Testing single-sample estimators of effective population size in genetically structured populations
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Abstract	The effective population size (Ne) is a key parameter in evolutionary and population genetics. Single-sample Ne estimation provides an alternative to traditional approaches requiring two or more samples. Single-sample methods assume that the study population has no genetic sub-structure, which is unlikely to be true in wild populations. Here we empirically investigated two single-sample estimators (ONeSAMP and LDNE) in replicated and controlled genetically structured populations of Drosophila melanogaster. Using experimentally controlled population parameters, we calculated the Wright-Fisher expected Ne for the structured population (TotalNe) and demonstrated that the loss of heterozygosity did not significantly differ from Wright’s model. We found that disregarding the population substructure resulted in TotalNe estimates with a low coefficient of variation but these estimates were systematically lower than the expected values, whereas hierarchical estimates accounting for population structure were closer to the expected values but had a higher coefficient of variation. Analysis of simulated populations demonstrated that incomplete sampling, initial allelic diversity and balancing selection may have contributed to deviations from the Wright-Fisher model. Overall the approximate-Bayesian ONeSAMP method performed better than LDNE (with appropriate priors). Both methods performed best when dispersal rates were high and the population structure was approaching panmixia. 

Introduction

A fundamental property affecting the fate of any population is the effective population size (Ne). Ne describes the operation of genetic drift, rates of inbreeding, and determines a population’s sensitivity to natural selection (Lande 1988; Wang and Caballero 1999). Due to its key role in population processes, estimating Ne is of importance not only to theoreticians and evolutionary biologists but also to conservation biologists and natural resource managers seeking to monitor and forecast population viability. There is a wide a variety of Ne estimators available, which until recently required populations to be sampled repeatedly over time (Fisher 1930; Wright 1931; Ewens 1979; Nei and Tajima 1981; Waples 1989; Beerli and Felsenstein 2001; Wang 2001; Kuhner 2006). 
New methods, referred to as ‘single-sample’ Ne estimators, relax the requirement for temporal sampling are of particular interest in the field of conservation biology for monitoring populations and assessing population viability in real-time, rather than having to wait for several generations to produce a single estimate of Ne (Waples and Do 2010). Collecting temporally spaced samples from endangered species is particularly challenging, due to the inherent scarcity of individuals and the typically long generation times of vulnerable species. Additionally, threats to species survival can often require immediate action. Thus the application of single-sample Ne estimates can assist population managers in making informed and timely recommendations. 
Whilst single-sample Ne estimation holds great promise for field applications, there is a great need to rigorously evaluate the robustness of these methods to application in non-ideal field scenarios. Many field studies have compared the performance of single-sample Ne estimators, and demonstrated that their relative performance is highly situational. Several case studies have shown that ONeSAMP and LDNE produce congruent Ne estimates (Hoehn et al. 2012; Jansson et al. 2012; Skrbinsek et al. 2012). Other studies provide contrasting evidence that ONeSAMP estimates are more precise than LDNE (Beebee 2009; Barker 2011; Phillipsen et al. 2011; Gomez-Uchida et al. 2013). Another case study has criticised the accuracy of ONeSAMP because Ne estimates were highly correlated with sample size (Johnstone et al. 2013). This variable performance in wild populations is not unexpected because simulations have shown that at least one single-sample Ne estimator, LDNE, (Waples and Do 2008) is very sensitive to declines in population size (Antao et al. 2011), persistent population fragmentation (England et al. 2010) and dispersal (Waples and England 2011). Without prior knowledge of the true Ne and information about potentially confounding population process, such as the pattern and rate of dispersal, it is not possible to gain an accurate understanding of the performance single-sample Ne estimators (Chikhi et al. 2010). 
In this study we investigated the relative performance of single-sample Ne estimators in genetically structured populations, using simulations and also by creating replicated populations of Drosophila melanogaster with controlled dispersal that fulfil the assumptions of the Wright-Fisher model. Our controlled Drosophila experiment allows us to make predictions about the expected TotalNe and acts as an intermediate scenario between wild populations with unknown population parameters and simulated populations that may not have full biological realism but conform to most of the assumptions of analytical models used to develop Ne estimators. Using real organisms in controlled replicated experiments is an important next step after analytical methods have been evaluated by computer simulation (England et al. 2010; Antao et al. 2011; Waples and England 2011). To our knowledge no studies of Ne estimation methods have been conducted using replicated controlled populations of live organisms.
Here we evaluate whether single-sample Ne estimates in real and simulated populations are consistent with the values predicted by the Wright-Fisher model when the experimental populations have been maintained to closely reflect ‘ideal’ Wright-Fisher conditions. We also evaluate whether populations with different rates of dispersal (and thus different levels of population structure) experience altered effects of genetic drift and result in different estimates of effective size. We restrict our evaluation to two single-sample estimators: ONeSAMP (Tallmon et al. 2008) and LDNE (Waples and Do 2008) and apply two statistical approaches to estimate the single-sample effective population size. Our work depicts what may be expected in a study of wild populations when the sampling design is limited and analyses are conducted with incomplete knowledge of the underlying population structure.  

Materials and methods

Construction of replicated, genetically structured populations

The source population of Drosophila melanogaster was a large wild population, collected from Tyrell’s Winery, Hunter Valley, New South Wales (Australia) in April 2000 (Gunn 2003). Wild caught individuals were used to establish four laboratory populations, each founded by 100 males and 100 non-virgin females. The four laboratory populations are referred to as lines: 3, 4, 17 and 21. All lines were maintained on an instant potato-sugar artificial insect food medium (Holleley et al. 2008).
Each population (line pair) consisted of two subpopulations (s = 2) that were connected by low levels of symmetrical dispersal (Fig. S1 of supplementary material). All subpopulations had a census size (N) of 50 individuals and an equal sex ratio. Each line pair was initialized at generation zero from one of two contrasting scenarios: from lineages that had previously been isolated for approximately 60 generations and thus showed a variable degree of initial differentiation (‘Isolation’ scenario, pairs 17_21 and 3_4) or from lineages that were split to make the pair immediately prior to generation zero and thus showed very low initial differentiation (‘Split’ scenario, pairs 3_3 and 17_17). Each pair was replicated three times. The size and structure of the populations were constant throughout the experiment and generations were discrete and non-overlapping. Reciprocal exchange of individuals between the two subpopulations was conducted at three fixed dispersal rates; low m = 0.0025 (1 fly exchanged per 8 generations), moderate m = 0.01 (1 fly exchanged per 2 generations), high m = 0.04 (2 flies exchanged per generation). See Fig. S1 for full details of Drosophila dispersal regimes. Dispersal was continued for 34, 26 and 12 generations, respectively (called T2 in Holleley et al. 2011), defined as twice the number of generations expected to reach 50% of the drift–dispersal equilibrium prediction of FST (fixation index) (Whitlock 1992). Microsatellite and SNP analyses showed that this was adequate time for convergence of the two starting scenarios to a common mean trajectory (Dewar et al. 2011; Holleley et al. 2011) and simulations confirmed that this design provides sufficient time for populations to attain drift-dispersal equilibrium (data not shown) (Maio 2008). As described fully in Holleley et al. (2011), there was no evidence to suggest that dispersing individuals had differential reproductive fitness compared to resident individuals in the populations comprising this study. At the conclusion of the experiment we sampled 24 individuals from each subpopulation (thus 48 individuals for the total population). Sample sizes of this order of magnitude are routinely used in studies of wild populations. DNA was extracted from each D. melanogaster using a Gentra Puregene DNA extraction kit (Progenz Ltd, Australia) modified for high-throughput processing (Holleley 2007). We then genotyped the sampled individuals at seven autosomal microsatellite loci (Msat 2, Msat 3, Msat 6, Msat 7, Msat 8, Msat 9, Msat 11) using multiplex PCR and a step-down thermal cycling protocol (Holleley and Sherwin 2007; Holleley and Geerts 2009). DNA fragment size analysis was conducted on an Applied Biosystems 48-Capillary 3730 DNA Analyser and analysed using the software GENEMAPPER® Version 3.7 (Applied Biosystems 2004).

Expectations under the Wright-Fisher model

Throughout this manuscript, Ne refers to the effective size of idealised and closed Wright-Fisher population. The notation TotalNe refers to the effective size of a genetically structured population consisting of (s) subpopulations that are open to dispersal, whereas LocalNe refers to the local effective size of the subpopulations that make up the total structured population. 
In our experiment all structured populations adhered to the Wright-Fisher model, which allowed us to calculate the expected effective size of the structured population from our experimental population parameters. Specifically, the eigenvalue effective population size (Ne) (Ewens 1979) of isolated populations can be calculated from the change in expected heterozygosity over time (He), following equation 1. 
				       (1)
where Ht/H0 is the proportion of the original expected heterozygosity (H0) remaining in a population after t generations (Falconer and Mackay 1996). For closed D. melanogaster populations from the same source, under the same physical conditions and transfer protocols, Gilligan (2001; 2005) used the decay in heterozygosity over time (He), to estimate the ratio of census population size to eigenvalue effective population size (Ewens 1979) to be Ne : N = 0.286. This estimate was verified independently using closed D. melanogaster populations collected from the same wild Tyrrell’s source population by Gunn (2003) and we have used the same stock lines for this investigation. 
The estimation of Ne via the decay of heterozygosity assumes populations to be closed to dispersal, thus for the equation 1 to hold in our structured populations, we must adjust the relationship to account for dispersal. 
 	 			        (2)
where TotalNe is the effective size of the structured population and is defined in equation 3 by the number of subpopulations (s), each of an idealised effective population size Ne except for receiving a proportion of m dispersing individuals (Wright 1943; Wang and Caballero 1999).
  	           	  		   (3)
Equations 2 and 3 assume that the size and structure of the population is constant, there is no local extinction of subpopulations and drift-dispersal equilibrium has been attained. Our experiment meets these assumptions and we can calculate the expected TotalNe (Table 1). Thus under the null hypothesis (Hnull) the initial heterozygosity (H0) is expected to decline at the rate of He, over the defined number of generations (t), such that;
.		    			(4)
We tested this null hypothesis using a two-sample t-test with an expectation of a systematic difference (D). In this paper D = He. The test statistic () was calculated as: 
    	           			          (5)
where Z is:
  		         (6)

n0 and nt are the sample sizes used to calculate the mean values of H0 and Ht respectively.  In this paper both n0 and nt are equal to the number of microsatellite loci.  and  are the variances of the means H0 and Ht. The degrees of freedom of the FDR-corrected two-tailed t-test are calculated as
.			 		(7)

Expectations from simulated populations 

The Wright-Fisher model predicts an effective size for structured populations (E(TotalNe)) (Table 1), however other factors such as non-neutral molecular evolution of markers, incomplete sampling of populations or initial levels of allelic diversity in the real populations may cause a deviation from this mathematical expectation. To investigate this possibility, we developed an individual-based model using R (www.r-project.org) that simulated the sampling conditions of our Drosophila experiment (Source code available upon request). 
At the start of each simulation, the individuals forming the initial generation were created by assigning them a sex and then generating genotypes at each locus by randomly drawing a pair of alleles for each locus from the initial allele frequencies of the founding population (Drosophila lines 3, 4 17, 21) (Holleley and Sherwin 2007). For subsequent generations, 50-offspring from each subpopulation (100-offspring total) were created by randomly assigning pairs of male and female individuals from the preceding generation of the same subpopulation to be the parents of an offspring individual. The offspring’s genotype was determined by randomly selecting, with equal probability, one allele from each parent for each locus. The sex of offspring was assigned randomly, with the each sub-population having an equal sex ratio. Dispersal events were conducted at the same rate and after the same numbers of generations as the experimental Drosophila populations (Fig. S1). In the simulations, we increased the number of replicates from n = 3 in the Drosophila populations to n = 100 replicates of each scenario in order to more fully account for the variability of TotalNe estimates. This model closely approximates the Drosophila experiment, in that N is known and controlled, but Ne is not controlled and varies stochastically because not all individuals necessarily contribute to the next generation.  Similarly m is known and controlled, but effective dispersal is not controlled and migrants do not necessarily contribute offspring to the next generation. 
At the conclusion of the computer simulations 24 individuals were sampled from each subpopulation (48 for the total population) and allele frequencies for all simulated populations were used to estimate TotalNe in the programs LDNE and ONeSAMP, using two statistical approaches described below.  These simulations are designed to return the expectations of Ne estimators under neutrality for our experimental conditions, which was calculated as the median TotalNe of 100 replicates.

Single-sample methods to estimate Ne 

In this paper we evaluate two single-sample methods to estimate Ne (LDNE and ONeSAMP) that both use estimates of linkage disequilibrium among unlinked loci as a means to assess the strength of genetic drift in populations. The basic premise of both methods is that small population size can lead to non-random allele associations among unlinked genetic loci, thus the higher the level of linkage disequilibrium, the smaller the effective population size (and vice versa). Whilst LDNE and ONeSAMP are based upon the same genetic signal they implement different statistical approaches. LDNE (Waples and Do 2008) estimates effective population size using Burrows’ , a linkage disequilibrium method with bias correction for sample size (Weir 1979; Waples 2006). For all LDNE estimates in this manuscript, we assumed a random mating model. ONeSAMP is an approximate Bayesian method that utilises eight summary statistics and user-defined priors to calculate Ne (Tallmon et al. 2008). Both programs assume that genotypic data is obtained from closed populations with discrete generations using genetic markers that are unlinked and selectively neutral. We follow convention for this field by assuming that microsatellite markers are selectively neutral for statistical purposes, although this assumption is discussed later. The experiment intentionally violates the assumption of unstructured populations.

Statistical Approach 1: Non-hierarchical estimation of TotalNe disregarding genetic population structure

Approach 1 represents a scenario that may occur in many field studies where there is no prior information about genetic population structure or the pattern of dispersal. In this case, Ne estimation is applied to a genetically structured population (incorrectly), as if it were a single panmictic population with no genetic structure. Here we estimated TotalNe in the programs LDNE and ONeSAMP applying the non-hierarchical statistical approach. Subpopulations were equally sampled (24 individuals from each subpopulation of 50) but the data were analysed as if the sample came from a single panmictic population (48 individuals from a population of 100). Our ONeSAMP priors specified that all the microsatellites had dinucleotide repeat motifs and that the upper and lower bounds for Ne were 2 and 200 respectively. These priors were appropriate, as 2 is the lowest bound that ONeSAMP accepts and Tallmon (2008) states that for this method, a conservative estimate of the upper bound of Ne is twice the census size. ONeSAMP does not allow the input of monomophic loci, thus any loci that became fixed due to the loss of alleles through genetic drift were excluded on a case-by-case basis. 

Statistical Approach 2: hierarchical estimation of TotalNe accounting for genetic population structure

The hierarchical approach for estimating the effective size differs from approach 1 by employing knowledge about the structure of the population and patterns of dispersal in our experiment. The hierarchical approach first uses LDNE or ONeSAMP to estimate the LocalNe of each subpopulation. ONeSAMP priors were the same as specified for approach 1 except that the upper bound for Ne was lowered to 100, twice the census size of the subpopulations. To estimate TotalNe, we summed the two subpopulation LocalNe estimates and adjusted for the level of population structure (FST), following Equation 8 (Wright 1943).
 					(8)
We estimated FST in the program GENEPOP (Raymond and Rousset 1995) which implements Weir and Cockerham’s (1984) estimator. The usual assumptions in calculating FST apply to the hierarchical approach for estimating TotalNe including: equal population sizes, equal and symmetrical dispersal and that the population has reached equilibrium between drift and dispersal. 

Estimating systematic and stochastic deviations

We compared the TotalNe estimates calculated from the empirical Drosophila dataset and the simulated dataset to two expected values: E(TotalNe) under the Wright-Fisher model (Table 1), and the simulation E(TotalNe) calculated as the median of 100 population replicates (Fig. 1). This comparison was made for both the non-hierarchical and hierarchical approach. We calculated the systematic deviation of mean TotalNe estimates (Drosophila dataset and simulated dataset) for each dispersal rate from their expected values (Wright-Fisher or simulation medians) using an equation for bias (Equation 9). This four-way comparison is presented in Table 2. 
					  (9)
Stochastic departures were expressed as the coefficient of variation (CV) of estimates over replicates (Table 2). To summarise the combined effects of systematic and stochastic deviations, we used the equation for root mean square error (RMSE) (Table 2), although we acknowledge that our naming of it as RMSE may depart from the engineering practice of its origins. Lastly, as predicted by the Wright-Fisher model, we used Pearson’s correlation coefficient (r) to determine whether empirical and simulated estimates of TotalNe were correlated with the dispersal rate. We also tested whether the level of genetic population structure (FST) was correlated with dispersal rate.
 
Results

Validation of Wright’s expected TotalNe

To make predictions about the expected effective population size in structured populations with ongoing dispersal, we required an estimate of Ne in closed single populations under the same environmental conditions and population density as our experiments. This work was previously conducted by Gunn (2003) in a 35-generation experiment, comprising ten closed populations with a controlled census population size of 50 non-virgin individuals. Gunn (2003) genotyped the following autosomal microsatellites: DmAC1, DmAC3, DmAC8 and DmAC9 (England et al. 1996).
Using the rate of decay in heterozygosity over time (ΔHe) Gunn (2003) demonstrated that closed D. melanogaster populations (N = 50) are consistent with an eigenvalue Ne of 14.3 (95% confidence interval = 8.74 - 19.8) in our stock lines. We did not repeat the closed population experiments, however we did confirm that the observed change in expected heterozygosity in all 36 of our independent experimental populations was not significantly different from the value expected under the Wright-Fisher model for structured populations with the same subpopulation Ne of 14.3 (See supplementary material: Table S2).

Results of population simulations

We used simulated populations to predict the behaviour of Ne estimators in conditions closely approximating our Drosophila experiment. Figure 1 shows the distribution of ONeSAMP and LDNE estimates for 100 replicates using both the non-hierarchical and hierarchical statistical approaches. The median TotalNe of these 100 replicates was used as the simulation E(TotalNe) in further analysis (Table 2).
The population simulations did not predict the same values of TotalNe as the Wright-Fisher model (Fig. 1).  For the non-hierarchical approach, the simulated distribution of LDNE estimates overlapped with Wright’s E(TotalNe) for high and moderate dispersal rates but not for the low dispersal rate (Fig. 1A).  The simulated distribution of non-hierarchical ONeSAMP estimates was lower than and did not overlap with Wright’s E(TotalNe) for all dispersal rates (Fig. 1C). In comparison, the hierarchical approach showed different trends. Specifically, the simulated distribution of hierarchical LDNE estimates overlapped with Wright’s E(TotalNe) for all dispersal rates (Fig. 1B). In contrast, the simulated distribution of hierarchical ONeSAMP estimates overlapped with Wright’s E(TotalNe) for high and moderate dispersal rates but not for the low dispersal rate, where simulated TotalNe estimates were lower than Wright’s E(TotalNe) (Fig. 1D). 
For the simulated populations there was a significant correlation between dispersal and genetic structure (FST) (Pearson’s correlation co-efficient r = -0.775; P < 0.0001) (Table 3). Using the non-hierarchical approach, TotalNe was significantly correlated with dispersal, but there was no correlation with dispersal for the hierarchical approach (Table 2).
In the simulated populations, LDNE displayed much wider distribution of TotalNe estimates than ONeSAMP for all scenarios (Fig. 1). Related to this, we observed that a large proportion of the LDNE estimates returned a negative result (non-hierarchical = 2.8%; hierarchical = 36.4%). This resulted in very high CV and RMSE estimates when calculating stochastic deviation for LDNE simulation estimates (Table 2). The occurrence of negative Ne estimates is a known phenomenon with LDNE that occurs when there is no detectable disequilibrium in the sampled individuals (Waples and Do 2007). This outcome is strongly influenced by sample size, which determines the power to detect disequilibrium. Negative LDNE estimates were less common in the non-hierarchical approach, where n = 48 individuals, compared to the hierarchical approach where n = 24 individuals. As recommended by Waples and Do (2007), we did not bias the distribution of Ne estimates by excluding negative values.

Estimation of TotalNe via the non-hierarchical approach in empirical Drosophila populations

We estimated TotalNe and the 95% confidence interval for each of the three replicates of each structured Drosophila population using ONeSAMP and LDNE (Fig. 2 A-C). ONeSAMP produced estimates of TotalNe that were larger and closer to the Wright-Fisher expected value than those obtained from LDNE. The mean values estimated by LDNE ranged from 1.7 to 43.4. The mean values estimated by ONeSAMP ranged from 10.9 to 34.2. The 95% confidence interval of LDNE tended to be larger, and in one instance the upper bound exceeded the census population size (Fig. 2B). We calculated the systematic deviation (bias) using the E(TotalNe ) (Wright-Fisher and simulation median), stochastic deviation (CV) and RMSE (Table 2). When comparing the Drosophila data to the Wright-Fisher expectation, TotalNe estimates obtained from ONeSAMP had a lower bias, lower CV and a lower RMSE than LDNE regardless of statistical approach (Table 2). When comparing the Drosophila data to the simulation median, non-hierarchical empirical estimates of TotalNe were largely concordant with the distribution generated by the population simulations, with the exception of the high dispersal scenario, where empirical estimates were lower than the simulation (Fig. 1 A, C; Table 2).
The empirical data showed a trend contrary to the predictions of the Wright-Fisher model; neither ONeSAMP nor LDNE displayed a significant correlation of TotalNe with dispersal rate between subpopulations (Table 3). However, there was a significant correlation between dispersal and genetic structure (FST) (Pearson’s correlation co-efficient r = -0.601; P = 0.0001) (Table 3).

Estimation of TotalNe via the hierarchical approach in empirical Drosophila populations

In the hierarchical approach, we estimated the LocalNe of each subpopulation (Table S4) and used these estimates in combination with the observed population genetic structure (Table S4) to estimate the TotalNe using ONeSAMP and LDNE following Equation 8 (Fig. 2 D-F). The trends observed in the hierarchical approach were congruent with the non-hierarchical approach. Specifically, when comparing the Drosophila data to the Wright-Fisher expectation ONeSAMP produced mean estimates of TotalNe that were larger and closer to the Wright-Fisher expected value, with smaller confidence intervals than LDNE. Again neither method displayed a correlation of TotalNe with dispersal rate (Table 3). The mean TotalNe values estimated by LDNE ranged from 5.1 to 273.2. The mean TotalNe values estimated by ONeSAMP ranged from 25.6 to 39.3. The 95% confidence intervals of hierarchical LDNE estimates tended to be large, with the upper bound often including infinity. In 17 of 36 instances the upper bound exceeded the census population size (Fig. 2 D-F). The hierarchical TotalNe estimates obtained from ONeSAMP had a lower bias, lower CV and a lower RMSE than LDNE (Table 2). When comparing the Drosophila data to the simulation median, we observed that the hierarchical empirical estimates of TotalNe were concordant with the distribution generated by the population simulations, however all empirical estimates were systematically lower than the simulation (Fig. 1, Table 2).

Discussion

Single-sample TotalNe estimates from simulated and empirical Drosophila populations do not adhere to Wright’s model.

This study provides an example of how populations may deviate systematically from the expectations of a population genetic model even when most of the assumptions are met. Single-sample estimates of TotalNe in genetically structured populations (simulated and real) were not consistent with the values predicted by the Wright-Fisher model, even though populations had been controlled to closely reflect ‘ideal’ Wright-Fisher conditions. We observed a general trend for the empirical ONeSAMP and LDNE estimates of TotalNe to be lower than the value expected under the Wright-Fisher model for both statistical approaches. This discrepancy is most likely because Wright’s expected TotalNe (Table 1) is based on the rate of loss of heterozygosity, whereas LDNE and ONeSAMP are based on linkage disequilibrium. Comparing Ne estimators is difficult because different Ne concepts may refer to different time frames and spatial scales, see Luikart et al. (2010) for a review. However other factors may also be at play, such as dependency on a previous estimate of the eigenvalue closed population Ne, initial levels of allelic diversity and/or incomplete sampling. 
The Wright-Fisher estimate of E(TotalNe) used in this study is highly dependent on the eigenvalue closed population Ne estimate from previous studies (Gilligan 2001; Gunn 2003). 
We empirically confirmed that Equation 3 predicts the expected effective size of our structured populations when using an eigenvalue closed population Ne of 14.3 (Gilligan 2001; Gunn 2003). This was achieved by demonstrating that the rate of change in expected heterozygosity over the 35-generation closed population experiment did not significantly differ from the rate of change in expected heterozygosity in our experiments using structured populations which were initialized from the same stocks (Gunn 2003) (See supplementary material: Table S2). This provides evidence that the parameters used to estimate the expected value of Wright-Fisher E(TotalNe) were appropriate. However, we must consider how variation in the estimation of the eigenvalue closed population Ne affects E(TotalNe) and thus our conclusions. After taking into account the 95% confidence interval (see grey shading in Fig. 2) we note the conclusions for the non-hierarchical approach remain unchanged (empirical estimates systematically below the Wright-Fisher expectations in all cases) but for the hierarchical approach ONeSAMP estimates, we observe that 12 of 12 high dispersal and 6 of 12 moderate dispersal populations fall within the 95% confidence interval. A similar trend is seen for hierarchical LDNE estimates, where 5 of 12 high dispersal and 2 of 12 moderate dispersal populations fall within the 95% confidence interval of the Wright-Fisher expectations but at low dispersal rates the empirical estimates are still systematically below the Wright-Fisher E(TotalNe). Consistent with the predictions of the Wright-Fisher model, all methods performed best when dispersal rates were high, genetic population structure was low and the population was therefore approaching panmixia.
It is also possible that sampling effects may have contributed to the apparent downward bias of single-sample TotalNe estimates in genetically structured populations (simulated and real) compared to Wright’s expectation. Low allelic variation could potentially inflate linkage disequilibrium estimates and thus downwardly bias estimates of TotalNe (Gulcher 2012). Both simulated and real populations had the same levels of initial allelic diversity, which could explain why both were downwardly biased. Incomplete sampling of the populations could also underestimate allelic variation and result in overestimation of linkage disequilibrium and thus downwardly bias estimates of TotalNe. The simulations and real populations had the same sampling strategy where 48% of the population was sampled. It is not possible with the current experimental design to disentangle which of the factors discussed here was responsible for the deviation from Wright’s E(TotalNe). 

Single-sample TotalNe estimates from simulated populations approximate TotalNe estimates in empirical Drosophila populations 

Irrespective of the single-sample Ne estimation program used (ONeSAMP or LDNE) or the statistical approach implemented (non-hierarchical or hierarchical) we observed that the simulated population data and the empirical Drosophila population data were largely concordant and in most cases (except those noted in the results section) the empirical data occurred within the distribution of the population simulations (Fig. 1, Table 2). Despite having substantially less control over lab populations, the rough concordance with computer-simulated populations encourages us that there are few influences not accounted for in this study. However there were some key differences between the empirical Drosophila experiment and the simulations. The empirical Drosophila TotalNe estimates were much closer to simulated E(TotalNe) values than they were to Wright’s E(TotalNe), but were still systematically lower relative to both expectations (Fig. 1, Table 2). This suggests there may be forces affecting the empirical populations that are not included in the population simulation parameters. 
One possible reason for the discrepancy between the simulations and the empirical results could be selection. We did not include selection in the simulations, but it may be acting in the live populations.  Of course, the inevitable simplification of simulations means that there are many other differences, however if we assume that that the simulations portray a selectively neutral version of the Drosophila experiment, the discrepancies between the simulated and real populations could be explained by the presence of multilocus balancing selection favouring haplotypes in the Drosophila genome. If a given selective pressure favours particular combinations of alleles at more than one locus in the genome, this will increase the occurrence of these combinations above random expectations (i.e. linkage equilibrium), so that linkage disequilibrium between these loci is expected to increase (Navarro and Barton 2002). Under this mode of selection there is no requirement for loci to be physically linked for apparent linkage disequilibrium to increase.  We must stress that this phenomenon is different from situations where balancing selection operates independently on each of several loci, which would not be expected to increase linkage disequilibrium. Conditions where multilocus balancing selection could increase linkage disequilibrium have been previously described in Drosophila. For example, disassortative mating on the basis of pheromonal cues can impose balancing selection on multiple pheromone loci scattered throughout the D. melanogaster genome and buffer the genome against the effects of drift (Averhoff and Richardson 1974, 1975; Templeton 2006). Whilst we were not expecting large effects of balancing selection in our Drosophila populations, this phenomenon may help to explain why the empirical data produced lower TotalNe estimates than the simulated populations. 
There are two other observations that indirectly support our hypothesis that multilocus balancing selection favouring haplotypes in the Drosophila genome has increased linkage disquilibrium between physically unlinked loci. Firstly, differences in the frequency of negative LDNE estimates. In the simulations we observed a high proportion of negative TotalNe estimates generated by LDNE.  Negative LDNE estimates are typically interpreted as no evidence for any disequilibrium caused by genetic drift (Waples and Do 2007). In contrast to the simulated populations, we did not observe a single negative LDNE estimate in our empirical Drosophila populations. This suggests that disequilibrium is more common in the Drosophila populations than in the selectively neutral simulated populations. Secondly, supporting evidence for low levels of balancing selection operating in our populations can be observed in the rate of decay in expected heterozygosity. Whilst the decay in expected heterozygosity did not significantly differ from the rate expected under the Wright-Fisher model (See supplementary material: Table S2), we note that despite the differences being individually non-significant, heterozygosity did decay more slowly than the predicted rate in 29 of the 36 structured populations and in fact four line pairs showed no decline in expected heterozygosity at all (Table S2). This may be indicative of low levels of balancing selection on loci linked to our markers, maintaining polymorphism in our populations. Whilst the action of balancing selection favouring multilocus haplotypes is consistent with several aspects of our empirical dataset we cannot necessarily assume that the presence and absence of selection is the only variable that differs between the simulated and real populations. 
An alternative hypothesis to explain empirical TotalNe estimates systematically lower than the simulation, could be that dispersal between isolated populations has induced temporary linkage disequilibrium among genetic loci (Haliburton 2004). This means that the level of linkage disequilibrium in our populations may have reflected recent dispersal events rather than the amount of genetic drift. Consequently an overestimation of linkage disequilibrium would lead to an underestimation of TotalNe. For example, Waples and England (2011) have shown that pulse dispersal of genetically divergent individuals can depress Ne estimates. Our Drosophila experiment could have failed to detect increasing TotalNe with increased dispersal because the estimators are producing increasingly downward biased estimates of TotalNe due to linkage disequilibrium from admixture.  For an admixture-related elevation of linkage disequilibrium hypothesis to explain our results, the effective dispersal rate would need to be higher in the Drosophila populations than in the simulations, because the simulations did show a significant correlation of m with TotalNe in the hierarchical approach (Fig. 1 A, C; Table 2).

Dispersal rate determines genetic population structure, but is not correlated with estimated TotalNe in real populations

As expected, different rates of dispersal among subpopulations (simulated and real) resulted in different levels of genetic population structure (Table S3 and S4) and dispersal was negatively correlated with population structure (Drosophila populations, r = -0.601; P = 0.0001, simulated populations r = -0.775; P < 0.0001) (Table 3). We demonstrated in simulated populations that single-sample methods to estimate TotalNe are sensitive to the presence of population structure. Both LDNE and ONeSAMP show a lower estimated non-hierarchical TotalNe for simulations with lower effective dispersal rate (Fig. 1 A, C; Table 3). This pattern is not reproduced with experimental populations (Fig. 2; Table 3). This suggests that there could be some other factor that affects effective dispersal rate in experimental populations, even though dispersal is clearly affecting the allele proportions in the live populations, as demonstrated by the significant correlation of FST with m. The lack of correlation of empirical TotalNe with dispersal among subpopulations (Table 3) suggests that other forces (possibly multilocus balancing selection) are affecting the empirical populations that are not included in the population simulation parameters.

Recommendations for using single sample estimators in structured populations

Our study has established that the single-sample Ne estimator ONeSAMP generally gives better estimates of TotalNe than LDNE (Fig. 1 & 2). This is most likely because ONeSAMP’s approximate-Bayesian approach utilises prior information about the populations when estimating Ne. However, we note that the performance of ONeSAMP in other studies will strongly depend upon appropriate choice of priors. ONeSAMP may also be more accurate because it utilises eight summary statistics whereas LDNE only uses Burrows’ . Lastly, it is important to acknowledge that the information presented in this study refers to a very specific set of experimental conditions, and it is possible that altering the sampling design could overcome some of the biases observed here. For example, we would expect that sampling a larger proportion of the population and increasing the number of loci genotyped would improve the performance of both methods.  
Both the non-hierarchical and hierarchical approaches have limitations and should be interpreted with caveats. The non-hierarchical approach resulted in TotalNe estimates with a low CV but these estimates were systematically lower than the expected values, whereas hierarchical estimates were closer to the expected values (lower bias) but also had a considerably higher CV (Table 2). Additionally the hierarchical method is extremely susceptible to downward biases caused by incomplete sampling of subpopulations because the method assumes that all subpopulations are represented and summed (Equation 8). This source of bias was not discussed in our study because 100% of subpopulations were sampled, however this sampling issue is very likely affect studies of wild populations where the total number of subpopulations is not known. Despite the possibility of biased estimates, it would be informative for field studies to compare and contrast single-sample Ne estimates using both the non-hierarchical and the hierarchical approach. It is also worth stressing that the methods evaluated in this manuscript assume that the effective population size is stable over time. Here we have evaluated scenarios where this is true, however it is unrealistic to assume that fragmented wild populations will have a stable effective population size. Fluctuations in population size and connectivity are likely increase the variance of Ne estimates and may create unexpected biases (Waples 2010). 
The sensitivity of single-sample Ne estimates when population subdivision is disregarded, and the unpredicted possible effects of selection in real organisms (as opposed to neutral models) have practical implications since one of the primary appealing features of single-sample Ne estimators is their application to wild populations, where temporal sampling is often not feasible. Wild populations frequently have genetic structure for a variety of biological, ecological and geographical reasons and the selective landscape is generally unknown. Habitat fragmentation is simultaneously a leading cause of population extinction, as well as a major mechanism driving the development of genetic population structure (Tilman et al. 1994; Henle et al. 2004; Banks et al. 2005). This means that single-sample Ne estimators are likely to be least accurate in the situations where they are most needed. However this pitfall can be strategically managed by defining genetic population structure and identifying migrant or recently admixed individuals. These analyses will identify which statistical approach is appropriate (hierarchical vs non-hierarchical) and provides the option of removing recent migrants from the analysis. Practitioners should also consider factors such as age structure, demographic fluctuations, and trade-offs between sample size and the number of genetic loci, which were not addressed by this study.

Supplementary material

Table S1  Closed Drosophila populations: Two-sample t-test comparing the observed and expected change in heterozygosity in closed populations with a census size of 50 non-virgin individuals that were isolated for 35 discrete generations. Table modified from M. Gunn (2003). The Use of Microsatellites as a Surrogate for Quantitative Trait Variation. Ph.D. Thesis UNSW Sydney.
Table S2  Structured Drosophila populations (Line pairs): Results of two-sample t-test comparing the change in expected heterozygosity predicted under the Wright-Fisher model to the observed change in expected heterozygosity. 
Table S3  Simulated structured populations:  Local estimates of effective population size (LocalNe) for subpopulations, estimates of pair-wise population differentiation (FST) and estimates of hierarchical and non-hierarchical effective population size for the total structured populations (TotalNe).
Table S4  Structured Drosophila populations: Local estimates of effective population size (LocalNe) for subpopulations; estimates of pair-wise population differentiation (FST); estimates of hierarchical and non-hierarchical effective population size for the total structured populations (TotalNe).
Fig. S1  Drosophila experiment methodology.
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Figures and Tables 

Fig. 1	Total effective population size of simulated genetically structured populations (grey box plots) (n = 100 replicates for each dispersal scenario) and empirical Drosophila populations (black circles) (n = 3 replicates for each dispersal scenario) using two single-sample Ne estimators: LDNE (A, B) and ONeSAMP (C, D). For each of the two programs, effective size was calculated using the non-hierarchical (A, C) and hierarchical statistical approaches (B, D). Dispersal and sampling conditions are as described for the empirical Drosophila experiment (Fig. S1). Simulations were conducted using an individual-based model developed in R. The box plots show the distribution of TotalNe estimates for each simulated scenario with the box showing the 25th and 75th percentiles, the solid line in the middle of each box showing the median, and error bars showing the 10th and 90th percentiles. Solid black circles show the empirical estimates of TotalNe from the Drosophila experiments. Dashed horizontal lines show the effective population size expected under the Wright-Fisher model (E(TotalNe)) for each of the three dispersal rates. Dispersal rates are expressed as the proportion of the subpopulation exchanged per generation: High m = 0.04; Mod m = 0.01; Low m = 0.0025.



Fig. 2	Empirical estimates of total effective population size in controlled replicated genetically structured Drosophila melanogaster populations using two single-sample Ne estimators: LDNE (circle) and ONeSAMP (square). For each of the two programs, effective size was calculated using the non-hierarchical (A-C) and hierarchical statistical approaches (D-F). Bars indicate the 95% confidence interval of the mean. Upper confidence intervals that exceeded the known census size of the total population were truncated, and the value labelled at the top of the graph. The dashed horizontal line is the effective population size expected under the Wright-Fisher model (E(TotalNe)) for each of the three dispersal rates. Grey-shading indicates the 95% confidence interval of the Wright-Fisher E(TotalNe).



Table 1	Experimentally controlled population parameters, the Wright-Fisher expected effective population size for genetically structured populations and the expected change in expected heterozygosity for genetically structured populations.
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Table	 2 The systematic and stochastic deviations of two single-sample Ne estimators (LDNE and ONeSAMP) of two data sets (empirical Drosophila populations and simulated populations) compared to the Wright-Fisher E(TotalNe) and the simulation predicted E(TotalNe). Data is presented for the non-hierarchical and hierarchical statistical approaches. 

Table 3	The correlation of dispersal rate with single-sample methods to estimate total effective population size and the correlation of dispersal rate with estimates of population structure in empirical Drosophila populations and simulated populations.
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Table 1.



TotalN LocalN LocalNe s t E( TotalNe) E(ΔHe)



High 0.04 100 50 14.3* 2 12 31.725 0.826



Mod 0.01 100 50 14.3* 2 26 41.100 0.727



Low 0.0025 100 50 14.3* 2 34 78.600 0.805



 Predictions for structured 
populationsKnown population parameters



m



Abbreviations: m, dispersal rate expressed as the proportion of the population exchanged per 



generation; TotalN, total census  size of the stuctured population; LocalN, local census  size of 



subpopulations; LocalNe, local effective population size of subpopulations; s, number of 



subpopulations; t, number of generations in the experiment; E(TotalNe), expected total effective 



population size of a structured population (Equation 3); E(∆He), expected change in expected 
heterozygosity (Equation 2). * Effective population size of the subpopulations calculated using 
the previously defined relationship between census size and effective size in Wright-Fisher 
closed populations; Ne : N = 0.286 (Gilligan 2001; Gunn 2003).
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Table 2.



Estimated TotalNe Expected Value



Data set  E(TotalNe) Analysis Approach High Mod Low High Mod Low High Mod Low



Empirical Drosophila vs Wright-Fisher† LDNE Non-Hierarchical -0.685 -0.721 -0.916 0.427 0.559 0.657 23 32 75



Hierarchical -0.294 -0.451 -0.526 0.793 0.903 2.013 20 28 87



ONeSAMP Non-Hierarchical -0.429 -0.584 -0.787 0.059 0.098 0.164 14 25 65



Hierarchical -0.010 -0.235 -0.598 0.097 0.142 0.130 3.1 11 49



Empirical Drosophila vs Simulation median¶ LDNE Non-Hierarchical -0.784 -0.085 1.137 0.427 0.559 0.657 41 7.5 5.9



Hierarchical -0.619 -0.48 -0.227 0.793 0.903 2.013 50 54 73



ONeSAMP Non-Hierarchical -0.232 -0.130 0.015 0.059 0.098 0.164 6.2 3.5 2.7



Hierarchical -0.212 -0.249 -0.323 0.097 0.142 0.130 10 12 17



Simulation vs Wright-Fisher† LDNE Non-Hierarchical 42.36 -0.354 -0.925 16.85 4.437 1.324 23226 119 73



Hierarchical 0.436 10.46 -0.616 18.68 18.38 29.40 851 8666 888



ONeSAMP Non-Hierarchical -0.252 -0.522 -0.788 0.140 0.151 0.200 8.7 22 62



Hierarchical 0.273 0.0373 -0.391 0.114 0.150 0.204 10 6.6 32



Simulation vs Simulation median¶ LDNE Non-Hierarchical 27.56 0.971 0.400 16.85 4.437 1.324 23225 118 7.6



Hierarchical -0.289 7.050 -0.313 18.68 18.38 29.40 850 8665 887



ONeSAMP Non-Hierarchical 0.000 -0.005 0.007 0.140 0.151 0.200 2.7 2.8 3.0



Hierarchical 0.008 0.014 0.020 0.114 0.150 0.204 3.8 5.9 8.9



Abbreviations: TotalNe, total effective population size of a structured population; vs, versus; E(TotalNe), theoretical expected total effective population size of a structured 
population; CV, coefficient of variation; RMSE, root mean square error; * Dispersal rate expressed as the proportion of the subpopulation exchanged per generation: High m = 



0.04; Mod m = 0.01; Low m = 0.0025; † expectation calculated by Equation 3. ¶ expectation calculated as the median TotalNe of 100 simulated populations, see Fig. 1. 
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Table 2.

Estimated 

Total

N

e 

Expected Value

Data set 

 E(

Total

N

e

) 

AnalysisApproachHighModLowHighModLowHighModLow

Empirical DrosophilavsWright-Fisher†LDNENon-Hierarchical-0.685-0.721-0.9160.4270.5590.657233275

Hierarchical-0.294-0.451-0.5260.7930.9032.013202887

ONeSAMPNon-Hierarchical-0.429-0.584-0.7870.0590.0980.164142565

Hierarchical-0.010-0.235-0.5980.0970.1420.1303.11149

Empirical DrosophilavsSimulation median

¶

LDNE Non-Hierarchical-0.784-0.0851.1370.4270.5590.657417.55.9

Hierarchical-0.619-0.48-0.2270.7930.9032.013505473

ONeSAMPNon-Hierarchical-0.232-0.1300.0150.0590.0980.1646.23.52.7

Hierarchical-0.212-0.249-0.3230.0970.1420.130101217

SimulationvsWright-Fisher†LDNENon-Hierarchical42.36-0.354-0.92516.854.4371.3242322611973

Hierarchical0.43610.46-0.61618.6818.3829.408518666888

ONeSAMPNon-Hierarchical-0.252-0.522-0.7880.1400.1510.2008.72262

Hierarchical0.2730.0373-0.3910.1140.1500.204106.632

SimulationvsSimulation median

¶

LDNE Non-Hierarchical27.560.9710.40016.854.4371.324232251187.6

Hierarchical-0.2897.050-0.31318.6818.3829.408508665887

ONeSAMPNon-Hierarchical0.000-0.0050.0070.1400.1510.2002.72.83.0

Hierarchical0.0080.0140.0200.1140.1500.2043.85.98.9

Abbreviations: 

Total

N

e

, total effective population size of a structured population; vs, versus; E(

Total

N

e

), theoretical expected total effective population size of a structured 

population; CV, coefficient of variation; RMSE, root mean square error; * Dispersal rate expressed as the proportion of the subpopulation exchanged per generation: High m = 

0.04; Mod m = 0.01; Low m = 0.0025; † expectation calculated by Equation 3. ¶ expectation calculated as the median 

Total

N

e

 of 100 simulated populations, see Fig. 1. 

Comparison Bias CV RMSE

Dispersal rate

*

Dispersal rate

*

Dispersal  rate
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Table 3.



Data set Analysis r P-value



Empirical Drosophila LDNE Non-Hierarchical TotalNe Dispersal (m) 0.156 0.362



Hierarchical TotalNe Dispersal (m) -0.103 0.548



ONeSAMP Non-Hierarchical TotalNe Dispersal (m) 0.298 0.077



Hierarchical TotalNe Dispersal (m) -0.018 0.917



Population Structure FST Dispersal (m) -0.601 0.0001**



Simulation LDNE Non-Hierarchical TotalNe Dispersal (m) 0.980 <0.0001**



Hierarchical TotalNe Dispersal (m) 0.400 0.200



ONeSAMP Non-Hierarchical TotalNe Dispersal (m) 0.830 <0.0001**



Hierarchical TotalNe Dispersal (m) 0.530 0.074



Population Structure FST Dispersal (m) -0.775 <0.0001**



Correlation between



Abbreviations:TotalNe,  total effective population size of a structured population; m, dispersal rate; r, Pearson's 
correlation coefficient. **, significant Pearson's correlation coefficient after correction for multiple tests.










Table 3.

Data setAnalysis rP-value

Empirical DrosophilaLDNE

Non-Hierarchical 

Total

N

e

Dispersal (m)

0.1560.362

Hierarchical 

Total

N

e

Dispersal (m)

-0.1030.548

ONeSAMPNon-Hierarchical 

Total

N

e

Dispersal (m)

0.2980.077

Hierarchical 

Total

N

e

Dispersal (m)

-0.0180.917

Population Structure F

ST

Dispersal (m)

-0.6010.0001**

Simulation

LDNE 

Non-Hierarchical 

Total

N

e

Dispersal (m)

0.980<0.0001**

Hierarchical 

Total

N

e

Dispersal (m)

0.4000.200

ONeSAMPNon-Hierarchical 

Total

N

e

Dispersal (m)

0.830<0.0001**

Hierarchical 

Total

N

e

Dispersal (m)

0.5300.074

Population Structure F

ST

Dispersal (m)

-0.775<0.0001**

Correlation between

Abbreviations:

Total

N

e

,  total effective population size of a structured population; m, dispersal rate; r, Pearson's 

correlation coefficient. **, significant Pearson's correlation coefficient after correction for multiple tests.



