation (ABC), although in our case it is the likelihood that we are 
interested in, rather than the posterior distribution given some informative prior (see 
Sunnåker et al. (2013) for a modern perspective on this and related approaches). 
 
Finally, we considered the likelihood function for θ given the known values of D or G’ST. 
Although we could take a simulation-based approach as above, there is in fact no need to 
do so in this case, as both of these statistics take on a value of one under this model 
irrespective of the value of θ. 
 
The results of this analysis are shown in Figure 3. Notice that the most sharply peaked 
likelihood curve is the one produced from the number of unique alleles. Notice also that 
we obtain the same curve given just this one number as given the entire data set. 
Surprisingly, this tells us that we can boil down all the data in Table 1 to just a single 
number, Σcj=13, without losing any information whatsoever. We can say that the number 
of unique alleles is a ‘sufficient statistic’ in this particular scenario – a point made by 
Ewens (2004, p302). No alternative measure can ever contain more information about θ 
than this measure, and so the number of unique alleles clearly represents an attractive 
form of data compression in this context. 
 
The likelihood curve relating GST to θ has a greater spread than the likelihood function 
conditional on the full data, and so by choosing GST as our measure we have lost some 
information compared with the complete data set. This does not follow directly from the 
fact that we have boiled the data down from many numbers to just a single number, since 
we have shown that a single number (Σcj=13) would suffice.  
 



 
 

Finally, we come to the likelihood curves given just the values of Jost’s D or Hedrick’s 
G’ST. Both of these likelihood curves are completely flat, as we obtain the same value of 
D or G’ST for any value of the scaled mutation rate. Thus, we can say that D and G’ST 
contain exactly zero information in this particular scenario. This does not mean that D 
and G’ST are worse statistics per se – in fact, this analysis could be seen as slightly unfair 
to D and G’ST, as neither statistic was conceived as an estimator of θ. For this reason we 
stress that there may be situations in which these statistics are preferable to GST in terms 
of information content. Rather, the result in Figure 3 simply demonstrates that D and GST 
are not good choices of statistic if our aim is to estimate the scaled mutation rate, and if 
we are happy to accept this particular model. 
 

Methods!and!results!for!nonAequilibrium!models!
Building on the results above, we moved on to consider the problem of estimating 
mutation-independent FST in some simple non-equilibrium models. First, we constructed 
a simple island model of 10 subpopulations, each containing N=100 diploid individuals, 
with no mutation and no migration between demes. Unlike in the previous example we 
did not assume that populations were at equilibrium; rather, we were interested in the 
build up of differentiation over time (see Appendix B for full details of the assumed 
model, and online Supplementary Materials for the R scripts). We simulated evolution 
under this model for 100 generations, keeping track of the true value of FST in the 
population as a whole (i.e. the true probability of any two randomly chosen gene copies 
being identical by descent). The final population achieved a level of differentiation of 
FST=0.43. We generated our “observed” data by sampling 10 individuals from each 
subpopulation in the final generation, leading to the following statistical values; 
GST=0.356, D=0.150 and G’ST=0.453 (the complete data set can be found in the online 
Supplementary Materials). 
 
Our objective was to estimate the level of differentiation using only the observed values 
of the statistics. We did this by simulating 50,000 sets of values of FST, GST, D and G’ST 
from the model above, each time running the model for 1000 generations. By only 
retaining those values of FST for which the simulated value of the statistic was within a 
distance ε=0.01 of the observed value, we were able to reconstruct the likelihood curves 
for FST given each of the statistics (this is essentially the same method as that used for the 
equilibrium case). 
 
 The results of this analysis are shown in Figure 4. We can see that GST does a reasonably 
good job of characterising the true value of FST in the demes, while G’ST and D are less 
informative. If our aim is to critique GST as a measure of differentiation then this result is 
perhaps reassuring – as long as the mutation rate of our chosen genetic material is low, 
we can capture the process of differentiation adequately using the statistic GST alone. 
 
Moving forward, we considered the problem of estimating FST in a more challenging 
model in which mutation was occurring at a high rate. The basic model structure was 
exactly the same as that above, but incorporating an infinite-alleles model of mutation 
with scaled mutation rate θ=4. As before, our “observed” data consisted of a sample of 10 
individuals per subpopulation taken after 100 generations, at which point the true level of 



 
 

differentiation was FST=0.433. This data set produced the following statistical values; 
GST=0.149, D=0.684 and G’ST=0.731 (again, the complete data set can be found in the 
online Supplementary Materials). 
 
We then used the simulation-based method to estimate the value of FST and the scaled 
mutation rate θ given each of the observed statistics, either on their own or in 
combination. We generated 5000 simulated data sets, each time running the model for 
1000 generations. A threshold of ε=0.01 was used when estimating parameters using a 
single statistic, or ε=0.05 when using two statistics. The results of this analysis can be 
found in Figure 5. Notice that if we base our inference on the observed value of GST alone 
then we cannot distinguish between two possible explanations for the data – equilibrium 
with a high mutation rate, and non-equilibrium with a low mutation rate. This leads to a 
ridge in the likelihood distribution, covering a wide range of parameter values. Similarly, 
using the observed value of D alone we cannot distinguish between populations that are 
relatively undifferentiated with a high mutation rate, and populations that are completely 
differentiated with a low mutation rate. However, supplementing GST with D solves this 
problem, as it provides us with two separate sources of information. Based on the 
combined values of GST and D we can correctly estimate the values of FST and θ, thereby 
giving us an accurate picture of the true level of differentiation in the population. 
 

Discussion 
By tracing GST to its origin – the parameter FST, and further to the inbreeding coefficient 
F upon which FST was built – we can identify the root cause of some of the disagreement 
in the literature around the measurement of population differentiation. We have found 
that there are two overlapping views regarding the definition of the probability of identity 
by descent, which in turn have rubbed off on our definitions of FST, leading to mutation-
dependent and mutation-independent versions. The criticism that GST is constrained is 
misplaced – at least if the task at hand is to estimate the mutation-dependent version of 
FST. If we wish to capture other aspects of the population history, such as the mutation-
independent version of FST, when the mutation rate is relatively high, then we will need 
to supplement GST with other measures that capture a different aspect of evolution. No 
single statistic can be informative about both parameters in this situation, as it is 
mathematically impossible for a single dimension to fully represent two. 
 
The likelihood framework provides us with an objective and quantitative way of 
determining the amount of information contained within different measures. Our aim here 
is one of data compression, in which we seek to retain the important aspects of the data 
while reducing the number of digits required to describe them. The effectiveness of a 
particular compression does not have a simple relationship with the number of values that 
are being thrown away. There may be data compressions that are equivalent in terms of 
the number of digits retained, but different in terms of information content, as 
demonstrated in Figure 3.  
 
Finally, and perhaps most importantly, the concept of likelihood is tied to a particular 
model, and hence it is impossible to quantify the amount of information contained within 
a measure without referring to a particular model. This sobering fact means that there is 



 
 

no way of evaluating how good a statistic is based solely on the properties of the 
measure. While we can express certain preferences, in terms of the range of the statistic 
and how many values we are happy to retain, we cannot say that one statistic is 
objectively better than another. In order to make value judgements like this we must refer 
to a particular model or class of models. The fact that the information content of a 
statistic depends on our chosen model is a consequence of the way that we have defined 
differentiation – as an unknown parameter describing the past history of a set of 
populations, rather than as a statistic calculated on the observed data. Thus no statistic is 
differentiation, but some statistics can be used to infer differentiation. We find that 
mutation-independent FST is a sensible quantity to use as our definition of differentiation, 
although the general arguments made above are equally valid when applied to alternative 
definitions. 
 
Under a simple island model with no mutation or migration we found that GST was a good 
estimator of FST, while Jost’s D and Hedrick’s G’ST were not (Figure 4). This result is 
perhaps unsurprising, as neither D nor G’ST were designed as estimators of FST; however, 
this illustrates the importance of deciding on a definition of differentiation when choosing 
between statistics. If we accept FST as our definition then we must conclude that GST 
should not be replaced by one of these alternative statistics, as we are likely to throw 
away valuable information. At first sight this might seem to be an argument for using 
marker loci with low mutation rates, however the different information conveyed by 
markers with high and different mutation rates can be exploited to obtain information 
about different periods in a species’ evolutionary history (e.g. Nichols & Freeman 2004), 
although care must be taken to that the mutation model is appropriate to the genetic 
marker used. Under the same model with a high mutation rate we found that GST is 
insufficient on its own to jointly estimate the true level of differentiation and mutation 
(Figure 5). Supplementing GST with either G’ST or D solved this problem, providing a 
distinct source of information that can be used to pull apart the confounded signals. With 
modern genomic tools providing ready access to a large number of loci with a wide range 
of mutation rates, even in non-model organisms, it has become practicable to exploit this 
type of information. 
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Appendices!

A)*Likelihood*at*equilibrium*under*an*island*model*
Let us assume a finite-islands model consisting of k perfectly isolated subpopulations, 
each containing N diploid individuals. Further, let us assume that all subpopulations are 
presently at equilibrium between genetic drift and infinite alleles mutation (with scaled 
mutation rate θ=4Nµ). Focussing for the moment on the jth subpopulation; the probability 
of seeing a new (i.e. previously unseen) allele is equal to θ/(i+θ), where i denotes the 
number of gene copies already sampled from this subpopulation, while the probability of 
seeing an old (i.e. previously seen) allele is equal to one minus this quantity, or i/(i+θ). 
Thus, given a sample of nj gene copies drawn from this subpopulation, in which cj 
different allelic states are represented, we find that the probability of the sample can be 
written down as follows: 
 
Pr!(sample) ∝ !!!!(!)

!(!!!!)  .        (A1) 

 
The proportionality symbol has been used here, as we are interested in the likelihood of 
θ, which is only defined up to a constant of proportionality. Taking the product of (A1) 
over all k subpopulations and collecting terms we obtain 
 

! ! = ! !! ! !(!)
!(!!!!)

!
!!!   .       (A2) 

 
The observed data only enter into this equation via the total number of allelic states found 
in all subpopulations (Σcj). This quantity can therefore be considered a sufficient statistic 
in this context – a point made by Ewens (2004, p302). 
 

B)*Simulation*in*non2equilibrium*models*
When considering the change in genetic composition over time in a simple island model 
it is necessary that we have a model governing the initial makeup of the subpopulations. 
The exact model that we opt for is unlikely to have a major effect on our conclusions, 
relative to other driving factors such as the population size or mutation rate, however, we 
are forced to opt for some model otherwise we cannot proceed. In all of the examples 
above (aside from the equilibrium example, where the initial makeup of the population is 
irrelevant) a simple model of a large population that became fragmented at time t=0 into 
k subpopulations was used. All 2Nk alleles in this large population were drawn from a 
Chinese restaurant process with concentration parameter α=1 (see Pitman, 1996). 
Individuals were then randomly assigned into subpopulations, such that there were N 
individuals in each of the k subpopulations. This scheme is likely to result in the majority 



 
 

of alleles being shared between subpopulations, but also allows for some alleles to be 
unique to a particular subpopulation from the outset. All subsequent generations 
proceeded according to standard Wright-Fisher dynamics, either with or without 
mutation. 
 

Figures!and!Tables!

 
Figure 1: Comparison of different measures of differentiation for two different scenarios. 
In the first scenario all k=5 subpopulations contain only private alleles, and G’ST and D 
both report maximal differentiation. In the second scenario some alleles are shared 
between subpopulations, and G’ST and D disagree about the level of differentiation. 
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Figure 2: Build up of FST using the mutation-independent (upper black line) and 
mutation-dependent (lower black line) definitions, along with GST (red line) calculated on 
a random sample of individuals drawn from the population. Simulations were obtained 
from the finite islands model with 10 subpopulations containing 100 diploid individuals 
each, a scaled mutation rate of θ=1, and in the case of the GST calculations a sample size 
of 10 individuals per subpopulation (drawn independently at each point in time). 
 

 
Figure 3: Likelihood curves for the scaled mutation rate (θ=4Nµ) under an island model 
at equilibrium between infinite alleles mutation and drift, and in the absence of migration 
between demes. Likelihood curves were obtained either analytically or by simulation for 
various levels of data compression, and have been normalised to have the same area. The 
true parameter value of θ=1, from which the ‘observed’ data was generated, is indicated 
with an arrow. 
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Figure 4: Likelihood curves for the level of differentiation (FST) reconstructed using 
simulation based methods with an acceptance distance of ε=0.01. The true value of FST 
=0.413 is indicated by an arrow. 
 

 
Figure 5: Draws from the bivariate likelihood surface of the level of differentiation (FST), 
and the scaled mutation rate (θ=4Nµ). In the first panel GST alone was used to estimate 
the unknown parameters, in the second panel Jost’s D alone was used, and in the third 
panel both GST and Jost’s D were used. An acceptance distance of ε=0.01 was used when 
estimating parameters based on GST or D alone, and a (Euclidian) acceptance distance of 
ε=0.05 was used for the case of both statistics combined. 
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Table 1: Simulated data drawn from island model at mutation-drift equilibrium with θ=1, 
showing five diploid individuals drawn from each of five subpopulations. All 
subpopulations contain only private alleles, as indicated by the fact that the alleles of 
each subpopulation are given a different unique letter. Allele counts and the total number 
of unique alleles are reported for each subpopulation. 
 


