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Abstract

The Internet of things (IoT) is one of the main use cases of ultra massive machine

type communications (umMTC), which aims to connect large-scale short packet sensors

or devices in sixth-generation (6G) systems. This rapid increase in connected devices

requires efficient utilization of limited spectrum resources. To this end, non-orthogonal

multiple access (NOMA) is considered a promising solution due to its potential for mas-

sive connectivity over the same time/frequency resource block (RB). The IoT users’

have the characteristics of different features such as sporadic transmission, high battery

life cycle, minimum data rate requirements, and different QoS requirements. Therefore,

keeping in view these characteristics, it is necessary for IoT networks with NOMA to

allocate resources more appropriately and efficiently. Moreover, due to the absence of

1) learning capabilities, 2) scalability, 3) low complexity, and 4) long-term resource op-

timization, conventional optimization approaches are not suitable for IoT networks with

time-varying communication channels and dynamic network access. This thesis provides

machine learning (ML) based resource allocation methods to optimize the long-term re-

sources for IoT users according to their characteristics and dynamic environment.

First, we design a tractable framework based on model-free reinforcement learning

(RL) for downlink NOMA IoT networks to allocate resources dynamically. More specifi-

cally, we use actor critic deep reinforcement learning (ACDRL) to improve the sum rate

of IoT users. This model can optimize the resource allocation for different users in a

dynamic and multi-cell scenario. The state space in the proposed framework is based

on the three-dimensional association among multiple IoT users, multiple base stations

(BSs), and multiple sub-channels. In order to find the optimal resources solution for

the maximization of sum rate problem in network and explore the dynamic environment

better, this work utilizes the instantaneous data rate as a reward. The proposed ACDRL

algorithm is scalable and handles different network loads. The proposed ACDRL-D and
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ACDRL-C algorithms outperform DRL and RL in terms of convergence speed and data

rate by 23.5% and 30.3%, respectively. Additionally, the proposed scheme provides bet-

ter sum rate as compare to orthogonal multiple access (OMA).

Second, similar to sum rate maximization problem, energy efficiency (EE) is a key

problem, especially for applications where battery replacement is costly or difficult to

replace. For example, the sensors with different QoS requirements are deployed in ra-

dioactive areas, hidden in walls, and in pressurized pipes. Therefore, for such scenarios,

energy cooperation schemes are required. To maximize the EE of different IoT users,

i.e., grant-free (GF) and grant-based (GB) in the network with uplink NOMA, we pro-

pose an RL based semi-centralized optimization framework. In particular, this work

applied proximal policy optimization (PPO) algorithm for GB users and to optimize

the EE for GF users, a multi-agent deep Q-network where used with the aid of a relay

node. Numerical results demonstrate that the suggested algorithm increases the EE of

GB users compared to random and fixed power allocations methods. Moreover, results

shows superiority in the EE of GF users over the benchmark scheme (convex optimiza-

tion). Furthermore, we show that the increase in the number of GB users has a strong

correlation with the EE of both types of users.

Third, we develop an efficient model-free backscatter communication (BAC) approach

with simultaneously downlink and uplink NOMA system to jointly optimize the transmit

power of downlink IoT users and the reflection coefficient of uplink backscatter devices

using a reinforcement learning algorithm, namely, soft actor critic (SAC). With the

advantage of entropy regularization, the SAC agent learns to explore and exploit the

dynamic BAC-NOMA network efficiently. Numerical results unveil the superiority of

the proposed algorithm over the conventional optimization approach in terms of the

average sum rate of uplink backscatter devices. We show that the network with multiple

downlink users obtained a higher reward for a large number of iterations. Moreover, the

proposed algorithm outperforms the benchmark scheme and BAC with OMA in terms

of sum rate, self-interference coefficients, noise levels, QoS requirements, and cell radii.
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Chapter 1

Introduction

1.1 On the Way to 6G and Beyond

Massive Internet of Things (IoT) is expected to connect billions of devices simultaneously

to enable industries or individuals to achieve their full potential. The rise of new appli-

cations, such as smart health care systems, self driving, and intelligent home systems,

are innovated through massive IoT. In these applications, the massive IoT devices or

users connectivity is fully automated without any human involvement [1]. The charac-

teristics of cellular system generations are illustrated in Fig 1.1 to show the improvement

of the generations of cellular system through different years where the users capability

and services increased. However, the fourth generation (4G) mobile communication sys-

tem has increasingly struggled to keep up with human expectations due to the growth

of the mobile internet, proliferating smart terminals, and massive IoT. In addition to

these requirements, the need for higher throughput, wireless cellular technology has al-

ways evolved. Data rates have steadily increased from tens of kbit/s to tens of Mbit/s

as the world moved from second generation (2G) systems to 4G systems [2, 3]. One

key attribute that differentiates the generations of different wireless systems from each

other is the multiple access technologies [2, 4]. These are the code division multiple ac-

cess (CDMA), time division multiple access (TDMA), frequency division multiple access

1
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(FDMA), and orthogonal frequency division multiple access (OFDMA) for first genera-

tion (1G), 2G, third generation partnership project (3G), and 4G wireless communication

systems, respectively [5, 6]. Moreover, the main focused areas of fifth generation (5G)

and beyond includes the ultra-reliable low latency communications (URLLC), enhanced

mobile broadband (eMBB), and massive machine type communication (mMTC).

2G
~1990

3G
~2000

5G
~2020

Voice only

Voice and SMS

Internet

Internet of 
applications

Massive broadband
 and IoT

Cellular system generations

U
se

r 
ca

p
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ili
ty

1G
~1980

4G
~2010

6G
~2025

Towards a fully digital and 
connected world

Figure 1.1: The evaluation of cellular technology with corresponding characteristics

The communication requirements for meeting the needs of the industry that URLLC,

eMBB, and mMTC help address are briefly summarised as follows: 1) The spectral

efficiency is projected to increase by 5 to 15 times compared to 4G, 2) the connectivity

density target is 10 times higher than that of 4G, and 3) 5G is expected to meet the

demands for low latency (radio latency of ≤1 ms), low cost (100 times the cost efficiency

of 4G), and the support of various compelling services [7]. Thus, advanced solutions

must be created to meet these demanding standards. Compare to 5G cellular system

generation, the future of Sixth Generation (6G) technology is expected to be higher

achievements such as spectral efficiency and coverage, energy efficiency, Ultra-low latency,

and extremely high reliability [8]. Compare to 5G, the latency in 6G is less than 0.1 ms

where in 5G is less than 1 ms only. The connectivity of number of devices increased 10
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times in 6G where this generation can cover up to 10 million devices/km2. Moreover,

the energy efficiency consider on of the important part of improving 6G technology. The

achievable energy efficacy improve in the level of the user equipment such as between

machines or objects. With strong learning ability by apply artificial intelligence (AI),

6G network can learn and adapt itself where it can support diverse services accordingly

without human intervention [9]. Moreover, AI help the wireless network in 6G to improve

the reliability within devices connectivity where this network use ultrahigh reliability and

ultra low latency communication services. Fig 1.2 shows some of the difference between

5G and 6G in term of capacity, energy efficiency, connectivity, reliability and latency.

5G

URLLCeMMB

mMTC

6G

Extremely high reliability
up to 99.99999%
up to 99.999%

Energy efficient
Very high
low

Massive connectivity
Up to 10 million devices/km2
Up to 1 million devices/km2 

Area traffic capacity 
1000-10000 (Mb/s/m2)
10 (Mb/s/m2)

Extremely low latency
< 0.1 ms
< 1 ms 

Artificial Intelligence integration
Fully
Partially

Figure 1.2: 5G and 6G technologies

These multiple access systems fall under the category of orthogonal multiple access

(OMA) from the perspective of their design principles, where wireless resources are

orthogonally assigned to many users in the time, frequency, and coding domains, or

depending on their combinations. This orthogonality has been used suppress cross-user

interference [2–4].

By using these approaches, the information signals of users can be separated with

low-cost and low-complexity receivers [7]. However, the OMA’s availability of orthogonal

resources places a cap on the number of supported users. Another issue is that even

when orthogonal resources are used in the time, frequency, or code domains, channel-
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induced impairments almost always degrade their orthogonality. As a result, meeting the

extreme spectral efficiency and massive connectivity requirements of 5G remains difficult

for OMA.

The power domain non-orthogonal multiple access (NOMA) is considered a potential

5G and beyond multiple access technique with the ability to improve spectrum efficiency

and increase connectivity. NOMA can be distinguished into two main categories: code-

domain and power-domain. Both approaches have their advantages and disadvantages.

Based on the design considerations of our work, we applied power domain which fit

the specific requirements of the wireless communication system design of our proposed

model.

Therefore, in this thesis, we investigate the resource optimization in power domain

NOMA because of several reasons. First, power domain have flexible resource allocation.

Based on the channel conditions and quality of service (QoS) of the user, the resource

can be dynamically allocated [10]. Also, power domain have better scalability compare

to code domain. Large number of users can be applied since power domain relies on

adjusting power levels. It can accommodate more users in the resource block with

in same time and frequency and it is suitable for massive IoT. Finally, power domain

show significant performance gains in terms of spectral efficiency and throughput within

different channel conditions [11].

In downlink communication, power domain NOMA multiplexes multiple users signals

over a resource block (RB) with the help of superposition coding (SC) at the transmit-

ter, and successive interference cancellation (SIC) is used to separate these signals at the

receiver [12]. In uplink power domain NOMA, multiple users transmit their signals over

a RB using pre-allocated power levels. These different power levels are used by the base

station (BS) for multi user detection (MUD) with the help of SIC. The BS uses the re-

ceived power difference of multiplex users over a RB and attempts to recover the signals

in descending order (based on received power strength). However, to fully exploit the

benefits of NOMA, more sophisticated and intelligent algorithms are required to allocate
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power and sub-channel to uplink/downlink users. Therefore, this thesis explores novel

approaches to suggest efficient and effective resource allocation techniques for downlink,

uplink and combine downlink and uplink NOMA scenarios to improve system perfor-

mance.

1.2 Artificial Intelligence in Wireless Communication

A minimum use of AI started in 5G. However, the future 6G communication will be

fully backed by AI and will achieve the target requirements intelligently. With the help

of Machine learning (ML), 6G wireless communication has been significantly improved,

especially when it comes to sensing, data mining, and predictive analysis.

Current wireless communication is heavily dependent on mathematical models, and

these models are being used for system structure. However, most of these models are

based on assumptions that may not be accurate, and for some scenarios, there may be

no mathematical model to represent the system. Additionally, such methods may not

be able to meet the 6G wireless communication requirements. The rapid increase in

connected devices produces a huge data set, which is considered as an enabler for ML,

as ML methods are heavily based on large data sets. Therefore, ML is considered as a

key enabler technology for 6G wireless communications.

Generally, ML categories are based on the training models, which can be regarded as

deep learning (DL) or reinforcement learning (RL). For DL, a large data set is required

to find patterns or predictions about the data. DL can be further divided into two

categories.

• Supervised Learning:

– Set of labelled samples are needed to learn or predict a mapping between the

input and output spaces.

– Discrete case, such as classification, and continuous case, such as regression.
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Table 1.1: Supervised deep learning vs unsupervised deep learning

Training Discrete Continuous Accuracy Number
data case case of results of classes

Supervised labelled classification regression high accurate known
Unsupervised unlabelled clustering dim-reduction less accurate not known

– High accuracy.

– Known number of classes.

• Unsupervised Learning:

– Classify unlabelled data into different clusters.

– Discrete case, such as clustering, and continuous case, such as dimensional

reduction.

– Low accuracy.

– Unknown number of classes.

Table 1.1 shows more details about the difference between the two categories. Moreover,

unlike DL, RL works without the requirements of pre-available data sets. An autonomous

decision-making entity, known as an agent, interacts with the environment and improves

its decision-making policy via trial and error. More details about ML is given in Section

2.5.

1.3 Motivation and Contributions

The 5G and beyond wireless networks are expected to connect every object and trans-

form it into an information source. The connected objects are known as the IoT and can

be characterized by sporadic transmission, minimum data rate, different QoS require-

ments, and long battery life. Therefore, considering these characteristics, it is important

for NOMA-based IoT networks to allocate resources appropriately and more efficiently.

Moreover, using convex optimization in wireless communication comes with many impor-
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Figure 1.3: Massive IoT requirements, problems, and solutions

tant issues, such as 1) learning capabilities, 2) scalability, 3) increased complexity, and

4) long-term resource optimization (further explained below). Therefore, conventional

optimization approaches are not suitable for IoT networks with time-varying communi-

cation channels and dynamic network access.

• Learning: Due to the absence of learning ability, the conventional methods for

resource optimization problems must be re-run from scratch when there is a small

change in the network parameters. Therefore, conventional approaches are not

feasible for long-term resource optimization problems.

• Scalability: Scalability is one of the main challenges next-generation cellular net-

works face. The resource optimization problem in wireless networks is non-deterministic

polynomial (NP) hard and combinatorial in nature; therefore, it is mathematically

intractable as the size of the network increases.

• Long-term optimization: In wireless communication and network management, the

long-term optimization mean the practice of optimizing network parameters, con-

figurations, and policies rather than focusing on short term metrics. By applying
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long-term optimization, the overall system model will achieve better performance

and more efficiency within the wireless networks. For example, long-term opti-

mization can lead to network stability and robustness over time by considering

future expected changes within the network conditions. Also, long-term optimiza-

tion lead to cost saving such as change of the network or upgrades or any reason.

Furthermore, sustainability is also another reason why long-term optimization is

important since it can help to improve the energy efficiency within the environ-

ment.

To provide massive connectivity and fulfill the requirements of IoT users (shown in

orange color in Fig. 1.3), such as low data rate, small latency, long-term resource opti-

mization, and energy efficiency (EE), the convex optimization (shown in yellow color in

Fig. 1.3) is one solution to fulfill theses requirements. However, convex optimization has

some limitations and problems, including complexity, learning capabilities, scalability,

and long-term resource optimization (shown in red color in Fig. 1.3). Although ML

algorithms are beneficial for wireless communication, they also have several drawbacks.

One issue is that they require large, diverse datasets, which can lead to overfitting and

increased energy consumption and latency issues. Additionally, wireless environments

are dynamic and can challenge the adaptability of ML models. Furthermore, balanc-

ing exploration and exploitation and hyperparameters tuning are also challenging. To

counter problems with convex optimization, ML is considered as a viable solution. Dif-

ferent ML based algorithms (shown in green color in Fig. 1.3) are available and can be

used according to the considered optimization problem. These algorithms are thoroughly

explained in Chapter 2.

Resource allocation in 6G networks using convex optimization faces significant chal-

lenges owing to the complexity of networks and diverse requirements. As 6G networks

are expected to support a vast number of devices with varying bandwidth and latency

requirements, scalability is a major concern for convex optimization models [13]. These

networks are characterized by a dynamic and heterogeneous environment, encompassing
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services such as eMBB, URLLC, and mMTC, making the creation of suitable convex

optimization models challenging [14]. Energy efficiency is another critical factor that

requires a balance between resource allocation and energy consumption owing to the

growing number of devices and the demand for high data rates [15]. The high mobil-

ity of users results in variable network conditions, and the need for advanced interfer-

ence management in dense environments adds to the complexity of convex optimization.

Moreover, ensuring high QoS and quality of experience (QoE) further complicates opti-

mization models . These issues underline the need for innovative approaches to resource

management in order to meet the high demands for speed, reliability, and performance

in 6G networks [16]. Therefore, ML is considered a promising alternative to solutions

based on convex optimization.

Motivated by the problems with convex optimization and requirements of IoT users,

this thesis proposes promising ML-based solutions to enhance network efficiency assisted

by NOMA. The main contributions of this thesis are listed below:

• Chapter 3: To dynamically allocate resources in multi-cell downlink NOMA IoT

networks and maximize the sum-rate, we designed a tractable framework based

on RL. We used actor critic deep reinforcement learning (ACDRL) to particularly

optimise the power allocation for various users in a dynamic and multi-cell situ-

ation to maximise the sum rate of IoT users. The three-dimensional association

between users, sub-channels, and BSs serves as the foundation for the state space

in the suggested architecture. This work uses the instantaneous data rate as a

reward to find the best response to the sum rate maximisation problem and better

explore the dynamic environment. The suggested ACDRL algorithm scales well

and can manage various network demands. In terms of the long-term sum rate, the

simulation results demonstrate that the suggested solution for a multi-cell network

with NOMA is superior to traditional RL, deep-RL (DRL) algorithms, and OMA

methods.

• Chapter 4: Due to the exponential growth in the number of connected devices,
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especially as IoT technology gains widespread adoption, highly efficient energy

management is required to ensure network stability and reliability. In addition,

the energy efficiency of these networks directly impacts the battery life of mobile

devices. Devices that are deployed in remote or inaccessible locations require long-

lasting batteries, particularly for 6G networks and beyond. For instance, sensors

with various QoS requirements are placed in pressurised pipes, hidden in walls, and

placed in radioactive locations. Hence, energy cooperation plans must be made

for such circumstances [17]. Therefore, in this chapter, grant-based (GB) and

grant-free (GF) IoT users’ EE is maximised using a semi-centralized framework

for NOMA IoT networks. The EE of GB users is maximised using the proximal

policy optimization (PPO) technique, and the resources for GF users are optimised

using a multi-agent deep Q-network with the help of a relay node. The suggested

framework blends the benefits of centralised and distributed architectures to make

up for their drawbacks. The suggested approach improves the EE of GB users

compared to the random power allocation and fixed power allocation strategies.

Additionally, the numerical results show that GF users’ EE is superior to the

benchmark scheme. We also demonstrate a significant association between the rise

of GB users (relay users) and the EE of GB and GF users.

• Chapter 5: In this chapter, we designed an efficient model-free backscatter commu-

nication (BAC) approach to assist the base station with complex resource schedul-

ing tasks (for both uplink and downlink) in dynamic BAC-NOMA IoT networks

to enhance the sum rate of uplink backscatter devices. In particular, we jointly

optimize the transmit power of downlink IoT users and the reflection coefficient

of uplink backscatter devices using a reinforcement learning algorithm, namely

soft-actor critic (SAC). The SAC agent learns to explore and exploit the dynamic

BAC-NOMA network efficiently due to the advantage of entropy regularization.

The suggested approach increases the aggregate rate of uplink backscatter devices

while maintaining the QoS needs of downlink users. The suggested algorithm out-
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performs the standard optimization (benchmark) strategy in terms of the average

sum rate of uplink backscatter devices. In terms of the average sum rate with var-

ious numbers of backscatter devices, the suggested method performs better than

the benchmark system and BAC with orthogonal multiple access. Furthermore, we

demonstrate how our suggested technique improves sum rate efficiency with regard

to various self-interference coefficients and noise levels. Finally, we compare the

proposed algorithm’s sum rate efficiency with various QoS criteria and cell radii.

1.4 Dissertation Organization

The remainder of the thesis is organised as follows. In Chapter 2, some fundamen-

tal concepts are introduced, and related work to this thesis are presented, including

the principles of NOMA, downlink and uplink transmission, backscatter communica-

tions, GB uplink principles, GF uplink principles, and the principles of ML. Chapter 3

investigates and proposes a novel technique with the effectiveness of actor-critic DRL

in resource allocation with multi-cell downlink NOMA and improved the throughput.

Chapter 4 proposes also a novel technique in the NOMA network, where we introduce

a relay node (GB users) to help the IoT (GF users) to improve the energy efficiency

with the help of semi-centralized machine learning design. Chapter 5 proposes a novel

backscatter NOMA communication where the SAC framework is adopted to improve

users’ sum rate. Chapter 6 provides the thesis summary and discusses the future re-

search directions.



Chapter 2

Background and Literature

Review

This chapter provides a background understanding of wireless communication and ma-

chine learning. Part one focuses on the IoT network using NOMA for downlink, uplink,

and simultaneous downlink and uplink. The cooperative NOMA and RL design for

downlink techniques is discussed in subsection 2.2. Subsection 2.3 describes the design

of cooperative NOMA and RL techniques for uplink communication. Section 2 describes

backscatter communication using various wireless techniques. Subsection 2.4 describes

backscatter communication using various wireless techniques with downlink/uplink OMA

and NOMA, while subsection 2.5 focuses on ML in wireless communication.

2.1 IoT Networks with NOMA

In 5G, the IoT is anticipated to be one of the largest technological trends in wireless

networks. 5G wireless network design is tailored to meet the need of massive IoT devices.

Most of the major drivers of 5G and beyond are high data rates, energy efficiency, and

massive connectivity for IoT devices with small data. According to authors in [18], the

expected number of IoT devices, such as phones, tablets, and sensors, will reach 125

12
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billion in 2030. Thus, an increasing number of IoT devices will lead to massive wireless

traffic over the limited spectrum resources. Resource management with OMA will be

challenging for a huge number of connected devices. Therefore, NOMA is considered a

suitable solution to solve the problem of traffic over the limited spectrum resources in

which different users can share the same time/frequency RB at the same time. However,

to fully utilize the benefits of NOMA, resource management and optimization is manda-

tory for IoT networks. NOMA can be used for both downlink and uplink IoT networks,

which is explained in the next section.

2.2 Downlink NOMA IoT Networks

In downlink NOMA IoT networks, the SC is applied at the BS to multiplex the signal

for downlink users on the same RB. The SIC is used on the receiver side to decode and

separate its signal from the combined signal. For the decoding order, in most cases where

IoT user close to BS, have stronger channel gain use SIC to decode his signal. The user

located far from the BS, usually with a weaker channel gain treats the IoT users with

higher signals as a noise.

2.2.1 Single-cell and multiple-cell Downlink NOMA Networks

NOMA is critical for enhancing spectral efficiency and accommodating a large number

of users in 5G and future wireless communication. Single-cell NOMA optimizes resource

allocation within the coverage area of a single base station, maximizing spectral effi-

ciency and throughput while effectively managing interference challenges. On the other

hand, multi-cell NOMA extends the benefits of NOMA to multiple neighboring cells, ad-

dressing inter-cell interference and coordinating resource allocation. However, multi-cell

NOMA is more complex due to inter-cell interference and requires efficient signaling and

mechanisms for user fairness. In a multiple cell downlink environment (as shown in Fig

2.2, where User 3 is located in the interference area between two BSs. The user receive

two signals one from BS 1 and one from BS 2), the composite signal from the b-th BS is
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denoted as:

yib,j = qib,jhib,j

√
Pib,jxib,j︸ ︷︷ ︸

Desired Signal

+
∑

ib,j ̸=i′b,j

qi′b,jhi
′
b,j

√
Pi′b,jxi

′
b,j︸ ︷︷ ︸

Intra-Cell Interference

+
I∑
i′ ̸=i

B∑
b′ ̸=b

qi′b′,jhi′b′,j

√
Pi′b′,jxi′b′,j︸ ︷︷ ︸

Inter-Cell Interference

+ n0︸︷︷︸
Noise

,

(2.1)

where the first part of the equation shows the desired signal for the i-th user connected

to b-th BS via the j-th sub-channel, and the rest of the equation (intra-cell interference,

inter-cell interference, and noise) is considered as interference from other users inside

the same cell or an interference from outside the cell. Therefor, qi,j denote the i-th user

connectivity via sub-channel j, hi,j channel gain for the i-th user connected to the j-th

sub-channel, Pi,j the received power for the BS to the i-th user connected to the j-th

sub-channel, xi,j the i-th user information connected to j-th sub-channel, and n0 is the

noise. The decoding order is based on the statistical channel state information (CSI),

where users with strong channel conditions are decoded first, and the last user to decode

has the weakest channel condition [19].

The SINR for the i-th user connected to the b-th BS via the j-th sub-channel can be

expressed as:

SINRib,j =
qib,jPib,j |hib,j |2∑

i′b,j ̸=ib,j
qi′b,jPi′b,j |hi′b,j |2 +

∑I
i′ ̸=i

∑
b′ ̸=bqi′b′,jPi′b′,j |hi′b′,j |2 + n2ib,j

. (2.2)

Finally, each IoT user calculates their data rate [19], which is shown in the following

equation.

Rib,j = B̂ log2(1 + SINRib,j ). (2.3)
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Table 2.1: Comparison of single cell and multi-cell NOMA network

Aspect Single cell Multiple cells

Configuration of the
network

A single cell operator Encompasses multiple
cells

Managing Interference Limited interference Higher potential for in-
terference from other
cells

Resource Allocation Resources allocated
within a single cell

Resources coordinated
and allocated across
multiple cell

Coverage Area Limited to only one cell
area

Extended coverage all
around multiple cells

Spectral Efficiency Low spectral efficiency
due to limited resources

High spectral efficiency
due resource sharing

QoS Flexibility Limited flexible in
meeting QoS require-
ments

Enhanced flexibility in
QoS needs

Complexity Low complexity High complexity due to
inter-cell interference

Both approaches leverage advanced signal processing and machine learning techniques,

and the choice between them depends on network requirements and deployment scenar-

ios.

The work on single-cell NOMA is presented in [20–28], while the research on multi-

cell NOMA is given in [19, 29–31]. Table 2.1 illustrates a comparison of single-cell and

multiple-cell networks from different aspects.

The work mentioned in [20] investigated the user pairing problem and showed that

the proposed scheme enhances the sum rate and individual rates compared to the OMA

system. The authors in [21] optimized the resource management in two stages. In the

first stage, they grouped the IoT users into different clusters, and then, power levels are

allocated to these users in the second stage. The authors in [22] improved both capacity

and cell-edge users’ throughput performance with different channel quality indicators at

the BS side. The proposed method improved the data rate for users in the cell-edge area.

In [23], the authors investigated the outage performance in terms of QoS of single-cell

downlink NOMA, which depends on choices of the users’ targeted data rate and allocated
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Figure 2.1: Downlink NOMA network with single-cell

power. The fairness of power allocation for downlink users in terms of instantaneous CSI

from the BS is studied in [24]. Furthermore, the same study focused on averaging the

CSI, which lead to low-complexity. The authors in [25] used the simultaneous wireless

information and power transfer (SWIPT) technique, where a near user to the BS can

act as energy harvesting to help far NOMA users to gain a better data rate to ensure

the QoS requirements. Moreover, the authors in [26] applied Q-learning based on smart

antennas to reduce cost, reduce complexity, minimise signal-to-interference-plus-noise

ratio (SINR), and enhance the overall sum rate. The authors in [27] used an advance

DRL algorithm, namely the actor critic algorithm, to optimize the power allocation

coefficient in a single-cell downlink NOMA system. Finally, to maximize the weighted-

sum throughput, a joint resource allocation scheme NOMA was proposed in [28]. The

simulation outcomes showed that the proposed intelligent scheme is more efficient than

benchmark schemes in terms of throughput and suppress interference, especially in a

multi-user setting.
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Figure 2.2: Multi-cell downlink NOMA IoT network

Fig 2.2 illustrates a multiple cell downlink NOMA network environment, where there

is multiple BSs and multiple IoT users connectivity. User 3 experiencing interference

from BS 2. Considering a multi-cell scenario, in [19], the authors enhanced the data rate

by optimizing the power of downlink multi-cell NOMA networks. By grouping IoT users

into different clusters, different power levels are allocated to different clusters. In [29],

the authors improved the spectral efficiency in multi-cell downlink NOMA by deriving

expressions for the transmission rate of the strongest IoT user (close to the BS) by using

a coordinated superposition coding scheme and getting a better data rate for the IoT

users in the cell-edge. The work in [30] evaluate the achievable data rate and outage

probability in downlink NOMA system. Based on these conditions (achievable data rate

and outage), two different methods were applied to improve NOMA system. To solve

the data set problem in wireless communication, RL algorithms were proposed and made

positive strides in wireless communication. RL algorithms address the resource allocation

problem in the NOMA network, which fulfils the dynamic requirements with different

entities. In [31], the authors proposed DRL to improve the sum rate of both orthogonal

and non-orthogonal multiple access. The aforementioned research work is summarized

in table 2.2.
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Table 2.2: Summary of work done on downlink NOMA with single and multiple cell NOMA networks

Ref. Objective Solution approach Category

[20] Compare NOMA with
TDMA statistically

Higher sum rate and individual
rates compared to the OMA system

Single
cell

[21] Optimize resource man-
agement

Proposed two stage method, first
grouped IoT into different clusters,
second power levels these groups.
Reduce system complexity

Single
cell

[22] Enhanced the capac-
ity and cell-edge user
throughput perfor-
mance

Investigated NOMA communication
baseline receiver scheme for robust
multiple access

Single
cell

[23] Investigated the outage
performance in NOMA
communication

The user QoS depends on chose
of targeted data rate and allocated
power

Single
cell

[24] For fairness of power al-
location in CSI

Investigated the instantaneous CSI
from BS that ensure fairness to the
users and average CSI

Single
cell

[25] Resource allocation de-
sign NOMA with si-
multaneous wireless in-
formation and power
transfer

Near NOMA users with high power
act as energy harvesting relays to
help far NOMA users

Single
cell

[26–
28]

Optimize resource allo-
cation using ML algo-
rithms

Enhanced the overall sum rate, re-
duce the system complexity, and
minimise SINR with different ML
algorithms

Single
cell

[19] Improved NOMA sys-
tem by dividing users
into different BSs’ clus-
ters

enhance the sum rate and outage
probability

Multiple
cell

[29] Improve the spectral ef-
ficiency

Deriving expressions for the trans-
mission rate of the strongest IoT by
using SC scheme and getting better
data rate for IoT in the cell-edge

multiple
cell

[30] Evaluate the achievable
data rate and the out-
age probability

Two different methods were applied
to improve NOMA system

multiple
cell

[31] Enhanced NOMA sys-
tem using DRL algo-
rithm

Improved the sum rate and reduce
the complexity

multiple
cell
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2.3 Uplink NOMA IoT Networks
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4- Request RRC
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6- Request GA

7- Connection Decision

8- If Need Repeat step 6&7

9- Data Transmission

1- Broadcast RA Preambles

2- Data Transmission

Figure 2.3: An illustration of single-cell uplink IoT NOMA network

In uplink NOMA transmission, the BS receives a combined signal from multiple IoT

users in same RB, as shown in Fig. 2.3. The composite signal received at the BS from

multiple users can be expressed as

y =
I∑
i=1

J∑
j=1

hi,j
√
Pi,jxi,j + n0, (2.4)

where xi,j , hi,j , and Pi,j denote the transmitted signal, channel gain, and transmit power

of the i-th user on sub-channel j, respectively. Here, n0 represents the additive Gaussian

noise with variance (0, σ2). The channel decoding order is Pi,jhi,j ≥ · · · ≥ PI,jhI,j . The

SINR for user i ∈ I can be given as follows:

SINRi,j =
Pi,j |hi,j |2∑I

i′ ̸=i Pi′,j |hi′,j |2+σ2
. (2.5)
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The data rate of each user is calculated as follows:

Ri,j = B̂ log2
(
1 + SINRi,j

)
. (2.6)

There are two primary types of users in wireless communication systems: GB and

GF users. The GB protocol requires users to obtain permission from the network or base

station before transmitting data, which increases signaling overhead but often results in

better QoS [32]. A GF user, on the other hand, can transmit data without a prior grant,

resulting in lower signaling overhead, but also potentially variable and less predictable

QoS. A resource allocation method between GB or GF is determined by the system

requirements and the trade-offs between signaling overheads, quality of service, and

complexity of the system [33]. Resource allocation is more controlled for GB users, while

signaling is reduced for GF users.

2.3.1 GB and GF Uplink NOMA

In GB NOMA transmissions, the communication between the sender (uplink NOMA

IoT users) and receiver (BS) is based on several handshakes. As shown in the top left

sub-figure of 2.3(a), the handshaking steps are as follows: 1) An available random access

(random access (RA)) preambles signal is broadcast from the BS to the user. 2) The GB

user updates the chosen random access preambles and identifies the occupied channels. 3)

random access response (RAR) are sent from the BS, which include several information,

such as resource allocation, data rates, and synchronization messages. These messages

contain the primary synchronization signal (PSS) and secondary synchronization signal

(SSS). 4) The GB user transmits the radio resource control (RRC). 5) The BS arranges

target resource blocks. Some time in this phase collision scenario happens, and user

needs to wait and retry sending to the channel. If there are no collisions, the GB user

occupies the allocated channel, and a connection request well be sent. 6) With the

permission accepted from the BS, the GB user transmits the data to the BS. In the top

left sub-figure of 2.3(a), the first five steps in the connection between the BS and GB
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users are combined as the resource allocation process. Steps six to eight are considered

the grant acquisition (GA) process. In step nine, the GB user transmits the data to the

BS [34].

In GF transmission, the users access the channel in an arrive-and-go manner, that is,

the user directly transmits its data without any prior handshake with the BS, as shown

in the top right sub-figure of 2.3 (b). The removal of the handshaking process reduces

the latency, but, it leads to frequent collisions. The GF transmission is suitable for IoT

networks, which need low latency and high energy efficiency [34].

2.3.1.1 Related Work on GB and GF NOMA IoT Networks

Different dynamic types of users in an uplink NOMA network applied based on specific

problems or requirements of the environment. Start with the aspects of both GB and GF

users, in the mater of resource allocation, the BS controls and schedules resources for GB

users, while GF users transmit without BS control. GB users suffer from high overhead

signals due to multiple handshakes, while GF users experience low overhead signals due

to their technique. With regards to the interference aspect, GF is uncontrolled since GF

simultaneously do transmission but GB users schedule their transmission based on the

handshake. Moreover, GB users have high QoS control, which increases the complexity.

GF users have limited QoS control but with low complexity. In terms of EE, GF users

have a higher energy efficiency due to the handshake mechanism compared to GB users.

More details about the characteristics of both GB and GF users are shown in Table 2.3.
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Table 2.3: Comparison of GB and GF uplink NOMA networks

Aspect GB user GF user

Resource Al-

location

BS control and scheduled the re-

source

GF user transmit without BS

control

User

Schedul-

ing

Based on multiple handshake GF user transmit with out hand-

shake

Overhead

Signaling

Due to multiple handshake, high

overhead signals

Low overhead signals due to GF

user transmit without handshake

Interference scheduled transmission with con-

trolled interference

Uncontrolled interference be-

cause of simultaneously trans-

mission

QoS High QoS control Limited QoS control

Complexity High complexity Low complexity

Energy Effi-

ciency

Efficient resource usage but with

overhead

High energy efficient due to

handshake mechanism

Moreover, by categorizing the type of users (GB and GF), there are a few challenging

features and solutions. All GB solution approaches are shown in [35–45] , while the

solution approaches with GF users are shown in [46–48] .

A GB-NOMA design was proposed by [35] with performance gains over the OMA

scheme in terms of spectral efficiency and fairness. To improve the uplink NOMA system,

the same authors in [35] applied multiple user detection in their system model, which

enhanced the fairness and spectral efficiency [36]. To reduce the implementation com-

plexity, the authors in [37] proposed a user-pairing policy based on the optimal scheme.

This policy was applied to multiple uplink NOMA IoT users.

Moreover, different novel techniques such as power control strategy, were applied in



Chapter 2. Background and Literature Review 23

[38]. This technique investigated the delay-limited sum rate and outage probability. In

[39], the authors applied an ML technique to solve the clustering and resource allocation

problem for NOMA systems. Moreover, the authors in [40] applied DRL to maximize the

computation rate in the multi-access edge area. In [41], the authors improved machine-

to-machine (M2M) communications in energy efficiency and considered the QoS using

DRL. Furthermore, the authors in [42] applied an ML method based on Q-learning

(RL technique) to solve resource allocation problems for the NOMA network based

on machine-type communication systems. It is shown in the results section that the

proposed schemes are more effective than conventional methods.

To overcome some other problems, such as the maximizing long-term sum energy

efficiency, a model-free technique was introduced in [43]. According to [44], the interplay

between NOMA and learning-based intelligent algorithms is desirable for the dynamic

performance enhancement of NOMA networks. Therefore, on the ML side, a deep deter-

ministic policy gradien (DDPG) strategy recently used an actor-critic approach in which

an actor network efficiently samples past memory for an action, and then a critic network

maximizes the probability of making the right decision in the action-selection process.

The authors in [45] used the DDPG algorithm to reduce the energy consumption and

reduce the system computation cost.

Several works investigating GF transmissions are given in [46–50]. In [46], a location-

oriented transmit power pool was designed for GF users to reduce the complexity by

reducing the information exchanges with the BS. The GF IoT users chose their transmit

power from the designed power pool solely according to their communication distances.

The authors in [47] improved the GF throughput by reducing the collisions in the system.

The authors used DRL to intelligently allocate resources to the GF users. In [48], the

authors successfully reduced the impact of the collision for URLLC with GF users where

the system needs to have a high success probability within 1 ms.

To find the relationship between optimal resource allocations and dynamic channel

conditions, a deep neural network (DNN) was used in [49]. This technique ensures the
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quality of service and improves the data rate for NOMA users, but with the drawback

of the data set requirement (which are not always available). Analyzing the complex

of channel characteristics within NOMA networks, the author in [50] applied the deep

learning framework to take advantage of the artificial neural network’s long short term

memory (LSTM). This enhances the system’s reliability and lowers the complexity. How-

ever, even with low latency and high energy efficiency features, GF transmission suffers

from several challenges, such as frequent collision and inability for multiple user detec-

tion [34]. The aforementioned research work is summarized in Table 2.4.

Table 2.4: Summary of work done on uplink GB NOMA and uplink GF NOMA networks

Ref. Objective Solution approach Category

[35, 36] Enhanced the spectral

efficiency and fairness

Using detection mechanism to en-

hance the fairness and spectral ef-

ficiency

GB-

NOMA

[37] Reduce complexity Proposed a user pairing policy based

on the optimal scheme

GB-

NOMA

[38] Investigated delay lim-

ited sum rate and out-

age probability

novel technique applied where the

system can do power control strat-

egy

GB-

NOMA

[39, 42,

44]

Improve system model

using ML algorithm

Enhanced resource allocation by us-

ing clustering technique with ML al-

gorithm

GB-

NOMA

[40] Improve multi-access

edge area using DRL

algorithm

Build DRL algorithm to maximize

the computation rate within edge

area

GB-

NOMA

[41, 43,

45]

Enhance energy effi-

ciency using DRL

Enhanced machine to machine com-

munications energy efficiency

GB-

NOMA
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Table 2.4: Summary of work done on uplink GB NOMA and uplink GF NOMA networks

Ref. Objective Solution approach Category

[46] Improved GF NOMA

system by dividing area

to multiple power pool

Enhance the sum rate and reduce

the complexity

GF-

NOMA

[47] Improved system

throughput using DRL

algorithm

Reduces signaling overhead and ac-

cess latency effectively

GF-

NOMA

[48] Enhanced URLLC Reduced impact of collision (high

success probability within 1ms)

GF-

NOMA

[49] Enhanced resource al-

locations and dynamic

channel conditions us-

ing DNN

Find the relationship between the

channel conditions and the resource

allocation which reduce the imple-

mentation complexity

GB-

NOMA

[50] Adding LSTM to the

uplink-NOMA system

Robust and efficient system GB-

NOMA

[51] Enhanced GF-NOMA

system by adding DQN

instead k-repetition

technique

Maximize the long-term average

number of successfully served users

GF-

NOMA

2.3.2 Semi-GF Uplink NOMA

Conventional GB schemes offer more data rates than the required. These redundant

resources might be used to provide connectivity to GF users in the same RB, which

forms the Semi-GF (SGF) NOMA scheme. In particular, both users share the same RB

for uplink transmission.
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2.3.2.1 Related Work on Semi-Grant-Free NOMA IoT Networks

SGF schemes are given in [34, 52–56]. The first work on SGF NOMA was proposed in

[52]. The authors in [52] proposed two SGF methods to limit the admitted GF users

to the same RB reserved by GB users. The proposed scheme ensures the QoS of GB

users, while GF users transmit with fixed power without considering the channel gain

or location of the users. A dynamic power allocation for GB users was proposed in

[53] using a conventional optimization approach to enhance the outage performance of

GF users without considering the impact of path loss. The work given in [54] assumed

a homogeneous distribution of users, and only the first two GF users with the largest

channel gain were admitted to ensure the GB users’ performance. The scheme presented

in [55] used stochastic geometry to analyze the ergodic rate and outage performance while

considering a dynamic threshold for admitting GF users. Moreover, multi-agent deep

reinforcement learning (MA-DRL) based SGF-NOMA was proposed in [56], where only

GF users’ transmit power is optimized, and GB users transmit with fixed power. The

SIC process used in the above-mentioned schemes has a severe effect on the performance

of GB and GF users in terms of EE. Because GB and GF users share the same RB

simultaneously, this adds to the complexity and energy consumption of these users. In

addition, direct access (to the BS) is the focus of existing work due to its simplicity.

However, path loss increases with increasing distance, resulting in low energy efficiency

and reduced rates. To overcome the effect of distance-dependent path loss, in the existing

work, the source node needs to transmit at higher power [57]. However, IoT users have

small processing and limited transmit power capability, which makes it impractical to

communicate over a long distance.

2.4 Backscatter and Multiple Access Communication for

IoT Networks

There are different solutions to energies IoT sensors using wireless communication, start-

ing from the general concept such as energy harvesting transmit systems that prioritize
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Figure 2.4: An illustration of BAC-NOMA network with downlink IoT and uplink backscatter devices

energy harvesting and autonomy when needed. Also, an energy harvesting transmission

system captures energy from the surrounding environment, such as radio frequency (RF)

signals, solar energy, and sunlight. Then it stores this energy in a battery. While BAC

relays on just the RF signal from the transmitter. This RF can excite the circuit of

other IoT devices. Moreover, BAC focuses on low power. By relying on RF, IoT devices

receive their energy in a simultaneously way and do not require any batteries. Another

technique used to power IoT devices is called wireless power transfer (WPT), which

involves transmitting power from the transmitter. The receiver stores this power in a

battery. Therefore, the technique is used based on the design requirement.

There are several advantages that determine the use of backscatter, such as low-cost

implementation, low power, and reliance on RF signals. However, there are also several

technical challenges to overcome, including increased signal interference and collisions

(as users rely on reflecting existing signals), low data rates (compared to traditional

wireless communication), and the challenge of determining the location of backscatter
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devices [58–60].

Furthermore, most of the small IoT devices are equipped with small batteries, which

are difficult to recharge or replace, such as sensors installed inside a wall [61, 62]. One

solution to this problem is WPT or BAC. In WPT, energy is transferred using RF signals

[61].

In traditional BAC, one device signal can excite the circuit of other devices [62]. By

applying multiple access communication with BAC, many IoT devices work the battery

less to improve the energy efficiency of the system. Fig. 2.4 illustrates a communication

scenario, where a full-duplex base station (FDBS) sends signals to downlink users and re-

ceives signals from uplink backscatter devices simultaneously. The channel gain between

BS and all users is denote as hD0 (for downlink) and hUk
(for uplink backscatter device).

Moreover, the channel gain between downlink users and uplink backscatter devices is

denoted as g(D0, Uk). The idea behind this communication is to use the downlink signal

to excite the circuit of uplink backscatter devices. Different from other techniques, such

as power transfer, this technique helps to save energy since part of the power is allocated

to different devices without affecting the QoS for the downlink devices.

Backscatter communication operates on a different principle compared to conven-

tional wireless communication. It involves the modulation and reflection of an existing

RF signal, which is generated by an external source. Devices that utilize backscatter

communication, such as RFID tags, do not generate their own RF signals. Instead, they

modify the characteristics of incoming signals (e.g., by altering the phase or amplitude)

and relay them back to a receiver. This method consumes far less power than conven-

tional wireless transmission because the backscatter device does not have to produce its

own signal [63].

Integrating Backscatter Communication with NOMA is particularly significant in the

context of 5G and future wireless networks. NOMA is a crucial technology in 5G that

enables multiple users to share the same frequency resources, thereby enhancing the ef-
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ficiency of spectrum utilization. When combined with the energy efficiency of BAC, it

creates new possibilities for massive device connectivity, which is a fundamental aspect of

the IoT. The low power requirement of BAC makes it possible to deploy a large number

of sensors and devices, which is critical for the IoT paradigm. Furthermore, the cost-

effectiveness of BAC devices makes them suitable for widespread implementation, which

is a necessary step in order to fully realize the potential of IoT. Although Backscatter

Communication has several advantages, its implementation, especially in advanced wire-

less networks with NOMA, presents several technical challenges. BAC is limited by its

relatively short range and low data rate compared with active wireless methods. As a

result, long-range communication and high data throughput scenarios pose challenges.

Interference management is another challenge in dense network environments, where sev-

eral backscattering devices coexist with other wireless communications. The detection

and decoding of backscattered signals in the presence of this interference is a complex

process. To ensure operational efficiency and compatibility, BAC and NOMA must be

integrated into existing wireless infrastructure. Finally, developing industry standards

for BAC and its integration with technologies like NOMA is necessary to ensure inter-

operability.

2.4.1 Backscatter Communication with OMA

Different studies investigating BAC in orthogonal multiple access are available in the

literature. For example, the work in [64] investigates the power allocation problem for

cooperative BAC to maximize the system’s achievable rate. The authors in [65] provided

a closed-form solution for outage probability. The authors in [66] investigated the trade-

off between data rate and harvested energy via the power-splitting factor. They also

derived a closed-form solution for outage probability over Rayleigh fading channels. In

[67], the authors developed a multi-level energy detector and calculated a closed-form

expression for the symbol error rate. Meanwhile, the authors in [68] maximized the

throughput of BAC-OMA by optimizing the reflection coefficient and showing the trade-

off between the sleep and active states. Moreover, in [69], the authors improved the
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security and reliability of BAC-OMA by calculating the outage and intercept probability

of the system. Finally, using backscatter communication with multiple access helps to

improve wireless communication. As we start with BAC-OMA, there are some challenges

in using BAC-OMA in wireless communication. First, the resource allocation for users

is not fairly shared in the network. Moreover, using BAC-OMA, the system model can

be costly to scale up to a large number of IoT devices.

2.4.2 Backscatter Communication with NOMA

In BAC-NOMA, the downlink users share the same RB with uplink backscatter devices.

For example, the downlink user D0 receives the signal from the BS with added interfer-

ence from the uplink backscatter devices, as the downlink user utilizes the same time

slot with the uplink backscatter devices. Equation (2.7) represents the calculated signal

yD0 for the downlink user D0

yD0 =hD0

√
PD0xD0︸ ︷︷ ︸

Desired Signal

+

UK∑
Uk=1

gkhk
√
PD0ηkxD0xUk︸ ︷︷ ︸

Intra-Cell (Uk) Interference

+ nD0︸︷︷︸
Noise

.
(2.7)

The first part of equation (2.7) is the intended signal for user D0 from the BS, and

the second part represents the interference from uplink backscatter devices. The channel

gain between the downlink user D0 and BS is denoted as hD0 . Moreover, the channel

gain between the downlink user D0 and uplink IoT devices Uk is denoted as gk. The

noise is denoted by nD0 .

The sum rate for uplink backscatter devices that is achievable by BAC-NOMA trans-

mission can be given as:

Rsum = B̂ log2

(
1 +

∑UK
Uk=1 |hk|4ηkPD0 |xD0 |2

φPD0 |hSI |2 + σ2

)
, (2.8)

where, in this system model, we assume that noise for both the BS and downlink user
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D0 have the same power; it is denoted as σ2. Finally, the data rate for the downlink

user is calculated as:

RD0 = B̂ log2

(
1 +

PD0 |hD0 |2∑UK
Uk=1 |hk|2|gk|2ηkPD0 + σ2

)
. (2.9)

2.4.2.1 Related Work on BAC-NOMA

Recently, NOMA enabled BAC has been investigated in the literature. In [70], a source

was equipped with multiple antennae, and a closed-form expression was derived for

outage probability. Furthermore, the authors in [71] derived a closed-form expression

for ergodic capacity and outage probability in the vehicle to everything network with

BAC-NOMA to enhance the sum capacity of the network. Security issues was discussed

in [72]. A successful bit rate was maximized by optimizing unmanned aerial vehicles’

(UAVs) altitude in [73]. The average successful decoding bits was improved in [63] by

optimizing the reflection coefficient selection criteria in BAC-NOMA networks. System

minimum throughput was maximized by optimizing the time and reflection coefficient

[74]. The outage probability and system throughput were investigated in [75]. The

physical layer security of multiple-input single output was studied in [76]. The authors

in [77] optimized the transmit power and reflection coefficient to increase the energy

efficiency of BAC-NOMA. The reliability and security of BAC-NOMA were investigated

in [78]. Finally, to maximize the sum rate of BAC-NOMA with imperfect SIC, the joint

power and reflection coefficient optimization problem was investigated in [79].

2.5 Artificial Intelligence and Machine Learning for Wire-

less Communications

Current wireless networks mainly rely on mathematical models to specify the commu-

nication system’s structure. These mathematical models do not adequately represent

the systems. Additionally, some of the structural components of wireless networks and

devices do not have mathematical models, making it difficult to represent them. On the
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Figure 2.5: An illustration of different ML methods

other hand, the optimization of wireless networks necessitates complicated mathematical

solutions that are inefficient in terms of computational complexity and energy efficiency.

Therefore, the existing mathematical model-based solutions are most likely to fall

short of the standard requirements set by 5G and beyond applications. Hence, the

future 5G and beyond networks will be heavily dependent on AI and ML, as AI and

ML can model systems that cannot be represented by mathematical equations [80, 81].

Through AI, human-like behaviour is generally achieved, which enables the machines to

make intelligent decisions and achieve specific goals. AI technologies will improve system

performance, reliability, and adaptability of communication networks by making real-

time robust decisions based on predictions of the networks’ and users’ behaviours. AI has

the potential to minimise manual network development, configuration, and management

work and even replace it. ML is considered an application of AI that enables machines

to act appropriately by learning from a vast amount of data or by interactions with

the environment without being explicitly programmed. ML spans three paradigms [82]

(given in Fig. 2.5) discussed in the following sub-sections.
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2.5.1 Supervised Learning

Supervised learning is an ML-based process that aims to train a model to learn input-to-

output mapping functions using a data set with labels [82]. These algorithms are devel-

oped for regression and classification problems. Some of the well-developed supervised

learning algorithms used in 5G and beyond networks include linear regression, logistic

regression, support vector machine, K nearest neighbours, and decision tree. These algo-

rithms should be used in network and physical layers. In the network layer, supervised

learning methods can be used for traffic classification, delay mitigation, caching and so

on. Moreover, in the physical layer these methods can be used for channel decoding, and

channel state estimation etc.

2.5.2 Unsupervised Learning

Unsupervised learning is an ML-based method for discovering hidden patterns in un-

labeled data sets [82]. Anomaly detection, autoencoders, clustering, and expectation

maximisation algorithm are examples of frequently used unsupervised learning methods.

Unsupervised learning techniques can be applied to network layer tasks, including param-

eter prediction, traffic control, and routing, whereas at the physical layer, unsupervised

methods can be used for channel-aware feature extraction and optimal modulation [83].

2.5.3 Reinforcement Learning

RL is an ML framework to deal with sequential decision-making problems under un-

certainty. RL involves self-learning entities, known as agent(s), to maximize long-term

system performance by interactions with the RL environment [82], as given in Fig. 2.6.

In the RL framework, agents continuously learn the most effective actions to perform

in a given state. This learning occurs at discrete time steps, denoted as (t). At each

of these steps, the agent observes the current state of the environment, s(t), and based

on this information, decides on an action, a(t), to execute. The environment, in turn,

evaluates this action and responds with a reward signal, r(t), which serves as feedback to

the agent, along with the subsequent state, s(t+1). This reward informs the agent of the
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Figure 2.6: An illustration of the reinforcement learning life cycle, where the agent interacts with the environment
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Figure 2.7: The Markov decision process of RL

effectiveness of its actions, guiding it towards strategies that yield the highest reward

over time, and ultimately, the best long-term performance.
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Figure 2.8: Multi-Armed Bandits where the agent takes multi actions to maximise the total reward

2.5.3.1 Fundamentals of RL

To solve the problem using RL, the problem can be mathematically formulated as a

Markov decision process (MDP), shown in Fig. 2.7. An MDP consists of a tuple of

(S,A,R,P).

• State Space S: This is a finite set of states that an agent can traverse. A state is

a piece of relevant information about the environment.

• Action Space A: This is the set of all actions available to the agent.

• Reward R: This is the immediate return (numeric value) after taking action in a

given state.

• Transition probability P: The probability of transitioning from the current state

to the next state.

Some of the RL algorithms include Q-learning and multi-armed bandits, explained in

the next section.
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1. Multi-Arm Bandit: A single agent participates in a multi-armed bandits (MAB)

model in which each action is followed by a random reward produced by a corre-

sponding distribution with the goal of maximising the total reward. In this model,

there is a trade-off between performing the best action right now (exploitation)

and learning information to get a bigger payoff later on (exploration). Tuning this

parameter is called the temperature [84]. The MAB learning process is given in

Fig. 2.8.

2. Q-Learning:

To solve the formulated MDP using Q-learning, the agent learns Q-values based on

the agents’ actions. The Q-learning procedure is given in Fig. 2.9(a). At each time

step (t) during the learning process, the agent observes the current state and selects

the action following its policy π, upon which it get a reward r(t). Subsequently, the

agent moves to the next s(t+1), and the agent recursively uses the policy to take

an action given the current state until the maximum sum of rewards are obtained

(i.e., to find an optimal π∗), where a policy can be defined as mapping from state

to actions. The goal of an RL agent is to maximize the long-term cumulative

discounted reward given below,

r(t) =

∞∑
k=0

γkr(t+k+1), (2.10)

where γ is the discount factor and its value is between zero and one, k represents

the number of training episodes, and t is the time step in each episode.

The classical Q-learning is based on the Q-value function (Qπ(s(t), a(t))), which is

the expected return in a given learning step, we have

Qπ(s(t), a(t)) = Eπ
[
r(t)|s = s(0), a = a(0)

]
, (2.11)

where values obtained by equation (2.11) are known as Q-values or actions values.
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Table 2.5: Q-table [action, state]

a1 a2
s1 Q1,1(s1, a1) Q1,2(s1, a2)
s2 Q2,1(s2, a1) Q2,2(s2, a2)
... ... ...
sN1 QN1,1(sN1 , a1) QN1,2(sN1 , a2)

By solving the formulated MDP, the agent(s) reaches an optimal policy π∗, which

leads the agent to a maximum reward [85]. The associated optimal Q-function Q∗

to the optimal policy π∗ can be given as

Qπ
∗
(s(t), a(t)) =

∑
s(t+1)∈S

Pa
s→s(t+1)

(
R(s(t), a(t)) + γ max

a(t+1)
Q∗(s(t+1), a(t+1))

)
. (2.12)

To maximize the reward, the agent takes action based on the following expression:

a(t) = argmax
a(t)∈A

Q(s(t), a(t)). (2.13)

In classical Q-learning, the agent requires a table known as the Q-table, which

includes all state action pairs (given in Table 2.5) from which the agent chooses an

action from a given state based on ϵ-greedy policy. The agent takes a random action

based on the ϵ to efficiently explore the environment. However, after sufficient

exploration, the agent selects the action in a given state with a maximum Q-value

based on 1-ϵ [86]. After performing action a(t) in a given state s(t), an agent gains

a new experience and updates the Q-value in the Q-table.

More specifically, in a training step (t), when an agent performs an action a(t) in

a given state s(t), the agent then receives r(t) and goes to the next state s(t+1).

Based on this process, the corresponding Q-value can be updated as

Q(s(t), a(t))← r(t) + γ max
a(t)∈A

Q(s(t+1), a(t)). (2.14)



Chapter 2. Background and Literature Review 38

A
g

en
t

EnvironmentState

Observe state

A
g

en
t

EnvironmentState

Observe state

DNN

Policy 

π (s,a)

Parameters   

Reward

Reward

a) Q-Learning

b) Deep Q-Learning

Q-table

Figure 2.9: Transfer from Q-learning to deep Q-learning

2.5.4 Deep Reinforcement Learning

DRL is the combination of neural network (NN) and RL. In DRL, a NN, known as a

deep Q-network, is used to predict the Q-values that enable the agent to learn directly

from the data. In particular, the Q-table of Q-learning is replaced (shown in Fig. 2.9) by

a replay memory to avoid computational complexity problems. The experiences (state,

action, reward, next state) generated during the interaction with the environment are

stored in the replay memory and sampled to train the deep Q-network (DQN).

The main components and process of the DQN are given in Fig. 2.10. Conventional

Q-learning is expensive for massive IoT scenarios, as the size of the Q-table increases

and leads to memory and computational complexity issues. To solve this problem, the

authors in [86] introduced DRL, where they replaced the Q-table with a NN. The NN

works as a function approximator Q(s(t), a(t); θ) with weights θ. An agent with a DQN

uses two NNs, a primary DQN and a target DQN. During the interaction with the
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Figure 2.10: The main components and process of the DQN

environment, the agent forms a tuple of s(t), action a(t), reward r(t), and next state

s(t+1) and stores it to its replay memory. To train the DQN and update its weights, the

agent samples mini batches randomly from its memory and minimizes the loss between

the actual Q-value and target Q-value. The target value produced by the target network

can be expressed as

y(t) = r(t) + γ argmax
a(t+1)∈A

Q(s(t+1), a(t+1); θ̂), (2.15)

where θ̂ represents the target Q-network weights. To train the primary Q-network, the

loss between the Q-network and target network can be expressed as

L(θ) =
(
y(t) −Q(t)(s(t), a(t+1); θ)

)2
. (2.16)
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2.5.5 Proximal Policy Optimization Learning

PPO is considered as one of the simplest in the RL algorithm family. Moreover, PPO is

known for minimal hyperparameter tuning; therefore, it is easy to tune the parameter in

a wireless network. PPO starts with one agent and is updated with multiple agents in

future research [87, 88]. PPO can maintain smooth gradual gradient updates in the neu-

ral network, which leads to continuous improvement and avoids unrecoverable crashes in

learning. In PPO, the algorithm looks within two different policies: the current policy,

which the agent learns, and the baseline policy, which is an earlier version of the policy.

The current policy is represented as πθ(a
(t)|s(t)), and the old policy established after ex-

perience is represented as πθi(a
(t)|s(t)). This early policy is obtained from some previous

experience in the past during the training time. Therefore, PPO uses these two different

policies and makes a comparison where the agent uses the ratio between them to reach

the optimization for better performance. In other words, PPO estimates how good an

action made is compared to the average action from state space. The ratio between these

policies can be defined as r(t)(θ) = πθ(a
(t)|s(t)/πθi(a(t)|s(t)). Furthermore, it estimates a

trust region where an agent can safely take reasonable steps in the right direction with-

out falling off the learning cliff. Therefore, the agent’s steps depend on whether the step

is large or small based on hazards nearby or cliffs. The new objective function where

PPO optimize whether the new policy is far from the old policy is represented as

LθCLIPi (θ) = Eτ≈πi

[
T∑
t=0

[
min

(
r(t)(θ)Â(t)πi , clip

(
r(t)(θ)1−ϵ, 1+ϵ

)
Â(t)πi

)]]
, (2.17)

where i = 0 is the initial policy, and i = 1 is the next policy. If the probability ration

between the new policy and the old policy is outside the range (which is 1-ϵ and 1+ϵ),

the advantage function will be clipped. Therefore, the agent can take a huge step if the

current policy is not different from the old policy. In order to encourages stable and

controlled the updated policy while doing the training, the minimum value between the

original value and the clipped value is taken into account by the objective function of
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PPO. In other word, if the probability ratio between two policy (the old one and the new

one) get out side the the range (1-ϵ and 1+ϵ) the advantage function will be clipped.

[87].

2.5.6 Actor Critic Deep Reinforcement Learning

DDPG is also one of the RL algorithms family, where deterministic is contrasted with

stochastic. This algorithm can handle continuous action space. The DDPG has two

different neural networks where the first neural network is called an actor and the second

is called a critic. Traditional RL algorithms are based on simple Q-table and epsilon-

based simple exploration/exploitation methods (greedy approaches) and are therefore

prone to poor policy learning. However, the ACDRL has an exploration/exploitation

feature and can handle continuous action space, which further enhances the learning

process. Fig 2.11 shows that the actor network takes the state as an input and optimal

action as an output. This optimal action is considered the same as the optimal policy,

which is a∗(s) = argmax
a

Q(s, a). Where the critic network validates and criticises

stat-action tuple. This Q-network takes state and action as the inputs and outputs

the corresponding Q-value. This is to measure how good the action is from the actor

network. Therefore, the equation of the Q-value can be used (Q = reward + discount

value . Q next). Thus,

∇θµJ ≈Es(t+1)

[
∇θµQ(s(t), a(t)|θQ)|s(t)=s(t+1),at=µ(s(t+1)|θµ)

]
=Es(t+1)

[
∇aQ(s(t), a(t)|θQ)|s(t)=s(t+1),a(t)=µ(st+1)∇θµµ(s

(t)|θµ)|s(t)=s(t+1)

]
.

(2.18)

• Initialization:

To begin the optimization processes, initialized the actor and critic network as

µ(s|θµ) and Q(s, a|θQ), with weights as θµ and θQ. We also initialized the target

networks µ′ and Q′ with their weights θµ
′ ← θµ and θQ

′ ← θQ. Finally, we

initialized the replay buffer as D.
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Figure 2.11: An illustration of the actor and critic model

• Learning Architecture Process:

For each episode, the agent initializes a random process N for action exploration.

Next, the agent receives the state. For each iteration in the episode, the agent

receive a state as input and take the action as a∗(s) = argmax
a

Q(s, a) +N . Next,

the same state is considered as an input for the critic network. Also, the output

action from the actor added as input for the critic network. The output of critic

network is known as Q-value which is the expected total reward for the current

state and action pair. This tuple (action a(t), stat s(t), reward r(t), and next state

s(t+1)) are stored in D. After that, the agent use this data (random mini batch

sample) from D to update both actor and critic networks. Next, the agent update

the target networks wights and minimize the loss. The loss function is expressed

as L = 1
N

∑
i

(
yi − Q(si, ai|θQ)

)2
, where yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′)

. In

addition, the agent updates the actor policy, which is expressed as

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si . (2.19)
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The updated target networks shows for the actor and critic as θµ
′ ← τθµ+(1−τ)θµ′

and θQ
′ ← τθQ + (1− τ)θQ′

.

Therefore, the actor-critic algorithm can learn the dynamic environment of the actor

and critic networks.

2.5.7 Soft Actor-Critic Learning

SAC is a variation of the actor-critic algorithm that uses a soft value function instead of

a hard one. Rather than maximising the expected reward, SAC maximizes the expected

entropy-weighted reward. Exploration is encouraged by the entropy term, so the agent

will not be stuck in a local optimum. In SAC, there are three neural networks: the actor

network, the critic network, and the temperature parameter network. Actor networks

output actions based on the current environment state. Taking into account the actor’s

action and the current state of the environment, the critic network outputs a Q-value. A

temperature parameter network scales the entropy term based on the current environ-

ment state. The detailed process of SAC is given below.

• Initialization:

To begin the optimization processes, network environment parameters and training

hyperparameters are initialized. Based on the environment, the maximum episodes

and iterations are defined. Moreover, replay memory and batch size are initialized

and used by the agent to store and learn from the previous experiences. Finally,

the brain of the SAC agent is initialized as three different neural networks (actor,

critic, and value) to learn the optimal policy.

• Brain Architecture:

SAC considered fully connected neural networks (FCNNs) architecture for the brain

of the proposed agent because FCNNs are considered efficient architecture of artifi-

cial neural networks to process the dynamic environment [39, 46, 89]. Additionally,

to dynamically tune/adjust the network weights, SAC can be equipped with a for-
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Figure 2.12: An illustration of the actor, critic, and value neural networks model

ward and backward propagation mechanism to the brain of the SAC agent. The

feed-forward propagation mainly performs the functions of neuron activation, neu-

ron transfer, and forward propagation. First, the neuron activation computes the

weighted sum for the input and the bias. The neuron transfer invokes the acti-

vation function, such as the rectified linear unit (ReLU), to activate the neurons.

Finally, forward propagation is the process of providing input to the next layer.
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This process happens for all the remaining layers.

After doing the feed-forward propagation, the back propagation helps to increase

the stability of the weights updated in the neural network. This is based on two

main factors: Transfer derivative and error back propagation. Moreover, the op-

timization function in this model is based on an adaptive moment estimation op-

timizer (Adam) to optimize the error between the weight and the bias. Finally,

to get robust stable learning and optimize the requirement, SAC use the following

three neural networks.

– Actor Network (ϕ):

This model is based on the throughput maximization policy πϕ(s
(t), a(t)). The

architecture of the actor network is shown in Fig. 2.12, where the input and

output for the actor network are highlighted within a red coloured box. The

architecture of this network consists of one input layer and two hidden layers

with ReLU activation functions, feed-forward propagation, backpropagation,

loss function, Adam optimizer, and output mechanisms to perform efficient

action in the dynamic environment. Starting with the inputs, the actor net-

work receives states as input from the environment. The first hidden layer

receives the network environment information, that is, output propagated

from the first layer activated by the ReLU activation function. The output

of this hidden layer is in the form of weights and bias. The same process

continues with the second hidden layer until the final output. We utilize the

Adam optimizer to compute the gradients used in updating the weights of the

neural networks, thus minimizing the overall loss when predicting the output,

which is an action a(t). Generally, this back-propagation process helps the

neural network to minimize the weight prediction errors by adjusting neural

network weights during the learning process.
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The updated parameters of the actor network are:

ϕ← ϕ− λπ▽̂ϕZπ(ϕ). (2.20)

– Critic Network (θ): Similar to the first neural network architecture (actor),

the critic network follows the same architectural design. The architecture of

the critic network is shown in Fig. 2.12, where the details of the input and

output are highlighted within a yellow coloured box. The input of this network

is different from that of the actor network, which is based on the state and

action at each time slot t. The function of the critic network is to learn the

current Q-value in the future key value by calculating the Bellman equation.

For this reason, the input of the critic network is different from the actor

network. As the name suggests, the Bellman equation is updated with soft

Q updates. The soft Q-function is denoted as Qθ(s
(t), a(t)). Finally, the Q-

function update is as follows:

θ ← θ − λQ▽̂θZQ(θ). (2.21)

– Value Network and Target Value Network (ψ, ψ̄):

The value network is denoted by V (t)(ψ), and the target value network is

denoted by V (t+1) (ψ̄). The architecture of the value network follows the

same design as the actor and critic networks. As shown in Fig. 2.12, the

details of the input and output are highlighted within a green coloured box.

The input of these networks is the state to predict the current and target

values for the given state. To learn the efficient requirements via policy π,

the value network output V (t) seeks to minimize the error between the two

value networks to assist the agent efficiently. The value network is updated
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with the help of the following equation:

ψ ← ψ − λV ▽̂ψZV (ψ). (2.22)

Similarly, the target value network V t+1 is updated with the following equa-

tion:

ψ̄ ← τψ + (1− τ)(ψ̄), (2.23)

where τ represents the smoothing coefficient of the target value. The function

τ is used to stabilize the training process of the SAC agent. The higher the

value of τ , the faster the updating of the value network. Due to this, the

learning becomes unstable. However, the smaller target value coefficient leads

to slow updates. This helps the SAC agent learn efficiently.

In a variety of continuous control tasks, SAC outperforms other state-of-the-art RL

algorithms. However, training and tuning hyperparameters can be computationally ex-

pensive.

2.6 Chapter Summary

An overview of NOMA, BAC, and ML has been presented in this chapter. In particu-

lar, we discussed the NOMA transmission for both downlink and uplink communication,

followed by BAC-NOMA communication. Several challenges and motivations have been

highlighted for the downlink NOMA, such as enhancing data rate and reducing model

complexity. In the case of uplink NOMA, different challenges are encountered, includ-

ing enhancing the data rate, QoS, EE, reducing interference, especially with different

types of users, namely, GB and GF. The simultaneous downlink-uplink NOMA presents

challenges related to the increase in complexity, improvement of QoS, and reduction of

interference. To address some of these challenges and problems, state-of-the-art opti-

mization solutions have been applied using various ML algorithms, each with its unique
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features and characteristics tailored for wireless communication. The next chapter delves

into the optimization process for downlink NOMA networks using ML techniques.



Chapter 3

An Efficient Actor Critic DRL

Framework for Resource

Allocation in Multi-cell Downlink

NOMA

3.1 Introduction

One of the key technologies in beyond 5G and 6G wireless networks is NOMA. Unlike

OMA networks, NOMA can efficiently share the resource among multiple users thanks

to the network’s expansion. Resource allocation in NOMA network becomes complex

due to the dynamic nature of the communication channels and network access. The

research application of NOMA are used in different scenarios such as downlink, uplink

and simultaneous downlink and uplink networks. This chapter focuses on the application

of downlink NOMA, while subsequent chapters will discuss the uplink network and the

simultaneous downlink and uplink NOMA network.

Improving the downlink NOMA network involves adapting to dynamic network envi-

49
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ronment. This lead to enhance the resource allocation, improved throughput, reduce the

complexity, minimize the interference, and increase EE. To address some challenges of

dynamic network management, model free techniques have been recommended [39, 49].

Both approaches utilize ML to understand and learn the relationship between optimal

resource allocations and dynamic channel conditions, ensuring the QoS for each NOMA

user. However, the drawback of adopting some ML algorithms are the requirement of

huge trusted training datasets [90, 91] which are not always available. Therefore, apply-

ing solution such as RL algorithms considered a suitable to learn the wireless network

environment. Interestingly, the new variant of RL algorithms is designed to achieve the

human level controls for real-time environment [86]. The extended version of RL al-

gorithms introduces various DNNs to solve complex problems with a large state-action

space, which forms different DRL algorithms. Recently, a new DRL approach with two

DNNs, i.e., Actor and Critic networks, was proposed to efficiently learn policies in high

dimensional, continuous action spaces [43]. The designed of the network needed to be

improved such as low the complexity, enhance the network environment and many more.

To further investigate the effect downlink NOMA system with multiple BSs, the

proposed model aiming for high data rate, decrease the complexity, improve the QoS

and many more, this work proposes a novel state space design for ACDRL algorithms to

learn high dimensional or continuous action spaces and achieve faster convergence. The

proposed ACDRL algorithms reduce complexity when tasked to learn discrete action

spaces (ACDRL-D), and even more so, they enhance performance in continuous action

spaces (ACDRL-C).

3.1.1 Contributions

In multi-cell downlink NOMA systems, which utilize convex optimization, several inher-

ent challenges exist. These challenges include managing intra- and inter-cell interfer-

ence, which complicates efficient resource allocation and user fairness. The process of

user pairing and clustering, which is crucial for NOMA’s performance, presents compu-
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tational difficulties due to its combinatorial nature and the need to balance efficiency

and fairness. Moreover, power allocation, which is a key factor in maximizing system

capacity, is impeded by the non-linear nature of the problem and the dynamic wire-

less environment. This makes it computationally intensive and challenging to achieve a

global optimum. Furthermore, the computational requirements for solving these convex

optimization problems, especially in real-time situations, raise concerns about scalability

and latency, particularly as the user count increases. These complexities highlight the

need for advanced solutions to fully harness the potential of NOMA in future wireless

networks. Therefore, we proposed the ACDRL system model to enhance throughput

and reduce complexity.

The key contributions include;

• We utilize the ACDRL model with two DNNs to handle realistic state-action space

for the long-term resource allocations of multi-cell downlink NOMA systems. We

designed an efficient action space that helps the agent to perform resource alloca-

tion depending on continuous actions to achieve better convergence. Each action

represents sub-channel assignment and power allocation operations.

• We developed a state space that represents 3D associations among users, base

stations (with varying transmission power levels), and sub-channels.

• Similarly, the proposed continuous actions and the rewarding mechanism are based

on data rates of network users to direct the agents for long-term resource alloca-

tions.

• With the help of a reward function for the proposed state and action space, the

convergence is achieved within less number of episodes. Also, the proposed algo-

rithm outperforms DRL with 30.3% increase in data rate.
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3.2 System Model and Problem Formulation

This section illustrate the proposed system model in Sub-section 3.2.1 and problem

formulation in Sub-section 3.2.2.

3.2.1 System Model

N
O
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Figure 3.1: Illustrates multi-cell downlink NOMA network by using model-free ACDRL optimization algorithm

This chapter considers a multi-cell downlink NOMA network as shown in Fig. 3.1. B,

I, J , denotes the number of BSs, setup users, and number of sub-channels, respectively.

All BSs are using single antenna. In the considered region, the locations of BSs are fixed.

To enhance the generality, users have random locations across each transmission time

slot. We assume that every BS has perfect CSI, transmission power P dBm, bandwidth

B̂, and J as orthogonal sub-channels, so each sub-channel has B̂/J bandwidth. Each

user i communicated to BS b via sub-channel j is denoted by ib,j , where (i ∈ [1, I], b ∈

[1, B], j ∈ [1, J ]). We use qib,j to indicate the existence of user-BS connection between

user ib,j and BS b via sub-channel j . Therefore, a user-BS connection, qib,j = 1 means

this connection is active, otherwise qib,j = 0. We assume that the channel gains on sub-

channel j of BS b follow the order to |hib,j |2 ≥ ... ≥ |hIb,j |2, where ib,j and Ib,j are the

users with the strongest and weakest channel conditions respectively [19]. According to
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NOMA principles, the user ib,j first cancels the signals of the rest of the users till the

last user Ib,j via SIC before it decodes its own information. The received signal for the

user ib,j is,

yib,j = qib,jhib,j

√
Pib,jxib,j︸ ︷︷ ︸

Desired Signal

+
∑

ib,j ̸=i′b,j

qi′b,jhi
′
b,j

√
Pi′b,jxi

′
b,j︸ ︷︷ ︸

Intra-Cell Interference

+
I∑
i′ ̸=i

B∑
b′ ̸=b

qi′b′,jhi′b′,j

√
Pi′b′,jxi′b′,j︸ ︷︷ ︸

Inter-Cell Interference

+ n0︸︷︷︸
Noise

,

(3.1)

where n0 represents noise and Pib,j represents the transmit power for the i-th user con-

nected to the b-th BS via the j-th sub-channel. The decoding order is based on the

statistical CSI, where users with strong channel conditions are decoded first, and the

last user to decode has the weakest channel condition [19].

The SINR for the i-th user connected to the b-th BS via sub-channel j-th can be

expressed as:

SINRib,j =
qib,jPib,j |hib,j |2∑I

i′b,j ̸=ib,j
qi′b,jPi′b,j |hi′b,j |2 +

∑I
i′ ̸=i

∑B
b′ ̸=bqi′b′,jPi′b′,j |hi′b′,j |2 + n2ib,j

. (3.2)

The achievable data rate for user ib,j is given by:

Rib,j = B̂ log2(1 + SINRib,j ). (3.3)

3.2.2 Problem Formulation

In order to derive an optimal resource allocation strategy, we formulate a problem to

maximize the long-term achievable data rate for a period of T :
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max
Pt

I∑
i=1

B∑
b=1

J∑
j=1

T∑
t=1

Rib,j (t)/T (3.4a)

s.t :|hib,j |
2(t) ≥ ... ≥ |hIb,j |

2(t), ∀i, b, j, t, (3.4b)

Rib,j > Rγ , ∀i, b, j, t, (3.4c)

2 ≤
Ib,j∑
ib,j=1

qib,j
(t) ≤ Ib,j , ∀b, j, t, (3.4d)

B∑
b=1

qib,j
(t) = 1, ∀i, (3.4e)

Ib,j∑
ib,j=1

q
(t)
ib,j
Pib,j

(t) ≤ Pmax, ∀b, t, (3.4f)

q
(t)
ib,j
∈ {0, 1}, ∀b, j, t, (3.4g)

where Pt is the transmit power of the BS. T represents the network time slot and for each

time slot t, (3.4b) represent the decoding order, (3.4c) is to ensure that the rate for the

weakest user should never be less than the minimum rate (Rγ=0). (3.4d) implies that the

number of users for each sub-channel and each BS is in the range [2, ib,j ], (3.4e) ensures

that a user can connect to only one BS at a time. (3.4f) limits the power consumption

for each BS and the maximal transmit power for the BS is Pmax. (3.4g) shows that the

user connectivity is 1 or 0.

Due to multi-cell settings, the optimization of the problem defined in (3.4a) is mixed

integer linear programming problem [92]. Therefore, we optimize the resource allocation

by using machine learning technique to provide long-term solutions to the formulated

problem.
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3.3 Actor Critic Based Learning Networks

In order to tackle the optimization problem defined above, we propose DDPG actor-critic,

that is equipped with the power of two neural networks (actor and critic network) to

learn the complex multi-cell downlink NOMA systems. The actor network is responsible

to perform optimal actions, while to assist actor network, the estimation of state and

action for the Q-value is the responsibility of the critic network [93]. In the proposed

design, we have an agent who have to be experienced (knowledgeable enough about

the environment) to maximize the resource allocations. In order to strike a balance

between exploration and exploitation while learning from the environment, we equip our

DDPG with actor and critic networks to learn the efficient long-term allocation policy.

Consequently, to drive the long-term policy, the actor network is responsible for selecting

and performing optimal actions, while the estimation of the Q-value is done by the critic

network for each state and action pair [94].

3.3.1 The ACDRL Design Elements

Actor critic networks rely on the MDP to navigate through the environment, which is

a downlink NOMA network. At each time step t during the learning process, the agent

observes the current state and selects the action following its policy π, i.e., Qπ(s(t), a(t)),

upon which it receives a reward r(t). Subsequently, the agent transitions to the next

state st+1 and the agent recursively uses the policy to take the action in the given state

until the maximum sum of rewards are obtained. The MDP for the formulated problem

is defined as:

• Environment: The multi-cell downlink NOMA network is the learning environ-

ment for the proposed ACDRL agent. Using this environment we define the fol-

lowing significant elements for the ACDRL agent to achieve the long-term resource

allocation.

• Agent: We assume that all BSs are controlled by a central server connected via a
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high-speed backbone. Therefore, due to the sophisticated design of the proposed

state and action, all the BSs jointly optimize long-term average rewards.

• State space (S): We assume 3D associations which are a combination of all BSs

(B), users (I), and sub-channels (J) associations. Each single state at a time slot

t is represented as an association between the three elements of user, BS power

level (Pl), and sub-channel as in (3.5) and therefore, the entire state space size the

agent navigates is the union of all possible states as in (3.6).

s(t) = {ib,j , Plib,j , hib,j}
I
i=1 (3.5)

S =
⋃

b∈[1,B],j∈[1,J ],l∈[1,5]

s(t)(∀i) (3.6)

• Action space (A): The action is to assign the power to each i-th user that is

connected to b-th BS via the j-th sub-channel. Therefore, the action is defined as:

a(t) ={q11,1 (t), . . . , qib,j
(t), . . . , qIB,J

(t),

P11,1
(t), . . . , Pib,j

(t), . . . , PIB,J

(t)},
(3.7)

• Exploration: The actor network is a significant component of the ACDRL agent

as it guides towards the final solution. Therefore, effective exploration of the

environment is the key to find the diverse solution. For this reason, to encourage

the agent for more exploration, the N (t) is a noise which added to the action a(t)

to increase the exploration with the agent. The equation to perform the action for

the given state is defined as follows:

a(t) = µ(s(t)|θµ) +N (t), (3.8)

where the output of the actor network is represented by µ and actor network
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weights are denoted by θ. We leverage the actor critic design to increase the

learning efficiency, and thus treat the problem of exploration independently from

the learning algorithm.

• Reward (R): The objective of the learning model is to maximize the long-term

reward. In the time slot t, the agent receives the reward r(t). The reward function

used in this model is defined as follows:

r(t)(s(t), a(t)) =

 Ẑ
(t), if Ẑ(t) ≥ Ẑ(t−1)

0, otherwise.
(3.9)

where Ẑ =
∑I

i=1

∑B
b=1

∑J
j=1R

(t)
ib,j

.

• Learning rate: α ∈ (0,1). α is similar to the simple step function. For example,

when the step size is larger, it leads the agent towards a random walk. Therefore,

due to the large learning rate the agent gains less knowledge from the underline

NOMA environment. If the agent take small step size, then the agent moves slowly

which results in poor convergence.

• Discount factor: The discount factor γ ∈ [0,1] determines the importance of

current or the future rewards to the current state. Small discount factor value

exhibits high impact towards current rewards (data rate), while the high value of

discount factor prioritises the future rewards (data rate).

• Policy π: A policy π is used, so that the agent finds the best action a that can be

performed for the state s, and the equation is defined as follows:

π(a|s) = P
[
A(t) = a|S(t) = s

]
, (3.10)

where P is the probability.

• Experience replay memory: Similar to the traditional DRL, ACDRL also uses

an experience replay buffer with additional two neural networks to deal with the
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continuous network environment. The proposed ACDRL based system model use

an experience replay memory to store the data from multi-cell NOMA network as

(s(t), a(t), r(t), s(t+1)).

The Qπ function for RL agent is defined as

Qπ(s(t), a(t)) = E[r(t)|s(t), a(t)], (3.11)

where Qπ(s(t), a(t)) is the value function for the policy π, that is expected return based

on initial state s(0) to the final state. A policy π is used, so that the agent finds the best

action a(t) that can be performed for the state s(t). The optimal policy is given by:

π∗ = argmax
π

Q(s(t), a(t); θ). (3.12)

For each step, the ACDRL algorithm performs interactions with the environment by

performing actions to shift from the current state to the next suitable state according

to the selected actions. In this way, the agent begins to learn by updating two neural

networks. The detailed discussion is provided in the following subsection.

3.3.2 Actor Critic Network Details

The Q-value for a state and action in Bellman equation can be updated using the fol-

lowing equation:

Qπ(s(t), a(t)) = Er(t),s(t+1)

[
r(s(t), a(t)) + γEa(t+1)∼π[Q

π(s(t+1), a(t+1))]
]
. (3.13)

With the deterministic target policy, we can defined it as a function µ : S ← A

Qµ(s(t), a(t)) = Er(t),s(t+1) [r(s(t), a(t)) + γQµ(s(t+1), µ(s(t+1)))]. (3.14)
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Algorithm 1 ACDRL for Downlink NOMA System

1: Initialize s(t), a(t), r(t), θ(t), replay memory D, and batch-size.
2: Initialize actor and critic network.
3: for episode =1, Ne do
4: s(t) → 0 and r(t) → 0.
5: Initialize a random process N (t) for action exploration.
6: Receive state s(1).
7: for iteration = 1: Te do
8: Choose a(t) using equation (3.8).
9: Perform a(t) and receive reward r(t) (compute equation (3.9)) and new state
s(t+1).

10: Save transition (s(t), a(t), r(t), s(t+1)) in D.
11: Sample mini-batch (s(t), a(t), r(t), s(t+1)) from D.
12: Update the actor using the sampled gradient:

∇θµJ compute equation (3.17).
13: Update the target networks:

θQ
′
compute equation (θQ

′ ← τθQ + (1− τ)θQ′
).

θµ
′
compute equation (θµ

′ ← τθµ + (1− τ)θµ′).
14: end for
15: Return optimised Pt (3.4a) under constraints from (3.4b) to (3.4g) .
16: end for

Similarly, the loss function for the DNN is calculated as:

L(θQ) = Es(t),a(t),ξ,r(t)
[
((Q(s(t), a(t)|θQ)− y(t))2

]
, (3.15)

where ξ is stochastic behaviour policy and target Q-value is y(t) shown in equation (3.16)

where the value of y(t) is shown as:

y(t) = r(s(t), a(t)) + γQ(s(t+1), µ(s(t+1))|θQ), (3.16)

the parameter for actor function µ(s(t)|θµ) specifies the current policy where the ACDRL

algorithm deterministically maps the states and action pair. Actor network is updated

as following:

∇θµJ ≈Est+1

[
∇θµQ(st, at|θQ)|st=st+1,at=µ(st+1|θµ)

]
=Est+1

[
∇aQ(st, at|θQ)|st=st+1,at=µ(st+1)∇θµµ(st|θµ)|st=st+1

]
.

(3.17)
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The description of Algorithm 1 are as follows:

• Line (1-2) Indicates the initialization of the model with a set of inputs that include

the state and action space, replay memory D, reward and initialize actor and critic

network. The training parameters of the model such as training episodes and

batch-size are set.

• Line (3-14) the agent performers episodes to learn the wireless network environment

for the long-term and in each episode the state and reward are initialised from zero.

However, the short term learning is performed in each trial (Te). In (7-18) the agent

performs trials (Te). In each trial, the agent takes an action at to allocate power

to NOMA users. A noise N is introduced to improve the exploration so the agent

could learn efficient actions. Based on these actions, the agent changes from one

state st to another and computes the reward function as the data rate. Actions

in the proposed algorithm represent the power allocation tasks for network users

which are performed by the ACDRL agent. For efficient learning, the ACDRL

agent use two different neural networks known as actor and critic networks to

explore the NOMA networks environment for the long-term basis. After updating

the state, the tuple (s(t), a(t), r(t), s(t+1)) is saved in the replay memory D. After

that, the agent compute the loss function. Therefore, when the replay memory is

full, the agent starts learning from that experience. For each episode, a mini batch

is sample for the learning process.

• Line (12-13), agent update the neural networks. The actor network performs learn-

ing by maximizing the state value function. Target actor and critic networks use

τ as soft updating parameters. For efficient learning, the wights of both target

networks are slowly updated.

• In the final line (15), the whole optimization process terminates by providing the

resource allocation as an output.
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3.3.3 The Complexity of ACDRL

When applying ACDRL to resource allocation in wireless communications, two major

challenges arise: training and convergence time, as well as the delay in real-time process-

ing. The training process for ACDRL models is intrinsically complicated and demanding

of data, often requiring substantial time to attain an optimal policy, particularly in dy-

namic network environments where continuous learning and adaptation are essential.

Moreover, this intricacy can result in substantial latency in decision-making, which is a

critical concern for real-time communication applications.

The complexity of the proposed DNN-based ACDRL algorithm, with a neural net-

work having L layers and each layer have number of neuron x̂. The input layer size is

e. Based on these parameters, the computational complexity for a single forward pass

and back propagation can be given as Ê
∆
= ex̂1+

∑L−1
l=1 (x̂l)x̂l+1. Therefore the real time

complexity of the proposed algorithm for Ne episodes and Te iterations can be written

as O(NeTeÊ).

3.4 Simulation Results

In this section, we provide simulation results to illustrate the performance efficiency of

the proposed ACDRL algorithm. We consider multiple BSs and multiple users. Number

of BSs are three and number of users are 12. Different noise were applied such as -

154, -165, and -174 decibel-milliwatts (dBm). Number of episodes considered in this

simulation is one thousand. We use ReLU as an activation function. The optimiser is

adaptive moment estimation optimizer (Adam) and the learning memory is six hundred

and fifty [95]. The batch size is one hundred twenty eight. Simulation parameters are

listed in Table 3.1. By running different algorithms that shows in all figures, we use

computational resources such as CPU, and we test it in small scale models environment

where we have only 3 BS and 12 users. We tune the parameters and reduce the size

of the neural network to speed the training time without effecting the learning process.

Also, using experience replay (past experiences) help to achieve the optimal performance
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Table 3.1: Network parameters and ACDRL algorithm parameters

Parameter Value

Power levels [20− 40] dBm

Network size 9, 12 Max users

BSs 3

Fading Rayleigh fading

Sub-channels 2

Power of noise −[154, 164, 174] dBm
Bandwidth 30kHz

Episodes 1, 000

DNN activation ReLU

DNN layers (H1, H2) [300, 400]

Optimiser Adam

Replay memory 650

Batch size 128
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Figure 3.2: Illustrates the reward convergence of ACDRL-C, ACDRL-D conventional DRL, and RL

reduce the delay and time.

The system used to get the simulation results is MacBook Pro macOS system with

processor 3.1 GHz Intel Core i5 and memory 8GB (Random Access Memory) 2133 MHz

LPDDR3. We use Python version 3.6 in this simulation.
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Figure 3.3: An illustration of sum rate with different learning rate in different number of episodes

3.4.1 Reward Convergence vs Episodes

Fig. 3.2 illustrates dynamic reward vs. number of episodes with different algorithms

(actor-critic deep reinforcement learning - continuous action (ACDRL-C), actor-critic

deep reinforcement learning - discrete action (ACDRL-D), DRL, and RL) convergence.

The proposed algorithms (ACDRL-C and ACDRL-D) not only receive a higher data

rate but also converge within fewer episodes 200 than DRL ϵ greedy, and traditional

RL (Q-learning). Additionally, the ACDRL-C algorithm also performs better than the

ACDRL-D algorithm with around increase of around 23.5%. Because ACDRL-C can

learn the power allocation efficiently with better rewards in the form of sum rate. Two

different network (actor and critic) helped the agent to get better performance in term of

sum rate compare to only one NN or traditional RL. This is why the proposed algorithms

learned faster and less delay compare to DRL and RL ACDRL-C is around 30.3% better

than DRL. Similarly, RL and DRL start converging when the episodes are 300 with less

reward performance.
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Figure 3.4: Sum rates comparison between OMA, DRL, ACDRL-D and ACDRL-C with different power of noise
n0

3.4.2 Sum Rate Against Different Learning Rates and Episodes

Fig. 3.3 Shows the sum rate obtained using different learning rates and episodes. It can

be seen that learning rate of 0.1 produces small sum rate for all episodes. As we decrease

the learning rate from 0.1 to 0.0001, the sum rate increases. Using small learning rate can

increase learning time, however, it can find the global optimal solution. On the other

hand, using high learning rate can speed up the learning process, but can overshoot

the global optimal position or even to diverge. Additionally, it can be observed that

increasing the number of episodes enhances the sum rate efficiency. Because, with large

number of episodes, agent can efficiently explore the environment for good states and

actions.

In rapidly changing network environments, training needs to be fast enough to keep

up with these changes. The ACDRL model may lose accuracy and effectiveness if users’

channel conditions significantly change without the model being retrained. However, our

proposed ACDRL is designed to be continuously learnable, requiring no retraining for

updating the model.
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3.4.3 Sum Rate Comparison with Different Algorithms and Noise

Fig. 3.4 presents the sum rate for DRL, ACDRL-D, ACDRL-C in NOMA, and OMA

systems with different power of noise n0. As shown in Fig. 3.4, the sum rate for long-

term communications with different power of noise are better for ACDRL algorithm as

compared to DRL and traditional OMA systems. From that figure, we can see that

when the power of noise parameter decreases, the sum rates increases and vice versa.

The general trend from this figure shows that the proposed ACDRL-C with continuous

state and actions outperforms conventional DRL and ACDRL-D with discrete state and

actions. Which implies that the agent with a continuous action space performs efficient

power allocations as compared to an agent with a discrete action space. Lastly, NOMA

communication systems outperforms conventional OMA.

3.4.4 Sum Rate Comparison with Different Networks Loads

Fig. 3.5 shows several comparisons, i.e., the comparison among dynamic reward, the

comparison among different power levels, the comparison between OMA and NOMA,

and the comparison among different RL algorithms with two different network loads for

discrete action systems. The proposed model ACDRL-D performs better than conven-

tional DRL and RL schemes in all settings. Similarly, the sum rate for 4 users scenarios

is higher than 3 users scenarios in all cases. Additionally, the dynamic reward increases

(sum-rate) when the transmit power level increases and vice versa across all the setups.

Lastly, Fig. 3.5 also shows that NOMA is performing better than OMA for all types of

network settings.

3.5 Chapter Summary

This chapter has presented the resource allocation based on the ACDRL algorithm with

two different designs with continuous and discrete actions. For low complexity, we applied

ACDRL-D and for enhanced performances, we utilized ACDRL-C design. In order to

improve the sum rate performance of the proposed network, we also provide a dynamic
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Figure 3.5: Sum-rate comparison of OMA and RL based NOMA techniques with two different network loads

feedback system that is based on the real-time data rate of NOMA users to efficiently

guide ACDRL agents. Based on this design, the simulation section has shown that

ACDRL-D and ACDRL-C start converging fast within 200 episodes. Also, ACDRL-C

outperforms ACDRL-D with 23.5% better in data rate and 30.3% outperforms DRL.

Therefore, the dynamical actor critic framework outperforms DRL-NOMA, traditional

RL-NOMA, and conventional OMA systems.



Chapter 4

Semi-Centralized Optimization

for Energy Efficiency in IoT

Networks with Uplink NOMA

4.1 Introduction

Different from the previous scenario in chapter 3, this chapter focuses only on the scenario

of uplink NOMA networks. The application of NOMA network is considered a promising

solution for providing massive connectivity to the increasing number of IoT users, which

is one of the important use cases of mMTC [39]. In general, IoT users exhibit diverse

characteristics, such as a high battery life cycle, sporadic transmission, minimum data

rate requirements, and different QoS requirements [61]. Furthermore, with different types

of IoT users such as GB and GF, NOMA communication network is different (based on

prior handshakes or no handshakes). Many scenarios primarily focus on direct access

to the BS due to its simplicity. However, path loss increases with increasing distance,

which leads to lower energy efficiency and reduced rates. To overcome the effect of

distance-dependent path loss, in the existing work, the source node needs to transmit

67
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at a higher power [57]. However, IoT users have small processing and limited transmit

power capability, which makes it impractical to communicate over long distances.

In this chapter we focus on enhance characteristics of IoT users (GB and GF). There-

fore, we proposed semi-centralized framework where this model solves the problem of

distance dependent path loss, improves QoS, and enhances throughput for both GB and

GF users.

4.1.1 Contributions

The SGF-NOMA method combines aspects of the GB and GF mechanisms to optimize

resource allocation efficiency while accommodating a large number of users. The pri-

mary challenges involve managing the trade-off between scheduling flexibility and system

complexity. Specifically, the SGF-NOMA method must efficiently handle user prioriti-

zation, ensuring that critical users have timely access while still maintaining equitable

resource distribution among all users. Balancing the dynamic allocation of resources in

a rapidly changing environment is crucial. It is necessary to mitigate potential collisions

and interference, particularly when users with and without grants coexist. Addition-

ally, maintaining a consistent QoS across varying user demands and network conditions,

while minimizing signaling overhead, becomes a significant issue. These challenges re-

quire an intelligent and adaptable approach to resource allocation and user management

in SGF-NOMA systems. Enhancing the performance of SGF-NOMA in wireless com-

munications can be effectively achieved through a combination of ML techniques and

strategic deployment of relay nodes. By utilizing ML algorithms, the system can accu-

rately forecast network conditions and user demands, optimize resource allocation, and

effectively manage user prioritization and scheduling. In particular, the agent (BS) use

continuous action space (power allocation), PPO algorithm can handle this action space.

PPO also known as a stable and robust algorithm. Moreover, within PPO algorithm,

a few number of episodes are required in order to achieve a good performance. There-

fore, choosing the best action for GB users using PPO within two different networks
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(actor and critic) lead to improve the learning and get a better policy optimization.

This predictive capability is particularly beneficial for balancing the demands of users

with grants and those without grants, as well as reducing collisions and interference.

Relay nodes can be used to extend coverage, improve signal quality, especially for users

at the edge of the network, and EE of small IoT users. The integration of ML enables

intelligent control over these relay nodes, optimizing their placement and operation in

real time based on dynamic network conditions. This integrated approach leads to a

more efficient SGF NOMA system, guaranteeing minimal interference, optimal resource

utilization, and consistent quality of service for all users. The main contributions of this

chapter are showing as follows:

• We propose a new optimization framework where the GF user transmits its signal

to the serving GB user, which is known as a relay node, via the NOMA protocol.

Furthermore, we formulate the EE of both the GF and GB users as an optimization

problem.

• To jointly optimize the transmit power of GB and GF users, we propose a semi-

centralized framework that avoids the disadvantages of fully centralized and fully

distributed RL algorithms. In particular, we use the PPO algorithm on the BS

side (centralized part) to allocate power level (optimal one) for GB users. How-

ever, considering the computational limitations of GF users; a multi-agent deep

Q-network (multi-agent deep Q-network (MA-DQN)) algorithm (distributed part)

is utilized on the GF user side.

• The experimental results show that our semi-centralized algorithm (the proposed

scheme) outperforms the benchmark scheme (random and fixed power allocation)

methods and the conventional GF transmission without a relay node in terms of

EE. Moreover, we show that the number of GB users has a strong correlation with

the EE of both types of users.
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Figure 4.1: The proposed system model with multiple GF users and GB users (including group head)

4.2 System Model and Problem Formulation

Unlike downlink NOMA, uplink transmission in SGF NOMA presents new complexities

primarily due to its decentralized structure, user-controlled power settings, and the need

for efficient simultaneous transmission and interference management. Addressing these

challenges requires innovative strategies in resource allocation and signal processing to

ensure efficient network operation and user satisfaction. We consider a NOMA IoT net-

work with a single BS located at the center of a circle with a radius R. Two types of users,

namely GB (represented by W={1, 2, . . . , NW }) and GF (listed as F={1, 2, . . . , NF })

transmit their data in an uplink manner, which is given in Fig. 4.1. We assume that GB

users are delay sensitive and have enough processing capability to act as cluster head

(CH) and the GF users are delay tolerant, e.g, a sensor for temperature monitoring. The

GF users send their data to the GB user acting as a CH [96] to reduce the impact of the

path loss with the distance d, here given by d−α on the energy constrained GF users.

The GB users transmit their data to BS via J sub-channels.

4.2.1 Signal Model for GB and GF

Both users (GB and GF) transmit their data in a slotted manner. More specifically, the

CH w ∈ W receives the combined signal from the NF GF users in time slot t, which can
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be expressed as follows:

y(t)w =

J∑
j=1

NF∑
i=1

√
Pi,j

(t)h
(t)
i,jx

(t)
i,j + n0, (4.1)

where xi,j , hi,j , and Pi,j denote the transmitted signal of i-th GF user on sub-channel

j, channel gain of i-th GF user on sub-channel j, and transmit power of i-th GF user

on sub-channel j, respectively. Here, n0 represents the additive Gaussian noise with

variance (0, σ2). The channel decoding order is, P
(t)
i,j h

(t)
i,j ≥ · · · ≥ P

(t)
NF ,j

h
(t)
NF ,j

. The SINR

for GF user i ∈ F can be given as follows:

SINR
(t)
i,j=

P
(t)
i,j |hi,j |2

(t)∑NF
i=i+1 P

(t)
i+1,j |hi+1,j |2(t) + σ2

. (4.2)

The data rate of each GF user is calculated as follows:

R
(t)
i,j = B̂ log

(
1 + SINR

(t)
i,j

)
≥ εF , (4.3)

where the bandwidth of sub-channel j is denoted as B̂ and the threshold target data

rate for F users is denoted as εF .

The GF user EE is calculated as follows:

EE
(t)
F

∆
=

∑J
j=1

∑NF
i=1R

(t)
i,j

ς(t) + ϑ
(t)
F

, (4.4)

where ς(t) =
∑J

j=1

∑NF

i=1
p
(t)
i,j and ϑ

(t)
F is the circuit power consumed by F users similar to

[97].

In the next time slot (t+ 1), the BS receives the combined signal from the CHs and

other GB users as follows:

y
(t+1)
BS =

J∑
j=1

NW∑
w=1

√
Pw,j

(t+1)g
(t+1)
w,j x

(t+1)
w,j + n0, (4.5)
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where xw,j , gw,j , and Pw,j represent the transmitted signal, channel gain, and transmit

power of w-th GB user, respectively. In this part, the channel gain based decoding order

at the BS; that is, the GB users with strong channel gain will be decoded first. Therefore,

the first stage of SIC order follows G = {g1,j ≥ g2,j ≥ · · · ≥ gNW ,j}.

Similarly, the SINR for GB users can be shown as follows:

SINR
(t+1)
w,j =

P
(t+1)
w,j |gw,j |2

(t+1)∑NW
w=w+1 P

(t+1)
w+1,j |gw+1,j |2(t+1) + σ2

. (4.6)

To calculate the data rate of GB user, we use equation (4.7) which shown as follows:

R
(t+1)
w,j = B̂ log

(
1 + SINR

(t+1)
w,j

)
≥ εW , (4.7)

where the threshold of the target data rate for W users is denoted by εW .

The EE of GB users in time slot (t+ 1), we have

EE
(t+1)
W

∆
=

∑J
j=1

∑NW
w=1R

(t+1)
w,j

ϱ(t+1) + ϑ
(t+1)
W

, (4.8)

where ϱ =
∑J

j=1

∑NW
w=1pw,j and ϑW is the circuit power consumed by W users. Based on

equations (4.4) and (4.8) , the EE of the system can be given as follows:

EE = EE
(t)
F + EE

(t+1)
W . (4.9)

4.2.2 Cluster Head and Sub-channel Selection (GF Users)

In time slot t, each GF user is allowed to select at most one GB user as a cluster head

and one sub-channel. GF users send their signals to the nearest cluster head, and

the cluster head (GB) sends its signal along with the GF users’ signals to the BS. By

sending the signal to the nearest cluster head, GF users can save energy compared to

the traditional method of sending it directly to the BS.
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The following variable is used for sub-channel selection:

b
(t)
i,j =

 1, if i-th GF user selects sub-channel j

0, otherwise.
(4.10)

4.2.3 Sub-channel Selection for GB Users

We use the following binary variable for GB users to select sub-channel as follows:

m
(t+1)
w,j =

 1, if w-th user selects sub-channel j

0, otherwise.
(4.11)

4.2.4 Problem Formulation

Our objective is to maximize the EE by optimizing the parameters m, b, and P . The

proposed model achieves this by leveraging the advantages of designating the GB user as

the cluster head for the nearest GF user. This approach allows us to maximize the EE.

Additionally, we employ multiple algorithms, namely DRL and PPO, to reduce system

complexity. Specifically, we utilize the DRL algorithm for low hardware IoT users and

the PPO algorithm for high hardware equipment, such as BS. Therefore, the optimization

problem can be formulated as follows:

maximize
m,b,P

T∑
t=1

J∑
j=1

NW∑
w=1

NF∑
i=1

EE(t) (4.12)

s.t. P
(t)
i,j , P

(t+1)
w,j ≤ Pmax,∀w, i, j, t, (4.12a)

J∑
j=1

b
(t)
i,j ∈ {1, 0}, ∀i, t, (4.12b)

J∑
j=1

m
(t+1)
w,j ∈ {1, 0}, ∀w, t, (4.12c)

J∑
j=1

R
(t+1)
w,j ≥ εW , ∀w, t, (4.12d)
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J∑
j=1

R
(t)
i,j ≥ εF , ∀i, t, (4.12e)

where (4.12a) is the maximum transmit power limit of users. Constraints (4.12b) and

(4.12c) show that GF and GB users can select only one sub-channel in a given time slot

t. Constraints (4.12d) and (4.12e) represent the minimum required data rate of GB and

GF users for successful SIC, respectively.

4.3 Semi-Centralized ML Framework for EE

ML algorithms for resource management are based on a centralized or distributed frame-

work. In particular, in a centralized framework, a central entity (e.g., BS) is responsible

for resource allocation, whereas, in the decentralized framework, resource allocation is

handled by multiple agents (e.g., IoT users). The downside of the former is increased

computational complexity (CC) arising from the overwhelming demand, and the down-

side of the former is the lengthy learning/training time required to converge to optimality

as a result of non-stationarity. To alleviate these challenges, we have designed a semi-

centralized framework that minimizes the CC and reduces the learning time. The work

flow of the proposed algorithm is given in Fig. 4.2.

This model can be used for OMA-NOMA scenarios for some applications, for example,

the GB users (eMBB user) can transmit using OMA, whereas GF users can transmit

using NOMA (mMTC user). Next, we formulate the EE problem as MDP problem with

the semi-centralized framework.

4.3.1 MDP Elements with a Semi-Centralized Framework

An MDP consists of a tuple of
(
S,A, N̂ , and R

)
, where S is the set of states, actions

are denoted by A, N̂ denote the total number of agent(s)(BS, GF users), and R is the

reward function. To start the learning process, RL agents interact with the environment

to maximize the long-term reward following some policy π.
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Energy Efficient Solution 

Initializing DQN 

parameters  

Initializing PPO 

parameters  

Input State Input State

Joint action

Power/sub-channel

Output action

Power level

Reward, next state Reward, next state

Optimize Policy 

Training done

Yes

NoNo

Start

BS as an Agent 

GF user 

as Agent

Figure 4.2: An illustration of flow chart for semi-centralized algorithm with two types of agents (BS and GF users)

• Agent(s): The BS︸ ︷︷ ︸
Centralized Part

and GF users︸ ︷︷ ︸
Decentralized part

• State: Channel gain (GB)︸ ︷︷ ︸
Centralized part

and data rate (GF)︸ ︷︷ ︸
Decentralized part

• Action (BS): Transmit power︸ ︷︷ ︸
Centralized part

• Action (GF user): Sub-channel, transmit power, and CH︸ ︷︷ ︸
Decentralized part

• Reward: The BS as an agent receives the EE of the GB users as a reward, whereas,

the i-th GF user receives the EE of the GF users as a reward signal, as given below.

r
(t)
i =

 EE
(t)
F , if EE

(t)
F ≥ EE

(t−1)
F

0, otherwise,
(4.13)
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Algorithm 2 Semi-Centralized Framework for EE NOMA Systems

1: Initialize hyperparameter {MA-DQN}
2: for Episode = 1: Ne do
3: for iteration at time step (t) = 1: Te do
4: for agent = 1: I do

5: Input s
(t)
i , take a

(t)
i , receive r

(t)
i using (4.13) and s

(t+1)
i

6: Store s
(t)
i , a

(t)
i , r

(t)
i , s

(t+1)
i to replay memory

7: end for
8: end for
9: From the memory, the agent sample mini-batches and use (4.16) to minimize the

loss.
10: end for
11: Initialize policy parameters {PPO}
12: for Episode = 1: Ne do
13: for actor = 1, 2, . . . , Na do
14: Run policy πθold for Te time steps
15: Calculate advantage estimates Â1, . . . , ÂT
16: end for
17: Optimize L (4.17) w.r.t θ
18: end for

r
(t+1)
BS =

 EE
(t+1)
W , if EE

(t+1)
W ≥ EE(t)

W

0, otherwise.
(4.14)

The PPO uses two DNN and handles a continuous action space, which increases

the complexity; therefore, the PPO is used on the BS side. In contrast, the IoT users

are resource and computation constrained and can handle discrete actions; hence, such

algorithms cannot be applied to IoT users.

For the decentralized part (GF users act as agents), we define a Q-function as the

expected cumulative discounted reward to find the optimal policy π∗, which can be given

as follows:

Qπi (si, ai) = Eπ[R̂(t)
∣∣si(t) = s, ai

(t) = a], (4.15)

where R̂ is the discounted reward R̂=
∑Ne

n=0 β
nr(t+n+1).
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To train the Q-network, stochastic gradient descent (SGD) is used to update the

weights and minimize the error rate between the target Q-network and the primary Q-

network.

L(θ) = (y
(t)
i −Q

(t)
i (s

(t)
i , a

(t)
i ))2, (4.16)

where y
(t)
i = r

(t)
i +maxai Q(s

(t+1)
i , ai

(t+1); θ).

For the centralized part (agent BS), we apply the PPO algorithm to find the optimal

transmit power for GB users. The PPO is a policy gradient method that utilizes the

actor-critic method and can be used in environments with continuous action space. In

the stochastic policy, the actor maps an observation to an action, and the critic calculates

the reward for the given observation. A stochastic gradient ascent optimizer is used to

update the policy, and an SGD technique is used to fit the value function. As shown in

equation 4.17, the loss function of the proposed model can be calculated as follows:

L(θ) = Ê(t)[min
(
r(t)(θ)Â(t), clip

(
r(t)(θ)1−ϵ, 1+ϵ

)
Â(t)

)
], (4.17)

where Ê(t) represents the empirical expectation over time steps and θ represents the

policy parameter. At time step (t), Â(t) shows as estimated advantage, the reward r(t)

denotes the ratio of the probability under both new and old policies. This equation has

two parts; first it minimizes the loss of conservative policy iteration (min(r(t)(θ)Â(t)),

and in the second part, we have (clip(r(t)(θ)1−ϵ, 1+ϵ)Â(t)), where we clip the policy ratio

between 1+ϵ and 1−ϵ.

4.3.2 Proposed Semi-Centralized Algorithm

To maximize the EE of GF users, agents, i.e., BS or GF users learn the optimal policy.

Algorithm 2 shows the details of semi-centralized model. In the distributed part, we

initialize the network and training parameters before the start of agents training. All

agents (GF users) jointly explore the environment using a ϵ-greedy policy. The agents
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Table 4.1: Resources saving comparison between centralized and semi-centralized algorithm with increasing num-
ber of IoT users

GB GF N̂ Required Operations Required Operations Resource
users users users (Proposed) (Centralized) Saving

2 2 4 10 64 84.38%

2 3 5 11 125 91.20%

3 2 5 29 125 76.80%

3 3 6 30 216 86.11%

4 4 8 68 512 86.72%

10 10 20 1, 010 8, 000 87.38%

20 20 40 8, 020 64, 000 87.47%

50 50 100 125, 000 1, 000, 000 87.50%

100 100 200 1, 000, 100 8, 000, 000 87.50%

receive states from the environment, and they take a joint action. Based on the action

taken, agents obtain a reward and next state from the environment. All agents save

experiences to their replay memories (line 6). To train the primary network, all the

agents randomly sample mini-batches from the memory and compute the loss (line 9).

For the centralized part (line 11), first, we initialize the policy parameters. We run the

policy πθold for Te time steps to calculate the advantage estimates. Finally, we calculate

the loss with respect to θ using a mini-batch of size M and update θold with θ (line 17).

4.3.3 Complexity of the Semi-Centralized

The complexity results from a number of GB NW and GF NF users connecting to BS via

sub-channels J . The benchmark which is known as centralized framework can calculate

the CC as O
[
Ne × Te(N̂ J)

]
. Where the idea in the proposed model is to separated the

agent(s) into two different groups namely distributed and centralized. This will help

the agent if it BS to decide the channel for all GB users and each GF user (agent) is

responsible to chose his own channel. The CC is calculated as N̂ denote the number of

GB users and GF users. At each time step t, the CC of the proposed algorithm is given

by, O
[
Ne×Te

(
(NJ

W )+NF

)]
. For example, if we have five GB users and five GF users in

a centralized framework, the complexity is increased exponentially. On the other hand,

in our proposed algorithm, the complexity is distributed among the BS and GF users.

Therefore, the different between the number of sub-channel in the centralized is control
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Table 4.2: Training and simulation parameters for networks and ML algorithms

Parameter Value

GB users (3− 15)

GF users (3− 15)

Power levels [0.1, ..., 0.9] W

Sub-channels 3

Sub-channel bandwidth 10 KHz

α 2.8

Min rate (GB users) 10 bps/Hz

Episodes 300

Min rate (GF users) 4 bps/Hz

Learning rate 0.001

DNN activation ReLU

Optimizer Adam

be only BS.

Table 4.1 shows the complexity increasing in the centralized model and the proposed

one. With increase number of IoT users, the proposed model can save more resource

compare to the centralized model.

4.4 Simulation Results

In chapter 3, we optimize the resource and improve the sum data rate for downlink users.

BS controls the allocation of resources to users. On the other hand, in chapter 4, we

optimize resource allocation and EE for two different types of users, namely GB and GF.

All techniques used are ML-based to enhance resource allocation in NOMA networks.

In this section, we evaluate the performance of both the GB and GF users. The

parameters given in Table 4.2 are used to obtain the simulation results.

4.4.1 Proposed Algorithm Convergence Analysis

Fig. 4.3 shows the convergence of the PPO algorithm at the BS side to allocate the

power to GB users and the MA-DQN algorithm for the GF users to find the optimal

power level. The centralized agent, i.e., the BS, finds the optimal power level for each
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Figure 4.3: Shows the convergence of the PPO and MA-DQN

GB user after 100 episodes, as seen in the top sub-figure of Fig. 4.3. Compared with

the decentralized MA-DQN, the PPO converges quickly. However, for a large number

of GB users, the PPO may require more training time because of the continuous action

space. The bottom sub-figure shows the convergence of MA-DQN. There is a fluctuation

in the reward because the actions of one agent affect other agents in the environment.

Therefore, MA-DQN requires more episodes for convergence.

4.4.2 Performance Comparison of the Proposed Algorithm with Bench-

mark Schemes

Fig. 4.4 provides a comparison of the EE of both types of users (GB and GF) with other

methods. As shown in the upper sub-figure, the EE of the propose algorithm shows better

performance as compared to the benchmark scheme (random power allocation and fixed

power allocation methods). Because the BS identifies the accurate power levels according

to the user channel gain, maintaining the QoS requirements of those GB users with a

minimum power consumption. In contrast, in the other two methods, users transmit

power without considering the channel gain, which increases intra-cluster interference,

hence recording a low EE. The EE of GF users is depicted in the bottom sub-figure of

Fig. 4.4. For comparison, we use the conventional GF method as a benchmark, where
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Figure 4.4: Performance comparison of the proposed scheme with fixed power, random power, and the benchmark
scheme
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Figure 4.5: Energy efficiency with different IoT users

the users directly transmit their data to the central BS. It is observed that our proposed

scheme performs well in comparison to random power and fixed power selection methods.

Unlike the benchmark scheme, the GF users in our proposed scheme transmit their data

to the nearest cluster head, which requires a minimum transmit power and enhances the

EE.
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4.4.3 Energy Efficiency with Different IoT Users

Fig. 4.5 displays a further analysis in both centralized and decentralized algorithms EE

with different number of users. In top of Fig. 4.5, three different convergences repre-

sents the proposed, fixed power and random power in centralized algorithm where the

BS is the agent. The blue curve (the proposed algorithm) shows better EE compared

to other techniques (fixed and random powers). Moreover, with the increased number

of GB users, the achievable EE with the agent (BS) becomes lower and vice versa. In

the bottom of Fig. 4.5, four different convergences (decentralized) are proposed i.e.,

proposed algorithm, fixed power, random power, and benchmark. The blue curve (pro-

posed algorithm) shows the best EE among all convergence. With the decrease number

of users the EE become better and vice versa. Even with high number of GF users,

the proposed model perform the best. The benchmark here is the traditional method

of directly sending the signal from GF users to the BS. Where both random and fixed

power are considered as alternative power allocation methods to test the performance of

the proposed model. Finally, with technique of group-head, the proposed model success

to achieve high EE.

4.4.4 Energy Efficiency vs Increasing GB Users

Fig. 4.6 shows the trade-off between the number of GB users and EE of both types of

users. It can be observed that the EE of GF users increases with the number of GB

users. Because the GF users have an increased choice in cluster head selection, they

transmit to their nearest cluster head. On the other hand, as the number of GB users

increases, it decreases the EE of GB users because this increases the number of users in

each cluster, which increases the intra-cluster interference. To achieve the required data

rate threshold with increased interference, GB users are required to transmit with high

transmit powers.
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Figure 4.6: The EE of GF and GB users with respect to increasing GB users

4.4.5 System Energy Efficiency Comparison

Fig. 4.7 compared the proposed method with the centralized and distributed framework

in terms of EE. Fig. 4.7 represents the total network EE with respect to different number

of episodes. It is concluded that the fully centralized method provides the highest EE.

However, as the number of episodes increases the EE of the proposed method approaches

the EE of centralized method. Because distributed methods need a long learning time

to fully explore the environment. Therefore, the advantage of the proposed method

is that the agent can achieve similar performance (in terms of EE) to the centralized

method with lower complexity. At all time, the network EE for distributed method is

always the lowest.

4.4.6 Complexity Comparison

Fig. 4.8 compared the proposed method with both centralized and distributed frame-

work in terms of CC with different number of IoT users. When the number of clients

(IoT users) increases, the proposed model receives less CC than the centralized method.

From Fig. 4.8, it can be seen that the complexity of the centralized model is increasing
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Figure 4.7: Network energy efficiency with different number of episodes

Figure 4.8: An illustration of operations with increase number of IoT users
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exponentially as the number of users increases. In our proposed framework, the com-

plexity is distributed between the BS and GF users. In a fully distributed model, all

the users are independently searching for resources without any centralized entity (BS),

which reduces the CC. However, a fully distributed framework requires a long learning

time to reach the Nash Equilibrium. On the other hand, the centralized method can

easily find the optimal resources for users but at the cost of a high CC.

4.5 Chapter Summary

In this chapter, we have proposed a low-complexity semi-centralized framework for

NOMA networks to avoid the disadvantages of fully centralized and fully distributed

systems. The proposed scheme improves the EE of GB and GF users and outperforms

the fixed and random power allocation methods. The EE of GF users surpasses the EE

of the conventional GF scheme where no group head exists.



Chapter 5

Soft Actor Critic Based Resource

Allocation in Simultaneously

Downlink and Uplink NOMA

Networks

5.1 Introduction

In contrast to downlink NOMA (discussed in chapter 3) and uplink NOMA (discussed

in chapter 4), simultaneous uplink and downlink NOMA use full-duplex communication,

where transmissions occur simultaneously over the same frequency. However, it presents

notable challenges, including self-interference, in which the base station’s own transmis-

sion interferes with its reception, and increased signal processing complexity for decod-

ing overlapping signals. Maintaining network quality and performance requires efficient

management of transmit power and dynamic resource allocation. To address these chal-

lenges, the utilization of machine learning for resource and power management, accurate

beamforming, and efficient network coordination are potential solutions [39, 46, 50, 90].

86
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These strategies are crucial for maximizing the advantages of simultaneous uplink and

downlink NOMA, making it a promising yet intricate advancement in wireless communi-

cation technology. Therefore, we proposed a SAC model for efficient resource allocation

in simultaneous uplink and downlink NOMA transmission. SAC, with its robustness

in handling complex and dynamic environments, offers a powerful approach to solving

the challenges of simultaneous uplink and downlink NOMA transmission. Its ability to

learn optimal policies for interference management, signal decoding, power control, and

resource allocation makes it well-suited for improving the efficiency and performance of

these advanced wireless communication systems.

5.1.1 Contributions

In contrast to the distinct difficulties faced by conventional uplink and downlink broad-

casts, simultaneous uplink and downlink transmission raises the crucial and intricate

problem of self-interference. To fully utilize simultaneous transmission systems, such as

those anticipated in the upcoming 5G and 6G networks, it is crucial to efficiently manage

interference. The main contributions of this chapter are listed below.

• Novel multi-downlink IoT users and multi-uplink backscatter devices are consid-

ered. The aim is to maximize the sum rate of backscatter users by jointly optimizing

the transmit power for downlink users and the reflection coefficient for backscatter

devices subject to the QoS requirements of downlink IoT users.

• The optimization problem of maximizing the sum rate is formulated as MDP prob-

lem, which is extremely difficult and complex to be solved by conventional opti-

mization approaches. Therefore, the formulated MDP is solved using the RL-based

model-free SAC algorithm.

• The proposed SAC algorithm uses the online optimization strategy with an entropy

regularization process to effectively explore and exploit the dynamic BAC-NOMA

environment to solve the formulated problem optimally.
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• Numerical results indicate that the suggested algorithm outperforms the conven-

tional optimization (benchmark) method in terms of the achievable sum rate of

uplink backscatter devices. With a large number of iterations, the network with

multiple downlink users obtains a higher reward. Moreover, with different num-

bers of backscatter devices, the proposed algorithm outperforms the benchmark

scheme and BAC with OMA. Furthermore, our proposed algorithm improves sum

rate efficiency under different self-interference coefficients and noise levels. As a

final step, we evaluate and demonstrate the sum rate efficiency of the proposed

algorithm with different QoS requirements and cell radii.

5.2 System Model And Problem Formulation

The practical scenario for backscatter communication can be an agricultural farm or

an industrial floor [75], where the backscatter sensors are deployed to carry out the

application-specific tasks. For example, the sensor’s node can estimate the water stress

of a plant by finding the difference in temperature between the leaf and the atmosphere.

As shown in Fig. 5.1, the left side represents the environment of backscatter and NOMA

network, where the FDBS is connected to downlink and uplink devices simultaneously.

The blue devices represent the downlink devices where these devices receive signals from

the FDBS. The red devices are the backscatter devices that send signals to FDBS in an

uplink manner. The red arrows represent the channel gain from FDBS to all devices.

The blue arrows represent the channel gain between the uplink backscatter devices and

the downlink devices. The right side of the figure (at the top) shows the handshake

between FDBS and the downlink user, while at the bottom is the handshake between

the uplink backscatter devices and the FDBS. Next sub-sections illustrate the proposed

system model and problem formulation.

5.2.1 Single Downlink User and Multiple Uplink Backscatter Devices
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Figure 5.1: An illustration of the environment and handshakes process of the BAC-NOMA network

In this sub-section, we considered a BAC-NOMA network where we have a FDBS, down-

link users known as D0, and the uplink backscatter devices known as Uk, where the

integer Uk ∈ {1, · · · , UK}. We assume in each time slot that both D0 and UK users

are simultaneously served. The BS transmits the downlink signal to the downlink user

D0, which excites the circuits of uplink backscatter devices. Based on the signal received

signal from the BS, the uplink backscatter devices then modulate and reflect the incident

signal via a reflection coefficient ηk (adjustable parameter and ηk ∈ [0, 1]) [98].

The signal received at the uplink backscatter device Uk from the BS is denoted by√
P

(t)
D0
h
(t)
k x

(t)
D0

, where PD0 , hk, and xD0 are the downlink transmit power for downlink

user D0, the channel gain between the BS and Uk, and the signal for downlink user

D0, respectively. The signal reflected by uplink backscatter device Uk is expressed as√
P

(t)
D0
η
(t)
Uk
h
(t)
Uk
x
(t)
D0
x
(t)
Uk
, where xUk

is the backscatter signal from device Uk. The channel

gain is characterized by large-scale path loss and small-scale multi-path fading, as con-

sidered in [62].

Based on the aforementioned expressions, the combined signal received at the BS
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from the Uk uplink backscatter devices can be expressed as:

yBS
(t) =

UK∑
Uk=1

h2Uk

(t)
√
P

(t)
D0
η
(t)
Uk
x
(t)
D0
x
(t)
Uk

+ x
(t)
SI + nBS , (5.1)

where x
(t)
SI is based on the complex Gaussian distribution and is defined as xSI ∼

CN (0, φPD0 |hSI |2) [99]. The h
(t)
SI shows the self-interference channel that is based on the

complex Gaussian distribution, that is hSI ∼ CN (0, 1). The nBS represents the noise at

the BS. The amount of FD residual self-interference (φ) is defined as (0 ≤ φ≪ 1) [62].

At the same time, the downlink user D0 receives the signal from the BS with added

interference from the uplink backscatter devices, as the downlink user utilizes the same

time slot with the uplink backscatter devices. Consequently, downlink user D0 receive

the signal yD0 as follows:

y
(t)
D0

=hD0
(t)
√
P

(t)
D0
x
(t)
D0︸ ︷︷ ︸

Desired Signal

+

UK∑
Uk=1

gUk

(t)hUk

(t)
√
P

(t)
D0
η
(t)
Uk
x
(t)
D0
x
(t)
Uk︸ ︷︷ ︸

Intra-Cell (Uk) Interference

+ nD0︸︷︷︸
Noise

.
(5.2)

The first part of (5.2) is the intended signal for user D0 from the BS, and the second

part represents the interference from uplink backscatter devices. The channel gain be-

tween the downlink user and BS is denoted as h
(t)
D0

. Moreover, the channel gain between

the uplink backscatter device and downlink user is denoted as gUk
(t). Finally, the noise

is denoted as nD0 .

The sum rate for uplink backscatter devices that is achievable by BAC-NOMA trans-

mission can be given as:

R(t)
sum = log

(
1 +

∑UK
Uk=1 |hUk

|4(t)η(t)Uk
P

(t)
D0
|xD0 |2

(t)

φ(t)P
(t)
D0
|hSI |2(t) + σ2

)
, (5.3)
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where in this system model we assume that noise for both BS and downlink user D0

have the same power; it is denoted as σ2. Finally, the data rate for the downlink user is

calculated as:

R
(t)
D0

= log
(
1 +

PD0
(t)|hD0 |2

(t)∑UK
Uk=1 |hUk

|2(t)|gUk
|2(t)η(t)Uk

P
(t)
D0

+ σ2

)
. (5.4)

5.2.2 Multiple Downlink Users and Uplink Backscatter Devices

In this sub-section, we consider more general scenario where a single FDBS simultane-

ously serves multiple downlink users and multiple uplink backscatter devices, as shown

in Fig. 5.1. Without losing the generality, perfect CSI is available at the BS. Downlink

users are defined as Di, where the integer Di ∈ {0, · · · , DI}, and the first downlink user

D0 is considered to be in close proximity to the BS and has the strongest channel gain

condition. In effect, the downlink user D1 is far away from the BS and has a poor channel

gain compared to D0. Therefore, based on this description, the received signal given in

(5.2) for multiple downlink users can be rewritten as:

yD =h
(t)
D0

√
P

(t)
D0
xD0

(t)︸ ︷︷ ︸
Desired Signal

+
∑

Di ̸=D0

h
(t)
Di

√
P

(t)
Di
x
(t)
Di︸ ︷︷ ︸

Intra-Cell (Di) Interference

+

UK∑
Uk=1

DI∑
Di=0

gUk

(t)h
(t)
Uk

√
P

(t)
Di
η
(t)
Uk
x
(t)
Di
x
(t)
Uk︸ ︷︷ ︸

Intra-Cell (Uk) Interference

+ nD︸︷︷︸
Noise

,

(5.5)

where nD is the noise, and Di is the i-th downlink user in the intra-cell interference

part. Based on NOMA decoding order principles, the downlink user D0 employs SIC to

decode its own signal, and then downlink user D1 is considered next as it has the second

strongest channel gain.
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The SINR is calculated as:

SINR
(t)
D0

=
PD0

(t)|hD0 |2(t)
I
(t)
d + I

(t)
u + σ2

, (5.6)

where Id is the interference from other downlink users and Id =
∑

Di ̸=D0
h
(t)
Di

√
P

(t)
Di

. The

signal reflected by uplink backscatter devices is denoted as Iu, where Iu is denoted as

Iu =
∑UK

Uk=1 |hUk
|2(t)|gUk

|2(t)η(t)Uk
. The SINR for the last user D1 is calculated as:

SINR
(t)
D1

=
PD1

(t)|hD1 |2
(t)

I
(t)
u + σ2

. (5.7)

Below equation is used to calculate Di downlink user data rate:

R
(t)
Di

= log
(
1 + SINR

(t)
Di

)
. (5.8)

For the uplink backscatter devices, the signal received at the BS is calculated as:

yBS
(t) =

UK∑
Uk=1

DI∑
Di=0

h2Uk

(t)
√
P

(t)
Di
η
(t)
Uk
x
(t)
Di
x
(t)
Uk

+ x
(t)
SI + nBS . (5.9)

The decoding order is based on the strength of the signal received [46]. Therefore,

the uplink backscatter device with higher received power will be decoded first. The sum

data rate for all uplink backscatter devices is calculated as:

R(t)
sum = log

(
1 +

∑UK
Uk=1

∑DI
Di=0
|hUk
|4(t)η(t)Uk

P
(t)
D0
|xD0 |2

(t)

φ
∑(t)

Di ̸=D0
P

(t)
Di
|hSI |2(t) + σ2

)
. (5.10)

5.2.3 Problem Formulation

We maximize the sum rate of uplink backscatter devices by optimizing the P and ηk.

Therefore, considering the QoS requirements of downlink users, the optimization problem
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for long-term communications over the time period T can be formulated as follows:

max
P,ηUk

T∑
t=1

Rsum(t)/T, (5.11a)

s.t :R
(t)
Di
≥ R̂Di , (5.11b)

0 ≤ ηUk
≤ 1, Uk ∈ UK , (5.11c)

0 ≤ ηUk
P

(t)
DI
≤ PDI

, (5.11d)

0 ≤ PDI
≤ Pmax, (5.11e)

where constraint (5.11b) ensures the minimum QoS requirements for the downlink users,

(5.11c) ensures the BAC reflection coefficient should be between 0 and 1, (5.11d) is the

amount of power to be allocated to uplink device Uk from the power allocated to downlink

users, and (5.11e) represents the maximum transmit power limit for the downlink users.

The optimization of the problem defined in (5.11a) is considered as an NP-hard problem.

The detailed proof is provided in [100].

5.3 Intelligent BAC-NOMA Resource Allocation Systems

5.3.1 Markov Decision Process Model for BAC-NOMA

This sub-section shows the problem formulation to optimize resource allocation for BAC-

NOMA users as a MDP. Choosing the SAC algorithm for this problem is considered

a suitable solution since SAC is known for its stability and sample efficiency. It em-

ploys a stochastic policy, which can be more robust in complex and noisy environments

where channel conditions and interference may vary significantly. Unlike other algo-

rithms such as DDPG, which are more sensitive to perturbations due to their reliance on

deterministic policies, selecting SAC resolves this issue. Furthermore, SAC introduces

an entropy term into its objective function, encouraging exploration of the action space.

In scenarios where exploration is crucial, SAC can be advantageous as it effectively bal-

ances exploration and exploitation. Moreover, SAC naturally handles continuous action
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spaces, which are prevalent in resource allocation problems within wireless networks. In

the context of NOMA and backscatter networks, continuous resource allocation decisions

are common, making SAC a suitable choice. Finally, SAC often requires fewer samples

to converge compared to DDPG. This can help on dealing with limited resources or when

rapid policy updates are necessary.

The significant elements of MDP are agent/s, states, actions, rewards, and transition

probability. To begin the decision making process, the agent starts interacting with the

specified environment (BAC-NOMA network in our case). To learn the policy π, the

agent performs an action a(t) for a current state s(t) to move to the next state s(t+1).

Based on the action, the agent receives the action evaluation (feedback) in the form

of reward or punishment before moving to the next state s(t+1). These rewards and

punishments are used to train the agent to optimize the action-selection process to find

the optimal policy π*. When the training process is finished, all the actions and states

are stored in the brain of an agent. That brain is in the form of a Q-table, denoted

by QTπ (s
(t), a(t)). Traditional Q-learning is considered one of the solutions to the MDP

problem by learning the best path for the state value optimization function.

The downside of this method is the requirement for a huge amount of memory to

accommodate a Q-table for complex state space. Furthermore, DRL solves this problem

by introducing a neural network to solve memory requirements. More research in this

area will help improve the performance of DRL by introducing more neural networks,

because neural networks solve the problem of a high-dimensional state or continuous

state and action space.

The DDPG added deterministic policies to improve the learning process. It uses a

replay buffer whereby it can draw samples from past experiences during the learning

process, which sometimes is referred to as sample-efficient learning. However, obtaining

good results with the DDPG algorithm is usually a challenge in some environments [89,

101]. SAC, an off-policy algorithm, introduces an entropy term to combat this instability.

SAC aims to have this entropy high at each training step update to encourage exploration
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and therefore assign equal probabilities to all actions rather than repetitively assigning

a high probability to a particular action.

Therefore, this work implements SAC to optimize the resource allocation for all up-

link backscatter devices and to ensure the QoS for the downlink users. In summary, the

proposed model solves the MDP with the help of SAC for long-term resource optimiza-

tion.

5.3.2 BAC-NOMA-SAC Algorithm

5.3.2.1 A Design Overview

SAC is the extended version of DDPG that is from the family of RL algorithms. Tra-

ditional RL algorithms are based on simple Q-table and epsilon-based simple explo-

ration/exploitation methods (greedy approaches), and therefore are prone to poor policy

learning. To overcome these problems, SAC employs actor/critic networks and maxi-

mizes the entropy (unpredictability) of the best action that the agent can possibly take

and thus maximizes the agent’s long-term rewards. Additionally, SAC uses an off-policy

formulation that is based on the previously stored data to enhance efficiency. The critic

network assists the actor network to further improve the quality of the learning.

As shown in Fig. 5.2, the environment consists of two downlink users, referred to as

D0 and D1, along with K uplink backscatter devices and FDBS. This configuration is

depicted in (a). Furthermore, the colored boxes represent all three SAC neural networks

(b, c, and d). The first neural network receives the state information directly from the

environment through the actor network (online), which is represented by the red box

(b). Similarly, after processing the action, the output of the actor network becomes the

input of the critic network, as depicted in the yellow box (c). To assess the quality of

each action performed by the actor network online at each time step, the critic network

evaluates the output of the actor network. Therefore, to ensure the quality of each

action, another input of the critic network is also based on the state s(t). The quality of

each action and state pair is determined by the Q values. For this reason, the output
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Figure 5.2: An illustration of the BAC-NOMA-SAC network model

for the critic network is the current Q(t) value and the predicted next Q(t+1) value for

the future state and action pair. The green box represents the value network (d). The

input to the value network is the state, which is used to predict the current and future

value function. All the information is stored in the replay buffer D, which is represented

as a memory bank (colored in gray, as shown in (e)).

Next, we introduce the proposed SAC approach to optimize BAC-NOMA systems.

First, the basic BAC-NOMA-SAC design and significant elements of the proposed learn-

ing algorithm are introduced. Second, we introduce the optimization process performed

by the proposed algorithm.
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5.3.2.2 Key Design Elements

In this sub-section, we introduce an intelligent BAC-NOMA-SAC system for the long-

term BAC-NOMA network sum rate maximizing optimization, where the agent learns a

policy to jointly optimize the transmit power for downlink users and the BAC reflection

coefficient under QoS requirements of downlink users. In the formulated MDP, which is a

tuple of (S,A,P,R), the BAC-NOMA-SAC agent selects a state s(t) ∈ S and takes a step

by performing an action A to obtain the feedback from the BAC-NOMA environment in

the form of reward R. The P represents the probability of transition from the current

state to the next state in a time step t. We use ρπ(s
(t)) and ρπ(s

(t)|a(t)) to represent

the state and state-action marginals of the trajectory distribution induced by a policy

π(s(t)|a(t)).

A detailed explanation of the elements of the formulated MDP is given below.

• Environment: A BAC-NOMA network is the environment for the proposed SAC

agent where there are one FDBS, a number of K uplink backscatter devices, and

multiple downlink users, as shown in Fig. 5.2.

• Agent: In the formulated MDP, the BS works as an agent to jointly optimize the

power of downlink users and the BAC reflection coefficient of the uplink backscatter

devices.

• State space: The state is the information relevant to the environment the agent

accesses during the interaction. The proposed state space is a matrix characterized

by the BAC reflection coefficient ηk of uplink backscatter devices and the transmit

power for downlink users PDi . At each time step t, the state can be given as:

s(t) =
(
(PDi), (

∑
ηUk
× PDi)

)
. (5.12)

The state space is a finite set with UK
(ηUk

×PDi
) number of states through which

the agent (BS) can navigate. Furthermore, based on the received reward, if the
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agent selects 1 then the agent moves to the next power allocation coefficients subset

from 2 dimensions set of states that are bounded by UK
(ηUk

×PDi
) total number of

states. The whole state space can be defined as S = {s(t), s(t+1), s(t+2), . . . , sN}.

The values of state space parameters are listed in Table 5.1.

• Action space: The action is the swap operation between the states. Three dif-

ferent levels of action help the agent to explore and exploit the environment and

to optimize the resource allocation for all users. The action can be given as:

a(t) = {−1, 0, 1}, (5.13)

where action −1 implies that the agent shifts back to the previous state, 0 implies

that the agent does not change its state but remains in the current state, and 1

implies that the agent shifts to the next state. To optimize the resource allocation,

the agent navigates the environment by switching to different power allocation

levels for each downlink user and BAC reflection coefficient for uplink backscatter

devices. In this way, the agent explores the dynamic environment to optimize long-

term resource allocations for BAC-NOMA systems.

• Rewards: The agent receives feedback from the BAC-NOMA environment in the

form of reward r(t). The agent receives positive feedback in the form of 10 from the

BAC-NOMA environment if the current sum rate of the uplink backscatter devices

is greater or equal to the previous sum rate and the constraints are not violated

((5.11b)-(5.11e)). Otherwise, the agent receives a reward of 0 as a penalty for the

wrong action. Finally, the reward function is calculated as:

r(t)(s(t), a(t)) =


10, if Rsum

(t) ≥ Rsum(t−1)and satisfy constraints

given in ((5.11b)-(5.11e)).

0, otherwise.

(5.14)
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The following function Z(π) maximizes the expected reward by adding an entropy term

H as indicated below [89],

Z(π) =
T∑
t=0

E(s(t),a(t))∼ρπ

r(s(t), a(t)) + ᾱH
(
π(·|s(t))

)︸ ︷︷ ︸
Entropy

 , (5.15)

where H is weighted by a temperature parameter ᾱ to regulate the randomness of the

optimal policy. For the SAC agent, the concept of exploration and exploitation of the

wireless network environment is important to learn a stable action selection policy. ᾱ

temperature parameter is between 0 and 1. This ᾱ determines the H
(
π(·|s(t))

)
to set

the learning path for the agent.

The modified Bellman equation for the policy π is utilized in any Q function that is

calculated iteratively for operator χπ as follows:

χπQ(s(t), a(t)) ≜ r(s(t), a(t)) + γEs(t+1)∼P

[
V (s(t+1))

]
, (5.16)

where V (s(t)) is the soft state value function for policy π, which is shown in the following

equation:

V (s(t)) = Ea(t)∼π
[
Q(s(t), a(t))− log π(a(t)|s(t))

]
. (5.17)

SAC trains functions to approximate, a state value function Vψ(s
(t)), a soft Q function

Qθ(s
(t), a(t)), and a policy function πϕ(a

(t)|s(t)). The actor, critic, and value networks’

parameters are respectively denoted by ϕ, θ, ψ, and Vψ minimizes the squared residual

error as follows:

ZV (ψ) = Es(t)∼D

[
1
2(Vψ(s

(t))− Ea(t)∼πϕ [Qθ(s
(t), a(t))− log πϕ(a

(t)|s(t))])2
]
, (5.18)

where D denotes a previously experienced state and action distribution, which is used as

experience memory. The gradient update estimation of equation (5.18) is performed with
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the help of the following function. Generally, at each time step, the squared difference

between predictions and the expectation of the soft Q-function is minimized to obtain

the policy π. The parameters of the above objective function are updated as follows:

∇̂ψZV (ψ) = ∇ψVψ(s(t))
(
Vψ(s

(t))−Qθ(s(t), a(t)) + log πϕ(a
(t)|s(t))

)
, (5.19)

where ∇̂ψ shows the update function of the ZV (ψ) based on the gradient step. The soft

Q-function is optimized using the equation below:

ZQ(θ) = E(s(t),a(t))∼D

[
1
2

(
Qθ(s

(t), a(t))− Q̂(s(t), a(t))
)2]

, (5.20)

where the definition of Q̂(s(t), a(t)) is as follows:

Q̂(s(t), a(t)) = r(s(t), a(t)) + γEs(t+1)∼P [Vψ̄(s
(t+1))]. (5.21)

The objective here is to minimize the squared difference between what the soft Q-

function predicts and the reward plus the discounted expected value of the next state.

The soft Q-functions parameters are updated as below:

∇̂θZQ(θ) = ∇θQθ(a(t), s(t))
(
Qθ(s

(t), a(t))− r(s(t), a(t))− γVψ̄(s(t+1))
)
. (5.22)

5.3.2.3 BAC-NOMA-SAC Algorithm Details

Based on the above discussion, we describe the significant features of the proposed BAC-

NOMA-SAC Algorithm 3 that are used to enhance the achievable sum rate of uplink

backscatter devices while preserving the QoS requirements of the downlink users. The

details for these features of the proposed algorithm are introduced in the following points.

• Initialization:

To begin the optimization processes which is line 1 in algorithm 3, we initialize

network environment parameters and training hyper-parameters. The brain of the
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Algorithm 3 The Intelligent BAC-NOMA-SAC Framework

1: Initialize parameter vectors S, A, R, BAC-NOMA network environment, episodes,
iterations, replay memory D, batch-size, actor network (ϕ), critic network (θ), value
network (ψ), and target value network (ψ̄).

2: for each episode Ne do
3: for each iteration Te do
4: a(t) ∼ πϕ(a(t)|s(t))
5: if action < 0 then
6: a(t) = −1
7: else if action = 0 then
8: a(t) = 0
9: else

10: a(t) = 1
11: end if
12: Calculate reward r(t) using equation (5.14)

13: D ← D ∪
{(
s(t), a(t), r(s(t), a(t)), s(t+1)

)}
14: end for
15: Update; actor network (ϕ), critic network (θ), value network (ψ), and the next

target value network (ψ̄).
16: for each gradient step do
17: ψ ← ψ − λV ▽̂ψZV (ψ)
18: θ ← θ − λQ▽̂θZQ(θ)
19: ϕ← ϕ− λπ▽̂ϕZπ(ϕ)
20: ψ̄ ← τψ + (1− τ)(ψ̄)
21: end for
22: end for

SAC agent is initialized as three different neural networks (actor, critic, and value)

to learn the optimal policy. The hyper-parameters used for this algorithm are listed

in Table 5.1.

• Brain Architecture:

In the proposed model, there are FCNNs architecture for the brain of the proposed

agent because FCNNs are considered efficient architecture of artificial neural net-

works to process the dynamic environment. The feed-forward propagation mainly

performs the functions of neuron activation, neuron transfer, and forward propa-

gation. First, the neuron activation computes the weighted sum for the input and

the bias. The neuron transfer invokes ReLU activation function to activate the

neurons. Finally, forward propagation is the process of providing input to the next
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layer. This process happens for all the remaining layers. Last, to get robust stable

learning and optimize the dynamic BAC-NOMA network, we use the optimization

for a dynamic BAC-NOMA network with the three following neural networks.

– Actor Network (ϕ):

This model is based on the throughput maximization policy πϕ(s
t, at) that

also considers downlink user’s QoS requirements, which is tuned by the actor

network (ϕ). The architecture of this network consists of one input layer,

two hidden layers with ReLU activation functions, feed-forward propagation,

back propagation, loss function, Adam optimizer, and output mechanisms to

perform efficient action in the dynamic network environment. Starting with

the inputs, the actor network receives states as input from the environment

(BAC-NOMA).

The first hidden layer receives the network environment information that is

output propagated from the first layer that is activated by the ReLU activation

function. The output of this hidden layer is in the form of weights and bias.

The same process continues with the second hidden layer until the final output.

We utilize the Adam optimizer to compute the gradients used in updating

the weights of the neural networks, thus minimizing the overall loss when

predicting the output that is an action a(t). Generally this back-propagation

process helps the neural network to minimize the weight prediction errors by

adjusting neural network weights during the learning process.

Last, when the agent is experienced enough by obtaining multiple allocation

policies. The updated parameters of the actor network are:

ϕ← ϕ− λπ▽̂ϕZπ(ϕ). (5.23)

– Critic Network (θ):
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Similar to the first neural network architecture (Actor), the critic network

follows the same architectural design. The input of this network is different

from that of the actor network, which is based on state and action at each

time slot t. This is the function of the critic network is to learn the current in

future key value by calculating the Bellman equation (5.16). For this reason,

the input of the critic network is different from the actor network. As the

name suggests, the bellman equation is updated with soft Q updates. The

soft Q-function is denoted as Qθ(s
(t), a(t)). Finally, the Q-function update is

as follows:

θ ← θ − λQ▽̂θZQ(θ). (5.24)

– Value Network and Target Value Network (ψ, ψ̄):

Value network denoted by V (t)(ψ), and the target value network is denoted

by V (t+1) (ψ̄). The architecture of the value network follows the same design

as the actor and critic networks. The input is the state which predict the

current and target values. To learn the efficient resource allocation via policy

π, the value network output V (t) seeks to minimize the error between the two

value networks to assist the agent efficiently. The value network is updated

with the help of the following equation:

ψ ← ψ − λV ▽̂ψZV (ψ). (5.25)

Similarly, the target value network V t+1 is updated with the following equa-

tion,

ψ̄ ← τψ + (1− τ)(ψ̄), (5.26)

where τ represents the smoothing coefficient of target value. The function of
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τ is utilized to stabilize the training process of the SAC agent.

We use the same architecture for all the neural networks. This shows the strength of

the proposed design, which can learn the dynamic environment of the actor, critic, and

value networks.

5.3.3 Complexity of the BAC-NOMA-SAC

In this sub-section, we discuss the complexity of the proposed model. According to the

given network environment, the complexity of our model depends on the network size

(i.e., active uplink backscatter devices and downlink users) and three neural networks

(actor, critic, and value networks). Each network consists of a different number of inputs

and output features. The actor network takes input from the environment in the form

of a state. After processing the state, the DNN produces output action in the form of

mean and standard deviation. Before producing the output, the feed-forward and back-

propagation mechanisms are adopted to fine tune the DNN online. Similarly, activation

of all the neurons is performed using the ReLU activation function. The (e) denotes the

input layer size that depends on the number of active devices. Every network contains

two hidden layers (L), and each layer contains (x̂l) neurons.

These parameters follow Ê
∆
= ex̂1 +

∑L−1
l=1 (x̂l)x̂l+1. The real-time computational

complexity of the feed forward and back propagation for the downlink users and uplink

backscatter devices in this BAC-NOMA-SAC model is O(Ê). According to the total

number of episodes Ne and iterations Te that the agent takes, the calculation for the

computational complexity is O(NeTeÊ).

5.4 Simulation Results

Simulation results using the experimental setup given below are listed in this section.
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5.4.1 BAC-NOMA-SAC Experimental Setup

This section presents the system parameters and the setup of the simulation to demon-

strate the BAC-NOMA-SAC algorithm performance. Our setup includes multiple down-

link users and multiple uplink backscatter devices connected via the same sub-channel

to a single FD BS within different radius sizes of 5 meters, 25 meters, and 50 meters.

The location of the BS, downlink users, and uplink backscatter devices are set at (0, 0)

meters, ((3, 0), (4, 0)) meters, and randomly distributed in the area, respectively. We

treat the noise (σ2) as a hyper-parameter and test different values. The system model

(BAC-NOMA-SAC) uses fully connected hidden layers, and there are (256) neurons per

layer. The actor, critic, and value networks are used to enhance the learning process.

Different parameters, such as the temperature parameter represented by ᾱ, the discount

factor represented by γ, and τ are used to modulate the parameters of our target value

network. Moreover, all hidden layers are processed by the ReLU function. To balance

between exploration and exploitation, SAC uses entropy from equation (5.15). We use

Rayleigh fading in the proposed model. When a channel experiences more fading, the

received signal strength drops, and this can lead to decreased performance in terms of

data rates, throughput, increased error rates, and poorer overall communication quality.

Therefore, achieving the same performance is challenging. However, by adjusting the

transmission power based on the channel quality, a system can ensure significant perfor-

mance. Tuning the parameters can lead to a faster learning process and convergence.

Additional system parameters and their values used for the simulation (for both the pro-

posed and benchmark schemes) are given in Table 5.1. A MacBook Pro macOS system

with a 3.1 GHz Intel Core i5 processor, 8 GB of memory (random access memory), and

2133 MHz LPDDR3 is used for the simulation. Python 3.6 is used to implement the

proposed system model.

5.4.2 The BAC-NOMA-SAC Convergence

Fig. 5.3 shows the convergence of the BAC-NOMA-SAC algorithm with respect to the

different number of iterations in each episode. It can be seen that the agent obtained
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Table 5.1: Network and training ML parameters

Parameter Value

FD BS 1

Downlink users {1− 2}
Uplink backscatter devices {2− 8}
Pmax 20 dBm

Channel type Fading

Noise {−94,−84,−74} dBm
Radius {5, 25, 50} meters

Target data rate for Di {0.5, 1, 2, 3} BPCU
BAC reflection coefficient {0.1, 0.2, . . . 0.8, 0.9}
Self-interference coefficient {0.001, . . . , 0.1} dBm
Episodes 500

Trials {400, 500}
Learning rate 0.1

Discount factor 0.99

Target value smoothing coefficient 0.001

Batch size 100

DNN activations ReLU

Optimizer Adam

Hidden layers 2

Neurons for each layer 256

a higher average reward with 500 iterations in each episode. The agent with a lower

number of iterations (400 iterations) in each episode cannot explore the environment

completely and converges to a non-optimal solution with a low reward. In order to reach

the optimal solution for the given problem, RL algorithms require considerable learning

steps; therefore, we kept the number of iterations at 500 so that the agent can fully

explore the environment and find good states and actions.

5.4.3 Performance with Respect to Different QoS Requirements

Fig. 5.4 illustrates the sum rate of backscatter users with regard to different QoS re-

quirements and the different number of downlink users. The sum rate of backscatter

devices increases with multiple downlink users when we set the QoS requirements to 0.5

bit per channel use (BPCU). Because of the small QoS requirements, the downlink users

can achieve the target date rate with a small amount of transmit power, and the rest

of the power is allocated to backscatter devices, which increases their sum rate. In the
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Figure 5.3: Shows the convergence and the reward obtained in the different number of iterations at each episode

same way, with a single downlink user and multiple uplink backscatter devices, the 0.5

BPCU requirements enhance the sum rate of backscatter devices compared to the large

(3 BPCU) requirements. In a nutshell, the BS (agent) is able to allocate the transmit

power and reflection coefficient effectively while considering the QoS requirements of

downlink users.

5.4.4 Performance Comparison with a Varying Number of Backscatter

Devices

In this section, we compare the performance of our proposed scheme with conventional

optimization (benchmark) and random power allocation and compare the performance

of BAC with OMA in terms of the achievable sum rate against varying numbers of UK

uplink backscatter devices. The performance of all schemes is checked for two different

target data rate requirements, that is 0.5 BPCU and 3 BPCU. As seen in Fig. 5.5, our

proposed scheme (red curves) outperforms the rest of the schemes with respect to both
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Figure 5.4: Shows sum rate with different target data rate and downlink users

QoS requirements. With an increased number (UK = 10) and QoS of 0.5 BPCU, the

sum rate almost reaches 8 BPCU. Increasing QoS for downlink users from 0.5 BPCU

to 3 BPCU leads to a decrease in the achievable sum rate; that is, it drops from 8

BPCU to 6.5 BPCU. The benchmark scheme (black curves) outperforms the random

power allocation method (blue curves) and backscatter communication with OMA (green

curves). Therefore, by applying the proposed model, the system can be more flexible

in allocating resources (power and subcarriers) to users. Also, the proposed model can

manage and consider the complexities of SIC order and power allocation to enhance

the performance of the system. Furthermore, the proposed model can handle non-linear

constraints.
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Figure 5.5: The achievable sum rate against the different target data rate and different number of K devices

5.4.5 Varying Self-Interference Coefficient and Different Uplink Backscat-

ter Devices

Fig. 5.6 shows the performance comparison of the proposed BAC-NOMA-SAC scheme

with the conventional optimization (benchmark) schemes with regard to different values

of (φ) and UK in terms of sum rate. The proposed scheme with UK = 8 provides the

highest achievable sum rate. However, as the value of (φ) increases towards 0.1, the

achievable sum rate decreases to almost 3 BPCU. With the same number of backscatter

users (UK = 2), our proposed algorithm obtained higher sum rate as compared to the

benchmark scheme and BAC-OMA method. We attribute the performance gains made

by our proposed model to the fact that the BS allocates the power and BAC reflection

coefficient dynamically to downlink and uplink backscatter users.

5.4.6 Impact of the Noise

Fig. 5.7 shows the impact of noise σ, uplink backscatter devices, and different QoS

requirements for downlink user on the performance of the proposed BAC-NOMA-SAC

algorithm. We also compare the performance with that of BAC-OMA.

For all the cases, the achievable sum rate decreases as the noise level increases from

(−94 dBm) to (−74 dBm). Moreover, the proposed scheme achieves a better sum rate
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Figure 5.7: Achievable sum rate vs different noise (σ) levels

compared to BAC-OMA with an increased number of backscatter devices and when

the QoS requirements are set to 0.5 BPCU (low QoS requirements). Additionally, the

conventional BAC-OMA provides the lowest sum rate against all parameters.

5.4.7 Impact of the Cell Radius Size

Fig. 5.8 illustrates the comparison of the proposed BAC-NOMA-SAC and BAC-OMA

in terms of the achievable sum rate. The figure depicts the achievable sum rate with
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Figure 5.8: Achievable sum rate comparison with different radius and different target data rates R̂D0

different radius sizes, different values of UK , and different QoS requirements for the

downlink users. The achievable sum rate with the high number of UK uplink backscatter

devices is a higher sum rate compared to BAC-OMA for a low number of UK uplink

backscatter devices for different radii. As the radius size increases, the sum rate of the

proposed algorithm (red curves) gradually decreases because of the large-scale distance-

dependent path loss.

Moreover, based on different radius settings, BAC-NOMA-SAC and BAC-OMA with

R̂D0 = 3 BPCU perform worse than BAC-NOMA-SAC and BAC-OMA with R̂D0 = 0.5

BPCU. The BAC-OMA performance (green curves) also decreases with the increase in

the radius size and has a low sum rate for all scenarios compared to the proposed BAC-

NOMA scheme.

5.4.8 Performance Comparison with BAC-OMA with regard to Differ-

ent QoS Requirements

Fig. 5.9 provides a performance comparison of the proposed BAC-NOMA with BAC-

OMA against different QoS R̂D0 and number of UK uplink backscatter devices. The
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Figure 5.9: Achievable sum rate of vs different numbers of K devices and different target data rates

light green bar represents two uplink backscatter devices with the BAC-OMA network,

and the dark green bar represents four uplink backscatter devices with the BAC-OMA

network. In contrast, the light red bar represents the two uplink backscatter devices

with BAC-NOMA-SAC, and the dark red represents the four uplink backscatter devices

with BAC-NOMA-SAC.

We can see that with decreased QoS requirements, the sum rate of our proposed

algorithm optimizing the reflection coefficient of four backscatter devices produces a

higher sum rate. Generally, with different target data rates and uplink backscatter

devices, BAC-NOMA-SAC consistently achieves a better sum rate compared to the BAC-

OMA system.

5.5 Chapter Summary

In this chapter, we have suggested SAC-based BAC-NOMA algorithm to maximize the

sum rate of uplink backscatter devices. The proposed SAC framework ensures the QoS

requirements of downlink users are not compromised and learns long-term resource op-
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timization in a dynamic BAC-NOMA network. We have shown that the proposed al-

gorithm converges to an optimal solution with 500 iterations. Moreover, the simulation

results demonstrate that the suggested algorithm obtained better sum rate with multiple

downlink users and small QoS requirements. Additionally, the proposed algorithm out-

performs the benchmark scheme, random power allocation, and the BAC-OMA method

in terms of the achievable sum rate given the varying number of uplink backscatter

devices. Similarly, the proposed algorithm shows superiority in terms of the sum rate

against different values of self-interference and different noise levels. Finally, we have

shown that the BAC-NOMA algorithm surpass the BAC-OMA method with different

radii and target data rates in terms of the achievable sum rate.



Chapter 6

Conclusions and Future Work

This chapter summarises the content of the thesis, lists the contributions and findings,

and discusses some possible future directions. Sub-section 6.1 summarises the contribu-

tions.

6.1 Contributions Summary

As promising technology in future wireless communication 5G, this thesis concentrates on

how to improve NOMA network in different structures. With three different aspects rep-

resented in this thesis, we illustrated the knowledge and principles of IoT NOMA network

as follows: 1) The knowledge and principles of NOMA, which include key technologies,

such as SC and SIC, single-cell downlink NOMA network, multi-cell downlink NOMA

network, and investigation about NOMA network in general with downlink framework

setting. 2) Uplink IoT NOMA network, where there are different uplink IoT NOMA

users. For example, IoT users with only GB or GF or both scenarios are as known as

SGF. Moreover, we used different techniques, such as relay node and semi-centralized

algorithm, to improve the EE of GF users and reduce the system complexity. 3) With

FDBS, downlink and uplink NOMA scenarios were applied. Moreover, the BAC tech-

nique was applied to improve the EE for uplink backscatter devices without affecting

114
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downlink users. In this work, we took the advantages of the downlink signal from the

BS to excite the circuits of uplink backscatter devices. More details about the main

contributions that applied in this thesis are described as follows.

In Chapter 3, single and multiple cell downlink NOMA networks were investigated.

Moreover, different techniques, such as DRL, ACDRL-D, and ACDRL-C ML, were in-

vestigated. A framework for downlink NOMA was proposed based on a model-free RL

approach for dynamic resource allocation in a multi-cell network structure. With the

aid of ACDRL, we optimized the active power allocation for multi-cell NOMA systems

under an online environment to maximize the long-term sum rate. To exploit the dy-

namic nature of NOMA, this work utilized the instantaneous data rate for designing the

dynamic reward. The state space in ACDRL contains all possible resource allocation re-

alizations depending on a three-dimensional association among users, base stations, and

sub-channels. We proposed an ACDRL algorithm with this transformed state space,

which is scalable to handle different network loads by utilizing multiple deep neural net-

works. Lastly, the simulation results validated that the proposed solution for multi-cell

NOMA outperforms the conventional RL, DRL algorithms, and OMA schemes in terms

of the evaluated long-term sum rate.

In Chapter 4, different types of uplink NOMA IoT users were investigated. Moreover,

different techniques to improve the EE such as relay node, were considered. Moreover, we

considered two different network frameworks, such as centralized and fully distributed.

We proposed a semi-centralized optimization framework for NOMA IoT networks to

maximize the EE of different types of users (GB and GF). We used a proximal policy

optimization algorithm at the BS to maximize the EE of GB users and a multi-agent

DQN to optimize the resource allocation for GF users with aid of a relay node. The

proposed algorithm combines the advantages of fully centralized and fully distributed

frameworks to compensate for their shortcomings (complexity and long learning time).

The numerical results showed that the proposed algorithm enhances the EE of GB users

by 6% and 11.5%, respectively, compared with the fixed power allocation and random
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power allocation strategies. Moreover, the results demonstrated a 47.4% increase in the

EE of GF users over the benchmark scheme. Additionally, we showed that the increase

in the number of GB users has a significant impact on the EE of GB and GF users.

In Chapter 5, with the use of power domain NOMA and BAC, future 6G ultra

massive machine-type communications networks are expected to connect large-scale IoT

devices. However, due to NOMA co-channel interference, the power allocation to large-

scale IoT devices becomes critical. The existing convex optimization-based solutions are

highly complex, and therefore, it is difficult to find the optimal solution to the resource

allocation problem in a highly dynamic environment. To alleviate this problem, this

work developed an efficient model-free BAC approach with a NOMA system to assist

the base station with complex resource scheduling tasks in a dynamic BAC-NOMA IoT

network. The objective was to increase the sum rate of uplink backscatter devices.

More specifically, we jointly optimized the transmit power of downlink IoT users and

the reflection coefficient of uplink backscatter devices using a reinforcement learning

algorithm, namely the SAC algorithm. With the advantage of entropy regularization,

the SAC agent learns to explore and exploit the dynamic BAC-NOMA network efficiently.

The proposed algorithm ensures the QoS requirements of downlink users while enhancing

the sum rate of uplink backscatter devices. Numerical results revealed the superiority

of the proposed algorithm over the conventional optimization (benchmark) approach in

terms of the average sum rate of uplink backscatter devices. We showed that the network

with multiple downlink users obtained a higher reward with respect to a large number

of iterations compared to episodes with a lower number of iterations. Moreover, the

proposed algorithm outperformed the benchmark scheme and BAC with OMA in terms

of the average sum rate with the different number of backscatter devices. Additionally,

we showed that our proposed algorithm enhances sum rate efficiency with respect to

different self-interference coefficients and different noise levels. Finally, we evaluated and

showed the sum rate efficiency of the proposed algorithm with different QoS requirements

and cell radii.
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6.2 Further Work

Wireless networks and AI (ML) have emerged within the last few years and created a

new wireless generation called 6G communication technologies. Today, there are many

requirements, tests, and improvements needed to be added in this area. Below is a brief

list of some future directions for solving part of these requirements and for improvements

in the near future:

• Incorporating Deep Learning: It is refers to the use of DL models, techniques,

or methods to solve problems, build systems, or develop applications. DL consid-

ered as subset of ML which involves NN with more than one layer to learn patterns

from data. By adding DL to a task or system, the performance of this system or

task is enhanced. DL has shown great potential in resource allocation for IoT

networks with NOMA. Incorporating DL for channel estimation/ CSI acquisition

can improve system performance. As acquiring CSI in NOMA-based IoT networks

is a challenging task, especially combining NOMA with some other technologies,

such as reconfigurable intelligent surface (RIS) and multiple input multiple output

(MIMO), the CSI can be acquired via DL through extensive training on the input

data of existing channel models.

• User Mobility Prediction: User location and movement trajectory impact re-

source allocation, especially in NOMA-assisted networks. Therefore, predicting

users’ geographical location or position can improve the resource optimization pro-

cess. Unsupervised learning is a better solution to predict users’ positions.

• K-repetitions: Reliability is one of the main issues for 5G and beyond wireless

communication. The K-repetitions method can be adopted especially for GF-

NOMA IoT networks, where the users can send multiple copies of the same packets

to enhance reliability.

• MIMO: MIMO is very important subject within 6G and beyond. Design and

implement beamforming in MIMO can be considered as follows, 1) complex sig-
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nal representation, 2) MIMO channel model, 3) beamforming vector, 4) transmit

and receive beamforming. Adding MIMO in future designs helps enhance the per-

formance of wireless communication systems in many ways. First, it can reduce

interference from specific directions, thereby enhancing the QoS and performance

of the wireless network. Also, it enhances both data rate and EE since multiple

data streams can be transmitted within the same frequency band. Moreover, it

can increase the range and coverage of the wireless network. Therefore, integrating

MIMO with the proposed algorithms is another future research direction.

• Impact of channel fading: In resource allocation for NOMA-IoT networks with

RL-based approaches, it is crucial to examine the impact of significant channel

fading on delay, complexity, and real-time implementation. The following aspects

require further investigation.

1. Delay: Fluctuations in the quality of a wireless link due to channel fading can

lead to delays in communication. In a resource allocation system based on

reinforcement learning , the algorithm may need to adapt by re-optimizing

resource allocations in response to these changes. However, this adaptation

process can result in additional delays as the RL agent gathers information

about the current channel conditions and updates its policy. It is essential to

analyze and reduce these delays, especially for applications with strict latency

requirements.

2. Complexity: The complexity of resource allocation decisions can be height-

ened by channel fading. As channels fluctuate, the RL agent must take into

account additional states, actions, or observations, depending on the fading

model’s intricacy and the extent of resource allocation. In situations with

complex fading patterns, the use of more advanced RL algorithms or archi-

tectures may be necessary to manage the increased intricacy.

3. Real-time implementation: Implementing real-time systems can be difficult
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when dealing with channel fading, as the RL agent needs to make decisions

quickly to adapt to changing conditions. If the RL algorithm is computation-

ally intensive and cannot make decisions within the required time frame, it

may not be suitable for real-time applications. Therefore, it is important to

analyze the real-time performance of the RL algorithm under fading condi-

tions to ensure that it meets the application’s timing constraints.

• UAV-assisted Networks: The UAVs is an essential part of future wireless com-

munication to achieve high data rates. Adding UAVs as flying BS with ML algo-

rithms (specifically, the multi-agent system) can enhance system efficiency.
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