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 Abstract— The proliferation of ubiquitous Internet of Things 
(IoT) sensors and smart devices in several domains embracing 
healthcare, Industry 4.0, transportation and agriculture are 
giving rise to a prodigious amount of data requiring ever-
increasing computations and services from cloud to the edge of 
the network. Fog/Edge computing is a promising and distributed 
computing paradigm that has drawn extensive attention from 
both industry and academia. The infrastructural efficiency of 
these computing paradigms necessitates adaptive resource 
management mechanisms for offloading decisions and efficient 
scheduling. Resource Management (RM) is a non-trivial issue 
whose complexity is the result of heterogeneous resources, 
incoming transactional workload, edge node discovery, and 
Quality of Service (QoS) parameters at the same time, which 
makes the efficacy of resources even more 
challenging. Hence, the researchers have adopted Artificial 
Intelligence (AI)-based techniques to resolve the above-
mentioned issues. This paper offers a comprehensive review of 
resource management issues and challenges in Fog/Edge 
paradigm by categorizing them into provisioning of computing 
resources, task offloading, resource scheduling,  service 
placement, and load balancing. In addition, existing AI and non-
AI based state-of-the-art solutions have been discussed, along 
with their QoS metrics, datasets analysed, limitations and 
challenges. The survey provides mathematical formulation 
corresponding to each categorized resource management 
issue. Our work sheds light on promising research directions on 
cutting-edge technologies such as Serverless computing, 5G, 
Industrial IoT (IIoT), blockchain, digital twins, quantum 
computing, and Software-Defined Networking (SDN), which can 
be integrated with the existing frameworks of fog/edge-of-things 
paradigms to improve business intelligence and analytics 
amongst IoT-based applications. 
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I. INTRODUCTION 

ver the past three decades, applications characterized 
by varying workloads and substantial datasets have 

been the driving force behind transformative developments in 
distributed computing. This computing paradigm gained 
prominence due to its capability to cater to both compute and 
data-intensive tasks, driven by its inherent characteristics such 
as fault tolerance, resource sharing, load balancing, 
robustness, scalability etc. However, there are challenges, 
including comprising data movement overhead, 
synchronization and the complexity involved in handling data 
distribution and communication amongst nodes, which makes 
it unsuitable for high-performance scientific and engineering 
applications. After that, High-Performance Computing (HPC) 
has been introduced to address the mentioned issues, and it 
plays a vital role in power systems by optimizing grid control, 
cost minimization, reducing losses and transmission 
investment planning [1]. This paradigm provides high-quality 
solutions within reasonable time, primarily due to its ability to 
deliver high computational performance. Market-driven 
advanced computing systems have strategically shifted from 
HPC to High Throughput Computing (HTC). This transition 
aims to enhance not only processing speed but also to address 
critical issues like cost efficiency, energy savings, system 
reliability, and security [2]. Nonetheless, the escalating trend 
of data sharing across networks makes it imperative to employ 
programming models for executing programs across multiple 
distributed infrastructures. In order to manage the same, 
leveraging Virtual Machines (VMs) and virtualization has 
proven to be crucial in effectively handling the growing data 
quantities within distributed infrastructure. Advances in 
virtualization have paved the way for the emergence of 
Internet clouds as a novel paradigm. Significantly, the 
advancement of technologies like Radio Frequency 
Identification (RFIDs), Global Positioning System, and 
various sensors has catalyzed the emergence of the Internet of 
Things (IoT). 

O 
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A. Unfolding Emerging Computing Paradigm 

With digitization revolutionizing the world at an 
expeditious rate, IoT is emerging as a broad and multifaceted 
term encompassing several components and protocols, leading 
to a dominant technological shift. This rapid evolution is being 
utilized in domains such as smart factories, structural 
healthcare, smart cities, smart transportation, supply chain 
control, intelligent shopping applications, smart agriculture 
and many more in the form of autonomous IoT applications 
[3]. This paradigm shift has empowered self-driving drones to 
carry out home deliveries of groceries, enabled healthcare 
experts to conduct continuous health monitoring through 
wearable sensors, facilitated real-time monitoring of 
equipment and processes in supply chain management, and 
many more. The predictions regarding the potential influence 
of IoT are indeed remarkable. 

The term “IoT” is defined as a network of physical 
objects which comprises embedded technologies to 
communicate, sense and perceive data from their external 
environment. The IoT applications mainly consist of three 
components: things also known as devices, insights and 
actions. The devices are embedded with sensors or actuators. 
The sensors detect changes in the ambient conditions or in the 
state of the system and forward this information to the 
designated destination. In other words, this paradigm aims at 
building a smart environment by employing smart devices that 
autonomously generate data and transmit it via the Internet to 
facilitate decision-making [4]. Finally, Business Intelligence 
(BI) is utilized to draw appropriate actions from the insights. 
However, this paradigm imposes a few challenges such as: (1) 
Security; (2) Energy-efficiency; (3) Data storage and analytics 
(4) Resource-constrained. To illustrate these challenges, 
consider smart devices such as RFID tags used for asset 
identification and tracking in the Industry 4.0 scenario [5]. 
Smart manufacturing aims at predicting future conditions of 
manufacturing to ameliorate asset management and quality 
control of manufactured equipment. For example, NIROTech 
is a manufacturing company specializing in access and safety 
control devices for homes. Such devices include surveillance 
cameras, biometric and facial recognition door locks, fire 
alarms etc. These devices become susceptible to attacks by 
malicious users as smart home services are provided over a 
wireless network. Hence, it becomes important to preserve the 
integrity (prevent the insertion of malignant software 
applications into the IoT network, which might change the 
service purpose), availability (prevention against injecting 
fabricated data which has the ability to overload device 
causing financial losses) and authentication (which implies 
safeguarding the service environment from Denial of Service 
(DoS) Attack, Distributed DoS, and personnel information 
leakage etc.) aspects of a safe home [6]. The security aspect of 

Autonomous Vehicles (AVs) in Intelligent Transportation 
Systems (ITS) is considered, which interact with other 
vehicles and Road Infrastructure Units (RSUs) using 
telecommunication technology. AVs are now being embraced 
due to their driverless nature, fuel efficiency (AVs are capable 
of travelling at high speed because of Intelligence and quick 
sensors), adaptive behavior, remote monitoring and control, 
optimal path planning etc. The connected AVs contain sensors 
such as Light Detection and Ranging (LiDAR), Inertial 
Measurement Unit (IMU), Radio Detection and Ranging 
(Radar), GPS, cameras, thermal imaging etc., along with 
connection mechanisms (cellular connections, Wi-Fi, 
Bluetooth etc.). These components enable AVs to navigate 
efficiently in an environment by identifying obstacles. The 
information shared from vehicle sensors to their peer vehicles, 
or RSUs is vulnerable to being exploited by illegitimate users, 
raising concerns about data security and privacy in connected 
ITS. These unauthorized users have the potential to access an 
AV through various entry points, including USB connections, 
Bluetooth technology, in-car navigation systems, and other 
monitoring components. Hence, it becomes challenging to 
manage such a huge amount of data from potential attacks. 
Generally, such users conduct two types of attacks: spoofing 
and jamming [7]. Spoofing attacks include radar spoofing and 
GPS spoofing, in which counterfeit data is fed to AVs, aiming 
to gain significant control over the system’s behavior. It might 
drag the AV in the wrong direction. Sometimes attackers send 
blocking signals which prevent AVs from receiving authentic 
information from their counterparts, which constitutes 
jamming. Therefore, it becomes important for developers and 
manufacturers to develop strategies for mitigating the dangers 
associated with such attacks to reduce such cyberattacks. 

To understand the energy perspective of IoT devices, 
consider the scenario of Industrial IoT (IIoT), which 
comprises devices such as Computational RFID (CRFID) tags, 
ZigBee or LoRa-based sensors. These devices generate a 
tremendous amount of data and signals, which are used for 
controlling, sensing, predictive maintenance, and data analysis 
[8]. However, the communication and computation tasks of 
these “things” consume a substantial amount of energy, 
leading to a carbon footprint. For example, smart grids 
incorporate a large number of sensors that autonomously 
report their information to grid infrastructure. The sensing and 
communication tasks consume a lot of energy, that ultimately 
impacts the lifetime of smart grids [9]. In addition, executing 
task on optimal destination becomes significant as it incurs a 
different amount of computation and communication costs 
[10]. Another challenge is that IoT devices are generally 
energy-constrained since they are powered by batteries. To 
increase the lifetime of IoT devices, battery replacements and 
recharging don’t serve as an optimal solution due to increased 
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cost, and in some situations, the location of IoT devices might 
be inaccessible [11]. Last but not least, the substantial mobility 
exhibited by dynamic autonomous vehicles leads to increased 
fluctuations in the Received Signal Strength Indicator (RSSI) 
at the base station for wireless connections, which results in 
increased energy dissipation [12]. Therefore, addressing 
energy efficiency concerns becomes essential for achieving 
long-term sustainability in real-life deployments of IoT use 
cases.  

IoT devices generate both structured (numbers and 
values) and unstructured (text, video and audio files) types of 
data in massive amounts. As per an estimation by Cisco, 500 
billion devices will fall under the expansive IoT paradigm, 
accumulating as much as 79.4 ZB of data by the year 2030 
[13]. This necessitates finding suitable solutions for data 
storage and processing since the physical resources of these 
devices are limited in terms of power, memory, and 
computational resources [14]. However, IoT devices execute 
one task at a time, and in some scenarios, the resource 
requirements of incoming applications cannot be merely 
served by IoT paradigm. For instance, meeting user demands 
while viewing video content of emergency patients in vehicles 
(such as ambulances) is challenging considering the resource-
constrained nature of IoT devices. Therefore, considering all 
these challenges, it becomes evident that a single computing 
paradigm is not sufficient to address all the needs of 
consumers or IoT devices. It further necessitates the 
incorporation of appropriate resource management strategies 
via Artificial Intelligence (AI) leveraging the computation 
capabilities of other emerging paradigms to make it 
worthwhile in real-world scenarios.  

The processing and analysis of compute-intensive IoT 
devices’ data requires high-end storage, network, and 
computational capabilities, which can be accomplished by 
utilizing resource-rich cloud infrastructure [15]. Cloud 
computing is possibly the most impoverished paradigm, which 
evolves from the capability to harness utility computing, 
enabling pay-as-you-go models, parallel computation, load 
balancing, and the data-intensive nature of tasks [16]. Its 
ability to endorse a Service-Oriented Architecture (SOA) 
empowers it to create, incorporate, and generate new services 
by seamlessly integrating with existing ones. This results in 
the provisioning of services at three distinct levels: Platform-
as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS), and 
Software-as-a-Service (SaaS) [17], leading towards a 
terminology called Everything-as-a-service (XaaS) [18]. A 
new computing paradigm has emerged, referred to as the 
Cloud of Things (CoT), which transforms ubiquitous 

computing and allows the utilization of cloud architecture in 
the processing and analysis of extensive IoT data [19], [20]. 
The combination of both technologies will provide robust, 
seamless, and agile services for Next-Generation Networks 
(NGNs) [21]. 

In CoT, dynamic provisioning of underlying resources 
and the creation of VMs on demand are the key solutions for 
managing physical machine resources [22]. Nonetheless, it 
results in engaging the limited resources of the host machine. 
CoT envisions device management, including brokering 
messages between devices and the cloud. Message Queuing 
Telemetry Transport (MQTT) works as a broker that enables 
machine-to-machine (M2M) communication by enabling 
publish/subscribe services [23]. Data generated by devices is 
published, and data in the cloud-IoT will subscribe to it. 
Containers, on the other hand, are gaining prominence in 
multi-cloud platforms to manage and orchestrate applications 
into portable containers, especially in PaaS models [24]. 
Within no time, CoT has started harnessing Containers-as-a-
Service (CaaS) to provide services in the fields of 
transportation and Next-Generation Sequencing (NGS) 
bioinformatics [25]. Furthermore, it motivates the computation 
and processing of big data residing in cloud environments by 
efficiently processing spark jobs and hence, improving 
workload makespan as compared to traditional virtualization 
[26]. An integral approach involving the synergy of both 
technologies is going to be embraced by future cloud 
architectures.  

Despite the predominance of the CoT paradigm, it faces 
numerous challenges in hosting real-time IoT applications. 
Processing IoT requests at the cloud layer results in high 
latency due to bandwidth constraints, making it inadequate to 
cater the demands of real-time applications. This issue has 
been resolved by fog computing, which brings the 
computational capability of its underlying resources within 
close proximity of the end-user. It leverages cloud 
infrastructure in a decentralized manner, placing storage, 
computing, and processing components at the edge of the 
network [27]. Instead of being a replacement for the cloud, 
this computing paradigm introduced by Cisco acts as a 
complement to the existing framework.   

Fog/Edge computing emphasizes processing data in close 
proximity to the service-consumer, bringing new advantages 
such as greater context-awareness amongst nodes, real-time 
data processing, lower bandwidth consumption, and so on 
[28]. This computing paradigm makes the cloud truly 
distributed. However, IoT devices are battery-driven and 
resource-constrained, which elicits the need
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Fig. 1. A Timeline of the Evolution of Computing Paradigms 

 
to incorporate other emerging paradigms such as fog and/or 
edge, serverless, and quantum computing to enrich their 
resource capabilities and make them capable of incorporating 
business logic, which is responsible for running lightweight 
computation. Resource management in the emerging 
computing paradigm for real-time applications is a critical 
issue due to the incoming transactional workload (of a 
complex and diverse nature), scalability across data centers, 
and last but not least, fluctuating interactions and managing 
Service Level Agreements (SLAs) along with QoS parameters 
[29]. In contrast to the cloud, resource allocation in fog 
computing is more complicated because workloads are 
distributed among fog nodes due to its de-centralized 
architecture. Furthermore, determining the suitable destination 
node for executing incoming IoT workloads is also a critical 
consideration. For example, the latency-sensitive data 
collected is analyzed at the edge of the network, whereas if the 
application thrives for high computation service and storage, 
then the data is offloaded to the cloud for processing and 
analysis. Hence, the problem of resource management in such 
a collaborative environment thrives for leveraging compute, 
storage, networking, and intelligence capabilities from 
resource-enriched cloud and fog layers. This eventually calls 
for integrating the intelligence tier, which runs machine 
learning and deep learning models at the cloud layer while 
inferencing is carried out at the intermediate fog layer. This 
approach has now been envisioned as a potential platform for 

ameliorating services in smart cities, smart industries, 
connected vehicles, UAVs, Wireless Sensors, and Actuators 
Networks (WSANs), further boosting the development of 
advanced applications. Figure 1 depicts the evolution of 
various prominent computing paradigms with a timeline along 
with their objectives, limitations, and research challenges. The 
subsequent pointers highlight various emerging paradigms 
such as Fog of Things (FoT), Edge of Things (EoT) and most 
importantly, the hybrid computing paradigm, which provides a 
collaborative framework for various layers to work in a 
harmonized manner.  

1) Fog of Things 
Fog computing exploits its virtualization characteristics 

in order to deliver network, storage, and computing resources 
to end-users at the network edge. It offers services to latency-
sensitive IoT applications with tolerable delay. Fog 
computing, also known as fogging, is an architectural 
framework that utilizes edge resources usually, but not entirely 
situated at the edge of the underlying network [27]. These 
nodes are designed to carry out a substantial number of local 
computing and storage tasks while also managing data routing 
over the network. Delay-sensitive applications, for instance, 
Mobile Augmented Reality (MAR), thrive on up-to-date data 
processing and computational requirements, which cannot be 
fulfilled with a cloud scenario [30]. Hence, to ensure seamless 
transmission of real-time gaming data, the fog paradigm 
provides a competent solution. Furthermore, offloading IoT 
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data over fog optimizes Quality of Service (QoS) parameters 
such as latency, energy consumption, reliability, throughput, 
and bandwidth utilization. 

Furthermore, if the edge device sends latency-sensitive 
data to the cloud for analysis and waits for appropriate action, 
then it might result in unwanted delays due to its 
geographically distant nature as comparison with the fog/edge 
node. To overcome the mentioned limitations, fog computing 
provides limited processing, computation capability and 
storage services closer to the end user. Appropriate placement 
of services under IoT applications for execution in a fog or 
cloud environment is challenging, which often leads to 
inappropriate distribution of workload amongst VMs. To 
ensure optimal QoS and Quality-of-Experience (QoE), 
efficient distribution and tuning of IoT application workloads 
amongst Fog Nodes (FN), is complicated because of the 
distributed and heterogeneous architecture of resources in FNs 
[31]. 

2) Edge of Things 
As data is increasingly generated at the network edge, the 

most efficient processing of the data can be done on the edge 
device itself. The downstream flow of data is triggered by 
cloud datacenters, whereas the upstream data flow is managed 
on behalf of IoT devices [32]. In addition, moving massive 
amounts of potentially useless raw data to the cloud is 
expensive to transmit and store, and can even disable a 
network [33]. It introduces a heavy load on network 
transmission bandwidth, leading to data latency and backhaul, 
which makes it unfit for real-time applications, especially in 
the automotive industry. To exemplify, edge computing plays 
a vital role in the domain of vehicular networks by enabling a 
smooth exchange of data amongst vehicles and coordinating 
uniform flow to enrich user proficiency [34]. The rationale of 
edge computing lies in the fact that computation will happen 
in proximity to the data source. Edge computing is an 
unprecedented term that planted its seed in enhancing the 
speech recognition process in mobile devices under finite 
resources by computational offloading to a proximate server 
[35]. 

In the edge paradigm, content is pushed out 
geographically so that the data is more readily available to 
network clients with low latency. The compute capacity 
amongst edge servers and devices is introduced in distinctive 
environments, including warehouses, retail stores, banks, etc., 
where communication is enabled via the 5G network. The 
edge nodes prompt the 5G network by ensuring latency (one 
millisecond or less). Despite improved services in comparison 
to CoT, this paradigm witnesses a few drawbacks, like 
seamless migration of workloads, limited storage, heat 
dissipation, battery life and the limited computational power 
of mobile devices in an IoT environment. To deal with it, a 

cyber-foraging framework has been proposed [36]. This 
technique empowers communication by offloading the data to 
powerful datacenters residing in the cloud or to edge nodes 
lying in proximity. 

3) Fog vs Edge 
Edge and fog are frequently used interchangeably by 

most researchers; however, it's important to note that edge 
processes the task at the device itself whereas fog processes 
the request on near-end devices such as smart routers, 
gateways and network switches. The decision to incorporate a 
fog layer within a particular SOA rests entirely with the 
service provider, which is influenced by factors like 
application type, network architecture, data characteristics, 
and the location of essential network tools and resources. 
Although both fog and edge work towards leveraging storage 
and computational capabilities closer to the end user instead of 
pushing them to cloud datacenters, they still differ from one 
another in the following context: (1) Where does data 
processing take place? It happens at the network edge or 
device itself from the point of data generation in edge 
computing, but in the case of fog computing, the processed 
data is relocated to processors connected to a Local Area 
Network (LAN) relatively farther from sensors, gateways, and 
actuators. (2) possession of processing and storage 
capabilities? Fog nodes are comparatively more powerful than 
edge nodes. (3) On which layer do they work? Where edge 
computing emphasizes edge devices, fog computing sways at 
the infrastructure level. 

4) Hybrid Computing Paradigm 
Modern research is trending in the direction of exploiting 

the collaborative layered architecture of cloud-fog/edge 
computing in order to cater to delay-sensitive and compute-
intensive tasks, as depicted in Figure 2. Some prominent 
application areas include AR/VR gaming, 24x7 video 
surveillance, maritime engineering, electronic health and 
activity tracking, autonomous vehicle management and 
Wireless Sensors and Actuator [37] [38]. This collaborative 
framework fits well for such applications where each layer 
performs distinctive functions, as explained below: 
• Collaborative Cloud-Fog/Edge-IoT: It constitutes the 

following layers: 
Perception Layer: The IoT ecosystem encompasses a wide 
range of components, such as sensors, and mobile IoT devices 
like smartphones, smartwatches and consumer electronics, as 
well as household appliances like refrigerators, televisions, 
microwaves, and ovens. These devices gather and transmit 
data from their operational surroundings. This data generation 
spawns some tasks that require a timely response. For 
instance, these tasks can be categorized into hard and soft 
deadline-based tasks  
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Fig. 2. Hybrid Computing Paradigm 

 
Fog Layer: This layer is characterized by features such as 
location awareness, low latency, support for mobility, 
heterogeneity and interoperability. Apart from providing a 
decentralized and ubiquitous form of computing, this layer 
acts as a platform to harmonize coordination amongst 
heterogeneous fog nodes and the programmability of 
networking resources, to name a few [40]. The fog nodes 
utilize the capabilities of cellular base stations, network 
routers, Wi-Fi gateways, etc., to perform operations such as 
managing and analyzing data and other time-sensitive actions 
in close proximity to the device user. In addition to enhancing 
the service response time, its capability to process data saves 
network bandwidth by reducing the need to upload it to the 
cloud every time. 
Cloud Layer: This layer enables ubiquitous, on-demand access 
to a shared pool of configurable computing resources that can 
be provisioned and scaled as per application needs. Despite 
this, IoT applications require genuine response services, which 
cannot be fulfilled by the cloud. However, its limitless 
computational capabilities make it an irreplaceable choice for 
catering to compute-sensitive applications such as social 
networking, video conferencing, and so forth. Therefore, we 
consider this framework to explore various issues relating to 
resource management in the resource-constrained fog layer 
and the computationally equipped cloud layer. 

Serverless Computing: The cloud layer is considered the 
optimal destination for hosting serverless computing due to its 
predominant characteristics which include centralized 
architecture, elasticity and scalability etc. However, fog nodes 
can communicate with serverless functions deployed on the 
cloud, thus acting as event sources or consumers [41]. 
Quantum Computing (QC): It is a fascinating and powerful 
technology that promises to revolutionize a considerable range 
of intellectual and economic factors in our society. In contrast 
to classical computing, this paradigm is based on quantum 
mechanics, which uses Qubits that can be in superpositions of 
both states at the same time [42]. Although the cloud layer is 
considered best for QC, quantum computations and insights 
can be leveraged by fog nodes and IoT devices. The in-depth 
incorporation of QC is depicted in Section IV. 

B. Google Trends 
The Google trends depict the pattern of emerging 

computing paradigms over the past six years (2018 to the 
present), which is visually presented in Figure 3. It has been 
observed that Fog, Edge, and AI/Machine Learning are in 
vogue for integration with the cloud computing paradigm. Our 
study investigates recent research trends based on the state-of-
the-art for newly fangled thrust technology, including 
blockchain, 5G, quantum computing,  
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Fig. 3. Google Trends of Emerging Paradigms during last 6 years 

 
and many more. It is observed that the usage and practical 
applicability of the term quantum computing are still at an 
infancy stage. Only a few works have presented its usage, 
which identifies it as one of the future potential research 
directions. However, terminology such as blockchain, 5G, and 
the IoT is taking the lead as compared to other emerging 
technologies. Also, the escalating trend amongst the cutting-
edge technologies of fog and edge showcases the integration 
of these technologies in the era of modern computing 
paradigms. 

C. Motivation for conducting the Survey 
With the advancements in the sphere of technology, new 

frontiers harnessing cloud computing have come up, 
encompassing fog and edge computing, whose intent resides 
in extending the cloud’s compute, storage, and ubiquitous 
characteristics nearer to IoT devices or mobile users. The 
existing literature lacks a clearly defined vision and concept of 
the emerging computing paradigm, resulting in a restricted 
comprehension of the role of AI in this domain. AI includes 
techniques such as metaheuristics, Machine Learning (ML), 
Deep Learning (DL), and Reinforcement Learning (RL) under 
its umbrella, which can automate and reshape the existing 
traditional resource management capabilities to reach new 
heights. 

For instance, the decision to map and manage the 
execution of tasks on fog nodes is challenging as multiple 
incoming tasks might compete for the same resources, and the 
time slot desired by one IoT application task might be 
occupied by another application. Hence, to resolve such 
issues, AI provides an adaptive system that is programmed 
intelligently to handle the dynamic workload requirements of 
incoming applications. Keeping all these factors in mind, this 
paper explores the architectural framework of emerging 
paradigms and provides insights into incorporating AI 

components with computing paradigms such as Fog-of-Things 
and Edge-of-Things. This review tries to familiarize its readers 
with the various state-of-the-art integrating technologies (AI-
employed and non-AI-employed). This includes an 
exploration of research objectives, advantages, disadvantages, 
and a comparative analysis of QoS metrics. 

Despite the significance of utilizing AI techniques in 
fog/edge computing, we have found few surveys that 
emphasize the efforts made in the management of resources. 
One of the considerable studies has been done by Ghobaei-
Arani et al. [43]. This survey presents resource management 
problems in taxonomical form, which is divided into six 
categories. It includes application placement at the appropriate 
destination node, task scheduling, provisioning of resources, 
allocation, load balancing, and task offloading. In-depth 
studies have been done in all categorized areas, along with 
discussions of open issues. However, this survey doesn’t 
provide research trends for integrating thrust technologies like 
serverless computing, blockchain, quantum computing and 
Software-Defined Networking (SDN). Abdulkareem et al. 
[44], have studied the role of ML approaches in addressing the 
problems of resource management pertaining to fog 
computing. The paper highlights the application areas, 
challenges, and open issues covering the security aspect. 
Nevertheless, the work discussed ignores the classification of 
resource management techniques. Other survey parameters 
like taxonomy and QoS-based comparison are not mentioned. 
Also, a comprehensive study done by Hong et al. [45] presents 
an architectural classification for effective management of 
resources in Fog/Edge. It discusses future research 
perspectives to address various challenges. However, they 
have ignored some topics such as resource provisioning, 
resource scheduling, allocation, etc. QoS parameters regarding 
algorithmic categorization of resource management have also 
been ignored.   
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TABLE I 
COMPARISON OF OUR SURVEY WITH EXISTING SURVEYS BASED UPON INTEGRATION WITH THRUST TECHNOLOGY 

Year & 
Reference 

Emerging 
Computing 
Paradigm  

AI Taxonomy RM QoS based 
parameters 
Comparison 

Integration with Thrust Technology Open 
issues and 

Future 
Challenges 

 Se
rv

er
le

ss
 

5G
 

II
oT

 

Bl
oc

kc
ha

in
 

D
ig

ita
l T

w
in

s  

Q
C

 

FL
 

SD
N

 

2019 [43] Fog ✔ ✔ ✔ ✔         ✔ 

2019[44] Fog ✔ 
 

✔ 
         ✔ 

2019 [45] Fog/Edge 
 

✔ ✔ 
        ✔ 

 

2020 [51] Cloud-Fog-
Edge 

✔ ✔     ✔  ✔  ✔  ✔ 

2020 [52] Cloud-
Fog/Edge 

✔  ✔ ✔         ✔ 

2020 [47] Fog   ✔         ✔ ✔ 

2020 [46] Edge ✔  ✔ ✔       ✔  ✔ 

2021 [48] Fog ✔ ✔ ✔ ✔         ✔ 

2021 [49] Fog/Edge ✔ ✔ ✔ ✔         ✔ 

2021 [56] Edge  ✔      ✔      ✔ 

2022 [42] Cloud Fog-
Edge 

✔  ✔  ✔ ✔    ✔   ✔ 

2022 [53] Cloud-
Fog/Edge 

✔ ✔ ✔      ✔    ✔ 

2022 [54] Edge ✔      ✔    ✔  ✔ 

2022 [50] Fog-IoE-
Cloud 

✔ ✔ ✔ ✔         ✔ 

2023 [57] Fog/Edge ✔ ✔  ✔       ✔  ✔ 

Our 
Survey 

(this 
work) 

Cloud-Fog-
Edge 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Another review by Deng et al. [46] addresses the 
convergence of edge computing with AI. The work presents 
two-faced objectives: using AI for edge computing and on the 
other side, using AI on edge computing environments. 
However, it only discusses the concept of task offloading 
along with mobility management using AI techniques. 
Reviewing the resource provisioning and allocation schemes 
in lieu of studying their efficacy to reinforce both static and 
dynamic IoT applications in fog computing has been done by 
Martinez et al. [47]. They presented four distinct phases for 
the implementation of fog infrastructure and highlighted some 
current challenges and future directions. Although it provides 

an in-depth study of the necessary steps vital for the practical 
implementation of infrastructure, it ignores important resource 
management concepts such as scheduling underlying 
resources, offloading IoT-based tasks and load balancing. 
Furthermore, Nayeri  et al. [48] have surveyed the role of AI-
based solutions for placing application workload in fog 
computing in the form of a taxonomy of AI algorithms (ML, 
evolutionary and combinational). However, they have studied 
only service placement techniques without categorizing them, 
and other important aspects of resource management such as 
resource provisioning, resource allocation, service placement 
and load balancing have not been scrutinized. Also, no 
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discussion has been done regarding new-fangled technologies 
like SDN, serverless computing, quantum computing, 
blockchain etc. A study by Shakarami et al. [49] presents a 
systematic review by proposing a classification for resource 
provisioning. However, the work has been divided into five 
classes based on framework, heuristic or meta-heuristic, 
model-based, ML and game theory. Still, other important 
prospects for resource management have not been discussed. 
In another study done by Bushra et al. [50], QoS-based 
comparisons are evaluated in fog and IoE environments. The 
author describes the role of heuristic and metaheuristic 
algorithms in resource allocation and task scheduling. 
Nevertheless, it has not considered all aspects of resource 
management.  

Considering some recent research, Zhang J et al. [51] 
endow the concept of Artificial Intelligence of Things (AIoT) 
in a cloud-fog-edge environment. However, the importance of 
resource management in resource-constrained IoT applications 
is not discussed. Another study by Lin et al. [52] highlights the 
issue of Resource Management (RM) in wireless 
communication networks. But it doesn’t discuss the 
implications of the proposed work as real-life case studies 
relating to self-driving cars, smart logistics, the role of 
Collaborative Robots (COBOTS) in Industry 5.0 etc. AI-
augmented technology integration and its impact are discussed 
in the Fog/Edge paradigm in context with resource 
management. But some important aspects of resource 
management, such as task offloading, which leverages IoT 
applications by incorporating orchestrators into edge devices, 
are ignored [53]. The work done by Gill S et al. [42] provides 
the concept of quantum computation in lieu of managing large 
amounts of data and describes how quantum computing 
solutions will take over the existing world’s economy. But 
nevertheless, other cutting-edge technologies such as 
blockchain, Digital Twins, Federated Learning (FL), and 
Industrial IoT (IIoT) have not been discussed. In another study 
by Su et al. [54] the author emphasizes training and inference 
at the edge, utilizing FL to train models. The study remains 
confined to training the models via FL, ignoring possible 
solutions for edge intelligence such as security, consumer 
privacy, scheduling, etc., which can be accomplished by 
incorporating thrust technology. Another study brings forth a 
practical AIoT approach in a real-life scenario, discussing 
training and inferencing at the edge [55].  

After extensively surveying all the related state-of-the-art 
works, the author realizes that none of the works have 
considered resource management in depth in the form of 
taxonomical bifurcation, its related challenges, or its proposed 
solutions. Therefore, to the best of the author's knowledge, this 
is the first comprehensive review in this domain, 
encompassing all facets of resource management. It delves 

into suggested integrations, their complexities, upcoming 
trends, pros and cons, and underscores their incorporation with 
cutting-edge technologies. Hence, our work outlines the 
mentioned incorporation in addition to highlighting an in-
depth survey of research challenges and recognizing various 
issues in resource management. Our study emphasizes the 
integration of thrust technologies like Serverless computing, 
5G, SDN, Blockchain, QC, FL, Digital twins, the IIoT as a 
prospect for future research directions which the author 
believes is of paramount importance. This survey will make an 
impactful impression on readers by articulating needs and 
recommending solutions to various problems, including the 
social and ethical impacts of IoT-enabled computing 
paradigms in a real-world scenario. We also present a 
formulation of existing resource management problems in 
mathematical form, which aims to equip the researchers by 
articulating needs and further devising solutions to this 
problem. Table I summarizes the comparison study of thrust 
technology that can be integrated with the Fog/Edge-of-Things 
paradigm. 

D. Our Contributions 
The main contributions to this work are as mentioned below: 

• Presents a comprehensive overview of state-of-the-art 
driving dynamic resource management, encompassing 
controlling over and under-provisioning, offloading IoT-
based tasks, scheduling, and service placement, including 
allocation of resources and load balancing. 

• This work classifies and analyses existing AI-based 
solutions, emphasizing machine learning, metaheuristics, 
and combinational techniques for fog/edge resource 
management. 

• Mathematically formulate the problem of provisioning 
adequate resources, offloading task requests at optimal 
destinations, scheduling the task, service placement and 
finally balancing workload amongst nodes, considering 
latency and cost optimization models.  

• We have analyzed the existing solution in the form of 
QoS metrics along with their limitations and considered 
all aspects of resource management with classification, 
description, and limitations.  

• The article emphasizes fruitful discussions of recently 
published articles incorporating AI-enriched techniques, 
which can work as a stepping stone for potential future 
researchers. 

• This survey represents and evaluates the integration of the 
computing paradigm with thrust technologies such as 
Serverless computing, FL, IIoT, Digital Twin, Industry 
4.0, SDN, Blockchain and Quantum Computing in the 
form of frameworks and applications. 
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Fig. 4. The organization of this Systematic Literature Review (SLR)
• Endows solutions based upon thrust technology 

corresponding to futuristic challenges in resource 
management in collaborative Cloud-Fog-IoT paradigm.  

E. Social and Ethical Implications of IoT Applications 
The escalating use of sensors and corresponding 

enhancement of smart environments have driven the world to 
integrate sensors within the system, eventually resulting in 
data being exchanged between environments, humans, and 
various objects [58]. IoT has brought about a transformative 
wave in the world of technology, promising unparalleled 
convenience and connectivity in our daily lives. As IoT 
applications continue to proliferate, they extend their influence 
far beyond the realm of technology, touching upon the very 
fabric of our society, ethics, and the ways we interact with the 
world. This exploration delves into the multifaceted landscape 
of the social and ethical implications arising from the 
widespread adoption of IoT applications. This implies having 
a significant impact on citizens, society, and government 
organizations by imparting round-the-clock medical assistance 
by eminent doctors and healthcare experts, improving quality 

of life by cutting the carbon footprint, enabling access to 
education in remote, unsupervised areas, and the list goes on 
and on. The utilization of automation and analytics within IoT 
devices enhances customer service and refines business 
management strategies by facilitating the tracking and 
monitoring of both employees and products [58]. Nonetheless, 
the adoption of IoT gives rise to certain non-technical 
consequences, encompassing social and legal risks as well as 
ethical considerations.  

The ethical aspect comprises several factors such as 
transparency, accountability, sustainability, consumer safety 
etc. [55]. The transparency principle ensures that decision-
making and underlying techniques work in a transparent and 
understandable manner. Accountability guarantees that the 
developer or manufacturer bears the responsibility for the 
consequences and effects of AI-powered IoT applications. To 
demonstrate, consider the scenario of an autonomous 
driverless car that accelerates, gains momentum, applies 
brakes, slows down etc. in response to other vehicles on the 
road (heavy vehicles, pedestrians, cyclists etc.) and other 
traffic-related parameters. 
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TABLE II 
LIST OF ACRONYMS USED IN THE ARTICLE 

Despite the functionalities of IoT-integrated paradigms, 
any malfunction with the driverless vehicle might potentially 
harm the safety of other vehicles on the road [59]. Henceforth, 
it becomes ethically foremost to mitigate such harms in the 
working environment of IoT, protecting the physical space 
[60].  

Hence, accountability fosters trust between service 
provider and consumer, ensuring that the service provider will 
be held liable for their actions. In a similar manner, the safety 
principle assures consumer data safety from potential breaches 
and malicious attacks. To exemplify, recent advancements 
delve into the realm of robot ethics in the context of COBOTS 
in Industry 5.0 and autonomous vehicles. This aspect 
underscores the importance of upholding the safety aspects of 
physical spaces, ensuring that sensors and actuators operate 
appropriately to accurately interpret environmental conditions, 
thereby mitigating potential accidents [61]. These parameters 
collectively contribute towards an ethical, IoT-driven smart 
world. Nevertheless, the legal and ethical implications of this 
technology in the practical world encourage the government to 

enforce meticulous strategies, ensuring safety standards are 
met by IoT-driven devices. These devices should undergo 
periodic safety assessments to detect potential hazards and 
system failures. 

F. Article Organization 
The paper is structured as follows: Section II 

conceptualizes the concept of resource management in depth 
and presents the significance of incorporating AI-empowered 
techniques in the Fog/Edge of Things paradigm via state-of-
the-art advantages and open issues. Also, a few non-AI 
approaches in the existing literature have been reviewed. 
Section III presents the review methodology. Section IV 
provides integration of emerging computing paradigms with 
thrust technology as a future research scope. Section V depicts 
an analytical study of selected articles in the form of a 
graphical representation, based upon categorization and 
comparative evaluation. Section VI includes the research gaps 
and challenges identified. Finally, we summarize the work in 
the form of a conclusion in Section VII. The detailed 

Acronym Description Acronym Description 
ACO Ant Colony Optimization MEC Mobile Edge Computing 
APSO Accelerated PSO MEL Manufacturing Edge Layer  
ARIMA Autoregressive Integrated Moving Average MMAS Max-Min Ant System 
BFD Best Fit Decreasing MMPA Modified Marine Predators Algorithm 
BLOT Bandit Learning Based Offloading MOO Multi Objective Offloading  
BOA Butterfly Optimization Algorithm  MOPSO Multi Objective Particle Swarm Optimization 
BP Back Propagation MPA Marine Predators Algorithm 
BPSO Binary Particle Swarm Optimization NANN Nonlinear Autoregressive Neural Network  
BS Base Station NGN Next Generation Networks 
CAPEX Capital Expenditure PSO Particle Swarm Optimization 
CART Classification and Regression Tree Algorithm  QC Quantum Computing 
CCR Communication to Computation Ratio QoE Quality of Experience 
CEA Cultural Evolution Algorithm QoS Quality of Service  
CoT Cloud of Things RA Resource Allocation 
DAG Directed Acyclic Graphs RFID Radio Frequency Identification 
DRL Deep Reinforcement Learning RL Reinforcement Learning 
DVFS Dynamic Voltage Frequency Scaling RM Resource Management  
EDF Earliest Deadline First RP Resource Provisioning 
ESC Edge Server Cluster RSU Road Side Units 
FN Fog Node SDN Software Defined Network 
GWO Grey Wolf Optimizer SLA Service Level Agreement 
HCF High Computing Fog SLAV Service Level Agreement Violations 
HSOM Hierarchical SOM SLO Service Level Objective 
IIoT Industrial Internet of Things SOA Service Oriented Architecture 
IoE Internet of Everything SOM Self-Organizing Maps 
IoT Internet of Things VFC Vehicular Fog Computing 
IWO Invasive Weed optimization VM Virtual Machine 
LCF Low Computing Fog WOA Whale Optimization Algorithm 
MDC Micro Data Center WRT Weighted Response Time 
MDP Markov Decision Process WSANs Wireless Sensors, and Actuators Networks  

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



12 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
organization of this comprehensive review is illustrated in 
Figure 4. Table II lists various acronyms used in this 
comprehensive review. 

II. AI-DRIVEN RESOURCE MANAGEMENT IN FOG/EDGE 
The stochastic nature of the fog environment is influenced 

by multiple factors, including the rate of job arrivals, delay-
focused data, interdependencies among incoming requests, 
dynamicity, status of resources (busy or idle), the number of 
tasks within IoT applications, varying resource requirements 
of real-time applications, and the accessibility of 
computational resources. Thus, conventional or heuristic 
methods do not work well in a dynamic fog computing 
environment due to their inability to adapt to constant 
changes. Moreover, the implications of fog computing in 
physical world applications necessitate fault-tolerant and 
adaptive resource management mechanisms which can be 
achieved through efficient and optimized task or workload 
scheduling. Hence, to acquire efficiency at the infrastructural 
level, optimal management of resources can’t be 
compromised. Presently, research is trending in the direction 
of inculcating AI with computing paradigms, hence making 
the system autonomous.  

AI is increasingly ingrained in our daily lives, 
contributing to informed decision-making through the 
utilization of meta-heuristics, ML and DL approaches. It is 
being utilized by recommendation systems for companies such 
as Facebook, Instagram, Amazon, and Google and in use cases 
such as healthcare [62], earthquake prediction [63], Industry 
4.0, etc., which require the efficient handling of gigantic 
amounts of data generated from sensors. This data needs to be 
efficiently analyzed in order to extract certain features for 
accurate training of AI models. The process of training a fully 
equipped model can be complex, especially in context to the 
time required for training a machine learning-based model. In 
contrast, deep learning offers a key advantage over classical 
machine learning by delivering superior performance, 
especially when dealing with extensive datasets. Since many 
IoT applications generate vast amounts of data, deep learning 
methods are particularly well-suited for such systems [64]. For 
example, Deep Reinforcement Learning (DRL) methods are 
gaining insight in various forms, including convolutional Deep 
Neural Networks (DNN), deep belief networks, Recurrent 
Neural Networks (RNN) etc., for enhancing the computational 
intelligence of systems. It also provides a solution for 
predicting extensive workloads and aids the system even 
where ML techniques fail. Nevertheless, metaheuristic 
solutions provide promising results for scheduling tasks to 
appropriate nodes in the distributed architecture of Fog/Edge 

of Things [65]. Hence, our subsequent section highlights an 
exhaustive study implicating non-AI and AI-based (ML, DL, 
metaheuristics, and hybrid methods) for dynamic resource 
management.  

A. Conceptualization of Resource management in Fog/Edge 
computing paradigm 

Resource Management (RM) is a major challenge in the 
emerging computing paradigm that includes device 
heterogeneity, resource-constrained nature, large-scale 
geographical distribution, edge node discovery, dynamic 
workload, unpredictable demand, and diversity [66] [67]. In 
contrast to the cloud, allocating resources for upcoming 
requests is quite tough in the case of fog computing, where the 
load has to be distributed amongst fog nodes due to its 
decentralized architecture [68]. In addition to this, it is the 
most preferred platform for performing complex computing 
for scientific workflows, where even one small wrong decision 
in resource allocation can lead to substantial monetary loss 
[69]. Moreover, the increasing number and complexity of IoT 
applications make the process even more challenging. Hence, 
in order to orchestrate IoT applications, it becomes important 
to optimally provision the resources without compromising the 
application’s performance and user satisfaction level. 

B. Taxonomy of Resource Management 
The trundle of fog RM begins with provisioning 

resources, scheduling, service placement, allocating, and load 
balancing [43]. It becomes noteworthy to define the term 
“resource” as a collection of hardware (processor, storage, 
network, power, memory and communication media) and 
software components (VMs, instances, and containers) [70]. 
The RM module comprises components that are responsible 
for resource allocation among incoming tasks, followed by 
scheduling. The task offloading mechanism decides where to 
offload the IoT requests for performance enhancement by 
determining the algorithm and trade-offs to be taken into 
consideration [71]. The trade-off comprises fault monitoring 
and incentives to be paid in accordance with the device type. 
The process of Resource Allocation (RA) reserves and defines 
resources for a particular end user, whereas the resource 
provisioning module provisions and deprovisions the 
resources as and when required by the service consumer. 
Resource provisioning comprises the effective allocation of 
IaaS resources among applications running over distributed 
platforms. Such applications require orchestration and fencing, 
which traditional methods can’t support. It intends to 
minimize SLA violations by implying efficient server 
allocation strategies amid interactive and real-time jobs. 
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Fig. 5. Resource Management in Fog Computing Environments 

The resource allocation module is also responsible for 
managing the allocation, re-allocation, and de-allocation of all 
the dependent and independent tasks. This process is followed 
by the scheduling component, which ensures energy 
efficiency, optimal resource usage, and minimize the 
operational costs of task execution. All these components 
reside in the complex architecture of the fog computing 
environment, as depicted in Figure 5. The bottommost layer, 
comprising clusters of physical and virtual sensors residing in 
intelligent homes, devices, CCTVs, smart cities, grids, 
automated driving vehicles and so on, is networked to fog 
devices. The monitoring level keeps track of system 
performance, resource utilization, utility, and feedback [72]. 
Data pre-processing and reduction represent promising 
concepts that enhance the efficiency of IoT data processing 
and analysis. Implementing data reduction at the edge layer 
can effectively decrease network bandwidth and latency at the 
gateway, thereby mitigating I/O bottlenecks in the broader 
network connection [73]. For instance, consider the case of 
managing IoT-based industrial data in smart manufacturing. 

This IIoT data caters to prognosis and predictive maintenance 
tasks, which calls for unnecessary data to be trimmed due to 
limited transmission, computational, storage and processing 
capabilities. The trimming procedure guarantees the exclusion 
of faulty, incomplete, and redundant data [74]. Finally, the 
provision of services to real-time applications must maintain a 
high level of security through the incorporation of encryption. 
In addition, it is imperative to acknowledge that while 
encryption plays a pivotal role in safeguarding data 
confidentiality, it is not a comprehensive solution for 
addressing all security considerations. Encryption primarily 
focuses on data confidentiality, ensuring that unauthorized 
access to data is prevented [75]. However, several other 
crucial aspects of security warrant attention. Firstly, in 
applications with real-time constraints, relying solely on 
encryption can introduce unacceptable latency, compromising 
the immediate responsiveness required in critical systems. 
Secondly, the concept of data integrity is central to security, 
ensuring that data remains unaltered during transmission or 
storage [76]. Encryption, in isolation, does not address the 
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challenge of data tampering, making additional integrity 
checks essential, especially in the context of thwarting attacks 
involving false data injection. Authentication is another vital 
component, as it establishes trust between communicating 
entities. Encryption, on its own, does not verify the identities 
of participants, potentially leaving room for attackers to 
impersonate legitimate entities. Certain applications 
necessitate non-repudiation, where senders cannot deny their 
actions. Encryption, while valuable, does not inherently 
provide non-repudiation features. Furthermore, specific 
security threats, such as false data injection attacks, fall 
beyond the scope of encryption. These attacks require 
supplementary security measures like data validation and 
intrusion detection to detect and prevent potential harm [77], 
[78]. Lastly, effective key management is critical for 
encryption's success. Inadequate key management can 
compromise the entire security infrastructure. Thus, a holistic 
security approach combines encryption with these additional 
measures to ensure comprehensive protection against a wide 
array of security challenges. 

In order to effectively manage resource-constrained fog 
layer devices, the author has proposed this problem in the 
form of a taxonomical representation, as depicted in Figure 6, 
by articulating the needs and research challenges and 
recommending possible AI and non-AI-based solutions. The 
subsequent content presents a brief overview of existing non-
AI and AI-based solutions in context to resource management 
in a Fog/edge-enabled IoT scenario.  
• Existing non-AI-based Solutions: These solutions have 

been categorized as static approaches, heuristics, 
mathematical models (Euclidean formulation), 
mathematical optimization-based methods such as Integer 
Linear Programming (ILP), Mixed Linear Programming 
(MLP), etc. The static algorithms are characterized by 
pre-information schedule creation for the incoming jobs, 
such as time required to complete the job, resources 
required etc. [79]. In other words, a general resource 
schedule is generated beforehand, which, however, leads 
to resource waste if reserved instances are not utilized in 
that particular time period. It includes First Come First 
Serve (FCFS), in which the task that arrives first, gets the 
resources first [60] [61]. Another static approach is Min-
Min, which works by determining the Minimum 
Completion Time (MCT) for each job, and then, based on 
the MCT value, the right resources are allocated to the 
respective jobs. On the contrary, the Max-Min approach 
selects the job with the maximum execution time and 
accordingly allocates resources. 
However, in a real-world scenario, tasks can appear at 

runtime, and resources can be dynamically introduced or 

removed at runtime. To work effectively in such an 
environment, resource management strategies often rely on 
optimization methods, which can be divided into two 
categories: exact and heuristic [81]. Although exact 
techniques such as Branch and Bound find optimal solutions, 
however they are not well-suited for extensive problems, 
particularly those associated with IoT applications. Hence, 
heuristic algorithms perform comparatively better at finding 
a near-optimal solution in minimal time. Mathematical 
optimization methods such as Integer programming are 
categorized as ILP in cases where both the optimization 
problem and constraints are linear, whereas when continuous 
decision variables are introduced, the problem is 
characterized as MLP.  
• Existing AI-based Solutions: In order to resolve the 

limitations of traditional IoT systems, such as 
enabling real-time response, poor Internet 
connectivity and data gravity which evolves a better 
way to find insights than shipping all the data to the 
cloud. AI heralds’ momentum in IoT-enabled smart 
applications, which is further boosted with the 
emergence of 5G with the aim of addressing such 
issues. Recent research trends are gravitating towards 
incorporating machine learning, DL, DRL, and other 
hybrid techniques at the network edge for IoT 
applications. ML-based techniques utilized in the 
context of optimizing resource utilization include k-
means clustering [82], Decision Tree Regression 
(DTR) [83], Multiple Linear Regression [84], Naïve 
Bayes [85]. However, the latest works are 
approaching RL-based techniques due to the need to 
dynamically adapt and fix parameters changing in 
IoT-based scenarios [86]. The main benefit of this 
technique lies in the fact that RL-based techniques 
such as Q-Learning and State-Action-Reward-State-
Action (SARSA) do not require any dataset for 
training the model. Furthermore, such techniques 
operate iteratively with the goal of maximizing 
rewards for the agent, which takes actions based on 
the environmental state. The drawbacks such as the 
inability to handle high-dimensional state information 
regarding incoming IoT tasks, can be resolved by 
utilizing the competence of Deep learning in RL. 
Such techniques include DRL, Deep Q-Learning 
(DQN) and DNN. DRL works well with larger data 
sets by predicting appropriate action from action 
space [87]. On the other hand, DQN utilizes deep 
neural nets typically Convolutional Neural Networks 
(CNN) for calculating the Q-values. 
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Fig. 6. Taxonomy of Resource Management in Fog/Edge Computing   

C. Resource Provisioning 
In order to facilitate energy-efficient and low-latency 

solutions for real-time IoT applications, a thorough analysis of 
the forecasting network, storage, and computational resource 
needs for these applications is essential. These applications are 
accompanied by fluctuating workloads, so static allocation 
methodologies won’t simply serve the purpose. In 
straightforward terminology, Resource Provisioning (RP) is 
described as a process that controls resource allocation and de-
allocation in a manner such that QoS parameters should not be 
compromised even in a fluctuating incoming workload 
environment. This stipulates the need for an automated 
mechanism that can effectively manage the over-provisioned 
and under-provisioned system state issues in the fog 
ecosystem. In under-provisioning, the number of allocated 
resources is less in comparison to the actual task execution 
needs, which further leads to SLA violations. Therefore, the 
basic idea behind RP resides in the detection and selection of 
judicious resources for the user in accordance with incoming 
application requests [88]. Alongside, it maps the incoming 
requests to the VMs to deliver the services with the minimum 
cost and time.  

1) Problem Formulation for Resource Provisioning  
The collaborative cloud-fog-IoT scenario constitutes 

collection of 𝓃 IoT devices 𝔇={𝒹!, 𝒹"…𝒹# …𝒹𝓃} which 
spawn 𝓂 tasks ℑ={ ℑ!, ℑ", … , ℑ𝒿, ℑ𝓂}. Set of 𝓍 fog nodes 
which serve as micro data centers is represented as ℱ𝒩 = {  

 
ℱ𝒩!, ℱ𝒩"…ℱ𝒩𝓍}. In addition, the author considers the 
cloud data center (𝒟𝒮) for offering highly computational-
oriented services. The objective of resource provisioning is to 
search for optimal resources for end users within defined 
constraints. This module of RM accounts for the validation of 
various constraints, which acts as a preliminary before actual 
resource allocation and task service take place. The problem 
of resource provisioning is formulated as follows [89]:  
IoT device constraint:  1≤ 𝒹 ≤ 	𝓃            (1) 
Task count constraint: 1≤ ℑ ≤ 	𝓂            (2) 
FN constraint: 1≤ ℱ𝒩 ≤ 𝓍            (3) 
Deadline constraint: It specifies that each task must not 
surpass its maximum latency, which corresponds to the task's 
deadline, 𝔻𝒹,𝒿.  
 ∑ 𝒯*+,-./0

𝒹,𝒿𝓂
𝒿1!  ≤ 𝔻𝒹,𝒿             (4) 

Here, 𝒯*+,-./0
𝒹,𝒿  denotes the compute time of task.  

Bandwidth constraint: This constraint ensures the avoidance 
of network congestion while performing various resource-
centric tasks. It further states that the allocated bandwidth of 
an IoT device, fog node or cloud data center must not exceed 
the maximum bandwidth.  
∑ 𝔓𝒿
𝓂
𝒿1!  ≤ 𝔓234              (5) 

Computational constraint: The required CPU cycles to 
accomplish the task must not be greater than the available 
processing capacity of the resource (Ɍ). Ɍ can be an IoT 
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device, fog node or cloud data center. It can be illustrated as 
follows:  
∑ ℑ506

𝒿𝓂
𝒿1! ≤ Ɍ789	 _<-.              (6) 

Where ℑ506
𝒿  depicts about the required cpu cycle and 

Ɍ789	 _<-. represents about the max cpu capacity of resource. 
Non-preemption: It states that once a task is allocated to a 
computational node, that task must be completed first before 
starting the execution of another task at the same resource.  
 

2) Resource Provisioning Challenges 
The following are the main challenges of resource 
provisioning:  
• Benchmark Resource Performance: It comprises 

some critical aspects such as resource utilization, 
predictability, and fault tolerance. Predictability defines 
the system’s ability to predict its future behavior. 
Complementing the existing infrastructure with 
futuristic knowledge enhances the system’s ability to 
predict future behavior. Nevertheless, fault tolerance 
underlines the system’s capability to withstand the 
failover without compromising service delivery. 

• Uncertainties: The inherent characteristic of dynamism 
in fog environment leads to uncertainties. A powerful 
resource provisioning mechanism is capable of mapping 
incoming requests arriving in a stochastic manner to an 
available set of resources. Furthermore, due to the 
significant computational complexities involved in this 
decision-making process, it is considered an NP-Hard 
problem. Hence, to solve such a complex issue, new AI-
based approaches are being proposed based on the 
problem and underlying environment. 
The subsequent sub-section discusses the framework for 

evaluating QoS study for the work, as shown in Table III, 
which concludes that the most targeted parameters include 
cost, delay, and utilization. Whereas, few studies have focused 
on failover ratio, response time, SLA violation etc. 
Furthermore, most recent state-of-the-art based on non AI-
based and AI-based (Metaheuristics, ML, and DL) along with 
hybrid techniques is presented, which is summarized in Table 
IV. Concerning Resource Provisioning, non-AI models are 
based upon Markovian-Decisions, mathematical-based 
mechanisms, and various types of linear programming models. 
Alongside a Noteworthy, Table V depicts various datasets that 
have been used to evaluate the performance of AI approaches 
in the domain of resource management. In addition, it aims to 
deliver dataset-related aspects such as accessibility in the form 
of links, descriptions and types, facilitating researchers in 
accessing the dataset and gaining valuable information for 
their future investigations. 

3) Existing Solutions for non AI-based Resource 
Provisioning 

The reviewed articles address the problem of over- and 
under-provisioning of resources in fog/edge computing with 
various heuristic and mathematical-based models. Yao et al. 
[90] depict the challenge of provisioning multiple VMs for 
incoming tasks as a multi-objective problem in a 
heterogeneous IoT-enabled environment. It aims at 
minimizing the total cost involved in renting VMs while 
nevertheless maximizing reliability to confront the issue of 
VM failovers. The objective has been accomplished by using a 
modified version of the Best Fit Decreasing (BFD) algorithm; 
where the incoming tasks are arranged in decreasing order of 
corresponding length and then provisioned to VMs as per 
weight capacity (price). The simulation results demonstrate 
the improvement in results in terms of cost and reliability as 
compared to state-of-the-art algorithms. The authors propose a 
software-based approach for workload partitioning among 
computing layers [93]. Partitioning the workloads provides a 
prime requisite for optimal provisioning of resources, 
especially bandwidth consumption to link factories with cloud 
data centers. Moreover, it assists the existing framework in 
determining the minimum and maximum number of locally 
situated servers to be integrated with available FNs in order to 
provide exquisite resources to real-time applications subjected 
to time and memory constraints.  

It becomes noteworthy to mention the problem of 
predicting and provisioning resources for serving the 
enormous number of devices in existing cellular networks. For 
instance, cellular relay networks thrive on strategies enabling 
ubiquitous coverage and providing a fair share to respective 
users, enabling optimal resource provisioning [91]. To 
maintain the QoS parameters, the service providers are 
working towards expanding their Base Stations (BS). BS 
consistently allocates a fixed number of resources, while 
mobile users access services at discrete intervals, often leading 
to inefficient resource allocation. In the context of vehicular 
networks and aerial units, a dynamic resource provisioning 
approach has been suggested in reference [104]. Additionally, 
a two-stage algorithm has been introduced to optimize the 
management of RSU workloads. Briefly, the vehicular 
computing framework manages incoming workload spikes via 
flying fog units, hence the introduction of RSUs as a 
computing paradigm. The overloaded RSU can provision the 
required resources from nearby base stations based on the 
calculated lease period, utilizing local and global workloads. 
The work done is capable of deadline and capacity-aware 
offloading, handling peak loads, and supporting dynamic 
resources in the form of vehicles or UAVs using various 
mathematical models. The results illustrate reduced energy 
consumption, waiting time and computational time in 
comparison to the state-of-the-art.
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TABLE III 

COMPARISON OF PERFORMANCE METRICS FOR RESOURCE PROVISIONING IN FOG/EDGE COMPUTING
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2010 [91] NA ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 

2016 [92] Animation rendering Dataset ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 

2019 [90] NA ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2019 [93] NA ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2020 [94] MNIST, Fashion MNIST, and 
LEAF  

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ 

2020 [95] New York City Taxi trip ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 

2020 [96] Microsoft T-Drive Trajectory 
&  Chicago Taxi Trips 

✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2020 [97] NA ✔ ✖ ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2020 [98] Taobao App, Cloud Theme 
click from Tianchi, Clark Net 

✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2020 [99] NA ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ 

2021 [100] Google cluster Usage Trace ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 

2021 [101] NA ✔ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2021 [102] Fast Fourier Transformation 
& historical temperature 

records 

✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✔ 

2022 [103] Real Google Traces 
comprising 25 mil- 

lion tasks 

✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✖ ✔ 

4) Existing Solutions for AI-based Resource 
Provisioning 

Due to the prevalence of AI, we decided to explore the 
existing work done in this challenging domain using 
metaheuristics, ML, DL, and hybrid approaches. Hatti et al. 
[101] implemented distributed provisioning using Multi-
objective Particle Swarm Optimization (MOPSO). Multiple 
jobs have been categorized into different swarms based upon 
similarity in response time requirements. Further, each swarm 
is mapped to a single or multiple FNs taking into 
consideration the resource capacity, response time, and 
distance. It works by computing the task fitness value 
corresponding to a particular swarm. PSO is a nature-inspired 
evolutionary and stochastic technique for the optimization of 
computationally hard problems. It is inspired by the swarms in 
nature, which include bird flocking, fish schooling etc., and 
holds an edge over other optimization techniques as it utilizes 
a combination of both local and global search [117]. 

 

Considering the ML approaches, the author in [95] 
proposed an IoT service autonomous mechanism possessing 
self-sustainability in fog nodes using Bayesian learning along 
with the incorporation of IBM’s MAPE-k model for better 
decisions regarding resource planning. This technique of 
Bayesian inference is based upon the Bayes theorem, which 
considers the probability distribution of each quantity, hence 
providing effective decision-making [118]. The proposed 
model withstands different workloads with a minimum error 
rate. The authors highlight the importance of resource 
provisioning in multimedia applications [92]. The work 
signifies the role of edge networks in satisfying the resource-
hungry nature of modern applications. Sophisticated 
algorithms based on ML techniques have been discussed, 
which focus on the predictor module for the completion time 
of rendering jobs in context with the underlying available fog 
resources. Furthermore, the prediction accuracy of job 
completion time is improved using the multi-fold cross-
validation method.  
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TABLE IV 
STATE-OF-THE-ART SOLUTIONS FOR RESOURCE PROVISIONING IN FOG/EDGE COMPUTING

 
Year & 

Reference 
Objective FN type Technique 

Utilized 
Evaluation 

Tool 
Limitations  

2016 [92] To propose a resource provisioning 
mechanism for edge enabled 
distributed multimedia applications. 

Heterogeneous Completion Time 
Prediction (CTP) 
Algorithm based 
upon ML 

Simulator (java) 
 

The issue of duplicate job 
assignments is not addressed.  

2019 [90] Formulating a multi-objective problem 
to handle the trade-off between system 
cost and reliability. 

Heterogeneous Modified Best Fit 
Decreasing 
(MBFD) Algorithm 

Simulation 
(MATLAB) 

The author has stated the scope 
for heterogeneous fog nodes; 
however, in simulation, 
homogeneous FNs have been 
considered. 

2019 [93] Reliability-aware partitioning of real-
time workloads in smart factories. 

Heterogeneous Heuristic 
partitioning 
Lowest-Laxity First 
(LLF) 

Simulation Factors such as application 
active time could have been 
included for better results. 

2020 [95] IoT service automation in a fog 
computation environment for delay 
and cost minimization. 

Heterogeneous MAPE-k Simulation 
(iFogSim) 
workload  

Low prediction accuracy of the 
time series model 

2020 [96] To propose a learning-based resource 
provisioning technique in a three-tier 
fog ecosystem for energy 
optimization. 

Homogeneous  NAR and Hidden 
Markov Model 

Simulation 
(iFogSim)   

The LSTM model gives better 
predictions. 
High computational complexity 

2020 [97] Workload clustering-based RP for 
minimization of delay and cost. 

Homogeneous BBO, k-means, 
Bayesian learning 

Simulation 
(CloudSim)  

CPU utilization of machines is 
not taken into consideration. 

2020 [98] Heterogeneity-aware elastic 
provisioning in a cloud fog 
environment for balancing workload 

Heterogeneous Neural network Experimentatio
n using real 
workloads.  

The proposed approach involves 
high operational costs and 
complexity. 

2020 [99] Dynamic resource provisioning using 
flying Fog for vehicular networks to 
improve efficiency.  

Heterogeneous Euclidean three-
space formulation 

Simulation 
(Anylogic)  

Utilization has not been 
evaluated. The proposed work 
has not been evaluated as a real-
life case study. 

2021[100] To implement proactive service 
placement and IoE provisioning in 
Mobile Edge Computing (MEC). 

Homogeneous  DRL 
MDP 

Real world 
simulation  
Google Cluster 
Usage Trace  

The data-hungry nature of DRL 
overloads the limited resource 
capacity of edge nodes.  EC is 
not evaluated 

2021 [101] Optimal provisioning of requests to 
fog nodes for energy efficiency.  

Homogeneous Multiobjective PSO Simulation 
(CloudSim 
Plus) 

The proposed approach is not 
presented as a real-life case 
study. 

2021 [102] To implement dynamic Resource 
Provisioning for containerized 
microservices in order to mitigate SLA 
violations. 

Homogeneous Machine learning 
(EN, DTR) 

Microdata 
centre (MDC) 
testbed 
  

An effective burst traffic 
handling approach using an 
integrated cloud computing 
paradigm with existing fog 
architecture. 

2022 [103] Admission Control Manager (ACM) 
for Handling and Classification of 
Heterogeneous Jobs. 

Heterogeneous Fuzzy logic Simulation  Practical implementation of 
proposed study amongst IoT 
applications is not illustrated.   

It uses various algorithms for prediction problems, such as 
Random Forest (RF), Support Vector Machine (SVM), DL 
and Gradient Boosting Tree (GBT), and finally R-square 
scores, to shortlist the best-performing approach. Finally, the 
proposed predictor algorithm is compared with various state-
of-the-art algorithms. The work done by the authors [102] 
brings forward a predictive autoscaling technique using ML 

for containerized Microdata Center (MDC) in fog 
environments. A workload forecasting mechanism has been 
used to determine the number of containers required to serve 
incoming IoT workloads without compromising Service-level 
Objectives (SLOs).  
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TABLE V 
DATASET AVAILABILITY AND DESCRIPTION 

RM 
Categorizati-

on 

Refer-
ence 

Dataset Name and 
Availability 

Description Type 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resource 
Provisioning 

[92] Animation Rendering Dataset 
[105] 
 
 

-It comprises of 33,078 records 
containing resource utilizations 
-Shows the number of jobs arrived 
each hour from a sample day 

-Each record contains a rendering job 
belonging to animation studio. 
-CPU usage (%), RAM usage (KB), 
number of frames, number of 
polygons, size of image (pixels), 
completion time (sec) 

[94] MNIST: 
https://www.tensorflow.org/dat
asets/catalog/mnist 
Fashion MNIST: 
https://www.tensorflow.org/dat
asets/catalog/fashion_mnist 
LEAF: 
https://github.com/TalwalkarLa
b/leaf/ 

-Modified National Institute of 
Standards and Technology 
(MNIST) is a database of 
handwritten digits. 
-Article images divided into test 
and train examples  
-LEAF is an open-source 
benchmark for federated settings.  

-Each example is a gray-scale image.  
 
 
 
 
-Image and Text datasets 

[95] New York City Taxi trip: 
https://databank.illinois.edu/dat
asets/IDB-9610843 

-Real world IoT workload trace 
- 697,622,444 records of taxi-trip in 
New York city collected between 
2010 and 2014 
 

Drop off, pick-up dates, time, 
distance, coordinates recorded by 
taximeter. 

[96] Microsoft T-Drive Trajectory : 
https://www.microsoft.com/en-
us/research/publication/t-drive-
trajectory-data-sample/  
Chicago Taxi Trips:  
https://data.cityofchicago.org/ 

-GPS trajectories of 10,357 taxis  
-contains taxi trip information in 
Chichago 

-each record contains pick-up and 
drop-off dates, times, coordinates and 
trip duration. 

[98] Clark Net: 
http://ita.ee.lbl.gov/html/traces.
html. 
Cloud Theme click from 
Tianchi: 
https://tianchi.aliyun.com/. 
Taobao App: 
https://tianchi.aliyun.com/datas
et/ 

-Clark Net comprises workload data 
of web server from Clark Internet 
Services  
-Tianchi is cloud theme click 
dataset  
-Taobao App is the largest retail in 
China. 

-Clarknet is extracted from Web 
servers in 
Washington, America, which includes 
33,28,587 Hypertext Transfer 
Protocol (HTTP) requests during two 
weeks 
-data is in the form of clicks  

[100] Google cluster Usage Trace: 
https://research.google/pubs/pu
b43438/ 

-It contains a trace of workloads 
running on 8 Google Borg compute 
clusters  

-Each trace describes job submission, 
scheduling decision and resource 
usage. 

[103] Real Google Traces [GoCJ]: 
https://data.mendeley.com/datas
ets/b7bp6xhrcd/1 

-comprising 25 mil- 
lion tasks of approximately 930 
users 

-Tasks (id-value pair)  

 
 

Task 
Offloading 

[106] Real time dataset from fog 
cloud environment 

6 Synthetic dataset  
 

-Energy consumption  
-computational time 

[107] Vehicular traces [108] -considers a highway environment 
where each vehicle maintains a 
constant speed within an RSU  

-Vehicle ID, Timestamp, GPS data, 
Traffic conditions, Sensor data 

 
 

Resource 
Scheduling 

[109] CERIT Trace: 
https://jsspp.org/workload/index
.php?page=cerit 

-contains mixed workload of jobs  -Description of cloud VMs 
-Description of grid worker 
-Number of available CPUs 

[110] Intel Berkeley research lab (Not 
mentioned) 

-It consists of 2.3 million sensor 
readings from 54 sensors 

Humidity, light, voltage and 
temperature data 

 
 
 
 

Service 
Placement 

[111] Synthetic DAGs using 
parameters as stated in [112] 
 

-IoT applications modelled as 
DAGs, where nodes depict the tasks 
and edges represent the data 
communication amongst dependent 
tasks. 

-testbed created similar to scenario in  

[113] Google Cluster Trace and Nasa 
Server Logs (NSL) 
https://github.com/google/cluste
r-

-provides real life deployment 
scenario of services on available 
servers. 
-it constitutes source IP having the 

-It provides a set of hosts along with 
resources available and a set of 
resources having services 
requirements. 
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data/blob/master/ClusterData20
11_2.md 
 -NASA dataset -  
https://ita.ee.lbl.gov/html/contri
b/ 
NASA-HTTP 

same subnet mask as that of 
requesting services.   
- NASA dataset comprises two 
months of HTTP logs from a busy 
WWW Server: 
 

-It consists of list of changing 
demands corresponding to GCT 
service.  
 

 
 
 
 
 
 
 

Resource 
Allocation 
and Load 
Balancing 

[114] SAIVT Multi-Camera 
Surveillance Database: 
https://www.gov.uk/guidance/i
magery-library-for-intelligent-
detection-systems 
 

-It consists of 8 cameras and 
contains movement of more than 
150 people in cafeteria. 

-dataset provides the target tracks in 
the form of videos in MJPEG file 
format.  

[115] MOBILE Health (MHEALTH): 
https://archive.ics.uci.edu/datas
et/319/mhealth+dataset 

-Used to detect the possibility of 
heart attack. 
-This contains vital signs and body 
movements recorded corresponding 
to 10 volunteers during several 
physical activities.  

-Multivariate  
-Time-series data with 23 attributes 
and 161,280 instances.  
-constitutes various attribute values 
along with probability of occurrence 
of heart attack.  

[116] PlanetLab workload: 
https://planetlab.cs.princeton.ed
u/datasets.html 
 

-it is used for modelling energy 
usage pattern of fog nodes.  

-it contains CPU utilization  

The proposed framework has been evaluated under synthetic 
and realistic workloads. The work presents potential 
application areas comprising real-time traffic monitoring, 
smart healthcare, self-driving cars, and the IoE. The task 
classification is done on the basis of task priority and 
scheduling class. Sham et al. [103] proposed a fuzzy-based 
admission control and resource provisioning system that 
places request analysis parameters such as CPU, memory, 
storage, job priority and time sensitivity. The presented 
methodology considers request parameters in the form of crisp 
values, which are then passed through the Fuzzy Inference 
System (FIS), and then aggregation is performed to select the 
best computing node. 

Deep learning-based Solutions: In contrast to classical 
machine learning techniques, RL-based approaches have the 
ability to perform linear and non-linear approximations. These 
approaches dynamically adapt to the changes in the 
environment and possess the capability to learn the system 
without prior knowledge. These capabilities make this 
technique well-suited for resource management problems. An 
AI-enabled resource provisioning architecture has been 
proposed for IoE services in 6G networks. It uses DRL along 
with the Markov Decision Process (MDP) for resource 
provisioning [119]. The MDP framework is employed for 
addressing challenges that are resolved through RL. In the 
context of a multi-application scaling solution, the author 
explores scenarios where each application consists of a 
collection of services. MDP considers a tuple (𝒮,𝒜,𝒫,ℛ,g), 
where 𝒮 is the finite set of states, 𝒜 represents the finite state 
of actions, 𝒫 depicts the probability of state transition, ℛ 
represents the immediate reward and g is the discount factor. 
The state space '𝒮' is formed by the dynamic user demands 
and resource availability for each host at timestamp 't.' The 

action space '𝒜' is of fixed size, comprises a pair of elements 
that determine the CPU and memory scaling decisions. The 
probability transition matrix '𝒫' quantifies the likelihood of 
transitioning to the next state 's' when a specific action 'a' is 
taken. Usually, this value is not given in advance, hence 
model-free RL technique is utilized to predict this value. 
Finally, the immediate reward or cost function ℛ, aims at 
selecting the best action which results in the minimum cost. 
For instance, minimization of application load and optimizing 
the available resources are a few examples of cost functions. 

However, the ultimate objective of an RL agent is to 
acquire knowledge about the probability distribution 
governing transitions from a given state to all possible 
subsequent states and to determine the optimal policy 𝜋∗. The 
following equations outline how to update the Q-value for a 
specific state-action pair 𝒬(𝓈, 𝒶)	, by taking into account the 
immediate reward R and the minimum Q-value. This value is 
computed for the next state, s′ which is weighted by the 
discount factor γ. The equation below iteratively improves the 
agent’s Q-value estimates. 
𝒬(𝓈, 𝒶) ∶= 	𝒬(𝓈, 𝒶) + 	𝛼[ℛ + 	gmin

>!
𝒬(𝓈?, 𝒶?)	]                  (7) 

Where 𝒬(𝓈, 𝒶): represents the current assessment of the 
expected cumulative reward for taking action 𝒶 
min
>!

𝒬(𝓈?, 𝒶?)	: signifies the lowest expected cumulative 

reward across all feasible actions a′ in the next state 𝓈?. 
𝓈?: final state after taking transition from state 𝓈. 
𝒶?: action chosen by agent in the next state 𝓈?. 
All these Q-values are stored in a tabular manner, as a result of 
which the state space grows with the increasing number of 
containers/ hosts. Therefore, it becomes computationally very 
expensive to store and further maintain the updated Q-values. 
Hence, Optimal Q-values can be derived from adjustable 
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weights (q). Gradient descent can be employed to adjust 
weights in the right direction. Consequently, 𝒬 becomes close 
to optimal 𝒬∗which is represented as:  
𝒬∗(𝓈, 𝒶) = 	𝒬(𝓈, 𝒶, q)             (8) 
But linear approximations suffer from the following 
drawbacks: 

• Inability to capture complex, non-linear relationships 
between states and optimal actions. 

• Approximation errors accumulate over time, which 
leads to unstable policies. 

• Not suitable for continuous state space, where states 
can be similar. 

• May struggle to adapt to the dynamics of the 
environment. 

Linear approximations can help with large state spaces, 
but suffer from the curse of dimensionality, which increases 
with an increase in the number of features. Consequently, non-
linear approximations such as DNNs are being utilized which 
empowers agents to employ deep learning for weight updates 
and customized learning adjustments. 

Etemadi et al. [96] work states an automatic and scalable 
resource provisioning framework for fog architecture that 
stores the incoming workload parameters (response time, 
resource requirements) in a shared database. An autonomous 
learning-based provisioning model has been proposed utilizing 
Nonlinear AutoRegressive (NAR) neural networks. In another 
study done by Li et al. [98], a provisioning strategy in a cloud-
enabled fog computing scenario has been proposed, 
considering tenanted and overhead costs. The exquisite 
decision-making capability regarding whether to add more 
instances or release confers the data migration strategy. This is 
implemented using the hybrid Autoregressive Integrated 
Moving Average (ARIMA) model and a Back Propagation 
(BP) neural network. ARIMA is a univariate time-series 
forecasting model used to predict the number of resources 
needed to support the incoming workload of smart 
applications [120]. The hosts located at the edge layer are 
equipped with hybrid ARIMA and BP neural network 
algorithms. This forecasted workload acts as a basis for 
determining whether the request will be processed at the edge 
tier or rented from cloud data centers. A module known as the 
workload analyzer is supplied with historical workload data, 
offering workload estimates with a one-time interval forecast. 
This interval should be long enough in order to provision an 
appropriate number of VMs in advance [120]. ARIMA blends 
autoregressive (AR) and moving average (MA) elements in 
conjunction with differencing to achieve stationarity in the 
time series. Despite the capabilities of ARIMA for time series 
forecasting, it may not capture complex, non-linear patterns or 
sudden changes in workload behavior. Nevertheless, its 
univariate nature limits its capabilities to analyze and forecast 

single-time series variables. Henceforth, it is combined with 
ML-based models such as BP-NN to improve prediction 
accuracy. During the training phase of BP-NN, the input 
patterns are processed in two stages. In the first stage, a 
predicted value corresponding to each input pattern is 
provided. Any prediction-related error is propagated backward 
to update the weights of the hidden and output layers. This 
update process aims to minimize the prediction error that is 
associated with it [121]. Finally, the effectiveness of the work 
done has been validated using extensive experimentation on 
real-world datasets. 

The hybrid approaches provide an amalgamation of any 
two (or even more) of the above-mentioned solution types. 
The implementation of RP using Bayesian networks and 
workload clustering using Biogeography Based Optimization 
(BBO) in integration with K-means clustering has been 
proposed by Ghobaei-Arani et al. [97]. The author has 
emphasized the significance of classification and analysis of 
the workload of incoming user requests, which acts as a 
prerequisite for effective resource provisioning. The workflow 
of the proposed work comprises three phases: preprocessing of 
incoming workload, clustering, and finally provisioning the 
resources. The pre-processing stage eliminates noise and 
filters out workloads with incomplete attributes, as well as 
artificial users like robots that may propagandize and desolate 
actual purposes. In addition, it also includes making SLAs. A 
hybrid approach is followed for workload clustering which 
works in four phases defined as: (1) Random initialization of 
habitats comprising the population, (2) Using k-means for 
habitat evaluation, (3) Immigration and emigration rate 
calculation and (4) Best habitat selection. Lastly, Bayesian 
learning serves as a classifier for categorizing RP decisions 
based on clustered workloads. It utilizes a state table 
containing SLA cost, response time, workload attributes, and 
resource scaling decisions to derive Bayesian-based rules. 

D. Task Offloading 
The best possible task offloading strategy is 

characterized by its capability to choose an optimal offloading 
decision, subjected to the incoming IoT workload. In cases of 
ample resource availability, the job is processed; otherwise, 
the architecture is scaled up and allocations are updated. In 
case the fog nodes are incompetent to execute the incoming 
application request, it is then offloaded to the cloud layer. 
Task offloading from edge devices to nearby FNs not only 
reduces latency but also significantly reduces energy 
consumption [122]. Figure 7 demonstrates the complexity of 
making the optimal offloading decision due to various factors 
such as offloading fraction, offloading constraints, and 
offloading objectives. The objectives focus on improving QoS 
parameters like cost, throughput, resource utilization rate, 
energy, etc. On the contrary, offloading constraints comprise 
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bounds on bandwidth utilization, offloading fraction, and other 
task-specific criteria [123]. In certain scenarios, only a portion 
of the task is offloaded, requiring the processed outcome to be 
subsequently transmitted back along the same route or an 
alternative one, based on the most favorable option. 

 
Fig. 7. Task offloading Problem in Fog Computing  

 
1) Problem Formulation for Task Offloading  
This section highlights the significance of mathematical 

analysis in managing task offloading, particularly in relation to 
reducing delays for applications that require instantaneous 
responses. It aims to jointly minimize task delay/latency and 
simultaneously economizing energy consumption. Task 
offloading not only helps to enrich the consumer experience 
but also accelerates job execution. The authors introduce the 
offloading latency models to investigate the delay parameter, 
computational demand and communication demand, 
corresponding to each incoming request. Moreover, deciding 
how to offload tasks is intricate due to the diverse wireless 
networks (including WLAN and MAN) involved, as well as 
the necessity to choose the most efficient offloading strategy 
from among multiple edge/fog nodes, and cloud data centers. 
The problem for offloading tasks at optimal destinations is as 
follows [10], [124]: 

Local Computation at Device: It considers the task 
processing at local edge device itself, where the latency 
corresponding to local computational ℒ@+𝒯

𝒹,𝒿  is computed as 
follows:  

ℒ@+𝒯
𝒹,𝒿 = 

ℑ𝓈#$%
𝒹,𝒿

C𝒹_*+,-
              (9) 

ℑ𝓈EFG
𝒹,𝒿 : Task size corresponding to device 𝒹 and 𝒿HI	task. 

 𝜓𝒹_,J-K:computational capacity of IoT device 
 
Offloading to Fog node 

The task offloading at local fog delivers ultra-low latency 
services due to avoidance of network backhaul delay. The 
latency ℒℱ𝒩

𝒹,𝒿  can be computed as: 
ℒℱ𝒩
𝒹,𝒿 	= 𝒯ℱ𝒩_N-/J,0

𝒹,𝒿 + 𝒯ℱ𝒩_*+,-./0
𝒹,𝒿 + 𝒯ℱ𝒩_O+PQ/J,0

𝒹,𝒿       (10) 
Where, 𝒯RSST+3#JQU𝓀  represents the time to offload request to 
edge node. This time is also known as task uptime, which is 
represented as 𝒯ℱ𝒩_N-/J,0

𝒹,𝒿  

𝒯ℱ𝒩_N-/J,0
𝒹,𝒿 = 

ℑ𝓈#$%
𝒹,𝒿

𝔓ℱ𝒩
            (11) 

Here: ℑ𝓈EFG
𝒹,𝒿 : Task size corresponding to device 𝒹 and 𝒿HI	task 

       𝔓ℱ𝒩: Bandwidth of underlying link (WLAN, MAN) 

𝒯ℱ𝒩_*+,-./0
𝒹,𝒿 = 

ℑ𝓈#$%
𝒹,𝒿

Cℱ𝒮_*+,-
           (12) 

Where: 𝜓ℱ𝒮_,J-K denotes the computational capacity of Fog 
server node, and further the authors have considered that the 
downtime is equivalent to the uptime. 
Offloading to cloud data centers 

Noteworthy, our work considers full offloading scheme, 
where task is either on fog or cloud deployed node. Latency in 
full task offloading case ℒ𝒟𝒮	

𝒹,𝒿([.TT), which transmits whole task 
to cloud for processing is computed as : 

ℒ𝒟𝒮
𝒹,𝒿([.TT) = 	𝒯𝒟𝒮_N-/J,0

𝒹,𝒿 	+ 𝒯𝒟𝒮_*+,-./0
𝒹,𝒿 + 𝒯𝒟𝒮_O+PQ/J,0

𝒹,𝒿  (13) 

where, 	𝒯𝒟𝒮_N-/J,0
𝒹,𝒿 represents the uptime of cloud data center, 

which can be also referred as offloading time. 

	𝒯𝒟𝒮_N-/J,0
𝒹,𝒿 = 

ℑ𝓈#$%
𝒹,𝒿

𝔓𝒟𝒮
            (14) 

where 𝔓𝒟𝒮: depicts the bandwidth of network (WAN).       
𝒯𝒟𝒮_*+,-./0
𝒹,𝒿 represents the computational time by cloud 

datacenter node, which can be calculated as: 

𝒯𝒟𝒮_*+,-./0
𝒹,𝒿 = 

ℑ𝓈#$%
𝒹,𝒿

C𝒟𝒮_*+,-
           (15) 

where 𝜓𝒟𝒮_,J-Ksignifies computational capacity of cloud 
datacenter node.    
Noteworthy, the offloading latency model functions in 
accordance with offloading decision variable Θ𝒹,𝒿 is defined as 
follows [125]:  

Θ𝒹,𝒿= L
			0; 					𝑡𝑎𝑠𝑘	𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑	𝑏𝑦	𝒹	
−1; 𝑡𝑎𝑠𝑘	𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑	𝑡𝑜	ℱ𝒩
		1; 𝑡𝑎𝑠𝑘	𝑜𝑓𝑓𝑙𝑜𝑎𝑑𝑒𝑑	𝑡𝑜	𝒟𝒮	

         (16) 

This equation represents the offloading decision 
corresponding to 𝒿HI	task generated by IoT device. The 
value of Θ𝒹,𝒿= 0; signifies that the task ℑ𝒿 is processed at 
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IoT device itself, whereas the value Θ𝒹,𝒿= -1; indicates that 
the task is offloaded to local fog server. Finally, the task is 
being offloaded to central cloud server in case Θ𝒹,𝒿= 1. 

2) Task Offloading Challenges 
• Changing Networking Conditions: The edge/fog 

computing environment is characterized by dynamic 
network and traffic conditions. The presence of different 
noise and interference levels can significantly impact 
the overall efficiency and latency of wireless 
transmission. It demands having an analysis and 
prediction mechanism for underlying networking 
conditions in order to estimate the right time for task 
offloading decisions. Such a scenario works in an 
architecture comprising mobile devices, Mobile Edge 
Servers (MES) and Fixed Edge Servers (FES), in which 
the mobile device layer includes various sensors and 
devices embedded in vehicles, whereas autonomous 
vehicles serve as MES, and RSUs serve as FES [126]. 
In this situation, the presence of mobility amongst 
vehicles and MES, as well as factors such as increased 
traffic during peak hours and complex road networks, 
inject a dynamic element into the network conditions. 
This, in turn, has a direct influence on the decision-
making process for optimizing task offloading and route 
planning for MES operations. To handle this issue, 
DRL-based techniques are gaining prominence due to 
their proficiency to self-learn from the environment and 
incorporate the updated parameters in subsequent 
iterations [93]. 

• Dynamic User Behavior: The randomized behavior of 
mobile users adds another level of complexity to task 
offloading decisions. Currently, research trends are 
being diverted to machine learning and data analytics 
techniques in contemplation of prediction and 
forecasting user behavior [128]. For illustration, 
consider the urban transportation scenario which 
comprises latency-sensitive tasks spawned from self-
driving vehicles, remote fleet monitoring, etc. Such 
tasks need to be cautiously handled in order to 
incorporate appropriate environmental perception, 
vehicle motion control, opportune decision-making and 
action, and collaborative Simultaneous Localization 
And Mapping (SLAM), to name a few. Such versatility 
among tasks makes the task-offloading decision even 
more complex. The majority of work done to address 
this challenge has utilized DRL approaches [126], 
[129]–[131]. Apart from DRL approaches, some authors 
have implemented meta-learning to handle dynamic IoT 
application requirements in the form of incorporating 
diverse task types [98], [99]. 

• Highly Latency-sensitive Requests: Certain 

applications cannot endure even milliseconds of delay 
and require immediate access to computational 
resources for processing upcoming requests. Such types 
of requests are either processed by IoT devices or 
offloaded over the fog/edge nodes. Nowadays, 
prominent video applications, particularly those 
involving VR/AR, are becoming increasingly 
significant in areas like the gaming industry, education, 
medicine, and more, owing to their immersive visual 
features [134], [135]. For instance, AR application 
tasks are effectively handled by utilizing DRL, MES 
and the capabilities of the 5G network in order to cater 
to the highly sensitive latency requirements of the task. 
This is carried out by splitting the incoming task into a 
Directed Acyclic Graph (DAG) [135]. 
 

3) Existing Solutions for non AI-based Task Offloading 
This section reviews the state-of-the-art works in detail 

based on task offloading and optimization objectives. Munoz 
et al. [136] proposed a framework for the optimization of 
computational resources in a cellular network. It utilizes the 
suboptimal approach and the optimal statistical approach. In 
the former class, the complete dataset is divided into smaller 
subsets, and an offloading decision is taken corresponding to 
each subset. In this suboptimal approach, a global decision is 
taken in conjunction, although in practice it is challenging to 
predict the channel state in advance. The latter category makes 
statistical offloading task decisions that adapt based on the 
real-time updates of channel statistics. Another work by Han 
et al. [137] proposed an online job dispatching and task 
scheduling problem in an edge-cloud environment. It assumes 
that incoming jobs are released in a random order and at 
irregular time intervals, without any initial statistical 
information about the jobs. It aims to minimize Weighted 
Response Time (WRT). As far as the offloading decision is 
concerned, OnDisc heuristically dispatches the job to cloud 
server with a minimum WRT. Extensive simulation results 
utilizing real-world Google Cluster signify better WRT 
results. Also, incorporating a fairness knob ensures uniform 
WRT amongst all jobs. Table VI consolidates QoS 
comparison study of surveyed work. Whereas Table VII 
summarizes the non AI-based and AI-based solutions to task 
offloading problem in collaborative cloud-fog-IoT paradigm. 

 
4) Existing Solutions for AI-based Task Offloading  
The author emphasizes that the process of choosing the 

most suitable offloading destination must prioritize the 
judicious utilization of resources along with meeting the QoS 
requirements of the incoming request. It proposes a 
Classification and Regression Tree Algorithm (CART)-based 
solution for module placement [138]. The proposed approach 
begins by evaluating the power usage of all mobile devices 
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and, if the power consumption surpasses that of Wi-Fi, it 
offloads the incoming request to the fog node. The traditional 
decision trees have limitations when dealing with input spaces. 
To address this, the CART method is employed, as it 
accommodates real-valued parameters and helps identify the 
best feature conditions. After executing Module Placement by 
Classification and regression tree Algorithm (MPCA), Poisson 
process is used to calculate the module arrival rate. The 
Poisson process aligns with Markov chain properties, 
providing systematic manageability. In addition, the Markov 
chain is memoryless, indicating that its probability distribution 
relies solely on the present state and does not take into account 
past events. It can be used to analyze arrival rates of fog 
devices by modeling the arrival process of data or tasks at 

these devices as a stochastic process with specific states and 
transition probabilities. Finally, this probability matrix is 
utilized to place the incoming modules at their best 
destinations for execution. The presented work is compared 
with First Fit (FF) and local mobile processing models. 

Satish et al. [107] have highlighted the problem of 
efficient offloading of IoT-based tasks in Vehicular Fog 
Computing (VFC) due to heterogeneity and mobility amongst 
vehicles. An RL-based agent explores all the possible actions 
in a greedy manner until it exploits the best action for 
maximizing long-term reward. The author interprets states as 
time slots and defines actions as representations of fog 
vehicles.

TABLE VI 
COMPARISON OF PERFORMANCE METRICS FOR TASK OFFLOADING IN FOG/EDGE COMPUTING
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2015 [136] NA ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ 

2019 [137] Google Cluster Trace ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ 

2019 [139] NA ✖ ✔ ✖ ✔ ✔ ✔ ✔ ✖ ✖ ✔ 

2019 [140] NA ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2019 [138] NA ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ 

2019 [106] Real time dataset from fog cloud 
environment ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✔ ✖ 

2020 [141] NA ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ 

2021 [107] Vehicular traces ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✖ ✖ 
 

The reward is determined by a function that combines service 
time and the energy consumption (EC) of RSUs. The work 
aims to reduce the response time and computational overhead 
of RSUs in VFC by utilizing a fuzzy-based RL technique. The 
presented incorporation of fuzzy with RL addresses the issue 
of high dimensionality, which occurs due to the increasing 
vehicle count under RSUs. In addition, the fuzzy if-then rule 
base is applied to calculate the vehicle weight (Very low, low, 
low medium, high medium and very high). This is inferred on 
the basis of input parameters such as process rate {low, 
medium, high}, staying period (Dwell time) {low, medium, 
high}, and distance to RSU {far, middle, near}. The suggested 
method not only expedites the learning process but also 
enhances long-term rewards compared to prominent Q-
Learning, by incorporating greedy heuristics. 

A secure task offloading mechanism has been proposed 
by Adam et al. [139]. The author utilizes machine learning 
techniques for implementing secure offloading in a cloud-fog 
environment. In the system model under consideration, IoT 

gateways function as a bridge, facilitating communication 
between IoT devices and the upper layers (Fog and cloud). To 
accommodate the resource-constrained nature of IoT devices, 
a Neuro-fuzzy model is deployed on smart gateways. This 
hybrid computational model is a fusion of ANN and fuzzy 
logic systems, which brings out the best useful traits from both 
models. The capabilities of NNs such as adaptability, learning 
and generalization can be applied to fuzzy logic, which further 
imparts transparency to the hybrid model.  

• Adaptability: It deals with tuning the parameters of a 
fuzzy logic system via learning or training.  

• Training: The NN learns from the incoming data and 
adjusts the membership functions and rule parameters 
of the Fuzzy Inference System (FIS). 

• Generalizability: It refers to the system's ability to 
make accurate predictions or decisions on new, 
unseen data that was not part of the training dataset. 

• Transparency: The fuzzy logic component provides 
interpretability through linguistic variables and fuzzy 
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rules, making it easier to understand and modify the 
system. 

Hence, this model harnesses the strengths of both 
approaches to improve modeling and control uncertain and 
complex use cases. The work employs a Neuro-fuzzy model 
which considers two factors: (1) Sensor value, and (2) Time. 
For security evaluations, the predicted value is derived 
correspondingly. A value exceeding 1.00 indicates a valid 
reading, while any value below this threshold is deemed 
invalid. As a result, the neuro-fuzzy logic knowledge base is 
trained to adjust to incoming IoT workloads. By categorizing 
the predicted values as valid/invalid, only data from trusted 

devices is retained. Afterwards, Q-Learning is used for 
dynamic offloading decisions. Finally, the resource allocation 
decision is carried out by the PSO algorithm.  

Another competent online IoT-based task offloading 
technique has been discussed by Zhu et al. [140], which aims 
at minimizing the cost corresponding to a specific node along 
with the latency incurred and energy consumption at the time 
of task computation. The problem considered is framed as a 
stochastic programming model in order to handle dynamic 
system-related parameters. The proposed Bandit Learning-
based Offloading of Tasks (BLOT) is based on the 

TABLE VII 
STATE-OF-THE-ART SOLUTIONS FOR TASK OFFLOADING IN FOG/EDGE COMPUTING 

Year & 
Referenc

e 

Offload 
type 

Objective Addressed Technique Experimental 
Configuration/ 
Dataset used 

Limitations 

2015 
[136] 

Full To optimize computational 
resources in application offloading  

MLP Simulation   The proposed approach is not 
presented as real-life case study. 

2019 
[137] 

Independent To optimize Weighted Response 
Time (WRT) in online task 
dispatching and scheduling 
algorithm 

OnDisc- speed 
augmentation 
model 
(Heuristic) 

Simulation using 
real-world 
workload.  

Ignores network congestion and 
checks for accurate predictions.  

2019 
[139] 

 Partial To propose a secure software-based 
offloading solution for effective 
QoS in the Fog Cloud environment  

PSO 
 RL 

Simulation (NS-
3)  

No implementation in the real 
scenario 

2019 
[140] 

Full To minimize cost and energy. 
Bandit Learning-based offloading  

RL Simulation   Increased number of switching in 
frequently changing fog 
environment reduces estimation 
accuracy.   

2019 
[138] 

Independent To propose a technique for 
selecting the best fog node for 
offloading to minimize response 
time and power consumption. 

CART Simulation 
(CloudSim)  

The offloading decision did not 
consider the issues of trust and 
fault tolerance. 
Offloading in real IoT 
applications has been ignored.  

2019 
[106] 

 Full To propose a multiple-tier fog-
cloud model for real-time task 
processing  

Accelerated 
PSO 

Simulation   Real-time IoT application 
parameters are not taken into 
consideration. 

2020 
[141] 

Partial  To reduce service response time in 
IoT task offloading for delay-
sensitive applications  

ACO and PSO Simulation   Important QoS parameters like 
power consumption, computation 
costs have been ignored.    
Task dependency has been 
ignored. 

2021 
[142] 

 Full To implement energy efficient IoT-
based task offloading in VFCs 

Fuzzy RL Simulation  
 

Overwhelming computational 
overhead  

Upper Confidence Bound (UCB) which assists in selecting the 
optimal fog node to offload tasks. This technique holds an 
edge over the other techniques in the context that it doesn’t 
consider prior knowledge about the system parameters, 
highlighting the fact that some system values called as bandit 
feedback appear only at the time of querying the nodes. After 
offloading the tasks to resource-rich fog nodes, the First In 
First Out (FIFO) strategy is used to schedule unfinished tasks. 

The numerical experimentation demonstrates that BLOT 
serves as an optimal task offloading strategy in dynamic 
online mode situations. Another work by Adhikari et al. [106], 
proposed an Accelerated PSO for performing real-time task 
offloading to apt computing devices as per resource 
requirements in hierarchical fog-cloud environments. Multi-
Objective Offloading (MOO) based on Adaptive PSO (APSO) 
categorizes the real-time incoming tasks into resource-
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insensitive and delay-sensitive category. The former ones are 
allocated High Computing Fog (HCF) nodes, whereas the later 
ones concerning latency and cost are executed on Low 
Computing Fog (LCF) for faster response. The principal 
reason for using APSO is to reduce error rates and maximize 
accuracy, along with optimizing other QoS parameters. 
Further, advanced machine learning strategies can be 
employed to improve the performance and precision of 
offloading methods. A smart city-based scenario is considered 
by Hussein et al. [141] in which a framework has been 
presented which aims at enabling synchronized actions by 
efficiently processing voluminous data produced by IoT 
sensors.  

Task offloading is a problem of NP-hard complexity, 
which means that as the number of IoT devices and fog nodes 
grows, the complexity level increases exponentially. 
Therefore, the author presents two nature-inspired 
metaheuristic techniques, Ant Colony Optimization (ACO) 
and PSO to assure low-latency services. For instance, in PSO, 
each particle depicts a potential solution to the task offloading 
problem. Every iteration moves closer to the global best for 
the entire population and to its own local best. Typically, a 
large number of particles are used, making it an ideal choice 
for such problem scenarios. The results demonstrate 
significant improvement by ACO task offloading in terms of 
response time. 

E. Resource Scheduling 
In general, scheduling is the process of sequencing 

incoming tasks in some order, which is carried out by a special 
program known as a scheduler. Scheduling in cloud 
computing is defined at two levels: physical host to VMs and 
tasks to VMs. Scheduling in the fog landscape involves 
complexity because of heterogeneous devices and the 
resource-constraint nature of end devices. This heterogeneity 
makes resource scheduling an NP-hard optimization problem 
[143]. It can also be described as the optimal placement of 
different IoT-based tasks on fog nodes in order to meet real-
time QoS requirements by minimizing task execution time and 
abiding by user SLAs [144].  

1) Problem Formulation for Resource Scheduling  
An optimal scheduling solution intends to schedule a set 

of input tasks ℑ={ ℑ!, ℑ", … , ℑ𝒿, ℑ𝓂} to improve various 
QoS requirements considering constraints (latency, deadline, 
SLA, cost). The distributed fog nodes ℱ𝒩 = { 
ℱ𝒩!, ℱ𝒩"…ℱ𝒩𝓍} accomplished the demands of IoT 
requests in the form of computational capability, memory and 
network usage. Figure 8 depicts resource scheduling in fog 
environment. In order to schedule the incoming task to its 
optimal destination, the overall communication cost of 
executing the task is computed, based on which task 
scheduling and allocation occur.  

Processing Cost Analysis at Local device: Considering the 
latency ℒ@+𝒯

𝒹,𝒿  computed from Eq.7, now energy consumption of 
processing task  

ℰ𝒞@+𝒯
𝒹,𝒿 =	 ℑ𝓈#$%

𝒹,𝒿

C𝒹_*+,-
* ℘@+𝒯

𝒿           (17) 

Where, ℘@+𝒯
𝒿  denotes the per unit power consumption of 

𝒿HItask.  
Now, computing the total processing cost at 𝐼𝑜𝒯device 

can be depicted as: 
ℭ@+𝒯
𝒹,𝒿	= 𝜔! * ℒ@+𝒯

𝒹,𝒿  + 𝜔" ∗ 	ℰ𝒞@+𝒯
𝒹,𝒿          (18) 

Here, 𝜔! and 𝜔"are weight parameters such that 𝜔!+ 𝜔" = 1 
 
Processing Cost Analysis at Fog Node: When an IoT device 
doesn't possess the capacity to handle high-end, latency-
critical tasks, it is offloaded to a fog node. The execution delay 
for FN is computed from Eq. 8 and Eq. 9, where the uptime 
refers to the offloading time. 
𝒟ℱ𝒩
𝒹,𝒿   =  𝒯ℱ𝒩_N-/J,0

𝒹,𝒿 	+	𝒯ℱ𝒩_*+,-./0
𝒹,𝒿   (19) 

Now let ℘ℱ𝒩
𝒿  denote the power consumption to process the 

task at fog node and correspondingly ℘@+𝒯→	ℱ𝒩
𝒿  denote the 

power consumed during transferring task from IoT device to 
fog node. Energy consumption of execution request at this 
layer can be computed as [145]: 
ℰ𝒞ℱ𝒩

𝒹,𝒿  = (𝒯ℱ𝒩_N-/J,0
𝒹,𝒿 ∗ 	℘@+𝒯→	ℱ𝒩

𝒿 ) + ( 𝒯ℱ𝒩_*+,-./0
𝒹,𝒿 	*  ℘ℱ𝒩

𝒿 ) 
             (20)  
Hence, the total processing cost at this layer is computed by 
combining Eq. 19 and 20.  
ℭℱ𝒩
𝒹,𝒿	= 𝜔!* 𝒟ℱ𝒩

𝒹,𝒿   + 𝜔" ∗ ℰ𝒞ℱ𝒩
𝒹,𝒿           (21) 

 
Processing Cost Analysis at Cloud data center: It considers 
offloading compute-intensive tasks to a cloud data center. 
Computing the execution delay for FN from Eq. 13 and Eq. 
14, where the uptime refers to the offloading time. 
𝒟𝒟𝒮
𝒹,𝒿 = 	𝒯𝒟𝒮_N-/J,0

𝒹,𝒿 	+ 𝒯𝒟𝒮_*+,-./0
𝒹,𝒿         (22) 

Now let ℘𝒟𝒮
𝒿 	denote the power consumption to process the 

task at cloud datacenter and correspondingly ℘@+𝒯→	𝒟𝒮
𝒿  denote 

the power consumed during transferring task from IoT device 
to cloud data center. Hence, the energy consumption of 
execution requests at this layer can be computed as follows: 
ℰ𝒞𝒟𝒮

𝒹,𝒿 =  (	𝒯𝒟𝒮_N-/J,0
𝒹,𝒿 * ℘@+𝒯→	𝒟𝒮

𝒿 ) + (𝒯𝒟𝒮_*+,-./0
𝒹,𝒿 ∗ 	℘𝒟𝒮

𝒿 ) (23) 
Finally, total processing cost, 
 ℭ𝒟𝒮
𝒹,𝒿	= 𝜔!* 𝒟𝒟𝒮

𝒹,𝒿+ 𝜔" ∗ ℰ𝒞𝒟𝒮
𝒹,𝒿        (24) 

The processing cost is evaluated at all the possible task 
offloading destinations in order to schedule it to the optimal 
destination.  

2) Resource Scheduling Challenges  
The following are the main challenges of resource scheduling: 
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• Proficient Workload Deployment: In scenarios 

involving transactional workloads with unpredictable 
job arrivals, such as in e-commerce traffic, resource 
scheduling becomes increasingly challenging, 
particularly when there is no prior information available 
to make optimal decisions [146]. Such situations 
required AI-based solutions, particularly DRL, in which 
agents are supplemented with historical information on 
incoming jobs for effective training. Based on the value 
of reward, agents improve their decision strategies by 
updating the model parameters.  

• Optimal Task Mapping: The goal of optimal task 
mapping is to find the most suitable allocation of tasks 
to resources in order to optimize various performance 
metrics, like minimizing execution time, energy 
consumption, or enhancing resource utilization. This is a 
complex problem because it often involves dynamic 
workloads, varying resource capabilities, and changing 
task requirements. However, finding the truly optimal 
task mapping is often computationally expensive and 
may require considering a large number of variables and 
constraints. As a result, various algorithms and 
heuristics are employed to address this challenge and 
provide effective solutions for resource scheduling in 
dynamic computing environments. 

There are many kinds of task scheduling algorithms, 
mainly categorized as Static and Dynamic. The static 
algorithm required advance information about incoming 
requests along with available resources, including memory, 
processing capability, bandwidth etc.  

 
Fig. 8. Resource Scheduling in Fog/Edge computing 

Environment 

This category covers FCFS, Shortest Job First (SJF), Round 
Robin (RR), Minimum Completion Time (MCT), Minimum 
Execution Time (MET), and many more, which are usually 
preferred when workloads have small variation. However, 
when dealing with real-time applications and multicore 
processors, achieving optimal resource utilization using these 
deterministic algorithms becomes a challenging task. On the 
contrary, dynamic task scheduling doesn’t require any 
advance information about the tasks or available resources. 

3) Existing Solutions for non AI-based Resource 
Scheduling 

This section discusses the work that uses static scheduling 
algorithms along with mathematical models for resource 
scheduling problems. Li et al. [147] proposed a hybrid 
computing system for smart factories and Industry 4.0 by 
proposing a four-level architecture that integrates the historical 
heritage of computational resources. Furthermore, a two-phase 
resource scheduling strategy is introduced; the selection of 
edge computing servers is done by taking into consideration 
different factors corresponding to low real-time constraints in 
phase 1. Whereas phase 2 manages cooperation amongst 
multiple edge servers in order to construct an Edge Server 
Cluster (ESC), which further comprises the Manufacturing 
Edge Layer (MEL) cloud. Selecting Algorithms are utilized 
for ESC known as SAE and CEC (cooperation of edge 
computing clusters), which works at accomplishing real-time 
requirements. 

A deadline-based framework has been proposed by Fizza 
et al. [109], in which the incoming tasks are ramified into 
hard, firm, and soft real-time tasks and then assigned to the 
most suitable processor for their successful execution. The 
work has been carried out in an environment consisting of 
local embedded fog and cloud datacenters. Earliest Deadline 
First (EDF) is used for task scheduling on the appropriate 
processor, which works by sorting all the tasks in ascending 
order of their deadlines. The hard real-time tasks are allocated 
to run on embedded systems, the firm tasks are executed on 
fog nodes, and, finally, the soft real-time tasks are processed 
on cloud-based processors. The proposed architecture 
demonstrates a 62% improvement in Success Ratio (SR) and a 
35% reduction in response time in comparison to scheduling 
tasks exclusively on the cloud infrastructure. This work 
focuses on its implications for autonomous cars. Another work 
by Boveiri et al. [148] proposed a robust solution based on the 
Max-Min Ant System (MMAS) to solve the multiprocessor 
task-graph scheduling problem. The algorithm determines the 
optimal task sequence from the provided task graph and 
subsequently assigns tasks to available processors in 
accordance with their sequence. The proposed algorithm 
outshined traditional methods in terms of makespan time.  
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4) Existing Solutions for AI-based Resource Scheduling 
The process of feature engineering involves the extraction 

of features, which are characteristics, properties, and 
attributes, from raw data through domain knowledge [149]. 
However, the machine learning techniques are based upon 
manual feature extraction. Afterwards, the model is selected 
based on chosen features for carrying out variable 
categorization. Overall, this process becomes time-consuming 
as the model created depends entirely on the designer's 
discretionary knowledge. On the contrary, the complex 
architecture and multiple layers in deep learning models are 
capable of automatically learning relevant features directly 

from raw data. This ability to perform feature extraction as 
part of the learning process has made deep learning 
particularly powerful in the IoT domain. The potential feature 
of DL resides in its capability of self-improvement and 
expansion with increasing data, which is not the same in the 
case of machine learning. Henceforth, DL is promising for 
quick feature extraction from voluminous amounts of IoT 
sensor data. The DL methods have been implemented in the 
form of different architectures, which are as follows:  
• Convolutional Deep Neural Networks: These models 

belong to a family inspired by the way the human 
brain's visual cortex recognizes objects.  

TABLE VIII 
COMPARISON OF PERFORMANCE METRICS FOR RESOURCE SCHEDULING IN FOG/EDGE COMPUTING
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2019 [148] Synthetic ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2019 [147] NA ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 

2020 [154] NA ✖ ✖ ✖ ✖ ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2021 [156] NA ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ 

2021 [153] None ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2021 [155] Synthetic ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✔ ✖ ✖ ✖ 

2021 [157] NA ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ 

2022 [109] CERIT Trace ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ 

2022 [110] Intel Berkeley 
research lab ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ 

Traditional machine learning models depend on input 
features that can be provided by domain experts or generated 
through computational feature extraction techniques. In 
contrast, neural networks automate the feature extraction 
process. For example, multilayer neural networks create a 
feature hierarchy by progressively combining low-level 
features to build high-level features in a layer-wise manner. 
This approach is well-suited for processing images, where 
initial layers extract low-level features that are then 
aggregated to create high-level features. A standard 
Convolutional Neural Network (CNN) consists of multiple 
convolutional and pooling layers, followed by one or more 
fully connected (FC) layers toward the end [150]. For 
example, surveillance systems employed at various crowded 
indoor and outdoor locations aim at recognizing abnormal 
human behavior in society. Carrying out stream analysis 
manually becomes time-consuming. Hence, CNNs are being 

utilized to identify objects, people, or specific patterns 
within video feeds, which is valuable in ensuring safety 
amongst people (elderly, patients) , decreasing harassment at 
public places, and safeguarding government assets [151]. 
Apart from this, CNNs can be optimized and deployed at the 
edge (on IoT devices) to perform local data processing 
without the need for constant communication with the cloud. 
• Recurrent Neural Networks (RNNs): These are 

particularly suitable for tasks that involve sequential 
data and dependencies over time. Predictive models 
built with RNNs can help optimize resource usage by 
anticipating demand fluctuations and adjusting 
resources accordingly. They allow IoT systems to make 
informed resource allocation decisions, improve 
operational efficiency, and enhance overall resource 
management in various domains. For example, these 
models excel at precisely recognizing complex, non-
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linear patterns within the input data. They are also 
effective in capturing temporal workload and node 
patterns, with their layers facilitating faster learning. 
Leveraging these models can lead to the optimization of 
stringent QoS metrics tailored to the application type by 
employing an adaptive loss function [152].  

• Autoencoder Neural Networks: These networks operate 
in an unsupervised manner and are employed for feature 
extraction and reduction. They have the capacity to 
identify intrinsic patterns within a dataset and then 
assign labels to these discovered patterns. Hence, 
autoencoders reconstruct the datasets, discovering their 

inherent structure and eventually carrying out 
dimensionality reduction. This technique can also be 
utilized for time-series forecasting in IoT applications. 

Shadroo et al. [153] proposed a framework to improve 
performance in terms of response time in an IoT environment. 
The tasks are clustered based on clustering methods using 
three Self-Organizing Maps (SOM) methods. In the first 
method, the primary feature is divided into multiple clusters 
by SOM. In the second approach, the initial features are 
transmitted to the Hierarchical Self-Organizing Map (H-SOM) 
cluster. Subsequently, a deep learning technique, the 
Autoencoder, which falls under unsupervised learning,  

TABLE IX 
EXISTING SOLUTIONS FOR RESOURCE SCHEDULING IN FOG/EDGE COMPUTING 

Year & 
Referenc
e 

Objective Fog/ Edge 
Node type 

Technique Utilized Evaluation 
Tool/ 

Datasets used 

Limitations  

2019 
[148] 

To optimize Normalized 
Schedule length (NSL) for 
effective static task-graph 
scheduling in homogeneous 
processors  

Homogeneous MMAS Testbed  Heterogeneous multi-processors 
are not considered; 
Implementation covers only 
limited infrastructural parameters 
with low edge nodes. 

2019 
[147] 

To design an efficient 
computing system to maximize 
resource utilization in industry 
4.0 

Heterogeneous Mathematical 
solution  

Real 
prototype  
 

No real implication; Implemented 
only as a prototype model.  

2020 
[154] 

To improve resource efficiency 
in fog computing  

Homogeneous Metaheuristic-Hybrid 
of IWO and Culture 
Evolution algorithm  

Not 
mentioned 
 

Trust and privacy of data are not 
considered. 

2021 
[156] 

To improve network utilization 
in Mobility-aware approach for 
fog task scheduling  

Homogeneous Hybrid: PSO + Fuzzy 
model 

Simulation 
(iFogSim)  
 

The energy-efficiency of fog 
nodes is not taken into 
consideration.  

2021 
[153] 

Cost-effective optimal task 
location selection based on 
clustering for IoT applications 

Heterogeneous Autoencoder (deep 
learning method) 
ANN 

Simulation 
(Matlab)  

Only a few numbers of cloud and 
fog nodes are considered, 
whereas in a practical scenario, 
thousands of fog nodes are there.  

2021 
[155] 

To propose an energy-aware 
model for scheduling tasks in 
fog computing  

Heterogeneous Metaheuristic (MPA) Simulation  The proposed work is not 
implemented as a real case study. 

2021 
[157] 

Efficient management of 
workflow scheduling in the 
cloud via MEC 

Homogeneous Metaheuristic (BOA) Simulation 
(iFogSim)  

Security attacks like DDoS are 
not considered in the MEC 
environment. 

2022 
[109] 

Priority-based framework for 
cost-effective mapping between 
tasks and processors 

Heterogeneous  EDF and Integer 
Linear Programming 
Model (DYNAMIC) 

Testbed  Task execution in the case of 
processor failure is not taken into 
consideration. 

2022 
[110] 

efficient clustering approach to 
reduce computational 
complexities 

Heterogeneous DRL and spectral 
clustering algorithm 

Simulation   No real implementation: The 
issue of energy-efficiency is not 
considered.  

is employed for feature extraction. Various features such as 
task type, priority, task arrival time, data privacy, data 
heterogeneity, and more are taken into account and then 
grouped based on these features. The simulation results 
highlight the superior cost-effectiveness and reduced number 
of missed tasks achieved by the deep learning method.  

In recent years, metaheuristic methods have become 
increasingly popular for their ability to discover optimal or 
nearly optimal solutions to task scheduling challenges in the 
context of fog computing [65]. The majority of the real-life 
IoT application scenarios consider task dependencies, which 
are depicted in the form of DAGs. In such cases, task 
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scheduling is carried out in two phases: (1) Ordering the 
incoming tasks in some valid sequence; (2) Mapping the tasks 
to available computing resources. Hence, metaheuristics or 
evolutionary algorithms are preferred in place of traditional 
heuristics due to their capability to discover an optimized 
solution. In lieu of the same, Hosseinian et al. [154] 
emphasized a power-aware solution utilizing Dynamic 
Voltage Frequency Scaling (DVFS) and a hybrid 
metaheuristic-algorithm enabled processor in a fog computing 
scenario. The purpose of DVFS is to provide appropriate 
voltage and frequency to the servers, which enables a 
sustainable solution for scheduling resources. The incoming 
tasks in the applications are ordered using a hybrid version of 
Invasive Weed optimization (IWO) and the Cultural Evolution 
Algorithm (CEA) to retain the precedence constraints for 
mapping them to an optimum number of resources. The work 
done not only maximizes task utilization but also provides an 
energy-efficient approach to task scheduling. Abdel-Basset et 
al. [155] highlighted the issue of energy efficiency while 
offloading tasks in fog computing using a metaheuristic 
technique called the Marine Predators Algorithm (MPA). The 
original algorithm is modified to propose a modified version 
(MMPA), which remediates the exploitation capability by 
utilizing the most recently updated position instead of 
considering the best one. The problem of resource scheduling 
is solved using certain steps, such as initialization, evaluation, 
normalization and scaling, and finally the application of the 
proposed MMPA technique. The initialization step establishes 
the predator's vector size, which corresponds to the number of 
tasks to be scheduled by the fog nodes. The evaluation phase 
evaluates four parameters: makespan, energy, flow time, and 
CO2 emission rate. Then a bi-objective function is formulized, 
considering makespan and energy-efficiency as significant 
parameters. Normalization updates the continuous space into 
discrete values ranging from 0 to 1, and finally, the proposed 
technique is implicated. 

Furthermore, to enhance the MMPA, half of the 
population is reinitialized and subjected to mutation in the 
direction of the current best solution, while the remaining half 
is randomly generated to avoid potential local optima. The 
algorithm demonstrates improved results in comparison to 
other existing metaheuristic algorithms in terms of the QoS 
metrics considered. Hosseinzadeh et al. [157] use an improved 
version of the Butterfly Optimization Algorithm (BOA) for 
effective workflow scheduling in the Mobile Edge Computing 
(MEC) landscape. In addition to enhancing the convergence 
speed, the proposed technique also solves the problem of local 
optima by incorporating the Levy flight method. A diverse 
range of chaotic maps have been applied in the Discrete 
Version of the Butterfly Optimization (DBOA) algorithm, 
which results in discrete and randomization in the initial 

population. In addition, DVFS is incorporated into workflow 
scheduling to ensure optimal processor frequency and voltage 
for MEC virtual resources.  

A fog task scheduler utilizing the PSO algorithm with 
fuzzy logic incorporated into the fitness function is mentioned 
in work done by Javanmardi et al. [156]. The aim of the work 
is to optimally utilize fog resources to minimize application 
loop delays. The work refines the scheduling process by 
considering fog node characteristics (CPU compute, RAM and 
bandwidth) and task attributes (CPU need, memory required) 
for meeting the QoS requirements of delay-sensitive and 
delay-tolerant incoming IoT applications. The fuzzy logic 
assures that the task scheduler does not get stuck in local 
minima. Vijayasekaran et al. [110] proposed a two-phase 
solution. In the first phase, they incorporated the spectral 
clustering algorithm, an efficient clustering approach, to 
reduce data overlap and computational complexities within the 
edge computing framework. In the second phase, they 
employed deep learning-based resource scheduling to enhance 
resource utilization and decrease latency in processing user 
IoT requests. The comparison of performance matrix for 
resource scheduling problems for various state-of-the-art 
works is depicted in Table VIII. Along with this, all the 
investigated studies are depicted in Table IX.  

F. Service Placement 
Once the incoming requests are mapped by the resource 

manager, the main challenge is to place the incoming 
application on a specific fog node in a collaborative cloud-fog 
IoT computing environment. To resolve this issue, the fog 
broker, comprising task schedulers and other components as 
depicted in Figure 9, places them on fog nodes in clusters. 
Each cluster is governed by a fog master node, responsible for 
managing slave fog nodes. An optimal Service Placement (SP) 
solution ensure resource availability to minimize latency and, 
most importantly, meet deadlines for time-sensitive 
applications [158]. The task scheduler and SP module 
collaboratively ensures a fair share of resources for all 
requesting applications, as in a real-life scenario, multiple 
applications might compete for the same set of resources 
within the same time interval. 

1) Problem Formulation for Service Placement of Task 
at Optimal Destination 

This phase computes the overall cost and minimizing the 
cost function. The overall cost associated during decision 
making phase of service placement ℭ^+/3T

𝒹,𝒿	  can be 
calculated	from Eq. 18, 21 and 24 as follows [145]: 

ℭ^+/3T
𝒹,𝒿	  = ∑ g1 − Θ𝒹,𝒿" h𝓂

𝒿1! ∗ 	ℭ@+𝒯
𝒹,𝒿	 +∑ 	_𝒹,𝒿(_𝒹,𝒿`!)

"
∗ 	ℭℱ𝒩

𝒹,𝒿	𝓂
𝒿1! + 

∑ 	_𝒹,𝒿(_𝒹,𝒿a!)

"
	 ∗ 	ℭ𝒟𝒮

𝒹,𝒿	𝓂
𝒿1!            (25) 
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Fig. 9. Service Placement Problem in Fog Computing 

Environment 
In similar manner, the total energy consumed ℰ𝒞^+/3T

𝒹,𝒿   from 
Eq. 17, 20 and 23  

ℰ𝒞^+/3T
𝒹,𝒿 =	∑ g1 − Θ𝒹,𝒿" h𝓂

𝒿1! ∗ ℰ𝒞@+𝒯
𝒹,𝒿 +	∑ 	_𝒹,𝒿b_𝒹,𝒿`!c

"
∗𝓂

𝒿1!

	ℰ𝒞ℱ𝒩
𝒹,𝒿 +	∑ 	_𝒹,𝒿(_𝒹,𝒿a!)

"
	 ∗	𝓂

𝒿1! ℰ𝒞𝒟𝒮
𝒹,𝒿           (26) 

Finally, total cost 𝜗𝒹,𝒿 can be computed combining Eq. 25 and 
26, which is computed as follows: 
𝜗𝒹,𝒿= Ψ! ∗ ℭ^+/3T

𝒹,𝒿	 + Ψ" ∗ 	ℰ𝒞^+/3T
𝒹,𝒿           (27) 

Where, Ψ! and Ψ"are weight factors. 
The optimization function can be formulated as: 
𝑚𝑖𝑛 𝜗𝒹,𝒿; subjected to constraints Θ𝒹,𝒿 ∈ {0,-1,1}        (28) 
And, the additional constraints are depicted in Eq. 4, 5, 6 and 
16. 

2) Service Placement Challenges 
The following are research challenges in service placement:  
• Task Dependencies: The majority of IoT applications, 

like augmented reality and image recognition, are 
modelled as Directed Acyclic Graphs (DAGs) in diverse 
topologies. The nodes depict the tasks, whereas links 
delineate the data communication pathway. 
Consequently, such applications sustain intricate 
dependencies and constraints when it comes to the 
decision of service placement. Doubtlessly, SP is a 
combinational optimization problem [159]. 

• Device Heterogeneity: The device heterogeneity in IoT 
is result of varying configurations (hardware and 

software) along with vendor-specific product-related 
specifications [160]. Moreover, apart from the 
collection of sensors and actuators, IoT technology 
thrives for high-end computing tasks such as routing 
and switching for heavy-duty tasks. Due to the same 
reason, this aspect is challenging and will be considered 
during the solution design and implementation phases.  

3) Existing solutions for non AI-based Service 
Placement  

This section presents some state-of-the-art works based 
on polynomial and mathematical models. A study conducted 
by Yu et al. [161] provided a solution to the above-stated 
problem from a network perspective. In the case of real-time 
IoT processing, the underlying infrastructure determines the 
best FN residing on the host, along with the channels where 
the application data stream will be transmitted. The author 
presents the provisioning problem in the context of single and 
multiple applications. A Fully Polynomial-Time 
Approximation Scheme (FPTAS) is used in the case of single 
applications, whereas multiple applications can be parallelized 
amongst various instances. In the case of non-parallel 
applications, the author proposed a randomized algorithm, 
where the incoming application is assigned to a specific host 
only.  

4) Existing solutions for AI-based Service Placement  
Most of the existing work considers centralized DRL 

agents, that lack generalizability and quick adaptability in 
heterogeneous and stochastic fog computing environments. 
DRL agents excel at obtaining optimal policies and long-term 
rewards with no prior knowledge of the operational 
environment. However, fog computing operates within a 
stochastic environment characterized by an extensive state 
space. In order to learn about the environment, an exploration 
phase is carried out, which involves trial and error, and 
correspondingly, the experiences are recorded in the form of a 
sequence of states, actions and rewards. But this leads to 
increased exploration costs and time due to the large number 
of interactions required for optimal agent training. Therefore, 
centralized DRL is not considered suitable for highly 
distributed fog computing scenarios. To deal with the same, 
Goudarzi et al. [111] presents an Experience sharing 
Distributed-DRL is called the X-DDRL SP technique, in 
which different sets of experience trajectories are produced in 
parallel fashion, which further assists the agent in training and 
learning optimal policies. Multiple agents interact with the 
environment simultaneously, and the resulting trajectories are 
regularly sent to the learning system for developing an optimal 
policy. The actors synchronize their parameters with the 
learner's during each policy update, and the actors 
independently conduct their exploration. Hence, this 
collaborative and distributed learning approach enables 
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experience sharing, which reduces exploration costs and 
improves the reuse of experience trajectories. In addition, the 
proposed distributed Actor-Critic-based technique enables the 
capture of the temporal behavior of incoming data via 
interconnected layers, and the replay buffer enhances the 
overall efficiency. The goal of using experience replay is to 
improve sample efficiency, which refers to how  effectively 
the model learns from the data it collects. By breaking the 
correlation between experiences, the learning process becomes 
more efficient and reliable. Finally, RNNs are employed to 
accurately identify temporal patterns within the data. The 
efficacy of the proposed model has been demonstrated by 

extensive simulation and testbed experimentation. The results 
reveal an 8-16 times faster performance gain in contrast to 
other DRL-based techniques, along with improved application 
execution time, cost, and energy consumption. Another work 
done by Sami et al. [162] provides dynamic solutions inspired 
by MDP to formulate proactive fog selection and placement 
solutions. The proposed work utilizes DRL agents to make 
placement decisions before actual demand occurs.  

An energy-efficient dynamic service migration scheme 
for higher QoE in edge computing is presented by Chen et al. 
[163]. The study integrates cognitive learning, which 
encompasses self-learning technologies involving pattern  

TABLE X 
COMPARISON OF PERFORMANCE METRICS FOR SERVICE PLACEMENT IN FOG/EDGE COMPUTING
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2018 [161] NA ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2018 [164] NA ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2019 [163] NA ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ 

2020 [166] NA ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✖ ✖ 

2021 [167] NA ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2021 [111] DAGs ✔ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2022 [113] Synthetic ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ 

2022 [162] NASA server logs & 
Google Cluster Trace ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2022 [165] NA ✖ ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✖ 
recognition, data mining, and Natural Language Processing 
(NLP) to simulate human intelligence. Within the suggested 
Edge Cognitive Computing (ECC) platform, dynamic service 
migration occurs, guided by the behavioral analysis of mobile 
user-generated traffic data and network resource conditions. In 
contrast to the commonly deployed models of cognitive 
learning, which involve training the machine learning-based 
models on the cloud and carrying the analytics and inference 
parts on the edge. The proposed work emphasizes 
incorporating training and inferencing ML models on the edge 
itself to further improve latency. ECC not only resolves the 
problem of computation; furthermore, it aids in knowing 
“what” to compute and “where” to compute. The author has 
introduced a framework that comprises both the edge network 
and edge cognition. The former involves interconnected 
heterogeneous edge devices, while the latter is divided into 
two components: (1) the Data Cognitive Engine and (2) the 
Resource Cognitive Engine. The Data Cognitive Engine is 

responsible for real-time IoT data analysis and provides 
network processing capabilities at the network edge. For 
example, it utilizes Deep Convolutional Networks (DCN) for 
facial emotion recognition and Hidden Markov Models 
(HMM) for user mobility prediction. The insights derived 
from this analysis are then fed to the Resource Cognitive 
Engine, which reinterprets the data to generate new 
information. This new information is subsequently utilized by 
the Data Cognitive Engine. Additionally, the Resource 
Cognitive Engine receives the analyzed results from the data 
engine to perform functions such as admission control, 
resource scheduling, and traffic monitoring. Its caching 
capability ensures the availability of predicted content at the 
edge layer in advance, reducing the load and latency on the 
underlying core network. 

The application of metaheuristic techniques in service 
allocation has been highlighted by the work of Mishra et al. 
[164], which implements different nature-inspired algorithms 
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like PSO, Binary PSO (BPSO), and BAT. The problem of 
assigning an appropriate target VM to an incoming user 
request is depicted as a bi-objective minimization problem. 
The author addresses the issue of optimal scheduling of 
incoming task requests to VMs (execution units in a fog 
environment). The results were simulated by an in-house 
simulator and MATLAB, and the above-stated techniques 
have been compared in terms of energy efficiency and 
makespan. The study conducted shows that BAT outperforms 
other Swarm intelligence-based metaheuristics in the 
mentioned performance matrix. Ghobaei-Arani et al. [113] 
depicted the SP as an autonomous placement approach for 

diverse IoT applications onto the fog/edge infrastructure. The 
author has worked towards ensuring QoS requirements for 
requesting IoT devices in the form of predicting potential 
resources for fog using Whale Optimization Algorithms 
(WOA). This is a stochastic approach inspired by the 
humpback whale hunting strategy, employed for optimizing 
computationally challenging problems to achieve efficient 
resource allocation. Humpback whales belong to a unique 
category of whales known for using bubble-net feeding 
techniques in their prey hunting. This technique operates in 
three distinct phases: encirclement of the target, exploitation, 
and exploration to cover the entire search space.  

TABLE XI 
STATE-OF-THE-ART SOLUTIONS FOR SERVICE PLACEMENT IN FOG/EDGE COMPUTING 

Year & 
Reference 

Objective Technique Experimental 
Configuration/ 

Limitations 

2018 [161] To minimize the resolution 
complexity of IoT applications 
by optimizing provisioning 

Fully polynomial time 
Approximation 

Simulation (C++ 
based) 

A simulation scenario consists 
of a few nodes, which doesn't 
depict a real-time scenario. 

2018 [164] To implement sustainable 
computing in fog servers for 
Industrial applications 

Metaheuristics (PSO, Binary 
PSO, BAT) 

Simulation 
(MATLAB) 

Lacks implementation in areal-
world testbed. 

2019 [163] Energy-efficient Dynamic service 
migration for higher QoE 

Cognitive computing Real Testbed 
 

Highly complex system. 
Security aspects are not 
considered, as large amounts of 
data become prone to breaches. 

2020 [166] Profit-aware placement of IoT 
applications for integrated fog 
cloud environments 

ILP Simulation 
(iFogSim)  

Vulnerability to security 
breaches in fog is not 
addressed.  

2021 [167] Context-aware decision-making 
for IIoT applications 

Metaheuristics (MGAPSO and 
EGAPSO, are developed by 
combining the GA & PSO and 
Elitism-based GA (EGA & PSO) 

Fog TestBed 
 

The proposed approach lacks 
the capability to serve 
interdependent IIoT 
applications. 

2021 [111] Cost-effective and timely 
decision-making framework for 
DAG-based IoT applications in 
heterogeneous fog environments 

DRL Simulation (Python 
using OpenGym) 
and TestBed.  

Energy efficiency parameter 
ignored.    
 Mobility amongst fog nodes is 
not taken into consideration 

2022 [113] Autonomous deployment of IoT 
applications in fog infrastructure 
ensure cost and energy 
effectiveness. 

Metaheuristics (WOA) Simulation  Privacy concerns with IoT 
devices are not addressed. 

2022 [162] Intelligent Dynamic Fog Service 
placement for better QoS  

DRL  
MDP 

Simulation The proposed work does not 
evaluate energy consumption, 
computational overhead  

2022 [165] A conceptual computing 
framework using cloud-fog 
middleware for managing service 
requests for optimized QoS 
parameters 

Metaheuristic- CSA Simulation  The proposed work was not 
implemented in real scenario.       
The fog node failover has been 
precluded. 

The effectiveness of this proposed method has been 
demonstrated through improvements in resource utilization, 
acceptance ratio, and energy efficiency. The baseline 
algorithms referred to are Genetic Algorithm (GA), PSO, BAT 
Algorithm (BAT) and Simulated Annealing (SA)-Fog Service 

Placement (FSP). The authors have proposed the implications 
of a hybrid model consisting of the amalgamation of Grey 
Wolf Optimizer (GWO) and SA for further amelioration of 
results. Another conceptual framework for IoT service 
placement in fog environments is proposed by Liu C et al. 
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[165], which comprises of Cloud Fog Control Middleware 
(CFCM). This module is responsible for managing incoming 
service requests and satisfying constraints. CFCM does all 
decision-making based upon MADE-k automatic control loops 
(M-Monitoring, A-Analysis, D-Decision making, E- 
Execution and k-shared knowledge base). The Fog Service 
Placement Problem (FSPP) is modelled as a multi-objective 
dynamic optimization problem based on the Cuckoo Search 
Algorithm (CSA). 

This prominent metaheuristic algorithm works with the 
behavior of cuckoo birds, which comprises adult cuckoos 
laying eggs and migrating as per environmental factors in a 
search for an optimal destination that suits their lives and 
laying eggs. Considering the implications of this metaheuristic 
in the context of service placement, the best environment 
would refer to achieving the global optima of objective 
function. Nevertheless, apart from improving QoS parameters, 
the work addressed prioritizing the incoming requests based 
on task deadlines. Table X depicts the comparison of various 
QoS parameters used to analyze existing studies in the domain 
of service placement. The majority of the works have been 
demonstrated via simulations using a VM-based fog nodes 
framework in a two-tier fog architecture for optimal service 
placement in IIoT applications. The authors address the 
problem of resource provisioning and IoT service placement 
as a multi-objective optimization problem that aims at 
minimizing service cost, energy usage, and service time (the 
sum of processing and communication time) for context-aware 
decisions in Industry 4.0. A hybrid version of Modified GA 
and PSO (MGAPSO) has been proposed and implemented in a 
testbed comprising 20 fog nodes harnessing the master-worker 
model. The result obtained signifies improvement in terms of 
the parameters stated above in comparison to First-Fit (FF), 
Branch & Bound (BB), Double Matching System (DMS), GA, 
PSO, etc. Finally, The key points of all surveyed work in the 
domain of service placement have been illustrated in Table XI. 

G. Resource Allocation and Load Balancing 
The fog computing landscape comprises a load balancer 

module that manages the distribution of incoming IoT 
workloads evenly amongst available resources. The dynamism 
that occurs in fog infrastructure might lead to an increase or 
decrease in the number of active fog nodes due to variant 
workloads. Henceforth, the heterogeneity in fog nodes in 
terms of computational capability is the principal cause for the 
non-applicability of cloud load balancing solutions in fog 
computing environments. For a similar reason, from a 
resource management point of view, load balancing becomes a 
tough task. A specialized component called a load balancer, 
after receiving requests from users, runs load-balancing 
algorithms and then further selects and distributes the requests 
among VMs available on the underlying fog node. It 

ascertains that no node is overloaded or underloaded. It is the 
last step in the resource management lifecycle, which is 
represented by Figure 10.  

1) Problem Formulation for Load Balancing  
The Load Balancing Degree (LBD) serves the purpose of 

distributing workloads among numerous fog nodes to enhance 
resource efficiency and performance. Its primary objective is 
to address the challenges associated with resource over-
utilization and under-utilization. Assigning workloads to each 
fog server or cloud data center is crucial, as it is not an ideal 
solution to have some nodes overloaded while others remain 
idle. Therefore, it plays a crucial role in distributing and 
balancing the workload among nodes [168]. It is computed 
from the makespan time ℳ𝒮𝒯𝒿,4, which is as follows: 

ℳ𝒮𝒯𝒿,4=∑ ∑ (𝒯@+𝒯_*+,-./0
𝒹,𝒿 +	𝒯ℱ𝒩_*+,-./0

𝒹,𝒿 +𝓃a4a!
J1!

𝓂
𝒿1!

𝒯𝒟𝒮_*+,-./0
𝒹,𝒿 )         (29) 

 

𝒟ℒℬ =	
∑ 789bℳ𝒮𝒯𝒿,2c`∑ 7Efbℳ𝒮𝒯𝒿,2c𝓍

𝒾56
𝓍
𝒾56

,03Q	(ℳ𝒮𝒯𝒿,2)
    (30) 

2) Resource Allocation and Load Balancing Challenges 
• Interoperability: It’s important to provide consumers 

with the choice to migrate from one fog/edge-based 
platform to another in a customized way with load 
balancing, keeping in mind factors like cost and 
functionality [169].  

• Fog/Cloud Dynamism: Although cloud and fog/edge 
work in harmony with one another, both dominant 
technologies rest upon different dynamics. Where the 
cloud rests on centralized datacenters, in contrast, 
edge/fog servers are distributed by nature. In addition to 
this, the capacity of edge devices to dynamically 
reconfigure themselves for various applications by 
offloading a variety of tasks introduces an additional 
layer of dynamism to the edge ecosystem. 

3) Existing solutions for non AI-based Resource 
allocation and Load balancing  

This section provides an overview of currently employed 
approaches for allocating resources. Sthapit et al. [114] have 
employed a sensor network utilizing a network of queues for 
implementing computational load balancing in the absence of 
cloud and fog layers. The scheduling decisions are based on a 
linear programming model. On executing 100 Monte-Carlo 
simulations, the results reinforce the fact that the proposed 
model can compute the incoming jobs efficiently when the 
total job rate is less than the total computational capability of 
Node State Information (NSI). Another study by Ahmad et al. 
[170] describes effective resource utilization in Smart Grids 
(SGs). The authors have considered a scenario comprising a 
smart building with multiple apartments acquiring smart 
gadgets and devices. 
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Fig. 10. Load balancing and Resource Allocation in Fog/Edge 

Computing 
The request is fulfilled by the nearest grid, which is further 
connected to the centralized cloud. The closest datacenter 
service broker policy is used for selecting the fog nearest to 
the cluster of apartments. Conventional legacy approaches to 
allocating resources and load balancing are restricted by their 
static nature (fixed resource pool), which fail to find the 
optimal solution in a dynamic and heterogeneous 
environment. Hence, there is a need to explore dynamic 
resource allocation approaches that can predict workload 
changes automatically and adjust in accordance with resource 
needs. Hence, the subsequent section discusses AI-based 
solutions to the resource allocation problem. 

4) Existing solutions for AI-based Resource allocation 
and Load balancing  

As per Forbes 2022 trends, the complexity of devices has 
been increasing due to the emergence of high-tech gadgets 
enabling VR, AR, and MR [176]. Extended Reality (XR) and 
smart applications thrive on the exquisite allocation of 
distributed resources in the close computing paradigm. This 
section highlights the existing work on the applicability of AI 

techniques, including ML, fuzzy logic, and metaheuristics, in 
this domain.  

Singh et al. [177] presented a fuzzy-based load balancer 
that handles overloading, underloading and disparity in 
resource utilization. The fuzzy-based three-tier framework is 
based on software-defined IoT task distribution. The rule-
based fuzzy technique enables the handling of diversified 
incoming traffic patterns among IoT devices. This includes the 
type of incoming load (video, audio, web, sensor data, etc.), 
which is generally unstructured in nature, traffic arrival time, 
etc., in a collaborative cloud-fog environment. The 
experimentation demonstrates improvements in resource 
utilization and cost reduction. In addition, the author inferred 
the superiority of 3-level fuzzy model design in comparison to 
5-level and 7-level traffic controllers, supporting the fact that 
increasing the number of layers results in an overwhelming 
fuzzy system with overlapping, inconsistent fuzzy rules and 
nevertheless increases the complexity in terms of the if-then 
rule base. Talaat et al. [115] presented a resource allocation 
technique based on effective predictions for ensuring QoS 
parameters. DRL helps in achieving load balancing amongst 
fog nodes whereas Probabilistic Neural Networks (PNN) are 
trained for providing predictions. The authors focus on real-
time resource allocation being utilized in the smart healthcare 
sector to diagnose the probability of heart attack occurrence. It 
works in three distinct phases: data processing, resource 
allocation, and making effective predictions. Here, PNN 
assists in making predictions regarding the occurrence of heart 
attacks by training the model. To achieve optimized dynamic 
and real-time allocation of resources, load balancing in fog 
nodes has been explored using metaheuristic algorithms by 
Baburao et al. [174]. The study utilizes the concept of 
containerization in order to create microservices applications, 
which provide a lightweight solution in comparison to VMs. 
The Load Balancing (LB) algorithm bifurcates the incoming 
workload for assigning it to optimal fog node based upon 
computational resource availability utilizing PSO. Each 
incoming request from an IoT device is mapped to a particle, 
and the shortest path is calculated corresponding to the nearest 
available fog node for mobile IoT users. Lastly, the authors in 
[175] optimized the resource allocation decision, via 
autonomic workload prediction of incoming IIoT requests 
using metaheuristic techniques. 

This work predicts the incoming workload using the 
proposed autoencoder deep learning model. Then, after 
making predictions about the resources, the incoming job is 
allocated to an appropriate resource using the Crow Search 
Algorithm (CSA) by optimizing multiple objectives. As fog 
nodes are battery-driven, the allocation of incoming 
applications to a particular node shall consider the same to 
avoid application execution failover. 
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TABLE XII 

COMPARISON OF PERFORMANCE METRICS FOR ALLOCATING RESOURCES AND LOAD BALANCING IN FOG/EDGE COMPUTING
 

Year & 
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2018 [170] NA ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2018 [114] 

Princeton Application 
Repository for Shared 
Memory Computers 

(PARSEC) 

✔ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

2020 [171] NA ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ 

2020 [172] NA ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ 

2020 [173] NA ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ 

2021 [174] NA ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ 

2022 [115] MOBILE Health 
(MHEALTH) ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ 

2022 [116] PlanetLab workload ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ 

2023 [175] NA ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ 

In such cases, migrating the application to the backup fog 
node will further increase the response time, failing to satisfy 
time-sensitive requirements. For the confrontation of the same, 
Naha et al. [116] present an energy-aware AI-based technique 
for allocating resources. The fog nodes are fed with 
information related to CPU utilization and energy usage 
patterns from datasets, which is later processed using the 
proposed Multiple Linear Regression (MLR). The proposed 
approach makes predictions as per constraints such as task 
deadlines and energy in order to make optimal decisions. The 
author considers an experimental scenario which comprises 
independent and dependent variables. Here, the time it takes 
for the application to complete its execution serves as the 
primary independent variable, influenced by four other 
independent variables: CPU usage, node mobility, network 
communication, and response time. The following MLR 
equation depicts the calculation of execution completion time: 
ℰ𝒯g𝓍 =	𝛽h +	𝛽!𝒞𝒫𝒰𝒰𝒹7

+	𝛽"𝒟ℳ𝒹7 +	𝛽j𝒩𝒞𝒹7 +
	𝛽kℛ𝒯𝒹7+	∈                     (31) 
Where, ℰ𝒯g𝓍 : Execution time of Application 𝓍 

𝒞𝒫𝒰𝒰𝒹𝓍
: CPU utilization of device r 

𝒟ℳ𝒹7: Device mobility  

𝒩𝒞𝒹7: Network communication of device r 
ℛ𝒯𝒹7: Response time of device r 
∈ : symbolizes the error rate, denoting the variance 

between the predicted values from the multiple linear 
regression (MLR) model and the real observations. 𝛽h, 
𝛽!, 𝛽", 𝛽j	𝑎𝑛𝑑	𝛽k are the coefficients that represent the 
regression line slope. Noteworthy, the purpose of using MLR 
lies in the fact that the predictor variable depends on multiple 
quantitatively independent variables; hence, simple regression 
cannot be used. Hence, based on the energy usage of the fog 
devices, the best device is selected for energy-aware 
application processing.   

The work has been simulated using the extended 
CloudSim version along with the Planet Lab workload dataset 
and compared with the Fog Computing Architecture Network 
(FOCAN) [178]. The deadline constraint has been 
accompanied by an energy component using a hybrid 
approach that minimizes processing delay, time, and SLA 
violations. Table XII provides a list of various datasets along 
with QoS comparisons of existing works, which will serve as a 
benchmark for evaluating new techniques. Li et al. [172] 
introduced intermediary nodes between the edge and cloud 
layers. 
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TABLE XIII 
STATE-OF-THE-ART SOLUTIONS FOR RESOURCE ALLOCATION AND LOAD BALANCING IN FOG/EDGE COMPUTING

Year & 
Reference 

Objective Type Technique Experimental 
Configuration/ 

Limitations 

2018 [170] To implement effective resource 
utilization in Smart Grids 

Static  Throttled, 
RR and FF 

Simulation 
(CloudSim) 

No real-life based implementation 
of the proposed study  

2018 [114] To enhance energy efficiency using 
computational load balancing in edge 
computing  

Static  Linear 
Programming 

Simulation (NS-3) The performance boost involves a 
hefty energy cost.  

2020 [171] Towards an efficient Joint Cloud 
enabled Edge-aware strategy for 
optimal task deployment using Load 
balancing 

Dynamic DRL Simulation (Python 
on Tensorflow) 

Requires multiple experiments to 
gradually obtain the optimal 
solution.  

2020 [172] To implement dynamic load balancing 
through task allocation  

Dynamic Naïve Bayes Simulation  No real-life based implementation 
of the proposed study  

2020 [173] Load balancing and managing 
payloads in cloud and fog zones for 
better QoS parameters 

Dynamic Fuzzy Simulation (jperf 
and fuzzylite api) 

Resource waste, Redundant fuzzy 
rule creation, Routing failures, and 
network convergence issues have 
been ignored.  

2021 [174] To enhance the Dynamic Resource 
Allocation method by balancing load 
in fog nodes for improved  QoE 

Dynamic PSO Simulation using 
Docker Desktop 
and Linpack 
software 

Data security issues are not 
addressed in context with fog 
nodes. 

2022 [115] Effective resource allocation using 
prediction techniques 

Dynamic DL and PNN Simulation 
(iFogSim) 

Energy efficiency is not considered 

2022 [116] Energy-aware deadline-based 
Resource Allocation method with a 
hybrid approach  

Dynamic MLR Simulation 
(Extended 
CloudSim) 

No real fog environment 
implementation  

2023 [175] Optimizing IIoT requests via 
autonomic workload prediction 

Dynamic Metaheuristic Simulation 
(iFogSim) 

The security aspect of IIoT data is 
not taken into consideration. The 
real implication of the proposed 
study is missing. 
 

These nodes have the task of gathering real-time data 
regarding the attributes of fog nodes. This global information 
monitoring establishes the foundation for classifying edge 
nodes into categories of light, normal, and heavy workloads. 
The task assignment module selects the node with the lightest 
workload, while the other nodes temporarily remain 
unassigned to tasks, promoting dynamic load balancing. In 
addition to obtaining the state information of nodes, the 
intermediary nodes also diminish the pressure on edge nodes. 
Where most of the works discussed are based upon unilateral 
computing, implying job deployment either on the edge or on 
the cloud, Dong et al. [171] proposed a joint Cloud-Edge 
datacenters approach for resource allocation, which is based 
on the pruning algorithm and DRL. Firstly, a joint host set is 
formed by combining the physical hosts from cloud data 
centers and edge computing centers. In other words, the 
monitor module receives this “cloud-edge” physical host 
information along with the task set. Further, the pruning 
algorithm eliminates fewer promising hosts to create a non-
dominated host set, which then serves as the starting point for 

the DRL process. The work fuses the idea of the Deep 
Deterministic Policy Gradient (DDPG) of DRL. This 
technique undergoes behavioral modifications after several 
iterations of learning from the environment. The main 
advantage of using pruning as a pre-processing technique is 
that it reduces the state space, which ultimately reduces the 
complexity of RL. Hence, making the algorithm more robust 
during its running phase via effective task deployment and 
load balancing. The environment is continuously explored for 
effective computational ability and load balancing. Table XIII 
depicts the discussed work. 

III. REVIEW METHODOLOGY 
Now a days, Systematic Literature Reviews (SLR) are 

becoming paramount, supplementing the minds of researchers 
with ingenious knowledge by supplying a repository of 
existing literature in a systematic manner. The SLR 
encompasses three distinct stages: planning, conducting and 
reporting the review. In the planning phase, we define the 
research objectives, pinpoint the research domains, and apply 
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inclusion and exclusion criteria to select the specific research 
areas of interest. 

A. Planning the Review 
The process of conducting the review involves 

identifying primary studies, implementing inclusion and 
exclusion criteria, and finally generating the results. The 
electronic databases have been searched extensively, and the 
respective studies have been reported. In addition to this, some 
of the leading journals in fog/edge computing that did not 
appear in electronic searches have been searched manually. 
The study selection procedure is shown in Figure 11. This 
survey demystifies the emerging computing paradigms with 
their architectural framework and integration of various thrust 
technologies to enhance the QoS parameters in integrated 

next-generation computing paradigms. This survey discusses 
the following research questions and the sub-questions 
identified, including motivation for work. 

B. Research Questions 
The identification of research questions, as summarized 

in Table XIV, channels the flow of various processes, hence 
systematizing the reviewing methodology. 

C. Sources of Information 
The efficacious content of our work has been collected 

from several sources. The keywords delved into were 
Fog/Edge computing, AI, Resource Management, IoT, 
Software Defined Networking (SDN), Industrial IoT (IIoT),  

Fig. 11. Selection Criteria used in this SLR
Digital twins, Quantum Computing, Federated Learning, 
Serverless Computing, 5G and Blockchain. In addition to this, 
the survey has been emphasized by searching for the role of 
thrust technology like 5G, blockchain, SDN, Digital Twin, 
Industry 4.0, IIoT, and Federated Learning (FL). The 
databases searched are as follows:  

• ACM Digital Library 
(https://dl.acm.org/journals) 

• IEEE Xplore (https://ieeexplore.ieee.org) 
• Web of Sciences (https://wos-journal.com/) 
• Science Direct (https://www.sciencedirect.com/) 
• Taylor and Francis Journal 

(https://www.tandfonline.com/) 
• Elesvier (https://www.elsevier.com) 
• Emerland (https://www.emerald.com) and other 

resources  
Additional Sources  

• E-Scientific research databases.  
• Books and Technical Reports  
• National Digital Library 

D. Search Criteria 
The majority of the searches comprise the keyword 

“Fog/Edge” and “Resource Management” is included in the 
abstract. The following strings of words are applied using the 

Boolean operators AND and OR for combining the keywords, 
which are as follows: 

{(“Resource Management” OR “Resource Provisioning” OR 
“Task Offloading” OR “Resource Scheduling” OR “Task 
Scheduling” OR “Service Placement” OR “Resource 
Allocation” OR “Load Balancing”) AND (“Artificial 
Intelligence” OR “Machine Learning”) AND (“Fog 
computing” OR “Edge Computing”)}  

E. Inclusion and Exclusion Criteria 
The implications of AI-based approaches in Fog/Edge 

computing are relatively new research areas. In addition to 
this, a major chunk of our referred works lies in the past 6 
years, which will assist researchers in enhancing their skills 
with the latest AI techniques and making an impact in the 
arena of IoT-assisted fog computing. To refine our work, 
inclusion and exclusion criteria have been applied to filter out 
insignificant papers. The above-mentioned search keywords 
and combinations were framed to narrow down the available 
academic databases to the most relevant articles. Due to the 
high potential of Web of Science (WoS) journals, we have 
taken the research work (journals, transactions, and 
conferences) indexed in WoS with peer-reviewed methods 
into consideration for AI-enabled resource management in 
fog/edge. 

Exploring
Articles
between

2016 to 2023

Defining
Search

Keywords

Exclusion based
on Title

Exclusion based
on Abstract

Exclusion based
on Full TextAcademic

Databases

IEEE Springer
Emerland

ACM
Taylor & Francis

Scopus
#340 #270 #223#490
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Initially, 490+ papers were considered at the start of the 
process. But to find eminent publications, an extensive 
screening process was carried out to filter out non-peer-
reviewed articles, conferences, and book chapters that were 
not capable of contributing to our research domain. 
Henceforth, our subsequent steps shortlisted 223 potentials.   

F. Quality Assessment 
To compile the best available research on this topic, we 

used a systematic review approach in accordance with the 
“Centre for Reviews and Dissemination (CRD) guidelines” 
provided by Kitchenham [173]. Additionally, there are a 
number of academic articles and conference proceedings on 
AI for fog/edge computing. After implementing the criteria for 

exclusion and inclusion, we performed a quality assessment of 
the articles that fulfilled the standards to determine which 
were most deserving for further review. We used the criteria 
set by the CRD to assess the research’s overall quality, 
including its fairness, internal cohesion, and neutrality. 

IV. EXPLORING FUTURE RESEARCH DIRECTIONS: DEMYSTIFYING 
THRUST TECHNOLOGY IN INTEGRATION WITH FOG/EDGE 

 
In this section, we spotlight the integration of emerging 

paradigms with thrust technology, which is evolving as a 
potential research trend. This integration is taking the existing 
functionality of fog computing to the next level by inculcating 
advanced and sophisticated techniques such as providing a 
hyper-personalized space for privacy preservation of  

TABLE XIV 
RESEARCH QUESTIONS AND MOTIVATION

 

S. No. Research question Motivation 
RQ1 What are the main issues in the IoT-based 

paradigm?  
This question investigates various open issues in the IoT paradigm, and the 
need to include fog/edge computing to elevate the resource-constrained 
nature of IoT devices.   

RQ2 What are the various ingredients in the realm of 
resource management, along with their research 
challenges? 

This research question helps to investigate and identify different subareas in 
the realm of resource management in Fog/Edge. 

RQ3 What is the contemporary status of AI-based 
solutions in the arena of resource management in 
fog/edge computing? 

The mentioned question is beneficial for determining the recent state-of-the-
art works done along with the application of AI-based resource management 
in Fog/Edge. 

RQ4 What is the basis for full and partial offloading of 
tasks in AI-enabled resource management in 
fog/edge computing? 

The purpose of this question is to assist researchers regarding the decision on 
task offloading.  

RQ5 What is the rationale for deciding where to offload 
tasks corresponding to an incoming request?  

This question helps in understanding the various pre-requisites for task 
offloading decisions, which include what to offload, where to offload, how to 
offload and when to offload. 

RQ6 Determining the role and need to integrate 
predictive analysis capability into emerging 
paradigms via AI, ML, etc. 

This section discusses the capability of ML/DL to effectively analyze and 
quickly extract features from voluminous data generated from IoT devices.  

RQ7 What is the basis for the implementation of the 
upcoming Fog/Edge computing paradigms? 

The implementation method: Simulation or testbed has been discussed. 
Supporting tools and APIs have also been mentioned to assist researchers in 
the future implementation of their proposed work.  

RQ8 What is the status of upcoming thrust technology in 
emerging computing paradigms? 

The motive of this question is to explore numerous thrust technologies, such 
as 5G, Digital Twin, IIoT, Blockchain, SDN and Federated Learning and to 
learn how they are being integrated with Fog/Edge computing. 

RQ9 What are the most prominent application areas of 
IoT-enabled Edge/Fog computing? 

The survey discusses some real-time applications of IoT-enabled Fog/Edge 
in the form of case studies.  

RQ10 How can the efficiency of AI-enabled Fog/Edge 
computing be computed and what are the key 
performance indicators? 

The survey presents various parameters in tabular format to gauge the 
effectiveness of AI-based resource management techniques in Fog/Edge 
computing. 

RQ11 How will thrust technology and AI impact 
Fog/Edge computing in the future? 

It helps to find out the research directions and lessons learned in the field of 
Fog/Edge. 

RQ12 What are the proposed solutions to the research 
challenges in a collaborative cloud-Fog-IoT 
environment? 

The survey equips its readers with trending techniques and cutting-edge 
technologies that will assist in imparting business intelligence in IoT-based 
applications.  
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IoT data, containerization, high-end telecommunication 
networking capabilities, and many more.  

A. Integration of Fog/Edge with Serverless Computing 
The ideology of serverless computing can be considered 

a pay-as-you-go model in the cloud paradigm, along with 
leading-edge technologies such as microservices, 
containerization, event-driven modelling, Function-as-a-
Service (FaaS), and Backend-as-a-Service (BaaS) [179]. The 
Cloud subscribers bear the consequences of paying for the 
resources allocated, not for the resources utilized, and the 
scalability drawback, wherein the configuration of auto-scalars 
is preordained based upon the load profile and application 
characteristics. Furthermore, the rapid shift from monolithic 
systems to SOA and then the final paradigm shift to 
microservices applications, recognized the possibility of 
running small pieces of code as functions, well-known as 
FaaS, hence leading to the emergence of serverless computing 
[180].  

Apart from easing out the process of server management, 
it executes different events that simplify the backend code. For 
instance, the generation of an IoT event that originated from a 
home security sensor might invoke a lambda function that 
further notifies the user on the end device. Another example 
might include creating a database event that triggers a 
serverless function and then finally prompting the customer 
with an email. Other events might include HTTP requests, file 
uploads, or database analytics. Therefore, it can be called the 
next promising shift in the cloud era, with the full realization 
of cloud capabilities comprising disjointed functions called 
Lambda functions. Although the term was originally coined 
for the cloud, serverless is locating itself in the fog/edge 
landscape, with IoT as its prime partner. Seamless integration 
of serverless computing with fog/edge is complex due to the 
significantly larger count of fog nodes and their distributed 
nature [181]. Most of the IoT devices are connected through 
various communication mediums such as Wi-Fi, Bluetooth, 
Zigbee [182], and 2/3/4/5G/LTE networks. These devices 
create incoming tasks using messaging protocols like HTTP 
and Application Programming Interfaces (APIs), following 
event-driven principles. However, due to the distributed nature 
of IoT devices, such as the temperature sensors spread 
throughout a smart city's manufacturing plant, relying solely 
on HTTP may not be sufficient [101]. Hence, the Serverless 
edge enables the capability to push/publish via communication 
protocols comprising Message Queuing Telemetry Transport 
(MQTT), MQTT-SN and Data Distribution Service (DSS) 
[105].  

B. Integration of Fog/Edge with 5G 
The emergence of 5G has ushered in a wide range of 

unprecedented applications, offering enhanced mobile 

broadband, ultra-reliable connections, improved data rates, 
low latency, and extensive device connectivity. 5G serves as 
the fundamental pillar for enabling the new AIoT economy. 
Corporations are looking at the IoT as the next industrial 
revolution with its capability of imparting intelligence into 
their operations, building smart factories, hospitals, campuses, 
cities, businesses etc. These application domains necessitate 
advanced communication services ensuring data security, real-
time communication, and widespread device connectivity. But 
at the same time, it becomes challenging to manage and serve 
the enormous number of devices with the existing cellular 
network architecture. To maintain the QoS parameters, the 
service providers are working towards expanding their Base 
Stations (BS). BS provides a consistent number of resources 
all the time, whereas mobile users utilize services only at 
discrete intervals, which results in futile resource 
management. 

Resource management has always been a perplexing 
problem in cellular networks because of the underlying 
heterogeneous resources and dynamic workload requirements. 
To help with the same, AI is one of the most dominant 
technologies and plays a significant role in almost all spheres 
of industrial domain applications. Concomitantly, it requires 
extra compute, memory resources, and training time for its 
decision-making. In order to transfer  big data seamlessly 
across Baseband Units (BBUs) and Remote Radio Head 
(RRH), edge computing-enabled 5G networks are bringing 
cloud capabilities in close proximity to the end user. This 
strategic placement effectively mitigates the inherent 
challenges associated with high latency and security gaps 
found in conventional architectures. [184]. This integration 
will not only decrease the transmission of useless data but also 
solve bottleneck issues like congestion. The edge devices (IoT 
gateways, routing switches) will assist the functionality of AI 
by filtering out useless data beforehand, which will result in a 
reduction in transmission backhaul. The incorporation of the 
Edge layer will assist BBU in autonomously configuring its 
underlying resources under real-time changes in its 
environment. 

However, the swift expansion of tech-savvy devices 
along with IoT devices is eventually overburdening the 
existing portable remote sensor networks. Even after the 
incorporation of AI with 5G & beyond and Industry 4.0, real-
life application domains like medical service management and 
transportation frameworks suffer from some key issues like 
radio resource management optimization and interference 
management [185].  

C. Integration of Fog/Edge with IIoT 
It refers to the utilization of selected IoT sensors and 

actuators in the industrial arena to enhance manufacturing and 
industrial processing capabilities without human intervention 
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[186]. It focuses on digitizing and integrating all essential 
physical processes across the entire organization [187]. The 
IIoT, also called the Industrial Internet, is a metamorphic 
change after the industrial and Internet revolutions that 
drastically impacts the way industries function. It is a 
significant paradigm shift from traditional centrally controlled 
machines to more decentralized functioning capabilities. It 
utilizes a new software-defined machine framework that 
virtualizes the machine’s functionality in software, enabling 
seamless monitoring and management of industrial assets via 
remote access. 

With the advent of Industry 4.0, a prodigious amount of 
time- and delay-sensitive data is being generated by machines. 
Moreover, the sensors embedded in industrial equipment are 
resource-constrained and battery-driven. Henceforth, 
executing all the computational workload on these devices 
might drain them quickly. To realize the system from a 
resource perspective, the workload compute capability of IoT 
devices can be boosted by introducing a fog layer. As 
discussed by Sengupta et al. [188] the IoT devices transmit 
raw data to the closest fog node through Wi-Fi access points. 
For data with strict time sensitivity, the fog node analyzes the 
incoming request and sends a control command back to the 
respective device. In contrast, data with lower time constraints 
is sent to the cloud for extended storage and large-scale data 
analytics. The integration of the fog layer enhances resource 
performance by extending the battery life of sensing devices 
by offloading computation-intensive tasks to the cloud. This 
integration also diminishes the trust dependency on the cloud 
by utilizing it for storage and archival purposes. The 
decentralized nature of FNs imposes several challenges, such 
as global monitoring and controlling the computing states of 
FNs. Furthermore, the diversified nature of tasks in fog-
enabled IIoT introduces a misalignment between the 
anticipated computational efficiency and the allocated 
resources on fog nodes. 

The problem has been addressed in the form of service 
popularity-based smart partitioning of resources for fog-
enabled industrial IoT [189]. Still, fog-enabled IIoT suffers 
from trust establishment problems. To resolve these problems, 
the same blockchain-based security service architecture is 
proposed by Hewa et al. [190]. The proposed work facilitates 
cloud manufacturing equipment authentication, channel 
privacy protection, and the unlikability of transactional data 
over blockchain records.  

Use Cases: This subsection discusses the practical 
implications of Fog/Edge in IIoT.  

• Smart Pump: An IIoT-enabled smart pump 
equipped with predictive analysis, maintenance, and 
machine learning is capable of imagining a potential 

failover. Such systems prepare in advance for the 
downtime instead of encountering a whole system 
failover.  

• Smart metering: This capability can be exploited in 
the arenas of measuring energy, natural gas, water 
consumption, and many more.  

• Fleet management: It holds applications in smart 
transportation systems where, for instance, the most 
efficient routes are calculated for waste management 
collection vehicles. This system is further 
strengthened by real-time traffic feeds and efficiency 
algorithms.  

• Jet Engines: A fleet of locomotives, particularly 
airplanes equipped with IIoT sensors, can foresee 
fuel requirements or any other type of failover. This 
technology works with insight to impart zero 
unplanned downtime. With its advent, the 
maintenance course of the plane can be predicted 
even before the plane lands, thereby preventing 
unscheduled maintenance events.  

D. Integration of Fog/Edge with Blockchain 
IoT, in conjunction with the fast-propelling Industry 4.0, 

requires the gathering, analysis and sharing of raw data from 
which valuable information is extracted. Nevertheless, IoT 
security and data privacy remain major issues as the 
accumulated data is exposed to vulnerabilities. Any malicious 
user can track devices and continuously listen to conversations 
between IoT devices, which ultimately leads to a breach of 
privacy. To add to that, upcoming researchers have proposed 
the integration of blockchain in order to revolutionize the 
business process, which anticipates greater data integrity in 
fog-enabled IoT networks [191]. The integration of blockchain 
in fog-enabled IoT networks is revolutionizing broad spectrum 
of fields such as industries, retail, finance, the public sector, 
and above all, technological aspects, as depicted in Figure 12.  

Blockchain is prominent for trusted transactions based on 
the concept of a distributed, shared, replicated and 
permissioned ledger, where the transactions are provably 
endorsed by relevant participants. It constitutes independent 
computers called nodes, which enable the sharing and 
synchronization of transactions in their corresponding 
electronic ledgers instead of maintaining a centralized ledger. 
The shared ledger contains: (1) immutable blocks containing a 
set of transactions that are chained together in append-only 
mode. The distributed ledger acts as the building block of the 
“Internet of Value,” where value is transferred from peer to 
peer. Here, value could be any identity, health information, 
personal data, and many more. (2) World State: stores the 
current state of assets, which includes an ordinary database 
(key/value store).  
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Fig. 12. Applications of Blockchain-enabled Fog/Edge computing 

The architecture flow of integration of blockchain with 
IIoT, Industry 4.0 in fog, and edge-enabled IoT networks is 
demonstrated in Figure 13, which depicts how digital trust can 
be implemented in the healthcare domain via blockchain. 
Initially, all the active actors, including healthcare workers 
(doctors, nurses) and patients, are registered with the main 
healthcare service provider. The parameters (like ID, name, 
age and gender) are stored as Ethereum addresses. The 
patients authenticate themselves in the proposed framework 
and are authorized to consult their own data at any time. 
Granting the right permissions is a vital ingredient for the 
efficient implementation of the proposed system. Afterwards, 
data processing is done via specific sensors relating to certain 
diseases, for instance, electrocardiogram (ECG) and blood-
oxygen saturation (SpO2) sensors for heart patients, sugar 
levels for diabetic patients and so on. This phase involves data 
acquisition by various sensors and then storing the same in a 
blockchain. Storing such sensitive information directly on the 
cloud is not recommended as it can be deleted or tampered 
with by malicious actions which can be life-threatening for the 
patient. Noteworthy, such data storage requires resources on 
the cloud and blockchain; hence, periodic data storage like 
acquiring temperature sensor readings every 1 or 2 minutes is 
not a good choice. Hence, only vital values exceeding the 
threshold value are stored in the blockchain for further 
analysis by the application of AI algorithms. Afterwards, data 
is transferred via gateway to the edge/fog devices. This is 
where data processing takes place for real-time data, such as 
storing data in blockchain format and recovering patients’ 
parameters from blockchain. Blockchain-enabled fog 
paradigms are cooperative rather than competitive in nature. 
At this stage, smart contracts perform the verification of 
credentials at the fog layer. Finally, processed results can be 

accessed via a web application or mobile application. The 
real-time parameters are accessed, and the reports are 
uploaded in Interplanetary File System (IPFS) format to the 
blockchain, which can further be stored on the cloud for future 
monitoring of the patient’s parameters [192], [193].  

E. Integration of Fog/Edge with Digital Twin 
With the inception of Industry 4.0, the journey towards 

automating traditional industrial practices emerged. Gartner 
estimates that by 2027, over 40 percent of the major industrial 
companies will utilize Digital Twins, in order to improve their 
revenue and operational effectiveness [223]. With a digital 
twin as its counterpart, which aims at replicating elements, 
processes, functions, and dynamics of the physical world 
come into a digital counterpart. The integration of the digital 
twin eases out processes such as monitoring, testing, and 
evaluation, along with predictive analytics of complex, which 
otherwise would have been out of question using traditional 
simulations [193]. The first pragmatic model was built in the 
form of a virtual spacecraft by NASA in 2012, which received 
real-time inputs from sensors [194]. With the latest 
developments in ML, AI, VR, AR, next-generation mobile 
communications (beyond 5G), Transfer learning and many 
more along with emerging computing paradigms, the digital 
twin has been reshaped with its enhanced capabilities, 
covering a wide range of domains including logistics, smart 
cities, smart manufacturing, healthcare, and robotics under its 
umbrella. 

Talking about its legitimate applicability, Digital Twins 
technology is incorporated into IoT devices that are confined 
to a particular region. For such low-powered devices, the 
cloud alone cannot assure optimal QoS services for latency 
and real-time devices.  
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Fig. 13. Integration of IIoT, Industry 4.0, Blockchain and 5G with Fog/Edge computing

Hence, Fog/Edge becomes indispensable for the 
inculcation of the framework of the Digital Twin by reducing 
connectivity and latency issues in networks, thereby 
empowering the system with robustness.  

F. Integration of Fog/Edge with Quantum Computing 
The idea emerged from transistor computing when 

Richard Feynman, a Nobel Prize-winning physicist, realized 
that atoms comprising transistors can exist in both high and 
low states simultaneously. In contrast to the classical bit, 
which holds only two values, zero and one, a quantum bit, or 
qubit, holds a complex coefficient value. The term envisioned 
for this behavior was coined Quantum Superposition State. 
Thus, quantum bits, or qubits (which hold a complex 
coefficient value describing a particular state), came into the 
picture, which are the fundamental building blocks of quantum 
computers [195]. Quantum Computing as a technology is still 
in its infancy, but it can be utilized to calculate intractable 
things around us. The fidelity of this computing paradigm is 
going to touch many applications and industry verticals. 
Currently, serverless computing-enabled fog/edge 

frameworks, driving function as a service, necessitate quantum 
computing for processing massive computations for dynamic 
provisioning and load balancing of underlying resources 
[196]. 

G. Integration of Fog/Edge with Federated Learning 
Assuring optimal resource management with known 

execution times in a classical edge computing landscape is a 
tedious task [197]. It becomes practically infeasible to 
estimate the execution time due to the complex framework of 
the edge server. Furthermore, processing colossal amount of 
data aggregated by cameras, GPS, sonar, and IMU within the 
existing framework of fog/edge is challenging without the 
integration of intelligent paradigms [198]. With AI almost 
influencing all aspects of our lives, the traditional AI methods 
involve training the models on data aggregated from several 
IoT/edge devices on a centralized cloud server. For instance, 
consider the smart city scenario where AI and ML techniques 
consolidate the results for better predictions and enhance the 
user experience. Nevertheless, data is stored at a centralized 
location, and the AI techniques  
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Fig. 14. Fog-Assisted Federated Learning Framework for Agriculture 

rely on this training data in order to forecast trends and 
patterns [199]. Nonetheless, this method encounters various 
challenges including privacy concerns, data security, 
regulatory compliance etc. The solution to this problem lies in 
training the model on the device itself instead of centralized 
server. 

To serve the same, Federated Learning (FL) comes into 
play, which provides hyper-personalized space, low cloud 
infrastructure overhead, and prominent privacy preservation 
while minimizing latency. FL can be treated as a decentralized 
form of machine learning, which creates a shared model in 
place of a central data model. The new models are being 
trained collaboratively on the edge, where the data never 
leaves the personalized device. Although the devices and 
machines train several models at distributed locations in 
parallel and send their collaborative results to a centralized 
server to create a machine learning model [200]. Therefore, 
FL leverages both the distribution of data and computational 
resources while safeguarding data privacy [199]. 

For instance, Saha et al. [201] illustrated the implications 
of FL via an irrigation scheduling application where the 

deployed IoT sensors such as humidity, temperature, moisture, 
air flow, and so on forward, the parameters via edge devices. 
The demographic versatility across fields enables each edge 
device to update its local model utilizing on-device local data. 
Global aggregation of data on centralized servers results in 
inefficient training models that are even more susceptible to 
malicious attacks. Hence, fog nodes act as local aggregators, 
which send the global aggregators to centralized cloud servers. 
The implications of an integrated framework are shown in 
Figure 14.  

H. Integration of Fog/Edge with Software Defined 
Network (SDN) 

SDN is a new architecture wherein the control plane is 
separated from the data plane and consists of two primary 
components: the SDN switch and the controller. Each SDN 
switch comprises a flow table, which defines the actions to be 
applied to the packets that enter it. A match criterion for each 
entry in the flow table is defined over the IP source, IP 
destination, and protocol fields. The actions are implicated 
once the match criteria are satisfied.  
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TABLE XV 
DEMYSTIFYING THRUST TECHNOLOGY WITH FOG/EDGE COMPUTING

Year & 
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Objective  Thrust Technology integrated with 
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2018 [189] 
Smart resource partitioning based 
on service priority in fog-enabled 

IIoT 
                 

2019 [191] 

To minimize the communication 
delay between IoT and ensure 

uniform resource distribution in 
an IoT-enabled network 

        

- - 
       

2020 [202] Secure and energy efficient 
framework for IoT Networks                  

2021 [201] Enabling distributed learning on 
resource-constrained IoT devices                  

2021 [185] 
AI-enabled novel architecture for 

smart healthcare for better 
resource management 

                 

2021 [188] 
Enhancing security via fog-based 
architecture and towards judicial 

usage of resources in IIoT 
                 

2022 [190] 
Secure blockchain-enabled fog 

computing model for 
manufacturing equipment clusters 

                 

2022 [192] 

Secure and authorized data 
sharing boosts QoS requirements 

in terms of cost, security and 
reliability in the healthcare Sector 

                 

2022 [205] 
To optimize Resource usage via 

effective vehicle selection in 
Vehicle Edge computing 

                 

2022 [206] 
To implement Energy-aware Task 
Offloading in massive IoT Edge 

Networks 
                 

 
Whereas the SDN controller brings forth full control over the 
network, communication flow, enabling remote control, 
elevated flexibility, and programming capability [202]. 

The integration of SDN with IoT boosts network 
performance by providing the management of ephemeral 
network states in a centralized control model. Besides, the 
SDN controller acts as a centralized controller for IoT 
networks, assisting in the monitoring and management of 
heterogeneous IoT devices [203]. The research is trending 
towards the usage of SDN for optimized IoT management in 
alliance with blockchain to improve the security aspect. 
Finally, Table XV presents an overview of various studies that 
delve into the incorporation of thrust technology in fog/edge 
computing.  

V. RESULTS AND ANALYSIS 
Our work emphasizes the systematic assessment and 

discussion of various articles based on the prevailing status of 
resource management issues in fog/edge computing, along 
with the identification of its collaborative thrust technology. 
Our study includes numerous driving forces that are leaving a 
remarkable impact on emerging computing paradigms, 
presented as open challenges and from a future research 
perspective. 

Throughout, 490+ articles were collected, out of which 
223 have been shortlisted after extensive selection. The 
articles highlight the existing state-of-the-art work carried out 
in the resource management domain based upon non-AI and 
AI-based technologies. Most of the selected articles cover the 
period from 2016 to 2023. As illustrated in Figure 15, a major 
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chunk of our referred articles are from the past 6 years. The 
organization and methodology of the article are motivated by 
the systematic literature review procedure [204]. It can be 
ascertained that the formulated research questions serve as a 
principal solution for elucidating various RM-related issues, 
hence heading the flow of the review methodology. 

 
Fig. 15. Year-wise Publications based on Resource 

Management in Fog/Edge Computing 
Furthermore, we meticulously reviewed each article and 

bifurcated it into five fields: review, SLR, Implementation 
platform (Real/Testbed or Simulation) and book chapters, as 
represented in Figure 16. In addition to this, Figure 17 states 
comparison statistics in the context of evaluation tools, 
filtering out the papers based on real implementation. This 
indicates that a significant portion of the papers examined did 
not specify the simulator tool they used and, as a result, have 
been categorized as part of the "other" group. Besides, the 
majority of them utilized iFogSim, CloudSim, and Python-
based implementations with 17%, 12%, and 8%, respectively. 
It has been observed that few infrastructure platforms exist for 
pursuing real-time fog computing research work. Hence, there 
is a need to expedite research towards developing realistic Fog 
testbeds for evaluating the results of deployed AI models.  

 
Fig. 16. Type of Studies in the Selected Papers 

The search criteria play a significant role in the review 
methodology. In reference to the same context, Figure 18 
represents a bifurcation of selected papers based upon 
prominent publishers comprising IEEE, Elsevier, ACM, 
Springer, and other sources such as Web of Sciences, Science 
Direct, Taylor and Francis Journal, Scopus, Google Scholar, 
Research Gate, Springer Link, Emerland, and other resources 
like scientific electronic research databases. It is concluded 
that the majority of the selected articles are published by IEEE 
journals, transactions, and conferences, in comparison to other 
publishers. Lastly, we have also categorized reviewed papers 
based on parameters including IoT, QoS parameters, energy 
efficiency, application-based (healthcare, vehicular network 
etc.) and papers integrating thrust technology, as shown in 
Figure 19. A major chunk of our surveyed papers is based on 
resource-related aspects.  

 

Fig. 17. Comparison of Performance Evaluation Tools for 
Resource Management in Fog/Edge Computing  

VI. OPEN ISSUES AND RESEARCH DIRECTIONS 
The Fog/Edge-Cloud computing model heralds 

unprecedented expansions in the building of IoT solutions. 
However, the real implications of this model for multi-layer 
computing pose a huge number of challenges. The previous 
section discussed futuristic trends in the form of key-enabler 
thrust technology, which are making room for their integration 
with the aforementioned model. In this section, we highlight 
some long-standing challenges that lay ahead, along with 
research perspectives, which are discussed as follows:  

A. Security and Privacy preservation in Public FNs 
The IoT-enabled fog/edge framework strives to improve 

users’ experiences and the resilience of services in case of 
failovers. To achieve the same, retaining the security, 
authorization, integrity, and confidentiality of the application  
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Fig. 18. Bifurcation of Selected publications based on different Publishers 

    

Fig. 19. Categorization of Publications based on Resource Oriented Factors relating Fog/Edge Computing Paradigms 

along with the underlying network becomes the prime factor 
that must be addressed. The IoT-sensing data is exposed to 
various risks, such as unauthorized access, the risk of intrusion 
and a wide range of security attacks [174] [175]. The authors 
had discussed a wide umbrella of attacks under the Network 
layer of the IoT architecture, which includes DoS, Spoofing, 
sinkholes, wormholes, man-in-the-middle attacks, and Sybil 
attacks. As most IoT devices are connected via wireless 
communication links, most of the security challenges in IoT 
are related to the wireless network [209]. Also, ensuring the 
secure and successful execution of applications on resource-
constrained edge devices necessitates strong and robust light-
weight encryption methods, security mechanisms and 
advanced and efficient cryptographic schemes [210].  

 

B. Real-time Analytics for Smart Applications 
Nowadays, many researchers are working towards 

creating efficient algorithms to train ML models over the 
network edge. For the same reason, sharing and 
communication of computational results are important for the 
deployment of this distributed computing paradigm. New 
computation-aware network models are gaining insight for 
developing distributed data-sharing systems. For instance, in 
smart cities, the deployment of large-scale sensing networks, 
anomalous and hazardous event identification, and enabling 
real time responses are pre-requisites. The fog computing 
paradigm must be equipped with learning algorithms to 
analyze real-time data for smart pipeline monitoring to timely 
detect any event threatening pipeline safety [211]. This opens 
avenues for researchers to incorporate learning algorithms in 
the real-time application area, as the majority of the state-of-

0
2
4
6
8

10
12
14
16
18
20

Upto
2015

2016 2017 2018 2019 2020 2021 2022 2023

Pa
pe

r C
ou

nt

Yearwise articles

IEEE

Elsevier

ACM

Springer

Others

0 5 10 15 20 25 30

Emerging Computing Paradigms
QoS Parameters

IoT
Resource Management
Resource Provisioning

Task Offloading
Resource Scheduling

Service Placement
Resource Allocation & Load Balanding

Application Based
Energy Efficiency

Thrust Technologies
Security

Upto 2015 2016 2017 2018 2019 2020 2021 2022 2023

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



48 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
the-art covers only theoretical aspects, where real 
implementation is still missing. 

C. Self-Adaptive Scheduling in FNs 
Most of the scheduling algorithms lack the learning 

capability of self-adaptiveness, which makes resource 
scheduling a challenging task in Fog/Edge nodes [221]. 
Although research is trending towards the deployment of self-
adaptive scheduling, all these works are considered at the 
simulation level only [222]. Therefore, there is a dire need for 
resource scheduling techniques to equip themselves with the 
capability to generate optimal task schedules in a dynamic 
workload environment. 

D. Management of geographically distributed resources 
Cloud virtualization solution would not be completely 

suitable for fog/edge. The varied hardware and OS 
configurations of Fog architecture call for the need for 
infrastructure virtualization. It calls for Container 
Orchestration tools, which ease out the scaling up and down of 
fog infrastructure nodes, henceforth meeting the requirements 
of real-time IoT applications and the constraints imposed on 
FNs [212]. Some of the prominent Container Orchestration 
tools include Kubernetes, Docker Swarm, and Apache Mesos-
Marathon. 

 

Fig. 20. Open Research Challenges in Fog/Edge Computing  

E. FN Mobilization Management 
In a VFC environment, Unmanned Aerial Vehicles 

(UAVs), smartwatches and phones are configured to fully 
utilize the computational resources of mobile vehicles. 
However, the management of resources in such a scenario 
becomes challenging in terms of task offloading due to the 

varying distance between the FN and the end user [221]. In 
contrast to static FNs, the decision about task offloading and 
service placement is not straightforward in the case of mobile 
FNs. It occurs due to the short and intermittent connection 
between service provider and user, as well as because the 
multi-hop forwarding of tasks amongst vehicles is time-
consuming and susceptible to packet loss [213]. This 
ultimately raises a new challenge for task offloading in VFC. 

F. Programmability of FNs 
The cloud computing paradigm allows users to deploy 

their code with zero or no knowledge of the underlying 
platform where the code is being executed. However, the 
situation is different in Fog/Edge computing, which comprises 
heterogeneous FNs. The programmer faces huge difficulty in 
writing an application to run on the fog platform because of 
the varying runtime environments of FNs. Hence, it has been 
observed that few works have addressed the issue of the 
programmability of edge computing. One of the works by Shi 
et al. [214] proposed the concept of a computing stream: a 
software-defined computing flow of data, where computing 
can occur anywhere along with a propagation path in a 
distributed manner. It ensures data computation in closest 
proximity to the data source, which optimizes the energy, cost, 
Total Cost of Ownership (TCO), and latency parameters of 
applications [214]. All of these challenges have been as 
depicted in Figure 20. 

 
Proposed Solutions  

The implementation and management of smart 
applications thrive on real-time-based solutions, which can be 
accomplished by exploiting cutting-edge technologies, 
including the prediction and decision-making capabilities of 
AI. The fast-networking capabilities of 5G, the enhanced the 
security of blockchain etc. The emergence of 5G boosted a 
broad spectrum of unprecedented applications, along with 
enhanced mobile broadband with ultra-reliability, improved 
data rates, low latency, massive device connectivity, and 
support for a diverse range of IoT and mobile applications. 
The approaching era of hyper-connectivity with 5G as the 
fundamental pillar enabling the new AIoT economy, that will 
eventually bring more intelligence into operational work. 
Hence, catering to smart manufacturing, e-healthcare, smart 
campuses, smart stadiums, and smart businesses. 5G supports 
various types of communications services; ranging from high- 
speed LAN, WAN guarantee data security, real-time 
operations, and wide devices, connectivity, thereby enabling 
effective communication amongst geographically distributed 
resources in a collaborative environment [215]. 
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Fig. 21. A Taxonomy of Proposed Solutions for Challenges in a Collaborative Cloud-Fog-IoT Environment  

In addition, the computational distribution of the incoming IoT 
workload by MEC can be boosted by utilizing beyond 5G 
networks [216]. Figure 21 illustrates the taxonomical 
representation of proposed solutions corresponding to 
challenges in a collaborative cloud-fog-IoT environment. 

Apart from this, a wide spectrum of critical applications, 
such as Autonomous vehicles, video surveillance, and AR/VR 
gaming possess challenges such as mobility amongst vehicles, 
UAVs, which cannot be handled by a single technique. Hence, 
hybrid approaches are needed to address these issues. For 
instance, the drawbacks of existing deep learning techniques, 
such as slow learning rates, large training data requirements 
and slow adaptability to dynamic IoT environments have been 
addressed by proposing a hybridized approach incorporating 
meta-learning capabilities into existing DRL solutions [217]. 
This approach improvises the resource management model to 
learn faster and quickly adapt to rapidly changing 
environments. Meta learning is characterized by “learning to 
learn” and possessing the capability to adapt quickly, 
requiring only a few training examples [218].  

Despite the significant benefits of collaborative cloud-
fog computing frameworks, the data produced by IoT-enabled 
applications remains a prime target for attackers, presenting 
potential privacy and security risks. Therefore, safeguarding 
the security of the extensive data generated at the IoT layer is 
of utmost importance, necessitating the integration of suitable 
security measures. Hence, the latest work proposes 
incorporating blockchain technology as a potential solution. 
For illustration, consider the healthcare domain, which 
contains patients’ data being streamed from various sensors, 
smart watches etc. Such sensitive information cannot be sent 
to the cloud [219]. Consider a heart patient who needs 
continuous monitoring of their heart rate for the potential risk 

of a heart attack. In such a situation, the patients and medical 
staff are registered, followed by the blockchain monitoring 
agent granting access to registered devices. Then, smart 
contracts validated by protocols are responsible for proofing a 
transaction, which, if authenticated, is added as a block to a 
blockchain-enabled fog server [162]. Nevertheless, the authors 
envisions addressing the issue of workload prediction, which 
can facilitate better management of resources by providing a 
better knowledge of fluctuating incoming workloads [145].  

VII. CONCLUSION 
The last decade has witnessed a massive drift in the form 

of emerging computing paradigms with the widespread 
prominence of IoT devices. A collaborative cloud-fog/edge 
paradigm is becoming immensely popular because of its 
capacity to facilitate real-time IoT applications, ensuring low 
latency and instant responsiveness. But management of 
underlying resources becomes more complex and demanding 
because of its large-scale geographical distribution, 
heterogeneous and resource-constrained nature, and, above all, 
the workload is too divergent in fog/edge computational 
nodes. Hence, our work efficiently presents a comprehensive 
literature review covering last the 6 year (2018-2023) which 
includes all aspects of resource management covering existing 
work to date on AI, non-AI based solutions and hybrid 
approaches to effectively manage resources in collaborative 
cloud-fog/edge-IoT environment. Throughout, 490+ articles 
were collected, out of which 223 have been shortlisted after 
extensive selection. The articles highlight the existing state-of-
the-art work carried out in the resource management domain. 
Our study outlines various AI-based techniques under a wide 
umbrella of resource management which covers the provision 
of computing resources, offloading IoT-based tasks to the 
cloud, resource scheduling, placement of incoming IoT 
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services, allocating resources and load balancing. Lots of 
significant efforts have been made to utilize advanced AI-
empowered techniques such as metaheuristics, ANNs, 
Cognitive learning and DRL-based algorithms for optimizing 
QoS parameters. Moreover, the authors have formulated the 
mathematical model for each aspect of resource management 
with the mentioned objective functions like latency, service 
costs and energy consumption. We have efficiently recognized 
different challenges which arise at each and every phase of 
resource management. Our paper highlights the social and 
ethical impacts of the implications of AI in IoT-driven 
application areas. We also observed that the future research 
perspective resides in integrating thrust technology such as 
Serverless computing, 5G, IIoT, SDN and Federated Learning 
with edge/fog computing. This comprehensive review will be 
useful for practitioners, researchers, and academicians in 
digging into thrust technologies  and how its potential key 
features can be exploited by integrating it with fog/edge. The 
work endows different proposed solutions in taxonomical 
form by illustrating IoT-based applications and 
correspondingly incorporating AI/thrust technology to 
overcome various challenges. The efforts expended on 
categorization within the field of resource management will 
assist researchers in recognizing and choosing the most 
suitable AI-based techniques for effective resource 
management in dynamic settings. The future perspective of 
our work aims to explore and analyze the capabilities and 
potential of Explainable-AI (XAI) to address the intricacies of 
existing AI techniques in real-world IoT applications. 

ACKNOWLEDGMENTS 

We would like to thank the Editor-in-Chief, area editor and 
anonymous reviewers for their valuable comments, useful 
suggestions to improve the quality of the paper. 

REFERENCES 

[1] A. Al-Shafei, H. Zareipour, and Y. Cao, “A Review of High-
Performance Computing and Parallel Techniques Applied to Power 
Systems Optimization,” Jul. 2022, Accessed: Oct. 23, 2023. [Online]. 
Available: https://arxiv.org/abs/2207.02388v1 

[2] S. Zhang et al., “State of the Art: High-Performance and High-
Throughput Computing for Remote Sensing Big Data,” IEEE Geosci 
Remote Sens Mag, vol. 10, no. 4, pp. 125–149, Dec. 2022, doi: 
10.1109/MGRS.2022.3204590. 

[3] K. Fizza et al., “A Survey on Evaluating the Quality of Autonomic 
Internet of Things Applications,” IEEE Communications Surveys and 
Tutorials, 2022, doi: 10.1109/COMST.2022.3205377. 

[4] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of things 
(IoT): Research, simulators, and testbeds,” IEEE Internet Things J, vol. 
5, no. 3, pp. 1637–1647, Jun. 2018, doi: 10.1109/JIOT.2017.2786639. 

[5] Y. K. Teoh, S. S. Gill, and A. K. Parlikad, “IoT and Fog-Computing-
Based Predictive Maintenance Model for Effective Asset Management 
in Industry 4.0 Using Machine Learning,” IEEE Internet Things J, vol. 
10, no. 3, pp. 2087–2094, Feb. 2023, doi: 10.1109/JIOT.2021.3050441. 

[6] W. M. Kang, S. Y. Moon, and J. H. Park, “An enhanced security 
framework for home appliances in smart home,” Human-centric 
Computing and Information Sciences, vol. 7, no. 1, pp. 1–12, Dec. 
2017, doi: 10.1186/S13673-017-0087-4/TABLES/5. 

[7] M. Pham and K. Xiong, “A survey on security attacks and defense 
techniques for connected and autonomous vehicles,” Comput Secur, 
vol. 109, p. 102269, Oct. 2021, doi: 10.1016/J.COSE.2021.102269. 

[8] W. Mao, Z. Zhao, Z. Chang, G. Min, and W. Gao, “Energy-Efficient 
Industrial Internet of Things: Overview and Open Issues,” IEEE Trans 
Industr Inform, vol. 17, no. 11, pp. 7225–7237, Nov. 2021, doi: 
10.1109/TII.2021.3067026. 

[9] Y. Li, X. Cheng, Y. Cao, D. Wang, and L. Yang, “Smart choice for the 
smart grid: Narrowband internet of things (NB-IoT),” IEEE Internet 
Things J, vol. 5, no. 3, pp. 1505–1515, Jun. 2018, doi: 
10.1109/JIOT.2017.2781251. 

[10] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu, “EEDTO: An 
Energy-Efficient Dynamic Task Offloading Algorithm for Blockchain-
Enabled IoT-Edge-Cloud Orchestrated Computing,” IEEE Internet 
Things J, vol. 8, no. 4, pp. 2163–2176, Feb. 2021, doi: 
10.1109/JIOT.2020.3033521. 

[11] C. Jeong and H. Son, “Cooperative Transmission of Energy-
Constrained IoT Devices in Wireless-Powered Communication 
Networks,” IEEE Internet Things J, vol. 8, no. 5, pp. 3972–3982, Mar. 
2021, doi: 10.1109/JIOT.2020.3027101. 

[12] A. H. Sodhro et al., “Quality of Service Optimization in an IoT-Driven 
Intelligent Transportation System,” IEEE Wirel Commun, vol. 26, no. 
6, pp. 10–17, Dec. 2019, doi: 10.1109/MWC.001.1900085. 

[13] A. Yousefpour et al., “All one needs to know about fog computing and 
related edge computing paradigms: A complete survey,” Journal of 
Systems Architecture, vol. 98, pp. 289–330, Sep. 2019, doi: 
10.1016/J.SYSARC.2019.02.009. 

[14] F. Javed, M. K. Afzal, M. Sharif, and B. S. Kim, “Internet of Things 
(IoT) operating systems support, networking technologies, applications, 
and challenges: A comparative review,” IEEE Communications Surveys 
and Tutorials, vol. 20, no. 3, pp. 2062–2100, Jul. 2018, doi: 
10.1109/COMST.2018.2817685. 

[15] M. D. Assunção, R. N. Calheiros, S. Bianchi, M. A. S. Netto, and R. 
Buyya, “Big Data computing and clouds: Trends and future directions,” 
J Parallel Distrib Comput, vol. 79–80, pp. 3–15, May 2015, doi: 
10.1016/J.JPDC.2014.08.003. 

[16] M. Armbrust et al., “A view of cloud computing,” Commun ACM, vol. 
53, no. 4, pp. 50–58, Apr. 2010, doi: 10.1145/1721654.1721672. 

[17] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud 
Computing: Vision, Hype, and Reality for Delivering IT Services as 
Computing Utilities,” in 2008 10th IEEE International Conference on 
High Performance Computing and Communications, IEEE, Sep. 2008, 
pp. 5–13. doi: 10.1109/HPCC.2008.172. 

[18] F. Alhaddadin, W. Liu, and J. A. Gutierrez, “A User Profile-Aware 
Policy-Based Management Framework for Greening the Cloud,” in 
2014 IEEE Fourth International Conference on Big Data and Cloud 
Computing, IEEE, Dec. 2014, pp. 682–687. doi: 
10.1109/BDCloud.2014.116. 

[19] M. Aazam, I. Khan, A. A. Alsaffar, and E. N. Huh, “Cloud of Things: 
Integrating Internet of Things and cloud computing and the issues 
involved,” Proceedings of 2014 11th International Bhurban 
Conference on Applied Sciences and Technology, IBCAST 2014, pp. 
414–419, 2014, doi: 10.1109/IBCAST.2014.6778179. 

[20] M. Aazam, P. P. Hung, and E. N. Huh, “Smart gateway based 
communication for cloud of things,” IEEE ISSNIP 2014 - 2014 IEEE 
9th International Conference on Intelligent Sensors, Sensor Networks 
and Information Processing, Conference Proceedings, 2014, doi: 
10.1109/ISSNIP.2014.6827673. 

[21] Lu. Yan, “The Internet of things : from RFID to the next-generation 
pervasive networked systems,” p. 318, 2008, Accessed: Oct. 20, 2022. 
[Online]. Available: 
https://books.google.com/books/about/The_Internet_of_Things.html?id
=_ZS_g_IHhD0C 

[22] C. H. Hsu, K. D. Slagter, S. C. Chen, and Y. C. Chung, “Optimizing 
Energy Consumption with Task Consolidation in Clouds,” Inf Sci (N 
Y), vol. 258, pp. 452–462, Feb. 2014, doi: 10.1016/J.INS.2012.10.041. 

[23] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. 
Ayyash, “Internet of Things: A Survey on Enabling Technologies, 
Protocols, and Applications,” IEEE Communications Surveys and 
Tutorials, vol. 17, no. 4, pp. 2347–2376, Oct. 2015, doi: 
10.1109/COMST.2015.2444095. 

[24] C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud 
Computing, vol. 2, no. 3, pp. 24–31, May 2015, doi: 
10.1109/MCC.2015.51. 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



51 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
[25] S. Kadri, A. Sboner, A. Sigaras, and S. Roy, “Containers in 

Bioinformatics: Applications, Practical Considerations, and Best 
Practices in Molecular Pathology,” The Journal of Molecular 
Diagnostics, vol. 24, no. 5, pp. 442–454, May 2022, doi: 
10.1016/J.JMOLDX.2022.01.006. 

[26] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A Comparative 
Study of Containers and Virtual Machines in Big Data Environment,” 
IEEE International Conference on Cloud Computing, CLOUD, vol. 
2018-July, pp. 178–185, Sep. 2018, doi: 10.1109/CLOUD.2018.00030. 

[27] Nisha Angeline C. V. and R. Lavanya, “Fog Computing and Its Role in 
the Internet of Things,” in https://services.igi-
global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7149-
0.ch003, IGI Global, 2019, pp. 63–71. doi: 10.4018/978-1-5225-7149-
0.ch003. 

[28] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, and A. V. 
Vasilakos, “Fog Computing for Sustainable Smart Cities,” ACM 
Computing Surveys (CSUR), vol. 50, no. 3, Jun. 2017, doi: 
10.1145/3057266. 

[29] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey 
and Research Challenges,” Journal of Network and Systems 
Management 2014 23:3, vol. 23, no. 3, pp. 567–619, Mar. 2014, doi: 
10.1007/S10922-014-9307-7. 

[30] K. Chakrabarti, “Deep learning based offloading for mobile augmented 
reality application in 6G,” Computers and Electrical Engineering, vol. 
95, p. 107381, Oct. 2021, doi: 
10.1016/J.COMPELECENG.2021.107381. 

[31] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, 
“Quality of Experience (QoE)-aware placement of applications in Fog 
computing environments,” J Parallel Distrib Comput, vol. 132, pp. 
190–203, Oct. 2019, doi: 10.1016/J.JPDC.2018.03.004. 

[32] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision 
and Challenges,” IEEE Internet Things J, vol. 3, no. 5, pp. 637–646, 
Oct. 2016, doi: 10.1109/JIOT.2016.2579198. 

[33] “(1) (PDF) Above the Clouds: A Berkeley View of Cloud Computing.” 
Accessed: Oct. 20, 2022. [Online]. Available: 
https://www.researchgate.net/publication/200045935_Above_the_Clou
ds_A_Berkeley_View_of_Cloud_Computing 

[34] D. Grewe, M. Wagner, M. Arumaithurai, D. Kutscher, and I. Psaras, 
“Information-Centric Mobile Edge Computing for Connected Vehicle 
Environments: Challenges and Research Directions,” Proceedings of 
the Workshop on Mobile Edge Communications, vol. 6, 2017, doi: 
10.1145/3098208. 

[35] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. Eric Tilton, J. Flinn, 
and K. R. Walker, “Agile Application-Aware Adaptation for Mobility,” 
Proceedings of the sixteenth ACM symposium on Operating systems 
principles  - SOSP ’97, doi: 10.1145/268998. 

[36] P. Patil, A. Hakiri, and A. Gokhale, “Cyber Foraging and Offloading 
Framework for Internet of Things,” Proceedings - International 
Computer Software and Applications Conference, vol. 1, pp. 359–368, 
Aug. 2016, doi: 10.1109/COMPSAC.2016.88. 

[37] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its 
role in the internet of things,” MCC’12 - Proceedings of the 1st ACM 
Mobile Cloud Computing Workshop, pp. 13–15, 2012, doi: 
10.1145/2342509.2342513. 

[38] X. Zhao and C. Huang, “Microservice Based Computational Offloading 
Framework and Cost Efficient Task Scheduling Algorithm in 
Heterogeneous Fog Cloud Network,” IEEE Access, vol. 8, pp. 56680–
56694, 2020, doi: 10.1109/ACCESS.2020.2981860. 

[39] M. Mukherjee, V. Kumar, Q. Zhang, C. X. Mavromoustakis, and R. 
Matam, “Optimal Pricing for Offloaded Hard- and Soft-Deadline Tasks 
in Edge Computing,” IEEE Transactions on Intelligent Transportation 
Systems, vol. 23, no. 7, pp. 9829–9839, Jul. 2022, doi: 
10.1109/TITS.2021.3117973. 

[40] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-
Garcia, “Fog Computing: A Comprehensive Architectural Survey,” 
IEEE Access, vol. 8, pp. 69105–69133, 2020, doi: 
10.1109/ACCESS.2020.2983253. 

[41] M. S. Aslanpour et al., “Serverless Edge Computing: Vision and 
Challenges,” ACM International Conference Proceeding Series, 2021, 
doi: 10.1145/3437378.3444367. 

[42] S. S. Gill et al., “AI for next generation computing: Emerging trends 
and future directions,” Internet of Things, vol. 19, p. 100514, Aug. 
2022, doi: 10.1016/J.IOT.2022.100514. 

[43] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, “Resource 
Management Approaches in Fog Computing: a Comprehensive 
Review,” Journal of Grid Computing 2019 18:1, vol. 18, no. 1, pp. 1–
42, Sep. 2019, doi: 10.1007/S10723-019-09491-1. 

[44] K. H. Abdulkareem et al., “A Review of Fog Computing and Machine 
Learning: Concepts, Applications, Challenges, and Open Issues,” IEEE 
Access, vol. 7, pp. 153123–153140, 2019, doi: 
10.1109/ACCESS.2019.2947542. 

[45] C. H. Hong and B. Varghese, “Resource Management in Fog/Edge 
Computing,” ACM Computing Surveys (CSUR), vol. 52, no. 5, Sep. 
2019, doi: 10.1145/3326066. 

[46] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, 
“Edge Intelligence: The Confluence of Edge Computing and Artificial 
Intelligence,” IEEE Internet Things J, vol. 7, no. 8, pp. 7457–7469, 
Aug. 2020, doi: 10.1109/JIOT.2020.2984887. 

[47] I. Martinez, A. S. Hafid, and A. Jarray, “Design, Resource 
Management, and Evaluation of Fog Computing Systems: A Survey,” 
IEEE Internet Things J, vol. 8, no. 4, pp. 2494–2516, Feb. 2021, doi: 
10.1109/JIOT.2020.3022699. 

[48] Z. M. Nayeri, T. Ghafarian, and B. Javadi, “Application placement in 
Fog computing with AI approach: Taxonomy and a state of the art 
survey,” Journal of Network and Computer Applications, vol. 185, p. 
103078, Jul. 2021, doi: 10.1016/J.JNCA.2021.103078. 

[49] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, and 
M. Faraji-Mehmandar, “Resource provisioning in edge/fog computing: 
A Comprehensive and Systematic Review,” Journal of Systems 
Architecture, vol. 122, p. 102362, Jan. 2022, doi: 
10.1016/J.SYSARC.2021.102362. 

[50] JamilBushra, IjazHumaira, ShojafarMohammad, MunirKashif, and 
BuyyaRajkumar, “Resource Allocation and Task Scheduling in Fog 
Computing and Internet of Everything Environments: A Taxonomy, 
Review, and Future Directions,” ACM Computing Surveys (CSUR), vol. 
54, no. 11s, pp. 1–38, Sep. 2022, doi: 10.1145/3513002. 

[51] J. Zhang and D. Tao, “Empowering Things with Intelligence: A Survey 
of the Progress, Challenges, and Opportunities in Artificial Intelligence 
of Things,” IEEE Internet Things J, vol. 8, no. 10, pp. 7789–7817, Nov. 
2020, doi: 10.1109/JIOT.2020.3039359. 

[52] M. Lin and Y. Zhao, “Artificial intelligence-empowered resource 
management for future wireless communications: A survey,” China 
Communications, vol. 17, no. 3, pp. 58–77, Mar. 2020, doi: 
10.23919/JCC.2020.03.006. 

[53] S. Tuli et al., “AI Augmented Edge and Fog Computing: Trends and 
Challenges,” Aug. 2022, doi: 10.1016/j.jnca.2023.103648. 

[54] W. Su, L. Li, F. Liu, M. He, and X. Liang, “AI on the edge: a 
comprehensive review,” Artif Intell Rev, vol. 55, no. 8, pp. 6125–6183, 
Dec. 2022, doi: 10.1007/S10462-022-10141-4. 

[55] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A Survey of Recent 
Advances in Edge-Computing-Powered Artificial Intelligence of 
Things,” IEEE Internet Things J, vol. 8, no. 18, pp. 13849–13875, Sep. 
2021, doi: 10.1109/JIOT.2021.3088875. 

[56] Z. Chang, S. Liu, X. Xiong, Z. Cai, and G. Tu, “A Survey of Recent 
Advances in Edge-Computing-Powered Artificial Intelligence of 
Things,” IEEE Internet Things J, vol. 8, no. 18, pp. 13849–13875, Sep. 
2021, doi: 10.1109/JIOT.2021.3088875. 

[57] S. Iftikhar et al., “AI-based fog and edge computing: A systematic 
review, taxonomy and future directions,” Internet of Things, vol. 21, p. 
100674, Apr. 2023, doi: 10.1016/J.IOT.2022.100674. 

[58] E. Manavalan and K. Jayakrishna, “A review of Internet of Things 
(IoT) embedded sustainable supply chain for industry 4.0 
requirements,” Comput Ind Eng, vol. 127, pp. 925–953, Jan. 2019, doi: 
10.1016/J.CIE.2018.11.030. 

[59] F. Allhoff and A. Henschke, “The Internet of Things: Foundational 
ethical issues,” Internet of Things, vol. 1–2, pp. 55–66, Sep. 2018, doi: 
10.1016/J.IOT.2018.08.005. 

[60] Y. Agarwal and A. K. Dey, “Toward Building a Safe, Secure, and 
Easy-to-Use Internet of Things Infrastructure,” Computer (Long Beach 
Calif), vol. 49, no. 4, pp. 88–91, Apr. 2016, doi: 10.1109/MC.2016.111. 

[61] A. George, C. Allen, and W. Wallach, “Permalink Téléchargé de 
Scholars Portal Books sur 2020-02-11,” Robot Ethics: The ethical and 
social implications of robotics, pp. 2–8, 2012. 

[62] S. U. Amin, M. S. Hossain, G. Muhammad, M. Alhussein, and M. A. 
Rahman, “Cognitive Smart Healthcare for Pathology Detection and 
Monitoring,” IEEE Access, vol. 7, pp. 10745–10753, 2019, doi: 
10.1109/ACCESS.2019.2891390. 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



52 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
[63] Q. Wang, Y. Guo, L. Yu, and P. Li, “Earthquake Prediction Based on 

Spatio-Temporal Data Mining: An LSTM Network Approach,” IEEE 
Trans Emerg Top Comput, vol. 8, no. 1, pp. 148–158, Jan. 2020, doi: 
10.1109/TETC.2017.2699169. 

[64] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward Edge-
Based Deep Learning in Industrial Internet of Things,” IEEE Internet 
Things J, vol. 7, no. 5, pp. 4329–4341, May 2020, doi: 
10.1109/JIOT.2019.2963635. 

[65] R. M. Singh, L. K. Awasthi, and G. Sikka, “Towards Metaheuristic 
Scheduling Techniques in Cloud and Fog: An Extensive Taxonomic 
Review,” ACM Computing Surveys (CSUR), vol. 55, no. 3, pp. 1–43, 
Feb. 2022, doi: 10.1145/3494520. 

[66] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey 
and Research Challenges,” Journal of Network and Systems 
Management 2014 23:3, vol. 23, no. 3, pp. 567–619, 2014, doi: 
10.1007/S10922-014-9307-7. 

[67] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey 
and Research Challenges,” Journal of Network and Systems 
Management 2014 23:3, vol. 23, no. 3, pp. 567–619, Mar. 2014, doi: 
10.1007/S10922-014-9307-7. 

[68] R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, and I. 
Foster, “Cost-Aware Elastic Cloud Provisioning for Scientific 
Workloads,” Proceedings - 2015 IEEE 8th International Conference on 
Cloud Computing, CLOUD 2015, pp. 971–974, 2015, doi: 
10.1109/CLOUD.2015.130. 

[69] R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri, and I. 
Foster, “Cost-Aware Elastic Cloud Provisioning for Scientific 
Workloads,” Proceedings - 2015 IEEE 8th International Conference on 
Cloud Computing, CLOUD 2015, pp. 971–974, Aug. 2015, doi: 
10.1109/CLOUD.2015.130. 

[70] D. Roca, J. V Quiroga, M. Valero, and M. Nemirovsky, “Fog Function 
Virtualization: A flexible solution for IoT applications,” 2017 2nd 
International Conference on Fog and Mobile Edge Computing, FMEC 
2017, pp. 74–80, 2017, doi: 10.1109/FMEC.2017.7946411. 

[71] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog 
computing for IoT: Review, enabling technologies, and research 
opportunities,” Future Generation Computer Systems, vol. 87, pp. 278–
289, Oct. 2018, doi: 10.1016/J.FUTURE.2018.04.057. 

[72] M. Taneja and A. Davy, “Resource Aware Placement of Data Analytics 
Platform in Fog Computing,” Procedia Comput Sci, vol. 97, pp. 153–
156, Jan. 2016, doi: 10.1016/J.PROCS.2016.08.295. 

[73] L. Pioli, C. F. Dorneles, D. D. J. de Macedo, and M. A. R. Dantas, “An 
overview of data reduction solutions at the edge of IoT systems: a 
systematic mapping of the literature,” Computing, vol. 104, no. 8, pp. 
1867–1889, Aug. 2022, doi: 10.1007/S00607-022-01073-
6/FIGURES/10. 

[74] M. Saqlain, M. Piao, Y. Shim, and J. Y. Lee, “Framework of an IoT-
based Industrial Data Management for Smart Manufacturing,” Journal 
of Sensor and Actuator Networks 2019, Vol. 8, Page 25, vol. 8, no. 2, p. 
25, Apr. 2019, doi: 10.3390/JSAN8020025. 

[75] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, “A survey on cyber security 
for smart grid communications,” IEEE Communications Surveys and 
Tutorials, vol. 14, no. 4, pp. 998–1010, 2012, doi: 
10.1109/SURV.2012.010912.00035. 

[76] K. Tange, M. De Donno, X. Fafoutis, and N. Dragoni, “A Systematic 
Survey of Industrial Internet of Things Security: Requirements and Fog 
Computing Opportunities,” IEEE Communications Surveys and 
Tutorials, vol. 22, no. 4, pp. 2489–2520, Oct. 2020, doi: 
10.1109/COMST.2020.3011208. 

[77] N. Moustafa, N. Koroniotis, M. Keshk, A. Y. Zomaya, and Z. Tari, 
“Explainable Intrusion Detection for Cyber Defences in the Internet of 
Things: Opportunities and Solutions,” IEEE Communications Surveys 
and Tutorials, vol. 25, no. 3, pp. 1775–1807, 2023, doi: 
10.1109/COMST.2023.3280465. 

[78] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine 
Learning in IoT Security: Current Solutions and Future Challenges,” 
IEEE Communications Surveys and Tutorials, vol. 22, no. 3, pp. 1686–
1721, Jul. 2020, doi: 10.1109/COMST.2020.2986444. 

[79] A. Shakarami, H. Shakarami, M. Ghobaei-Arani, E. Nikougoftar, and 
M. Faraji-Mehmandar, “Resource provisioning in edge/fog computing: 
A Comprehensive and Systematic Review,” Journal of Systems 
Architecture, vol. 122, p. 102362, Jan. 2022, doi: 
10.1016/J.SYSARC.2021.102362. 

[80] M. Fahimullah, S. Ahvar, and M. Trocan, “A Review of Resource 
Management in Fog Computing: Machine Learning Perspective,” Sep. 
2022, Accessed: Jul. 03, 2023. [Online]. Available: 
https://arxiv.org/abs/2209.03066v1 

[81] R. O. Aburukba, T. Landolsi, and D. Omer, “A heuristic scheduling 
approach for fog-cloud computing environment with stationary IoT 
devices,” Journal of Network and Computer Applications, vol. 180, p. 
102994, Apr. 2021, doi: 10.1016/J.JNCA.2021.102994. 

[82] M. Ghobaei-Arani, “A workload clustering based resource provisioning 
mechanism using Biogeography based optimization technique in the 
cloud based systems,” Soft comput, vol. 25, no. 5, pp. 3813–3830, Mar. 
2021, doi: 10.1007/S00500-020-05409-2/FIGURES/11. 

[83] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi, 
“Predictive Autoscaling of Microservices Hosted in Fog Microdata 
Center,” IEEE Syst J, vol. 15, no. 1, pp. 1275–1286, 2021, doi: 
10.1109/JSYST.2020.2997518. 

[84] R. Naha, S. Garg, S. K. Battula, M. B. Amin, and D. Georgakopoulos, 
“Multiple linear regression-based energy-aware resource allocation in 
the Fog computing environment,” Computer Networks, vol. 216, p. 
109240, 2022, doi: 10.1016/J.COMNET.2022.109240. 

[85] G. Li, Y. Yao, J. Wu, X. Liu, X. Sheng, and Q. Lin, “A new load 
balancing strategy by task allocation in edge computing based on 
intermediary nodes,” EURASIP J Wirel Commun Netw, vol. 2020, no. 
1, pp. 1–10, 2020, doi: 10.1186/S13638-019-1624-9/FIGURES/5. 

[86] S. Dehnavi, H. R. Faragardi, M. Kargahi, and T. Fahringer, “A 
reliability-aware resource provisioning scheme for real-time industrial 
applications in a Fog-integrated smart factory,” Microprocess 
Microsyst, vol. 70, pp. 1–14, Oct. 2019, doi: 
10.1016/J.MICPRO.2019.05.011. 

[87] V. Jain and B. Kumar, “QoS-Aware Task Offloading in Fog 
Environment Using Multi-agent Deep Reinforcement Learning,” 
Journal of Network and Systems Management, vol. 31, no. 1, pp. 1–32, 
Mar. 2023, doi: 10.1007/S10922-022-09696-Y/FIGURES/13. 

[88] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive 
survey for scheduling techniques in cloud computing,” Journal of 
Network and Computer Applications, vol. 143, pp. 1–33, Oct. 2019, 
doi: 10.1016/J.JNCA.2019.06.006. 

[89] Q. T. Nguyen, N. Quang-Hung, N. H. Tuong, V. H. Tran, and N. Thoai, 
“Virtual machine allocation in cloud computing for minimizing total 
execution time on each machine,” 2013 International Conference on 
Computing, Management and Telecommunications, ComManTel 2013, 
pp. 241–245, 2013, doi: 10.1109/COMMANTEL.2013.6482398. 

[90] J. Yao and N. Ansari, “Fog Resource Provisioning in Reliability-Aware 
IoT Networks,” IEEE Internet Things J, vol. 6, no. 5, pp. 8262–8269, 
Oct. 2019, doi: 10.1109/JIOT.2019.2922585. 

[91] M. Salem, A. Adinoyi, M. Rahman, H. Yanikomeroglu, D. Falconer, 
and Y. D. Kim, “Fairness-aware radio resource management in 
downlink OFDMA cellular relay networks,” IEEE Trans Wirel 
Commun, vol. 9, no. 5, pp. 1628–1639, May 2010, doi: 
10.1109/TWC.2010.05.081548. 

[92] H. J. Hong, J. C. Chuang, and C. H. Hsu, “Animation rendering on 
multimedia fog computing platforms,” Proceedings of the International 
Conference on Cloud Computing Technology and Science, CloudCom, 
vol. 0, pp. 336–343, 2016, doi: 10.1109/CLOUDCOM.2016.0060. 

[93] S. Dehnavi, H. R. Faragardi, M. Kargahi, and T. Fahringer, “A 
reliability-aware resource provisioning scheme for real-time industrial 
applications in a Fog-integrated smart factory,” Microprocess 
Microsyst, vol. 70, pp. 1–14, 2019, doi: 
10.1016/J.MICPRO.2019.05.011. 

[94] R. Balakrishnan, M. Akdeniz, S. Dhakal, and N. Himayat, “Resource 
Management and Fairness for Federated Learning over Wireless Edge 
Networks,” IEEE Workshop on Signal Processing Advances in 
Wireless Communications, SPAWC, vol. 2020-May, May 2020, doi: 
10.1109/SPAWC48557.2020.9154285. 

[95] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad, “Resource 
provisioning for IoT services in the fog computing environment: An 
autonomic approach,” Comput Commun, vol. 161, pp. 109–131, Sep. 
2020, doi: 10.1016/J.COMCOM.2020.07.028. 

[96] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad, “A learning-
based resource provisioning approach in the fog computing 
environment,” https://doi.org/10.1080/0952813X.2020.1818294, vol. 
33, no. 6, pp. 1033–1056, 2020, doi: 10.1080/0952813X.2020.1818294. 

[97] M. Ghobaei-Arani, “A workload clustering based resource provisioning 
mechanism using Biogeography based optimization technique in the 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



53 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

cloud based systems,” Soft comput, vol. 25, no. 5, pp. 3813–3830, Nov. 
2020, doi: 10.1007/S00500-020-05409-2. 

[98] C. Li, J. Bai, Y. Ge, and Y. Luo, “Heterogeneity-aware elastic 
provisioning in cloud-assisted edge computing systems,” Future 
Generation Computer Systems, vol. 112, pp. 1106–1121, Nov. 2020, 
doi: 10.1016/J.FUTURE.2020.06.022. 

[99] N. Madan, A. W. Malik, A. U. Rahman, and S. D. Ravana, “On-
demand resource provisioning for vehicular networks using flying fog,” 
Vehicular Communications, vol. 25, p. 100252, Oct. 2020, doi: 
10.1016/J.VEHCOM.2020.100252. 

[100] H. Sami, H. Otrok, J. Bentahar, and A. Mourad, “AI-Based Resource 
Provisioning of IoE Services in 6G: A Deep Reinforcement Learning 
Approach,” IEEE Transactions on Network and Service Management, 
vol. 18, no. 3, pp. 3527–3540, Sep. 2021, doi: 
10.1109/TNSM.2021.3066625. 

[101] D. I. Hatti and A. V. Sutagundar, “Swarm intelligence based 
MSMOPSO for optimization of resource provisioning in Internet of 
Things,” Recent Trends in Computational Intelligence Enabled 
Research: Theoretical Foundations and Applications, pp. 61–82, Jan. 
2021, doi: 10.1016/B978-0-12-822844-9.00028-1. 

[102] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi, 
“Predictive Autoscaling of Microservices Hosted in Fog Microdata 
Center,” IEEE Syst J, vol. 15, no. 1, pp. 1275–1286, Mar. 2021, doi: 
10.1109/JSYST.2020.2997518. 

[103] E. E. Sham and D. P. Vidyarthi, “Admission control and resource 
provisioning in fog-integrated cloud using modified fuzzy inference 
system,” Journal of Supercomputing, vol. 78, no. 13, pp. 15463–15503, 
Sep. 2022, doi: 10.1007/S11227-022-04483-7/FIGURES/21. 

[104] N. Madan, A. W. Malik, A. U. Rahman, and S. D. Ravana, “On-
demand resource provisioning for vehicular networks using flying fog,” 
Vehicular Communications, vol. 25, p. 100252, Oct. 2020, doi: 
10.1016/J.VEHCOM.2020.100252. 

[105] S. Shen, V. Van Beek, and A. Iosup, “Statistical characterization of 
business-critical workloads hosted in cloud datacenters,” Proceedings - 
2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and 
Grid Computing, CCGrid 2015, pp. 465–474, Jul. 2015, doi: 
10.1109/CCGRID.2015.60. 

[106] M. Adhikari and S. N. Srirama, “Multi-objective accelerated particle 
swarm optimization with a container-based scheduling for Internet-of-
Things in cloud environment,” Journal of Network and Computer 
Applications, vol. 137, pp. 35–61, Jul. 2019, doi: 
10.1016/J.JNCA.2019.04.003. 

[107] S. Vemireddy and R. R. Rout, “Fuzzy Reinforcement Learning for 
energy efficient task offloading in Vehicular Fog Computing,” 
Computer Networks, vol. 199, p. 108463, Nov. 2021, doi: 
10.1016/J.COMNET.2021.108463. 

[108] M. Khabazian and M. K. M. Ali, “A performance modeling of 
connectivity in vehicular Ad Hoc networks,” IEEE Trans Veh Technol, 
vol. 57, no. 4, pp. 2440–2450, Jul. 2008, doi: 
10.1109/TVT.2007.912161. 

[109] K. Fizza, N. Auluck, and A. Azim, “Improving the Schedulability of 
Real-Time Tasks Using Fog Computing,” IEEE Trans Serv Comput, 
vol. 15, no. 1, pp. 372–385, 2022, doi: 10.1109/TSC.2019.2944360. 

[110] G. Vijayasekaran and M. Duraipandian, “An Efficient Clustering and 
Deep Learning Based Resource Scheduling for Edge Computing to 
Integrate Cloud-IoT,” Wirel Pers Commun, vol. 124, no. 3, pp. 2029–
2044, Jun. 2022, doi: 10.1007/S11277-021-09442-8. 

[111] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A Distributed Deep 
Reinforcement Learning Technique for Application Placement in Edge 
and Fog Computing Environments,” IEEE Trans Mob Comput, 2021, 
doi: 10.1109/TMC.2021.3123165. 

[112] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for 
heterogeneous systems by an optimistic cost table,” IEEE Transactions 
on Parallel and Distributed Systems, vol. 25, no. 3, pp. 682–694, Mar. 
2014, doi: 10.1109/TPDS.2013.57. 

[113] M. Ghobaei-Arani and A. Shahidinejad, “A cost-efficient IoT service 
placement approach using whale optimization algorithm in fog 
computing environment,” Expert Syst Appl, vol. 200, p. 117012, Aug. 
2022, doi: 10.1016/J.ESWA.2022.117012. 

[114] S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood, 
“Computational Load Balancing on the Edge in Absence of Cloud and 
Fog,” IEEE Trans Mob Comput, vol. 18, no. 7, pp. 1499–1512, Jul. 
2019, doi: 10.1109/TMC.2018.2863301. 

[115] F. M. Talaat, “Effective prediction and resource allocation method 
(EPRAM) in fog computing environment for smart healthcare system,” 
Multimed Tools Appl, vol. 81, no. 6, pp. 8235–8258, Mar. 2022, doi: 
10.1007/S11042-022-12223-5/FIGURES/13. 

[116] R. Naha, S. Garg, S. K. Battula, M. B. Amin, and D. Georgakopoulos, 
“Multiple linear regression-based energy-aware resource allocation in 
the Fog computing environment,” Computer Networks, vol. 216, p. 
109240, Oct. 2022, doi: 10.1016/J.COMNET.2022.109240. 

[117] A. G. Gad, “Particle Swarm Optimization Algorithm and Its 
Applications: A Systematic Review,” Archives of Computational 
Methods in Engineering 2022 29:5, vol. 29, no. 5, pp. 2531–2561, Apr. 
2022, doi: 10.1007/S11831-021-09694-4. 

[118] Z. Geng et al., “A model-free Bayesian classifier,” Inf Sci (N Y), vol. 
482, pp. 171–188, May 2019, doi: 10.1016/J.INS.2019.01.026. 

[119] H. Sami, H. Otrok, J. Bentahar, and A. Mourad, “AI-Based Resource 
Provisioning of IoE Services in 6G: A Deep Reinforcement Learning 
Approach,” IEEE Transactions on Network and Service Management, 
vol. 18, no. 3, pp. 3527–3540, 2021, doi: 
10.1109/TNSM.2021.3066625. 

[120] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload 
prediction using ARIMA model and its impact on cloud applications’ 
QoS,” IEEE Transactions on Cloud Computing, vol. 3, no. 4, pp. 449–
458, 2015, doi: 10.1109/TCC.2014.2350475. 

[121] H. Ye, L. Yang, and X. Liu, “Optimizing weight and threshold of BP 
neural network using SFLA: Applications to nonlinear function fitting,” 
Proceedings - 4th International Conference on Emerging Intelligent 
Data and Web Technologies, EIDWT 2013, pp. 211–214, 2013, doi: 
10.1109/EIDWT.2013.41. 

[122] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog 
computing may help to save energy in cloud computing,” IEEE Journal 
on Selected Areas in Communications, vol. 34, no. 5, pp. 1728–1739, 
May 2016, doi: 10.1109/JSAC.2016.2545559. 

[123] N. Kumari, A. Yadav, and P. K. Jana, “Task offloading in fog 
computing: A survey of algorithms and optimization techniques,” 
Computer Networks, vol. 214, p. 109137, Sep. 2022, doi: 
10.1016/J.COMNET.2022.109137. 

[124] H. Xiang, M. Zhang, and C. Jian, “Federated deep reinforcement 
learning-based online task offloading and resource allocation in harsh 
mobile edge computing environment,” Cluster Comput, pp. 1–17, Oct. 
2023, doi: 10.1007/S10586-023-04143-2/FIGURES/9. 

[125] M. Kumar, G. K. Walia, H. Shingare, S. Singh, and S. S. Gill, “AI-
Based Sustainable and Intelligent Offloading Framework for IIoT in 
Collaborative Cloud-Fog Environments,” IEEE Transactions on 
Consumer Electronics, 2023, doi: 10.1109/TCE.2023.3320673. 

[126] J. Lin, S. Huang, H. Zhang, X. Yang, and P. Zhao, “A Deep 
Reinforcement Learning based Computation Offloading with Mobile 
Vehicles in Vehicular Edge Computing,” IEEE Internet Things J, 2023, 
doi: 10.1109/JIOT.2023.3264281. 

[127] M. A. Ebrahim, G. A. Ebrahim, H. K. Mohamed, and S. O. Abdellatif, 
“A Deep Learning Approach for Task Offloading in Multi-UAV Aided 
Mobile Edge Computing,” IEEE Access, vol. 10, pp. 101716–101731, 
2022, doi: 10.1109/ACCESS.2022.3208584. 

[128] F. Saeik et al., “Task offloading in Edge and Cloud Computing: A 
survey on mathematical, artificial intelligence and control theory 
solutions,” Computer Networks, vol. 195, p. 108177, Aug. 2021, doi: 
10.1016/J.COMNET.2021.108177. 

[129] M. A. Mirza et al., “DRL-assisted delay optimized task offloading in 
automotive-industry 5.0 based VECNs,” Journal of King Saud 
University - Computer and Information Sciences, vol. 35, no. 6, p. 
101512, Jun. 2023, doi: 10.1016/J.JKSUCI.2023.02.013. 

[130] D. Sha and R. Zhao, “DRL-based task offloading and resource 
allocation in multi-UAV-MEC network with SDN,” 2021 IEEE/CIC 
International Conference on Communications in China, ICCC 2021, 
pp. 595–600, Jul. 2021, doi: 10.1109/ICCC52777.2021.9580253. 

[131] J. Shi, J. Du, J. Wang, and J. Yuan, “Deep reinforcement learning-
based V2V partial computation offloading in vehicular fog computing,” 
IEEE Wireless Communications and Networking Conference, WCNC, 
vol. 2021-March, 2021, doi: 10.1109/WCNC49053.2021.9417450. 

[132] D. Chen, Y. C. Liu, B. G. Kim, J. Xie, C. S. Hong, and Z. Han, “Edge 
Computing Resources Reservation in Vehicular Networks: A Meta-
Learning Approach,” IEEE Trans Veh Technol, vol. 69, no. 5, pp. 
5634–5646, May 2020, doi: 10.1109/TVT.2020.2983445. 

[133] P. Dai, Y. Huang, K. Hu, X. Wu, H. Xing, and Z. Yu, “Meta 
Reinforcement Learning for Multi-task Offloading in Vehicular Edge 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



54 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

Computing,” IEEE Trans Mob Comput, 2023, doi: 
10.1109/TMC.2023.3247579. 

[134] J. Gerup, C. B. Soerensen, and P. Dieckmann, “Augmented reality and 
mixed reality for healthcare education beyond surgery: an integrative 
review,” Int J Med Educ, vol. 11, p. 1, Jan. 2020, doi: 
10.5116/IJME.5E01.EB1A. 

[135] L. Hu, Y. Tian, J. Yang, T. Taleb, L. Xiang, and Y. Hao, “Ready Player 
One: UAV-Clustering-Based Multi-Task Offloading for Vehicular 
VR/AR Gaming,” IEEE Netw, vol. 33, no. 3, pp. 42–48, May 2019, 
doi: 10.1109/MNET.2019.1800357. 

[136] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of Radio and 
Computational Resources for Energy Efficiency in Latency-
Constrained Application Offloading,” IEEE Trans Veh Technol, vol. 
64, no. 10, pp. 4738–4755, Oct. 2015, doi: 
10.1109/TVT.2014.2372852. 

[137] Z. Han, H. Tan, X. Y. Li, S. H. C. Jiang, Y. Li, and F. C. M. Lau, 
“OnDisc: Online Latency-Sensitive Job Dispatching and Scheduling in 
Heterogeneous Edge-Clouds,” IEEE/ACM Transactions on 
Networking, vol. 27, no. 6, pp. 2472–2485, Dec. 2019, doi: 
10.1109/TNET.2019.2953806. 

[138] D. Rahbari and M. Nickray, “Task offloading in mobile fog computing 
by classification and regression tree,” Peer-to-Peer Networking and 
Applications 2019 13:1, vol. 13, no. 1, pp. 104–122, 2019, doi: 
10.1007/S12083-019-00721-7. 

[139] A. A. Alli and M. M. Alam, “SecOFF-FCIoT: Machine learning based 
secure offloading in Fog-Cloud of things for smart city applications,” 
Internet of Things, vol. 7, p. 100070, Sep. 2019, doi: 
10.1016/J.IOT.2019.100070. 

[140] Z. Zhu, T. Liu, Y. Yang, and X. Luo, “BLOT: Bandit Learning-Based 
Offloading of Tasks in Fog-Enabled Networks,” IEEE Transactions on 
Parallel and Distributed Systems, vol. 30, no. 12, pp. 2636–2649, Dec. 
2019, doi: 10.1109/TPDS.2019.2927978. 

[141] M. K. Hussein and M. H. Mousa, “Efficient task offloading for IoT-
Based applications in fog computing using ant colony optimization,” 
IEEE Access, vol. 8, pp. 37191–37201, 2020, doi: 
10.1109/ACCESS.2020.2975741. 

[142] S. Vemireddy and R. R. Rout, “Fuzzy Reinforcement Learning for 
energy efficient task offloading in Vehicular Fog Computing,” 
Computer Networks, vol. 199, p. 108463, Nov. 2021, doi: 
10.1016/J.COMNET.2021.108463. 

[143] Y. Sharma, Z. Das, and S. Moulik, “SPORTS: A Semi-partitioned 
Real-Time Scheduler for Heterogeneous Multicore Platforms,” 
Communications in Computer and Information Science, vol. 1362, pp. 
405–417, 2021, doi: 10.1007/978-981-16-0010-4_35/COVER. 

[144] M. Ghobaei-Arani, R. Khorsand, and M. Ramezanpour, “An 
autonomous resource provisioning framework for massively 
multiplayer online games in cloud environment,” Journal of Network 
and Computer Applications, vol. 142, pp. 76–97, Sep. 2019, doi: 
10.1016/J.JNCA.2019.06.002. 

[145] M. Kumar, A. Kishor, J. K. Samariya, and A. Y. Zomaya, “An 
Autonomic Workload Prediction and Resource Allocation Framework 
for Fog enabled Industrial IoT,” IEEE Internet Things J, pp. 1–1, Jan. 
2023, doi: 10.1109/JIOT.2023.3235107. 

[146] F. Cheng, Y. Huang, B. Tanpure, P. Sawalani, L. Cheng, and C. Liu, 
“Cost-aware job scheduling for cloud instances using deep 
reinforcement learning,” Cluster Comput, vol. 25, no. 1, pp. 619–631, 
Feb. 2022, doi: 10.1007/S10586-021-03436-8/FIGURES/5. 

[147] X. Li, J. Wan, H. N. Dai, M. Imran, M. Xia, and A. Celesti, “A Hybrid 
Computing Solution and Resource Scheduling Strategy for Edge 
Computing in Smart Manufacturing,” IEEE Trans Industr Inform, vol. 
15, no. 7, pp. 4225–4234, Jul. 2019, doi: 10.1109/TII.2019.2899679. 

[148] H. R. Boveiri, R. Khayami, M. Elhoseny, and M. Gunasekaran, “An 
efficient Swarm-Intelligence approach for task scheduling in cloud-
based internet of things applications,” J Ambient Intell Humaniz 
Comput, vol. 10, no. 9, pp. 3469–3479, Sep. 2019, doi: 
10.1007/S12652-018-1071-1/FIGURES/8. 

[149] I. H. Sarker, “Deep Learning: A Comprehensive Overview on 
Techniques, Taxonomy, Applications and Research Directions,” SN 
Comput Sci, vol. 2, no. 6, pp. 1–20, Nov. 2021, doi: 10.1007/S42979-
021-00815-1/FIGURES/6. 

[150] S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, “Impact 
of fully connected layers on performance of convolutional neural 
networks for image classification,” Neurocomputing, vol. 378, pp. 112–
119, Feb. 2020, doi: 10.1016/J.NEUCOM.2019.10.008. 

[151] P. Kuppusamy and V. C. Bharathi, “Human abnormal behavior 
detection using CNNs in crowded and uncrowded surveillance – A 
survey,” Measurement: Sensors, vol. 24, p. 100510, Dec. 2022, doi: 
10.1016/J.MEASEN.2022.100510. 

[152] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic 
Scheduling for Stochastic Edge-Cloud Computing Environments Using 
A3C Learning and Residual Recurrent Neural Networks,” IEEE Trans 
Mob Comput, vol. 21, no. 3, pp. 940–954, Mar. 2022, doi: 
10.1109/TMC.2020.3017079. 

[153] S. Shadroo, A. M. Rahmani, and A. Rezaee, “The two-phase 
scheduling based on deep learning in the Internet of Things,” Computer 
Networks, vol. 185, p. 107684, Feb. 2021, doi: 
10.1016/J.COMNET.2020.107684. 

[154] P. Hosseinioun, M. Kheirabadi, S. R. Kamel Tabbakh, and R. Ghaemi, 
“A new energy-aware tasks scheduling approach in fog computing 
using hybrid meta-heuristic algorithm,” J Parallel Distrib Comput, vol. 
143, pp. 88–96, Sep. 2020, doi: 10.1016/J.JPDC.2020.04.008. 

[155] M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir, A. Jolfaei, 
and N. Kumar, “Energy-Aware Marine Predators Algorithm for Task 
Scheduling in IoT-Based Fog Computing Applications,” IEEE Trans 
Industr Inform, vol. 17, no. 7, pp. 5068–5076, Jul. 2021, doi: 
10.1109/TII.2020.3001067. 

[156] S. Javanmardi, M. Shojafar, V. Persico, and A. Pescapè, “FPFTS: A 
joint fuzzy particle swarm optimization mobility-aware approach to fog 
task scheduling algorithm for Internet of Things devices,” Softw Pract 
Exp, vol. 51, no. 12, pp. 2519–2539, Dec. 2021, doi: 
10.1002/SPE.2867. 

[157] M. Hosseinzadeh et al., “Improved Butterfly Optimization Algorithm 
for Data Placement and Scheduling in Edge Computing Environments,” 
Journal of Grid Computing 2021 19:2, vol. 19, no. 2, pp. 1–27, Mar. 
2021, doi: 10.1007/S10723-021-09556-0. 

[158] E. Badidi, “QoS-Aware Placement of Tasks on a Fog Cluster in an 
Edge Computing Environment,” Journal of Ubiquitous Systems & 
Pervasive Networks, vol. 13, no. 1, pp. 11–19, Oct. 2020, doi: 
10.5383/JUSPN.13.01.002. 

[159] S. Pallewatta, V. Kostakos, and R. Buyya, “QoS-aware placement of 
microservices-based IoT applications in Fog computing environments,” 
Future Generation Computer Systems, vol. 131, pp. 121–136, Jun. 
2022, doi: 10.1016/J.FUTURE.2022.01.012. 

[160] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, 
“Middleware for internet of things: A survey,” IEEE Internet Things J, 
vol. 3, no. 1, pp. 70–95, Feb. 2016, doi: 10.1109/JIOT.2015.2498900. 

[161] R. Yu, G. Xue, and X. Zhang, “Application Provisioning in FOG 
Computing-enabled Internet-of-Things: A Network Perspective,” 
Proceedings - IEEE INFOCOM, vol. 2018-April, pp. 783–791, Oct. 
2018, doi: 10.1109/INFOCOM.2018.8486269. 

[162] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-Driven Deep 
Reinforcement Learning for Scalable Fog and Service Placement,” 
IEEE Trans Serv Comput, vol. 15, no. 5, pp. 2671–2684, 2022, doi: 
10.1109/TSC.2021.3075988. 

[163] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar, “A Dynamic 
Service Migration Mechanism in Edge Cognitive Computing,” ACM 
Transactions on Internet Technology (TOIT), vol. 19, no. 2, Apr. 2019, 
doi: 10.1145/3239565. 

[164] S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, B. Sahoo, and E. 
Dutkiewicz, “Sustainable Service Allocation Using a Metaheuristic 
Technique in a Fog Server for Industrial Applications,” IEEE Trans 
Industr Inform, vol. 14, no. 10, pp. 4497–4506, Oct. 2018, doi: 
10.1109/TII.2018.2791619. 

[165] C. Liu, J. Wang, L. Zhou, and A. Rezaeipanah, “Solving the Multi-
Objective Problem of IoT Service Placement in Fog Computing Using 
Cuckoo Search Algorithm,” Neural Processing Letters 2021 54:3, vol. 
54, no. 3, pp. 1823–1854, Jan. 2022, doi: 10.1007/S11063-021-10708-
2. 

[166] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Profit-
aware application placement for integrated Fog–Cloud computing 
environments,” J Parallel Distrib Comput, vol. 135, pp. 177–190, Jan. 
2020, doi: 10.1016/J.JPDC.2019.10.001. 

[167] B. V. Natesha and R. M. R. Guddeti, “Adopting elitism-based Genetic 
Algorithm for minimizing multi-objective problems of IoT service 
placement in fog computing environment,” Journal of Network and 
Computer Applications, vol. 178, p. 102972, Mar. 2021, doi: 
10.1016/J.JNCA.2020.102972. 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



55 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
[168] K. Dubey, S. C. Sharma, and M. Kumar, “A Secure IoT Applications 

Allocation Framework for Integrated Fog-Cloud Environment,” J Grid 
Comput, vol. 20, no. 1, pp. 1–23, Mar. 2022, doi: 10.1007/S10723-021-
09591-X/METRICS. 

[169] R. Mahmud, F. L. Koch, and R. Buyya, “Cloud-fog interoperability in 
IoT-enabled healthcare solutions,” ACM International Conference 
Proceeding Series, Jan. 2018, doi: 10.1145/3154273.3154347. 

[170] N. Ahmad, N. Javaid, M. Mehmood, M. Hayat, A. Ullah, and H. A. 
Khan, “Fog-Cloud Based Platform for Utilization of Resources Using 
Load Balancing Technique,” Lecture Notes on Data Engineering and 
Communications Technologies, vol. 22, pp. 554–567, 2019, doi: 
10.1007/978-3-319-98530-5_48/COVER. 

[171] Y. Dong, G. Xu, M. Zhang, and X. Meng, “A high-efficient joint 
‘Cloud-Edge’ aware strategy for task deployment and load balancing,” 
IEEE Access, vol. 9, pp. 12791–12802, 2021, doi: 
10.1109/ACCESS.2021.3051672. 

[172] G. Li, Y. Yao, J. Wu, X. Liu, X. Sheng, and Q. Lin, “A new load 
balancing strategy by task allocation in edge computing based on 
intermediary nodes,” EURASIP J Wirel Commun Netw, vol. 2020, no. 
1, pp. 1–10, Dec. 2020, doi: 10.1186/S13638-019-1624-9/FIGURES/5. 

[173] S. P. Singh, A. Sharma, and R. Kumar, “Design and exploration of load 
balancers for fog computing using fuzzy logic,” Simul Model Pract 
Theory, vol. 101, p. 102017, May 2020, doi: 
10.1016/J.SIMPAT.2019.102017. 

[174] D. Baburao, T. Pavankumar, and C. S. R. Prabhu, “Load balancing in 
the fog nodes using particle swarm optimization-based enhanced 
dynamic resource allocation method,” Applied Nanoscience 2021, pp. 
1–10, Jul. 2021, doi: 10.1007/S13204-021-01970-W. 

[175] M. Kumar, A. Kishor, J. K. Samariya, and A. Y. Zomaya, “An 
Autonomic Workload Prediction and Resource Allocation Framework 
for Fog enabled Industrial IoT,” IEEE Internet Things J, pp. 1–1, Jan. 
2023, doi: 10.1109/JIOT.2023.3235107. 

[176] Z. Allam, A. Sharifi, S. E. Bibri, D. S. Jones, and J. Krogstie, “The 
Metaverse as a Virtual Form of Smart Cities: Opportunities and 
Challenges for Environmental, Economic, and Social Sustainability in 
Urban Futures,” Smart Cities 2022, Vol. 5, Pages 771-801, vol. 5, no. 
3, pp. 771–801, Jul. 2022, doi: 10.3390/SMARTCITIES5030040. 

[177] S. P. Singh, A. Sharma, and R. Kumar, “Design and exploration of load 
balancers for fog computing using fuzzy logic,” Simul Model Pract 
Theory, vol. 101, p. 102017, May 2020, doi: 
10.1016/J.SIMPAT.2019.102017. 

[178] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya, 
“FOCAN: A Fog-supported smart city network architecture for 
management of applications in the Internet of Everything 
environments,” J Parallel Distrib Comput, vol. 132, pp. 274–283, Oct. 
2019, doi: 10.1016/J.JPDC.2018.07.003. 

[179] M. S. Aslanpour et al., “Serverless Edge Computing: Vision and 
Challenges,” ACM International Conference Proceeding Series, Feb. 
2021, doi: 10.1145/3437378.3444367. 

[180] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of 
serverless computing,” Commun ACM, vol. 62, no. 12, pp. 44–54, Nov. 
2019, doi: 10.1145/3368454. 

[181] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application 
Management in Fog Computing Environments,” ACM Computing 
Surveys (CSUR), vol. 53, no. 4, Jul. 2020, doi: 10.1145/3403955. 

[182] E. D. N. Ndih and S. Cherkaoui, “On Enhancing Technology 
Coexistence in the IoT Era: ZigBee and 802.11 Case,” IEEE Access, 
vol. 4, pp. 1835–1844, 2016, doi: 10.1109/ACCESS.2016.2553150. 

[183] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A Survey of 
Communication Protocols for Internet of Things and Related 
Challenges of Fog and Cloud Computing Integration,” ACM 
Computing Surveys (CSUR), vol. 51, no. 6, Jan. 2019, doi: 
10.1145/3292674. 

[184] N. Hassan, K. L. A. Yau, and C. Wu, “Edge computing in 5G: A 
review,” IEEE Access, vol. 7, pp. 127276–127289, 2019, doi: 
10.1109/ACCESS.2019.2938534. 

[185] B. Alhayani et al., “5G standards for the Industry 4.0 enabled 
communication systems using artificial intelligence: perspective of 
smart healthcare system,” Applied Nanoscience (Switzerland), vol. 1, 
pp. 1–11, Jan. 2022, doi: 10.1007/S13204-021-02152-4/FIGURES/6. 

[186] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial 
internet of things (IIoT): An analysis framework,” Comput Ind, vol. 
101, pp. 1–12, Oct. 2018, doi: 10.1016/J.COMPIND.2018.04.015. 

[187] J. Sengupta, S. Ruj, and S. Das Bit, “A Comprehensive Survey on 
Attacks, Security Issues and Blockchain Solutions for IoT and IIoT,” 
Journal of Network and Computer Applications, vol. 149, p. 102481, 
Jan. 2020, doi: 10.1016/J.JNCA.2019.102481. 

[188] J. Sengupta, S. Ruj, and S. Das Bit, “A Secure Fog-Based Architecture 
for Industrial Internet of Things and Industry 4.0,” IEEE Trans Industr 
Inform, vol. 17, no. 4, pp. 2316–2324, Apr. 2021, doi: 
10.1109/TII.2020.2998105. 

[189] G. Li, J. Wu, J. Li, K. Wang, and T. Ye, “Service Popularity-Based 
Smart Resources Partitioning for Fog Computing-Enabled Industrial 
Internet of Things,” IEEE Trans Industr Inform, vol. 14, no. 10, pp. 
4702–4711, Oct. 2018, doi: 10.1109/TII.2018.2845844. 

[190] T. Hewa, A. Braeken, M. Liyanage, and M. Ylianttila, “Fog Computing 
and Blockchain-Based Security Service Architecture for 5G Industrial 
IoT-Enabled Cloud Manufacturing,” IEEE Trans Industr Inform, vol. 
18, no. 10, pp. 7174–7185, Oct. 2022, doi: 10.1109/TII.2022.3140792. 

[191] S. El Kafhali, C. Chahir, M. Hanini, and K. Salah, “Architecture to 
manage internet of things data using blockchain and fog computing,” 
ACM International Conference Proceeding Series, Oct. 2019, doi: 
10.1145/3372938.3372970. 

[192] B. Dammak, M. Turki, S. Cheikhrouhou, M. Baklouti, R. Mars, and A. 
Dhahbi, “LoRaChainCare: An IoT Architecture Integrating Blockchain 
and LoRa Network for Personal Health Care Data Monitoring,” Sensors 
2022, Vol. 22, Page 1497, vol. 22, no. 4, p. 1497, Feb. 2022, doi: 
10.3390/S22041497. 

[193] S. Mihai et al., “Digital Twins: A Survey on Enabling Technologies, 
Challenges, Trends and Future Prospects,” IEEE Communications 
Surveys and Tutorials, 2022, doi: 10.1109/COMST.2022.3208773. 

[194] H. Yin and L. Wang, “Application and Development Prospect of 
Digital Twin Technology in Aerospace,” IFAC-PapersOnLine, vol. 53, 
no. 5, pp. 732–737, Jan. 2020, doi: 10.1016/J.IFACOL.2021.04.165. 

[195] Z. Yang, M. Zolanvari, and R. Jain, “A Survey of Important Issues in 
Quantum Computing and Communications,” IEEE Communications 
Surveys and Tutorials, vol. 25, no. 2, pp. 1059–1094, 2023, doi: 
10.1109/COMST.2023.3254481. 

[196] S. S. Gill, “Quantum and blockchain based Serverless edge computing: 
A vision, model, new trends and future directions,” Internet Technology 
Letters, p. e275, Feb. 2021, doi: 10.1002/ITL2.275. 

[197] F. Sun, Z. Zhang, S. Zeadally, G. Han, and S. Tong, “Edge Computing-
Enabled Internet of Vehicles: Towards Federated Learning Empowered 
Scheduling,” IEEE Trans Veh Technol, vol. 71, no. 9, pp. 10088–
10103, Sep. 2022, doi: 10.1109/TVT.2022.3182782. 

[198] C. Chen, J. Hu, T. Qiu, M. Atiquzzaman, and Z. Ren, “CVCG: 
Cooperative V2V-Aided Transmission Scheme Based on Coalitional 
Game for Popular Content Distribution in Vehicular Ad-Hoc 
Networks,” IEEE Trans Mob Comput, vol. 18, no. 12, pp. 2811–2828, 
Dec. 2019, doi: 10.1109/TMC.2018.2883312. 

[199] S. Pandya et al., “Federated learning for smart cities: A comprehensive 
survey,” Sustainable Energy Technologies and Assessments, vol. 55, p. 
102987, Feb. 2023, doi: 10.1016/J.SETA.2022.102987. 

[200] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, “Federated 
learning for internet of things: Recent advances, taxonomy, and open 
challenges,” IEEE Communications Surveys and Tutorials, vol. 23, no. 
3, pp. 1759–1799, Jul. 2021, doi: 10.1109/COMST.2021.3090430. 

[201] R. Saha, S. Misra, and P. K. Deb, “FogFL: Fog-Assisted Federated 
Learning for Resource-Constrained IoT Devices,” IEEE Internet Things 
J, vol. 8, no. 10, pp. 8456–8463, May 2021, doi: 
10.1109/JIOT.2020.3046509. 

[202] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang, and K. K. R. 
Choo, “An Energy-Efficient SDN Controller Architecture for IoT 
Networks with Blockchain-Based Security,” IEEE Trans Serv Comput, 
vol. 13, no. 4, pp. 625–638, Jul. 2020, doi: 
10.1109/TSC.2020.2966970. 

[203] M. Ojo, D. Adami, and S. Giordano, “A SDN-IoT architecture with 
NFV implementation,” 2016 IEEE Globecom Workshops, GC Wkshps 
2016 - Proceedings, 2016, doi: 10.1109/GLOCOMW.2016.7848825. 

[204] B. Kitchenham, “Procedures for performing systematic reviews,” 
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004. 

[205] H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle 
Selection and Resource Optimization for Federated Learning in 
Vehicular Edge Computing,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 23, no. 8, pp. 11073–11087, Aug. 2022, 
doi: 10.1109/TITS.2021.3099597. 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 



56 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
[206] B. Sellami, A. Hakiri, and S. Ben Yahia, “Deep Reinforcement 

Learning for energy-aware task offloading in join SDN-Blockchain 5G 
massive IoT edge network,” Future Generation Computer Systems, vol. 
137, pp. 363–379, Dec. 2022, doi: 10.1016/J.FUTURE.2022.07.024. 

[207] T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A secure 
IoT service architecture with an efficient balance dynamics based on 
cloud and edge computing,” IEEE Internet Things J, vol. 6, no. 3, pp. 
4831–4843, Jun. 2019, doi: 10.1109/JIOT.2018.2870288. 

[208] Q. Li, S. Meng, S. Zhang, J. Hou, and L. Qi, “Complex attack linkage 
decision-making in edge computing networks,” IEEE Access, vol. 7, 
pp. 12058–12072, 2019, doi: 10.1109/ACCESS.2019.2891505. 

[209] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey 
on Internet of Things: Architecture, Enabling Technologies, Security 
and Privacy, and Applications,” IEEE Internet Things J, vol. 4, no. 5, 
pp. 1125–1142, Oct. 2017, doi: 10.1109/JIOT.2017.2683200. 

[210] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge 
computing: A survey,” Future Generation Computer Systems, vol. 97, 
pp. 219–235, Aug. 2019, doi: 10.1016/J.FUTURE.2019.02.050. 

[211] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A 
hierarchical distributed fog computing architecture for big data analysis 
in smart cities,” ACM International Conference Proceeding Series, vol. 
07-09-Ocobert-2015, Oct. 2015, doi: 10.1145/2818869.2818898. 

[212] S. Hoque, M. S. De Brito, A. Willner, O. Keil, and T. Magedanz, 
“Towards Container Orchestration in Fog Computing Infrastructures,” 
Proceedings - International Computer Software and Applications 
Conference, vol. 2, pp. 294–299, Sep. 2017, doi: 
10.1109/COMPSAC.2017.248. 

[213] C. Tang, X. Wei, C. Zhu, Y. Wang, and W. Jia, “Mobile Vehicles as 
Fog Nodes for Latency Optimization in Smart Cities,” IEEE Trans Veh 
Technol, vol. 69, no. 9, pp. 9364–9375, Sep. 2020, doi: 
10.1109/TVT.2020.2970763. 

[214] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision 
and Challenges,” IEEE Internet Things J, vol. 3, no. 5, pp. 637–646, 
Oct. 2016, doi: 10.1109/JIOT.2016.2579198. 

[215] S. Aggarwal and N. Kumar, “Fog Computing for 5G-Enabled Tactile 
Internet: Research Issues, Challenges, and Future Research Directions,” 
Mobile Networks and Applications, pp. 1–28, Nov. 2019, doi: 
10.1007/S11036-019-01430-4/TABLES/9. 

[216] I. Al Ridhawi, M. Aloqaily, Y. Kotb, Y. Al Ridhawi, and Y. Jararweh, 
“A collaborative mobile edge computing and user solution for service 
composition in 5G systems,” Transactions on Emerging 
Telecommunications Technologies, vol. 29, no. 11, p. e3446, Nov. 
2018, doi: 10.1002/ETT.3446. 

[217] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A Deep Meta 
Reinforcement Learning-Based Task Offloading Framework for Edge-
Cloud Computing,” IEEE Transactions on Network and Service 
Management, vol. 18, no. 3, pp. 3448–3459, Sep. 2021, doi: 
10.1109/TNSM.2021.3087258. 

[218] L. Huang, L. Zhang, S. Yang, L. P. Qian, and Y. Wu, “Meta-Learning 
Based Dynamic Computation Task Offloading for Mobile Edge 
Computing Networks,” IEEE Communications Letters, vol. 25, no. 5, 
pp. 1568–1572, May 2021, doi: 10.1109/LCOMM.2020.3048075. 

[219] Y. I. Alzoubi, A. Al-Ahmad, and H. Kahtan, “Blockchain technology 
as a Fog computing security and privacy solution: An overview,” 
Comput Commun, vol. 182, pp. 129–152, Jan. 2022, doi: 
10.1016/J.COMCOM.2021.11.005. 

[220] B. Dammak, M. Turki, S. Cheikhrouhou, M. Baklouti, R. Mars, and A. 
Dhahbi, “LoRaChainCare: An IoT Architecture Integrating Blockchain 
and LoRa Network for Personal Health Care Data Monitoring,” Sensors 
2022, Vol. 22, Page 1497, Feb. 2022, doi: 10.3390/S22041497. 

[221] R. Singh and S. S. Gill, "Edge AI: a survey." Internet of Things and 
Cyber-Physical Systems 2023, Vol. 3, Page 71-92, doi: 
10.1016/j.iotcps.2023.02.004. 

[222] A. R. Nandhakumar, et al. "EdgeAISim: A Toolkit for Simulation and 
Modelling of AI Models in Edge Computing Environments." 
Measurement: Sensors, 2023. 

[223] M. Attaran and B. G. Celik, “Digital Twin: Benefits, use cases, 
challenges, and opportunities,” Decision Analytics Journal, vol. 6, p. 
100165, Mar. 2023, doi: 10.1016/J.DAJOUR.2023.100165. 

 
 
 
 

Guneet Kaur Walia is a Ph.D scholar 
at the Department of Information 
Technology, Dr. B. R. Ambedkar 
National Institute of Technology, 
Jalandhar, Punjab, India. She 
successfully completed her Masters in 
Computer Science Engineering at 
Punjab Agricultural University, 
Ludhiana, Punjab, in 2016. Her research 

interests includes  Cloud Computing, Edge Computing, 
Internet of Things (IoT), Resource Management in Edge 
Computing, and Artificial Intelligence (AI).  
 

Mohit Kumar is Assistant Professor in 
the Department of Information 
Technology at Dr. B R Ambedkar 
National Institute of Technology, 
Jalandhar, India. He received his Ph.D. 
degree from Indian Institute of 
Technology Roorkee in the field of 
Cloud Computing, 2018, and M. Tech 
degree in Computer Science and 

Engineering from ABV-Indian Institute of Information 
Technology Gwalior, India in 2013.  His research topics cover 
the areas of Cloud computing, Fog/ Edge Computing, Internet 
of Things, federated learning, Blockchain, and Artificial 
Intelligence. He has published more than 55 research articles 
in reputed journals, IEEE Transactions and international 
conferences. He has been Session chair and keynotes Speaker 
of many International conferences, webinars, FDP, STC in 
India. He has guided six M. Tech Thesis and guiding 5 Ph.D. 
Scholar. He is an active reviewer of several reputed journals 
and international conferences. He is a member of the IEEE. 
 

Sukhpal Singh Gill (FHEA) is an 
Assistant Professor of Cloud 
Computing at the School of 
Electronic Engineering and 
Computer Science, Queen Mary 
University of London, UK. Prior to 
his present stint, Dr. Gill has held 
positions as a Research Associate at 
the Lancaster University, UK and 

also as a Postdoctoral Research Fellow at CLOUDS 
Laboratory, The University of Melbourne, Australia. Dr. Gill 
is serving as an Associate Editor in IEEE IoT, Wiley SPE, 
Elsevier IoT, Wiley ETT and IET Networks Journal. He has 
co-authored 150+ peer-reviewed papers (with 6800+ citations 
and H-index 40) and has published in prominent international 
journals and conferences such as ACM CSUR, IEEE TCC, 
IEEE TSC, IEEE TII, IEEE TSUSC, IEEE TNSM, IEEE IoT 
Journal, Elsevier JSS/FGCS, IEEE/ACM UCC and IEEE 
CCGRID. His research interests include Cloud Computing, 
Edge Computing, IoT and Energy Efficiency. For further 
information, please visit: http://www.ssgill.me   
 

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3338015

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: MOHIT KUMAR. Downloaded on December 08,2023 at 04:02:15 UTC from IEEE Xplore.  Restrictions apply. 


