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Towards Open-World Person Re-Identification by
One-Shot Group-based Verification

Wei-Shi Zheng, Member, IEEE, Shaogang Gong, and Tao Xiang

Abstract— Solving the problem of matching people across
non-overlapping multi-camera views, known as person re-
identification (re-id), has received increasing interests in com-
puter vision. In a real-world application scenario, a watch-list
(gallery set) of a handful of known target people are provided
with very few (in many cases only a single) image(s) (shots) per
target. Existing re-id methods are largely unsuitable to address
this open-world re-id challenge because they are designed for
(1) a closed-world scenario where the gallery and probe sets
are assumed to contain exactly the same people, (2) person-wise
identification whereby the model attempts to verify exhaustively
against each individual in the gallery set, and (3) learning a
matching model using multi-shots. In this paper, a novel transfer
local relative distance comparison (t-LRDC) model is formulated
to address the open-world person re-identification problem by
one-shot group-based verification. The model is designed to
mine and transfer useful information from a labelled open-world
non-target dataset. Extensive experiments demonstrate that the
proposed approach outperforms both non-transfer learning and
existing transfer learning based re-id methods.

Index Terms— Group-based verification, open-world re-
identification, transfer relative distance comparison

I. INTRODUCTION

Person re-identification [12], which addresses the problem of
matching people across disjoint camera views in a multi-camera
system, has gained increasing interests in recent years [28], [14],
[40], [16], [8], [48], [50], [22], [46], [29]. Person re-identification
(re-id) is useful for a number of public safety and security
applications. In a typical real-world application, a watch-list of
a handful of known people is provided as the gallery/target
set for searching through a large volume of video surveillance
footages where the people on the watch-list are likely to re-
appear. This is an extremely challenging task because the video
footages typically contain other people not on the watch-list. In
addition, a target person may look similar to any of the other
people whilst dissimilar to the target gallery image(s) due to
significant changes in view angle and lighting conditions across
camera views [12]. To further compound the problem, there may
only be one gallery image (one-shot) available for each target
person which prevents effective learning of the target’s appearance
variations. For example, the gallery image could be captured
by an eye-witness using his/her mobile phone; or the suspect
is captured by video but at a very low frame rate (typical in
most of the existing recorded public space CCTV video footages)
and/or in a crowded environment with many occlusions so that
he/she is only clearly visible (reliably detectable) in one frame.
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Fig. 1. The One-Shot Open-World Group-based Person Re-Identification
Problem: It is assumed that only one image is available for each person on
a small watch list. The orange dash line denotes the conventional closed-
world person re-identification setting, where the probe set only contains the
target people. Under the open-world person re-identification setting, there are
a large amount of non-target imposters captured along with the target people
on the watch list. Their images will also appear in the probe set and some of
them will look visually similar to the target people (see those highlighted by
green boxes). In general, the number of non-target imposters is unknown. In
practice, it can be a known large number (as compared to the watch-list) but
not a constant.

Furthermore, solving the re-id problem becomes significantly
harder in busy public spaces because the probe set would contain
mostly irrelevant (non-target) people. For each target person, it
is thus more likely to have someone looking similar in this large
pool of irrelevant people. We call this open-world re-identification
(Fig. 1). For such a challenging problem, relying on a fully
automated system to provide accurate verification exhaustively
against each target individual on the watch-list is not scalable
nor tractable. However, it is reasonable to expect an automated
system to provide some screening for human operators by solving
an easier problem of verifying whether a probe person is on the
watch-list as in a set, which is termed as group-based person
verification, whilst leaving the more challenging task of individual
identification within the set to a human operator. Since the watch-
list is typically small, the latter task of human verification can be
carried out quickly and more robustly.

Person re-identification has quickly become an expansive field.
Most existing approaches seek either the best feature representa-
tion [28], [14], [5], [40], [8], [46], [18], [24] or the best matching
metrics [14], [17], [31], [50], [25], [36], [22], [29] for re-
identifying people under often drastic appearance changes across
camera views. However, none of them is suitable for solving
the open-world one-shot group-based person verification problem
because: (1) They assume a closed-world setting where the probe
set comprises exactly the same people contained in the gallery
set. When the probe set contains mostly non-target people (many
more than those in the gallery set), the re-identification problem
becomes significantly more difficult. (2) They are designed for
person-wise exhaustive verification rather than for group-wise
verification, i.e. a probe image is matched against every individual
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in the gallery set to find a winner-takes-all match. This approach
may be intractable/unrobust to an open-world one-shot re-id
problem due to the fact that the probe image may not belong
to anyone on the watch-list resulting in a forced mismatch. (3)
Most existing learning models for person re-identification cannot
be readily applied for a direct verification modelling on target
people, because they require multiple images (multi-shots) of
each target person in the gallery in order to model appearance
variations under viewpoint changes, to infer invariant features,
or to learn a matching distance metric. Much of the strength of
the existing methods diminishes as the number of samples per
person decreases, and most of them stop working when there is
only one-shot available in the gallery set for a target.

This paper presents the first attempt to solve the problem
of open-world person re-identification with a sparsely sampled
gallery set. Our method is based on transfer distance learning:
a labelled non-target data pool (source data) is exploited and
useful information is transferred to the target data in order to
overcome the data sparsity problem. In our case, the target data
is a small gallery set (watch-list) and the non-target data pool
consists of a large quantity of non-target people labelled into
matching pairs across camera views. In general, a transfer learning
approach offers a natural solution to the data sparsity problem.
However, conventional transfer learning techniques do not address
the open-world and group-based person verification problems.
To overcome this problem, we propose a novel transfer distance
learning method that mines useful information from labelled non-
target data to explicitly learn how to separate non-target people
from a small group of target people, tackling both the open-world
and group-based verification problems in a single framework.

More specifically, in line with relative distance comparison
[50], we formulate a transfer relative distance comparison ap-
proach for exploring useful relative comparison information from
non-target people to assist person verification on target people.
We explore three types of selective relative comparisons from
non-target data in order to better capture intra-class variations
and refine class boundaries for the target people, as well as
separating the target set as a whole from the non-target people
pool. This starts with mining non-target people images visually
similar to those of target people, followed by: (1) transferring
intra-class variation, i.e. simulating each target person’s intra-class
variation by utilising the intra-class variation of the corresponding
visually similar non-target people and thus the relative distance
comparison can be formulated between target people for one-
shot learning; (2) transferring inter-class variation, i.e. enriching
the inter-class comparison by adding related relative distance
comparisons from similar non-target people; and (3) enforcing
group separation by introducing relative distance comparision
constraints between the target people group and any non-visually
similar non-target people.

Apart from exploiting new relative comparisons tailor-made
for our new re-id problem, a key feature distinguishing our
model from the existing relative distance comparison model [50]
is that we perform local comparisons, that is, comparisons are
restricted to the neighbourhood of a positive difference vector set.
Therefore, we call our proposed model the transfer local relative
distance comparison (t-LRDC). This is mainly motivated by the
computational demand of a relative distance comparison model
– in a conventional model such as RDC [50] or RankSVM [31],
the number of relative comparison constraints is quadratic to the

number of data points in the training set and is thus unscalable
given a large non-target source dataset. With our t-LRDC model,
the computational cost particularly the memory usage will be
greatly reduced. Furthermore, we show both theoretically and
experimentally that in our formulation, dimension reduction tech-
niques such as PCA can be applied before model learning without
sacrificing the performance of the proposed model, resulting in
further reduction in computational cost. In addition, by limiting
the comparisons to only the local ones, we avoid the model bias
introduced by exhaustive relative comparisons, leading to better
matching performance.

Extensive experiments are conducted on four benchmark
datasets under an open-world experimental setting to validate the
effectiveness and efficiency of the proposed method. Since this
is a new setting, the existing evaluation metrics designed for the
closed-world re-id setting cannot be used; new evaluation metrics
are thus proposed. Our results show the proposed transfer local
relative distance comparison model outperforms existing related
methods for open-world one-shot re-identification.

II. RELATED WORK

Recent work on person re-identification mainly focuses on two
aspects: finding distinctive feature representation and learning
discriminant models, both of which aim to compute an optimal
matching score/distance between a gallery image and a probe im-
age. The proposed feature representations of people’s appearance
include color histogram [28], [14], [18], principal axis histogram
[16], rectangle region histogram [5], graph representation [10],
spatial co-occurrence representation [40], multiple feature based
representation [14], [8], and finding saliency features [46]. Due
to the large intra-class and inter-class variations of appearance
[50], feature representation that is invariant to appearance changes
across camera views may not exist. Consequently, there have been
concerted recent efforts at learning the best matching metrics
given any feature representation. The models adopted include
Adaboost [14], learning to rank [31], and distance/subspace
learning [17], [50], [15], [25], [36], [29], [22]. Our method
is also based on distance metric learning. It is closely related
to the relative distance comparison work in [50]. However, a
key difference between the proposed work and the existing
learning based methods is that our method is designed explicitly
for solving the more realistic open-world one-shot group-based
person verification problem. Specifically, given one shot per target
person, previous methods, designed for multi-shot learning, can
only apply a model learned from the non-target people without
any model adaptation. In contrast, our model is able to select the
most relevant information to transfer/adapt to the target data even
with a single shot. Our experiments (see Sec. IV) demonstrate that
our method outperforms the existing learning based methods for
one-shot group-based open-world re-identification. Note that our
notion of group-based person verification is very different from
and orthogonal to that of association of group of people in [47]
which uses the people walking together as contextual information.

Although there is no previous attempt on the open-world and
group-based verification challenges for person re-identification,
the third challenge identified in this paper, namely the extremely
sparsely sample gallery/target set, has been tackled recently. Loy
et al exploited unlabelled data in a manifold ranking framework
to enrich the labelled target data set for label propagation [23].
However, this method does not give a solution to learning distance
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given one shot per target person. Similar to our method, Li et
al [21] search for visually similar people from a large pool of
labelled non-target data to enrich the target dataset which can
be as sparse as one-shot. However, a different distance metric
has to be learned for each probe image with different gallery
set (identified by temporal information). This method is thus
computationally very expensive and not scalable to time-critical
applications. Moreover, it does not consider the effects of im-
posters during the re-identification and thus does not address the
open-world group-based person verification problem. Recently,
cross domain/dataset transfer learning in a multi-task learning
framework has been employed which utilises labelled non-target
data captured in different visual scenes (domains) [19], [43]. In
these methods, group-based person verification is not considered,
and their methods are orthogonal to ours, i.e. can be combined
when labelled data from other datasets are available.

Transfer learning is a long-established topic which is studied
extensively beyond person re-identification [2], [6], [20], [38],
[26], [1], [45]. Here only a few most relevant general purpose
transfer learning models are reviewed. The approach in [9] follows
the setting in [26], that is, it assumes that labels of target data
are not available but sufficient target data are used for training.
Differently, our open-world person verification setting assumes
that only one image of each target class is available for training
(i.e. one-shot learning) and the rest unseen target data are not
available for training. Due to this difference, the concept of
maximum mean discrepancy (MMD) [26], which is a statistical
measure relying on sufficient samples, is not applicable to our
problem. This also makes some recent multi-task metric learning
method, e.g. multi-task large margin metric learning method (M-
LMNN) [27] impossible to implement in this case. Although there
is some related one-shot learning methods discussed for object
categorisation, they are either designed for specific vision model
(e.g. constellation model [20], which uses prior knowledge about
the hierarchical structure of categories [32]) or restricted to binary
classification transfer [37]. They are thus unsuitable to our open-
world person verification problem.

We incorporate local modelling in formulating the proposed t-
LRDC method to make our model more scalable. There are some
existing local distance/subsapce learning methods, such as LMNN
[42], LDM [44] and neighbourhood component analysis (NCA)
[11]. More recently, two local models, Locally-Adaptive Decision
Functions (LADF) [22] and Local Fisher Discriminant Analysis
(LFDA) [29], have been exploited for person re-identification.
Note that despite being local data specific, LADF does not
perform local data selection and focus its learning on local data.
In contrast, our model does. In addition, our model computes the
local neighbourhood relative to a difference vector set, instead
of relative to each target data point as in LMNN, LDM, NCA
and LFDA. That is because t-LRDC is a method for local feature
difference modelling, rather than a local feature point modelling.
Moreover, t-LRDC differs from existing local distance learning
methods in that it computes the neighbourhoods adaptively by
keeping them updated at each iteration during the stochastic
gradient descent based optimisation steps, rather than fixing the
neighbourhood using Euclidean distance as in other methods. We
show in our experiments that the novel local modelling approach
leads to superior re-id performance (see Sec. IV). In addition,
those mentioned local distance/subspace methods cannot address
the need for one-shot learning when only one gallery image is

available for each target person.
The proposed t-LRDC is most closely related to our previous

work RDC [50] and RankSVM [31], both of which exploit relative
comparisons for model learning. However, neither RDC nor
RankSVM addresses any of the following three new challenges
tackled in this work: one-shot, open world and group-based ver-
ification, for person re-identification. In addition, t-LRDC differs
from RDC and RankSVM in that: 1) t-LRDC performs relative
comparisons locally corresponding to similar distances only so as
to avert bias caused by hard/global relative comparisons; 2) Apart
from having much less comparisons thus lower computational
cost, t-LRDC can perform relative comparisons after feature
dimensionality reduction without loss in matching performance,
whilst the same cannot be said for RDC and RankSVM due to the
use of absolute difference vectors, as validated in our experiments.

In summary, the main contributions of this work are: (1)
For the first time, the problem of one-shot open-world group-
based person verification for person re-identification is tackled.
(2) A novel transfer relative distance comparison model t-LRDC
is proposed which explicitly learns transferable local relative
comparison information for enriching target relative comparison
and separating non-target people from target people from a
large non-target data pool. (3) A novel optimisation algorithm
is formulated to learn the t-LRDC model which is efficient and
scalable. (4) We propose novel evaluation metrics for measuring
the verification performance under an open-world setting and
carry out extensive experiments to compare the proposed methods
with state-of-the-art alternatives. We first introduced the open-
world group-based verification in a related early and preliminary
version of the work published in [49]. Apart from having major
differences in the model formulation, particularly the introduction
of local modelling, this work differs significantly from [49] in
formulating a verification model for the one-shot scenario.

III. TRANSFER LEARNING FOR GROUP-BASED PERSON

VERIFICATION

A. Problem Statement

We consider the group-based person verification problem, that
is, given a target data set consisting of as few as one shot per
target person, we aim to verify whether a probe image matches
anyone on the list. We take a transfer learning approach to learn a
shared verification model by exploiting non-target data captured
in the same environment in order to achieve a more robust group-
based verification under an open-world setting.

Formally, suppose NT limited target training data are avail-
able from mt different target people Ct1, · · · , Ctmt

denoted by
{xi, yi}NT

i=1, where the person ID is yi ∈ {Ct1, · · · , Ctmt
} and

xi denotes the ith target sample represented in a feature space.
In this work, we assume that only one image is available for
each target person, i.e. NT = mt. In addition, we are also
given a larger source training data set comprising ms non-target
people denoted by {xi, yi}Ni=NT +1, where yi ∈ {Cs1 , · · · , Csms

}
for i = NT +1, · · · , N and N−NT >> NT . The problem is how
to learn a more robust matching model by using these non-target
data for group-based person re-identification on the small set of
target people against any non-target people (open world).

We take a relative distance learning approach and aim to learn
a distance function d(x,x′) between two data points x and x′,
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Fig. 2. An illustration of the three types of knowledge transfer. There are
four different variations among target and non-target data: 1) the target inter-
class variations (green lines); 2) the selected inter-class variation between
target and non-similar non-target images (grey lines); 3) the selected non-
target intra-class variations (magenta lines); 4) the selected non-target inter-
class variations (yellow lines). A magenta line and a green line denote an
approximate target intra-inter class pair and is used in the knowledge transfer
to enrich intra-class variation (Eq. (7)); a magenta line and a yellow line
denote a target specific non-target intra-inter class pair to transfer knowledge
to enrich inter-class variation (Eq. (10)); a green line and a grey line denote a
group separation intra-inter class pair to transfer knowledge to enrich group
separation (Eq. (13)).

which is modelled as

d(x,x′) = (x− x′)TM(x− x′) (1)

for some semi-positive matrix M, which is always a low-rank
matrix and implies computing the Euclidean distance between
data after they are projected into a lower-rank subspace. Such
a distance metric function is learned subject to a number of
relative distance comparison constraints. In particular, we consider
the relative distance comparison between two types of distances
d(x,x′) and d(x,x′′), where x and x′ are from the same class
(person) and x and x′′ are from different classes. This comparison
is to enforce that the inter-class distance is greater than that of
inter-class distance in the learned feature space defined by M .
However, under an one-shot setting, no such comparisons can be
formed from the target data – there is no intra-class distance. We
therefore aim to exploit the source non-target data to form these
distance comparison constraints, that is, to transfer knowledge
from the source data in the form of selected relative distance
comparisons.

B. Framework Formulation

Our main idea is that since different people may have similar
appearance, including similar dressing, body shape and objects
associated with, it is possible to use the target people images
to select those similar non-target people images to form relative
distance comparisons. Specifically, we assume that if a non-
target person image xs is similar to one of the target images
xt in a feature space, the appearance variation of xs should
also be similar, i.e. P (∆s|xs,Ω) ≈ P (∆t|xt,Ω), where ∆s

and ∆t indicate the intra-class appearance variation with respect
to xs and xt, respectively, and Ω is a feature space to be
learned by our model. Based on this assumption, three types
of knowledge transfer are performed with corresponding relative
distance comparisons formed.

Before describing them, let us first look at how similar looking
non-target people can be selected. We measure the appearance
similarity between a target person image and a non-target person
image by using the cosine similarity below:

s(xs,xt) =
|xTs xt|
||xs||||xt||

. (2)

We say the two appearances are visually similar when s(xs,xt)

is larger than a given threshold h, indicated by the following
function g

g(xs,xt) =

{
1, s(xs,xt) ≥ h;
0, s(xs,xt) < h.

(3)

The two appearances are thus not visually similar if g(xs,xt) = 0.
Note that we measure the visual similarity based on cosine
similarity because this metric is well suited to texture and colour
features, typical for representing appearance for person re-id,
without any need for further feature transform. In addition, the
cosine similarity naturally has a value ranging between 0 and 1,
which is suitable for deriving a semantic threshold. The threshold
h is a parameter that controls how much information can be
transferred from the source data to the target data. Based on this
selection criterion, the following three types of knowledge transfer
are carried out.

Knowledge transfer to enrich intra-class variation – In this
transfer, given a target person, similar non-target people are
selected to substitute for the missing intra-class variation for the
target person/class. An example is shown in Fig. 2 where the two
images linked by the magenta line are from a non-target person B
whose appearance is similar to that of the target person A. These
two images are then used to represent the intra-class variation
of A and a distance comparison is formed to require that the
distance between these two intra-class images should be shorter
than the related target inter-class distance, i.e. the magenta line
should be shorter than the green line with the learned distance
metric/function.

Formally, suppose xt is the only available image for a target
person labelled with yt, t ≤ NT . Then, we find a set of similar
non-target person images that are similar to xt, denoted by

L(xt) = {xtj |g(xt,xtj ) = 1, NT + 1 ≤ tj ≤ N}. (4)

Next we can generate a set of pairwise samples to build the intra-
class variation from non-target data by

P(xt) = {(xtj ,xs)|xtj ∈ L(xt), ys = ytj , NT + 1 ≤ tj , s ≤ N},

where xtj and xs are from the same non-target class in P(xt).
Subsequently, we use the distance d(xtj ,xs) to simulate the target
intra-class distance of the target image xt, and introduce the
constraint that the target inter-class distance d(xt,xt′) should be
greater than the intra-class distance d(xtj ,xs). We call these intra-
inter class pairs the “approximate target intra-inter class pairs”.
Hence, relative comparison modelling based on this transfer is to
learn the distance function that minimises the following cost

min
d

NT∑
t=1

NT∑
t′=1

∑
(xtj

,xs)∈P(xt)

g(xt,xtj )`(d(xtj ,xs) < d(xt,xt′))

(5)
where `( · ) is a loss function that penalises violations of the
expected distance order (inter-class distance should be greater
than intra-class distance). To simplify the notations in the above
equation, we introduce Og(xt) as

Og(xt) = {(xtj ,xs,xt′)|
g(xt,xtj ) = 1, ytj = ys, yt 6= yt′ ,

1 ≤ t′ ≤ NT , NT + 1 ≤ tj , s ≤ N}
(6)

Then, Eq. (5) can be written as

min
d

NT∑
t=1

∑
(xtj

,xs,xt′ )∈Og(xt)

`(d(xtj ,xs) < d(xt,xt′)) (7)
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Knowledge transfer to enrich inter-class variation – In this
transfer, given a target person image, similar non-target people
images are again selected as before. But this time the objective
is to use these selected non-target people to enrich the inter-class
variations. An example of such enrichment can be seen in Fig. 2,
where for target person A, we select a pair of images of non-target
person B to form an intra-class distance. Instead of requiring that
the magenta line being shorter than the green line, this time we
require that the magenta line is shorter than the two yellow lines.
Note that since there are many more yellow lines than the green
lines due to the much larger size of the source non-target data set,
this relative comparison greatly enriches the inter-class variations.
It is also worth mentioning that although this type of comparisons
seemingly only involve the non-target data, this transfer is not
blindly done without adaptation towards the target data. This is
because the pair of images for person B are selected by measuring
their similarity to the target person A.

Formally, this new set of relative distance comparisons are
between the intra-class distance d(xs,xs′) and related inter-class
distance d(xs,xs′′):

min
d

NT∑
t=1

N∑
s=NT +1

N∑
s′=NT +1,ys′=ys

N∑
s′′=NT +1,s′′ 6=s′,ys′′ 6=ys

g(xt,xs)`(d(xs,xs′) < d(xs,xs′′))

(8)

We call the above intra-inter class pairs for comparison the “target
specific non-target intra-inter class pairs”. Let Oa(xt) denote the
following:

Oa(xt) ={(xs,xs′ ,xs′′)|g(xt,xs) = 1, ys′ = ys,

ys′′ 6= ys, NT + 1 ≤ s, s′, s′′ ≤ N}
(9)

Then Eq. (8) can be written as

min
d

NT∑
t=1

∑
(xs,xs′ ,xs′′ )∈Oa(xt)

`(d(xs,xs′) < d(xs,xs′′)) (10)

Knowledge transfer to enforce group separation – The first
two types of transfer are designed to address the data sparsity
problem (one-shot for intra and small watch list for inter). In
the third type, we tackle the open-world group-based verification.
Specifically, as stated before, we aim to learn a distance function
that can match a probe image against the whole target/gallery
data set. It is thus intuitive that such a distance will make all
the images from the target set close to each other whilst pushing
the non-target people away. However, since the similarly looking
non-target people images have been used in the previous two
types of transfer to enrich the target data intra and inter-class
variation, the pairs of target person image and any corresponding
visually similar non-target person image should not be included
for modelling. Otherwise, the third type of knowledge transfer
could contradict the first two types1. Therefore, for each target
person image, we use only those non-target people images that
are not visually similar to it for modelling the constraint. In
the illustrative example in Fig. 2, a set of relative distance
comparisons are formed based on this knowledge transfer which
corresponds to constraining the green line to be shorter than the
grey lines in the learned subspace defined by M.

Formally, this is to minimise the following cost function:

1For a more in-depth discussion on this, please refer to the supplementary
material.

min
d

NT∑
t=1

NT∑
t′=1,yt′ 6=yt

N∑
s=NT +1

(1− g(xt,xs))`(d(xt,xt′) < d(xt,xs))

(11)

Let Ob(xt) denote the following:
Ob(xt) ={(xt′ ,xs)|g(xt,xs) = 0, yt 6= yt′ , ys 6= yt,

1 ≤ t′ ≤ NT , NT + 1 ≤ s ≤ N}
(12)

We call the above intra-inter class pairs for comparison the “group
separation intra-inter class pairs”. Then we can express Eq. (11)
in a more simplified way by

min
d

NT∑
t=1

∑
(xt′ ,xs)∈Ob(xt)

`(d(xt,xt′) < d(xt,xs)) (13)

It is important to point out that the three types of knowledge
transfer are formulated based on intuitive yet reasoned principles
and each type plays a critical role in addressing the challenges
posed by one-shot open-world group verification: (1) In the first
type of transfer, since there is only one image available for each
target person, it is not possible to model the intra-class variation.
Therefore the only way is to exploit the visually similar non-target
person’s images to enrich the intra-class variation for the target
people. (2) In the second type of transfer, since the watch-list is
small, the inter-class variation is also limited. Again, exploiting
the visually similar non-target person’s images in the source data
is both plausible and attractive to enrich the inter-class variation;
(3) In the third type of transfer, since we aim to perform group-
based verification, i.e. making sure people on the watch list
separable from those who are not, the separation between target
and non-target data is enforced.

Finally, by integrating the above three constraints/cost functions
(Eqs. (7, 10, 13)), our transfer relative distance comparison model
learns the distance function parameterised by M by:

min
M�0

f(M)

f(M) =
1− α
#Og

NT∑
t=1

∑
(xtj

,xs,xt′ )∈Og(xt)

`(d(xtj ,xs) < d(xt,xt′))

+
α

#Oa + #Ob

(
NT∑
t=1

∑
(xs,xs′ ,xs′′ )∈Oa(xt)

`(d(xs,xs′) < d(xs,xs′′))

+ β

NT∑
t=1

∑
(xt′ ,xs)∈Ob(xt)

`(d(xt,xt′) < d(xt,xs))
)
.

(14)

where #Og =
∑NT

t=1 #Og(xt), #Oa =
∑NT

t=1 #Oa(xt), #Ob =∑NT

t=1 #Ob(xt), α ∈ [0, 1] and β ≥ 0. Depending on the choice
of the loss function `( · ), this optimisation problem can be solved
differently. In this work, we measure the relative comparison loss
in Eq. (14) using the hinge-loss function as follows:
`h(d(xi,xk) < d(xi,xj)) = max

{
0, d(xi,xk) + ρ− d(xi,xj)

}2
.

(15)
where we set ρ = 1 in this work.

C. Local Modelling

Solving the optimisation problem in Eq. (14) is expensive due
to the sheer number of comparisons/constraints from the three
types of knowledge transfer (quadratic to the number of training
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images). Our approach to making this problem more tractable
is to perform local comparison instead of comparing all related
distance pairs exhaustively. More specifically, comparisons are
only formed when the two difference vectors are in a local
neighbourhood. This concept of local distance comparison is
illustrated in Fig. 3. In this example, A and B are of the same
person and the other four images are from four other people. With
a slight abuse of notation, we denote d(A,B) as the distance to
be learned and ~A,B the difference vector. Exhaustive/global com-
parison requires that d(A,B) is smaller than d(A,C) , d(A,D),
d(A,E), and d(A,F ) respectively. Now we introduce a different
vector neighbourhood for ~A,B, within which we will have ~A,C

and ~A,D. With our local relative distance comparison we only
require that d(A,B) is smaller than d(A,C) and d(A,D). This
not only reduces the number of comparisons by half, but also
leads to a more relaxed constraint alleviating the risk of over-
fitting. In particular, among the two removed constraints/pairs,
d(A,B) > d(A,E) is hard to meet. However, as shown in Eq. (27)
those pairs if violated have a relatively small effect on learning the
model due to the small magnitude of ~A,E. In contrast, although
d(A,B) < d(A,F ) is easier to satisfy, when violated, those pairs
would have a larger effect on model learning due to the large
magnitude of ~A, F . Our experiments in Sec. IV-D validate this
analysis that by introducing the local modelling, we not only
gain computational efficiency but also achieve overall better re-id
performance2.

Formally, since relative distance comparison is concerned with
the comparison between feature difference vectors, we consider a
local relative distance comparison modelling between two nearby
difference vectors xj − xi and xm − xi as follows

d(xi,xj) < d(xi,xm)− ρ, ρ > 0

when (xm − xi) ∈ Np
k (xi,D), (xj − xi) ∈ D,

(16)

where p ∈ {T, S} indicates whether non-target data are used to
form the neighbourhood set Np

k (xi,D). Eq. (16) means that for
the expected smaller distance d(xi,xj), we find the neighbouring
difference vector (xm−xi) by searching the k nearest difference
vectors to the set D that contains (xj − xi). Those k nearest
difference vectors constitute the set Np

k (xi,D). As shown in the
next paragraph, D can be a set of intra-class difference vectors
for a certain class. Here we define the distance between a vector
and a set as the minimum distance between that vector and each
vector in that set in a low-rank subspace induced by the metric
d.

Next, we shall explain what the set D and Np
k (xi,D) are. First,

we have two settings of D below:
1) D+

yi(xi) denotes all the intra-class difference vectors related
to xi within class yi, i.e. D+

yi(xi) = {(xq − xi) | yq = yi};
2) D−yi(xi) denotes all the inter-class difference vectors be-

tween xi and any other image out of class yi but still from
one of the target classes, i.e. D−yi(xi) = {(xq − xi) | yq 6=
yi & 1 ≤ q ≤ NT };

Herein the notation p in Np
k (xi,D) is explained as follows:

1) When p is denoted as “T ”, NTk (xi,D) consists of the k

nearest difference vectors to the set D, where these k nearest
difference vectors (xm−xi) are found in the subset QT (xi)

formed by all the difference vectors between any different-
class target image and xi, i.e. QT (xi) = {(xm−xi) | ym 6=

2More detailed analysis and evaluations on the effect from excluding the
two types of constraints can be found in the supplementary material.

Fig. 3. Illustration of our local relative comparison. Among the six images,
A and B belong to the same person whilst the other four are of four other
people. See text for more details.

yi & 1 ≤ m ≤ NT }.
2) When p is denoted as “S”, NSk (xi,D) consists of k nearest

difference vectors (xm − xi) found in the subset QS(xi)

formed by all the difference vectors between any non-target
image and xi, i.e. QS(xi) = {(xm−xi) | ym 6= yi & NT +

1 ≤ m ≤ N}.
Based on the relative comparison defined in Eq. (16), we

can now develop a relaxed transfer relative distance comparison
modelling by constraining all the relative distance comparisons
around the neighbourhood of a difference dataset (either D+

yi(xi)

or D−yi(xi)). Specifically, we introduce the following three sets
of local relative comparisons, which are the local versions of sets
Og(xt), Oa(xt) and Ob(xt) by following the idea in Eq. (16) to
limit the relative comparisons to local ones, respectively:
O`

g(xt) = {(xtj ,xs,xt′ )

|(xt′ − xt) ∈ NT
k (xt,D+

ytj
(xtj )) & (xs − xtj ) ∈ D

+
ytj

(xtj ),

g(xt,xtj ) = 1, ytj = ys, yt 6= yt′ , 1 ≤ t′ ≤ NT ,

NT + 1 ≤ tj , s ≤ N}
(17)

O`
a(xt) = {(xs,xs′ ,xs′′ )

|(xs′′ − xs) ∈ NS
k (xs,D+

ys (xs)) & (xs′ − xs) ∈ D+
ys (xs),

g(xt,xs) = 1, ys′ = ys, ys′′ 6= ys,

NT + 1 ≤ s, s′, s′′ ≤ N}
(18)

O`
b(xt) = {(xt′ ,xs)

|(xs − xt) ∈ NS
k (xt,D−yt (xt)) & (xt′ − xt) ∈ D−yt (xt),

g(xt,xs) = 0, yt 6= yt′ , ys 6= yt,

1 ≤ t′ ≤ NT , NT + 1 ≤ s ≤ N}

(19)

In addition, let #O`g =
∑NT

t=1 #O`g(xt), #O`a =
∑NT

t=1 #O`a(xt),
#O`b =

∑NT

t=1 #O`b(xt). Following Eq. (14) and Eq. (15), we
propose the following criterion for optimisation

min
M�0

f(M) +
λ

2(1− λ)
||M||2F

f(M) =
1− α
#O`

g

NT∑
t=1

∑
(xtj

,xs,xt′ )∈O`
g(xt)

`h(d(xtj ,xs) < d(xt,xt′))

+
α

#O`
a + #O`

b

{
NT∑
t=1

∑
(xs,xs′ ,xs′′ )∈O`

a(xt)

`h(d(xs,xs′) < d(xs,xs′′))

+ β

NT∑
t=1

∑
(xt′ ,xs)∈O`

b
(xt)

`h(d(xt,xt′) < d(xt,xs))
}

(20)
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Algorithm 1: Learning Procedure for t-LRDC model
Data: Dataset {(xi, yi)}Ni=1, xi ∈ RD , Maximum Iteration P , ε > 0
begin

M0 ←− D−1 · I ;
n←− 0;
while n ≤ P do

Active Set:
Compute active sets O`

g(xt, n),O`
a(xt, n),O`

b(xt, n);
by Eqs. (21)-(23);

Gradient Descent:
Compute the gradient matrix ∆M by Eq. (27);
Mn+1 ←−Mn − ηn ·∆M, ηn = 1

n+1 ;
Projection:

Project Mn+1 onto O+ by Eq. (29)
and obtain Mn+1;

if ||Mn −Mn+1||2F < ε then
break;

end
n←− n+ 1;

end
end
Output: M = Mn+1

Note that in the above formulation, a ridge regularisation term is
introduced on the matrix M parameterised by some non-negative
λ(∈ [0, 1)) in order to gain better generalisation ability. We call
the above model (Eq. (20)) the transfer local relative distance
comparison (t-LRDC). Note that since less relative comparison
pairs are used in t-LRDC at each step for optimisation, solving
the cost function in Eq. (20) is less costly than in Eq. (14).

One would like to know what price if any this reduction in the
number of comparisons will pay in terms of model performance.
To answer that, we show that under a set of general conditions,
using local relative comparison would not lead to loss in relative
comparison as compared to performing all relative comparisons
(i.e. global relative comparison), by the following theorem, where
the proof is obvious and thus omitted due to lack of space.

Theorem 1: Local relative comparison is equivalent to global
relative comparison if all relative comparisons in Eq. (20) hold
and the following statements are true

1) Given xt, t ≤ NT , for any (xtj ,xs,xt′) ∈ Og(xt),
d(xt,xt′) ≥ min(xtj

,xj′ ,xj′′ )∈O`
g(xt) d(xt,xj′′);

2) Given xt, t ≤ NT , for any (xs,xs′ ,xs′′) ∈ Oa(xt),
d(xs,xs′′) ≥ min(xs,xj′ ,xj′′ )∈O`

a(xt) d(xs,xj′′);
3) Given xt, t ≤ NT , for any (xt′ ,xs) ∈ Ob(xt), d(xt,xs) ≥

min(xt′ ,xj′ )∈O`
b(xt)

d(xt,xj′);

In practice, as shown in Sec. IV, due to the selection of con-
straints, better verification performance is obtained overall.

Note that the formations of NTk (·, ·) and NSk (·, ·) in Eq. (16)
are dependent of the Mahalanobis metric (Eq. (1)) parameterised
by M, which is to be learned. It is important to point out that
although it may appear to be a conundrum that M is used to
describe locality before it is yet to be learned, we shall introduce
a stochastic method to overcome this problem in the next section,
so that the neighbourhood is updated simultaneously when M is
updated during the optimisation process.

D. Optimisation Algorithm

We solve the optimisation problem in (20) using stochastic
gradient [3], [35], [42]. The stochastic gradient method can be
used for sum-minimisation, that is, rather than performing the
batch gradient for all terms in a sum, it selects parts of the sum
at each iteration to compute the gradient. It is thus suitable for

large scale machine learning tasks and has better generalisation
capability compared to alternatives [3]. In particular, for our
problem it focuses its computation on the sample pairs that violate
the constraints in the Sets O`g(xt), O`b(xt) and O`a(xt) leading to
an efficient algorithm.

More specifically, at the nth step during the iterative optimi-
sation process, we first construct three active sets which consist
of distance comparison pairs that violate the relative comparison
constraints of O`g , O`a and O`b respectively:

O`g(xt, n) = {(xtj ,xs,xt′)| dn(xtj ,xs) ≥ dn(xt,xt′),

(xt′ − xt) ∈ NTk (xt,D+
ytj

(xtj ), n)& (xs − xtj ) ∈ D+
ytj

(xtj ),

g(xt,xtj ) = 1, ytj = ys, yt 6= yt′ ,

1 ≤ t′ ≤ NT , NT + 1 ≤ tj , s ≤ N}
(21)

O`a(xt, n) = {(xs,xs′ ,xs′′)| dn(xs,xs′) ≥ dn(xs,xs′′),

(xs′′ − xs) ∈ NSk (xs,D+
ys(xs), n) & (xs′ − xs) ∈ D+

ys(xs),

g(xt,xs) = 1, ys′ = ys, ys′′ 6= ys,

NT + 1 ≤ s, s′, s′′ ≤ N}
(22)

O`b(xt, n) = {(xt′ ,xs)| dn(xt,xt′) ≥ dn(xt,xs),

(xs − xt) ∈ NSk (xt,D−yt(xt), n) & (xt′ − xt) ∈ D−yt(xt),
g(xt,xs) = 0, yt 6= yt′ , ys 6= yt,

1 ≤ t′ ≤ NT , NT + 1 ≤ s ≤ N}
(23)

where the distance function dn is computed as

dn(x,x′) = (x− x′)TMn(x− x′), (24)

and Mn is the metric learned at the last iterative
step. NTk (xt,D+

ytj
(xtj ), n), NSk (xs,D+

ys(xs), n), and
NSk (xt,D−yt(xt), n) mean forming the nearest neighbouring sets
NTk (xt,D+

ytj
(xtj )), NSk (xs,D+

ys(xs)), and NSk (xt,D−yt(xt))
by first projecting the difference vectors into the low-rank
subspace induced by the Mn learned in Eq. (24) at the nth step,
respectively. Using the three active sets O`g(xt, n), O`b(xt, n) and
O`a(xt, n), we compute the gradient for the following function:

f(M, n) +
λ

2(1− λ)
||M||2F , (25)

where
f(M, n) =

1− α
#O`g(n)

NT∑
t=1

∑
(xtj

,xs,xt′ )∈O`
g(xt,n)

`h(d(xtj ,xs) < d(xt,xt′))

+
α

#O`a(n) + #O`b(n)

{
NT∑
t=1

∑
(xs,xs′ ,xs′′ )∈O`

a(xt,n)

`h(d(xs,xs′) < d(xs,xs′′))

+ β

NT∑
t=1

∑
(xt′ ,xs)∈O`

b(xt,n)

`h(d(xt,xt′) < d(xt,xs))
}

(26)

and #O`g(n) =
∑NT

t=1 #O`g(xt, n), #O`a(n) =∑NT

t=1 #O`a(xt, n), and #O`b(n) =
∑NT

t=1 #O`b(xt, n).
Denote the gradient of Eq. (25) with respect to M by ∆M.

Then, ∆M is computed as follows:
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∆M =
λ

(1− λ)
M+

2(1− α)

#O`
g(n)

NT∑
t=1

∑
(xtj

,xs,xt′ )∈O`
g(xt,n)

Ct,tj ,s,t′

(
(xtj − xs)(xtj − xs)T − (xt − xt′)(xt − xt′)

T
)

+
2α

#O`
a(n) + #O`

b(n)

{
NT∑
t=1

∑
(xs,xs′ ,xs′′ )∈O`

a(xt,n)

Cs,s′,s′′

(
(xs − xs′)(xs − xs′)

T − (xs − xs′′)(xs − xs′′)
T
)

+

NT∑
t=1

∑
(xt′ ,xs)∈O`

b
(xt,n)

Ct,t′,s

(
(xt − xt′)(xt − xt′)

T − (xt − xs)(xt − xs)T
)}

(27)

where Ct,tj ,s,t′ = d(xtj ,xs) + ρ − d(xt,xt′), Cs,s′,s′′ =

d(xs,xs′) + ρ − d(xs,xs′′), Ct,t′,s = d(xt,xt′) + ρ − d(xt,xs).
It shows that for each update, the gradient matrix is generated
using weighted covariance matrices associated to the three active
sets, where the weights are Ct,tj ,s,t′ , Cs,s′,s′′ , Ct,t′,s respectively.
Note that these weights must be positive, as the stochastic
gradient update here only selects those constraint-violated relative
comparisons for update. So, the larger the weight is, the more
constraint-violated a relative comparison is.

Finally, the updated Mn+1 is obtained by

Mn+1 = Mn − ηn ·∆M, (28)

where the learning rate ηn should decrease as more steps are
taken with an appropriate rate. In our work, we simply let ηn =

(n+ 1)−1.
Note that the computed core matrix Mn+1 in Eq. (28) is

symmetric but not always semi-positive definite. Thus, in the
projected stochastic gradient method, to make sure a semi-positive
core matrix is learned at each step, the core matrix Mn+1 has to
be projected onto the solution set denoted by O+, which is the
set of semi-positive matrices of the same size as Mn+1. This is
achieved by finding a semi-positive matrix Mn+1 by

Mn+1 = arg min
A∈O+

||A−Mn+1||2F , (29)

It can be verified that Mn+1 in Criterion (29) is computed by

Mn+1 = LΛLT , (30)

where Λ is a diagonal matrix with each diagonal term being the
positive eigenvalue of matrix Mn+1 and each column of L is the
corresponding eigenvector.

The above steps are repeated and will terminate when a
stopping criterion is met. The whole algorithm is summarised
in Algorithm 1.

E. Linear Dimensionality Reduction

In person re-identification, the feature dimension is typically
high (e.g. larger than 1000); it is thus computationally expensive
to perform eigen-value decomposition in the above learning
algorithm for our t-LRDC model. In this section, we show that this
problem can be alleviated by adding dimensionality reduction pre-
processing step without sacrifice of model learning performance.

In particular, using eigen-value decomposition, we can factorise

Fig. 4. For individual verification, if the query image is matched to a wrong
target person (as shown by the dashed blue line), the match is incorrect. In
contrast, for set verification, the match is correct as long as the query image
is matched to one of the target people (as shown by the solid red line).

matrix M into M = PPT , where P = [p1, · · · ,pm]. Let U =

span{(xi − xj)|1 ≤ i, j ≤ N}. Then we can have the following
theorem.

Theorem 2: Given training data x1, · · · ,xN , it is sufficient to
learn pi in U

Proof: If pi is not in U , then there exists qi ∈ U and
vi ∈ U⊥ such that pi = qi+vi. That is P = Q+V, where Q =

[q1, · · · ,qm] and V = [v1, · · · ,vm]. Hence, for any pairwise
(xi,xj) the distance between them is

(xi − xj)
TM(xi − xj)

=(xi − xj)
TPPT (xi − xj) = (xi − xj)

TQQT (xi − xj).
(31)

This is because for any (xi−xj), we have VT (xi−xj) = 0. So
the above equation suggests that the information out of the range
space of X is not useful to construct matrix M for optimising
the criterion based on training data x1, · · · ,xN .

The above theorem suggests we can first reduce the data
dimensionality by projecting the data onto U and then perform
t-LRDC learning. One can verify that the projection for dimen-
sion reduction is equivalent to learning by principal component
analysis (PCA) [41]. Based on this theorem we thus propose
to learn an approximate t-LRDC model in the PCA space by
retaining the main dimensions corresponding to large eigenvalues,
resulting in a much smaller data dimension and more efficient
model learning. In our experiments, the numbers of basis vectors
in U are 207, 203, 424 and 631 on i-LIDS, CAVIAR, ETHZ and
VIPeR, respectively, reduced from its original 2784 dimensional
feature space.

F. Group-based Person Verification

Now with the learned distance function we can measure the
distance between a probe/query image, which may or may not
belong to one of the target people, and a set of gallery images
containing the target people. We call this process of verifying
target people on the watch list as group-based person verification.
As motivated in Sec. I, in practice, it is often more desirable to
perform verification against the whole set, which we term as ‘Set
Verification’. In our implementation, the distance between a query
and the set is the minimal distance between it and any person
image of all people on the watch list. Alternatively, the learned
distance can also be used to perform a more conventional task,
that is, to verify whether this query image comes from a target
person Ctk and not from any of the others (including the other
target people). This is termed as ‘Individual Verification’.

The difference between set verification and individual verifica-
tion is illustrated in Figure 4. In particular, the individual verifi-
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cation can be considered as a special case of set verification. The
difference between these two verifications is that set verification
tells whether the detected person is within our interest but does not
perform verification on the person identity of any query image.
The individual verification performs the latter but would not be
able to measure explicitly the probability that the person of the
query image is on the watch-list. Their relation is similar to the
relation between joint probability density function and marginal
probability density function. When there is only one person in
the group, set verification is the same as individual verification.

G. Discussions

Relations to existing models. As mentioned in Sec. II, there are
two main features that distinguish our t-LRDC model from the
existing learning methods used for person re-id: (1) Our model is
learned using three types of knowledge transfer/constraints (see
Sec. III-B); the first two are designed to solve the data sparsity
problems (one-shot and small watch list) and the third for the
open-world group-based person verification task first identified
in this paper. Most existing learning methods would not work
with one-shot per target person. The best they could do under our
setting is to learn their models using the source/non-target training
data and then apply the models to the target people without
adaptation. This is similar to using our second type of constraints
except that we use the target person to select a subset of non-
target people to form those constraints. None of the existing
models utilise the third types of knowledge transfer. They are thus
intrinsically not designed for tackling the group-based verification
task. (2) Our model is a local relative distance comparison method
focusing on comparison pairs in a local neighbourhood between
similar distances. This has two benefits: lower computational cost
and memory usage; and avoiding model over-fitting by removing
those hard/global relative comparison constraints. All existing
alternative relative comparison models enforce global constraints
thus do not have these two benefits.

Generalisation of existing models. It is however possible to
generalise some of the existing models for the group-based
verification task. Specifically, using the risk functions and distance
functions in relative distance comparison (RDC) [50] to replace
the loss function `h and distance function d in Eq. (14), respec-
tively, we are able to develop a transfer RDC (t-RDC) model
which uses exactly the same three types of constraints as our
model does. In particular, we re-define the loss function ` and
distance function d as

d(x,x′) = |x− x′|TM|x− x′|,
`(d(x′,x′′) < d(x′,x′′′)) = log

(
1+exp

{
d(x′,x′′)−d(x′,x′′′)

})
,

where |x−x′| is the absolute data difference vector [50]. Similarly
we can generalise RankSVM [31] by first redefining the distance
d as a projection response function below

d(x,x′) = −MT |x− x′|, (32)

where the M is defined as a projection vector. Then, by using the
above function d, the hinge-loss function and further inserting a
regularisation term ||M||2 in Eq. (14), we can develop the transfer
RankSVM (t-RankSVM).

Limitations of the generalisations of existing models. Although
the generalised models above can now tackle the open-world
group-based verification problem, there are still two unsolved
problems limiting their capabilities. (1) Both t-RDC and t-

i-LIDS VIPeR 

ETHZ CAVIAR 

Fig. 5. Examples of Images for the four datasets. Images of each column
are from the same person.

RankSVM still perform global relative comparison. It is not
straightforward and may not even be possible to introduce the
proposed local modelling. In particular, for t-RDC this is due to
the sequential learning procedure used which is quite different
from the stochastic gradient decent method used in our model;
whilst t-RankSVM in essence optimises based on a margin rather
than a real distance; thus the concept of local modelling does not
apply. (2) Both t-RDC and t-RankSVM rely on using absolute
data difference to measure the difference between two data points.
Using absolute data difference would lead to notably larger cost
of memory use. This is because the absolute operation prevents
dimension reduction directly on high-dimensional data without
loss of discriminant ability (see Sec. III-E). This is verified by
our experiments which show that t-RDC and t-RankSVM with the
same PCA pre-processing step fail dramatically. In comparison,
the proposed model is not based on the absolute data difference
and dimension reduction can be used before learning without loss
in performance as proved in Sec. III-E.

IV. EXPERIMENTS

A. Datasets and Settings

Datasets. Four widely used benchmark datasets are used in our
experiments. They include the i-LIDS Multiple-Camera Tracking
Scenario (MCTS) dataset [47], [39], [48], the ETHZ dataset [34],
[7], the CAVIAR4REID (CAVIAR) dataset [4] and the VIPeR
dataset [13]. The i-LIDS MCTS dataset consists of 119 people
with a total 476 person images with an average of 4 images, which
were captured by multiple non-overlapping cameras indoor at a
busy airport arrival hall. Many of these images undergo large
illumination change and are subject to occlusions. The ETHZ
dataset consists of 146 people and 8555 images in total, which
were captured using a moving camera in a busy street scene.
The CAVIAR dataset contains images from 72 people, where
10 images were randomly selected for each person. The VIPeR
dataset consists of 632 people captured outdoor with two images
for each person with a normalised size of 128 × 64 pixels.
View angle change is the most significant cause of appearance
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change with most of the matched image pairs containing one
front/back view and one side-view. Overall, these four datasets
cover different condition changes across camera views and are
representative of the real-world person re-id challenges. Figure 5
shows examples of images for each dataset.

Feature Representation. The popular histogram based feature
representation for person re-identification [14], [30], [47], [48] is
adopted, which is a mixture of colour features (including RGB,
YCbCr, HSV color) and texture feature pattern (extracted by
Schmid and Gabor filters). Each image is represented by a feature
vector in a 2784 dimensional feature space.

Compared methods. We compare the proposed t-LRDC model
with the following alternative models. (1) The baseline is the
L1-Norm distance metric, which does not rely on any learn-
ing. (2) Naive transfer learning models. These models are not
designed for extracting knowledge from the non-target training
set and adapt it towards the target data. The knowledge transfer
is thus ‘naive’.These include recent distance/subspace learning
methods designed for person re-id, such as KISSME [17], LADF
[22], salience modelling [46] and LFDA [29], One-class SVM
(OCSVM) [33], two local distance learning methods LMNN [42]
and local distance learning method LDM [44], and two models
based on relative comparison: RDC [50] and RankSVM [31].
Among them, the salience modelling in [46] is unsupervised. (3)
Generalisation of existing models for group-based verification.
These include two alternative transfer models developed in this
work, namely the t-RDC and t-RankSVM described in Sec. III-G.
(4) A variant of our t-LRDC model without the local modelling,
t-LRDC(global) which instead of using local relative distance
comparison constraints, uses global relative comparison. This is
to evaluate the effect of local modelling.

Experimental settings. Our open-world group-based person ver-
ification experiments are designed to verify whether a query
person image comes from the people on a watch-list with the
presence of non-target person images during the verification.
More specifically, for each dataset, we randomly selected all
images of p people (classes) to set up the target data set and
the rest to constitute the non-target data set. The target data set
was further divided into a training set and a testing set, where
one image of each person was randomly selected for training
(one-shot). We also randomly divided the non-target data set into
training and testing sets, where six images at maximum were
randomly selected for each non-target person. Such a random
division was done by person; that is, the images of half of the
non-target people in the data set were used as training non-target
person images and the rest as testing non-target images so that
there is no overlap of non-target people between the training
and testing sets. The experiment was conducted 10 times and
the average verification performance was then computed. For
verification, on each dataset, both individual verification and set
verification (see Sec. III-F for definition) are reported. In our
experiments, the number of target people (i.e. p) was fixed to be
6 for each round. The effect of gallery size will be discussed later.

For all iterative methods, the maximum iteration was set to 100.
PCA dimension reduction (by preserving 100% data energy) was
used for all distance models except RDC and RankSVM, making
them tractable on a PC platform. There are five free parameters
in our t-LRDC model: λ, α and β in Eq. (20), h in Eq. (3) and
k in Eq. (16). By default, we set λ = 0.3, α = 0.8, β = 0.6,

h = 0.72 and k = 3 in all experiments. We found that the result
of our model is less sensitive to the value of λ; the effect of
other parameters will be discussed in details in Sec. IV-D. The
parameters of the compared methods were set to the same as
described in the original work where they were first introduced.

Evaluation metrics. There is no metrics in person re-
identification that can be used readily for an open-world group-
based verification task. We thus have to define a set of new ones.
In particular, since a lot of images of non-target people were
mixed with the target ones as query images, we need to quantify
the performance on how well a true target has been verified and
how bad a false target has passed through the verification and
their relations. Therefore, we introduce the true target rate (TTR)
and false target rate (FTR) as follows:

True Target Recognition(TTR) =
#T T Q
#T Q , (33)

False Target Recognition(FTR) =
#FNT Q
#NT Q . (34)

where
T Q = {query target images from target people};
NT Q = {query non-target images from non-target people};
T T Q = {query target images that

are verified as one of the target people};
FNT Q = {query non-target images that

are verified as one of the target people}.

Note that for performing individual verification for each target
person (see Sec. III-F), the above metrics can still be used, and
in this case the non-target people mean any other person except
that target person.

In our experiments, the similarity function sim(x,x′) is speci-
fied as the inverse of computed distance to determine the rank of
matching. A value r is used to threshold these scores and therefore
results of the TTR value against FTR value are reported for each
method by changing the threshold value r. This is similar to the
ROC performance in face verification, but it differs in that we also
care about the verification on whether the query image belongs
to one of the target people (i.e. set verification).

B. Comparison with Naive Transfer Models

The compared naive transfer models have two types depending
on whether they are based on relative comparison constraints.
The TTR vs. FTR performance of our t-LRDC against those
not based on relative comparisons (KISSME [17], OCSVM [33],
LMNN [42], LDM [44], LADF [22] and LFDA [29]) as well as
the L1-norm baseline and salience modelling [46] are shown in
Tables I and II. Note that due to its unsupervised nature, salience
modelling can naturally be used for the one-shot open world
person re-identification. The results show clearly that our model
significantly outperforms the six alternative supervised transfer
learning models and the unsupervised salience model. The per-
formance gap is specially significant on the two more challenging
i-LIDS and VIPeR datasets where the view angle changes across
camera views cause different people look alike. It can be seen
that under this open-world setting, many learning based models
(e.g. LDM on i-LIDS) yield even poorer performance than the
non-learning based L1-norm baseline. This suggests that blindly
transferring knowledge extracted from non-target data without
adaptation can have a negative impact, i.e. negative transfer. This
negative transfer problem does not exist in conventional setting
where the gallery and probe set always contain the same set of
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Database i-LIDS ETHZ
FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%

t-LRDC 14.58 32.03 48.36 61.64 74.57 81.65 45.13 65.62 83.82 89.86 95.20 97.67
t-LRDC(Global) 13.45 30.94 47.35 61.07 76.66 87.30 42.22 62.72 79.95 86.69 92.45 96.89

t-RDC 16.78 30.98 45.31 57.12 72.07 81.91 54.14 76.29 88.07 91.91 96.02 98.38
t-RankSVM 14.31 27.12 42.06 55.10 70.86 77.31 50.49 74.70 87.82 92.72 96.60 99.09
t-RDC-PCA 10.85 24.49 39.39 49.64 63.57 70.92 42.33 61.57 76.23 82.76 89.54 92.94

t-RankSVM-PCA 7.44 17.06 36.76 46.76 60.31 70.05 35.13 55.75 74.98 81.72 87.54 91.36
RDC [50] 15.16 28.04 44.89 57.53 70.89 79.99 53.16 75.07 87.30 91.67 95.16 97.63

RankSVM [31] 12.09 23.66 40.97 56.07 69.26 77.76 47.87 72.40 86.62 91.56 95.96 98.82
OCSVM [33] 6.00 6.34 11.78 17.87 28.59 36.25 0.56 2.23 11.62 18.36 28.11 35.12
KISSME [17] 11.77 25.46 36.74 44.92 61.00 67.79 46.49 61.21 76.31 85.33 93.06 96.94
LMNN [42] 8.61 20.81 41.43 49.92 58.00 68.85 41.80 58.65 75.43 82.59 90.74 93.43
LDM [44] 8.51 18.24 39.08 48.80 61.65 72.96 29.76 49.80 69.37 78.05 86.01 90.83
LADF [22] 7.86 20.72 39.88 53.80 69.29 79.89 20.23 53.14 76.67 85.86 93.67 96.42
LFDA [29] 7.22 13.43 24.72 35.47 50.11 63.74 27.49 43.98 60.96 73.52 84.83 89.23

Salience [46] 6.00 6.10 8.07 11.81 20.40 29.48 26.87 44.76 55.85 63.09 71.80 79.92
L1-norm 8.42 19.90 43.50 53.22 60.53 69.29 42.39 60.47 77.45 84.45 89.52 92.97
Database CAVIAR VIPeR

FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%

t-LRDC 15.45 28.13 40.76 50.78 60.80 69.99 23.47 47.27 75.41 86.88 98.04 99.17
t-LRDC(Global) 13.78 25.85 39.87 49.01 63.18 71.58 19.63 39.04 69.25 84.13 96.17 98.13

t-RDC 14.08 24.40 39.30 49.13 63.59 71.82 19.38 40.72 73.18 88.42 97.85 98.71
t-RankSVM 10.64 20.90 35.67 45.50 57.83 68.23 22.73 45.95 76.12 89.44 97.86 98.99
t-RDC-PCA 12.48 23.38 36.55 45.43 57.65 66.49 18.79 24.73 40.03 54.54 76.71 85.61

t-RankSVM-PCA 12.41 20.00 33.37 42.23 55.73 63.98 17.53 21.60 34.38 44.12 68.77 79.58
RDC [50] 14.61 23.40 37.32 47.08 59.40 69.15 19.27 43.98 77.95 88.62 96.00 99.89

RankSVM [31] 6.33 16.64 31.43 42.04 56.25 64.13 20.27 44.97 77.41 89.16 96.70 100
OCSVM [33] 1.85 2.56 5.75 11.04 22.99 33.12 16.66 16.69 17.12 20.68 26.03 36.62
KISSME [17] 13.40 23.60 33.96 43.45 54.47 64.25 16.93 29.97 68.92 79.80 93.50 98.73
LMNN [42] 13.78 23.01 36.50 43.65 54.69 63.22 17.11 21.98 41.73 55.23 75.51 84.26
LDM [44] 9.48 17.65 29.86 39.72 53.96 62.74 16.76 18.54 33.18 50.81 68.42 81.82
LADF [22] 6.04 17.63 38.19 49.72 63.46 74.8 18.59 27.43 68.40 84.37 99.41 100
LFDA [29] 9.39 16.15 27.20 36.37 47.15 56.54 16.66 20.54 28.65 41.42 56.89 67.06

Salience [46] 13.45 24.05 34.99 43.53 52.63 59.45 16.67 16.84 17.81 19.03 25.46 35.32
L1-norm 13.57 24.27 35.95 44.93 53.54 62.83 16.96 21.13 38.11 46.94 63.45 76.55

TABLE I
ONE-SHOT INDIVIDUAL VERIFICATION RESULTS: TRUE TARGET RATE (TTR) IN % AGAINST FALSE TARGET RATE (FTR).

people and the gallery set has multiple images per target person.
Consequently these models are typically shown to have a big
improvement over non-learning based approach in previous work.

Note that in general much inferior results are obtained using
the compared local distance/subspace learning models including
LMNN, LDM, LADF and LFDA, especially when the FTR is low.
The main reason is that LMNN, LDM and LFDA all compute
the neighbourhood of each data point using the Euclidean metric
and keep a constant neighbourhood fixed throughout the whole
training process. Although LADF has a local decision boundary,
no neighbourhood is defined to focus the learning on local data
variations. In comparison, t-LRDC updates the neighbourhood
at each iteration to enable the neighbourhood to be computed
much more accurately. In addition, the local modelling of t-LRDC
is very different from that in LMNN, LDM and LFDA, as it
can be viewed that t-LRDC defines the locality between similar
distances rather than between similar data points. It is interesting
to notice that LADF is competitive when FTR is high. However,
its performance is weak for low FTR values, sometimes weaker
than the non-learning based L1-norm.

The relative comparison based naive transfer models, RDC [50]
and RankSVM [31] are more competitive. Their results are thus
tabulated in Tables I and II to show more details. It is evident that
on most datasets and for both the individual and set verification
tasks, our t-LRDC model’s performance is overall superior to that
of RDC and RankSVM. In addition, t-LRDC also spends much
less memory cost as shown in Table III.

C. Comparison with Generalisations of Naive Transfer Models

In Sec. III-G, the two relative comparison based naive transfer
models RDC [50] and RankSVM [31] are generalised to utilise the
same three types of knowledge transfer as our t-LRDC in order to
tackle the group-based verification problem. The resultant t-RDC
and t-RankSVM models are compared against our t-LRDC in
Tables I and II. As mentioned in Sec. III-G, the main differences
between t-LRDC and these generalisations are (1) local modelling
for computational efficiency and the removal of hard-to-satisfy
and overfitting constraints outside a local neighbourhood, and (2)
the use of absolute difference in these methods. The results show
that following the same transfer learning formulation, overall
both RDC and RankSVM benefit from the knowledge transfer
leading to improvement in performance. In particular, among
all methods compared, t-RDC and t-RankSVM together with
t-LRDC almost always achieve the best verification results as
shown in Tables I and II. But among them, overall t-LRDC has
the best performance. The reason why occasionally t-LRDC is
sometimes inferior to t-RDC (e.g. on ETHZ) is mainly because
t-LRDC needs to select a subset of distance comparison pairs.
This selection could sometimes introduce errors leading to inferior
performance compared to the global approach. The proposed t-
LRDC is also computationally more efficient. Specifically, local
modelling is hard to perform for t-RDC and t-RankSVM as
analysed in Sec. III-G; importantly, no PCA-based dimensionality
reduction can be used as pre-processing. As a result, they have
much greater computational cost compared to t-LRDC, especially
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Database i-LIDS ETHZ
FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%

t-LRDC 9.65 18.75 33.55 43.18 51.75 63.36 36.63 47.90 62.81 71.38 80.42 85.43
t-LRDC(Global) 8.10 16.97 32.62 39.43 48.26 58.69 31.34 46.34 60.84 67.28 76.17 81.40

t-RDC 10.82 20.73 32.24 37.70 48.73 58.08 38.97 59.66 74.86 81.48 86.84 90.25
t-RankSVM 8.82 16.29 26.73 34.18 46.86 56.92 33.24 57.10 72.82 80.10 86.54 90.19
t-RDC-PCA 6.98 13.55 25.37 34.18 44.49 53.78 32.38 46.48 59.61 68.21 76.04 80.81

t-RankSVM-PCA 7.19 10.33 18.63 24.98 42.94 54.04 22.59 38.75 54.60 61.99 72.16 78.94
RDC [50] 7.72 17.32 28.63 38.13 47.73 58.63 38.76 57.64 73.79 80.76 86.67 90.18

RankSVM [31] 7.20 14.48 23.40 31.99 47.57 59.40 31.09 53.63 70.81 78.88 85.13 90.65
OCSVM [33] 6.02 7.05 13.27 18.22 29.28 36.44 1.01 3.34 12.89 18.95 28.48 35.56
KISSME [17] 8.88 14.68 26.83 35.23 41.36 48.91 34.83 49.35 59.94 68.16 76.87 84.63
LMNN [42] 6.84 10.03 21.88 32.83 46.00 54.15 33.61 43.91 58.51 66.56 76.21 82.81
LDM [44] 7.13 10.12 19.87 25.30 41.92 56.19 21.58 32.47 49.26 58.39 69.34 77.26
LADF [22] 7.25 11.66 23.24 31.35 44.68 56.88 10.23 26.88 51.49 61.75 73.12 81.26
LFDA [29] 6.59 8.51 15.73 21.28 30.28 42.29 19.80 31.42 44.64 52.37 63.01 69.96

Salience [46] 6.00 6.08 7.11 10.52 17.55 26.41 16.51 35.92 53.25 61.25 73.00 83.20
L1-norm 7.19 9.58 18.92 30.54 48.17 57.71 31.39 46.06 60.13 66.88 77.15 83.31
Database CAVIAR VIPeR

FTR 0.1% 1% 5% 10% 20% 30% 0.1% 1% 5% 10% 20% 30%

t-LRDC 11.65 16.74 29.92 36.72 47.53 58.04 16.66 27.43 45.99 63.27 75.11 88.62
t-LRDC(Global) 11.09 15.40 26.37 34.24 45.82 56.67 18.48 20.63 37.20 54.26 67.42 78.49

t-RDC 9.44 16.89 26.50 34.51 46.22 56.44 17.11 21.20 38.08 50.97 72.28 79.22
t-RankSVM 5.45 13.94 23.08 29.48 41.89 53.57 18.96 23.83 42.49 58.38 72.82 83.62
t-RDC-PCA 9.00 13.87 24.65 33.90 46.28 56.70 16.66 19.21 24.55 32.75 49.96 58.70

t-RankSVM-PCA 8.31 15.20 22.69 29.48 39.72 51.48 16.66 18.60 22.20 27.08 39.67 53.08
RDC [50] 10.18 16.66 26.89 34.83 47.22 58.07 16.79 22.57 41.24 56.02 69.29 83.11

RankSVM [31] 3.35 10.14 20.20 28.16 42.42 53.56 16.92 23.17 42.45 57.36 72.87 82.21
OCSVM [33] 2.17 2.75 6.06 11.31 23.60 33.42 16.66 16.70 17.13 20.85 26.07 36.72
KISSME [17] 9.36 16.39 25.41 32.35 41.59 50.70 16.68 20.24 30.37 52.22 74.25 83.83
LMNN [42] 9.50 15.15 25.49 34.00 46.61 55.62 16.76 17.62 21.93 31.96 52.70 62.87
LDM [44] 6.39 11.28 19.12 27.56 39.55 49.93 16.66 17.53 23.17 30.31 46.06 62.19
LADF [22] 4.0 8.75 19.33 28.68 43.52 51.99 17.21 18.92 26.25 44.35 65.93 82.37
LFDA [29] 7.73 11.72 20.26 26.51 36.91 48.48 16.66 16.77 23.00 31.09 44.12 51.28

Salience [46] 10.13 15.15 25.58 32.74 44.89 52.73 16.67 16.73 17.44 18.54 21.60 25.88
L1-norm 10.48 15.58 26.38 34.55 45.12 54.87 16.72 17.24 20.81 33.80 48.20 61.58

TABLE II
ONE-SHOT SET VERIFICATION RESULTS: TRUE TARGET RATE (TTR) IN % AGAINST FALSE TARGET RATE (FTR).

t-LRDC t-RDC t-RankSVM RDC RankSVM
Sensitive to PCA ×

√ √ √ √

Max Memory Cost ∼0.7 G ∼16.9G ∼16.9G ∼16.1G ∼16.1G

TABLE III
COST COMPARISON: RELATIVE COMPARISON LEARNING ON VIPER

in terms of memory usage. Table III shows that taking VIPeR for
example, t-LRDC consumes 0.7G of memory space at maximum,
while t-RDC needs about 16.9G at maximum. Tables I and II also
show that if the same dimension reduction is applied (t-RDC-PCA
and t-RankSVM-PCA) their performance dropped by big margins.
This is because with absolute difference, Theorem 2 does not
apply anymore and there is no guarantee that the performance
will not degrade as in the case of t-LRDC3.

D. Further Evaluations on t-LRDC

Effectiveness of the three types of knowledge transfer. In t-
LRDC, three different types of knowledge transfer are conducted,
resulting in three different types of constraints (see Sec. III-B).
The relative weights of the different constraints are controlled by
parameters α and β in Eq. (20). In order to evaluate how much
different types of constraints contribute to the final performance,
we vary the value of α and β and report the results in Tables
IV and V. The results show that all three types of constraints
are useful. For example, if we set α = 0, only the first type is
used; the results are clearly inferior to those when all three are

3The results of t-LRDC without PCA are the same as t-LRDC with PCA,
since the solution of t-LRDC is defined in the PCA space by Theorem 2. The
results are thus not included.

used. Overall, the performance of t-LRDC is not sensitive to the
weightings when they are not set to the extreme values.

Sensitivity to the non-target selection parameter h. The
parameter h in Eq. (3) controls how many non-target people are
considered to be similar to one of the target person therefore used
for enriching both the intra and inter-class variations. Its effect
is shown in Table VI. It can be seen that the performance is not
sensitive as long as the value is not extreme. Note that when h =

1, it means no similar non-target people are selected, and all non-
target people are used for the third type of knowledge transfer.
This clearly leads to poor performance since no knowledge can be
transferred to enrich the target intra and inter-class variations 4.

Effectiveness of local modelling: neighbourhood size k. We also
vary the neighbourhood parameter k (Eq. (16)) which determines
how big the neighbourhood is for local modelling. It can be
observed in Table VII that, for local relative comparison, good
results are obtained when we set k = 2 or 3. In particular, when
all neighbour are used (i.e. k = Inf ), it is the t-LRDC(Global)
shown in Tables I and II. For both individual and set person verifi-
cation, t-LRDC always performs better than t-LRDC(Global). The
superiority is much clearer when FTR is low, for example 0.1%
and 1%. The experimental results justify the use of local relative
distance comparison as discussed in Sec. III-C. In addition, with
local modelling (when k = 3) the training time is reduced by
around 50% as compared to using all constraints exhaustively.

4For more evaluation on the performance of pairwise parameters among h,
α and β, please refer to the supplementary material.



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPAMI.2015.2453984, IEEE Transactions on Pattern Analysis and Machine Intelligence

13

Individual Verification Set Verification
Dataset 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
i-LIDS 20.71 32.99 29.96 31.71 32.10 33.24 31.69 33.08 32.03 32.97 23.57 12.93 17.39 17.42 16.76 18.24 17.33 18.12 17.67 18.75 18.21 12.39
ETHZ 49.30 56.53 57.54 58.87 61.56 59.09 61.34 66.72 65.62 66.08 63.42 31.76 39.12 41.09 42.90 43.93 43.61 44.96 49.37 47.90 48.10 47.86

CAVIAR 21.72 24.84 26.65 24.19 24.41 27.76 28.02 27.22 28.13 28.69 24.22 13.42 15.50 15.37 14.60 15.64 16.03 15.66 15.94 16.74 17.36 15.41
VIPeR 22.80 22.94 29.19 30.71 32.57 38.55 43.26 47.48 47.27 45.62 46.46 16.70 16.88 16.88 17.32 17.44 17.81 23.31 23.43 27.43 23.40 22.93

TABLE IV
EFFECTS OF α ON T-LRDC (EQ. (20)): TRUE TARGET RATE (%) WHEN FTR = 1%.

Individual Verification Set Verification
Dataset 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
i-LIDS 29.66 31.86 32.72 30.75 30.20 32.28 32.03 33.76 33.45 32.26 31.92 19.35 18.95 19.97 19.17 19.70 18.63 18.75 19.57 19.02 18.00 18.80
ETHZ 64.60 67.25 67.33 67.31 67.40 66.12 65.62 64.33 63.78 65.20 64.91 49.19 50.19 50.63 50.23 50.43 48.46 47.90 47.17 47.02 47.31 47.20

CAVIAR 27.86 28.43 28.29 29.45 29.20 28.15 28.13 27.60 27.99 26.77 27.09 16.35 15.99 15.43 16.11 16.35 15.69 16.74 16.77 17.24 16.96 17.38
VIPeR 43.66 45.56 46.02 46.88 46.81 47.32 47.27 46.61 47.01 47.03 46.39 22.24 23.48 23.74 24.55 26.35 26.46 27.43 27.06 27.43 26.70 26.21

TABLE V
EFFECTS OF β ON T-LRDC (EQ. (20)): TRUE TARGET RATE (%) WHEN FTR = 1%.

Individual Verification Set Verification
Dataset 0 0.3 0.5 0.7 0.72 0.75 0.77 0.9 1 0 0.3 0.5 0.7 0.72 0.75 0.77 0.9 1
i-LIDS 29.08 29.08 28.03 32.01 32.03 33.34 27.38 15.83 11.23 16.58 16.58 16.05 19.45 18.75 17.42 17.48 10.35 9.66
ETHZ 64.46 64.46 65.63 66.53 65.62 64.29 65.44 52.56 37.49 49.21 49.21 49.55 48.45 47.90 46.92 46.49 39.67 36.93

CAVIAR 27.42 27.59 26.64 28.02 28.13 26.00 25.13 16.75 14.54 15.59 15.59 14.56 15.69 16.74 16.08 16.52 14.24 14.01
VIPeR 42.46 42.46 45.67 46.79 47.27 49.47 47.82 20.26 17.91 21.79 21.79 22.54 26.94 27.43 29.01 28.68 17.71 17.76

TABLE VI
EFFECTS OF THE SIMILARITY THRESHOLD h (EQ. (3)) IN T-LRDC: TRUE TARGET RATE (%) WHEN FTR = 1%.

Individual Verification Set Verification
Dataset 1 2 3 4 5 Inf 1 2 3 4 5 Inf
i-LIDS 32.98 34.53 32.03 31.39 30.71 30.94 20.25 18.18 18.75 20.08 18.08 16.97
ETHZ 65.73 65.70 65.62 64.73 64.80 62.72 48.25 48.27 47.90 47.91 48.48 46.34

CAVIAR 28.08 27.52 28.13 27.74 25.10 25.85 15.80 16.55 16.74 15.87 15.48 15.40
VIPeR 45.94 48.29 47.27 46.31 49.18 39.04 22.59 21.68 27.43 24.55 24.54 20.63

TABLE VII
EFFECTS OF THE LOCAL MODELLING NEIGHBOURHOOD SIZE k (EQ. (16))

IN T-LRDC: TRUE TARGET RATE (%) WHEN FTR = 1%.

Set verification vs. individual verification. It is clear from all
the results reported that individual verification always achieved
higher values as compared to the one for set verification. However,
as analysed in Sec. III-F, individual verification is an one-to-one
verification and cannot make a joint verification explicitly to say
whether the person of a query image is one of the several people
on the watch-list. It is similar to the case where the value of a
joint probability density function is always lower than that of each
marginal probability density function.

V. CONCLUSIONS

We have re-formulated the person re-identification problem
as an one-shot group-based verification problem to meet the
requirement of more realistic real-world applications. To the
best of our knowledge, it is the first attempt on addressing the
person re-identification problem under this challenging setting.
Since there are always limited images for the people on the
watch-list, a transfer relative comparison framework is proposed
to utilise non-target person images to assist the verification of
target people. Three different types of knowledge transfer are
exploited resulting in three different types of relative comparison
constraints. Both global and local relative comparison models are
proposed. In particular, the local relative comparison approach has
been verified as a more efficient approach, as well as having the
potential to avoid model over-fitting for better verification perfor-
mance. A gradient decent based efficient optimisation algorithm
is formulated which can further improve the model tractability by
utilising dimensionality reduction as a pre-processing step without
loss of performance.

In this work, the proposed transfer learning method is based
on relative distance comparison. We believe that the model can
be further improved by incorporating more advanced features and

techniques such as the one based on finding salient patches [46].
Also, currently we assume that both target and non-target data
are collected from the same or similar environment. It would
be an interesting and also more challenging problem to perform
transfer learning across datasets captured from different camera
networks. Since target and source data are captured in distinctly
different environments, the cross-camera view illumination and
pose variations on the target environment cannot be learned from
source data and thus it becomes much more challenging to extract
transferrable transformation from source data. Our ongoing work
includes exploring some commonly used features across datasets
and considering extending our model by combining it with some
recently proposed cross-domain/dataset transfer learning methods
[19], [43].
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