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Spatial Variation in Attributable Risks 
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Abstract The attributable risk (AR) measures the contribution of a particular risk factor to a 
disease, and allows estimation of disease rates specific to that risk. While previous studies 
consider variability in ARs over demographic categories, this paper considers the extent of 
spatial variability in ARs estimated from multilevel data with confounders both at individual 
and geographic levels. A case study considers the AR for diabetes in relation to elevated 
BMI, and area rates for diabetes attributable to excess weight. Contextual adjustment 
includes known area variables, and unobserved spatially clustered influences, while spatial 
heterogeneity (effect modification) is considered in terms of varying effects of elevated BMI 
by neighbourhood deprivation category. The application is to patient register data in 
London, with clear evidence of spatial variation in ARs, and in small area diabetes rates 
attributable to excess weight.  
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1. Introduction 

The attributable risk (AR) seeks to quantify the proportion of disease due to a particular risk 
factor, which may be termed the focus risk factor (Uter and Pfahlberg 2001; Benichou, 
2001). Other terms include the attributable fraction, population attributable risk, and 
population attributable fraction. The AR measures impacts of risk factors on disease levels, 
taking into account both associations (i.e. relative risk) between disease and exposure, and 
the proportion of subjects exposed. Using attributable risks one may ascertain disease rates 
and burdens specific to a particular risk factor (Steenland & Armstrong, 2006; Ezzati et al, 
2006; Gefeller, 1995). With a risk factor expressed in binary form, and PE as the proportion 
of subjects exposed, a point estimator of the attributable risk is  
           [PE(RR-1)]/ [PE(RR-1)+1],   (1a) 
where RR is the relative risk for those exposed as compared to those unexposed. The latter 
should be adjusted for confounders (Darrow and Steenland, 2011; Benichou, 2001; 
Steenland and Armstrong, 2006). Another estimator is  

PE|D(RR-1)/RR= PE|D(1-1/RR),  (1b) 

where PE|D is the proportion of diseased subjects exposed. 

Variations in attributable risks over demographic categories (e.g. age categories, ethnic 
groups) have been considered in some studies (e.g. Okosun and Boltri, 2006; Oteng-Ntim et 
al, 2013), and contributions to the Global Burden of Disease study such as Ferrari et al 2014) 
use the estimator (1a) to derive attributable risks varying both by demographic group and 
over nations. Variations in attributable risks at subnational geographic scales, down to 
relatively small area scale, and the underlying methodological issues, have, however, been 
little explored. One approach (Tanuseputro et al, 2005) assumes confounder adjusted 
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relative risks based on national epidemiological surveys to be transferable across lower 
scale geographic settings. However, relative risks may vary across such geographic settings. 
Estimation of ARs from multilevel data, after adjustment for contextual risks, either 
measured neighbourhood confounders (e.g. area deprivation), or unmeasured spatially 
structured risk factors, has not been considered in previous studies. Allowance for spatial 
heterogeneity (e.g. effects of the focus risk varying by area type) is also not considered in 
existing studies.  

The present paper is particularly concerned with the AR for diabetes in relation to excess 
weight. The association between elevated bodyweight and diabetes risk has been explored 
in many studies based on patient level data, either using categorical forms of the 
bodyweight predictor (Ganz et al, 2014; Field et al, 2001), or with linear regression of 
diabetes risk on BMI (Wong et al, 2014). However, a few multilevel studies have also 
considered spatial aspects of rising obesity prevalence or diabetes (e.g. Krokstad et al, 2013; 
Liu and Núñez, 2014), and a multilevel perspective on obesity is advocated by Huang et al 
(2009). Taking account of geographic context is important as an increasing number of 
studies link obesity (and hence diabetes) to environmental influences (Hill and Peters, 
1998). 

The present paper seeks to assess the potential importance of spatial effects (spatial 
heterogeneity, spatial clustering) in the estimation of context sensitive attributable risks, 
and their relevance in estimating area disease rates specific to particular risk factors, 
specifically small area diabetes rates attributable to excess weight. Spatial variation in the 
latter is particularly relevant for policy purposes. A subsidiary aim is to demonstrate the 
utility of a Bayesian approach to estimation using a logistic regression method in which ARs 
are based on a ratio estimator, while also selecting out significant influences on the disease 
outcome using Bayesian variable selection. 

1.1 Attributable risks in a Multilevel Setting  

The application in this paper considers estimation of ARs for diabetes prevalence in relation 
to excess weight, using multilevel data from health registers or health surveys. Oriented to 
such data, the paper considers adjustment for both patient confounders (e.g. other 
diseases, age, ethnicity), and observed and unobserved neighbourhood (contextual) 
confounders.  

Multilevel data presupposes subjects nested within clusters, and observations for subjects 
within clusters areas may be correlated (Chen and Dey, 2003). As mentioned by Diez-Roux 
et al (1997) “correlation between individuals within neighborhoods .. may persist even after 
controlling for [observed] individual level and neighborhood level variables.” Existing 
multilevel disease risk models generally consider spatial effects in terms of (a) effects of 
observed area variables, and (b) randomly varying intercepts (typically assumed iid) over 
areas to represent unobserved area influences. Contextual effects are then assessed in 
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terms of the relative proportion of variation explained by areas (e.g. Pickett and Pearl, 2001; 
Merlo et al, 2006). Some analyses go beyond this to allow for spatial clustering in 
unmeasured neighbourhood influences on disease levels (Dasgupta et al, 2014; Xu, 2014; 
Chaix et al, 2005). 
  
However, as discussed in Goodchild (2011), spatial effects encompass spatial heterogeneity 
as well as spatial clustering. There is an extensive literature on spatially varying regression 
relationships with both Bayesian approaches (Assunçao, 2003), and classical approaches 
often based on generalized weighted regression (Fotheringham et al 2003). This paper 
considers a relatively simple form of heterogeneity in regression effects, namely varying 
impacts of individual risk factors according to area type. In terms of the framework provided 
by Anselin (2010, p. 6) the form of heterogeneity considered here involves discrete 
heterogeneity, or spatial regimes.  

Such heterogeneity can also be seen as a spatially defined form of effect modification or 
“hazard heterogeneity” (Ezzati et al, 2006, p. 245), applicable “when the assumption of 
constant relative risk [is] not appropriate”. The potential importance of effect modification 
in estimating ARs is considered by Flegal et al (2004). 

Specifically the analysis below accordingly considers estimation of ARs via multilevel models 
that admit the potential for (a) spatially correlated but unmeasured risk factors, and (b) 
neighbourhood group heterogeneity in impacts of bodyweight on diabetes. Regarding the 
first feature, and as discussed above, multilevel data presupposes subjects nested within 
clusters, and observations or residuals for subjects within clusters areas may be correlated 
(Chen and Dey, 2003). When areas constitute the clusters, residuals may show spatial 
correlation.  
 
There is an extensive literature on modelling spatially correlated residual effects on health 
outcomes. Such spatial effects often proxy unobserved risk factors (e.g. environmental or 
cultural), which vary smoothly over space (Best, 1999). As mentioned by Wakefield et al 
(2000), modelling of spatially correlated errors, denoted vj (j=1,..,J) for J areas, may proceed 

by initially specifying either the joint multivariate distribution of the vector v=(v1,..,vJ), or 

the univariate density of each areas error, vj, conditional on errors in other areas. A widely 

adopted scheme known as the convolution prior, but with potential identification issues, 
involves an intrinsic autoregressive effect (Besag et al, 1991) combined with an iid (non-
spatial) effect. Lee (2011) compares the properties of alternative conditional priors for 
spatial errors, and recommends instead the method of Leroux et al (1999), on the grounds 
of including a measure of spatial dependence, and in providing a rational form of conditional 
variance.     
 



 

4 
 

Regarding spatial heterogeneity, a focus here is on the potential interaction between area 
deprivation category and the effects of overweight, a cross-level interaction in the 
terminology of multilevel analysis. Possible mechanisms for such interaction are suggested 
by the large number of studies linking obesity (and diabetes itself) to environmental 
influences, such as access to healthy food and exercise opportunities (Hill and Peters, 1998;  
Feng et al, 2012; Salois, 2012). For example, obesity may be related to aspects of food 
environment (e.g. density of facility types, such as fast food outlets) which adversely 
influence diet, with less healthy food environments characterised by high consumption of 
processed food, high in fat and sugar (Lake and Townshend, 2006). Less healthy food 
environments tend to be in less affluent areas, that is areas with high deprivation (Morland 
et al, 2002). Exercise has independent effects on diabetes as well as through its effect on 
obesity (Kriska et al, 2003; De Feo et al, 2006), and exercise access is typically lower in 
deprived areas (Lamb et al, 2010). Effects on diabetes of diet-related and exercise-related 
obesity may therefore vary by neighbourhood deprivation category.  
 
A logit regression methodology is adopted (see section 2), with the attributable ratio based 
on estimating diabetes risks under a reference setting (Traskin et al, 2013; Greenland and 
Drescher, 1993; Vander Hoorn et al, 2004). Instead of adopting a single binary threshold, the 
models used here involve a categorisation of bodyweight (Ganz et al, 2014), with three 
categories for excess weight: overweight (BMI between 25 and 29.99), obese class I (BMI 
between 30 and 34.99) and grossly obese (BMI over 35), with BMI under 25 as reference 
category. A Bayesian estimation and inference approach uses the WINBUGS software (Lunn 
et al, 2009), and Markov chain Monte Carlo (MCMC) estimation, with the main data analysis 
preceded by an initial analysis of missing data (missingness in BMI itself, and in an ethnicity 
confounder).  

2. Methods 

Let D denote presence or not of disease, X denote the focus risk factor (the exposure for 
which the AR is being developed), and C represent possible confounders in the relationship 
between X and D. Then for continuous X, one may represent the AR as (Traskin et al, 2013; 
Greenland and Drescher, 1993) 

        � �1 − ��(���|���∗,�)
��(���|���,�) � dF(x|D = 1)  (2) 

where x* represents the reference exposure, and dF(x|D=1) is the distribution function of X 
among diseased subjects. For X in category form, the reference is the category where the 
exposure is absent.  
 
For nested multilevel data, one may estimate (2) by applying binary regression (e.g. logit 
regression) with responses Dij (=1 for cases, =0 for non-diseased) for subjects i=1,..,nj within 

neighbourhoods j=1,...,J, with N=∑ nj� . Observed predictors are the focus risk Xij, patient 

confounders Cij and neighbourhood confounders Lj. Let pij denote the predicted probability 
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under the observed scenario (Xij,Cij,Lj), and T=∑ pij��  denote the predicted total cases. Let 

p*ij denote the predicted probability under the reference (counterfactual) scenario (X*ij,Cij,Lj), 

and the corresponding total predicted cases be noted T*=∑ p��
∗

�� .  
 
Let ϕ denote the overall attributable risk. Then Greenland and Drescher (1993) propose the 
ratio estimator 

ϕ=1− T*/T  (3a) 
as a confounder adjusted estimator of the AR. Estimators of the AR for subcategories 
g=1,..,G, such as particular ethnic groups, or area categories, may be obtained by summing 
only over subjects contained in each subgroup (Deubner et al, 1980). So if gij denotes the 

category for an individual subject, the relevant totals for category h using estimator (3a) are 

T*h =∑ p��
∗

��,����� , and Th =∑ p����,����� , with the category specific AR estimated as 

             ϕh=1− T*h /Th   (3b) 

One has ϕ=∑
h

whϕh with weights wh=Th/T.  

 
Derivation of the standard errors of (3a)-(3b) in classical approaches may be quite complex, 
involving delta approximations (Graubard and Fears, 2005; Benichou, 2001), whereas using 
MCMC sampling the full posterior density of such quantities is readily obtained. Another 
benefit of a Bayesian approach is in the inclusion of predictor selection in the binary 
regression (see section 4 for details), leading to a form of model averaging. While choice of 
confounders and interactions reflects prior substantive knowledge, this does not preclude 
collinearities that may affect estimates (Fox and Monette, 1992; Hayashi et al, 2013; 
Ostchega et al, 2012) and reduce precision of structural quantities such as ARs. 
 
2.1 Generic Regression Specification 
 
The envisaged data here are multilevel in the broader sense that subjects i are nested with 
neighbourhoods j, which in turn may be nested in area typologies or neighbourhood 
groupings g=1,..,G (e.g. area deprivation quintiles, area socioeconomic classifications) (Joshy 
et al, 2009; Barnett et al, 2012). This scheme is analogous to that of Langford et al (1999) 
involving within-area (individual), group and neighbourhood effects.  
 
Multilevel regression to predict the probability pij of diabetes status can then take account 

both of observed predictors (Xij,Cij,Lj), of neighbourhood groups g=gij, and of unmeasured 

neighbourhood risks vj. For example, assume Dij ~ Bern(pij), and a logit link regression.  For 

simplicity, assume BMI is in binary form (obese Xij=1 or non-obese Xij=0). Then an obesity 

effect, varying by neighbourhood category g, may be combined with impacts of observed 
patient and neighbourhood confounders, and unobserved neighbourhood risks vj, as in 
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logit(pij)=β0+γgXij+βCij+δLj+vj   (4) 

In practice, it may be necessary to assess whether all these features are required. With 
regard to the neighbourhood effects vj, this might involve first fitting a reduced model 

without such terms, and assessing gain in fit on including such residuals, or assessing 
correlation patterns in the realized residuals from the reduced model. Additionally, 
predictor selection should be applied to achieve model parsimony and reduce imprecision 
caused by any multicollinearity between predictors. Also in practice, Xij is taken as a 

categorical variable in the analysis below, as overweight (as well as obesity) enhances 
diabetes risk, and extreme obesity (e.g. BMI over 35) implies additional risk (Ganz et al, 
2014; Field et al, 2001).  

The term vj is chosen to represent possible spatial structuring in cluster level residuals, 

which would be expected substantively when unobserved neighbourhood disease risk 
factors are spatially clustered. Following the recommendation of Lee (2011), one may 
assume the vj follow Leroux et al (1999), since the data then determines the extent of 

estimated spatial dependence in unobserved neighbourhood risks. The conditional form of 
this prior is 

P(vj|v[j],κ2, ω) ~ N(ω ∑ vk /dj�~� , κ2/dj),  (5a)                 
where v[j]=(v1,..,vj-1,vj+1,..vJ), k ~ j denotes neighbourhoods k adjacent to neighbourhood j, 

ω is a measure of spatial dependence between 0 and 1, and  
             dj=1-ω+ωMj,                             (5b)    

where Mj is the number of areas adjacent to area j. If ω=0 this prior reduces to an iid 

density with variance κ2, an advantageous feature mentioned by Lee (2011). 
 
3. Case Study  

The goal is to assess spatial variability in attributable risks for the relationship between 
bodyweight and the presence of type 2 diabetes. The observations are from a primary care 
register (observations are for the end of 2011) covering two north London boroughs 
(Havering, Barking and Dagenham), and the analysis focuses on n=82884 middle aged men 
aged 40-74 with type 2 diabetes diagnosed (Dij=1) or not (Dij=0). There are 6189 subjects 

with diagnosed diabetes. Individual confounders are hypertension, age group, and ethnicity 
(4 categories). Ethnicity-BMI interactions are included due to evidence of differential 
diabetes risk (e.g. due to varying insulin resistance) within normal BMI subjects of different 
ethnicity (Petersen et al, 2006). Age-weight interactions are indicated because diabetes 
prevalence and incidence continue to rise at older ages, despite average BMI tending to 
decline after age 60 (National Obesity Observatory, 2011). 
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Subjects are nested in J=258 neighbourhoods (lower level Super Output Areas or LSOAs); 
these can be aggregated to electoral wards, which are small areas (with both administrative 
and political status) often used in health profiling in the UK (see 
http://www.localhealth.org.uk). There are 35 wards in the case study area.  

An important observed contextual confounder is area deprivation, based on the income 
domain score from the Indices of Deprivation 2010 (DCLG, 2011); prior evidence is for a 
positive diabetes gradient with ascending area deprivation (Maier et al, 2014; Cox et al, 
2007). To allow for interactions between contextual and individual variables, the present 
study uses a categorical version of this predictor, namely the income deprivation quintile to 
which each neighbourhood is assigned. Additional contextual confounders are air quality 
and environmental greenspace. Potential relevance of air quality and greenspace to 
diabetes incidence has been demonstrated in recent studies (e.g. Brook et al, 2008; Astell-
Burt et al, 2014). The air quality index is based on levels of nitrogen dioxide, particulates, 
sulphur dioxide and benzene from the UK National Air Quality Archive (Fairburn et al, 2008).  

Among questions of interest are the extent of spatial variation in AR estimates, in particular 
according to neighbourhood deprivation quintiles, though smaller scale variation in ARs can 
also be considered (e.g. between the 258 neighbourhoods themselves, or an intermediate 
scale such as electoral wards). Straightforward application of equation (1) suggests an 
upward gradient in ARs as area deprivation rises. For example, the proportion of diabetics 
who are obese in the lowest income deprivation quintile (least deprived) neighbourhoods is 
40%, compared to 48% of diabetics in the highest quintile.  

3.1 Exposure Specific Area Prevalence 

As mentioned above, the attributable risk is a measure of impact (Schoenbach and 
Rosamund, 2000), measuring how much of a disease can be attributed to a risk factor. Using 
attributable ratios one may ascertain the proportion of the total disease rate or burden 
attributable to a particular risk factor (Steenland & Armstrong, 2006). Adapting the 
terminology of Gefeller (1995), using spatial attributable ratios one may estimate exposure-
specific prevalence rates by area. Geographic profiling of obesity-related diabetes is of 
particular relevance to health resource targeting and health promotion initiatives to tackle 
increasing levels of diabetes.  
 
For concreteness in relation to the case study area hierarchy (and as pursued in the Results 
section), let ρh denote an age standardised prevalence rate (ASPR) for diabetes in electoral 

ward h (h=1,..,35), and ϕh the attributable risk for diabetes in relation to excess weight 

(overweight and obesity combined). Then the diabetes rate attributable to excess weight is  
 νh= ρhϕh.  (6) 

One may also derive attributable numbers of diabetes cases due to excess weight (e.g. Price 
et al, 2012).  
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The ASPR may be estimated from another form of model (e.g. using area data only), or by 
aggregating at each MCMC iteration over the estimated probabilities pij according to the 

ward h that LSOA j is located within, and the age group a that subject ij belongs to. Let nah 

denote the number of subjects in ward h and quinquennial age group a. Then ward age 
specific disease rates are obtained as  

ρah=∑ pij/����,��� nah.  (7) 

Direct age-adjustment may then be used to combine age specific rates into an overall ward 
level disease rate ρh, with weights wa being the proportion of each age group in a standard 

population (Lilienfeld & Stolley, 1994). Here weights are from the European standard 
population applied to the quinquennial age bands 40-44, 45-49, ...,70-74. If estimation of ρh 

is carried out parallel to that of ϕh in this way, then obtaining credible intervals for 

exposure-specific prevalence rates νh is straightforward under MCMC approaches, but 

would involve complex delta approximations under classical estimation. 
 
4. Regression Framework 

The above discussion suggests, from a literature review, that spatial correlation in area 
residuals may occur for multilevel models applied to geographically nested data. We 
consider a baseline model (Model 1) without explicit spatial effects, and assess the pattern 
of realized residuals at area (LSOA) level. If spatial correlation is apparent, we will consider a 
model including spatial residual effects, namely vj in (5).  

 
Model 1 includes only observed subject and neighbourhood risk factors. Thus heterogeneity 
in the effects of overweight, obesity and gross obesity on diabetes risk is included, but not 
spatial residuals. The effect of BMI is represented using standard cut-points (Ganz et al, 
2014). Thus define Xij1=1 for observed BMI between 25 and 29.99, and Xij1=0 otherwise; 

Xij2=1 for observed BMI between 30 and 34.99 (obesity class I), and Xij2=0 otherwise; and 

Xij3=1 for BMI over 35 (obesity classes II and III), and Xij3=0 otherwise. Effects of Xij1 to Xij3 

vary between neighbourhood deprivation quintiles g=1,..,5. Individual confounders are 
diagnosed hypertension Hij (binary), age group Aij (categories: 1=40-49 (reference), 2=50-

59, 3=60-69, and 4=70-74), and ethnic category Eij (1=white (reference), 2=black, 3=south 

Asian, 4=mixed-other). Binary interaction effects are defined by overweight and obesity 
combined. Thus define Xij=∑k=1,..,3

Xijk. Then interaction terms between age and body 

weight are ABij={I(Aij=2, Xij=1), I(Aij=3, Xij=1), I(Aij=4, Xij=1)}, where I(W)=1 if W is true 

and I(W)=0 if W is false. Interactions EBij between ethnic group and weight are defined 

similarly.  
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The respective parameters are α (intercept); fifteen fixed effects {γ1g, γ2g, γ3g} representing 

impacts on diabetes risk of overweight, obesity class I, and gross obesity, specific to area 
deprivation quintile g; a hypertension effect β1; age group effects {β2,β3,β4}; ethnic group 

effects {β5,β6,β7}; parameters {β8,β9,β10} for age-weight interactions; parameters 

{β11,β12,β13} for ethnicity-weight interactions; and parameters {δ1, δ2, δ3} for effects of 

known neighbourhood confounders, area income deprivation (L1), air quality (L2=1 if a 

neighbourhood has below average air quality, L2=0 otherwise), and greenspace (L3=1 if the 

percent greenspace in a neighbourhood exceeds 50%, L3=0 otherwise).  

 
Under this model there are 32 parameters {β0,…,β13; γ11,...,γ35; δ1,...,δ3} with six of the β 

parameters, and the γ parameters, being for interactions.  Reference probabilities p*ij for 

(3a) and (3b) are obtained by omitting the terms {γ1g, γ2g, γ3g} and also parameters 

{β8,…,β13} for the interactions (ABij, EBij) involving weight.  

 
Predictor selection is included, as in principle it will assist in selecting a parsimonious model 
with enhanced precision for structural parameters such as ARs, a feature emphasized in 
some reviews (e.g. Benichou, 2001). Predictor selection is supported by an exploratory 
classical analysis, using the car package in R, which includes generalized variance inflation 
factors, applicable to binary regression (Fox and Monette, 1992; O’Brien, 2007). A classical 
logistic regression, replicating Model 1, showed generalized variance inflation factors 
exceeding 5 (but under 10) for some predictors. This feature was found to be associated 
particularly with the inclusion of interaction effects, ABij and EBij. 

 
Model parsimony, and control for multicollinearity, is based on predictor selection using a 
version of the Lasso approach (e.g. Yuan and Lin, 2005; Park and Casella, 2008), though 
there are other approaches based on various forms of mixture prior for the regression 
coefficients.  Predictor selection is applied to all fixed effect regression parameters in both 
models below, except the intercept, namely to the 31 regression parameters {β1,…,β13; 

γ11,...,γ35; δ1,...,δ3}. Let a particular regression parameter (i.e. a particular β,γ, or δ 
parameter) be denoted generically as ξk. Let dk ~ Bern(πd) be binary indicators, with dk=1 

corresponding to inclusion of ξk, and dk=0 corresponding to rejection of ξk. Under the case 

dk=1, we have ξk ~ DE(λ) where DE() denotes the double exponential (or Laplace) density, 

p(u|λ)=λexp(-λ|u|)/2 with variance 2/λ2. This density is expressed in terms of the absolute 
difference from the mean, and has fatter tails than the normal distribution. Under dk=0, we 

have ξk=0. Then, following Yuan and Lin (2005), and assuming predictors in standardized 

form, the mixture prior for retaining or rejecting regression coefficients (and corresponding 
predictors) is 
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      p(ξk|dk) = (1-dk)δ(0)+dkDE(λ).  (8) 

We assign the priors λ ~ U(0.001,10), corresponding to a relatively diffuse prior on the 
variance for ξk when dk=1, and πd ~ Beta(1,1). 

  
Model 1 has no cluster (area) effects, though for multilevel datasets, observations and 
residuals for subjects within clusters may be correlated (Chen and Dey, 2003; Diez-Roux et al 
1997), and for geographically defined clusters, the correlation may be stronger for nearby 
areas. To assess the extent of spatial patterning of residuals under Model 1, the averages of 

the 82884 standardized residuals (Dij-pij)/[pij(1-pij)]
0.5 are obtained according to LSOA 

j=1,..,258. Spatial correlation is assessed in the LSOA average residuals using a Moran’s I 
statistic (Lawson, 2013, p. 91), with spatial interaction defined by adjacency.    
 
If spatial clustering is apparent, an extended model including spatial effects may be 
considered. Thus model 2 replicates model 1 except in adding a spatial residual, with prior 
as in (5). Hence model 2 also has 31 fixed effect regression coefficients (β, γ and δ 
parameters) subject to variable selection, and 258 LSOA spatial random effects vj, with two 

hyperparameters {ω, κ2} governing their density. The spatial correlation ω is assigned a 
U(0,1) prior, and the precision parameter 1/κ2 assigned a gamma prior with index 1 and 
scale 0.001.  
 
5. Results 

5.1 Estimation, Fit and Model Checks 

As mentioned above, a preliminary stage to the main analysis is necessitated by missingness 
in the variables BMI (18% of values missing) and ethnicity (28% missing). A method allowing 
for non-random missingness in BMI values (Appendix 1) is used to generate the imputed 
datasets (Ibrahim et al, 2012).  The main analysis then involves MCMC estimation applied to 
K=5 multiply imputed datasets (Little et al, 2014) containing imputed ethnicity and BMI 
where these values are missing. Total variances of parameter estimates then take account 
of within and between imputation variances. Inferences are based on the second halves of 
two chain runs of 10000 iterations for each of the five multiply imputed datasets, with 
convergence assessed using Brooks-Gelman-Rubin (BGR) statistics (Brooks and Gelman, 
1998) (see Appendix 2 for discussion).   

Model fit for the main analysis is assessed using the deviance information criterion (DIC) of 
Spiegelhalter et al (2002), the WAIC statistic (Watanabe, 2013), and a scoring rule (Gneiting 
and Raftery, 2007) appropriate to binary outcomes, namely the Brier score. Two posterior 
predictive checks are applied, based on predictions Dnew,ij sampled from the posterior 

predictive density. The first posterior predictive check uses the unweighted residual sum of 

squares (Hosmer et al, 1997; Copas, 1989), namely R=∑ij(Dij-pij)2 and Rnew=∑ij(Dnew,ij-
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pij)2. The posterior predictive p-value is estimated by the proportion of iterations where 

Rnew exceeds R. Extreme tail p-values (under 0.05 or over 0.95) indicate model 

discrepancies (Berkhof et al, 2000). The second check is based on the Hosmer-Lemeshow 
group statistic H (Hosmer and Lemeshow, 2000). This compares observed and predicted 
number of diabetes cases (Og, Eg) within g=1,..,4 patient groups: highly obese (BMI over 35), 

obese class I (BMI 30-34.99), overweight (BMI 25-29.99), and normal/underweight. Thus 

H=∑g(Og-Eg)2/[Ngπg(1-πg)], where Ng and πg are respectively the total number of subjects 

and average modelled diabetes probability in each group. As a posterior predictive check, H 
is compared with the analogous statistic Hnew, obtained by accumulating predictions 

Dnew,ij to obtain totals Og,new. 

 
5.2 Model Results 

Application of model 1 shows satisfactory predictive checks, in that none of the posterior 
predictive p-values for the models are in the tail region (Table 1). However, analysis of the 

standardized residuals (Dij-pij)/[pij(1-pij)]
0.5 shows a spatial pattern. For example, for the 

first imputed dataset, the Moran’s I statistic has mean (95% interval) of 0.48 (0.34, 0.67), 
whereas including spatial effects, as in (5), under model 2, Moran’s I now has a 95% interval 
(-0.18, 0.53) straddling zero.  

The advantage of model 2 over model 1 is also apparent for DIC and WAIC estimates, which 
improve for all imputations. Thus the DIC reductions for model 2 compared to model 1 are 
respectively -30.4, -24.1, -28.6, -33.2 and -27.8 under the five imputed datasets. It may be 
noted that DIC and WAIC estimates are very similar. The Brier score also shows improved fit 
under model 2. Model 2 also has satisfactory predictive checks.   

To demonstrate spatial heterogeneity in AR estimates, Table 2 shows overall population-
wide attributable ratios under model 2, and ARs for each area deprivation quintile (average 
posterior means and standard deviations over the K=5 complete datasets). The mean ARs by 
neighbourhood deprivation quintile are also plotted in Figure 1. Table 2 and Figure 1 show 
higher ARs in the two most deprived quintiles.  

To demonstrate the factors underlying this gradient, Table 3 shows, for the first complete 
dataset, and by deprivation quintile, the proportion of diabetic subjects who are obese, 
either obese class 1 or highly obese (i.e. corresponding to a particular form of PE|D in 

equation 1(b)). Also shown are relative diabetes risks for obese subjects compared to 
normal weight subjects (with BMI between 18.5 and 24.99). These relative risks are based 
on comparing pij under model 2, within patient groups defined both by BMI category and 

neighbourhood deprivation quintile. The increase in relative risks and in pE|D for higher area 

deprivation levels is apparent.   
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Table 4 shows parameter summaries for model 2 in the form of pooled means and standard 
deviations of parameter estimates (log odds ratios) over the K=5 imputed datasets, as well 
as the percent relative efficiency of estimation with a finite K imputed datasets rather than 
an infinite number (Jamshidian, 2004). For regression coefficients, posterior retention 
probabilities Pr(dk=1|D), as defined in (8), are also shown. For such coefficients the 

parameter estimates are for the products dkξk, where ξk refers generically to the β, γ and δ 

coefficients.  So on MCMC iterations where dk=0 the regression parameter has value 0.   

Table 4 shows posterior retention probabilities exceeding 0.975 for β1 to β7, which all have 

positive 95% intervals. Hence there is significantly elevated diabetes prevalence for 
hypertensive subjects; for older subjects; and for subjects with black and south Asian 
ethnicity.  

From the viewpoint of establishing spatial effect modification, also highly significant are 
interactions γ2g and γ3g between area deprivation category g and extreme obesity (BMI 

over 35), and between area deprivation and obesity class I (BMI 30-34.99). These effects are 
significant for all deprivation categories but the effects are most pronounced for deprived 
quintiles 4 and 5. By contrast, effects γ1g of overweight (BMI 25-29.99) in enhancing 

diabetes risk are only significant for more deprived areas (in quintiles 3, 4 and 5). 

While interactions between area deprivation and weight are generally significant, the BMI-
age interactions (with parameters β8 to β10) and the BMI-ethnic interaction (parameters β11 
to β13) have posterior retention probabilities under 0.5. For contextual variables, the δ 
coefficients show insignificant effects for air quality and greenspace, and also for the 
deprivation effect δ1, with posterior retention probability of 0.45.  

There is a considerable amount of model uncertainty. For example, the median probability 
model (Barbieri and Berger, 2004), defined by retaining only predictors with posterior 
retention probabilities above 0.5, has a selection probability of only 0.028. Similarly, while 
all ethnicity-weight interactions have retention probabilities below 0.5, models with all 
three interaction effects taking the value zero are selected with a probability of only 0.24. 
Regarding the predictor selection, a sensitivity analysis was undertaken with a gamma prior 
on λ2, namely λ2 ~ Ga(1,0.001)  (Park and Casella, 2008), and this produced very similar 
estimates for both λ and for retention rates.   

Background analysis (not reproduced in detail here) involved a model replicating model 2, 
except in omitting interactions between deprivation and excess weight categories; so in this 
reduced model, the effects of overweight, obesity class I and extreme obesity are 
summarised in homogeneous coefficients γ1, γ2 and γ3. Unlike the full model 2, this 

reduced model showed a significant δ1 coefficient (for area deprivation) with retention 

probability 1. Hence the effect of deprivation on diabetes risk in model 2 seems to be 
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mediated very largely by the effect on diabetes of interaction between area deprivation and 
overweight/obesity status.   

The spatial dependence parameter ω for model 2 has a mean of 0.70, showing spatially 
clustered variability in unobserved neighbourhood risk factors. To indicate where the spatial 
residual terms vj have most relevance in representing unmeasured risk factors, Figure 2 

plots out the posterior probabilities Pr(vj>0|D) of elevated spatial effects. There is a spatial 

pattern apparent in Figure 2. Thus underprediction of high prevalence by measured 
predictors, with Pr(vj>0|D) exceeding 0.8 in 37 neighbourhoods, is concentrated in the 

south west of the region. Overprediction of low prevalence by measured predictors, with 
Pr(vj>0|D) under 0.2 in 44 neighbourhoods, is concentrated in extreme NW and SE parts of 

the region. As discussed above, this patterning may represent unmeasured environmental 
risk factors relevant to variations in diabetes levels, such as exercise access and aspects of 
the food environment.   

5.3 Small Area Attributable Risk Profiles 

The attributable risk is a measure of impact, measuring the proportion of disease cases that 
can be attributed to a risk factor. As an example of a geographic profile in ARs relevant to 
health policy prioritisation, Figure 3 presents attributable risks from model 2 evaluated 
according to the electoral ward of each subject (subsequently denoted as wards). The 258 
neighbourhoods are nested within 35 wards, with more deprived wards mostly located in 
the south west of the region; see also Table 5 which includes deprivation scores, estimated 
attributable risks, and estimated overweight-specific diabetes rates in each ward (Gefeller, 
1995; Steenland & Armstrong, 2006).  

The ARs at ward level range widely from 14% to 36%, with higher ARs generally found in 
more deprived wards, and so it is in such wards that interventions to reduce diabetes by 
strategies to prevent overweight and obesity would likely have more effect. Applying the 
ARs to estimated rates for total diabetes prevalence provides estimates of obesity-specific 
diabetes prevalence, as in (6). These vary more than three-fold, from 0.9% to 3.1%, with 
clear implications for targetting health promoting interventions.    

6. Concluding Remarks 

The attributable risk is a measure of impact, taking account both of the association between 
disease and exposure, and the proportion of subjects exposed. Spatial variation in 
attributable risks and in risk-specific disease rates reflects the impact of environmental risk 
factors on health, and is important for health agencies in prioritizing interventions (Narayan 
et al, 1999; Price et al, 2012).  As mentioned by Diez-Roux et al (2008), strategies to prevent 
chronic disease need to focus not only on changing individual behaviors or treating risk 
factors, but also on modifying the environments that facilitate the development and 
maintenance of risk factors. 
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The present analysis seeks to explore methodological issues in estimating attributable risks 
under such a broader contextual perspective. The forms of data permitting such an 
approach are health surveys and disease registers containing geographically configured 
multilevel data, including patient risk factors, and data on known neighbourhood predictors. 
Some neighbourhood influences may be unobserved, and the analysis here confirms that 
spatial structuring of neighbourhood effects in models for multilevel health data should be 
considered, e.g. by analysing residuals from a baseline model without neighbourhood 
(cluster) effects (e.g. Chaix et al, 2005).  

However, particularly relevant to estimating attributable risks from such data is the finding 
here of spatial heterogeneity in relative risks according to exposure, and in proportions 
exposed. Such heterogeneity leads on to spatial variation in attributable risk, and in 
exposure specific prevalence rates. Spatial heterogeneity is here considered in terms of 
discrete spatial regimes (Anselin, 2010), but in terms of applications to other multilevel 
disease datasets, there is scope to investigate continuous heterogeneity, for example via 
spatially dependent regression effects (Assunçao, 2003). While effect modification for 
different demographic categories is quite often considered in AR estimation, the present 
study suggests that spatial effect modification (e.g. according to area category) should be 
considered more routinely for diseases with a suspected environmental component. By 
contrast, the review by Uter and Pfahlberg (2001) showed environmental risk factors to be 
considered relatively infrequently in AR estimation. 

One avenue for research is the extent to which estimates of ARs based on individual 
multilevel data (which may be computationally demanding for large populations) may be 
approximated by ecological analysis, with areas only. The above analysis has shown 
significant impacts of both age and ethnic group, and so expected disease cases for each 
area would ideally be based on the ethnic and age structure of each area’s population. With 
expected events as an offset, one might then consider Poisson regression of area disease 
counts and an adaptation of the ratio estimator (3) to modelled disease counts by area. This 
would compare modelled counts based on actually observed neighbourhood risk factors 
(e.g. area obesity rates, area hypertension rates, area deprivation), with the counts 
predicted under a counterfactual model with (say) area obesity rates set to zero. 

Another benefit of the application here is in demonstrating the utility of a Bayesian 
estimation strategy. Estimation using MCMC methods leads to straightforward credible 
intervals (and full posterior densities) for attributable risks, which are based on a ratio 
estimator when there is regression adjustment for confounders. By contrast, complex 
variance calculations are needed under classical approaches. The same considerations apply 
to exposure specific area disease rates (here overweight specific diabetes rates by area) 
which are a product of area disease rates and attributable risks.  

A Bayesian estimation strategy also assists in allowing for model uncertainty via predictor 
selection, for example, among confounders and exposure-confounder interactions. In the 
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case study application to diabetes in London, collinearity was associated particularly with 
interactions between the exposure and confounders (e.g. interactions between excess 
weight and age group), and considerable model uncertainty was apparent. While classical 
approaches to variable selection in AR estimation include backward selection as in Stafford 
et al (2007), variable selection using a Bayesian approach is more flexible with a richer set of 
inferences, for example in terms of ranking predictors in importance through posterior 
probabilities of inclusion (Cui et al, 2010). 

The analysis here is illustrative and can be extended to estimation of ARs for multiple risk 
factors, such as joint ARs for diabetes in relation to both body weight and physical exercise 
(Bruzzi et al, 1985). There is also scope for estimating ARs from regression schemes allowing 
for both direct and indirect effects of the focus risk factor. The particular application in the 
paper has been to two London boroughs, and has shown variation in estimated ARs 
between area deprivation categories. However, the multilevel regression approaches to AR 
estimation considered are relevant for diseases other than diabetes where environmental 
influences are increasingly recognized as relevant.  

Appendix 1 Missing Data Imputation 

BMI values are assumed to be lognormal with regression means based on age (categories 
40-49, 50-59, 60-69, 70-74), ethnicity (categories white, black, south Asian, mixed-other), 
and hypertension diagnosis (binary). Ethnicity is assumed to be multinomial, and based on 
an additional dataset, the 2011 Census. Thus multinomial sampling is based on proportions 
in different ethnic groups that are specific to the subject’s age band (40-49, 50-59, 60-69, 
70-74), and to the middle level super output area (MSOA) level of the subject’s residence 
(there are 53 such areas in the study zone). That is, sampling of the 4 ethnic categories is 
carried out within 212 strata defined by subject age and MSOA of residence. K=5 data 
imputations are made after convergence of the missingness model, at intervals 100 
iterations apart. 

To allow for possible informative missingness in BMI values, the missingness model 
likelihood includes binary indicators R=1 if BMI is observed and R=0 if BMI is missing, and a 
logit regression of Pr(R=1) on age group, ethnic category, hypertension status and log(BMI). 
The analysis in fact shows the probability of being observed is positively related to BMI. This 
is consistent with the relatively high proportions overweight (all BMI > 25) in the complete 
data, namely 67%, whereas other sources (http://www.noo.org.uk/LA/obesity_prev/adults) 
suggest a lower figure of 63-64%.   

Suppose MCMC posterior means and variances of the K estimates of a parameter θ are 
q1,..,qK and V1,..,VK respectively, then within imputation variance of θ is estimated as 
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W= Σ
k=1

K
Vk/K, between imputation variance as B= Σ

k=1

K
 (qk-q

_
)2/(K-1), and total variance of the 

pooled estimate m
_

 of θ as T=B(1+1/K)+W. 

 

Appendix 2 

The models being estimated include multiple effects (fixed, random) and so assessing 
convergence of MCMC sampling is important. Convergence was satisfactory under both 
models using two chains, using one chain with default initial parameter settings (e.g. as 
adopted in the examples in the Winbugs package), and the initial parameter values in the 
the other chain based on running an exploratory single chain run from the default initial 
parameter settings. The default settings are zero for fixed effects and ones for precisions.   
 
Convergence is straightforward under all models (as judged by early attainment of BGR 
statistics approaching and essentially indistinguishable from 1) for fixed effect parameters 
{α, β, δ, Γ} and overall regression probabilities pij. Plots of the evolution of the BGR statistic 

are available under the “bgr diag” tool in Winbugs, as described in the Inference Menu of 
the Winbugs User Manual (Lunn et al, 2009). Values of the BGR near 1 indicate convergence, 
with 1.1 considered acceptable by Gelman and Hill (2007).  
 
To exemplify regression parameters, consider the varying effects {γ1g,γ2g,γ3g} of 

overweight, obesity class I and extreme obesity under model 2, and with the first imputed 
dataset. With a burn-in of 100 iterations, chain plots (Figure 4) indicate satisfactory mixing, 
and BGR statistics tend early to 1. MCMC convergence in hyperparameters for random 
effects is also sometimes an issue. We consider chain and BGR plots (Figures 5a, 5b) for the 
standard deviation κ of the spatial random effects vj, and corresponding plots (Figures 5c, 

5d) for the spatial correlation parameter ω. The trace plot for κ show some short term 
divergences in the sampling paths, but overall mixing is satisfactory, and BGR statistics as 
judged by plots obtained using the “bgr diag” tool in Winbugs show early convergence in 
both parameters (well before iteration 5000). 
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Highlights 

Considers issues in estimating  attributable ratios for multilevel data for diseases subject to 

environmental risk  

Finds 25% of diabetes is attributable  to excess bodyweight, but with the attributable ratio varying 

almost three fold according to area deprivation level.  

Finds considerable model uncertainty using a Bayesian variable selection approach. 



Model 1 Model 2

DIC 38965.9 38937.1

DIC (effective parameters) 29.1 91.6

WAIC 38966.2 38937.6

WAIC (effective parameters) 29.2 91.8

Brier Score (Mean) (x 100) 6.405 6.394

Brier Score 95% LL 6.397 6.383

Brier Score 95% UL 6.413 6.404

Posterior Predictive p‐value (%)

PPPV based on unweighted residual sum of squares 35.2 34.9

PPPV based on Hosmer‐Lemeshow statistic 46.7 43.3

Table 1 Model Fit and Check Statistics



Mean St devn 2.5% 97.5%

Overall 0.246 0.016 0.214 0.277

Deprivation Quintile 1 0.161 0.030 0.102 0.219

Deprivation Quintile 2 0.126 0.024 0.078 0.174

Deprivation Quintile 3 0.254 0.024 0.207 0.301

Deprivation Quintile 4 0.319 0.025 0.269 0.369

Deprivation Quintile 5 0.340 0.030 0.281 0.400

Table 2 Attributable Ratios, Diabetes and BMI, by Area Deprivation Quintile



% of diabetic subjects 

who are obese

Diabetes relative risk (model 2), (with 95% intervals). 

Obese compared to normal weight subjects

Quintile 1 40 1.87 (1.86,1.88)

Quintile 2 38 1.77 (1.76,1.78)

Quintile 3 36 1.93 (1.92,1.94)

Quintile 4 47 2.57 (2.56,2.59)

Quintile 5 48 2.73 (2.72,2.75)

Table 3 Variations in Attributable Risk Components by Area Deprivation Quintile



Parameter Description Mean St devn
Relative 

Efficiency

Retention 

probability

 Overweight effect, deprivation quintile 1 0.030 0.067 0.991 0.462

 Overweight effect, deprivation quintile 2 ‐0.015 0.056 0.995 0.347

 Overweight effect, deprivation quintile 3 0.332 0.082 0.976 0.998

 Overweight effect, deprivation quintile 4 0.289 0.087 0.982 0.995

 Overweight effect, deprivation quintile 5 0.339 0.098 0.984 0.996

 Obesity class 1 effect, deprivation quintile 1 0.415 0.096 0.960 1

 Obesity class 1 effect, deprivation quintile 2 0.328 0.099 0.954 1

 Obesity class 1 effect, deprivation quintile 3 0.384 0.093 0.981 0.999

 Obesity class 1 effect, deprivation quintile 4 0.577 0.093 0.992 1

 Obesity class 1 effect, deprivation quintile 5 0.639 0.102 0.983 1

 Highly obese effect, deprivation quintile 1 0.709 0.113 0.970 1

 Highly obese effect, deprivation quintile 2 0.591 0.113 0.966 1

 Highly obese effect, deprivation quintile 3 0.872 0.109 0.968 1

 Highly obese effect, deprivation quintile 4 1.115 0.096 0.995 1

 Highly obese effect, deprivation quintile 5 1.156 0.106 0.999 1

 Hypertension 1.204 0.029 0.999 1

 Age 50‐59 0.717 0.072 0.987 1

 Age 60‐69 1.071 0.068 0.980 1

 Age 70‐74 1.197 0.074 0.984 1

 Black Ethnic 0.296 0.092 0.964 0.990

 South Asian Ethnic 1.150 0.071 0.985 1

 Other/Mixed Ethnic 0.234 0.078 0.938 0.979

 Age 50‐59 * all overweight (interaction) 0.050 0.078 0.980 0.460

 Age 60‐69 * all overweight (interaction) 0.035 0.071 0.963 0.391

 Age 70‐74 * all overweight (interaction) 0.004 0.071 0.976 0.383

 Black *all overweight (interaction) ‐0.008 0.083 0.989 0.440

 South Asian * all overweight (interaction) ‐0.014 0.070 0.981 0.413

 Other/Mixed * all overweight (interaction) 0.030 0.074 0.966 0.400

Contextual Mean St devn
Relative 

Efficiency

Retention 

probability

 Deprivation 0.021 0.032 0.997 0.451

 Pollution 0.008 0.029 0.999 0.277

 GreenSpace 0.000 0.021 0.999 0.227

 
Mean St devn

Relative 

Efficiency

 Spatial dependence 0.700 0.205 0.998

 St devn of spatial residuals 0.231 0.043 0.998

 Lasso hyperparameter 1.461 0.336 0.995

Table 4 Parameter Estimates for Model 2 (Pooled Estimates)

Other Parameters



Borough Ward

Income 

deprivation 

score

Attributable risk (%)
Diabetes Prevalence 

(%)

Obesity‐specific Diabetes 

Prevalence (%)

Abbey 0.267 24.1 (23.4,24.8) 9.57 (9.54,9.6) 2.2 (2.14,2.27)

Alibon 0.278 34.9 (34.3,35.6) 8.5 (8.47,8.53) 2.84 (2.79,2.89)

Becontree 0.250 31.7 (31.1,32.5) 9.09 (9.05,9.13) 2.75 (2.7,2.82)

Chadwell Heath 0.271 28.8 (28,29.5) 8.81 (8.77,8.85) 2.41 (2.35,2.47)

Eastbrook 0.185 24.9 (24.3,25.7) 7.51 (7.48,7.54) 1.79 (1.74,1.84)

Eastbury 0.273 33.1 (32.5,33.7) 9.76 (9.72,9.8) 3.09 (3.04,3.14)

Gascoigne 0.356 31.6 (31,32.3) 8.73 (8.69,8.76) 2.65 (2.59,2.7)

Goresbrook 0.271 35.3 (34.8,35.9) 8.96 (8.92,8.99) 3.03 (2.97,3.08)

Heath 0.311 34.3 (33.6,34.9) 8.8 (8.77,8.84) 2.87 (2.82,2.93)

Longbridge 0.171 23.5 (22.8,24.2) 9.92 (9.88,9.96) 2.23 (2.17,2.3)

Mayesbrook 0.288 35.8 (35.3,36.4) 9.15 (9.11,9.19) 3.14 (3.09,3.19)

Parsloes 0.285 36 (35.3,36.7) 8.71 (8.68,8.75) 2.99 (2.93,3.05)

River 0.246 32.5 (31.9,33) 8.88 (8.84,8.91) 2.75 (2.7,2.81)

Thames 0.299 33.9 (33.2,34.6) 9.32 (9.28,9.35) 3.03 (2.97,3.09)

Valence 0.279 34 (33.3,34.6) 9.21 (9.17,9.24) 2.98 (2.92,3.04)

Village 0.277 33.1 (32.5,33.7) 8.84 (8.81,8.87) 2.79 (2.75,2.85)

Whalebone 0.189 26.4 (25.7,27.1) 8.48 (8.44,8.52) 2.13 (2.07,2.19)

Havering Brooklands 0.148 18.7 (18,19.3) 6.61 (6.59,6.64) 1.17 (1.14,1.21)

Cranham 0.063 17.7 (17,18.4) 6.14 (6.12,6.16) 1.03 (0.99,1.07)

Elm Park 0.134 18.7 (18.1,19.4) 6.69 (6.67,6.72) 1.19 (1.15,1.24)

Emerson Park 0.059 14.4 (13.8,15.1) 6.58 (6.56,6.6) 0.9 (0.86,0.94)

Gooshays 0.266 28.9 (28.3,29.4) 7.02 (7,7.04) 1.93 (1.89,1.97)

Hacton 0.074 16.7 (16.1,17.4) 6.29 (6.27,6.31) 1 (0.97,1.04)

Harold Wood 0.125 16.7 (16,17.3) 5.9 (5.89,5.93) 0.93 (0.9,0.97)

Havering Park 0.172 20.8 (20.2,21.4) 7.06 (7.04,7.09) 1.4 (1.35,1.44)

Heaton 0.243 27.5 (26.9,28) 7.5 (7.48,7.53) 1.96 (1.92,2)

Hylands 0.083 17 (16.3,17.6) 6.45 (6.43,6.47) 1.04 (1,1.08)

Mawneys 0.120 15.6 (14.9,16.3) 6.28 (6.26,6.3) 0.93 (0.89,0.97)

Pettits 0.079 15.6 (14.9,16.2) 6.27 (6.26,6.29) 0.93 (0.89,0.97)

Rainham‐Wenningto 0.129 20.8 (20.2,21.5) 7.49 (7.46,7.51) 1.48 (1.44,1.53)

Romford Town 0.122 20.2 (19.7,20.8) 6.45 (6.43,6.47) 1.24 (1.2,1.27)

South Hornchurch 0.098 17.5 (16.9,18.2) 6.11 (6.09,6.13) 1.02 (0.98,1.05)

Squirrel's Heath 0.161 22.3 (21.7,22.9) 7.55 (7.52,7.57) 1.6 (1.56,1.64)

St Andrew's 0.077 15.8 (15.1,16.5) 5.81 (5.79,5.83) 0.87 (0.83,0.91)

Upminster 0.042 15.9 (15.2,16.5) 5.99 (5.97,6.02) 0.9 (0.86,0.94)

Barking & 

Dagenham

Posterior Means and 95% Credible Intervals

Table 5 Area Profile: Deprivation, Obesity‐Related Diabetes ARs, Total and Obesity‐specific Diabetes Prevalence (%)



 

   

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 1 Attributable Ratios by LSOA Income Deprivation Quintile

Mean

2.5%

97.5%



                  Figuree 2 Posterior Prrobabilitties thatt vj > 0 

 



            

 

        Figurre 3 Attribbutable Rissk Estimattes for Eleectoral Waards 

 



 

Figure 4 Trace Plots for Effects (γ1g,γ2g,γ3g) of Overweight, Obesity Class I and Extreme Obesity 



 

                                 Figure 5 Chain plots, 5(a) and 5(c) for κ and ω respectively; BGR plots, 5(b) and 5(d) for κ and ω respectively 


