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Abstract. In this paper we continue the analysis of non-diagonalisable hyperbolic
systems initiated in [25, 26]. Here we assume that the system has discontinuous
coefficients or more in general distributional coefficients. Well-posedness is proven
in the very weak sense for systems with singularities with respect to the space
variable or the time variable. Consistency with the classical theory is proven in the
case of smooth coefficients.

1. Introduction

This paper continues the analysis of hyperbolic systems with non-diagonalisable
principal part and variable multiplicities started by Gramchev and Ruzhansky in [27]
for 2 × 2 hyperbolic systems and continued by the first author, Jäh and Ruzhansky
in [25, 26] for systems of arbitrary size. Here we assume that the system coefficients
are singular, i.e., distributional in x but still continuous with respect to t or when
smoothness is assumed in the space variable we allow singularities in time. Let us
briefly summarise what is known about hyperbolic systems with non-diagonalisable
principal part. Let{

Dtu = A(t, x,Dx)u+ L(t, x,Dx)u+ f(t, x), (t, x) ∈ [0, T ]× Rn,

u(0, x) = g(x),

where A is an upper triangularm×mmatrix with real eigenvalues and L is the matrix
of the lower order terms. Note that the eigenvalues might coincide and therefore we
are dealing here in general with a hyperbolic system with multiplicities and non-
diagonalisable principal part. It is also not restrictive to assume that the matrix
A is upper-triangular since conditions are given in [25] which allow the reduction
into upper-triangular form of the system above. For a non exhausting overview on
hyperbolic problems with multiplicities we refer the reader to [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 32, 33, 36, 37, 39].

Combining the results proven in [25, 26, 27] we have that the Cauchy problem above
is well-posed in anisotropic Sobolev spaces of any order provided that the entries of
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A = (aij) are symbols in C([0, T ], S1(R2n)) and the entries of L = (ℓij) are symbols
in C([0, T ], S0(R2n) fulfilling the following Levi type condition:

ℓij ∈ C([0, T ], Sj−i(R2n))

for i > j. In addition, when A depends only on x and assuming intersection of finite
order at points of multiplicity one can obtain a representation formula for the solution
which leads to results of propagation of singularities. See [26] for more details. The
results above heavily rely on the fact that the system coefficients are smooth in space
and at least continuous on time. This is due to the fact that the system is solved
making use of symbolic calculus and Fourier integral operators methods [30].

When the system coefficients are less than continuous in time or less than smooth in
space it might be difficult even to define a notion of solution. Indeed, as a consequence
of Schwartz’s impossibility result such system might fail to have a distributional
solution [31, 34, 35]. For this reason, we want to prove here well-posedness in a very
weak sense. Note that the desire to drop the regularity assumption of the system
coefficients has physical motivation, since this kind of systems naturally arise in wave
propagation into a multi-layered medium, like the Subsoil, or in conical refraction in
crystals, see [19] and references therein.

The notion of a very weak solution has been introduced by the first author and
Ruzhansky in [19]. It is based on the idea of replacing the original problem with a
regularised one, where the coefficients and initial data are regularised via convolution
with suitable mollifiers. This generates a net of hyperbolic problems with smooth
coefficients depending on the regularising parameter ε ∈ (0, 1). The corresponding
net of solutions (uε)ε is said to be a very weak solution if it satisfies some specific
behaviour with respect to the parameter, that we will refer to as moderate. Note that
the notion of very weak solution is inspired by the theory of algebras of generalised
functions [14, 15, 23, 28, 35] however, here we work with nets of functions rather than
equivalence classes and we have full flexibility of regularising coefficients and initial
data with different mollifiers and scales, basing our choice on the intrinsic properties
of the problem we are studying. Moderateness will also be measured according to
different norms or seminorms which are determined by the function space where we
aim to prove well-posedness: C∞, Sobolev spaces, Gevrey classes, etc.
In the sequel we list the main results obtained in this paper.
We begin by focusing on the Cauchy problem

Dtu = A(t, x,Dx)u+ L(t, x,Dx)u+ f(t, x), (t, x) ∈ [0, T ]× Rn,

with initial data u(0, x) = g(x), where,

A(t, x,Dx) =

[∑n
j=1 λ1j(t, x)Dxj

a12(t, x,Dx)
0

∑n
j=1 λ2j(t, x)Dxj

]
,

and

L(t, x,Dx) =

[
ℓ11(t, x) ℓ12(t, x)

ℓ21(t, x)⟨Dx⟩−1 ℓ22(t, x)

]
.

We assume that the matrices A and L are defined by pseudo-differential operators
of order 1 and 0 respectively, with symbols which are not smooth in x. Namely,
we assume that the system coefficients are continuous in t but distributional with
compact support in x. As a toy model one could think about a discontinuous function
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in x or a Dirac distribution in x. After regularisation, i.e. convolution with a suitable
mollifier

ψω(ε)(x) = ω(ε)−nψ(ω(ε)−1x),

where ω(ε) → 0 as ε→ 0, we work on{
Dtuε = Aε(t, x,Dx)uε + Lε(t, x,Dx)uε + fε(t, x), (t, x) ∈ [0, T ]× Rn,

uε(0, x) = gε(x), x ∈ Rn,

where uε(0, x) = [g1,ε(x), g2,ε(x)]
T and fε(t, x) = [f1,ε(t, x), f2,ε(t, x)]

T , and the system
matrices are

Aε(t, x,Dx) =

[∑n
j=1 λ1j,ε(t, x)Dxj

a12,ε(t, x,Dx)
0

∑n
j=1 λ2j,ε(t, x)Dxj

]
,

and

Lε(t, x,Dx) =

[
ℓ11,ε(t, x) ℓ12,ε(t, x)

ℓ21,ε(t, x)⟨Dx⟩−1 ℓ22,ε(t, x)

]
.

By the theory of Fourier integral operators [25, 26] we know that the solution uε =
[u1,ε, u2,ε]

T can be written explicitly via action of FIOs or integrated FIOs on the
initial data, that we will denote here with G0

i,ε and Gi,ε, respectively, with i = 1, 2.
The corresponding phase functions, ϕi,ε can be also explicitly calculated by solving
the Eikonal equation determined by the system eigenvalues. It turns out that to
guarantee Sobolev mapping properties of the operators involved in our proof (see
[38]) we need nets of symbols of order 0 as well as some bound on the phase function,
namely,

|∂ξϕi,ε(t, x, ξ)− ∂ξϕi,ε(t, y, ξ)| ≥ C(ε)|x− y| for x, y ∈ Rn, ξ ∈ Rn,

|∂yϕi,ε(t, y, ξ)− ∂yϕi,ε(t, y, η)| ≥ C(ε)|ξ − η| for y ∈ Rn, ξ, η ∈ Rn,

for i = 1, 2. In particular, it is crucial to study the ε-behaviour of the composition
operator

G0
1,ε := G1,ε ◦ (a12,ε + ℓ12,ε) ◦G2,ε ◦ ℓ21,ε⟨Dx⟩−1.

Summarising, we identify the following set of hypotheses which guarantees the hy-
perbolicity of the system as well as its solvability in the very weak sense:

(H1) the coefficients (λ1j,ε)ε and (λ2j,ε)ε are real valued and C([0, T ], C∞(Rn))-
moderate for j = 1, . . . , n with compact support in x;

(H2) (∂kλ1j,ε)ε, (∂kλ2j,ε)ε and (ℓii,ε)ε are logarithmic moderate for k, j = 1, . . . , n
and i = 1, 2;

(H3) the nets of constants (C(ε))ε and (C−1(ε))ε are moderate and

||G0
1,ε||Hs→Hs = O(1).

In detail, we prove that

• if (H1), (H2) and (H3) hold then the Cauchy problem above has a very weak
solution (a solution (uε)ε which is C([0, T ], C∞(Rn))-moderate) and it is well-
posed in the very weak sense (Theorem 3.2, Corollary 3.3);

• if A is diagonal and L upper-triangular then (H1) and (H2) are sufficient to
get very weak well-posedness (Corollary 3.4);
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• if A and L are both upper-triangular then the Cauchy problem is well-posed
in the very weak sense provided that (H1), (H2) hold and the nets of constants
(C(ε))ε and (C−1(ε))ε are moderate (Corollary 3.5);

• the last two results are easily extendable to matrices of size m×m.

This paper is organised as follows: in Section 2 we collect some preliminaries on
regularisation and very weak solutions for hyperbolic equations. The main results
are proven in Section 3. In Section 4 we prove that very weak solutions recover the
classical solutions in the limit as ε → 0 in the case of smooth coefficients. We also
discuss some examples and we show how to adapt our methods to coefficients which
are singular in time rather than in space. The paper ends with an Appendix devoted
to the L2-boundedness of Fourier integral operators [38]. In particular, we formulate
precise bounds for FIOs depending on ε of the type encountered in the paper.

2. Preliminaries: regularisation and very weak solutions

In this section we recall the notion of very weak solution as introduced in [19].
The main idea, which goes back to algebras of generalised functions, consists in
regularising the equation coefficients via a Friedrichs type mollifier ψ (ψ ∈ C∞

c (Rn),
ψ ≥ 0 with

∫
ψ = 1). In other words, given a compactly supported distribution u on

Rn, we generate a net of smooth functions (uε)ε, where ε ∈ (0, 1], by writing

uε = u ∗ ψω(ε),

where

ψω(ε)(x) = ω(ε)−nψ(x/ω(ε)),

and ω(ε) is a positive function converging to 0 as ε → 0 with ω(ε) ≥ cεa for some
c, a > 0, uniformly with respect to ε. It is clear that uε converges to u as ε → 0. In
addition, the net (uε)ε fulfills some extra properties with respect to the parameter
ε that are illustrated in the proposition below. For a detailed proof of we refer the
reader to [19, 28, 35] and reference therein.

Proposition 2.1.

(i) If u ∈ E ′(Rn) then there exists N ∈ N0 and for all α ∈ Nn
0 there exists c > 0

such that

|∂α(u ∗ ψω(ε))(x)| ≤ cω(ε)−N−|α|,

for all x ∈ Rn and ε ∈ (0, 1].
(ii) If f ∈ C∞

c (Rn) then for all α ∈ Nn
0 there exists c > 0 such that

|∂α(f ∗ ψω(ε))(x)| ≤ c,

for all x ∈ Rn and ε ∈ (0, 1].
(iii) If f ∈ C∞

c (Rn) and mollifier ψ has all the moments vanishing, i.e.,
∫
Rn ψ(x)dx =

1 and
∫
Rn x

αψ(x)dx = 0 for all multi-index α with |α| ≠ 0, then for all α ∈ Nα
0

and for all q ∈ N0 there exists c > 0 such that

|∂α(f ∗ ψω(ε)(x)− f(x))| ≤ cω(ε)q,

for all x ∈ Rn and ε ∈ (0, 1].
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It follows that the nets obtained via convolution with a mollifier are moderate or
negligible with respect to the seminorms of C∞(Rn) (see Definition 2.1). Analogously
one can replace C∞(Rn) with C∞([0, T ]× Rn). In the sequel, K ⋐ Rn stands for K
is a compact set in Rn.

Definition 2.1.

(i) A net (vε)ε ∈ C∞(Rn)(0,1] is C∞-moderate if for all K ⋐ Rn and for all α ∈ Nn
0

there exists N ∈ N0 and c > 0 such that

|∂αvε(x)| ≤ cε−N ,

uniformly in x ∈ K and ε ∈ (0, 1].
(ii) A net (vε)ε ∈ C∞(Rn)(0,1] is C∞-negligible if for all K ⋐ Rn, α ∈ Nn

0 and
q ∈ N0 there exists c > 0 such that

|∂αvε(x)| ≤ cεq,

uniformly in x ∈ K and ε ∈ (0, 1].
(iii) A net (vε)ε ∈ C∞([0, T ] × Rn)(0,1] is C∞-moderate if for all K ⋐ Rn and for

all l ∈ N0 and α ∈ Nn
0 there exists N ∈ N0 and c > 0 such that

|∂kt ∂αvε(t, x)| ≤ cε−N ,

uniformly in t ∈ [0, T ], x ∈ K and ε ∈ (0, 1].
(iv) A net (vε)ε ∈ C∞([0, T ]× Rn)(0,1] is C∞-negligible if for all K ⋐ Rn, k ∈ N0,

α ∈ Nn
0 and q ∈ N0 there exists c > 0 such that

|∂kt ∂αvε(t, x)| ≤ cεq,

uniformly in t ∈ [0, T ], x ∈ K and ε ∈ (0, 1].
(v) A net (vε)ε ∈ C([0, T ], C∞(Rn)(0,1] is C([0, T ], C∞(Rn))-moderate if for all

K ⋐ Rn and for all α ∈ Nn
0 there exists N ∈ N0 and c > 0 such that

|∂αx vε(t, x)| ≤ cε−N ,

uniformly in t ∈ [0, T ], x ∈ K and ε ∈ (0, 1].
(vi) A net (vε)ε ∈ C∞([0, T ] × Rn)(0,1] is C([0, T ], C∞(Rn))-negligible if for all

K ⋐ Rn, α ∈ Nn
0 and q ∈ N0 there exists c > 0 such that

|∂αx vε(t, x)| ≤ cεq,

uniformly in t ∈ [0, T ], x ∈ K and ε ∈ (0, 1].

Remark. If we are dealing with nets of numbers then we will measure moderateness
and negligibility in terms of the module in C or R and we will simply talk of moderate
and negligible nets. Analogously, we can state the definitions above for vectors by
replacing C∞(Rn) with C∞(Rn)m. We will still talk of C∞-moderatenss and C∞-
negligibility.
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2.1. State of the art on hyperbolic equations with low regular coefficients.
In this subsection we give a brief state of the art on hyperbolic equations with low
regular coefficients, with particular focus on the very weak well-posedness of the
corresponding Cauchy problem.

We begin by recalling that the Cauchy problem for ordinary differential equations
has been investigated already in [28] in the context of Colombeau algebras of gener-
alised functions. The results obtained there (Theorem 1.5.2 [28]) can be rewritten at
the net level as follows, for the Cauchy problem

ẋε(t) = Fε(t, xε(t)),

xε(t0) = x0,ε,
(1)

where t ∈ R, (Fε)ε is a net in (C∞(R1+n))n and (xε)ε is a net of initial conditions.
In the sequel we are making use of the standard norm in R1+n that for the sake of
simplicity we will continue to denote with | · |.

Proposition 2.2. Let (Fε)ε be a net in (C∞(R1+n))n such that

(i) for all k ∈ N0 and α ∈ Nn
0 there exists N ∈ N0 and c > 0 such that

|∂kt ∂αxFε(t, x)| ≤ cε−N(1 + |(t, x)|)N ,

for all (t, x) ∈ R× Rn and ε ∈ (0, 1].
(ii) there exists c > 0 such that

∥∇xFε(t, x)∥L∞(R1+n) = O(| ln ε|).

For all ε ∈ (0, 1] the Cauchy problem (1) has a unique solution xε ∈ C∞(R1+n)n

such that if (x0,ε)ε is moderate then (xε)ε is C∞(R)-moderate as well. The solution
(xε)ε is unique modulo, negligible perturbation, i.e., if we perturb the initial data
with a negligible net (i.e., x0,ε + nε, where (nε)ε is negligible) then the corresponding
solution will differ from (xε)ε by a C∞-negligible net.

For the sake of simplicity we say that (∇xFε)ε is logarithmic moderate, i.e., it is
moderate on (0, 1] and fulfilling logarithmic type near 0. Note that one can reformu-
late the proposition above on a finite time interval [0, T ] and replace the polynomial
bound in (i) with an assumption of compact support with respect to the x-variable.

Proposition 2.2 can also be stated for nets that are only continuous with respect
to t. This means to set k = 0 and replace C∞ with C([0, T ], C∞(Rn)). Continuity
with respect to t ∈ [0, T ] and smoothness with respect to x will be the standard
assumptions throughout this paper for our nets of functions.

Let us now consider the scalar case, i.e., the Cauchy problem for first order hyper-
bolic equations. In detail, let

Dtwε =
n∑

j=1

aj,ε(t, x)Djwε + a0,ε(t, x)wε, (2)

wε(0, x) = w0,ε,

where Dj = Dxj
, the coefficients aj,ε are real-valued for all j = 1, . . . , n. The equation

coefficients are compactly supported distributions with respect to x regularised by
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convolution with a mollifier ψ that we assume non-negative and with integral 1. In
detail,

- aj ∈ C([0, T ]× E ′(Rn)),
- a0 ∈ C([0, T ]× E ′(Rn)),
- w0 ∈ E ′(Rn).

and

- aj,ε(t, x) = (aj(t, ·) ∗ ψω(ε))(x) for j = 1, . . . , n,
- a0,ε(t, x) = (a0(t, ·) ∗ ψω(ε))(x),
- w0,ε(x) = w0 ∗ ψε(x).

Definition 2.2. We say that the Cauchy problem

Dtw =
n∑

j=1

aj(t, x)Djw + a0(t, x)w,

w(0, x) = w0

admits a very weak solution (wε)ε if the net (wε)ε solves the regularised problem (2)
and it is C([0, T ], C∞(Rn))-moderate.

The following result, is the net-version of the well-posedness results obtained in
[14, 29, 34]. It shows that a transport equation with singular coefficients admits a
very weak solution under suitable choice of the regularising scale. In the sequel we say
that a net of function is logarithmic moderate if its L∞([0, T ]×Rn)-norm is estimated
by a logarithmic scale.

Proposition 2.3. Let the coefficients (aj,ε)ε be C([0, T ], C∞(Rn))-moderate for j =
1, . . . , n with compact support in x. Suppose that (aj,ε)ε are real valued and (∂kaj,ε)ε
as well as (a0,ε)ε are logarithmic moderate (k, j = 1, . . . , n). Then,

(i) the Cauchy problem above admits a very weak solution (wε)ε which is com-
pactly supported with respect to x.

(ii) If a0,ε as well as w0,ε are real-valued then the solution (wε)ε is real valued as
well.

(iii) Negligible perturbations of the coefficients and initial data lead to a negligible
perturbation in the very weak solution.

In [14] the authors investigated further the properties of the very weak solution
(wε)ε and proved that it can be written as the action of a Fourier integral operator
(FIO) on the initial data (w0,ε)ε. We summarise here the main steps of their argument,
mainly to solve the Eikonal equation to determine the phase function of the FIO and
to solve a certain transport equation to determine its symbol. As expected, we will
work with nets of FIO’s, phase functions and symbols depending on the regularising
parameter ε ∈ (0, 1].

2.2. Nets of phase functions. We begin by constructing the phase function of the
FIO making use of the characteristic curves associated to the principal part of the
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equation. This means to solve the linear Cauchy problem

∂tϕε(t, x, ξ) =
n∑

j=1

aj,ε(t, x)∂jϕε(t, x, ξ)

ϕε(0, x, ξ) = x · ξ.
(3)

Under the assumptions on coefficients (aj,ε)ε in Proposition 2.3, the Cauchy problem
above is solved by a C([0, T ], C∞(Rn))-moderate net (ϕε)ε which can be written as

ϕε(t, x, ξ) =
n∑

l=1

ωl,ε(t, x)ξl,

where ωl,ε with l = 1, . . . , n are solutions of the Cauchy problem

∂tωl,ε(t, x) =
n∑

j=1

aj,ε(t, x)∂jωl,ε(t, x), (4)

ωl,ε(0, x) = xl.

We recall that the characteristic equations associated with the Cauchy problem (4)
are given by

d

ds
γl,ε(x, t; s) = −al,ε(s, γ1,ε(x, t; s), . . . , γn,ε(x, t; s)), (5)

γl,ε(x, t; t) = xl for l = 1, . . . , n,

The solutions γ1,ε, . . . , γn,ε are the components of the characteristic curve

γε = (γ1,ε, . . . , γn,ε)

associated the differential operator
∑n

j=1 aj,ε(t, x)Dj. The following proposition has

been proven in [14] in the context of generalised functions of Colombeau type. For
the advantage of the reader we present here a detailed proof at the net level.

Proposition 2.4. Let the coefficients (aj,ε)ε be real valued C([0, T ], C
∞(Rn))-moderate,

compactly supported in x and let (∂kaj,ε)ε be logarithmic moderate (k, j = 1, . . . , n).
Then, the solution ωl,ε(t, x) of the Cauchy problem (4) can be written as

ωl,ε(t, x) = γl,ε(x, t; 0) = xl +

∫ t

0

al,ε(τ, γ1,ε(x, t; τ), . . . , γn,ε(x, t; τ))dτ,

for l = 1, . . . , n.

Proof. From Proposition 2.3 it is easy to show that there exists a real valued solution
ωl,ε. It remains to prove that ωl,ε(t, x) = γl,ε(x, t; 0). This comes from the fact that
ωl,ε is constant along the characteristic curves γε(x, t; s)

d

ds
ωl,ε(s, γ1,ε(x, t; s), . . . , γn,ε(x, t; s)) = 0.

Hence,

ωl,ε(t, γ1,ε(x, t; t), . . . , γn,ε(x, t; t)) = ωl,ε(0, γ1,ε(x, t; 0), . . . , γn,ε(x, t; 0))
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for each t ∈ R. This implies ωl,ε(t, x) = γl,ε(x, t; 0). By solving directly the char-
acteristic equations and making use of Proposition 2.2 we know that γl,ε(x, t; 0) is
C∞-moderate and it has the following form

γl,ε(x, t; s) = xl −
∫ s

t

al,ε(τ, γ1,ε(x, t; τ), . . . , γn,ε(x, t; τ))dτ,

then

ωl,ε(t, x) = γl,ε(x, t; 0) = xl +

∫ t

0

al,ε(τ, γ1,ε(x, t; τ), . . . , γn,ε(x, t; τ))dτ.

This completes the proof. □

As a straightforward consequence we obtain the following result for the Eikonal
Cauchy problem (3)

Corollary 2.5. If the coefficients (aj,ε)ε are real valued C([0, T ], C∞(Rn))-moderate
with compact support in x with (∂kaj,ε)ε is logarithmic moderate (k, j = 1, . . . , n) then
the phase function

ϕε(t, x, ξ) =
n∑

l=1

ωl,ε(t, x)ξl =
n∑

l=1

γl,ε(x, t; 0)ξl,

=
n∑

l=1

xlξl + ξl

∫ t

0

al,ε(τ, γ1,ε(x, t; τ), . . . , γn,ε(x, t; τ))dτ,

solves the Eikonal Cauchy problem (3).

2.3. The transport equation in this context. We now pass to solve the transport
equation, in other words to solve the Cauchy problem (2) with initial condition set
to 1. i.e., {

Dtbε(t, x) =
∑n

j=1 aj,ε(t, x)Djbε(t, x) + a0,ε(t, x)bε(t, x),

bε(0, ·) = 1.
(6)

The characteristic equations of the Cauchy problem (6) have the form

d

ds
γl,ε(x, t; s) = −al,ε(s, γ1,ε(x, t; s), . . . , γn,ε(x, t; s)),

γl,ε(x, t; t) = xl.

and therefore

γl,ε(x, t; s) = xl −
∫ s

t

al,ε(τ, γ1,ε(x, t; τ), . . . , γn,ε(x, t; τ))dτ

for l = 1, . . . , n. By solving

d

ds
z(s) = ia0,ε(s, γ1,ε(x, t; s), . . . , γn,ε(x, t; s))z(s),

z(0) = 1,

we deduce that
bε(t, x) = ei

∫ t
0 a0,ε(τ,γ1,ε(x,t;τ),...,γn,ε(x,t;τ))dτ . (7)

Using Proposition 2.3 and integrating along the characteristics we have the following
result.
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Proposition 2.6. Let the coefficients (aj,ε)ε be C([0, T ], C∞(Rn))-moderate for j =
1, . . . , n with compact support in x. Suppose that (aj,ε)ε are real valued and (∂kaj,ε)ε
as well as (a0,ε)ε are logarithmic moderate (k, j = 1, . . . , n), then the solution (bε)ε of
the Cauchy problem (6) is expressed by

bε(t, x) = ei
∫ t
0 a0,ε(s,γ1,ε(x,t;s),...,γn,ε(x,t;s))ds (8)

and is C([0, T ], C∞(Rn))-moderate.

We are now ready to write the solution of the Cauchy problem for first order
hyperbolic equations in terms of a FIO formula. In other words we prove that the
Cauchy problem in Definition 2.2 admits a very weak solution which is the action
of a family of parameterised FIO’s on the initial data. The results of the following
subsection are extracted from [14] where were originally stated in the context of
generalised functions of Colombeau type.

2.4. Fourier Integral Operator formula.

Proposition 2.7. Let the coefficients (aj,ε)ε be C([0, T ], C∞(Rn))-moderate for j =
1, . . . , n with compact support in x. Suppose that (aj,ε)ε are real valued and (∂kaj,ε)ε
as well as (a0,ε)ε are logarithmic moderate (k, j = 1, . . . , n). Then the solution (wε)ε
of the Cauchy problem (2) is C([0, T ], C∞(Rn))-moderate and can be written as

wε(t, x) = Fϕε(bε)(w0,ε)(t, x) :=

∫
Rn

eiϕε(t,x,ξ)bε(t, x)ŵ0,ε(ξ)dξ, (9)

where the phase function ϕε is defined by Corollary 2.5 and symbol bε by Proposition
2.6.

The solution of the inhomogeneous Cauchy problem

Dtwε(t, x) =
n∑

j=1

aj,ε(t, x)Djwε(t, x) + a0,ε(t, x)wε(t, x) + fε(t, x), (10)

wε(0, ·) = w0,ε(x),

where the net (fε)ε is C([0, T ], C∞(Rn))-moderate with compact support in x, can
also be expressed into FIO form. We begin by noting that Fourier integral operator
Fϕε(bε) of Proposition 2.7 is given by

Fϕε(bε)(w0,ε)(t, x) =

∫
Rn

eiϕε(t,x,ξ)bε(t, x)ŵ0,ε(ξ)dξ

= bε(t, x)

∫
Rn

eiγε(x,t;0)·ξŵ0,ε(ξ)dξ

= bε(t, x)w0,ε(γε(x, t; 0)).

It defines, for each t ∈ R, a map

Uε(t) = Fϕε(bε)(t) : w0,ε → Fϕε(bε)(w0,ε)(t, ·),
such that Uε(0) = I and

U−1
ε (t) : v → 1

bε(t, γε(x, 0; t))
v(γε(x, 0; t)).

Hence, we obtain the following statement.
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Theorem 2.8. Let the coefficients (aj,ε)ε be C([0, T ], C∞(Rn))-moderate for j =
1, . . . , n with compact support in x. Suppose that (aj,ε)ε are real valued and (∂kaj,ε)ε
as well as (a0,ε)ε are logarithmic moderate (k, j = 1, . . . , n). Then the solution (wε)ε
of the Cauchy problem (10) is C([0, T ], C∞(Rn))-moderate and can be written as

wε(t, x) = Fϕε(bε)(t)

(
w0,ε + i

∫ t

0

1

bε(τ, γε(·, 0; τ))
fε(τ, γε(·, 0; τ))dτ

)
(x), (11)

where the phase function ϕε is defined Corollary 2.5 and symbol bε by Proposition
2.6.

In the rest of the paper we will focus on hyperbolic systems with irregular coef-
ficients. More precisely, we will formulate conditions on the principal part and the
lower order terms matrix (Levi conditions) which will guarantee the existence of a
very weak solution. Our analysis will also investigate different levels of singularity of
the system coefficients and how they relate to the corresponding very weak solution.

3. Hyperbolic systems with irregular coefficients

We want to study the Cauchy problem for 2× 2 systems of the type

Dtu = A(t, x,Dx)u+ L(t, x,Dx)u+ f(t, x), (t, x) ∈ [0, T ]× Rn,

with initial data u(0, x) = g(x), where,

A(t, x,Dx) =

[∑n
j=1 λ1j(t, x)Dxj

a12(t, x,Dx)
0

∑n
j=1 λ2j(t, x)Dxj

]
,

and

L(t, x,Dx) =

[
ℓ11(t, x) ℓ12(t, x)

ℓ21(t, x)⟨Dx⟩−1 ℓ22(t, x)

]
,

are matrices of pseudo-differential operators of order 1 and 0, respectively, and λij ∈ R
for i = 1, 2 and j = 1, . . . , n. Differently from [25] we drop here the assumption of
smoothness with respect to x, so the entries of the matrices above are assumed to
be low regular in x, namely discontinuous or in general distributional. Passing to
regularisation via convolution with a mollifier we are lead to study the regularised
Cauchy problem{

Dtuε = Aε(t, x,Dx)uε + Lε(t, x,Dx)uε + fε(t, x), (t, x) ∈ [0, T ]× Rn,

uε(0, x) = gε(x), x ∈ Rn,
(12)

where uε(0, x) = [g1,ε(x), g2,ε(x)]
T and fε(t, x) = [f1,ε(t, x), f2,ε(t, x)]

T , with

Aε(t, x,Dx) =

[∑n
j=1 λ1j,ε(t, x)Dxj

a12,ε(t, x,Dx)
0

∑n
j=1 λ2j,ε(t, x)Dxj

]
,

and

Lε(t, x,Dx) =

[
ℓ11,ε(t, x) ℓ12,ε(t, x)

ℓ21,ε(t, x)⟨Dx⟩−1 ℓ22,ε(t, x)

]
,

where (λ1j,ε)ε, (λ2j,ε)ε ∈ C([0, T ], C∞(Rn))(0,1] for j = 1, . . . , n, are real-valued and
(a12,ε)ε and (ℓik,ε)ε are nets of symbols of order 1 and 0 respectively, i.e., (a12,ε)ε ∈
C([0, T ], S1

1,0(Rn × Rn))(0,1] and (ℓik,ε)ε ∈ C([0, T ], S0
1,0(Rn × Rn))(0,1] for i, k = 1, 2.



12 CLAUDIA GARETTO AND BOLYS SABITBEK

We will prove that the original Cauchy problem admits a very weak solution by
carefully analysing the Sobolev well-posedness of the regularised Cauchy problem
(12). This will require some preliminary work inspired by [25] and the notions of
Sobolev moderateness and negligibility.

3.1. Preliminaries: Fourier integral operators and Sobolev norms. For each
λij,ε, i = 1, 2, j = 1, . . . , n we will be denoting by G0

i,εw0,ε the solution to{
Dtwε =

∑n
j=1 λij,ε(t, x)Dxj

wε + ℓii,ε(t, x,Dx)wε,

wε(0, x) = w0,ε(x),
(13)

and by Gi,εfε the solution to{
Dtwε =

∑n
j=1 λij,ε(t, x)Dxj

wε + ℓii,ε(t, x,Dx)wε + fε(t, x),

wε(0, x) = 0.

These are Fourier integral operators where the phase function ϕi,ε is defined by Corol-
lary 2.5 and symbol

bi,ε(t, x) = ei
∫ t
0 ℓii,ε(s,γ1,ε(x,t;s),...,γn,ε(x,t;s))ds,

by Proposition 2.6 for i = 1, 2. Namely, for

ϕi,ε(t, x, ξ) = xξ +
n∑

j=1

ξj

∫ t

0

λij,ε(τ, γε(x, t; τ))dτ = γi,ε(x, t; 0)ξ,

the operators G0
i,ε and Gi,ε, i = 1, 2, are given by

G0
i,εw0,ε(t, x) = Fϕi,ε

(bi,ε)(w0,ε)(t, x) :=

∫
Rn

eiϕi,ε(t,x,ξ)bi,ε(t, x)ŵ0,ε(ξ)dξ,

= bi,ε(t, x)w0,ε(γi,ε(x, t; 0))

and

Gi,εfε(t, x) = Fϕi,ε
(bi,ε)(t)

(
i

∫ t

0

1

bi,ε(s, γi,ε(·, 0; s))
fε(s, γi,ε(·, 0; s))ds

)
(x)

= bi,ε(t, x)

(
i

∫ t

0

1

bi,ε(s, γi,ε(γi,ε(x, t; 0), 0; s))
fε(s, γi,ε(γi,ε(x, t; 0), 0; s))ds

)
= i

∫ t

0

∫
R2n

eiγi,ε(γi,ε(x,t;0),0;s)ξ−iyξ 1

bi,ε(s, γi,ε(γi,ε(x, t; 0), 0; s))
bi,ε(t, x)fε(s, y)dyd

−ξds

=

∫ t

0

∫
R2n

eiγi,ε(γi,ε(x,t;0),0;s)ξ−iyξAi,ε(s, t, x)fε(s, y)dyd
−ξds.

Combining Proposition 2.7 with Theorem 2.8 we easily obtain the following propo-
sition which describes the mapping properties of the operators G0

i,ε and Gi,ε.

Proposition 3.1. Assume that

(H1) The coefficients (λij,ε)ε are C([0, T ], C∞(Rn))-moderate for i = 1, 2 and j =
1, . . . , n with compact support in x.

(H2) The coefficients (λij,ε)ε are real valued and (∂kλij,ε)ε as well as (ℓii,ε)ε are
logarithmic moderate for k, j = 1, . . . , n and i = 1, 2.
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The operators G0
i,ε and Gi,ε map C([0, T ], C∞(Rn))-moderate nets with compact sup-

port in x into nets of the same type. The same holds with moderate replaced by
negligible.

We recall that pseudo-differential operators are a special kind of Fourier integral
operators so in the sequel we will also deal with nets of pseudo-differential operators
which will therefore have the same mapping properties of G0

i,ε. More precisely, we
will work with the following nets of symbols, where the symbol class Sm

1,0(Rn × Rn)
is defined as the set of all a = a(x, ξ) ∈ C∞(Rn × Rn) such that

∀α, β ∈ Nn
0 , ∃Cα,β > 0 : |∂αx∂

β
ξ a(x, ξ)| ≤ Cα,β⟨ξ⟩m−β ∀(x, ξ) ∈ Rn × Rn.

Definition 3.1.

(i) A net (aε)ε ∈ C∞(Rn × Rn)(0,1] is Sm
1,0(Rn × Rn)-moderate if for all K ⋐ Rn

and for all α, β ∈ Nn
0 and there exists N ∈ N0 and c > 0 such that

⟨ξ⟩|β|−m|∂αx∂
β
ξ aε(x, ξ)| ≤ cε−N ,

uniformly in ξ ∈ Rn, x ∈ K and ε ∈ (0, 1].
(ii) A net (aε)ε ∈ C∞(Rn × Rn)(0,1] is Sm

1,0(Rn × Rn)-negligible if for all K ⋐ Rn

and for all α, β ∈ Nn
0 and there exists q ∈ N0 and c > 0 such that

⟨ξ⟩|β|−m|∂αx∂
β
ξ aε(x, ξ)| ≤ cεq,

uniformly in ξ ∈ Rn, x ∈ K and ε ∈ (0, 1].

Finally, we denote by C([0, T ], Sm
1,0(Rn × Rn))(0,1] the space of net of all sym-

bols (aε(t, x, ξ))ε ∈ Sm
1,0(Rn × Rn)(0,1] which are continuous with respect to t and

in analogy with the definition above we can define moderate and negligible nets in
C([0, T ], Sm

1,0(Rn×Rn))(0,1] by employing uniform estimates with respect to t ∈ [0, T ].
We can now go back to our regularised Cauchy problem. As explained in detail in

[25] the solution of the Cauchy problem (12) can be written as

u1,ε = U0
1,ε +G1,ε((a12,ε + ℓ12,ε)u2,ε), (14)

u2,ε = U0
2,ε +G2,ε(ℓ21,ε⟨Dx⟩−1u1,ε), (15)

where
U0
i,ε = G0

i,εgi,ε +Gi,ε(fi,ε), i = 1, 2. (16)

We want to prove that a smooth solution exists by proving that it belongs to every
Sobolev space Hs. This means to make use of the Sobolev mapping properties of all
the operators involved above.

Plugging (15) in (14), we obtain

u1,ε = Ũ0
1,ε +G1,ε(a12,εG2,ε(ℓ21,ε⟨Dx⟩−1u1,ε)) +G1,ε(ℓ12,εG2,ε(ℓ21,ε⟨Dx⟩−1u1,ε)), (17)

where
Ũ0
1,ε = G0

1,εg1,ε +G1,ε(f1,ε) +G1,ε((a12,ε + ℓ12,ε)U
0
2,ε). (18)

By employing Proposition 5.2 in the Appendix we have that

∥Gi,εv∥Hs ≤ TC ′(ε) sup
t,s∈[0,T ]

sup
|β|≤2n+1

||∂βxAi,ε(s, t, x)||L∞(Rn
x)∥v∥Hs ,

∥G0
i,εv∥Hs ≤ C ′(ε) sup

t∈[0,T ]

sup
|β|≤2n+1

||∂βx bi,ε(t, x)||L∞(Rn
x)∥v∥Hs ,

(19)
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where C ′(ε) depends on the positive nets C(ε), Cα,i(ε) and Cβ,i(ε) appearing below:

|∂ξϕi,ε(t, x, ξ)− ∂ξϕi,ε(t, y, ξ)| ≥ C(ε)|x− y| for x, y ∈ Rn, ξ ∈ Rn,

|∂yϕi,ε(t, y, ξ)− ∂yϕi,ε(t, y, η)| ≥ C(ε)|ξ − η| for y ∈ Rn, ξ, η ∈ Rn,

and

|∂αy ∂ξϕi,ε(t, y, ξ)| ≤ Cα,i(ε),

|∂y∂βξ ϕi,ε(t, y, ξ)| ≤ Cβ,i(ε),

for all t ∈ [0, T ], for 1 ≤ |α|, |β| ≤ 2n+ 2 and i = 1, 2.
In the sequel, we introduce the concept of Hs-moderate, Hs-negligible nets, and a

very weak solution of Sobolev order s.

Definition 3.2.

(i) A net (vε)ε ∈ Hs(Rn)(0,1] is Hs-moderate if there exists N ∈ N0 and c > 0
such that

||vε(x)||Hs(Rn) ≤ cε−N ,

uniformly in ε ∈ (0, 1].
(ii) A net (vε)ε ∈ Hs(Rn)(0,1] is Hs-negligible if for all q ∈ N0 there exists c > 0

such that
||vε(x)||Hs(Rn) ≤ cεq,

uniformly in ε ∈ (0, 1].

Analogously, one can replace Hs(Rn) with C([0, T ], Hs(Rn)) and state the corre-
sponding notions of C([0, T ], Hs(Rn))-moderate and C([0, T ], Hs(Rn))-negligible net.
This will appear in the following notion of very weak solution of Sobolev order s.

Definition 3.3. We say that the Cauchy problem{
Dtu = A(t, x,Dx)u+ L(t, x,Dx)u+ f(t, x),

u(0, x) = g0(x)

admits a very weak solution (uε)ε of Sobolev order s if the net (uε)ε solves the regu-
larised problem (12) and it is C([0, T ], Hs(Rn))-moderate.

We are now ready to investigate the Cauchy problem (12) more in detail.

3.2. Hyperbolic systems with non-diagonalisable principal part. Consider
the regularised hyperbolic system of type{

Dtuε = Aε(t, x,Dx)uε + Lε(t, x,Dx)uε + fε(t, x), (t, x) ∈ [0, T ]× Rn,

uε(0, x) = gε(x), x ∈ Rn,

where uε(0, x) = [g1,ε(x), g2,ε(x)]
T and fε(t, x) = [f1,ε(t, x), f2,ε(t, x)]

T , with theAε(t, x,Dx)
and Lε(t, x,Dx) given by

Aε(t, x,Dx) =

[∑n
j=1 λ1j,ε(t, x)Dxj

a12,ε(t, x,Dx)
0

∑n
j=1 λ2j,ε(t, x)Dxj

]
,

and

Lε(t, x,Dx) =

[
ℓ11,ε(t, x) ℓ12,ε(t, x)

ℓ21,ε(t, x)⟨Dx⟩−1 ℓ22,ε(t, x)

]
,
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where (λ1j,ε)ε, (λ2j,ε)ε ∈ C([0, T ], C∞(Rn))(0,1] for j = 1, . . . , n and (a12,ε)ε and (ℓik,ε)ε
are nets of symbols of order 1 and 0 respectively, i.e., (a12,ε)ε ∈ C([0, T ], S1

1,0(Rn ×
Rn))(0,1] and (ℓik,ε)ε ∈ C([0, T ], S0

1,0(Rn × Rn))(0,1] for i, k = 1, 2.
The net of solutions (uε)ε of this hyperbolic system can be formulated in terms of

operators G0
i,ε and Gi,ε introduced in Subsection 3.1 if the following hypotheses hold:

(H1) The coefficients (λ1j,ε)ε and (λ2j,ε)ε are real valued and C([0, T ], C∞(Rn))-
moderate for j = 1, . . . , n with compact support in x.

(H2) Also, (∂kλ1j,ε)ε, (∂kλ2j,ε)ε and (ℓii,ε)ε are logarithmic moderate for k, j =
1, . . . , n and i = 1, 2.

Note that these assumptions allow to write (u1,ε)ε and (u2,ε)ε as in (14) and (15).
More details can be found in Theorem 2.8.

In order to prove the existence of a very weak solution we start from the component
u1,ε and the equation

u1,ε = Ũ0
1,ε +G1,ε(a12,εG2,ε(ℓ21,ε⟨Dx⟩−1u1,ε)) +G1,ε(ℓ12,εG2,ε(ℓ21,ε⟨Dx⟩−1u1,ε)),

where

Ũ0
1,ε = G0

1,εg1,ε +G1,ε(f1,ε) +G1,ε((a12,ε + ℓ12,ε)U
0
2,ε).

We make use of the Banach fixed point theorem assuming the additional hypothesis:

(H3) The operatorsG0
i,ε andGi,ε mapHs-moderate and C([0, T ], Hs(Rn))-moderate

nets into themselves, respectively and

G0
1,ε := G1,ε ◦ (a12,ε + ℓ12,ε) ◦G2,ε ◦ ℓ21,ε⟨Dx⟩−1

has the operator norm in Hs strictly less than 1

||G0
1,ε||Hs→Hs = O(1).

Note that G0
1,ε acts continuously on Hs since it is of order 0.

Let us now work on better understanding the hypothesis (H3). We have that (H3)
holds if

||G1,ε ◦ a12,ε ◦G2,ε ◦ ℓ21,ε⟨Dx⟩−1||Hs→Hs ≤ TC1(ε)A1(ε)a12(ε)C2(ε)A2(ε)L21(ε) = O(1),

and

||G1,ε ◦ ℓ12,ε ◦G2,ε ◦ ℓ21,ε⟨Dx⟩−1||Hs→Hs ≤ TC1(ε)A1(ε)L12(ε)C2(ε)A2(ε)L21(ε) = O(1),

where

Ai(ε) := sup
t,s∈[0,T ]

sup
|β|≤2n+1

||∂βxAi,ε(s, t, x)||L∞(Rn
x) for i = 1, 2,

a12(ε) := sup
t∈[0,T ]

sup
|α|,|β|≤2n+1

||⟨ξ⟩−1∂αξ ∂
β
xa12,ε(t, x, ξ)||L∞(Rn

x×Rn
ξ )
,

L12(ε) := sup
t∈[0,T ]

sup
|β|≤2n+1

||∂βx ℓ12,ε(t, x)||L∞(Rn
x),

L21(ε) := sup
t∈[0,T ]

sup
|β|≤2n+1

||∂βx ℓ21,ε(t, x)||L∞(Rn
x),
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and C1(ε) and C2(ε) include the combination of constants C(ε), Cα,i(ε) and Cβ,i(ε)
from

|∂ξϕi,ε(t, x, ξ)− ∂ξϕi,ε(t, y, ξ)| ≥ C(ε)|x− y| for x, y ∈ Rn, ξ ∈ Rn,

|∂yϕi,ε(t, y, ξ)− ∂yϕi,ε(t, y, η)| ≥ C(ε)|ξ − η| for y ∈ Rn, ξ, η ∈ Rn,

and that
|∂αy ∂ξϕi,ε(t, y, ξ)| ≤ Cα,i(ε), |∂y∂βξ ϕi,ε(t, y, ξ)| ≤ Cβ,i(ε),

for 1 ≤ |α|, |β| ≤ 2n+ 2 and i = 1, 2.
We refer the reader to the appendix at the end of the paper for the Sobolev mapping

properties of Fourier integral operators that we have employed above. Note that the
nets of constants Cα,i(ε), Cβ,i(ε) are automatically moderate while C(ε) and C−1(ε)
are assumed to be moderate to make sure that our operators have the right Sobolev
mapping properties. The stronger hypothesis (H3) is required to allow a fixed point
argument independent of the parameter ε. We therefore conclude that (H3) can be
written as

(H3) the nets of constants (C(ε))ε and (C−1(ε))ε are moderate and

||G0
1,ε||Hs→Hs = O(1).

If (H3) holds, then we will apply Banach’s fixed point theorem in the space X(t) :=
C([0, t], Hs(Rn)) for t ∈ [0, T ] with the norm

||u1,ε||X(t) = sup
0≤τ≤t

||u1,ε(τ, ·)||Hs .

Note that we can rewrite the equation for u1,ε as

u1,ε = Ũ0
1,ε + G0

1,εu1,ε.

Using composition of Fourier integral operators and hypothesis (H3) we have that
the 0-order Fourier integral operator G0

1,ε maps X(t) continuously into itself and for
small time interval it is a contraction, in the sense that there exists T ∗ ∈ [0, T ] such
that

||G0
1,ε(u− v)||X(T ∗) ≤ CT ∗||u− v||X(T ∗), (20)

with CT ∗ < 1. The existence of a unique fixed point u1,ε for the map G0
1,ε is provided

by Banach’s fixed point theorem and is equivalent to say that the operator I − G0
1,ε

is invertible on [0, T ∗] for all values of ε. It therefore follows that (u1,ε)ε inherits the

moderateness properties of (Ũ0
1,ε)ε. Note that as already observed in [25] the constant

C does not depend on the initial data so the argument can be iterated to cover the
full interval [0, T ].

We have therefore proven the following general result.

Theorem 3.2. Let us consider the Cauchy problem{
Dtu = A(t, x,Dx)u+ L(t, x,Dx)u+ f(t, x), (t, x) ∈ [0, T ]× Rn,

u(0, x) = g(x), x ∈ Rn,
(21)

where

A(t, x,Dx) =

[∑n
j=1 λ1j(t, x)Dxj

a12(t, x,Dx)
0

∑n
j=1 λ2j(t, x)Dxj

]
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is an upper triangular matrix of first order differential operator and

L(t, x,Dx) =

[
ℓ11(t, x) ℓ12(t, x)

ℓ21(t, x)⟨Dx⟩−1 ℓ22(t, x)

]
,

is a matrix of pseudo-differential operator of order 0 with ℓ12 of order −1, continuous
with respect to t and such that

(i) all coefficients of A(t, x,Dx) and L(t, x,Dx) are in C([0, T ], E ′(Rn)) with com-
pact support in x,

(ii) the initial data gi(x) ∈ E ′(Rn) and the source term fi(t, x) ∈ C([0, T ], E ′(Rn))
with compact support in x for i = 1, 2.

Assume that (H1), (H2), (H3) are satisfied. Let the nets of regularised initial
data (gi,ε)ε and the right-hand side (fi,ε)ε be Hs+i−1-moderate and C([0, T ], Hs+i−1)-
moderate for i = 1, 2, respectively. Then the net of solutions (uε)ε is a very weak
solution of anisotropic Sobolev type, i.e. ui,ε is C([0, T ], H

s+i−1)-moderate for i = 1, 2.

Remark. Note that when regularising a distribution with compact support with a
mollifier which is also compactly supported we automatically get a moderate net of
smooth functions with compact support and therefore a moderate net of any Sobolev
order.

The existence of a very weak solution in the sense of Definition 2.2 follows from
the following corollary.

Corollary 3.3. If (H1) and (H2), (H3) hold then the Cauchy problem (21) has a
very weak solution (uε)ε, i.e., a net (uε)ε which solves the regularised Cauchy problem
and it is C([0, T ], C∞(Rn))-moderate.

Remark. Negligible perturbations of the system coefficients and the initial data leads
to a negligible perturbation in the solution. This follows from the fact that our nets
of operators maps negligible nets into negligible nets. For this reason we say that our
Cauchy problem is well-posed in a very weak sense.

3.3. Special cases of the hyperbolic system in (21). In this subsection, we anal-
yse some special cases of Theorem 3.2. First, we assume that the matrix L(t, x,Dx)
of the lower order terms is upper triangular and that A(t, x,Dx) is either diagonal
or in upper triangular form. In both these cases the hypotheses (H1) and (H2) are
sufficient to prove Theorem 3.2.

Corollary 3.4. Let us consider the Cauchy problem (21) with a diagonal matrix of
first order differential operators A(t, x,Dx) and an upper triangular matrix of 0-order
pseudo-differential operator L(t, x,Dx) as

A(t, x,Dx) =

[∑n
j=1 λ1j(t, x)Dxj

0
0

∑n
j=1 λ2j(t, x)Dxj

]
,

and

L(t, x,Dx) =

[
ℓ11(t, x) ℓ12(t, x)

0 ℓ22(t, x)

]
,

where

(i) all coefficients of A(t, x,Dx) and L(t, x,Dx) are in C([0, T ], E ′(Rn)) with com-
pact support in x,
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(ii) the initial data gi(x) ∈ E ′(Rn) and the source term fi(t, x) ∈ C([0, T ], E ′(Rn))
with compact support in x for i = 1, 2.

Assume that (H1) and (H2) are satisfied. Then the net of solutions (uε)ε of the
regularised problem is a very weak solution, i.e. (ui,ε)ε is C([0, T ], C

∞(Rn))-moderate
for i = 1, 2 and can be written as

u1,ε = G0
1,εg1,ε +G1,εf1,ε,

u2,ε = G0
2,εg2,ε +G2,εf2,ε.

Corollary 3.5. Let the matrices A(t, x,Dx) and L(t, x,Dx) in the Cauchy problem
(21) be both upper triangular. Let

(i) all coefficients of A(t, x,Dx) and L(t, x,Dx) are in C([0, T ], E ′(Rn)) with com-
pact support in x,

(ii) the initial data gi(x) ∈ E ′(Rn) and the source term fi(t, x) ∈ C([0, T ], E ′(Rn))
with compact support in x for i = 1, 2.

Assume that (H1) and (H2) are satisfied. Assume that there exist moderate nets
of constants (C(ε))ε and (C−1(ε))ε such that

|∂ξϕi,ε(t, x, ξ)− ∂ξϕi,ε(t, y, ξ)| ≥ C(ε)|x− y| for x, y ∈ Rn, ξ ∈ Rn, (22)

|∂yϕi,ε(t, y, ξ)− ∂yϕi,ε(t, y, η)| ≥ C(ε)|ξ − η| for y ∈ Rn, ξ, η ∈ Rn,

for all i = 1, 2. Then the net of solutions (uε)ε of the regularised problem is a very
weak solution of anisotropic Sobolev type for all s ∈ R, i.e. (ui,ε)ε is C([0, T ], Hs+i−1)-
moderate for i = 1, 2 and can be written as

u1,ε = G0
1,εg1,ε +G1,εf1,ε +G1,ε((a12,ε + ℓ12,ε)U

0
2,ε),

u2,ε = U0
2,ε = G0

2,εg2,ε +G2,εf2,ε,

where U0
2,ε is defined in (16).

Remark. It is important to note that Corollary 3.4 is independent of the hypothesis
(H3) and that Corollary 3.5 only requires the hypothesis on the phase function which
guarantees the right Sobolev mapping properties for our Fourier integral operators.
This is due to the fact that the Banach fixed point theorem is not required for the
proof of Corollaries 3.4 and 3.5. It is also clear that Corollary 3.4 and 3.5 hold for
m×m-systems as well. It is indeed sufficient to formulate the hypotheses (H1) and
(H2) with i = 1, . . . ,m and assume that (22) holds for i = 1, . . . ,m.

We now focus on 2× 2-systems where the hypothesis (H3) is needed to prove the
existence of a very weak solution. For the sake of the reader we reformulate Propo-
sition 5.2 for the operators involved in (H3). This will apply to a scenario where the
matrices A(t, x,Dx) and L(t, x,Dx) are not as in the previous two corollaries. Let
ϕi,ε(t, x, ξ) = γi,ε(x, t; 0)ξ. We have that if there exists constants C,Cα, Cβ indepen-
dent of ε ∈ (0, 1] such that

|γi,ε(x, t; 0)− γi,ε(y, t; 0)| ≥ C|x− y| for t ∈ [0, T ], x, y ∈ Rn,

|∂yγi,ε(y, t; 0) · (ξ − η)| ≥ C|ξ − η| for t ∈ [0, T ], y ∈ Rn, ξ, η ∈ Rn,
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and

|∂αy γi,ε(y, t; 0)| ≤ Cα, |∂y∂βξ (γi,ε(y, t; 0) · ξ)| ≤ Cβ, for t ∈ [0, T ], y ∈ Rn,

for 1 ≤ |α|, |β| ≤ 2n + 2 and i = 1, 2, and the lower order terms ℓ12,ε and ℓ21,ε have
derivatives up to order 2n+1 which are bounded with respect to the parameter ε as
well, then the hypothesis (H3) is automatically fulfilled. This corresponds to a case
of higher regularity of the coefficients which is treated in the next corollary.

Corollary 3.6. Let us consider the Cauchy problem (21) with given a diagonal ma-
trix of first order differential operators A(t, x,Dx) and a matrix of 0-order pseudo-
differential operator L(t, x,Dx) as

A(t, x,Dx) =

[∑n
j=1 λ1j(t, x)Dxj

0
0

∑n
j=1 λ2j(t, x)Dxj

]
,

and

L(t, x,Dx) =

[
0 ℓ12(t, x)

ℓ21(t, x) 0

]
,

where

(i) the diagonal elements λ1j, λ2j ∈ C([0, T ], Ck+1(Rn)) for j = 1, . . . , n and
k ≥ 2n+ 1 with compact support in x;

(ii) the initial data g(x) ∈ E ′(Rn) and the source term fi(t, x) ∈ C([0, T ], E ′(Rn))
with compact support in x, for i = 1, 2;

(iii) the non-diagonal elements ℓ12(t, x), ℓ21(t, x) ∈ C([0, T ], Ck(Rn)) with compact
support with respect to x.

Then the net of solutions (uε)ε of the regularised problem is a very weak solution
of Sobolev type for all s ∈ R, i.e. (ui,ε)ε is C([0, T ], Hs)-moderate for i = 1, 2.

Proof of Corollary 3.6. The enhanced regularity of the coefficients allows (H1), (H2),
and (H3) to be satisfied automatically with constants that do not depend on ε. Under
assumptions (H1) and (H2), we can express the (uε)ε components as:

u1,ε = G0
1,εg1,ε +G1,εf1,ε +G1,ε(ℓ12,εu2,ε),

u2,ε = G0
2,εg2,ε +G2,εf2,ε +G2,ε(ℓ21,εu1,ε).

By substituting u2,ε into the equation of u1,ε, we get

u1,ε = Ũ0
1,ε + G0

1,εu1,ε,

where

Ũ0
1,ε := G0

1,εg1,ε +G1,εf1,ε +G1,ε(ℓ12 ◦G0
2,εg2,ε) +G1,ε(ℓ12 ◦G2,εf2,ε),

G0
1,ε := G1,ε ◦ ℓ12,ε ◦G2,ε ◦ ℓ21,ε.

Note that G0
1,ε is a zero-order operator. In other words it is not necessary in this

specific case to assume that the entry below the diagonal in the matrix L(t, x,Dx)
is of order −1. Thus, one can prove that G0

1,ε has the operator norm in Hs strictly

less than 1 due to (H3) and the argument previously seen in (20). Moreover, Ũ0
1,ε is

Hs-moderate. By applying the Banach fixed-point theorem, we prove the existence
of very weak solution (u1,ε)ε, i.e., (u1,ε)ε is C([0, T ], H

s)-moderate. Finally, we obtain
u2,ε by substituting u1,ε into the equation for u2,ε. □
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4. Consistency and Applications

In this section, we prove that our result is consistent with the classical well-
posedness result obtained in [25] when the system is regular enough. In detail, we
show that every very weak solution converges to the classical solution when it exists,
namely when the system has smooth coefficients with respect to x. In addition, we
discuss some examples of physical relevance.

Theorem 4.1. Consider the Cauchy problem (21), where A(t, x,Dx) is an upper tri-
angular matrix of first-order pseudo-differential operators and L(t, x,Dx) is a matrix
of zero-order pseudo-differential operators, continuous with respect to t, of the form

A(t, x,Dx) =

[∑n
j=1 λ1j(t, x)Dxj

a12(t, x,Dx)
0

∑n
j=1 λ2j(t, x)Dxj

]
and

L(t, x,Dx) =

[
ℓ11(t, x) ℓ12(t, x)

ℓ21(t, x)⟨Dx⟩−1 ℓ22(t, x)

]
.

Assume that all coefficients of A(t, x,Dx) and L(t, x,Dx) are continuous in t, smooth
and compactly supported with respect to x, the initial data gi(x) ∈ C∞

c (Rn) and
fi(t, x) ∈ C([0, T ], C∞

c (Rn)) for i = 1, 2 and s ∈ R. Hence,
(i) the Cauchy problem (21) has a unique solution u with components ui ∈

C([0, T ], C∞
c (Rn)) for i = 1, 2;

(ii) the Cauchy problem (21) has a very weak solution (uε)ε, i.e., the components
(ui,ε)ε are C([0, T ], C∞(Rn))-moderate for i = 1, 2.

(iii) the net uε(t, ·) converges to u(t, ·) as ε → 0 in L2(Rn
x) uniformly with respect

to t ∈ [0, T ].

Proof of Theorem 4.1. (i) The well-posedness of the Cauchy problem can be derived
from the results presented by the first author, Jäh, and Ruzhansky in [25].

(ii) The existence of a very weak solution of anisotropic Sobolev type is obtained
from Theorem 3.2. Note that since the coefficients are smooth the hypotheses (H1)-
(H3) are fulfilled with constants independent of ε.
(iii) Let (uε)ε and u be a very weak solution and the classic solution of our Cauchy

problem, respectively. Our argument is independent of the choice of the mollifier and
the scale we are using in our regularisation, so we namely prove that every very weak
solution produced in this way is convergent to the unique classical solution.

We now compare the classical Cauchy problem with solution u, with the regularised
one with solution (uε)ε. It follows that{

Dt(uε − u) = Aε(uε − u) + Lε(uε − u) + (fε − f) +Rε, (t, x) ∈ [0, T ]× Rn,

(uε − u)(0, x) = (gε − g)(x), x ∈ Rn,

where

Rε(t, x) = [(Aε − A)(t, x,Dx) + (Lε − L)(t, x,Dx)]u(t, x).

Repeating the argument in Theorem 3.2, we arrive at

V1,ε = U0
1,ε +G1,ε ◦ (a12,ε + ℓ12,ε) ◦G2,ε ◦ ℓ21,ε⟨Dx⟩−1V1,ε,
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where

V1,ε = u1,ε − u1,

U0
1,ε = G0

1,ε(g1,ε − g1) +G1,ε([f1,ε − f1] +R1,ε)

+G1,ε ◦ (a12,ε + ℓ12,ε) ◦ [G0
2,ε(g2,ε − g2) +G2,ε(f2,ε − f2) +G2,εR2,ε],

and

R1,ε := [(λ1,ε − λ1)(t, x,Dx)u1 + (a12,ε − a12)u2 + (ℓ11,ε − ℓ11)u1 + (ℓ12,ε − ℓ12)u2],

R2,ε := [(λ2,ε − λ2)(t, x,Dx)u2 + (ℓ21,ε − ℓ21)⟨Dx⟩−1u1 + (ℓ22,ε − ℓ22)u2].

By using the hypothesis (H3) and the Banach fixed-point theorem with CT ≤ 1, we
get

||V1,ε||L2(Rn
x)

= ||U0
1,ε||L2(Rn

x)
+ ||G1,ε ◦ (a12,ε + ℓ12,ε) ◦G2,ε ◦ ℓ21,ε⟨Dx⟩−1V1,ε||L2(Rn

x)

≤ ||U0
1,ε||L2(Rn

x)
+ CT ||V1,ε||L2(Rn

x)

≤ ||U0
1,ε||L2(Rn

x)
.

Note that because of the regularity of the coefficients the operators involved above
fulfill estimates which are independent of the parameter ε ∈ (0, 1]. We therefore have
that ||U0

1,ε||L2(Rn
x)

→ 0 as ε → 0 since ||g1,ε − g1||L2(Rn
x)

→ 0, ||f1,ε − f1||L2(Rn
x)

→ 0,

||λi,ε − λi||L∞(Rn
x) → 0, ||⟨ξ⟩−1(a12,ε − a12)||L∞(Rn

x×Rn
ξ )

→ 0, and ||ℓij,ε − ℓij||L∞(Rn
x) → 0

for i, j = 1, 2 as ε → 0. This gives that ||u1,ε − u1||L2(Rn
x)

→ 0. From the continuity
assumption we have that all the limits above hold uniformly with respect to t ∈ [0, T ].
This yields to ∥uε − u∥L2(Rn

x)
→ 0 as ε→ 0 uniformly with respect to t ∈ [0, T ]. □

We conclude this section with the analysis of few examples where the system coef-
ficients are less than continuous or in general distributions with compact support.

4.1. Examples. For the sake of simplicity we work in space dimension 1. Let us
consider the Cauchy problemDtu =

[
H(x)Dx a12(t, x,Dx)

0 H(x)Dx

]
u+

[
ℓ11(t, x) ℓ12(t, x)

ℓ21(t, x)⟨Dx⟩−1 ℓ22(t, x)

]
u,

u(0, x) = g(x),

where (t, x) ∈ [0, T ]×R, u(0, x) = [g1(x), g2(x)]
T with g1, g2 ∈ E ′(R) and the operators

a12 and ℓij are pseudo-differential operators of order 1 and 0 respectively continuous
with respect to t. For the moment we assume that only the coefficients on the diagonal
of the matrix A are non-regular, i.e., H is the Heaviside function (H(x) = 1 for x ≥ 0
and H(x) = 0 for x < 0). One could in principle replace H with any discontinuous
but bounded function. Note that already in this situation the system is not treatable
within the classical theory of hyperbolic systems with multiplicities that as in [25, 26]
requires smoothness with respect to the variable x. It is therefore meaningful to look
at the regularised problem and at the net (uε)ε of its solutions. In detail,
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Dtuε =

[
Hε(x)Dx a12(t, x,Dx)

0 Hε(x)Dx

]
uε +

[
ℓ11(t, x) ℓ12(t, x)

ℓ21(t, x)⟨Dx⟩−1 ℓ22(t, x)

]
uε,

uε(0, x) = gε(x),

where

Hε(x) = (H ∗ ψω(ε))(x),

g1,ε(x) = (g1 ∗ ψε)(x),

g2,ε(x) = (g2 ∗ ψε)(x).

We will choose the scale ω(ε) later in order to make sure that the hypothesis (H2)
holds.

We can reformulate the regularised problem in terms of Fourier integral operators
follows

u1,ε = G0
1,εg1,ε +G1,ε((a12 + ℓ12)u2,ε),

u2,ε = G0
2,εg2,ε +G2,ε(ℓ21⟨Dx⟩−1u1,ε).

where

G0
j,εgj,ε(t, x) =

∫
R
ei(x+Hε(x)t)ξe

∫ t
0 ℓjj(τ,x+Hε(x)τ)dτ ĝj,ε(ξ)dξ

= e
∫ t
0 ℓjj(τ,x+Hε(x)τ)dτgj,ε(x+Hε(x)t),

Gj,εfε(t, x) =

∫ t

0

∫
R
ei(x+Hε(x)t)ξe

∫ t
s ℓjj(τ,x+Hε(x)τ)dτ f̂ε(s, ξ)dξds

=

∫ t

0

e
∫ t
s ℓjj(τ,x+Hε(x)τ)dτfε(s, x+Hε(x)(t− s))ds,

for j = 1, 2.
Let us now set ω−1(ε) = ln(ε−1). Note that in this case the assumptions (H1)

and (H2) are immediately fulfilled. Indeed, (Hε)ε is real-valued and moderate and
H ′

ε = ψω(ε) is logarithmic moderate. In addition ∥Hε∥L∞ ≤ 1.
In the special case when both the matrices of the principal part and the lower

order terms are diagonal the assumption (H3) is not needed. In detail, if a12 = 0 and
ℓ12 = ℓ21 = 0, then

u1,ε = e
∫ t
0 ℓ11(τ,x+Hε(x)τ,Dx)dτg1,ε(x+Hε(x)t),

u2,ε = e
∫ t
0 ℓ22(τ,x+Hε(x)τ,Dx)dτg2,ε(x+Hε(x)t).

In general for a full matrix L one would need the assumption (H3) to be fulfilled as
well. This is investigated in the following example where we also handle singularities
in time.
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Let Dtu =

[
λ1(t)Dx a12(t, x,Dx)

0 λ2(t)Dx

]
u+

[
ℓ11(t, x) ℓ12(t, x)

ℓ21(t, x)⟨Dx⟩−1 ℓ22(t, x)

]
u,

u(0, x) = g(x),

where (t, x) ∈ [0, T ] × R, λi, i = 1, 2, are distributions with compact support in
[0, T ], and the coefficients of the matrix of the lower order terms are distributions
with compact support in t and smooth in x. For the sake of simplicity we assume
that a12 ∈ C([0, T ], S1

1,0(R2n)). As usual we have that u(0, x) = [g1(x), g2(x)]
T with

g1, g2 ∈ E ′(R). Instead of regularising in x this time we regularise in t and restrict
the domain of our nets to the interval [0, T ] after regularisation. We obtainDtuε =

[
λ1,ε(t)Dx a12(t, x,Dx)

0 λ2,ε(t)Dx

]
uε +

[
ℓ11,ε(t, x) ℓ12,ε(t, x)

ℓ21,ε(t, x)⟨Dx⟩−1 ℓ22,ε(t, x)

]
uε,

uε(0, x) = gε(x),

where

λi,ε(t) = λi ∗ ψω(ε),

for t ∈ [0, T ]. In order to guarantee that (H1) and (H2) are fulfilled we assume
that the coefficients λi are real valued for i = 1, 2 and we regularise the coefficients
ℓii, i = 1, 2 via a logarithmic scale, i.e., ω−1(ε) = ln(ε−1). It is easy to solve the
corresponding Eikonal equation and compute the phase functions ϕi,ε. Indeed,

ϕi,ε(t, x, ξ) = xξ + ξ

∫ t

0

λi,ε(s) ds.

It follows that

|∂ξϕi,ε(t, x, ξ)− ∂ξϕi,ε(t, y, ξ)| = |x− y| for x, y ∈ Rn, ξ ∈ Rn,

|∂yϕi,ε(t, y, ξ)− ∂yϕi,ε(t, y, η)| = |ξ − η| for y ∈ Rn, ξ, η ∈ Rn,

and therefore the net C(ε) required in (H3) is identically equal to 1. In addition,
since the regularisation is not effecting the variable x all the constants involved in
(H3) are independent of the parameter ε are therefore (H3) is trivially satisfied. It
follows that our Cauchy problem is well-posed in the very weak sense.

5. Appendix: L2-boundedness of Fourier integral operators

In this appendix we state an important theorem by Ruzhansky-Sugimoto [38] on the
global L2 boundedness of FIO for amplitudes which are independent of the variable
x. This theorem will be later applied to integrated FIOs.

Theorem 5.1 (Ruzhansky-Sugimoto [38]). Let operator T be defined by

Tu(x) =

∫
Rn

∫
Rn

ei(x·ξ+ϕ(y,ξ))A(y, ξ)u(y)dydξ, (23)

where A(y, ξ) ∈ C∞(Rn
y ×Rn

ξ ), and ϕ(y, ξ) ∈ C∞(Rn
y ×Rn

ξ ) is a real-valued function.

Assume that |∂αy ∂
β
ξA(y, ξ)| is uniformly bounded for |α|, |β| ≤ 2n + 1. Also assume
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that

|∂ξϕ(x, ξ)− ∂ξϕ(y, ξ)| ≥ C|x− y| for x, y ∈ Rn, ξ ∈ Rn, (24)

|∂yϕ(y, ξ)− ∂yϕ(y, η)| ≥ C|ξ − η| for y ∈ Rn, ξ, η ∈ Rn,

and that
|∂αy ∂ξϕ(y, ξ)| ≤ Cα, |∂y∂βξ ϕ(y, ξ)| ≤ Cβ, (25)

for 1 ≤ |α|, |β| ≤ 2n+ 2. Then the operator T is L2(Rn)-bounded, and satisfies

||T ||L2→L2 ≤ C ′ sup
|α|,|β|≤2n+1

||∂αy ∂
β
ξA(y, ξ)||L∞(Rn

y×Rn
ξ )
,

where C ′ depends on the constants in (24) and (25).

Note that since Γx = Γy = Rn in Theorem 5.1, we may write the following assump-
tion

| det ∂x∂yϕ(x, y)| ≥ C > 0, for all x, y ∈ Rn,

instead of (24).
Let us now consider operators of the type

Gu(t, x) =

∫ t

0

∫
Rn

eiϕ(t,x,ξ)A(t, s, x)û(s, ξ)dξds

=

∫ t

0

∫
Rn

∫
Rn

eiϕ(t,x,ξ)−iy·ξA(t, s, x)u(s, y)dydξds

=

∫ t

0

Ku(t, s, x)ds,

where

Ku(s, x) =

∫
Rn

∫
Rn

eiϕ(t,x,ξ)−iy·ξA(t, s, x)u(s, y)dydξ.

It follows that

||Gu(t)||L2(Rn
x)

=

∫ t

0

||Kg(s)||L2(Rn
x)
ds ≤ t||K||L2→L2 ||u||L∞(Rs)L2(Rn

x)

= t||K∗||L2→L2||u||L∞(Rs)L2(Rn
x)
.

In order to apply Theorem 5.1, we compute the adjoint of operator K

(Ku, v) =

∫
Rn

∫
Rn

∫
Rn

eiϕ(t,x,ξ)−iy·ξA(t, s, x)u(s, y)dydξv(s, x)dx

=

∫
Rn

∫
Rn

∫
Rn

eiϕ(t,x,ξ)−iy·ξA(t, s, x)v(s, x)dxdξu(s, y)dy

=

∫
Rn

∫
Rn

∫
Rn

e−iϕ(t,x,ξ)+iy·ξA(t, s, x)v(s, x)dxdξu(s, y)dy

= (u,K∗v),

where

K∗v(t, s, x) =

∫
Rn

∫
Rn

eix·ξ−iϕ(t,y,ξ)A(t, s, y)v(s, y)dydξ.

Now the adjoint operator K∗ has the same form as the operator T in Theorem 5.1.
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Proposition 5.2. Let operator K∗ be defined by

K∗u(t, s, x) =

∫
Rn

∫
Rn

eix·ξ−iϕ(t,y,ξ)A(t, s, y)u(s, y)dydξ, (26)

where A(t, s, y) ∈ C∞(Rn
y ) is continuous with respect to t, s ∈ [0, T ] and ϕ(t, y, ξ) ∈

C∞(Rn
y × Rn

ξ ) is a real-valued function continuous with respect to t ∈ [0, T ]. Assume
that |∂γyA(s, t, y)| is uniformly bounded for |γ| ≤ 2n+ 1. Also assume that

|∂ξϕ(t, x, ξ)− ∂ξϕ(t, y, ξ)| ≥ C|x− y| for t ∈ [0, T ], x, y ∈ Rn, ξ ∈ Rn, (27)

|∂yϕ(t, y, ξ)− ∂yϕ(t, y, η)| ≥ C|ξ − η| for t ∈ [0, T ], y ∈ Rn, ξ, η ∈ Rn,

and that

|∂αy ∂ξϕ(t, y, ξ)| ≤ Cα, |∂y∂βξ ϕ(t, y, ξ)| ≤ Cβ, (28)

for 1 ≤ |α|, |β| ≤ 2n+2, uniformly with respect to all the variables. Then the operator
K∗(t, s, ·) is L2(Rn)-bounded, and satisfies

sup
t,s∈[0,T ]

||K∗(t, s, ·)||L2→L2 ≤ C ′ sup
t,s∈[0,T ]

sup
|γ|≤2n+1

||∂γyA(t, s, y)||L∞(Rn
y ),

where C ′ depends on the constants in (27) and (28).
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