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Deep learning techniques and mathematical
modeling allow 3D analysis of mitotic spindle
dynamics
David Dang1,2, Christoforos Efstathiou1, Dijue Sun1, Haoran Yue1, Nishanth R. Sastry2, and Viji M. Draviam1

Time-lapse microscopy movies have transformed the study of subcellular dynamics. However, manual analysis of movies can
introduce bias and variability, obscuring important insights. While automation can overcome such limitations, spatial and
temporal discontinuities in time-lapse movies render methods such as 3D object segmentation and tracking difficult. Here,
we present SpinX, a framework for reconstructing gaps between successive image frames by combining deep learning and
mathematical object modeling. By incorporating expert feedback through selective annotations, SpinX identifies subcellular
structures, despite confounding neighbor-cell information, non-uniform illumination, and variable fluorophore marker
intensities. The automation and continuity introduced here allows the precise 3D tracking and analysis of spindle movements
with respect to the cell cortex for the first time. We demonstrate the utility of SpinX using distinct spindle markers, cell lines,
microscopes, and drug treatments. In summary, SpinX provides an exciting opportunity to study spindle dynamics in a
sophisticated way, creating a framework for step changes in studies using time-lapse microscopy.

Introduction
Computational image analysis tools and single-cell imaging
methods can accelerate cell biology studies (Carpenter et al.,
2006; Held et al., 2010; Ren et al., 2021 Preprint) and drug dis-
covery efforts (Caicedo et al., 2017). Although deep learning
(DL) has already revolutionized the automated analysis of still
microscopy images for high-throughput object identification
(Ronneberger et al., 2015; Schmidt et al., 2018; Stringer et al.,
2021; Yang et al., 2020), this advance is only beginning to be
extended to time-lapse microscopy movies for analyzing
structural dynamics of objects through time and 3D space
(Lefebvre et al., 2021). Extending DL approaches to time-lapse
movies has faced at least two critical hurdles: first, the precise
continuous tracking of structures through time requires tai-
lored 3D object modeling tools to overcome spatial and tem-
poral discontinuities that are intrinsic to time-lapse 3D movies
of fast-moving objects. Second, feature-rich analysis supported
by DL methods requires large volumes of high-resolution time-
lapse movie datasets (Goswami et al., 2017). Nevertheless, as DL
architectures for still images of fixed-cells (LeCun et al., 2015; Moen
et al., 2019; von Chamier et al., 2021) have helped overcome the
drawback of manual analysis (with respect to image segmentation

which is inherently tedious, slow, and error-prone), developing new
DL architectures for time-lapse movies of live-cells can advance
quantitative 3D studies of subcellular and cellular dynamics.

Automated tools to analyze dynamic changes in intensities
captured in live-cell movies are available (Cai et al., 2018; Held
et al., 2010; Walther and Ellenberg 2018). However, tools that
can reliably track precise changes in 3D shape and motion of
objects within dividing cells are challenging to develop. Partic-
ularly, in specimens where phototoxicity or photobleaching
limits the frequent acquisition of 3D images (Icha et al., 2017),
spatiotemporal sampling is severely restricted. To overcome this
limitation, spatially and temporally discontinuous time-lapse
movies with limited axial sampling are preferred. For in-
stance, fluorescent labeling of dividing cells with condensed
chromosomes or long-term high-resolution imaging of prolif-
erating cells is well known to induce phototoxicity (Hart et al.,
2021; Progatzky et al., 2013). Consequently, dividing cells are not
continuously imaged in high-resolution as full volume data,
which results in missing data that disallows 3D tracking of
subcellular movements, subsequently impairing our full un-
derstanding of mitotic defects or the development of anti-
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mitotic drugs (Iorio et al., 2015; Patel et al., 2016; Tamura et al.,
2015).

The mitotic spindle is a complex and dynamic structure that
is dependent on the function and regulation of multiple factors:
the microtubule cytoskeleton (Tamura and Draviam, 2012),
molecular motors (Fielmich et al., 2018; Laan et al., 2012;
Okumura et al., 2018), actin clouds (Kwon et al., 2015), cell
cortex rigidity (Kunda et al., 2008), cell–cell adhesion complexes
(Théry et al. 2007; Théry et al., 2005), and chromosome con-
gression (McEwen et al., 2001). The mitotic spindle undergoes
complex 3D movements in longitudinal, equatorial, and axial
directions, by integrating both intracellular and extracellu-
lar cues (Corrigan et al., 2013; Dimitracopoulos et al., 2020;
Kiyomitsu and Cheeseman 2012; Kotak et al., 2012, Zulkipli
et al., 2018) that ultimately guide the spindle to a final position
which defines the plane of cell division (Chin et al., 2014; di Pietro
et al., 2016). Being able to track andmeasure spindlemovements can
help us uncover the molecular cues that guide and power spindle
rotation and centering movements in mammalian cells (Zulkipli
et al., 2018). In addition, the complex 3D movements of the mi-
totic spindle make it an ideal subcellular model for testing the ef-
ficacy of DL-based video analysis methods aimed at extracting
reliable and dynamic 3D information.Mammalian spindle volume is
a good indicator of chromatin and cell volume (Kletter et al., 2022),
and therefore a spindle tracker tool can generate a wide impact in
cell biology studies across multiple cell types.

As DL methods are data hungry (Adadi, 2021), we first gen-
erated a large dataset of high-resolution time-lapse movies of
mitotic spindle movements in human epithelial cells expressing
a fluorescently tagged microtubule marker protein, Tubulin.
Using this large dataset of 28,350 images, we built a compre-
hensive and extensible computational framework, SpinX, which
bridges the gaps between discontinuous frames in time-lapse
movies by utilizing state-of-the-art DL technologies and math-
ematical object modeling for 3D reconstruction of the mitotic
spindle and cell cortex. Through stepwise benchmarking and
detailed manual assessments, we demonstrated the potential of
the 3D reconstruction module in overcoming spatiotemporal
discontinuity in time-lapse movies of mitotic spindle and
cell cortex. We established the generalization capacity of the
SpinX framework for spindle segmentation using different
microtubule-associated molecular markers, cell types, and mi-
croscopy systems. Finally, using SpinX to track 3D movements
of the spindle in cells treated with CENP-E kinesin or MARK2
kinase inhibitor, we highlighted the strengths of AI-based time-
lapse movie analysis in accelerating cytoskeletal research and
drug development.

Results
Computational framework to track 3D movements of the
mitotic spindle
Conventional computational methods (Driscoll and Danuser,
2015; Kervrann et al., 2016; Meijering et al., 2016, Youssef
et al., 2011) have not been successful in continuous automated
tracking of the mitotic spindle largely due to the lack of spa-
tiotemporal continuity of 3D objects in time-lapse movies. To

overcome spatial discontinuities in 3D images, spindle tracking
tools have relied on manually ascertaining spindle poles (Corrigan
et al., 2013; Jüschke et al., 2014) or have been limited to 2D
tracking (Larson and Bement 2017), where DL approaches have
not been used so far (Table S1). To create a computational
framework for accurately tracking spindle movements in 3D,
we first generated our own training dataset of high-resolution
time-lapse movies for building the DL network. For this pur-
pose, we labeled a Histone-2B-GFP (a chromosome marker)
expressing HeLa cervical epithelial human cell line (Corrigan
et al., 2013) with one of two different markers for the mitotic
spindle, mCherry-Tubulin or SiR-Tubulin dye. Both markers
have been established to decorate the microtubules of the mi-
totic spindle but with varying intensities (Corrigan et al., 2013;
Stiff et al., 2020). The cell cortex was tracked label-free using
brightfield images. A total of nearly five Terabytes of time-
lapse movies were generated by imaging spindles in hun-
dreds of cells exposed to MG132 (a proteasome inhibitor to
prevent metaphase–anaphase transition [Hagting et al., 2002]).
To closely reproduce challenges observed in large-scale high-
throughput imaging screens, we built relatively long-term
high-resolution time-lapse movies with three z-slice images
(a z-gap of 2 μm). Image stacks were acquired once every 3 min
to ensure that no obvious phototoxicity or photobleaching was
introduced, and also that the discontinuity in time-lapse movies
did not impair manual tracking of spindle pole movements. As
expected, although live-cell movies are powerful in revealing
dynamic cellular behavior, they capture highly heterogeneous
information across and within cells through time (Fig. 1 a),
making it difficult to quantitatively track spindle movements in
3D using traditional image segmentation methods (Corrigan
et al., 2013). We observed several challenges in segmenting
live-cell imaging data using traditional image analysis tools: (i)
variability in sample illumination and protein expression be-
tween cells, where occasionally signal intensity can be highly
non-uniform; (ii) noise from neighboring objects exacerbating
low signal-to-noise ratios; and (iii) loss of focus resulting in
blurry images due to natural 3D movements over time (Fig. 1 a).
To overcome these challenges in tracking subcellular dynamics
in high-throughput large-scale screens, we developed SpinX’s
AI module by adapting the state-of-the-art Mask R-CNN DL
architecture (He et al., 2018; see below and Fig. 1 b).

SpinX’s AI architecture identifies fluorescently-labeled spindles
within label-free single-cell compartments by integrating three
stages (Fig. 1 b), where the first two stages closely resemble a
“native” Mask R-CNN-based DL architecture (for details see
Materials and methods). The first stage combines a convolu-
tional backbone architecture—comprised of a Residual Net-
work with 101 layers (ResNet101; He et al., 2016) and a Feature
Pyramid Network (FPN; Lin et al., 2017) with a Region Proposal
Network (RPN; Ren et al., 2017). The aligned regions of interest
(ROIs) are then passed onto the second stage of SpinX’s archi-
tecture: a Fully Convolutional Network (FCN; Shelhamer et al.,
2017) that simultaneously performs object classification and
segmentation for every aligned ROI (Fig. 1 b). The classes,
bounding box information, and masks generated through the
first two stages of SpinX’s DL architecture are passed to the
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Figure 1. Video dataset and DL architecture for spindle and cell cortex image segmentation. (a) Representative images show complex variations in
illumination and marker intensities intrinsic to time-lapse movies of subcellular structures (cell cortex, brightfield [label-free]; chromosomes, H2B-GFP; mitotic
spindle, mCherry-Tubulin, or SiR-Tubulin dye). Ideal images are shown within the blue box. Red and yellow arrowheads indicate the object of interest and
interfering variation(s), respectively. Scale bar: 5 μm. (b) DL model architecture of SpinX. The model expands the pre-existing Mask R-CNN architecture
(ResNet101, FPN, RPN, ROI Align, and FCN [He et al., 2018]), by introducing a third stage (blue box). In Stage 1, the network performs object detection followed
by the segmentation of spindle and cell cortex in Stage 2. Stage 3 (highlighted in blue) links temporal and spatial information in 3D live-cell movies through
tracking and generates a consistent mask of the same object through time. The inputs of the model are grayscale or RGB images of various sizes (5D input). The
outputs are binary masks of the same size as inputs with predicted foreground regions, bounding box coordinates (rectangular boxes in teal and red, Stage 1)
and the corresponding Class ID (Stage 2). Scale bar: 10 µm.
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third and final stage consisting of two modules (refer to blue
box Fig. 1 b). In Stage 3, a “Conditional Filtering”module filters
and discards detected objects based on their (i) confidence score
that is derived from the prediction of the network; (ii) associ-
ated pixel count (i.e., area) that eliminates any artifacts in-
cluding objects much smaller than the spindle; and (iii) location
within the image canvas that allows the elimination of any
detected object close to the image border as it would exhibit an
incomplete shape. A second module in Stage 3, “Centroid k-NN
Tracking” exploits the bounding box information, wherein the
predicted bounding box centroid coordinates are fed into a
single point k-nearest neighbors algorithm (k-NN) for tracking
a singular detected object through time.

SpinX’s workflow is comprehensive, including pre-processing
of data with annotations to 3D modeling. For training, validation,
and testing of the pipeline, we used a total of 2,180 label-free
(brightfield) images to deduce the cell membrane (randomly
selected from an image pool of 13,230 images) and 2,320 fluo-
rescently- or dye-labeled microtubules images to deduce the
mitotic spindle (randomly selected from an image pool of 15,120
images; Fig. S1). Annotation of our training dataset (n = 1,300
images for cell cortex model; n = 1,390 images for spindle
model) was carried out automatically and subsequently
corrected manually (refer “Annotations” in Materials and
methods). For automated label generation, we combined con-
ventional image processing methods for specifically annotating
chromosome and dye-based spindle (SiR-Tubulin) images (Fig.
S2). The rate of automated labeling was nearly 100-fold faster than
manual labeling that consumed 40–50 s for every image (Fig. S3, a
and b). Our automated label generation pipeline correctly labeled
chromosomes and dye-based spindle images with an accuracy of
91.4% and 85.6%, respectively (Fig. S3 c). All labels were manually
assessed and subsequently corrected by experts (Fig. S3 d). Finally,
using two orthogonal methods, we conducted performance
measurements for object classification. First, using a correlation
matrix to compare automated versus human segmentation out-
comes, we found a high correlation coefficient denoting a strong
match for both spindle and chromosome categories (Fig. S3 e).
Second, using a priori information of the orientation of the spindle
pole-to-pole axis and metaphase chromosome plate axis, we con-
firmed the extent of perpendicular properties between the two
automatically annotated objects (mitotic spindle and chromo-
some plate) in 88 time-lapse movies from at least six inde-
pendent repeats (Fig. S3 f). In summary, the manual and
computational evaluation efforts together demonstrate a high
accuracy with which automated labels are generated using
SpinX.

Benchmarking and refining annotation of classes improved
SpinX AI performance
To perform the segmentation of label-free cell cortex and
fluorescently-labeled mitotic spindle, we trained and compared
two groups of neural network models referred to as “SpinX-
base” and “SpinX-optimized.” The two models differed in an-
notation quality and the number of epochs, with an increased
number for the optimized model (Table S2). Annotations for the
base model were created by beginner users (0–2 yr experience

in Cell Biology,N = 800 cortex and 900 spindle images), whereas
annotations for the optimized model were created by expert users
(>3 yr experience in Cell Biology,N = 1,300 cortex and 1,390 spindle
images). For both SpinX-base and SpinX-optimized, data aug-
mentation techniques were carefully selected to artificially
increase image variety. For label-free cell cortex images,
augmentation was achieved by blurring through Gaussian
filtering and contrast normalization (Fig. S4 a). This was
performed to improve the robustness of the cell cortex
model in segmenting uniform pixel signals within the cy-
toplasm. Translation, rescaling, rotation, and shearing were
added to address the natural variation in cell shape and size
(Fig. S4 a). For mitotic spindle images, higher priority was
given to image flipping and rotation in order to better em-
ulate spindle dynamics (Fig. S4 b).

Model performance was examined through metrics, such as
mean Intersection over Union (IoU), mean average precision
(AP) and Loss function, allowing the evaluation of classification
and mask accuracy (Figs. S5 and S6). Comparison of the SpinX-
base and SpinX-optimized spindle models suggested an im-
provement in the ability of SpinX-optimized to generalize,
leading to more accurate predictions on unseen data (validation
dataset). To assess the extent of correct predictions, we used
Average Precision (AP, a metric to indicate how well the model
detects the spindle as a whole object), IoU (a metric for which
pixels/areas belong to the spindle) and other standard metrics,
including loss reduction scores, to evaluate object detection
models (He et al., 2018; Minaee et al., 2021; Ronneberger et al.,
2015). AP for the validation dataset was greater by 0.053 in the
optimized version, along with marginal improvements in AP
(0.012) and loss reduction (0.0365) for the training dataset (Figs.
S5 and S6; and Table S3). The optimized model has fewer out-
liers compared to the base model (IoU scores closer to 0 are
arising from misclassification), making the optimized model as
the preferred model. For the cell cortex model, SpinX-optimized
displayed a notably higher mean IoU (0.122) and AP (0.124) than
SpinX-base for the validation dataset, suggesting a reduced oc-
currence of errors during classification and higher accuracy
when predicting segmentationmasks (Figs. S5 and S6; and Table
S3). To gain further insight on how annotation quality affected
model performance, we manually examined the annotations of
SpinX-base. 44% and 31% of images required re-annotation to
precisely outline the boundaries of the cell cortex and spindle,
respectively (Table S4). Considering the elevated performance of
SpinX-optimized compared to SpinX-base, we concluded that
annotation quality and the hyperparameters used to train a
Mask R-CNN-based model can greatly affect performance, and
so we use SpinX-optimized for subsequent studies.

Next, we benchmarked the ability of SpinX to perform seg-
mentation through temporally and spatially discontinuous im-
age sequences. For this, we randomly selected a separate set of
10 time-lapse movies and examined model performance on the
cell cortex and the spindle. As routinely performed in the DL
field (He et al., 2018; Minaee et al., 2021; Ronneberger et al.,
2015), we computationally evaluated model performance on
the spindle and cell cortex segmentation (n = 630 previously
unseen images for each model) without (“native” Mask R-CNN)
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andwith (SpinX-optimized) post-processing (Fig. 2, a and b).We
also compared the model performance of SpinX-optimized
against U-Net, a DL architecture that has been previously used
for cell segmentation (Falk et al., 2019; Ronneberger et al., 2015;
Stringer et al., 2021). For this, we trained the U-net-based
models using the same training datasets (n = 1,300 cell cortex
model; n = 1,390 spindlemodel; Fig. 2 a). In addition, we used our
images to evaluate the currently available pretrained Cellpose
models (pretrained nucleus model for spindle and cytomodel for
cell cortex; Stringer et al., 2021; Fig. 2 a). Model performance
was evaluated by matching the predictions of each model to the
ground truth masks through the IoUmetric (Fig. 2, a and b) as in
representative IoU images (Fig. S7). For both spindle and cell
cortex segmentation, SpinX outperformed the other three state-
of-the-art methods (Fig. 2 a).

As the output of the AI module is directly fed into the 3D
modeling module, accurate boundary information is crucial for
reliable 3D tracking of objects. Routinely used IoU metrics, al-
though useful for conventional image segmentation purposes,
are insufficient for the purpose of spindle tracking because
similar IoU scores can reflect different errors in boundary in-
formation (Fig. 2 b and Fig. S7). For example, the consequence of
errors in boundary information near spindle poles will be far
more severe than around spindle walls; similar exceptions
would apply for cell cortex boundaries (Fig. 2 b and Fig. S7).
Hence, to dissect how the model performance metrics (Fig. 2, a
and b) translate into accurate segmentation of the spindles and
the cell cortex, we developed an error classification system
(Fig. 2 c). We assessed five types of distinct errors: under-
segmentation minor (U-Minor), undersegmentation major
(U-Major), oversegmentationminor (O-Minor), oversegmentation
major (O-Major), and multiple objects (MO; Fig. 2 c). We bench-
marked the SpinX-base models on a large dataset of 630 images
with Stage 3 of SpinX’s architecture activated (Fig. 1 b), which
significantly increased the overall accuracy by 35% for the cell
cortex model, and 15% for the spindle model (Fig. S8). We could
confirm that the enhanced accuracy was mainly due to the elim-
ination of wrongly predicted images categorized within the “MO”
class (Fig. S8). Utilizing the SpinX-optimizedmodels (for the same
set of 630 images) led to an even greater increase in overall ac-
curacy when compared to SpinX-base—11% for the spindle model
and 10% for the cell cortex model, whereby most errors were
found under the “U-Minor” class for both models (Fig. 2, d and e).
In summary, following different optimizations, SpinX’s final ac-
curacy reached 85% for the cell cortex model and 96% for the
spindle model (Fig. 2 d).

Generalization of SpinX to different spindle markers, cell lines,
and distinct imaging systems
As neural network models that accurately segment “unseen”
types of data signify longevity and wider applicability, we ex-
amined the generalization capacity of the SpinX framework. Our
training dataset consisted of spindles labeled using either mCherry-
Tubulin or SiR-Tubulin dye, markers of tubulin subunits (Fig. 3 a)
which are responsible for assembling and disassembling mi-
crotubules of the mitotic spindle (reviewed in Tamura and
Draviam 2012). To examine the extent to which SpinX can be

generalized, we evaluated the accuracy of SpinX in detecting
spindles in time-lapse movie datasets where two different fluo-
rescent marker proteins were fused to two distinct microtubule-
binding proteins. First, we tested image datasets of cells
expressing YFP-tagged Astrin, a microtubule-wall binding pro-
tein that can be found at the chromosome–microtubule attach-
ment site soon after the tethering of microtubule ends to
chromosomes (Conti et al., 2019; n = 330 images from 10 cells;
Fig. 3 b). Model evaluation was carried out by an expert user
through manual binary classification of either “correct” or “in-
correct” prediction. Expert evaluation showed that SpinX can
successfully segment spindles in movies of YFP-Astrin express-
ing cells with an 88% accuracy (Fig. 3 c). The images in the YFP-
Astrin dataset were not complete images of the entire mitotic cell
but instead cropped images encompassing the spindle structure
alone, requiring padding (see Materials and methods) to allow
segmentation through SpinX. Next, we tested image datasets of
cells expressing mRFP-tagged End-Binding 3 (EB3), a growing
microtubule-end binding protein (Komarova et al., 2005) that
can be found at the chromosome–microtubule attachment site
and spindle poles (Tamura and Draviam 2012; n = 1,540 images
from 5 cells; Fig. 3 b). In addition to widefield images, we ex-
tended our evaluation to high-resolution confocal images of cells
expressing mKate2-EB3 (Fig. 3 b; n = 1,920 images from 5 cells).
Expert evaluation showed that SpinX is equally successful in
segmenting spindles of EB3 marker expressing cells in both
widefield and confocal microscopy images, with a 95% and 96%
accuracy, respectively (Fig. 3, c and d). To determine the extent
to which SpinX can successfully segment spindles in images of
new cell types and embryos, and images acquired using different
microscope systems, we used images generated by others and
made available as Spindle3D datasets (Kletter et al., 2022). In
spindles of different cell types, mESC and HEK293, spindle pole
inclusion was successful 100% and 92% of the cases, respec-
tively, despite being imaged using different imaging systems;
however, this segmentation efficiency was reduced in large
spindles of bovine embryos (Fig. 3, e and f). Nevertheless, in
cultured cells, widefield and confocal images of spindles were
equally well segmented using SpinX (Fig. 3, d and f). Thus, the
successful segmentation of EB3 or Astrin protein marker la-
beled spindles, and Tubulin labeled spindles in different cell
types and distinct microscopy systems demonstrate a striking
generalization capacity of the SpinX framework for a variety of
spindle markers, cell types, and microscopy methods.

Modeling to quantify 3D spindle movements relative to the
cell cortex
Reconstructing a 3D spindle structure and cell cortex from 2D
slices is a significant challenge in part due to missing informa-
tion between the z-steps. To track spindle movements with
reference to the cell cortex, we used the cell cortex prediction
mask from SpinX’s AI module (Figs. 1 and 2) to reconstruct the
3D shape of each individual cell (Fig. 4 a). Although mitotic cells
generally assume a distinct spherical shape (Cadart et al., 2014),
measuring the eccentricity of cell cortex segmentation masks
of 96 cells (Fig. S9), yielded a median value of 0.3 (a value of 0
being a perfect circle) suggesting that using an ellipsoidal
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Figure 2. Computational and manual evaluation of SpinX shows high accuracy for spindle and cell cortex segmentation. (a) Violin plots show the
distribution of IoU scores calculated from predictions with U-Net, Mask R-CNN, Cellpose, and SpinX-optimized. White marker within the box refers to the
median, the shaded area refers to the estimated kernel probability density, and the box indicates the interquartile range of the data. Gray and red dots
correspond to IoU scores smaller or >0.5, respectively. (b) Representative images show a range of different IoU scores calculated between the ground
truth (red line) and predicted mask (yellow line) for the spindle (left) and cell cortex (right). Scale bars: 10 µm. (c) Representative SpinX prediction
images for spindle (left) and cell cortex (right) describing the manual error classification system. Incorrectly segmented images were classified into
“under segmentation minor” (U-Minor), “under segmentation major” (U-Major), “over segmentation minor” (O-Minor), “over segmentation major”
(O-Major), and “multiple objects with artifacts” (MO). Insets show higher magnification of observed errors (yellow box). The prediction is highlighted by
the blue and red overlays with the corresponding ground truth marked by a red dashed outline. Scale bars: 10 µm, 5 µm for inset. (d) Bar chart shows
SpinX’s final accuracy, manually evaluated, for the spindle (white) and cell cortex (black) models. (e) Bar chart shows the proportion of incorrectly
segmented images for each error type defined in c without Stage 3 of SpinX. For b, d, and e, N = 1,260 images (630 images each for spindle and cell
cortex) from 10 3D time-lapse movies across four independent experiments were considered.
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Figure 3. Generalization of SpinX to segment images of new marker proteins and cell types acquired using distinct microscopes. (a) Representative
images and SpinX segmentation output of mCherry-Tubulin and SiR-Tubulin datasets used to train the spindle model (specialized). (b and c) Representative
images and SpinX segmentation output of YFP-Astrin (b), mRFP-EB3 and mKate2-EB3 (c) datasets used to assess the extent to which the spindle model can be
generalized. The dashed box shows the original image border (YFP-Astrin and mKate2-EB3 datasets were padded for analysis). Cartoons in a, b, and c show
differing localization patterns (red) of spindle marker proteins. Images acquired using a widefield or higher resolution confocal microscope are highlighted,
where the associated objective used is indicated. (d) Bar graph shows SpinX’s segmentation accuracy of spindles labeled using mRFP-EB3, YFP-Astrin, and
Tubulin (mCherry-Tubulin and SiR-Tubulin combined) acquired with a widefield microscope, and mKate2-EB3 using a confocal microscope as indicated.
Accuracy was manually scored by experts using the error classification system indicated in Fig. 2, c and e. (e) Representative images and SpinX segmentation
output of bovine one-cell embryo, bovine two-cell embryo, HEK293, and mESC datasets used to assess the extent to which the spindle model can be gen-
eralized to spindles from other cell types. Images provided by Kletter et al. (2022) were acquired using a confocal microscope, where the associated objective
used is highlighted. (f) Bar graph shows SpinX’s segmentation accuracy of spindles from other cell types, segregated into either the “Spindle pole inclusion” or
“Spindle morphology” category. Categories were created based on the error classification system outlined in Fig. 2, whereby “Spindle pole inclusion” includes
both images classified as “Correct” and “U-minor,” while “Spindle morphology” includes only images classified as “Correct.” Spindles with a visible midzone
were chosen. Accuracy was manually scored by experts. mRFP-EB3 N = 5 cells, 1,540 images; YFP-Astrin N = 10 cells, 330 images; SiR/mCherry-Tubulin N = 10
cells, 630 images; mKate2-EB3 N = 5 cells, 1,920 images; bovine one-cell embryo N = 10 cells, 30 images; bovine two-cell embryo N = 10 cells, 30 images;
HEK293 N = 10 cells, 130 images; mESC N = 10 cells, 50 images. Scale bars: 10 µm.
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Figure 4. 3D reconstruction and modeling for time-resolved analysis of spindle-cortex interaction changes. (a) (i) Representative time-lapse images of
a mitotic cell (left) with the corresponding outlined masks (red dashed line) predicted with SpinX’s AI module. SpinX utilizes z-slices of cell cortex boundaries
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rather than a spherical shape may lead to a more reliable 3D
reconstruction.

We reconstructed the 3D structure of the cell cortex using
label-free brightfield images by applying a Minimum Volume.
Enclosing Ellipsoid fit (MVEE) on the boundary pixel coor-
dinates extracted from the prediction mask of the cell cortex
(Fig. 4, a i). To reconstruct the 3D structure of the spindle using
fluorescent images, we took advantage of the point-spread
function (PSF) of our imaging system. The PSF enabled the es-
timation of the z-coordinates of spindle-associated pixels, which
were subsequently used to reconstruct the spindle’s 3D structure
by applying theMVEE (Fig. 4, a ii). To investigate the integrity of
the reconstructed 3D spindle structure, we compared spindle
length and width measurements using 3D pole positions (Fig.
S10). We observed spindle width and length were consistent
with previous volumetric morphometric studies (Kletter et al.,
2022). To capture spindle movement relative to the cell, we
measured spindle pole-to-cortex distances (Fig. 4, a iii purple
line). For this, we modeled 3D ray traces where we analytically
identify the intersection points between the spindle’s principal
(pole-to-pole) axes and the rounded cell cortex. Thus the line
that passes the two intersection points (Fig. 4, a iii dark blue
dots) at the cortex, will pass through the spindle axis of interest
as well (see Materials and methods; Fig. 4, a iii dashed gray and
purple line; and Fig. S11 purple line). This required that the
spindle poles are precisely identified, and hence we bench-
marked the extent to which MVEE could accurately identify
spindle length (the long-axis of the ellipsoid). We observed that
due to the intrinsic structure of the spindle, MVEE tends to
overestimate the spindle length, which, in turn, alters the pre-
dicted spindle pole position (Fig. 4 b). This bias accounted for a
median spindle pole displacement of 0.5–1 µm in SpinX, com-
pared to manual analysis, which is a 5–6% difference in total
spindle displacement (N = 4 cells, 84 instances; Fig. S12). This
could be recalculated by extracting 3D coordinates along the
spindle’s pole-to-pole axis to identify the first and last occur-
rence of high-intensity values that were then assigned as refined
spindle pole locations (Table S1). Comparing spindle pole loca-
tions obtained either with SpinX or manually (both beginners
and experts) confirmed that SpinX’s measurements with the
pole refinement algorithm (Table 1) closely match with the po-
sitions tracked manually by an expert while outperforming
manual assessment by a beginner (Fig. 4 c).

Tracking of 3D spindle movements through time
To study temporal changes in the spindle’s 3D position, we im-
plemented a six-point tracking algorithm based on the k-NN
algorithm. The six points represent the endpoints of the three
principal axes of the ellipsoid which correspond to the spindle
height, width, and length axes. By assigning the smallest Eu-
clidean distance to Pole 1 and not Pole 2, we ensured the cor-
rection of falsely assigned pole identities through time (refer to
Materials andmethods). To test how frequently corrections have
to be assigned, we analyzed 10 randomly selected time-lapse
movies. Correction with k-NN was required for around half of
the time for spindle width and length axes, and one-third for
spindle height axis (Table S5). To evaluate the impact with and
without tracking, we measured the 3D distances from each
spindle axis to the cell cortex (Fig. 4 d). The spindle pole-to-cell
cortex (pole-cortex) 3D distance was obtained by computing ray
traces. We confirmed that consistent pole assignments with the
tracking algorithm enabled accurate measurements of spindle
pole positions through time (Fig. 4 e). Thus, changes in spindle
pole to cell cortex distances, as a measure of spindle displace-
ment, could be tracked in 3D through time (Video 1).

SpinX enables the segregation of spindle movements in three
distinct dimensions
Inhibition of CENP-E motor protein is known to interfere with
the formation of mature kinetochore–microtubule attachments
(Kapoor et al., 2006; Shrestha and Draviam 2013) andmetaphase
chromosome misalignment that in turn promotes excessive
spindle movements (Kiyomitsu and Cheeseman 2012). Whether
CENP-E inhibitor-treated cells exhibit spindle movement in one
direction more than the other is not known. Since SpinX soft-
ware could readily allow us to separate spindle movements in
three dimensions, we tracked spindle movements using time-
lapse movies of MG132-treated metaphase HeLa cells expressing
H2B-GFP and mCherry-Tubulin exposed to CENP-E inhibitor
(CENP-Ei, GSK-923295; Fig. 5 a). Unlike control cells, those
treated with CENP-Ei show excessive spindle movements in 3D
and unaligned polar chromosomes as expected (Fig. 5 b). We
split the 3D movements of the spindle into three groups:
spindle tumbling (α), spindle rolling (β), and spindle rotation
(γ) movements (Fig. 5 c).

In control metaphase cells, the median angle changes within
3 min are similar between spindle tumbling (α median = 1.7°)

(red, transparent and inner rings) to reconstruct the 3D shape of the cell via Minimum Volume Enclosing Ellipsoidal fit, MVEE (green, dotted outer rings). (ii)
Representative time-lapse images of a spindle with the corresponding outlined masks (red dashed line) predicted with SpinX’s AI module. Merging masks with
raw images (burn) removes non-spindle signals. PSF was generated and fitted (blue line) to map intensity fluctuations with changes in axial positions for each
pixel (red) belonging to the spindle. To reconstruct the 3D structure of the spindle, MVEE (green) was applied. (iii) The 3D plot shows the complete model. The
cell cortex is represented by the polygon mesh in gray with the spindle principal axes, which correspond to spindle height (red), width (green), and length
(blue). The large orange and black dots at the ends of the length axis correspond to the spindle’s individual poles, while the smaller dots correspond to the ends
of the spindle height (red-filled) and width (green-filled) axes. Ray traces from the spindle poles are represented by dashed gray lines, and their intersection
points are marked as dark blue dots on the cortical mesh. The pole-cortex distance is outlined in magenta. (b) Demonstration of pole refinement in SpinX.
Spindle pole estimations without and with pole refinements are indicated by red dots and green crosses, respectively. (c) Representative line plots show x and
y coordinate changes of a spindle tracked through time, for its poles 1 and 2, measured either manually by a beginner (yellow), expert (blue), or automatically
with SpinX (green). (d) Representative max projection time-lapse images of a HeLa cell expressing mCherry-Tubulin. Orange and black dots represent spindle
poles 1 and 2, respectively. The cell outline (blue) was extracted from the predicted segmentation mask of cell membrane by SpinX’s AI module. (e) Line plots
show individual pole-cortex 3D distance measurements computed from d for pole 1 (orange) and pole 2 (black) without and with 3D 6-point tracking, re-
spectively. Scale bars: 5 and 1 µm for PSF in b.
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Figure 5. CENP-Ei promotes rotational movements in 3D. (a) Experimental regime. HeLa cells were exposed to MG132 (10 µM) 1 hour before imaging and
SiR-Tubulin (100 nM) before imaging. Either DMSO (control) or 30 nM CENP-E inhibitor (CENP-Ei) as indicated were added during imaging. (b) Representative
maximum projection live-cell images of a HeLa cell expressing H2B-GFP (green) and stained with SiR-Tubulin dye (magenta) for 60 min prior to imaging. Cells
were imaged for over 1 h with images taken every 3 min. Yellow circles indicate uncongressed chromosomes. (c) Cartoon shows a 3D spindle (gray) with the
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and rolling (β median = 1.6°) and are relatively small compared
to spindle rotation movement (γ median = 8.8°). In contrast,
following CENP-Ei treatment, cells show a significant increase in
spindle tumbling (βmedian = 2.4°), spindle rotation (γmedian =
13.1°), and spindle rolling (β median = 2.1°). The increase in
spindle rolling upon CENP-Ei treatment has not been reported
before (Fig. 5 d). The Empirical Cumulative Distribution Func-
tion (ECDF) at 0.75 percentile of the data further highlights the
significant increase in spindle tumbling (3.3° to 4.9°), spindle
rolling (3.6°–5.2°), and spindle rotation (14.9°–23.8°; Fig. S13 d).
Thus quantitative analysis of 3D spindle movements using SpinX
reveal that CENP-Ei increases the tendency of the spindle to
move both parallel and perpendicular to the substratum.

Separate from tumbling or rotational movements, the mitotic
spindle is known to undergo longitudinal oscillation along
the pole-to-pole axis (Corrigan et al., 2013; Kiyomitsu and
Cheeseman 2012). SpinX analysis showed that upon CENP-
E inhibition, spindles show a reduction in the fraction of lon-
gitudinal movement, while the fraction of equatorial and axial
movements are both increased (Fig. 5 e). Analyzing the distri-
bution for each decomposed movement with the Shapiro–Wilk
Test (P < 0.00001) confirmed the presence of data skewness
where the fraction of longitudinal movement is the strongest
followed by equatorial and axial movement in control and
CENP-Ei cells. At the 0.75-percentile of the data, the fraction of
longitudinal spindle movement decreased by 7% (from 0.96 to
0.89) upon CENP-Ei treatment but equatorial and axial move-
ments increased by 10% (from 0.23 to 0.32) and 2% (from 0.01
to 0.03), respectively (Fig. S13 c). In summary, although spindle
movements are excessive and obvious following CENP-Ei
treatment, the decomposition of spindle movements using
SpinX reveals an increase in equatorial and axial movements
and a reduction in longitudinal movements.

MARK2 kinase inhibitor treatment promotes equatorial
spindle movement
To showcase the strength of an AI-based spindle tracking tool
for high-throughput analysis of spindle movements in high-
resolution time-lapse movies, we set out to quantify the
consequence of exposing mitotic cells to an inhibitor of MARK2
(Microtubule Affinity Regulating Kinase 2, Par1 kinase family),
implicated in centering spindles along the equatorial axis using
protein depletion studies (Zulkipli et al., 2018). Whether loss of
MARK2 activity can instantaneously disrupt spindle move-
ments is not known. While a screen for drugs with therapeutic
potential had identified an in vitro inhibitor of MARK2/Par1b
activity (hereafter: MARK2i; Calbiochem 39621; Timm et al.,
2011), whether this inhibitor can disrupt MARK2’s function in

mitosis is not known. To address this, we collated 3D time-lapse
movies of HeLa cells expressing H2B-GFP and mCherry-
Tubulin (Fig. 6 a) exposed to MG132 (to enrich them in meta-
phase) in the presence or absence of MARK2i for up to 3 h.
Visual inspection of time-lapse movies suggested that spindles
of MARK2i-treated cells may be equatorially off-centered in
some but not all timeframes (Fig. 6 b). To quantitatively assess
changes in spindle movement in 3D, we used SpinX for tracking
and decomposing spindle movements in longitudinal, equato-
rial, and axial orientations with respect to spindle length,
width, and height axes, respectively (Fig. S14). By including the
3D cell cortex information, we could additionally account for
variability in cell-to-cell differences, i.e., the available space for
spindles to move and quantitatively compare across cells of vari-
able sizes. In control metaphase cells (DMSO-treated cells)—as
expected (Corrigan et al., 2013)—we observed a bias towards
longitudinal movements of the spindle along the pole-to-pole axis
and highly restricted equatorial movements (Fig. 6 c). However, in
MARK2i-treated cells (N = 12), the fraction of longitudinal move-
ment is significantly reduced, and the fraction of equatorial and
axial movement are both increased, compared to control cells (N =
11; Fig. 6 c). The strong increase in equatorial movement following
MARK2i treatment shows that the inhibition of MARK2 activity
can promote equatorial movement, similar to MARK2 protein
depletion (Zulkipli et al., 2018), revealing an immediate in vivo
impact of the inhibitor and suggesting a close relationship between
MARK2 activity and spindle movement regulation.

A defect in anaphase spindle orientation along the interphase
long-axis after MARK2 depletion has been reported (Zulkipli
et al., 2018), but changes in metaphase spindle orientation
have not been previously quantified. We took advantage of
SpinX’s reconstructed spindle principal axis and its corre-
sponding centroid to compute 3D rotational angle changes in α
spindle tumbling, β rolling, and γ rotation in metaphase spindles
of control and MARK2i-treated cells (Fig. 6, d and e). We found
that the extent of spindle rotation is not affected upon MARK2i
(Fig. 6 e), but both the spindle tumbling and rolling movements
are significantly reduced. To test if this reduction is time-
dependent, we performed correlation analysis between angle
changes and time (Fig. S14). Computed Pearson correlation co-
efficients ρ showed no linear correlation in both conditions in
spindle tumbling (ρ = 0.101 and ρ = 0.060), spindle rolling (ρ =
0.102 and ρ = −0.090), and spindle rotation (ρ = 0.030 and ρ =
0.051). These findings reveal that MARK2i treatment alters
spindle tumbling and rolling movements, but not rotational
movements.

As SpinX-based spindle tracking helped uncover the imme-
diate in vivo impact of the MARK2 inhibitor in mitotic cells, we

corresponding rotation angles α (spindle tumbling), β (spindle rolling), and γ (spindle rotation) along its principal spindle axes x,y,z, respectively. (d) Violin plots
show 3D angle distribution for α spindle tumbling, β rolling, and γ rotation. Corresponding colored dots represent measurements from all time points of the
same cell. The white marker within the box refers to the median, the shaded area refers to the estimated kernel probability density, and the box indicates the
interquartile range of the data, respectively. (e) Violin plots show fractions of longitudinal, equatorial, and axial spindle displacement. Corresponding colored
dots represent measurements from all time points of the same cell. The white marker within the box refers to the median, the shaded area refers to the
estimated kernel probability density, and the box indicates the interquartile range of the data, respectively. Statistical significance was determined by
Generalized Linear Model (GLM) and Mann–Whitney U test (in d and e) after a pre-analysis of the underlying distribution. N = 38 control and N = 43 CENP-Ei
cells from three experiments. Scale bars: 5 µm.
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Figure 6. MARK2i promotes equatorial movement of the mitotic spindle. (a) Experimental regime. HeLa cells were exposed to MG132 (10 µM) 1 h before
imaging. Either DMSO (control) or 5 µM MARK2 inhibitor (MARK2i) as indicated were added during imaging. (b) Representative brightfield images displaying
cell cortex (gray) and maximum projection live-cell images of a HeLa cell expressing H2B-GFP (green) and mCherry-Tubulin (magenta). Equatorial-centered and
off-centered spindles are marked (E-C) and (E-OC), respectively. Cells were imaged over 1 h with images taken every 3 min. (c) Violin plots show fractions of
longitudinal (Δlg), equatorial (Δeq), and axial (Δax) spindle displacement. Corresponding colored dots represent measurements from all time points of the same
cell. The white marker within the box refers to the median, the shaded area refers to the estimated kernel probability density and the box indicates the
interquartile range of the data. (d) Cartoon shows a 3D spindle (gray) with the corresponding rotation angles α (spindle tumbling), β (spindle rolling), and γ
(spindle rotation) along its principal spindle axes x,y,z, respectively. (e) Violin plots show 3D angle distribution for α spindle tumbling, β rolling, and γ rotation.
Corresponding colored dots represent measurements from all time points of the same cell. The white marker within the box refers to the median, the shaded
area refers to the estimated kernel probability density, and the box indicates the interquartile range of the data. Statistical significance was determined by
Mann–Whitney U test (in c and e) after a pre-analysis of the underlying distribution with a Shapiro–Wilk test. N = 11 control and N = 12 MARK2i cells across
three separate experiments. Scale bars: 5 µm.
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used the same concentration of MARK2i that altered spindle
movements (Fig. 6) to test if transient exposure to the inhibitor
is sufficient to alter MARK2 localization during interphase. In-
terphase localization of MARK2 is dependent on its activity:
while MARK2 WT localizes as puncta throughout the interphase
cell–substrate interface, the kinase-dead (KD) mutant localizes
as long striations parallel to actin fibers (Hart et al., 2019). Fol-
lowing a brief 30-min exposure to MARK2i, MARK2-YFP lo-
calized as long striations parallel to actin fibers near the cell
substrate (Fig. S15, a and b). In contrast to the prominent
punctate-foci distribution of MARK2-YFP in control cells treated
with DMSO, MARK2i-treated cells showed fewer punctate-foci
but a higher number of long striations along the actin stress
fibers (Fig. S15 b), indicating a change in MARK2 localization
following MARK2i treatment. Segmentation and quantification
of eccentricity ofMARK2-YFP foci (Fig. S15 c) confirmed that the
localization of MARK2-YFP was significantly altered upon
MARK2 inhibition, representing eccentricity values similar to
the distribution of foci in MARK2-KD expressing cells (Fig.
S15 d). Prolonged MARK2 inhibitor treatment, by exposing
cells for a longer period (16 h), did not significantly change the
localization pattern compared to a shorter period of drug
treatment (Fig. S15 d), demonstrating the in vivo use of MARK2
inhibitor to acutely block MARK2 function during both inter-
phase and mitosis. Thus, SpinX enabled precise tracking of 3D
spindle movements following inhibitor treatment(s), showcas-
ing the robustness of DL-based quantitative analysis of discon-
tinuous time-lapse movies.

Discussion
We showed that an AI-based image analysis framework sup-
ported by 3D modeling can harness dynamic information in
time-lapse microscopy movies in a quantitative manner. By
bringing together large-scale time-lapse movie datasets and the
SpinX computational framework, we can now precisely track
spindle movements, in 3D, using diverse spindle protein mark-
ers allowing the possibility of a variety of high-throughput drug
development or drug target screens. Using manual and auto-
mated benchmarking tools, we establish that SpinX can reliably
(i) detect and segment the spindle and the cell membrane, (ii)
transform 2.5D data to true 3D through ellipsoid reconstruction,
and (iii) track spindle movement relative to cell size through 3D
mathematical modeling. We compared our methods to existing
ones for segmentation, Spindle3D and Cellpose (Kletter et al.,
2022; Stringer et al., 2021), and highlight the strengths of
SpinX in accurate segmentation of spindles and precise tracking
of spindle movements in 3D. The methods we present here can
be of general use beyond spindle tracking, for example, 3D

Figure 7. SpinX’s comprehensive framework. Diagram shows the com-
plete framework of SpinX including modules for generating annotations (pre-
processing), training, prediction, 3D modeling and 3D analysis (dark gray
arrows). Each module has a series of automated and manual steps (light gray
boxes), with purple arrows indicating how data is passed between modules.
Representative raw images and their corresponding automatically annotated

spindle images, along with raw and binary spindle and cell cortex images
belonging to the training dataset are shown. 3D reconstructions of the cell
cortex and mitotic spindle enable the extraction of translational and rota-
tional spindle movements, and pole-to-cortex distances. Image annotation,
predicted masks enabling temporal and spatial links between images, and 3D
modeling of pole position and tracking are all validated by experts (gold
icons). Scale bars: 10 µm.
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reconstruction for fluorescent images by utilizing properties of
the PSF, ray-tracing principle to model 3D movements relative
to different subcellular structures, a six-point 3D tracking al-
gorithm for capturing translational and rotational movements of
structures, and an expert error classification system to support
model evaluation and refinement. Last, we showcased SpinX’s
potential in supporting preclinical cell biology research and drug
development studies by taking advantage of the complexity of
mitotic spindle movements that we accurately measure in cells
treated with chemical inhibitors of CENP-E kinesin or MARK2
kinase.

One of the major hurdles in DL-based tool development is the
lack of large volumes of high-resolution time-lapse datasets that
are essential for feature-rich analysis of subcellular structures.
However, the lack of sophisticated image analysis tools dis-
courages the generation of such large-scale high-resolution da-
tasets. Here we break this conflicting scenario by generating
both time-lapse movie datasets and analysis tools for measuring
and characterizing spindle size, position, and movements in 3D.
Thus, SpinX provides a complete framework including modules
for annotation, training, modeling, tracking, and analysis, and
the possibility of validating predictions at multiple steps of the
process (Fig. 7), enabling robust 3D tracking of spindle move-
ments relative to the cell cortex.

SpinX’s contribution to the live-cell microscopy field is
twofold: extending the Mask R-CNN network to perform pre-
dictions on 3D time-lapse movie datasets and building a high-
resolution fully annotated dataset of images of fluorescently
labeled spindles and label-free cells. The Mask R-CNN-based
architecture allowed us to harness the network’s flexibility in
handling images of arbitrary size, and supported instance seg-
mentation of multiple classes—a crucial feature for cell seg-
mentation to separate overlapping cells, while also classifying
them into distinct phenotypes and providing unique IDs. The
evaluation of the neural network model using a detailed error
classification system helped assess the strengths and limitations
of SpinX. For example, errors in cell cortex prediction were
mostly categorized as “undersegmentation,” which were math-
ematically compensated by the MVEE during modeling. Our
findings highlight the importance of annotation quality, espe-
cially for studies where precise measurements of object
boundaries are important for accurate 3D modeling and object
tracking through time. Benchmarking studies with expert and
beginner users confirmed the benefits of Mask R-CNN, includ-
ing the generalization capacity of SpinX to detect spindle
markers, cell types and microscopes beyond the ones used to
train the model. In cases where further improvement in seg-
mentation may be required (e.g., bovine two-cell embryos),
further retraining is possible, for example, using transfer
learning, which has been shown to be a more effective approach
than retraining from scratch (Vasconcelos et al., 2022), to take
full advantage of the 3D modeling and tracking modules of
SpinX.

Unlike manual analysis of spindle movements or previous
spindle tracking efforts (Corrigan et al., 2013; Larson and
Bement 2017), automated analysis using SpinX can capture
translational and rotational movements of subcellular structures

using the six-point 3D tracking algorithm, and measure 3D
spindle movements relative to the cell cortex using principles
from ray tracing methods. This allowed the first careful as-
sessment of the impact of the inhibitors on metaphase spindle
movements in 3D. MARK2 inhibitor treatment does not affect
spindle rotation per se, but affects spindle rolling and tumbling
by altering the equatorial positioning of spindles. These findings
are consistent with equatorial positioning defects, previously
reported through manual analysis of MARK2 depleted cells
(Zulkipli et al., 2018). Similarly, SpinX analysis shows that
CENP-E inhibitor treatment that promotes excessive spindle
movements increases axial or equatorial movements more ex-
tensively compared to longitudinal movements. In summary, we
expected this advance in measuring spindle movements through
SpinX to help dissect molecular regulators responsible for pre-
cisely guiding the spindle’s movement to its final position.

The SpinX 3D-modeling module used for precise tracking is
limited to cases where the mitotic spindle can be extrapolated to
an ellipsoid. However, it can be used for a variety of cells in-
cluding mouse ESCs, kidney epithelial cells and bovine oocytes.
This extrapolation is expected to work in most mammalian cells
as spindle width is a good predictor of spindle size (Kletter et al.,
2022). In unusual scenarios of longer or wider spindles, it’s
possible to fine-tune the eccentricity of the ellipsoid using
spindle width as a parameter.

As the mitotic spindle movements are highly sensitive to
changes in the cell’s cytoskeleton, membrane compartment, and
chromosome position, SpinX-supported spindle movement
analysis is expected to help accelerate and advance automated
screening of drug targets and chemical compounds that act on
cytoskeletal and membrane compartments. In addition, SpinX
developed for single-cell studies, based on Mask R-CNN, can be
readily generalized to multi-cell images and also multi-content
images to allow the simultaneous tracking of more than one
subcellular structure.

Materials and methods
The SpinX frameworkwas developed in Python 3, using Numpy,
Scipy, Tensorflow, Keras, Scikit, Pandas, and opencv. For the
interactive interface, Tkinter was used. Figures were generated
using Matplotlib, Seaborn, and Jupyter Notebook.

Data generation
Cell line and culture conditions
HeLa cell lines (ATCC CCL2) used were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS; 10270106; Thermo Fisher Scientific), 1%
Penicillin/Streptomycin (15140122; Thermo Fisher Scientific),
and 0.1% Amphotericin B (Fungizone; 11510496; Thermo Fisher
Scientific). Cell lines were cultured as a monolayer at 37°C and
5% CO2. HeLa H2B-GFP, mCherry-Tubulin cell line was gener-
ated by transfecting mCherry-Tubulin expressing eukaryotic
plasmid vector into HeLa H2B-GFP cells (Draviam et al., 2006).
The HeLa mKate2-EB3 cell line was generated by transfecting a
pmKate2-EB3 plasmid vector (#FP316; Evrogen) into HeLa cells.
Plasmid transfection was carried out using DharmaFECT duo (T-
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2010; Dharmacon). The HeLa H2B-GFP, SiR-Tubulin cell line
was generated by adding SiR-Tubulin dye, a paclitaxel-based
fluorescent compound (Lukinavičius et al., 2014; Spirochrome
SC002; 100 nM) just 1 h before imaging. The HeLa FRT/TO cell
line expressing siRNA-resistant MARK2-YFP-WT or KD mutant
was generated by transfecting a Tet-inducible expression vector
encoding siRNA-resistant MARK2-YFP-WT or KD, followed
by colony picking (Zulkipli et al., 2018). Vectors bearing
point mutants of MARK2 were generated by polymerase
chain reaction–based point mutagenesis and confirmed by DNA
sequencing (Hart et al., 2019). Fluorescent cells were enriched
using a BD FACSAria III Cell Sorter for fluorescence-activated
cell sorting (FACS).

Live-cell microscopy
Live-cell imaging experiments were performed using cover glass
chambered dishes (155383PK; Thermo Fisher Scientific). MG132
(1748; Tocris Biosciences; 10 µM) was added 1 h before imaging
to synchronize cells at metaphase (Shrestha et al., 2017; Iorio
et al., 2015). During imaging, cells were incubated in Leibo-
vitz’s L15 medium (11415064; Thermo Fisher Scientific). For
MARK2 studies, MARK/Par-1 activity inhibitor (Timm et al.,
2011; MARK2i; 39621; Calbiochem; 5 or 10 µM) was added
prior to imaging. For CENP-E studies, CENP-Ei (GSK-923295;
MedChemExpress; 30 nM) was added prior to imaging.

For HeLa FRT/TO MARK2-YFP (WT and KD) experiments,
Doxycycline (10224633; Thermo Fisher Scientific; 200 ng/ml)
was added 16 h prior to imaging (Zulkipli et al., 2018). SiR-Actin
dye (Lukinavičius et al., 2014; SC001; Spirochrome; 100 nM) was
added 30 min before imaging. All imaging sessions were con-
ducted in a chamber at 37°C.

Widefield images were acquired with an Applied Precision
Deltavision Core deconvolution microscope equipped with a
dual camera system composed of a CoolSNAP and Cascade2
Camera (Photometrics) under EM mode. For live-cell studies,
images were taken every 3 min (21 timepoints—total time
60min) with optimized exposure times ranging from 0.1 to 0.2 s
depending on the imaging channel. For each experiment, at least
three z-sections (2 µm gap) were acquired using an oil-based
60X NA 1.42 objective or 100X NA 1.40 objective. High-
resolution imaging datasets have pixel sizes ranging be-
tween 0.04144 and 0.06887 µm. Time-point equalization,
deconvolution, and data export (Tiff-format) were performed
in softWoRx 6.5.2.

Confocal images were acquired using a Leica Stellaris 8
confocal microscope with an oil-based 63X NA 1.40 objective.
Each movie consisted of at least four z-sections (max 46) taken
with 0.2–0.5 µm gaps. All movies underwent adaptive decon-
volution (Lightning mode). Before processing through SpinX,
movies were converted to 8-bit and padded to 1,024 × 1,024
dimensions using our padding algorithm (described below).

Image datasets
Our image pools include 13,230 cell membrane and 15,120
spindle images of HeLa cervical epithelial cells. Cell membrane
images were pooled from 188 3D high-resolution live-cell mov-
ies, while the spindle images were pooled from 217 3D high-

resolution live-cell movies, both across 26 experiments. A uni-
form random generator was used to randomly select 2,180 cell
membrane and 2,320 spindle images to build the training, val-
idation, and testing datasets (Fig. S1). For SpinX’s final cell
membrane model (i.e., SpinX-optimized) the training dataset
consisted of 1,300 images (Tables S2, S3, and S4; and Figs. S5 and
S6), the validation dataset consisted of 250 images (Tables S4,
and Figs. S5 and S6), and the testing dataset consisted of 630
images (Fig. 2). For SpinX’s final spindle model (i.e., SpinX-op-
timized) our training dataset consisted of 1,390 images (Tables
S2, S3, and S4; and Figs. S5 and S6), the validation dataset
consisted of 300 images (Tables S3 and S4; and Figs. S5 and S6),
and the testing dataset consisted of 630 images (Fig. 2). For
testing the generalization extent of SpinX high-resolution 3D
live-cell time-lapse datasets of HeLa cells expressing mRFP-EB3
(1,540 images from 5 cells), YFP-Astrin (330 images from 10
cells) and mKate2-EB3 (1,920 images from 5 cells) were used. In
addition, datasets provided by Spindle3D (Kletter et al., 2022)
were used, including bovine one-cell embryos (30 images from
10 embryos), bovine two-cell embryos (30 images from 10 em-
bryos), HEK293 cells (130 images from 10 cells), and mESC cells
(50 images from 10 cells), wherein images displaying spindles
with a visible midzone were chosen.

Annotation
Manual annotations required for training and evaluation
(i.e., ground-truth masks) were performed with VGG Image
Annotator (VIA) tool (Dutta and Zisserman 2019). Any mis-
segmented images from SpinX’s AI output were also manually
corrected through VIA before 3D reconstruction and modeling.
Automated annotations were generated through chromosome
and spindle segmentation pipelines combining different con-
ventional image processing techniques. The chromosome seg-
mentation pipeline used for segmenting H2B-GFP labeled
chromosomes includes: (1) a median filter for noise reduction
(Huang et al., 1979); (2) Otsu’s method for iterative two-class
thresholding (by minimizing the weighted within-class vari-
ance), thereby globally reducing a grayscale image to a binary
image (Otsu 1979); (3) a connectivity matrix making up an 8-
connected neighborhood used for clearing any pixels found
at the image border; and (4) contour smoothing with the
Savitzky-Golay signal processing filter (Orfanidis 1996; Fig. S2 a).
The spindle segmentation pipeline used for segmenting SiR-
Tubulin labeled spindles includes: (1) median filtering of the
size [20, 20] for improving signal-to-noise ratio; (2) an adaptive
threshold for estimating the average background illumination
intensity; (3) binarization along with morphological dilation
and erosion for removing artifacts; (4) calculating the convex
hull of the segmented spindle halves to allow joining; (5) contour
smoothing with the Savitzky-Golay signal processing filter
(Orfanidis 1996); and (6) fitting an ellipse to obtain spindle
properties (Fig. S2 b). The spindle segmentation pipeline used for
segmenting mCherry-Tubulin labeled spindles includes: (1) a
Gaussian filter for noise reduction; (2) calculation of the image
gradient; (3) an automated snake i.e., active contour model (Kass
et al., 1988), that uses boundary information from the already
segmented chromosomes as initial coordinate points; and (4)
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inversing the snake, thereby propagating from the center of the
spindle towards the outer boundary contour to avoid any cyto-
plasmic noise (Fig. S2 c). All automatically generated annotations
were manually assessed and corrected if needed using VIA tool
(Dutta and Zisserman 2019).

Deep neural network
ResNet CNN for DL model of spindle and cortex
The ResNet CNN computes full-image feature maps with an
increased depth of 101 layers, therefore achieving an elevated
semantic value, despite the progressive loss in spatial resolution.
The final feature map generated is fed into the RPN, leading to
thousands of propositions of where the object of interest is most
likely located, termed as regions of interest (ROIs). The presence
of an RPN in the architecture allows the detection of individual
cells within densely populated images, while also enabling the
tracking of the same object across time through the bounding
boxes generated. The RPN defines several sets of bounding
boxes by a sliding window approach which is based on a com-
puted IoU metric (Ren et al., 2017). The sets of bounding boxes
then undergo binary classification and regression in a parallel
manner, followed by non-maximum suppression for selecting
the most accurate non-overlapping bounding boxes (Girshick
et al., 2015; He et al., 2018). The resulting bounding boxes
(i.e., anchor boxes) indicating the same ROI are aligned with
each other through bilinear interpolation—also known as the
ROIAlign layer, which improves pixel accuracy through the re-
finement of pooling operations (i.e., object extrema; He et al.,
2018). Subsequently, the FCN allows the simultaneous predic-
tion of the corresponding class and bounding box for each ROI
from the detection network, and the generation of the mask
within each ROI from the segmentation network.

Data augmentation
For both brightfield and fluorescent images used for training the
cell cortex and spindle models respectively, augmentation was
carried out on every epoch. Augmentation techniques used in-
cluded image blurring through Gaussian filtering, contrast
normalization, translation, rescaling between 80 and 120%, ro-
tating up to 180° or shearing by -8–8° (Fig. S4). Images also
underwent flipping, element-wise addition, simple pixel value
addition and multiplication, random pixel dropout of up to 10%,
gamma adjustment, and cropping (Fig. S4). For the cell cortex
models priority was given to translation, rescaling and shearing
to address the natural variation in cell size and shape; whereas
for the spindle models priority was given to rotation and flipping
to capture the variety in spindle dynamics (Fig. S4).

Training
For training our Mask R-CNN models, we used strategies from
Abdulla (2017). The networks were trained for at least 200 ep-
ochs (base models) or 500 epochs (optimized models) with sto-
chastic gradient descent at a learning rate of 0.001, a momentum
of 0.9, batch size of one image and a weight decay of 0.001 (Table
S3). The number of anchors for RPNwas set to 512. The detection
threshold was set at 90%. Models were initiated with COCO pre-
trained weights (Lin et al., 2015). The best models were selected

based on the lowest loss value in the training and validation
datasets. To train U-Net, we used a learning rate of 0.00001 with
a batch size of 4 and trained for 500 epochs.

Metrics
IoU scores were calculated by quantifying the matching between
predictions proposed by DL models and their corresponding
ground-truth masks. Average Precision (AP) scores to assess
class assignment are defined as AP � P

n Rn − Rn−1( )Pn, where Pn
and Rn are the precision and recall at the nth threshold (Table
S3). Loss functions were determined as described in He et al.
(2018) (Fig. S6 and Table S3).

Padding
Padding of the YFP-Astrin and mKate2-EB3 datasets were per-
formed through an algorithm that extracted small-sized patches
of the input image based on their sum of pixel intensity values.
The patches exhibiting the lowest sum of intensity values were
then used to pad the input image to a desired size. Therefore, the
low-intensity small-sized patches emulated and propagated the
“background” of the input image. This transformed the Astrin-
YFP dataset to 512 × 512 pixel images and the mKate2-EB3 da-
taset to 1,024 × 1,024 pixel images, subsequently enabling
SpinX’s AI module to segment spindles.

Statistical analysis
Statistical tests were performed in Python 3 (using Scipy pack-
age) and R-Studio (using R 3.6). Statistical tests were performed
on a significance level of P ≤ 0.01 or P ≤ 0.05. For P values, the
following convention holds: not significant (n.s.) with P > 0.05,
(*) with P ≤ 0.05, (**) with P ≤ 0.01, (***) with P ≤ 0.001 and (****)
with P ≤ 0.0001.

PSF to estimate spindle pixels in z
PSF was simulated with the Gibson-Lanni model (Gibson and
Lanni 1992) that accounts for different imaging conditions (Ta-
ble S6). To translate the empirical measurements of the PSF to a
mathematical function, the intensity values on the x,y and
z-sections were fitted. Given a 3D image stack of a fluorescence
bead where x and y are intensity values, (xc,yc) is the centroid
coordinates of the brightest spot across the z-stack, h is the
height of the Gaussian and σx and σy are variances in the x and y
directions where (σx ≠σy). Then, the 2D Gaussian with k = 2 is
the product function derived from a multivariate Gaussian

X2(x,y) ∼ Nk=2(µ,Σ) where Σ � σ2
x
0

0
σ2
y

� �
with det(Σ) = σx2σy2:

fX x, y( ) � Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π( )k|Σ|

q exp − 1
2
x − μ( )TΣ−1 x − μ( )

� �
,

� Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π( )2σ2

xσ
2
y

q exp − 1
2

x − xc y − yc[ ]

1
σ2
x

0

0
1
σ2
x

26664
37775 x1 − xc

y1 − yc
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To fit z data points of intensity values of the fluorescence
bead along the z-slices, Eq. 1 can be simplified to a to 1D Gaussian
with:

f (z) � A
2πσ2

z

exp − z − zc( )2
2σ2

z

( )
. (2)

Then, the function that relates the intensity values to the
estimated z-coordinate bz with respect to the reference intensity
profile rint is

I � exp −1 z − zc
σ

� �2
� �

. (3)

For each pixel, we, therefore, applied the following equation
to estimate its bz-coordinate:

bz � σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 ∗ log I( ) + zc

q
, (4)

where zc and σ denotes the mean and variance of the Gaussian.
To then 3D reconstruct the spindle, we use its assigned predic-
tion mask generated by the SpinX AI module and burn it on the
initial raw fluorescent image. This step isolates neighboring
signal noise and retains only the pixels belonging to the spindle.
Then, we filtered the predicted mask by keeping the top 30% of
pixels with the highest intensity, thus reducing the number of
data points while maintaining the shape of the spindle.

Ray traces to determine pole-to-cortex distance
Given a line in a three dimensional space which is defined by
two points P1(x1,y1,z1) and P2(x2,y2,z2), the parametric line for
points of intersect can be described by

P � P1 + t(P2 − P1), (5)

where each coordinate of P can be written as

x � x1 + t(x2 − x1)
y � y1 + t(y2 − y1)
z � z1 + t(z2 − z1). (6)

An ellipsoid translated to its center at P3(x3,y3,z3) can be de-
scribed by

x − x3( )2
a2

+ y − y3( )2
b2

+ z − z3( )2
c2

� 1. (7)

The intersection points P of the parametric Eq. 5 satisfy the
substituted Eq. 6 in Eq. 7:

x1 − x3( ) + t x2 − x1( )[ ]2
a2

+ y1 − y3( ) + t y2 − y1( )[ ]2
b2

+ z1 − z3( ) + t z2 − z1( )[ ]2
c2

� 1. (8)

Solving the square values of the parenthesis yields:

x2 − x1( )2t2 − 2t x2 − x1( ) x1 − x3( ) + x3 − x1( )2
a2

+ (9)

y2 − y1( )2t2 − 2t y2 − y1( ) y3 − y1( ) + y1 − y3( )2
b2

+ (10)

(z2 − z1)2t2 − 2t(z2 − z1)(z1 − z3) + (z3 − z1)2
c2

− 1 � 0. (11)

Arranging the expression received as powers of t yields:

x2 − x1( )2
a2

+ y2 − y1( )2
b2

+ z2 − z1( )2
c2

" #
t2

+ 2 x2 − x1( ) x1 − x3( )
a2

+ 2 y2 − y1( ) y1 − y3( )
b2

+ 2 z2 − z1( ) z1 − z3( )
c2

� �
t

+
"
(x1 − x3)2

a2
+ (y1 − y3)2

b2
+ (z1 − z3)2

c2
− 1

#
� 0. (12)

Substituting the equation of the line into the ellipsoid form
gives a quadratic equation of the form:

χt2 + γt + ζ � 0, (13)

where:

χ � x2 − x1( )2
a2

+ y2 − y1( )2
b2

+ z2 − z1( )2
c2

, (14)

γ � 2 x2 − x1( ) x1 − x3( )
a2

+ 2 y2 − y1( ) y1 − y3( )
b2

+ 2 z2 − z1( ) z1 − z3( )
c2

,

(15)

ζ � x1 − x3( )2
a2

+ y1 − y3( )2
b2

+ z1 − z3( )2
c2

− 1. (16)

The solution for t is then:

t � −γ ± ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4xζ

p
2χ

, (17)

where

t <0.0 no intersections( ), (18)
t � 0.0 one intersection( ), (19)
t >0.0 two intersections( ). (20)

Substituting t in Eq. 5 yields the intersection points P where
the spindle axis collides with the cell cortex. By applying the
analytical solution, the precise intersection points can be de-
rived at a lower computational cost (Fig. S11). Eq. 4 was derived
by (i) fitting a 2D Gaussian function along the xy coordinate of
the PSF and (ii) a 1D Gaussian fit at the centroid of the PSF along
the z-slices.

SpinX pole location refinement
The spindle pole refinement algorithm takes initial (x,y,z)
spindle pole predictions as an input. The spindle boundary
coordinates are obtained by taking the maximum projec-
tion of the spindle mask. Then, 3D coordinates are ex-
tracted along the spindle length axis (pole-to-pole axis) to
obtain the corresponding pixel values. The true spindle
pole is defined as the first and last occurrence of positive
values in the resulting 1D array. Finally, the new position
of spindle poles was updated across all data frames for
further calculations (Table 1). Manual analysis used for
evaluating the performance of SpinX’s pole position re-
cording was performed on Fiji (ImageJ) software (Schindelin
et al., 2012).
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SpinX pole identity assignment
We implemented a six-point tracking algorithm based on
k-Nearest Neighbor algorithm (k-NN). The six points represent
the end points of the three principal axes of the ellipsoid which
corresponds to spindle height, width, and length axis and works
as follows:

Given (x,y,z) coordinates of i = 2 poles at j = 2 consecutive
time points P1(t,t−1) and P2(t,t−1), the pairwise distance between
poles can be described by the distance matrix

D(i, j) � d
	
Pi,t, Pj,t−1



, (21)

where d is the 3D Euclidean distance between two consecutive
points

if min d P1t, P1t−1( )( ), no correction

if min d P1t, P2t−1( )( ), correction applied

if min d P2t, P1t−1( )( ), correction applied (22)

if min d P2t, P2t−1( )( ), no correction

The condition for a correct assignment of pole 1 at t is when
its distance is smallest at t −1 and largest to pole 2 at t −1. Based
on this condition, SpinX performs correction for individual
poles whenever they were falsely assigned (e.g., pole 1 at t −1 is
closest to pole 2 at t). Once corrected, SpinX updates the
correction throughout the data frame. To test how frequently
corrections have to be applied, we analyzed 10 randomly se-
lected time-lapse movies. According to Table S5, correction
with k-NN was required for around half of the time for spindle
width and length axes and one third for spindle height axis,
respectively (Fig. 4 e).

Computing 3D rotational movement with Euler’s angle
The extent of spindle rotation is defined by the rotation matrix
(R3×3) which is the product of successive rotation about the z, y
and x axes such as:

R � Rz(γ)Ry(β)Rx(α) (23)

with

Rx a( ) �
1 0 0
0 cos α( ) sin α( )
0 −sin a( ) cos a( )

24 35, (24)

Ry β( ) �
cos β( ) 1 −sin β( )
0 1 0

sin β( ) 0 cos β( )

24 35. (25)

Rz γ( ) �
cos γ( ) sin γ( ) 0
−sin γ( ) cos γ( ) 0

0 0 1

24 35 (26)

and satisfies:

RuR � RRu � I, (27)

where I is the identity matrix.
Then, the corresponding Euler angles α, β, and γ can be

computed from the rotation matrix R with (Slabaugh 1999):

α � atan2 sin γ( )cos β( ), cos γ( )cos β( )( )
β � atan2 −sin β( ),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 β( )cos2 α( ) + cos2 β( )sin2 α( )

q� �
γ � atan2 cos β( )sin α( ), cos β( )cos α( )( )

. (28)

Online supplemental material
Fig. S1 describes data composition, Fig. S2 details SpinX pipe-
lines for automated label generation, Fig. S3 evaluates auto-
mated label generation using SpinX, Fig. S4 explains data
augmentation techniques, Fig. S5 evaluates two SpinX models
using IoU metric, Fig. S6 evaluates two SpinX models using Loss
of function metric, Fig. S7 are example segmentations from
different architectures, Fig. S8 evaluates SpinX Stage 3 for ac-
curacy manually, Fig. S9 on cell cortex eccentricity, Fig. S10
presents spindle length and width measured through SpinX,
Fig. S11 outlines analytical solution for 3D Ray-tracing, Fig. S12
compares Refined and Old SpinX algorithms for recording
spindle pole positions, Fig. S13 shows increased spindle rotation
following CENP-E inhibition, Fig. S14 shows no increase in
spindle rotation following MARK2 inhibition, and Fig. S15
presents change in MARK2-YFP localization following its inhi-
bition. Video 1 summarizes SpinX spindle and cortex tracking
features. Table S1 shows comparison of SpinX with previous
software for spindle and cell cortex detection and tracking. Table
S2 shows differences between SpinX-base and SpinX-optimized.
Table S3 shows evaluation of SpinX-base and SpinX-optimized
models. Table S4 shows evaluation of annotation. Table S5

Table 1. SpinX pole refinement algorithm to compensate overestimation of spindle length axis

Steps Input Output

1 Perform MVEE as usual based on spindle signal to predict pole position First estimation of (x,y,z) for Poles 1 and 2

2 Create max projection of the spindle mask to identify spindle boundary Max projection of mask

3 Extract 3D coordinates along the spindle length axis (pole-to-pole axis) and obtain the corresponding
pixel values (conversion from float to integer results in rounding bias)

1-D array with pixel values obtained from the
max projected mask

4 Identify the first and last occurrence of the array which corresponds to the poles Refined (x,y,z) for Poles 1 and 2

5 Re-calculate the centroid and radius of the refined poles and use them as input to re-apply ellipsoid
fitting to update data frame and generated plots (increase computational run time marginally)

Updated data frame
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shows spindle tracking evaluation. Table S6 shows parameters
used for PSF simulation.

Data availability
The source code of SpinX can be found at https://github.com/
Draviam-lab/spinx_local.
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Falk, T., D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J.
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Supplemental material

Figure S1. Dataset composition. Dataset composition of cell membrane (top row) and spindle (bottom row) images with their corresponding masks for
training, validation, and testing. n corresponds to the number of images that were randomly selected from the image pools. Scale bars: 10 µm.
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Figure S2. SpinX pipelines for automated label generation. (a) Conventional image processing pipeline to segment chromosomes. Pipeline includes using a
median filter to reduce surrounding noise while preserving information of edges; performing Otsu’s thresholding to create a binary image; removing incomplete
objects located at the image boundary; extracting boundary pixel information of the metaphase plate and applying a Savitzky-Golay filter to smoothen the
boundary. (b) Conventional image processing pipeline to segment SiR-Tubulin-labeled spindle images. Pipeline includes using a median filter to reduce
surrounding noise while preserving information of edges; performing Otsu’s thresholding to create a binary image; calculating the binary convex hull image;
extracting boundary pixel information of the spindle; applying a Savitzky-Golay signal processing filter for smoothing; and utilizing an ellipse fit to obtain the
final boundary information. (c) Conventional image processing pipeline (non-AI-based image processing techniques) to segment the mCherry-Tubulin-labeled
spindle images. Pipeline includes applying a Gaussian filter to reduce surrounding noise while preserving information of edges; calculating the image gradient;
using the segmentation mask of the metaphase plate to initiate the inverse snake; extracting boundary pixel information of the spindle and utilizing an ellipse
fit to obtain the final boundary information. Scale bars: 10 µm.
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Figure S3. Evaluation of automated label generation with SpinX. (a) Time-lapse image stills of cell membrane, spindle (SiR-Tubulin), and chromosomes.
The segmentation results are outlined in green. (b) Graph shows computational run time for chromosome (green) and spindle (red) annotation generation using
SpinX. Note a log scale has been applied on the y-axes. Each dot indicates an additional 100 images. (c) Bar graph shows image-wise accuracy for chromosome
and spindle channels. An image is defined as mis-segmented if SpinX fails to segment the full object’s boundaries or if the properties (e.g., orientation) are
incorrect. Accuracy percentages are calculated by the number of mis-segmented frames over the total number of frames. (d) Automated chromosome and
spindle segmentation of cell trajectories over time without correction. Mis-segmented frames are highlighted in red. The time interval between each frame is 3
min. (e) The correlation matrix displays the calculated correlation coefficient ρ which denotes the matching between human segmentation versus automated
segmentation. The histogram shows the distribution of ρ grouped by channels. (f) Time series graph shows chromosome-spindle formation at metaphase.
Dash-line at angle φ = 90° represents perfect perpendicular properties between spindle and chromosomes. N = 4,473 images per channel. Data obtained from
88 movies of metaphase cells over at least six independent experiments.
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Figure S4. Data augmentation. (a) The data augmentation techniques applied for the cell cortex dataset include (left to right): Gaussian blur, element-wise
addition, contrast normalization, simple pixel value addition, gamma adjustment, multiplying pixel values, dropout pixels, adding Gaussian noise, flipping left/
right, flipping up/down, cropping, scaling, rotating, translating, and shearing the image. (b) The same augmentation techniques as described in a were applied
for the spindle dataset. Scale bar: 5 µm.
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Figure S5. Computational evaluation of SpinX-base and SpinX-optimized models using the IoU metric. (a) Histogram of IoU for base and optimized
models derived from the spindle training and validation datasets. (b) Histogram of IoU for base and optimized models derived from cell membrane training and
validation datasets. Red horizontal line indicates mean of IoU (mIoU).
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Figure S6. Computational evaluation of SpinX-base and SpinX-optimized models using the Loss function metric. (a) Line graphs show declining
training (blue) and validation (orange) loss functions for the optimized spindle model. (b) Line graphs show declining training (blue) and validation (orange) loss
functions for the optimized cell membrane model.

Dang et al. Journal of Cell Biology S6

AI to track mitotic spindle movements in 3D https://doi.org/10.1083/jcb.202111094

https://doi.org/10.1083/jcb.202111094


Figure S7. Example segmentations from different architectures tested with our dataset. Representative spindle (left) and cell cortex (right) images
showing a range of different IoU scores calculated between the ground truth (red line) and predicted masks (yellow line) from the different architectures
tested. Scale bars: 10 µm.
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Figure S8. SpinX Stage 3 evaluation. (a) Bar chart shows accuracy without (gray) and with Stage 3 (black) of SpinX’s architecture for spindle and cell
membrane models. (b) Wrongly predicted images from spindle and cell membrane models were further analyzed using our error classification system (de-
scribed in Fig. 2 c). n = 100 randomly selected images from our image pool were used for studies without Stage 3. n = 630 images from 10 randomly selected 3D
time-lapse movies were used for studies with Stage 3.
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Figure S9. Cell cortex is not fully circular. (a) Representative brightfield images (first row) of HeLa cell lines expressing mCherry-Tubulin or Sir-Tubulin.
Cells were selected based on measurements of eccentricity. Intact spindles of the individual cells are represented in the second row. Circular shape with
eccentricity = 0 is highlighted in yellow. (b) Violin plot shows distribution (dots) of eccentricity across 96 3D live-cell movies from 16 experiments. White
marker within the box refers to the median, the shaded area refers to the estimated kernel probability density and the box indicates the interquartile range of
the data. Measurements from the same dataset share the same color. Scale bar: 5 µm.
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Figure S10. Spindle length and width measurements computed through SpinX. (a) Box plots quantifying HeLa SiR-Tubulin and mCherry-Tubulin-labeled
spindles length (left) and width (right) as computed through SpinX’s modeling module. Schematics indicate spindle length (blue line) and width (green line) with
respect to the detected spindle poles (black and orange dots). (b) Line plots quantifying mean (bold) HeLa SiR-Tubulin and mCherry-Tubulin-labeled spindles
length (left) and width (right) across time as computed through SpinX. Thinner lines show measurements from individual cells. Shaded area shows 95%
confidence interval. For both a and b, Control (DMSO-treated) SiR-Tubulin N = 82 cells, 5,166 images; MARK2i SiR-Tubulin N = 68 cells, 4,284 images; CENP-Ei
SiR-Tubulin N = 43 cells, 2,709 images; Control mCherry-Tubulin N = 44 cells, 2,772 images. Statistical significance determined with Kruskal-Wallis H test and a
post-hoc Dunn’s test with Bonferroni correction: ****P < 0.0001; ***P < 0.001, **P < 0.01, *P < 0.05, ns (non-significant). Non-normality was confirmed with a
Shapiro–Wilk test.
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Figure S11. Analytical solution for 3D Ray-tracing. Mathematically applying the analytical solution (as described in Materials and methods) results to a
connecting line (magenta) of two intersection points (i.e., points of contact between the spindle principal axis’ endpoints and the cell surface) that overlaps
with the spindle height axis (red), hence allowing the calculation of pole-cortex distances in 3D.
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Figure S12. SpinX’s refined algorithm for recording pole positions is more reliable compared to its previous iteration. (a) Representative maximum
projection images of the mitotic spindle in a HeLa mCherry-Tubulin cell showing pole positions as recorded from SpinX’s old (top) and refined (bottom) al-
gorithm. Black circles correspond to the poles recorded bymanual analysis, while orange circles correspond to the poles recorded by SpinX. Pole alignment was
kept consistent throughout measurements i.e., red-filled circles correspond to pole 1, whereas blue-filled circles correspond to pole 2. T corresponds to the
time at which the image was taken. Scale bar = 10 μm. (b) Representative traces of the x-y coordinates of the poles of a single cell across time as recorded from
manual analysis, and SpinX’s old and refined algorithm (Pole 1—top; Pole 2—bottom.). (c) Box plots quantifying the absolute coordinate (x-y) difference
between manual analysis and either refined (left) or old (right) SpinX for both Poles 1 and 2. N = 4 cells, each cell consisting of 21 measurements for each pole.
Kruskal–Wallis H test + post-hoc Dunn’s test with Bonferroni adjustment: *P <0.05 Pole 1 refined vs. Pole 1 old. (d) Box plots quantifying the % difference in
spindle pole total displacement between manual analysis and either the refined (left; N = 3 cells) or old (right; N = 4 cells) versions of SpinX. The comparison
between manual analysis and SpinX was performed based on x-y coordinates alone, but it should be noted that SpinX performs 3D reconstruction, thus
predicting x-y positions while taking into consideration the z-position.

Dang et al. Journal of Cell Biology S12

AI to track mitotic spindle movements in 3D https://doi.org/10.1083/jcb.202111094

https://doi.org/10.1083/jcb.202111094


Figure S13. CENP-E inhibition promotes 3D spindle rotation. (a) Polar scatter plot shows spindle rate of rotational movement (in degrees) through time.
Measurements at each time point are highlighted with a unique color. α, β, and γ angles refer to spindle tumbling, rolling, and rotation. (b) Line plots show
average cumulative rate of rotation for spindle tumbling (α), spindle rolling (β), and spindle rotation (γ) against time for control (black) and CENP-Ei (red)
inhibited cells, respectively. Fainted lines correspond to individual spindle trajectories. (c) Empirical Cumulative Distribution Function plots show cumulative
fraction for longitudinal, equatorial, and axial displacement for control (black) and CENP-Ei (red) inhibited cells, respectively. Fainted lines correspond to
individual spindle trajectories. (d) Empirical Cumulative Distribution Function plots show cumulative mean angle values for spindle tumbling (α), spindle rolling
(β), and spindle rotation (γ) for control (black) and CENP-Ei (red) cells, respectively. Fainted lines correspond to individual spindle trajectories. Statistical
significance was determined by GLM and Kruskal–Wallis test (in c and d) after pre-analysis of the underlying distribution. N = 38 control and N = 43 CENP-Ei
cells from three experiments.
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Figure S14. MARK2i does not affect spindle rotation. (a) Illustration shows decomposition of spindle movement (gray) from t0 to t1 in 3D. Red dots
correspond to spindle poles P1 and P2. The spindle length axis is represented by the black line. Purple arc arrow indicates rotational movement of the spindle
length axis at t1 when parallel to t0. Blue box: Blue lines cover the longitudinal movement Δlg along the spindle length axis. Orange box: Orange lines cover the
equatorial movement Δeq along the spindle width axis which is perpendicular to the spindle length axis. Green box: Green lines cover the axial movement Δax
along the spindle axial axis. The 2D representation (bottom row) illustrates the raw decomposed movement. (b) Polar scatter plot shows spindle rate of
rotational movement (in degrees) through time. Measurements at each time point are highlighted with a unique color. α, β, and γ angles refer to spindle
tumbling, rolling, and rotation respectively. Statistical significance was determined by Mann–Whitney U test after a pre-analysis of the underlying distribution
with a Shapiro–Wilk test. N = 11 control and N = 12 MARK2i cells across three experiments.
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Figure S15. MARK2-YFP localizes as punctuate-striation pattern upon MARK2 inhibition. (a) Experimental regime and procedures. HeLa cells were
exposed to Doxycycline 16 h before imaging. SiR-Actin (100 nM) and MARK2i (10 µM) or DMSO (solvent control) were added 30 min prior to imaging.
(b) Deconvolved z-slice of 3D image stacks show MARK2-YFP (green) at the cell-substrate interface in WT treated with DMSO, MARK2i or in KD
stained with SiR-Actin dye (red). White boxes show punctate foci pattern in WT (DMSO), punctate-striation pattern in WT (MARK2i) and long
striation in KD. (c) Segmentation results of MARK2-YFP signal for quantification after manually outlining interphase cell boundaries. (d) The boxplots
show eccentricity measurements for DMSO, MARK2i, MARK2i prolonged treatment (16 h) and KD. 0 represents a perfect circle and 1 a perfect line.
For global group comparison, a generalized linear model (GLM) was fitted (non-normality was determined with Shapiro-Wilk test) followed by a post-
hoc analysis for pair-wise comparison (Dunn’s post-hoc test) after Multiple-Comparison Kruskal–Wallis (MCKW) at a significant level of P < 0.01. n
refers to the number of cells obtained from three experiments. Scale bars: 15 µm; 1 µm for inset.
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Video 1. Spindle and cell cortex tracking in 3D with SpinX. Video shows composite time-lapse movies of spindle movements in a metaphase HeLa cell
expressing mCherry-Tubulin (spindle marker in purple). Raw time-lapse image of mCherry-Tubulin labeled spindle (purple) merged with corresponding
brightfield (gray) image of the cell (top-left) or SpinX’s AI module predicted cell cortex outlined in blue (top-middle). Top-right, movie of SpinX’s mathematical
object modeling output showcasing spindle pole movements in 3D through time within the metaphase cortex, with an inset displaying the 3D reconstructed
spindle; bottom, animated graph highlighting the dynamic change in pole-cortex distances of the two spindle poles as tracks through time.

Provided online are Table S1, Table S2, Table S3, Table S4, Table S5, and Table S6. Table S1 shows comparison of SpinXwith previous
software for spindle and cell cortex detection and tracking. Table S2 shows differences between SpinX-base and SpinX-optimized.
Table S3 shows evaluation of SpinX-base and SpinX-optimized models. Table S4 shows evaluation of annotation. Table S5 shows
spindle tracking evaluation. Table S6 shows parameters used for PSF simulation.
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