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Abstract

Higher-order interactions are increasingly recognized as a critical aspect in the model-

ing of complex systems. Higher-order networks provide a framework for studying the

relationship between the structure of higher-order interactions and the function of the

complex system. However, little is known about how higher-order interactions affect

dynamic processes. In this thesis, we develop general frameworks of percolation aiming

at understanding the interplay between higher-order network structures and the critical

properties of dynamics. We reveal that degree correlations strongly affect the percola-

tion threshold on higher-order networks and interestingly, the effect of correlations is

different on ordinary percolation and higher-order percolation. We further elucidate the

mechanisms responsible for the emergence of discontinuous transitions on higher-order

networks. Moreover, we show that triadic regulatory interaction, as a general type of

higher-order interaction found widely in nature, can turn percolation into a fully-fledged

dynamic process that exhibits period doubling and a route to chaos. As an important

example of dynamic processes, we further investigate the role of network topology on

epidemic spreading. We show that higher-order interactions can induce a non-linear in-

fection kernel in a pandemic, which results in a discontinuous phase transition, hysteresis,

and superexponential spreading. Finally, we propose an epidemic model to evaluate the

role of automated contact-and-tracing with mobile apps as a new containment measure

to mitigate a pandemic. We reveal the non-linear effect on the reduction of the incidence

provided by a certain fraction of app adoption in the population and we propose the

optimal strategy to mitigate the pandemic with limited resources.

Altogether, the thesis provides new insights into the interplay between the topology of

higher-order networks and their dynamics. The results obtained may shed light on the

research in other areas of interest such as brain functions and epidemic spreading.
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Chapter 1

Introduction

Generalized network structures including multilayer networks and higher-order networks

are increasingly recognized as the new paradigm for modeling dynamic processes on

interacting systems. These generalized network structures allow to distinguish between

interactions of different natures and connotations and also allow to capture the higher-

order interactions involving two or more elements of a complex system.

Recent research on multilayer and higher-order interactions is dramatically changing

and enriching our understanding of the interplay between structures and dynamics of

networks. It is well known that network topology strongly affects the dynamics of the

network, yet many fundamental questions concerning the role of higher-order interactions

are awaiting answers. For instance, while degree correlations on multiplex networks have

been shown to play an important role in network robustness, little is known about the

effects of correlation on higher-order networks. Ref. [1] studies social contagion processes

on hypergraphs and reveals that positive hyperdegree correlations suppress explosive

transitions. However, the discussion is restricted to hypergraphs exclusively formed by

links and triangles, and the effects of degree correlation on general hypergraphs are still

unknown.

Recently, extensive literature has reported the novel dynamic properties of networks
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where higher-order interactions are present. For example, the higher-order Kuromoto

model defined on simplicial complexes can display an explosive synchronization transition

[2]. On spreading processes such as epidemic spreading and social contagion defined

on simplicial complexes [3, 4] and hypergraphs [1, 5, 6], phase transitions can become

discontinuous. Despite these observations of rich phenomenology of dynamics on higher-

order networks, a theoretical understanding of the underlying mechanism that accounts

for these phenomena is still a challenge.

In this thesis, we investigate the interplay between structure and the dynamics of

generalized network structures. We establish theoretical frameworks of percolation to

study dynamic properties and critical phenomena on generalized network structures.

Percolation is a fundamental critical phenomenon defined on networks that predicts

the fraction of nodes in the giant component when nodes or links in the network are

randomly removed. Indeed, having an extensive number of nodes in the giant component

is the minimum requirement for dynamic processes such as epidemic spreading, social

contagion, and diffusion to take place on the network. Therefore, percolation does not

only reveal the robustness of a network, but it is also fundamental for the study of a

large variety of other dynamic processes.

Epidemic spreading, as an important dynamic process on networks, has been shown

to be mappable to the link percolation problem on the same network [7, 8]. Thus, the

percolation theory can be used to determine the epidemic threshold on a given network

topology. The study of real pandemics greatly benefits from insights provided by the

percolation theory.

Percolation has been extensively studied on pairwise networks. Mathematically,

nodes or links are randomly damaged with probability 1 − p, and the fraction of nodes

in the giant component R is studied as a function of p to characterize how macroscopic

connectivity of the network is affected by the increasing entity of random damage. At

the percolation threshold p = pc, the giant component vanishes, indicating the dysfunc-
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tioning of the network. It is well known that the topology of networks strongly affects

the critical threshold in the infinite network size limit [9, 10]. For instance, on scale-free

networks, the critical threshold vanishes, i.e., pc = 0, indicating that scale-free networks

are robust to random damages. The recent developments of percolation on multilayer

networks provide exciting new insights into the interplay between the dynamic and topol-

ogy of networks. The percolation threshold on multilayer networks is strongly affected

by the structure of interlayer dependency [11–13], degree correlation [14, 15], and link

overlap [16, 17].

Apart from multilayer networks, another important generalization of networks is

higher-order networks. Refs. [18–22] study percolation on hyperbolic simplicial com-

plexes using the real-space renormalization group theory and the percolation threshold

is obtained analytically. Novel critical phenomena such as discontinuous phase transi-

tion for simple link percolation [18] and unusual critical scaling [22] are observed. For

percolation on random higher-order networks that do not display a hyperbolic network

geometry, fewer results are known and the higher-order network structure being explored

is very restricted [23, 24].

Other dynamical processes such as diffusion have also been investigated on multilayer

networks [25, 26] and higher-order networks [27–29]. Ref. [25] shows that the 2-layer

multiplex network structure speeds up the diffusion on the less diffusive layers and under

specific conditions, super-diffusion can emerge. Ref. [26] generalizes the analysis of the

spectrum of graph Laplacian on multiplex networks with an arbitrary number of layers.

On higher-order networks, on the other hand, the graph Laplacian that determines the

properties of diffusion processes is generalized to Hodge Laplacian on simplicial com-

plexes [28]. Spectrum properties of generalized higher-order Laplacian are studied on

a framework called Network Geometry with Flavor [27]. It is shown that higher-order

up and down Laplacian can have a finite spectrum dimension that strongly affects the

return-time probability of the diffusion process [29].

Besides, in a large variety of complex systems, such as brain networks and climate
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networks, the functional connectivity in the network changes over time. Ordinary perco-

lation is unsuitable to describe such systems. Typically, indeed some cascading processes

are associated with percolation. For instance, for interdependent percolation on multi-

layer networks, the damage propagates back and forth among the layers reaching a

steady state at the end of the cascading process [11], resulting in the network connectiv-

ity changes over time. An important open question is whether percolation can capture

even more general time-dependent variations in the connectivity of a network.

In this thesis, we fill the gaps discussed above by providing general frameworks for

understanding percolation and epidemic spreading on networks and their generalization.

In order to generalize the percolation on systems with time-dependent connectivity, we

focus on a general type of higher-order interaction named triadic interactions which occur

when a node regulates the interaction between two other nodes. By introducing signed

triadic interaction, we define triadic percolation. We show that triadic percolation is a

fully-fledged dynamic process that the order parameter exhibits period doubling and a

route to chaos. Triadic percolation is dramatically different from ordinary percolation

on networks. Percolation on pairwise networks displays a second-order continuous phase

transition while the phase diagram of triadic percolation is much richer and becomes an

orbit diagram. The results obtained radically change our understanding of percolation

and shed light on the study of real systems such as brain networks and climate networks.

To study the effects and degree correlation on higher-order networks and investigate

the mechanism behind the discontinuous phase transition, we propose a novel hypergraph

model called Multiplex Random Hypergraph that distinguishes hyperedges of different

cardinality in different layers. As such we can define generalized hyperdegrees that rep-

resent the number of hyperedges of different cardinality that incidents to a node and the

multiplex hypergraph is characterized by correlations between generalized hyperdegrees.

Moreover, the multiplex hypergraph model allows for defining and exploring simple and

higher-order percolation processes. We show that these percolation processes display

rich phenomenology including discontinuous hybrid transitions and multiple percolation
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transitions. These results elucidate the mechanisms responsible for the emergence of

discontinuous transition.

We further investigate the interplay between network structure and dynamics by

studying examples of epidemic models. We propose an epidemic model on hypergraphs

where hyperedges account for the effect of higher-order interactions in epidemic spreading

due to the colocation of individuals in different environments. We find that the higher-

order interactions together with heterogeneous participation time in different environ-

ments induce non-linear infection kernels, which lead to discontinuous phase transition,

hysteresis, and superexponential spreading.

Finally, motivated by the recent COVID-19 pandemic, we propose a theoretical frame-

work based on link percolation to study the role of automated contact-and-tracing with

mobile apps in mitigating a pandemic. On uncorrelated networks, we derive the epi-

demic threshold analytically as a function of the distribution of the tracing app in the

population. We show that in general the more the app is diffused among the population,

the higher is the value of the epidemic threshold, meaning that the endemic state is

more likely to be achieved. Moreover, we propose the optimal strategy to mitigate the

pandemic when the app coverage in the population is limited by the resources available.

These results provide important quantitative insights into the level of adoption needed

for contact-tracing apps to be effective in mitigating an epidemic.

The thesis is structured as follows. In Chapter 2, a general introduction to networks

and their generalization, including multilayer networks and higher-order networks, as

well as critical phenomena studied on these structures is provided. This chapter also

provides technical preparations for the following chapters including the percolation the-

ory and message-passing approaches. In Chapter 3, the percolation theory on Networks

with Triadic Interactions is discussed. We provide a general theory for triadic percola-

tion which accurately predicts the full phase diagram on random graphs as confirmed

by extensive numerical simulations. We find that triadic percolation on real network

topologies reveals a similar phenomenology. In Chapter 4, we focus on the percolation
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theory on the multiplex random hypergraph model and we explore higher-order percola-

tion processes and the effects of correlation within this framework. Chapter 5 is devoted

to a mean-field theory of the SIS-type epidemic model on hypergraphs. In Chapter 6,

we discuss the epidemic spreading model on a contact network with mobile apps for

contact-and-tracing, and we provide an optimal strategy to distribute the mobile apps.

Finally, in Chapter 7 we reflect on the thesis and discuss some future perspectives.
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Chapter 2

Networks and Dynamics

2.1 Networks and their generalizations

In the last three decades, Network Science has blossomed and become the new paradigm

for the study of complex systems. This interdisciplinary research area has greatly bene-

fited from tools and theories in mathematics, physics, and computer science. In return,

Network Science has influenced numerous fields such as quantum physics [30, 31], ecology

[32–35], biology [36–39], climate science [40, 41], brain study [42–44], sociology [45], and

epidemiology [8, 46]. Indeed, pairwise interactions in a complex system can be mathe-

matically described by as a network G(V,E) formed by a set of nodes V representing

elements of the system and a set E representing the interactions among them. The net-

work can be constructed from real data that one wants to investigate, or it can also be

modeled using statistical mechanics approaches. The network approach to study com-

plex systems provides a powerful tool for understanding not only its underlying structure

but also its dynamics, such as epidemic spreading [8], synchronization [47], and diffusion

[48].

Nevertheless, networks have intrinsic limitations. Indeed, real systems are rarely

formed exclusively by single networks with links of equivalent meaning [49]. For in-
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stance, in social networks, the links representing human interactions within a group can

be distinguished depending on the several different social ties that they represent such

as friends, relatives, colleagues etc. Similarly, in transport networks, the nodes might

represent cities and links can be categorized as different means of transport (trains, cars,

planes, etc) between them. The need to distinguish between links of different types has

prompted scientists to define and study multilayer networks. A multilayer network is

formed by aggregating several interacting networks. Multilayer network formalism has

been introduced in social science for more than 30 years [50] but has been extensively

studied only very recently. Mathematically, a multilayer network M is formed by a set of

layers Y = {α|α ∈ {1, 2, · · · ,M}}, a set of networks in each layerG = (G1, G2, · · · , GM ),

as well as the interlayer interactions G characterized by interlayer links Eα,β between two

node sets Vα and Vβ. There are several most commonly studied multilayer network mod-

els, depending on the characters one would like to include, such as multiplex networks

[11], multi-slice networks [51, 52], and networks of networks [53–55]. Multiplex networks

are multilayer networks that deserve special attention. In multiplex networks, there

is a one-to-one correspondence between nodes (called replica nodes) in different layers,

and interlinks exist exclusively between replica nodes. A typical example of a multiplex

network is a transport network: replica nodes are cities while links in different layers rep-

resent different means of transport among these cities. The multilayer network formalism

has been extensively applied in social networks [56–60], complex infrastructures [61–63],

economic and financial networks [64, 65], molecular networks [66], brain networks [67],

ecological networks [68–71], climate networks [72, 73], etc.

Another class of generalized networks that are gaining increasing attention recently

is higher-order networks. In many complex systems in nature, such as biological, neu-

ral, ecological, and social systems, the elements of a complex system are interacting in

groups and cannot simply be decomposed into a collection of pairwise interactions [74].

For instance, in a scientific collaboration network, one wants to distinguish between the

scenarios in which three scientists coauthor a paper and the one in which each pair of

8



the same three authors is coauthoring a paper. Empirical results in real systems such

as neural networks have shown that higher-order interactions have both topological and

statistical effects [75], while theoretical advances has revealed that higher-order inter-

actions strongly affect critical phenomena such as percolation [19, 21, 76, 77], epidemic

spreading [78, 79], synchronization [2, 80–82], and social processes [1, 3, 5].

Higher-order interactions are commonly studied using either simplicial complexes or

hypergraphs. Both structures are formed by a set of nodes v ∈ {1, 2, · · · , N} and a set

of higher-order interactions where each higher-order interaction α involves two or more

nodes, i.e., α = [v1, v2, · · · , vn] [83]. In hypergraphs, the higher-order interactions are

encoded in hyperedges. The number of nodes that incident to one hyperedge is called the

cardinality of this hyperedge. While in simplicial complexes, the interactions are repre-

sented by simplices. The number of nodes involved in a many-body interaction is char-

acterized by the dimension of a simplex. A d−dimensional simplex contains d+1 nodes

and hence represents a (d + 1)-body interaction. The difference between hypergraphs

and simplicial complexes is that, in simplicial complexes, if a simplex α = [v1, v2, · · · , vn]

is included, all of its faces, i.e., nonvoid proper subsets of α of also need to be included,

while in hypergraphs this restriction does not hold. Although simplicial complexes are

more constrained, they are convenient to apply the powerful tools of topology to in-

vestigate higher-order network structures [84]. Interestingly, by considering weighted

simplicial complexes [85], the dichotomy between simplicial complexes and hypergraphs

can be addressed as weighted simplicial complexes are a more flexible and therefore more

powerful representation of higher-order networks. In practice, the choice of either hyper-

graphs or simplicial complexes in modeling higher-order interactions is usually motivated

by technical convenience yet a recent study shows this choice may affect the higher-order

dynamics [86]. In addition to hypergraphs and simplicial complexes, higher-order net-

works include also Networks with Triadic Interactions. In Ref. [87], we propose these

networks to study the effect of signed triadic regulations, which can be found generally

in real complex systems, such as brain networks and ecological networks. This model

9



will be discussed in Chapter 3.

The study of higher-order networks is still in its infancy, and the investigation of

higher-order interactions will shed light on numerous areas of interest such as brain

study, climate science, ecology, etc

It is well known that the network structure strongly affects the dynamic processes

that take place on the network. For instance, on scale-free networks, the percolation

threshold vanishes [9], indicating that if an infectious disease spreads on this network, it

will always develop into a pandemic in which a finite fraction of the population is infected;

on the interdependent multiplex network that can be a good candidate of modeling

transportation networks and power grid networks, the damage of nodes can cause a

cascading failure which leads to a discontinuous percolation transition at criticality [11],

indicating that multiplex networks are more fragile than single networks and the failure

can be more abrupt and less predictable; higher-order interactions can lead to abrupt

outbreaks, bistable regimes, and hysteresis in an epidemic spreading process [3, 78].

In this thesis, we will focus on investigating the interplay between network topologies

and their dynamic properties. In particular, we will study the percolation theory and

epidemic spreading models on networks and their generalizations.

2.2 Critical phenomena on networks

Percolation is one of the most important and most studied critical phenomena defined

on networks [9, 10, 88–90]. Percolation quantifies the network robustness, i.e., how the

random removal of nodes or links affects the macroscopic connectivity of the network.

It is widely accepted that the macroscopic connectivity of a network is a prerequisite for

dynamic processes taking place on the network, such as epidemic spreading, diffusion,

social process, and so on. Thus, the percolation is widely used to evaluate the robustness

of networks when nodes or links are randomly damaged [10, 91]. Moreover, percolation is

closely related to epidemic spreading. We will discuss their relationship and differences
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later in this section.

It is convenient for the following discussion to briefly introduce the percolation theory

first. The macroscopic connectivity, which is a minimum requirement for the functioning

of a network, is characterized by an extensive number of nodes in the giant component.

Mathematically, a giant component is characterized by a non-zero fraction largest con-

nected component in the network, at the infinite network limit. The relative size of the

giant component is thus defined as

R = lim
N→∞

NL

N
(2.1)

where NL is the number of nodes in the largest connected component and N is the

total number of nodes in the network. The percolation theory studies the relationship

between the fraction of nodes in the giant component R, namely the order parameter,

and the probability p that a node or a link is retained (or the probability 1 − p that

a node or a link is damaged), namely the control parameter accounting for the random

removal of nodes or links. In the infinite network limit, a phase transition is observed.

The transition is characterized by a critical value of p, denoted as pc, such that for p < pc,

the order parameter R = 0 and p > pc, R > 0. The critical value pc is called the critical

threshold and it separates the percolation process into the percolating phase (p > pc) and

non-percolating phase (p < pc). Thus, the value of the critical threshold is an important

indicator of the robustness of a network under random damage: a network with a smaller

critical threshold pc is more robust, as the network is still relatively well-connected under

a serious random attack.

The percolation transition is well captured by the statistical mechanic theory of

critical phenomena. This includes the critical behaviors characterized by the critical

exponents and the onset of a macroscopically ordered phase [46]. For Network Science

applications, the critical threshold pc is one of the key objects of study. Fortunately,

percolation problems have been studied for decades by statistical physicists. The initial
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investigation mainly focused on percolation on regular lattices [92–94] and important

results had been obtained both analytically and numerically [95, 96]. It is rigorously

proven that the percolation on d−dimensional hypercubes with d ≥ 2 displays a phase

transition at a critical pc characterized by an infinite connected component [97]. Ref.

[98, 99] further shows that in the subcritical regime p < pc, the typical size of the largest

connected components scales with logN where N is the size of the lattice system. While

in the supercritical regime p > pc, the infinite connected component is unique on a large

variety of lattices [100, 101].

In the last two decades, percolation theory on complex networks has attracted great

attention. The locally tree-like structure of sparse random networks allows for studying

the critical properties from another approach. The critical threshold of random net-

works with a given degree distribution was given for the first time in Ref. [102] and

the behavior of the system near the critical threshold was further characterized in Ref.

[103]. Moreover, the critical properties are found to be strongly affected by the topo-

logical structures. For instance, the critical threshold vanishes on scale-free networks,

where the second moment of the degree distribution diverges [9]. In the meantime, a

formal connection between percolation and network robustness was established, from

both experimental and theoretical perspectives [10, 91]. Until today, the percolation

theory has been extensively developed beyond random networks. For instance, perco-

lation on directed networks [104] and spatial networks [105, 106]; the effect of network

geometries on percolation [18, 21, 22, 77]; the effect of degree correlation on percolation

threshold [14, 107–109]; percolation on other generalized network structures such as mul-

tilayer networks [11, 49, 110, 111], hypergraphs [23, 76], simplicial complexes [19, 22, 77],

etc. New percolation rules have also been proposed, for instance, k-core percolation [112–

114], explosive percolation [115–118], weak percolation [119] and homological percolation

[120, 121], etc, and new critical phenomena have been reported such as discontinuous

phase transitions [112], multiple phase transitions [20, 76], tricritical points [12, 122, 123],

unusual critical exponents [22, 116].
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In the following sections, we will focus on the percolation theory on networks and

their generalization, including multilayer networks and higher-order networks. we will

illustrate in detail how critical behaviors of percolation transition are affected by the

topological structures of the networks.

2.2.1 Percolation on networks

Percolation has been well-studied on random pairwise networks. In Ref. [102], the

authors first gave the criterion for a giant component emerging in a random network

with a given degree distribution. Here we can use an equivalent approach to obtain

the critical threshold on an uncorrelated random network, as an introduction for the

discussions in the following chapters.

Consider an uncorrelated random network with degree distribution P (k) and let us

consider the node percolation, i.e., all the nodes are retained with probability p. Here

we note that the link percolation has the same critical threshold [49]. Let us define S

as the probability that following a random link in the network, one can find a node in

the giant component. First, by following a random link, one can find a node that has

degree k and is undamaged with probability pkP (k)/⟨k⟩, where ⟨k⟩ denotes the average

degree of nodes. This is because the network is uncorrelated, the probability of finding

a node with degree k following a random link is independent of the degree of the node

on the other end of the link and is proportional to k. If this node with degree k is in

the giant component, it indicates that at least one of its other k − 1 neighbors is in the

giant component. Thus, with the tree-like approximation which is true on sparse random

networks [124], the probability S satisfies the following self-consistent equation at the

infinite network size limit:

S = p
∑
k

kP (k)

⟨k⟩

[
1− (1− S)k−1

]
. (2.2)

Similarly, if a node with degree k is in the giant component, it indicates that at least

one of its k neighbors is in the giant component. Thus the order parameter R that the
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Figure 2.1: Demonstration of the percolation transition on networks. In panel
(a), the black line refers to the left-hand side of Eq. 2.2 y = S
and the orange, red, and green lines refer to the right-hand side
with different values of p. At a lower p, Eq. 2.2 only has a trivial
solution S = 0 (the green line), while at a higher p, a non-trivial
solution emerges (the orange line). At the critical p value, two
lines should be tangent at S = 0 (the red line). The non-trivial
solution emerges continuously from S = 0 hence the transition
is continuous. In panel (b), the corresponding phase diagram is
shown.

fraction of nodes in the giant component, or equivalently, the probability that a random

node is in the giant component can be obtained by

R = p
∑
k

P (k)
[
1− (1− S)k

]
. (2.3)

Observing Eq. 2.2 and Eq. 2.3, one will notice that S = 0 and thus R = 0 are trivial

solutions. The critical threshold pc indicates a point where a non-trivial solution of

R (equivalently a non-trivial solution of S) emerges. The critical condition for such a

non-trivial solution emerging is (see Figure 2.1)

dS

dS

∣∣∣∣
S=0

=
d

dS
pc
∑
k

kP (k)

⟨k⟩

[
1− (1− S)k−1

]∣∣∣∣∣
S=0

(2.4)
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Thus, the critical threshold pc satisfies [9, 10]

pc =
⟨k⟩

⟨k(k − 1)⟩
=

⟨k⟩
⟨k2⟩ − ⟨k⟩

. (2.5)

If we let pc = 1, indicating the nodes are not damaged, we obtained the structural

requirement for the emergence of a giant component in an uncorrelated random network,

i.e., the Molley-Reed criterion [102]

⟨k2⟩
⟨k⟩

= 2. (2.6)

From Eq. 2.5, we see the critical threshold of a random uncorrelated network is dom-

inated by the first and second moment of the degree distribution P (k). For an Erdös-

Rényi network G(N, c/N), the degree distribution is given, in the infinite network limit

N → ∞, by a Poisson distribution P (k) = cke−c

k! with an average c, thus

⟨k⟩ = c, ⟨k2⟩ = c+ c2. (2.7)

The critical threshold is hence

pc =
1

c
. (2.8)

On the other hand, for a scale-free network with a power-law degree distribution

P (k) =
1

ζ(β)
k−β, 2 < β < 3, (2.9)

the second moment ⟨k2⟩ diverges. Thus we recover the well-known result of the robust-

ness of scale-free networks [9, 10]

pc = 0. (2.10)

Moreover, to characterize the nature of the phase transition, it is useful to investigate
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the behavior of the order parameter R at criticality. In statistical physics, this behavior

is characterized by the critical exponent β. i.e.,

R ∼ (p− pc)
β, for p− pc ≪ 1. (2.11)

Let us first derive here the critical exponent β of the percolation transition on a random

Poisson network with average degree c. For convenience let us rewrite Eq. 2.2 and Eq.

2.3 here as

S = p (1−G1(1− S)) ≡ h(S)

R = p (1−G0(1− S)) (2.12)

where G0(x) and G1(x) are generating functions defined as

G0(x) =
∑
k

P (k)xk,

G1(x) =
∑
k

kP (k)

⟨k⟩
xk−1 (2.13)

It is known that for Poisson distribution, G0(1−S) = G1(1−S) = e−cS . Thus, Eq. 2.12

is reduced to

R = p
(
1− e−cR

)
(2.14)

In the vicinity of critical threshold, p ≃ pc and R ≪ 1 thus we can expand the right-hand

side of Eq. 2.14 as

R = pcR− p
c2R2

2
+ o(R3) =

p

pc
R− p

pc

cR2

2
+ o(R3) (2.15)

By truncating the expansion at the second order, we obtain

R =
2

c

p− pc
p

∝ (p− pc)
β (2.16)
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where

β = 1. (2.17)

It can be shown that as long as the first, second, and third moments of the degree distri-

bution are converging, the critical threshold β = 1 is universal [49]. This critical exponent

also confirms that the percolation transition on random networks is a continuous phase

transition.

2.2.2 Percolation on generalized network structures

As generalized network structures such as multilayer networks, hypergraphs, and sim-

plicial complexes have been introduced to capture the interactions beyond pairwise, the

percolation theory has also been developed to study critical phenomena defined on these

structures. In Ref. [11], Buldyrev et al. first defined interdependent percolation on mul-

tiplex networks. This generalization of percolation theory provides a fundamental tool

for analyzing the robustness of an interdependent multiplex network and deeply enriches

our understanding of the response of interdependent systems to random damage.

The robustness of an interdependent multiplex network is characterized by the rel-

ative size of Mutually Connected Giant Component (MCGC). On an interdependent

multiplex network, the damage of a node implies the damage of its replica nodes in all

other layers. Therefore, the functional region should only contain nodes that are in the

giant component in all layers. Thus the equations for interdependent percolation can be

derived as follows. Let us denote by Sα the probability that following a random link in

layer α we reach a node in MCGC. If this node is in MCGC, it should also be found in

MCGC in all other layers. Thus, the self-consistent equations read

Sα = p
∑
kα

kαPα(kα)

⟨kα⟩

[
1− (1− Sα)

kα−1
] ∏
β ̸=α

∑
kβ

Pβ(kβ)
[
1− (1− Sβ)

kβ
]

(2.18)

where Pα(kα) indicates the degree distribution in layer α (for simplicity we limit the
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discussion to multiplex networks in which there is no correlation between degrees of a

node in different layers) and p denotes the probability of retaining a node. The order

parameter R that denotes here the fraction of nodes in the MCGC satisfies

R = p
∏
α

∑
kα

Pα(kα)
[
1− (1− Sα)

kα
]

(2.19)

If all layers have Poisson degree distribution with the same average degree c, the self-

consistent equations are greatly simplified as

Sα = S = R = p
(
1− e−cR

)M
(2.20)

where M is the number of layers in the multiplex network.

The interdependent multiplex network is found to be more fragile than its single-layer

counterpart with the same degree distribution. Moreover, at criticality, the percolation

transition is discontinuous (see Figure 2.2), characterized by large avalanches of node

failures that propagate back and forth across different layers of the network [11, 49].

Interestingly, in a multiplex network formed by Poissonian layers with the same average,

the phase transition is found to be hybrid [88, 108, 125, 126], i.e., near criticality,

R ∝ (p− pc)
1/2. (2.21)

Beyond the interdependent percolation, various percolation processes have been defined

on general multilayer networks, such as interdependent percolation with partial depen-

dencies [12, 122] and redundant dependencies [13]; percolation on networks of networks

with replica nodes [55] and without replica nodes [53, 127]; percolation on general mul-

tilayer networks without replica nodes [54], etc.

In comparison, the study of percolation on higher-order networks is still in its infancy.

The percolation process on higher-order networks was first investigated on hyperbolic

simplicial complexes [18–22]. Thanks to the real-space renormalization group method
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Figure 2.2: Demonstration of the percolation transition on interdependent
multiplex networks. In panel (a), the black line refers to the left-
hand side of Eq. 2.20 y = S and the orange, red, and green lines
refer to the right-hand side with different values of p. At a lower
p, Eq. 2.20 only has a trivial solution S = 0 (the green line),
while at a higher p, non-trivial solutions emerge (the orange line,
only the largest one is stable). At the critical p value, two lines
are tangent at a non-zero S = Sc (the red line). The non-trivial
solution emerges discontinuously from S = 0 hence the transition
is discontinuous. In panel (b), the corresponding phase diagram
is shown.

[128], the percolation threshold on these higher-order structures can be exactly solved.

Rich critical phenomena have been observed including discontinuous phase transition for

simple link percolation [18] and unusual critical exponents [22]. Moreover, homologi-

cal percolation [120, 121] has been defined on simplicial complexes to characterize the

emergence of topological features.

For percolation on general hypergraphs, there are fewer results [23, 24], mainly focus-

ing on very restricted scenarios where the cardinality of hyperedges is fixed. In Ref. [76],

we proposed a general framework for simple and higher-order percolation processes on

hypergraphs. This framework also allows for defining degree correlations and exploring

their effects on critical phenomena. This will be discussed in detail in Chapter 4.

The study of percolation processes on higher-order networks is developing rapidly.

The investigation of the interplay between the structure of higher-order networks and

the dynamic defined on them will deepen our understanding of higher-order interactions
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and shed light on the study in related areas such as brain networks and social interactions.

2.2.3 Epidemic spreading and percolation theory

Epidemic spreading processes are one of the most studied examples of dynamic processes

on networks [8, 46]. The epidemic-spreading processes studied are not limited to the

transmission of infectious diseases, but also their analogs such as the spread of rumors

and misinformation among social media [129], the spread of computer viruses [130], the

diffusion of political opinions etc. One of the most important questions in the context of

epidemic spreading is predicting the outbreak of a pandemic, and proposing strategies

to control the pandemic accordingly. More precisely, how do the infectivity and the

topology of the underlying network where the pandemic happens affect the onset and

the size of a pandemic? Whether the outbreak of a pandemic is a continuous process

or an abrupt event? What is the best immunization strategy to contain a pandemic?

Thanks to the mapping between the epidemic model and the percolation process, the

percolation theory can provide answers to these important questions.

One of the most famous and important epidemic-spreading models is the susceptible-

infected-recovered (SIR) model [131]. In the model, three different states of individuals

in the population are considered: Susceptible (S), Infected (I), and Recovered (R). A

susceptible individual can be infected at a given rate by contacting infected individuals,

and an infected individual will recover at a constant rate. A recovered individual will not

be infected anymore in the subsequent spreading process. This process can be written

as follows:

S + I
β−→ I + I and I

µ−→ R (2.22)

where β and µ are the rates of infection and recovery, respectively.

The SIR model on a homogeneously mixed population has been very well-understood.

In a well-mixed population, every individual in the population is considered to be able

20



to contact all other individuals. Under these assumptions, the epidemic will grow expo-

nentially if the spreading rate λ ≡ β/µ > 1 and die out exponentially if λ < 1.

The SIR model has also been extensively studied on networks as human contact is

usually heterogeneous. Consider a network G = (V,E) formed by |V | = N individuals

and contacts among them, denoted in the set E. The infection can only happen between

neighbors on the network, i.e.,

Si + Ij
β−→ Ii + Ij , if (i, j) ∈ E. (2.23)

while the recovery process is not affected:

Ii
µ−→ Ri. (2.24)

Let us show the SIR model on a network can be mapped to a link percolation problem

on the same network [7].

Considering a continuous SIR model with a constant spread rate β and a constant

recover rate µ, i.e., in a short time interval δt, an infected individual will infect his/her

neighbor with probability βδt and recover with probability µδt. First, let us determine

the distribution of the infectious period. The cumulative distribution P̃ (τ ′ < τ) that the

infectious period is shorter than τ is given by

P̃ (τ ′ < τ) = 1− lim
δ→0

(1− µδt)τ/δt = 1− e−µτ (2.25)

Therefore the distribution of the infectious period is given by an exponential distribution

P̃ (τ) =
dP̃ (τ ′ < τ))

dτ
= µe−µτ . (2.26)
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Similarly, an infected individual can infect his/her neighbor with the probability

T̃ (τ ′ < τ) = 1− lim
δ→0

(1− βδt)τ/δt = 1− e−βτ (2.27)

Let us denote by S the probability that following a random link one reaches an

infected node. This node has degree k with a probability kP (k)/⟨k⟩ where P (k) is the

degree distribution of the network and ⟨k⟩ is the average degree. On a locally tree-like

network, the infection caused by different neighbors is independent. Thus S satisfies a

self-consistent equation as follows:

S =
∑
k

kP (k)

⟨k⟩

[
1−

(
1− S

∫ ∞

0
dτP̃ (τ)T̃ (τ ′ < τ)

)k−1
]
. (2.28)

Similar to the percolation problem, the fraction of infected individuals, denoted by R,

reads

R =
∑
k

P (k)

[
1−

(
1− S

∫ ∞

0
dτP̃ (τ)T̃ (τ ′ < τ)

)k
]
. (2.29)

Defining the transmissibility T as

T =

∫ ∞

0
dτP̃ (τ)T̃ (τ ′ < τ) (2.30)

Eq. 2.28 and Eq. 2.29 reduce to the equations for link percolation where links are

retained with probability T (for instance, See Ref. [88]).

Here we show that the critical threshold of the SIR model on networks can be obtained

by studying link percolation on the same network. It is worth noting that the epidemic-

spreading process is not equivalent to the percolation process. The percolation theory

predicts the equilibrium state of the dynamic while in epidemic-spreading processes,

time-dependent quantities such as the number of infections at a given time are usually

of interest as well.
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2.3 Message passing approach

We have shown in the previous sections a mean-field approach to the percolation thresh-

old on an uncorrelated network ensemble. However, real networks are usually charac-

terized by the degree correlations thus the critical threshold obtained by the mean-field

approach will deviate from reality. To address this concern, message-passing approaches

are extensively used. Message passing approaches are a class of algorithms on graphs

involving probabilities defined on links, called messages, that follow a recursive set of

equations [49]. Each equation only requires local messages to update, resulting in a

kind of “distributed computation”. Statistical quantities of interest are obtained by it-

eratively evaluating the set of message-passing equations until convergence. Rooted in

Belief Propagation [132–134], a series of message-passing algorithms have been devel-

oped and shown wide applicability in various hard computational problems in statistical

mechanics [132], as well as inference [135, 136] and optimization problems [129, 137] on

networks. As for the dynamic processes on networks and their generalization, message-

passing approaches have also been shown powerful on epidemic spreading problems and

percolation on single networks [138–141] and multilayer networks [13, 16].

The key idea behind message-passing approaches is that if the network is a tree (or

effectively locally tree-like), then when a node is removed, the network will be decom-

posed into several independent branches rooted in this node. Following this principle,

in general, the message defined on a link i → j, let us denote by σi→j here, refers to

a marginal probability of interest defined on node i on a cavity network where node j

(and all links associated with it) is removed. Thus, messages σi→j for all nodes i that

are neighbors of j are independent. On auxiliary cavity networks, correlations between

nodes are reduced, which leads to a great simplification of the calculation of marginal

probabilities of interest.

Due to the principle explained above, the message-passing algorithms are exact only

on trees. However, they have been shown to be robust and widely applicable on networks

with loops [142–144]. In this section, we will discuss the application of message-passing
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approaches to percolation problems on networks and show that it is consistent with the

mean-field derivation shown in Section 2.2.1.

2.3.1 Message passing approach to percolation

The message-passing technique provides a possible approach to the critical threshold pc

when the network structure deviates from the uncorrelated random network with a given

degree distribution, as long as the network structure is explicitly known. Let us denote

σi→j as the probability that node j is connected to the giant component via node i,

or equivalently, node i is in the giant component on the cavity graph where node j is

removed. Node i will be in the giant component only if at least one of its other neighbors

except j is in the giant components. Thus σi→j satisfies

σi→j = p

1− ∏
k∈N(i)\j

(1− σk→i)

 (2.31)

The marginal probability σi that a node i is in the giant component hence reads

σi = p

1− ∏
k∈N(i)

(1− σk→i)

 . (2.32)

Finally, the order parameter R that the fraction of nodes in the giant component is

obtained by averaging σi

R =
1

N

N∑
i=1

σi. (2.33)

Alternatively, this result can be derived via a general approach starting from the size

distribution of the connected component [140]. Let us denote by πi→j(s) the probability

that node i is in a connected component of size s, on a cavity graph in which its neighbor

node j is removed. Let us still consider the node percolation problem. Given that node

i is not damaged and belongs to a component of size s, all of its neighbors k1, k2, · · · , km

except node j should be found in a connected component of size sm on a cavity graph
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in which node i is removed and s1, s2, · · · , sm can be related to s via

s =
∑
m′

sm′ + 1. (2.34)

Otherwise, if node i is damaged, it will be included in a component of size 0. Thus πi→j

satisfies

πi→j(s) = (1− p)δ(s, 0) + p
∑

s1,··· ,sm

∏
m′

πkm′→i(sm′)δ

(
s,
∑
m′

sm′ + 1

)
(2.35)

where δ(x, y) is the Kronecker delta. Due to the existence of the giant component, the

distribution πi→j(s) is not normalized. The probability σi→j that node i is in the giant

component on the cavity graph in which node j is removed is given by

σi→j = 1−
∞∑
s=1

πi→j(s). (2.36)

The problem can be solved using the generating function method. Defining the generat-

ing function Hi→j(x) as

Hi→j(x) =
∑
s

πi→j(s)x
s (2.37)

hence Eq. 2.35 can be rewritten as

Hi→j(x) = 1− p+ p
∑
s

∑
s1,··· ,sm

∏
m′

πkm′→i(sm′)δ

(∑
m′

sm′ + 1, s

)
xs

= 1− p+ p
∑

s1,··· ,sm

∏
m′

πkm′→i(sm′)

[∑
s

δ

(∑
m′

sm′ + 1, s

)
xs

]
= 1− p+ px

∏
m′

∑
sm′

πkm′→i(sm′)xsm′

= 1− p+ px
∏
m′

Hkm′→i(x) (2.38)
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Comparing Eq. 2.35 and Eq. 2.37 we observe

σi→j = 1−Hi→j(1) (2.39)

Thus we recover the self-consistent equation Eq. 2.31. On a given network, start-

ing with a random initialization {σi→j}(i,j)∈E , Eq. 2.31 can be solved numerically by

iterating until converges. Similar to the mean-field calculation in Section 2.2.1, the

message-passing approach is also exact only on infinite trees. Nevertheless, it is known

to be robust on networks with loops, as long as the iterative process converges [142].

The derivation above provides a concrete numerical approach to the order parameter.

The critical threshold pc can be obtained from Eq. 2.31 by evaluating the dominating

eigenvalue of the corresponding non-backtracking matrix [140].

Observing Eq. 2.31 and Eq. 2.32, {σi→j}(i,j)∈E = 0 are trivial solutions. Similar to

the mean-field calculation on uncorrelated network ensemble discussed in Section 2.2.1,

the giant component emerges only when non-trivial solutions for {σi→j}(i,j)∈E emerge.

The critical condition can be found via a linear expansion. Near the critical threshold,

σi→j ≪ 1, Eq. 2.31 can be linearized as

σi→j = p
∑

k∈N(i)\j
σk→i. (2.40)

This linear equation can be written as a matrix form

σ⃗ = pBσ⃗ (2.41)

where B formed by entries Bi→j,k→ℓ = δjk(1 − δiℓ) is called non-backtracking matrix

[140, 145], where δ is the Kronecker delta. The trivial solutions are no longer stable

when pcΛ = 1, where Λ is the dominating eigenvalue of matrix B. Thus we obtain the

expression of the critical threshold.
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2.3.2 Averaged message passing approach

The above message-passing algorithm provides an alternative approach to evaluate the

critical threshold pc of percolation on a given network. Here we can demonstrate the

mean-field approach (Eq. 2.2 and Eq. 2.3) can be obtained from the message passing

equations Eq. 2.31 and Eq. 2.32 by averaging over the uncorrelated network ensemble

[146].

Let us define S as the averaged message over the uncorrelated network ensemble. A

network G is chosen with probability

P (G) =
1

Z

N∏
i=1

δ

k1,

N∑
j=1

Aij

 . (2.42)

where δ is the Kronecker delta and A is the adjacency matrix. The degree sequence is

sampled from the distribution P (k).

⟨σi→j⟩ = S =
∑
G

P (G)σi→j . (2.43)

Taking into account the tree-like approximation, Eq. 2.31 is rewritten as

S = p

1− ∏
k∈N(i)\j

(1− ⟨σk→i⟩)

 = p

1− ∏
k∈N(i)\j

(1− S)


= p

[
1−

∑
k

kP (k)

⟨k⟩
(1− S)k−1

]
(2.44)

Therefore, we recover the mean-field equation 2.2.

2.4 Percolation and one-dimensional maps

In this thesis, we will establish a new connection between percolation and dynamical

processes, in particular the dynamics of one-dimensional maps. The one-dimensional

map is an important class of dynamical systems that emerges naturally from dynamic
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processes defined on discrete time steps. Mathematically, a one-dimensional map is

in general defined in the form xn+1 = f(xn). By iteratively evaluating the function f ,

interesting results emerge such as periodic oscillation, i.e., x oscillates among some values

periodically, or chaos, indicating the map exhibit aperiodic outputs. A paradigmatic one-

dimensional map is the logistic map. The logistic map is defined by a quadratic function

xn+1 = fr(xn) ≡ rxn(1− xn). (2.45)

As the parameter r varies, the map exhibits steady fixed points, periodic oscillation, and

chaos. Period doubling bifurcation is also observed, meaning that at some critical values

of r, the trajectory {xn} bifurcates and the new trajectory doubles the period of the

original one. Interestingly, a large class of dynamics exhibits some universal quantitative

characters that are independent of the detailed recursive function [147]. For instance, if

we denote rn as the critical value where oscillations with period 2n emerge, the values

{r1, r2, · · · , rn, · · · } satisfy

lim
n→∞

rn+1 − rn
rn − rn−1

= δ (2.46)

where δ is an universal quantity called Feigenbaum constant. If the recursive function

is smooth and has a unique maximum, the constant δ depends only on the behavior of

the function near its maximum [147]. For example, for functions that have a quadratic

structure near the maximum such as the logistic map and triadic percolation [87], i.e.,

f(x)− f(xmax) ∼ |x− xmax|2, (2.47)

the Feigenbaum constant δ = 4.669201609103 · · · . This is a new mathematical constant

and has been observed not only theoretically but also in experiments on real dynamic

systems [148].

The relationship between percolation and the one-dimensional map will be discussed

in detail in Chapter 3.
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Chapter 3

The dynamic nature of

percolation on networks with

triadic interactions

In the previous chapters, we have shown that ordinary percolation displays a second-order

continuous phase transition, while on multiplex networks and hypergraphs, generalized

percolation gives rise to a variety of critical phenomena such as discontinuous hybrid

transitions and tricritical points, etc. In this chapter, we investigate percolation on

a novel higher-order network called Network with Triadic Interactions which includes

signed triadic interactions formed by a node that regulates the interaction between two

other nodes, either positively or negatively. We reveal that the triadic interactions

can turn percolation into a fully-fledged dynamical process that we call here triadic

percolation. The order parameter of triadic percolation undergoes a period-doubling and

a route to chaos. We provide a general percolation theory for triadic percolation that is

confirmed by extensive numerical simulations. This model provides a general framework

for studying real systems in which the functional connectivity of networks changes in

time dynamically and non-trivially such as brain and climate networks. The results
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presented in this chapter are published in [87].

3.1 Introduction

Percolation is one of the most fundamental critical phenomena defined on networks.

By predicting the size of the giant component (GC) of a network when links or nodes

are randomly damaged, percolation theory can be used for the establishment of the

minimal requirements that a structural network should satisfy in order to allow any type

of interactive process to happen. Despite the great success of percolation, the ordinary

percolation theory is unsuitable to describe real-world situations that occur in neuronal

and climate networks when the connectivity of these networks changes over time.

Typically, the dynamics associated with percolation is a cascading process where an

initial failure propagates over a network, possibly affecting the macroscopic connected-

ness. In the last decade, the generalized percolation problems that capture cascades

of failure events on multilayer networks have been extensively studied in the literature

[11, 13, 108, 149]. In the context of multilayer networks, the damage can propagate

back and forth among the layers, reaching a steady state at the end of the cascading

process [49, 110]. Besides, in duplex networks, period-two oscillations can be observed

in the presence of antagonistic interactions [150] among different layers of the network.

However, this phenomenon seems to be restricted to duplex networks. Furthermore,

in damage and recovery models on multilayer networks aiming at getting insights into

robustness for complex critical infrastructures and financial systems, more than two

coexisting stable configurations of percolation have been observed [151, 152].

Despite the progress made in understanding the dynamics associated with perco-

lation, a crucial question remains unanswered: can percolation capture more general

time-dependent variations in the connectivity of a network? In this chapter, we pro-

vide a positive answer to this question and we show that a general type of higher-order

interaction, namely the triadic interaction, can turn percolation into a fully-fledged dy-
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namical process in which the order parameter undergoes period doubling and a route to

chaos.

Recently, higher-order interactions have attracted much attention in the commu-

nity of network science. Higher-order networks, including hypergraphs and simplicial

complexes, are becoming a new paradigm to study brain activities, biochemical reac-

tion networks, and climate networks. It has been revealed that higher-order interactions

could profoundly change the critical properties of dynamical processes compared to those

displayed by the same process occurring on pairwise networks. Examples include syn-

chronization, random walk, contagion dynamics, and game theory, and novel critical

behaviors have been reported including discontinuous phase transition, multiple phase

transitions, tricritical points, and bistability etc. However, the study of percolation the-

ory on higher-order networks is still in its infancy and little is known about the critical

behaviors so far.

In this paper, we study a paradigmatic type of higher-order interaction, i.e., the tri-

adic interaction, which occurs when a node regulates the interaction between two other

nodes. Regulation can be either positive or negative, representing the node facilitates

or inhibits the interaction. Triadic interactions are general in interacting systems in na-

ture, such as ecosystems, neuronal networks, climate networks, and biochemical reaction

networks. In ecosystems, the competition between two species can be affected by the

presence of a third species, either positively or negatively [32–34]. In neuronal networks,

the interactions among neurons and glia are known to be triadic in the sense that the glia

is able to modulate the synaptic interaction between neurons [153]. In climate networks

of extreme rainfall events, triadic interactions can be used to explain the situations in

which the links of the network are modulated by large-scale patterns, such as Rossby

waves, which have a regulatory activity on climate, inducing long-range synchronization

of rainfall between Europe, Central Asia, and East Asia [40]. In biochemical reaction

networks, generalized triadic interactions could model the action of enzymes as biological

catalysts of biochemical reactions. While triadic interactions have received great atten-
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tion in ecology and neuroscience, theoretical studies of triadic interactions have been

only focused on small ecological systems [32–34].

In this chapter, combining both perspectives of percolation on higher-order networks

and percolation theory on networks with time-dependent connectivity, we study the role

of triadic interactions in shaping macroscopic network properties. Specifically, we in-

vestigate how triadic interaction can change the critical and dynamical properties of

percolation. We combine the percolation theory with the theory of dynamical systems

to define triadic percolation, i.e., the percolation in the presence of signed triadic in-

teractions. We show that in triadic percolation, the size of the GC of the network is

time-dependent and displays a highly non-trivial dynamic characterized by period dou-

bling and a route to chaos. We propose a general theory to reveal that the phase diagram

of triadic percolation is fundamentally different from the phase diagram of ordinary per-

colation: ordinary percolation displays a second-order phase transition while the phase

diagram of triadic percolation is much richer and can be interpreted as an orbit diagram

of the order parameter. The theory is confirmed by extensive numerical simulations

on both synthetic and real-world networks. These results reveal the dynamic nature of

triadic percolation and radically change our understanding of percolation.

3.2 Triadic interaction

Triadic interactions are higher-order interactions between nodes and links (see Figure

3.1). The regulator node can affect the interaction between two other nodes in a either

positive or negative way, i.e., the regulator can either facilitate or inhibits the interaction.

Triadic interactions are a general type of interaction in nature. For instance, in ecological

networks, the presence of a third species can enhance or suppress the interaction between

two other species; in neural networks, glia can favor or inhibit the synaptic interactions

between two neurons. The triadic interactions can be added not only on simple structural

networks but also on multilayer networks or hypergraphs. For instance, biochemical

reactions in cells can be modeled with hypergraphs, as chemical reactions always involve
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Figure 3.1: Triadic interactions. Triadic interactions occur when a node reg-
ulates the interactions between two other nodes. Triadic interac-
tions can be signed with one node either favoring (green dashed
link) or inhibiting (red dashed link) the interactions between the
other two nodes (panel a). The simplest network including triadic
interactions (panel b) is formed by a structural network between
nodes and (solid line) structural links and a regulatory network in-
cluding the regulatory interactions (dashed lines) between nodes
and structural links. Examples of triadic interactions (panel c) in-
clude glia/neuron interactions and interactions between species in
ecosystems. Triadic interactions can be extended to hypergraphs
and multiplex networks (panel d). In hypergraphs the triadic in-
teractions can regulate the presence or the activity of a hyper-edge,
in multiplex networks, triadic interactions can be used to establish
inter-layer interactions between nodes in one layer and links in the
other layer.

more than two reactors, and an enzyme can be regarded as a node that regulates a

hyperedge representing chemical reactions; a network of glia and a network of neurons

can form a multilayer network and two layers interact via interlayer triadic interactions.

Based on the above observations, let us formulate the simplest higher-order networks

with triadic interactions built on simple structural networks. This higher-order network

can be constructed as the composition of two networks: a simple structural network A

and a regulatory network B. The structural network is A = (V,E) formed by the set of
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Step 1                     Step 2

Figure 3.2: Sketch of triadic percolation. Solid lines represent structural links,
dashed curves denote regulatory interactions (green stands for pos-
itive regulation, red for negative). Blue-filled circles indicate struc-
tural nodes and black diamonds indicate triadic interactions. For
simplicity, we consider the deterministic bond-percolation model
for p = p0 = 1. At each stage, t of the dynamics, bond percolation
is applied to the network, and then the effect of the regulatory ac-
tivity is established. The illustration shows how the dynamics set
into a periodic pattern with the giant component of the network
“blinking” in time. The periodic pattern is highlighted in yellow.
At the time t = 1, all links are active and all nodes are part of
the giant component (GC). Their regulatory activity causes some
links to become inactive (crossed links in the figure). As a conse-
quence, at time t = 2, some nodes are no longer part of the GC
and become inactive (crossed nodes in the figure). However, this
change leads to changes in the activity of some links, which in
turn affect the activity of the nodes at time t = 3, 4, etc. The final
configuration reached at time t = 3 is identical to one observed at
the end of stage t = 1. Due to the determinism of the model, the
pattern repeats with period T = 2. The relative size R of the GC
oscillation switches between 2/4 and 3/4.
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nodes V connected by the structural links in the set E, and the regulatory network B =

(V,E,W ) is a bipartite and signed network between structural nodes V and structural

links E, with nodes in V regulating links in E either positively or negatively, specified

in the set W . Given a regulated link, a node that regulates this link is called a positive

regulator if the regulatory interaction is positive and a negative regulator if the regulatory

interaction is negative. We note that the sign is a property of the regulatory interaction

and not an intrinsic property of nodes that act as regulators.

In the following sessions of this chapter, we will focus on the percolation on this

network proposed above, however, these results can be easily extended to hypergraphs

or multilayer networks with triadic interactions.

3.3 Triadic percolation

The triadic percolation model is defined in the way that the activity of structural links

is regulated by the sign of triadic interactions and the activity of their regulator nodes.

The activity of nodes is determined by the connectivity of the resulting network after

considering only the active links via the percolation process, i.e., only nodes in the giant

component are active. In particular, we assume the activity of nodes and links change

in time, leading to the following triadic percolation process.

• At time t = 0, every structural link is active with probability p0.

• When t ≥ 1, the activity of nodes and links are determined by the following 2-step

iterative process:

– Step 1: Given the activity of structural links at time t− 1, one can determine

a structural network by considering only active links. We define each node as

active if the node belongs to the GC of this structural network.

– Step 2: Given all the active nodes obtained in Step 1, links that are connected

to at least one active negative regulator node and/or that are not connected

35



to any active positive regulator node are deactivated. All the remaining links

are deactivated with probability q = 1− p.

Here we note that for p = p0 = 1, this model is deterministic and the dynamic is fully

determined by the structural network and the regulatory network. However, for p < 1

(and p0 < 1), the model is stochastic, i.e., the activity of links is not uniquely determined

by the activity of the regulator nodes, but also by the random failure with probability

1− p.

In the proposed triadic percolation model, links and nodes can be turned on and off

dynamically by the regulatory interactions and the percolation process, which makes it

distinct from classic percolation models. This model only makes minimal and justifiable

assumptions while remaining general. The assumption that only nodes in the GC are

active/functioning is well accepted in the context of network robustness [88]. Meanwhile,

the regulatory rules for turning on/off links are a minimum assumption that treats both

positive and negative regulations in a symmetric way: if a link is solely regulated by

one regulator, then the activation of this single positive regulator or deactivation of a

single negative regulator can both activate this link. The annealed stochastic effects

are considered in this model as well, indicated by p < 1 (and p0 < 1), representing the

unavoidable stochasticity that can affect the activation of the structural links in real

scenarios.

Triadic percolation can lead to a highly non-trivial dynamic of network connectivity.

Figure 3.2 illustrates the phenomenon of network “blinking” with nodes and links of the

network turning on or off periodically (or chaotically), forming GCs with different sizes.

3.4 Theory of triadic percolation

Here we establish the theoretical framework of triadic percolation that is able to predict

the phase diagram (or orbit diagram) of the model on random networks with triadic

interactions. The structural network can be generated via the configuration model, given

36



a degree sequence sampled from the degree distribution π(k). We assume the structural

network A contains N nodes and has the averaged degree ⟨k⟩ = c. The structural degree

of a node i is denoted as ki.

In order to generate the regulatory network B, we assign each node i two other

degree values, i.e., the number of links that it regulates positively κ+i and negatively κ−i .

Similarly, each structural link ℓ is assigned the degree values κ̂+ℓ and κ̂−ℓ , indicating the

number of its positive regulators and negative regulators. We assume the links’ degrees

are sampled from the distribution P̂ (κ̂+, κ̂−) here taken to be independent P̂ (κ̂+, κ̂−) =

P̂±(κ̂+)P̂±(κ̂−), and the nodes’ degrees are sampled from the distribution P̃ (k, κ+, κ−).

Once the degrees of nodes and links have been assigned, one can establish the positive

(+) and negative (-) regulatory interaction between the structural link ℓ and the node i

with probability

p±ℓ,i =
κ±i κ̂

±
ℓ

⟨κ±⟩N
(3.1)

where ⟨κ±⟩ = c± denotes the average of κ± over all nodes in the network. We note that

when creating the regulatory interactions, a regulator node is prohibited from regulating

one structural link positively and negatively at the same time. As long as the network

B is large and sparse, this consideration will not induce significant correlations.

The percolation theory on networks with triadic interactions can be derived by com-

bining the classic percolation theory and the theory of dynamical systems. Let us denote

S(t) as the probability that a node at the end of a random structural link is in the GC

at time t and Ŝ(t)± as the probability that a node regulating (either positively or neg-

atively) a random structural link is in the GC at time t. Moreover, we define with p
(t)
L

the probability that structural links are active at time t. By putting p
(0)
L = p0 indicating

the probability that a structural link is active at time t = 0, we have that for all t > 0,
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as long as the network is locally tree-like, S(t), Ŝ(t)± and p
(t)
L are updated as

S(t) = 1−G1

(
1− S(t)p

(t−1)
L

)
Ŝ(t)± = 1− G±

(
1− S(t)p

(t−1)
L

)
p
(t)
L = pG−

0

(
1− Ŝ(t)−

) [
1−G+

0

(
1− Ŝ(t)+

)]
(3.2)

where the first two equations implement Step 1 and the third equation implements Step

2, i.e., the regulation process of links. The generating functions are given by

G1(x) =
∑

k,κ+,κ−
P̃
(
k, κ+, κ−

) k

⟨k⟩
xk−1,

G±
0 (x) =

∑
κ±

P̂±
(
κ̂±
)
xκ̂

±
,

G±(x) =
∑

k,κ+,κ−
P̃
(
k, κ+, κ−

) κ±

⟨κ±⟩
xk. (3.3)

The order parameter R, i.e., the probability that a node is in the GC is given by

R(t) = 1−G0

(
1− S(t)p

(t−1)
L

)
, (3.4)

where

G0(x) =
∑

k,κ+,κ−
P̃ (k, κ+, κ−)xk. (3.5)

For simplicity, we will consider in the following sections the case in which both κ+i and

κ−i are chosen independently of the structural degree, i.e.,

P̃ (k, κ+, κ−) = π(k)P (κ+, κ−), (3.6)
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the equations above can be reduced to

S(t) = 1−G1

(
1− S(t)p

(t−1)
L

)
(3.7)

R(t) = 1−G0

(
1− S(t)p

(t−1)
L

)
(3.8)

p
(t)
L = pG−

0

(
1−R(t)

) [
1−G+

0

(
1−R(t)

)]
(3.9)

where

G0(x) =
∑
k

π(k)xk,

G1(x) =
∑
k

π(k)
k

⟨k⟩
xk−1,

G±
0 (x) =

∑
κ±

P̂±
(
κ̂±
)
xκ̂

±
(3.10)

Eqs. 3.7, 3.8, 3.9 for the triadic percolation model can be simply written as a one-

dimensional map as:

R(t) = f
(
p
(t−1)
L

)
, p

(t)
L = gp

(
R(t)

)
(3.11)

which can be further reduced to

R(t) = h
(
R(t−1)

)
. (3.12)

The theoretical prediction of triadic percolation defined on structural networks generated

by the configuration model can be made through Eqs. 3.7, 3.8, 3.9 (or equivalently Eq.

3.11). This model is of mean-field nature: the percolation equations (Eq. 3.7 and Eq.

3.8) are averaged over uncorrelated network ensemble while the regulation equation (Eq.

3.9) is averaged over the random failure of links with probability 1− p. Yet, as we will

see, despite this mean-field approximation, the proposed theoretical approach provides

an accurate prediction of the behavior of triadic percolation.
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3.5 Results

In presence of negative regulatory interactions, the order parameter R representing the

fraction of active nodes in the network becomes a time-dependent variable. The order

parameter R undergoes period-doubling and a route to chaos as a function of parameter

p which indicates the probability of activating a link while all the regulatory conditions

that allow the link to be active are fulfilled. The dynamics is in the same universality

class as the logistic map, for structural networks with arbitrary degree distribution π(k)

and regulatory connectivity generated by Poisson distributions P (κ̂±). Detailed proof

of the universality class is given in Appendix A.

Triadic percolation has non-trivial dynamical behaviors. It displays the emergence

of both “blinking” oscillations and chaotic patterns of the giant component (see Figure

3.3). “Blinking” refers to the intermittent switching on and off of sets involving two

more nodes periodically, which leads to periodic oscillations of the order parameter.

While chaos indicates that at each time, a different group and number of nodes are

activated. The one-dimensional map defined in Eq. 3.11 can be illustrated graphically

in the Cobweb plot, and it captures the nature of the dynamic. The combination of

positive and negative regulations in triadic percolation leads to a richer phase diagram

compared with ordinary percolation without triadic interactions. More specifically, the

ordinary percolation transition on networks is second-order, while the triadic percolation

with positive and negative regulatory interactions can display, with different parameters,

a first-order hybrid transition, an orbit diagram rather than the phase diagram (see

Figure 3.4), i.e., the fraction of active nodes R in the network with a given probability

p indicating the probability that a link is active when all the regulatory conditions are

satisfied is no longer a fixed value but can take multiple possible values. Note that in

the triadic percolation model, we obtain the novel and unexpected result that the phase

diagram of the model coincides with the orbit diagram of the map equations (Eq. 3.7-

3.9). This result is at the core of the change of paradigm that triadic percolation entails

for the critical behavior of the model with respect to standard percolation.

40



0 25 50 75 100
0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100
0.0

0.2

0.4

0.6

0.8

1.0

a

d

cb

fe

0 25 50 75 100
0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3: Time dependence of the order parameter of triadic percolation.
In triadic percolation, the order parameter R can have non-trivial
dynamics. Here we demonstrate with theory and simulations the
non-trivial dynamics of R for parameter values in which the dy-
namics reach a steady state (panels a, d), period-two oscillations
(panels b, e), and chaotic dynamics (panels c, f). This behav-
ior is predicted by the theory which can be schematically rep-
resented by cobweb plots (panels a-c) corresponding to the map
Eq. (3.11) with the function f indicated in green and the func-
tion gp in red. Results of Monte Carlo simulations for R as a
function of time t (panels d-f) are in excellent agreement (MC)
with the theory. The structural network has a power-law degree
distribution π(k) ∼ k−γ , with minimum degree m = 4, maxi-
mum degree K = 100, and degree exponent γ = 2.5. The degrees
κ̂+ and κ̂− of the regulatory network obey Poisson distributions
with average c+ and c−. The links are activated with probability
p = 0.8. The parameters c+, c− are c+ = 10, c− = 1.8 (panel
a, d), c+ = 10, c− = 2.1 (panel b, e). The MC simulations are
performed on networks of N = 104 nodes.

The theoretical predictions from Eq. 3.11 are validated by extensive Monte Carlo

simulations (see Figure 3.3 and Figure 3.4). The mean-field theory allows for a good

approximation of the dynamical behavior of triadic percolation for both random Poisson

and scale-free structural networks.
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Figure 3.4: Phase diagram of triadic percolation on Poisson and scale-free
structural networks. The phase diagram of triadic percolation
(panels b, c, e, f) is radically different from the phase diagram
of ordinary percolation (panels a, d) for both Poisson (panels a-c)
and scale-free structural networks (panels d-f). Ordinary percola-
tion reveals a second-order phase transition (theoretical prediction,
panels a, d) while the phase diagram of triadic percolation reveals
that the order parameter R displays period doubling and a route
to chaos (panels b, c, e, f). The theoretical predictions of the
phase diagram obtained from Eqs. 3.7, 3.8, 3.9 are in very good
agreement with the phase diagram obtained from extensive Monte
Carlo (MC) simulations (panels e, f). In panels (a-c) the struc-
tural network is Poisson with average degree c = 30; the regulatory
network is also Poisson with averages c+ = 1.8 and c− = 2.5. In
panels (d-e) the scale-free structural network has degree exponent
γ = 2.5, minimum degree m = 4, and maximum degree K = 100;
the regulatory network is Poisson with c+ = 10 and c− = 2.8. The
MC simulations are obtained from networks of size N = 2 × 105

(panel e) and N = 104 (panel f). Here points represent all R
values observed in the time range 150 ≤ t ≤ 200.

In order to further understand the effects of positive and negative regulatory interac-

tions, we consider two limiting scenarios, i.e., the limit that the average degree of negative

regulation ⟨κ̂−⟩ → 0, in which the model includes only positive regulatory interactions

and the other limit that average degree of positive regulation ⟨κ̂+⟩ → ∞, indicating that
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the requirement of activating a link from positive regulators is always satisfied hence the

role of positive regulators becomes negligible. In Figure 3.5 and Figure 3.6, we show the

theoretical orbit diagrams of triadic percolation for a Poisson structural network and a

scale-free structural network respectively. Both networks are formed by the structural

networks and regulatory networks with the Poisson distribution of the regulatory de-

grees. We observe that in absence of negative regulations, i.e., ⟨κ̂−⟩ = c− → 0, the

percolation transition is discontinuous for both the Poisson structure network and the

scale-free structural network. For ⟨κ̂+⟩ = c+ → ∞, on the other hand, we observe the

period-2 oscillations in both cases of Poisson and scale-free structural networks. Finally,

chaos only emerges when both positive and negative regulatory interactions are present.
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Figure 3.5: Theoretically obtained orbit diagrams for the Poisson structural
network with average degree c = 30 and uncorrelated structural
and regulatory degrees of the nodes. In the first row, c+ = 10,
from the left to the right we increase the c− that c− = 1.0 (a),
c− = 1.5 (b), c− = 2.0 (c), c− = 2.5 (d). In the second row,
c− = 2.5, from the left to the right we increase the c+ that c+ = 1
(e), c+ = 10 (f), c+ = 1000 (g), c+ = ∞ (h). For all panels c±

indicates the average degree of the Poisson distribution P̂±(κ̂±).
All figures are obtained by setting the initial condition p

(0)
L = 0.1.

In the end, in order to show the periodic and chaotic patterns are not artifacts of

43



0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

a b

e

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

c d

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

f g h

Figure 3.6: Theoretically obtained orbit diagrams of the scale-free structural
network with minimum degree m = 4, power-law exponent γ =
2.5, maximum degree K = 100, and uncorrelated structural and
regulatory degrees of the nodes. In the first row, c+ = 10, from
the left to the right we increase the c− that c− = 1.5 (a), c− = 1.9
(b), c− = 2.3 (c), c− = 2.7 (d). In the second row, c− = 2.8, from
the left to the right we increase the c+ that c+ = 1 (e),c+ = 10
(f), c+ = 1000 (g), c+ = ∞ (h). In all the panels c± indicate the
average degree of the Poisson distribution P̂±(κ̂±). All figures are
obtained by setting the initial condition to p

(0)
L = 0.1.

synthetic networks, we simulate the dynamic on structural networks which are taken

from the real world. In particular, we consider the structural networks constructed

from the empirical data collected in the repository [154]. The higher-order networks

are constructed by combining real-world structural networks and synthetic regulatory

networks. In Figure 3.7, we show the orbit diagram for these topologies revealing the non-

trivial dynamics with noisy periodic oscillation in certain regimes and chaotic oscillations

in other regimes. More details of the datasets used here can be found in Appendix B.

In the scenario with the absence of negative regulations, however, we find that the

dynamics always reach a stationary state. In Figure 3.8(a) we show an example of the

time series for the order parameter R(t) converges to its stationary state R(t) = R∗.

Moreover, in Figure 3.8(b) we show the dependency of the stationary point R∗ with

the probability p. The theoretical predictions are also confirmed by extensive Monte
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Figure 3.7: Phase diagram of triadic percolation for real-world structural net-
work topologies. The phase diagram of triadic interaction display-
ing the fraction of nodes R in the GC as a function of p is shown for
real-world structural networks obtained from the repository [154]:
the mouse brain network (panel a, b) the Human bio grid network
(panel c, d). The phase diagrams are obtained by MC simulations
with Poisson regulatory networks with parameters c+ = 20, c− = 2
(panel a), c+ = 20, c− = 4 (panel b); c+ = 20, c− = 4 (panel c).
c+ = 20, c− = 6 (panel d). All orbit diagrams are obtained with

an initial condition p
(0)
L = 0.1.

Carlo simulations. Interestingly, the exclusive positive regulation induces a discontinu-

ous hybrid percolation transition. We will further characterize the nature of the phase

transitions and oscillations reported above theoretically in the following chapter.
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Figure 3.8: Triadic percolation in absence of negative triadic interactions. In
the absence of negative triadic interactions the order parameter R
of triadic percolations always reaches a stationary state for suffi-
ciently long times (panel a). Moreover, the phase diagram, indi-
cating the stationary solution of R as a function of p displays a
discontinuous hybrid transition (panel b). In panel b the results
obtained fromMC simulations (symbols) over networks ofN = 104

nodes are compared to theoretical expectations (solid curves). In
both plots, the Poisson structural network has an average degree
c = 4, and the Poisson regulatory network including exclusively
positive regulations has an average degree c+. In panel(a) the
results are shown for p = 0.4 and c+ = 4.

3.6 Investigation into the one-dimensional map

The dynamic properties of triadic percolation can be fully captured by the map Eq.

3.11 or equivalently Eq. 3.12. Thanks to the theory of dynamic systems and the linear

stability analysis method, we are able to theoretically characterize the critical behav-

iors in this dynamic, including discontinuous phase transition, bifurcation, and chaos.

These analyses provide a clear picture of the nature of the dynamical triadic percolation

processes.

3.6.1 Stability analysis

Here let us restrict our discussion to the case that structural and regulatory degrees of

nodes are uncorrelated, i.e., Eq. 3.4 holds, and the one-dimensional map can be written
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as Eq. 3.11 or Eq. 3.12. Let us rewrite Eq. 3.12 here as

R(t) = hp

(
R(t−1)

)
= f

(
gp

(
R(t−1)

))
. (3.13)

The stationary solution R(t) = R∗ of this map satisfies:

R∗ = hp (R
∗) . (3.14)

This stationary solution becomes unstable as soon as

|J | = 1 (3.15)

where

J = h′p (R
∗) =

df

dpL

∣∣∣∣
pL=p⋆L

dgp
dR

∣∣∣∣∣
R=R⋆

(3.16)

Interestingly, while the critical condition J = 1 indicates a discontinuous and hybrid

transition, J = −1 indicates the onset of period-2 oscillations.

Let us first show that J = 1 indicates a discontinuous and hybrid transition. Let us

denote the value of p when J = 1 is achieved as pc and we consider a small perturbation

δp = p − pc ≪ 1. We indicate the corresponding change in the stationary solution R∗

with δR = R∗(p)−R∗(pc). Since both R∗(p) and R∗(pc) satisfy the stationary equation

Eq. 3.14, assuming, without loss of generality, that hp(R
∗) is twice differentiable at

R∗(pc) = Rc > 0, we can expand the latter equation in terms of δp and δR∗:

δR = h′pc (Rc) δR+
1

2
h′′pc (Rc) (δR)2 +

∂hpc (Rc)

∂p
δp. (3.17)

Since J = h′pc(Rc) = 1, this equation reduces to

1

2
h′′pc (Rc) (δR)2 +

∂hpc (Rc)

∂p
δp = 0, (3.18)
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from which we can immediately derive the scaling relation

δR ∝ (δp)1/2 (3.19)

as long as h′′pc (Rc) and ∂hpc (Rc) /∂p have finite values and opposite sign. Therefore we

obtain that

R∗(p)−Rc ∝ (p− pc)
1/2 (3.20)

which proves the transition is discontinuous and hybrid.

Now let us discuss the case of J = −1, with the help of a concrete example (for

instance see Figure 3.11). When J passes the critical point J = −1, two solutions R1

and R2 emerge. Thus they still satisfy Eq. 3.12, i.e.,

R1 = hp(R2), R2 = hp(R1). (3.21)

In other words, R1 and R2 are fixed points of the second-iterate [155] of hp, i.e.

R1 = hp (hp (R1)) , R2 = hp (hp (R2)) , (3.22)

and the stability of fixed points R1 and R2 can be determined in a similar way by

calculating the derivative of the second iterate of hp.

dhp (hp (R))

dR

∣∣∣∣
R=R1

=
dhp(R)

R

∣∣∣∣
R=R1

dhp(R)

R

∣∣∣∣∣
R=R2

=
dhp (hp (R))

dR

∣∣∣∣
R=R2

(3.23)

This equality indicates that both fixed points R1 and R2 always have the same stability

and at h′p(R) = −1, hp(hp(R))′ = 1. Thus, as long as |hp(hp(R))′| < 1, both fixed points

of the second-iterate map are stable, and the stable 2-cycle emerges.

The dynamic of the one-dimensional map can be graphically illustrated by a cobweb

plot. In Figure 3.9 we show the cobweb plot when only positive regulatory interactions
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are present, i.e., when Eq. 3.9 is substituted by

p
(t)
L = p

[
1−G+

0

(
1−R(t)

)]
. (3.24)

In Figure 3.10 we show the cobweb plot when only the negative regulatory interactions

are present and positive interactions do not play a role, i.e., when Eq. 3.9 is substituted

by

p
(t)
L = pG−

0

(
1−R(t)

)
. (3.25)

Eq. 3.16 implies that since df/dpL ≥ 0, the onset of the period-2 oscillations can take

place only if gp(R) has a negative slope, which happens only when negative regulatory

interactions are present (see Eq. 3.9). Thus, we conclude that the presence of negative

regulations is a requisite of period-2 oscillations.

3.6.2 Triadic percolation on uncorrelated Poisson structural networks

In this section, we investigate the stability of the stationary solution in a specific case

of a Poisson structural network with an average degree c in which the structural and

regulatory degrees of the nodes are uncorrelated, i.e.,

P̃
(
k, κ+, κ−

)
= π(k)P

(
κ+, κ−

)
(3.26)

with

π(k) =
1

k!
cke−c. (3.27)

Additionally, we assume that the positive and negative regulatory degree of a link κ̂+

and κ̂− are drawn from Poisson distributions with average degree c+ and c− respectively,
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Figure 3.9: The theoretical cobweb plot (panel (a), (b)) and the corresponding
dependence of the order parameter R on time t (panel (c), (d)) is
shown when regulatory interactions are exclusively positive. The
structural network is a Poisson network with average degree c = 4,
and Poisson distribution P̂±(κ̂±) with average degrees c+ = 4 and
c− = 0 respectively. In panel (a) and (c) p = 0.8 > pc; in panel
(b) and (d) p = 0.2 < pc. The results are obtained with an initial

condition p
(0)
L = 0.3.

i.e.,

P̂±(κ̂±) =
1

κ̂±!
(c±)κ̂

±
e−c± . (3.28)

Now Eqs. 3.7, 3.8, 3.9 for the triadic percolation reduce to

R(t) = 1− e−cp
(t−1)
L R(t)

(3.29)

p
(t)
L = p

(
1− e−c+R(t)

)
e−c−R(t)

.
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Figure 3.10: The theoretical cobweb plot (panel (a), (b), (c)) and the corre-
sponding dependence of the order parameter R on time t (panel
(d), (e), (f)) is shown when regulatory interactions are exclusively
negative. The structural network is a Poisson network with aver-
age degree c = 4, and Poisson distribution P̂±(κ̂±) with average
degrees c+ = 4 and c+ = ∞ respectively. In panel (a) and (d)
p = 0.9; in panel (b) and (e) p = 0.6; in panel (c) and (f) p = 0.1.

The results are obtained with an initial condition p
(0)
L = 0.3.

The first equation can be expressed as a map between p
(t−1)
L and R(t), while the second

equation can be expressed as a map between R(t) and p
(t)
L , i.e.,

R(t) = f
(
p
(t−1)
L

)
, p

(t)
L = gp

(
R(t)

)
. (3.30)

Both equations can be combined in the single map

R(t) = hp

(
R(t−1)

)
= f

(
gp

(
R(t−1)

))
. (3.31)
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Let us denote the stationary solution for R and pL as R∗ and p∗L respectively. The

stationary equations read

R⋆ = 1− e−cp⋆LR
⋆
,

p⋆L = p
(
1− e−c+R⋆

)
e−c−R⋆

. (3.32)

and these equations can be merged into one single equation

R⋆ = hp(R
⋆) = f(gp(R

⋆)), (3.33)

The Jacobian reads

J = h′p(R
∗) =

df(gp(R
∗))

dR∗ = f ′(p∗L)g
′
p(R

∗) (3.34)

and the stationary solution becomes unstable at

|J | = 1. (3.35)

f ′ and g′ are given by

f ′(p⋆L) = − cR⋆

cp⋆L − ecp
⋆
LR

⋆ ,

g′p(R
⋆) = p(c+ + c−)e−(c−+c+)R⋆ − c−pe−c−R⋆

. (3.36)

By solving Eqs. 3.32 and Eq. 3.35 numerically, we obtain the manifold for the onset of

period-2 oscillations of the order parameter R(t).

In Figure 3.11, we illustrate graphically the difference between the two types of pos-

sible instabilities of the stationary solution. When J = 1, we observe the discontinuous

emergence of a non-trivial stationary solution R∗ > 0 while when J = −1 we observe

the onset of period-2 oscillations of the order parameter.

In Figure 3.12 we show the critical manifolds for the onset of period-2 oscillations of
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the order parameters and for the onset of discontinuous hybrid transitions. Note that

for any given structural and regulatory networks, the critical point of the onset of the

discontinuous hybrid transition is unique, if such transition exists. However, the onset

of the period-2 oscillations can occur for different values of p (examples can be observed

in Figure 3.6). In Figure 3.12 we plot exclusively the largest and the smallest critical

points for the onset of period-2 oscillation if they exist.

3.7 Triadic percolation with time delays

In order to exclude the possibility that the observed periodic and chaotic behavior of

triadic percolation is an artifact of the particular choice of the dynamic, we propose

generalized versions of the model, taking into account the time-delayed regulatory inter-

actions, where each regulatory link is assigned with a time delay τ . More specifically,

Step 1 in the triadic percolation process keep unchanged and Step 2 is replaced by:

- Step 2’ Given the set of active nodes obtained in Step 1, each structural link is

deactivated

(a) if no positive regulator of the link is active at time t− τ and/or

(b) if the link is connected to at least one negative regulator that is active at time

t− τ .

(c) if the structural link is not deactivated according to conditions (a) and (b), it

can still be deactivated due to stochastic events which occur with probability

q = 1− p.

Here we consider two different methods to construct the time delay which depends on

the choice of the probability distribution for time delays of structural links (see the

illustrations in Figure 3.13):

Method 1 Each regulatory interaction is associated with a time delay drawn independently

from the distribution p̃(τ);
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Figure 3.11: The figures show the two different modalities for the onset of

the instability of the stable solution of the iterative map R(t) =
hp(R

(t−1)) for a Poisson network with triadic interactions corre-
sponding to the crossing of the curves y = hp(R) and y = R. In
panels (a),(b), and (c) we show the emergence of the discontinu-
ous transition at p = 0.392 (panel (b)) on a Poisson network with
average degree c = 4, and Poisson distribution s P̂±(κ̂±) with av-
erage degrees c+ = 4 and c− = 0 respectively. Panels (a) and (c)
show the functions y = hp(R) and y = R for p = 0.30 (below
the transition) and p = 0.50 (above the transition). Note that
in panel (b) the function y = h(R) and the function y = R are
tangent to each other at their non-trivial intersection indicating
that the non-trivial solution disappears as soon as p < 0.392. In
panels (d),(e),(f) we show the emergence of 2-cycle at p = 0.665
(panel (e)) for a Poisson network with average degree c = 30,
and Poisson distributions P̂±(κ̂±) with average degree c+ = 10
and c− = 2.5 respectively. Panels (d) and (f) show the functions
y = h(R) and y = R for p = 0.60 (below the transition) and
p = 0.8 (above the transition) respectively. Note that in panel
(e) the function y = hp(R) displays a derivative −1 leading to the
emergence of the 2-limit cycle observed for p ≤ 0.665. The rela-
tive cobweb is shown only for panels (b), (d), and (f) to improve
the readability of the figure.

Method 2 The regulatory interactions associated with each structural link has the same time

delay τ , with the delay τ drawn from the distribution p̃(τ).

Let us discuss how Method 1 and Method 2 modify the map of triadic percolation. For
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a b c

Figure 3.12: The upper critical point puc (panel a) and the lower critical point

plc (panel b) determining the onset of period-2 oscillations are
plotted plane (c+, c−). Panel c represents the critical point pc
at which the discontinuous hybrid transition is observed in the
plane (c+, c−). In all panels, the structural network has a Poisson
degree distribution with degree c = 30 the regulatory network has
also a Poisson degree distribution with c+ and c− indicating the
average positive and negative degrees respectively.

simplicity, let us focus on the case of uncorrelated structural network and regulatory

degree of the nodes with Poisson distribution P̂ (κ̂±).

In the case of Method 1, each regulatory interaction is associated with a delay τ

with probability p̃(τ). Therefore, among the regulators of a link, the probability that ni

regulatory links are associated with a delay τi follows a multinomial distribution

Π({ni}i=1,2,··· ,d|κ̂±, p̃) =
κ̂±!∏d
i=1 ni!

d∏
i=1

[p̃(τi)]
ni , (3.37)

with p̃ = (p̃(τ1), p̃(τ2), . . . , p̃(τd)) and such that
∑d

i=1 p̃(τi) = 1. Thus, Eq. 3.9 for triadic

percolation is modified to

p
(t)
L = p exp

(
−c−

∑
τi

p̃(τi)R
(t+1−τi)

)[
1− exp

(
−c+

∑
τi

p̃(τi)R
(t+1−τi)

)]
. (3.38)

In the case of Method 2, Eq. 3.7 and Eq. 3.8 remain unchanged while Eq. 3.9 is
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Figure 3.13: Triadic percolation with time delays. Method 1 and Method
2 of triadic percolation with delays are illustrated in panel (a)
and (d) respectively. The corresponding phase diagrams for the
structural Poisson network are shown in panel (b) for Model 1 and
in panel (d) for Model 2. The orbit diagrams in panels (b) and (e)
are obtained for the p̃(τ) distribution of delays shown in panel
(c) and (f) respectively. The two orbit diagrams are obtained
from the same structural and regulatory network. The structural
network is a Poisson network with an average degree c = 50
and the regulator network has a Poisson degree distribution with
average degree c+ = 10 and c− = 3.3.

modified as

p
(t)
L = p

d∑
τ=1

p̃(τ)e−c−R(t+1−τ)
[
1− e−c+R(t+1−τ)

]
(3.39)

Both methods reduce to the triadic percolation shown in Eq. 3.9 without delays when

p̃(τ) = δτ,1 where δ is the Kronecker delta.

Interestingly, both methods lead to a route to chaos in the presence of a non-trivial
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time delay distribution. This observation demonstrates that the route to chaos is a

robust feature of the triadic percolation model.

3.8 Conclusion

In this chapter, we provide a general framework to study the macroscopic properties of

networks in the presence of triadic regulatory interactions. By introducing signed triadic

interactions on top of the structural network, and assuming that the triadic interactions

regulate the links in the structural network, we define triadic percolation. We find that

the triadic interactions turn percolation to a fully-fledged dynamical process where the

order parameter undergoes period-doubling and a route to chaos when both positive and

negative regulations are present.

The signed interactions are known to affect statistical mechanics problems in non-

trivial ways. For instance, introducing signed interactions in the Ising model changes the

critical properties and the phase diagram of the model dramatically. It gives rise to spin

glasses with a complex free-energy landscape which displays a very different structure

of equilibrium configurations with respect to the Ising model [132]. Moreover, signed

antagonistic interactions induce bistability [156]. In the triadic percolation model, the

period-doubling and the route to chaos of the order parameter imply that triadic perco-

lation is drastically different from ordinary percolation. This significant effect of triadic

interaction on percolation is captured by the difference between the phase diagram of

ordinary percolation and the phase diagram of triadic percolation. While the phase

diagram of ordinary percolation displays a second-order phase transition, the phase di-

agram of triadic percolation is an orbit diagram in the presence of both positive and

negative triadic interactions. Furthermore, the order parameter of triadic percolation

always converges to a steady state in the absence of negative regulations and the phase

diagram displays a discontinuous hybrid phase transition. Our triadic percolation the-

ory gives accurate predictions of the dynamic by comparing with extensive Monte Carlo

simulation despite the mean-field nature of the model, while numerical simulations on
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real networks indicate that the dynamic nature of the triadic percolation is general and

robust.

Periodic and chaotic oscillations, as well as the route to chaos have been observed in

different dynamical models including deterministic cellular automata under certain regu-

latory rules [157] and simple boolean networks [158, 159]. However, triadic percolation is

distinct from these models. In triadic percolation, it is the topology of the higher-order

network itself that fluctuates in time. In order words, triadic percolation is not just a

dynamical model that displays chaos, rather it combines tools coming from dynamical

systems with the theory of critical phenomena in order to formulate a novel percola-

tion process in which the giant component becomes a time-varying variable displaying

periodic as well as chaotic dynamics.

These results radically change our understanding of percolation on networks. The

insights from the theory can shed light on the study of real systems in which the func-

tional connectivity of the network is changing over time, for instance in brain networks

and climate networks. There are some promising future directions for the application of

this triadic percolation model. Taking into account the spatial features of the structural

networks and regulatory networks, the model might be used to understand patterns of

activation in brain networks. Moreover, applying this framework to modeling extreme

rainfall events could also lead to substantial improvement in their forecasting.
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Chapter 4

Higher-order percolation

processes on multiplex

hypergraphs

In this chapter, we propose a general framework for percolation processes on hyper-

graphs. In particular, we consider random multiplex hypergraphs, in which each layer

is associated with hyperedges of a certain cardinality. We reveal the connections among

higher-order percolation processes on multiplex hypergraphs, interdependent percola-

tion on multiplex networks, and K-core percolation processes. Thanks to the multiplex

structure of the proposed hypergraph model, we highlight the strong effect of degree cor-

relations on the critical properties of the percolation process. The wide range of critical

behaviors observed in higher-order percolation processes on multiplex hypergraphs elu-

cidates the mechanisms responsible for the emergence of discontinuous transitions and

uncovers interesting critical properties which can be applied to the study of epidemic

spreading and contagion processes on higher-order networks. The results presented in

this chapter are published in [76].
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4.1 Introduction

Both higher-order networks and multilayer networks are generalized network structures

that take into account the topology beyond the single pairwise network framework of

complex systems. Higher-order networks include both hypergraphs and simplicial com-

plexes. They encode higher-order interactions present in different systems such as so-

cial networks [160], ecological networks [33], and brain networks [42]. While multilayer

networks represent complex systems in which interactions of different natures and con-

notations can exist simultaneously, forming networks of networks. As such multilayer

networks and in particular, multiplex networks are becoming a new paradigm to describe

social, financial, and biological networks [49, 161].

Meanwhile, both higher-order networks and multilayer networks display a rich inter-

play between their topological structures and the dynamic processes defined on these

structures. Notably, on multilayer networks, correlations display significant effects on

the critical properties of the dynamic processes, while on higher-order networks, it is

known that the dynamical processes reveal unexpected phenomena in the context of

synchronization transitions, diffusion processes, and spreading processes [2, 3, 162, 163].

In this chapter, we investigate the interplay between structure and dynamics of

higher-order networks and we provide a comprehensive multilayer framework to study

the effects of correlation and higher-order percolation processes on hypergraphs.

Percolation is a fundamental dynamical process defined on networks that predicts

the fraction of nodes in the giant component of the network. It is widely accepted that

having a non-zero fraction of nodes in the giant component is the minimum requisite

for observing collective phenomena emerging from epidemic spreading, diffusion, and

opinion dynamics. Therefore, the study of percolation models plays a significant role in

investigating the properties of dynamical processes defined on networks.

In the early era of Network Science, node percolation and link percolation have been

extensively studied on simple networks [88, 89]. On a given random network with arbi-
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trary degree distribution, nodes (or links) are randomly damaged with probability 1−p.

We study the fraction of nodes in the giant component R as a function of the probability

of retaining a node (link) p, to show the robustness of the network with a given entity of

the random damage on nodes (or links). It is well-known [10] that the network topology

can significantly affect the critical properties of the percolation transition. For degree

distributions with finite second moments, the critical threshold pc is finite, while for

degree distributions with diverging second moments (for instance scale-free networks),

the critical threshold vanishes. Moreover, while both node and link percolation transi-

tion are continuous second-order phase transitions on simple graphs, K-core percolation

which study the emergence of K-core [112, 113] in the giant component (with K ≥ 2)

displays a discontinuous and hybrid phase transition at the critical threshold.

Recently, there is a surging interest in percolation defined on generalized network

structures as simple pairwise networks are insufficient to capture many real-world phe-

nomena. The classical percolation theory has been generalized thanks to the formula-

tion of the interdependent percolation defined on multilayer networks [11, 108]. The

interdependent percolation can display a discontinuous hybrid transition reflecting large

avalanches and failure on multiplex networks. Moreover, it is known that the critical

properties of interdependent percolation on multiplex networks are highly affected by

the correlation of the generalized degree [49].

However, the critical properties of percolation transition on another type of general-

ized network structure, hypergraphs, have not yet been extensively explored. Recently,

there are a few interesting results of core percolation on hypergraphs [23], yet the explo-

ration of percolation on hypergraphs is still limited to simple hypergraphs in which all

the hyperedges have the same cardinality [24].

In this chapter, we propose a multiplex hypergraph framework and in analogy to the

generalized percolation processes defined on multiplex networks, we define higher-order

percolation processes on the multiplex hypergraphs. Within the multiplex hypergraph

framework, each layer captures the hyperedges with a given cardinality. By assigning
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each node a generalized hyperdegree {k[m]
i } denoting the number of hyperedges with

cardinality m that are associated with node i in layer m, we study the effect of correla-

tion among generalized hyperdegrees. We reveal that the degree correlation can increase

or decrease the critical threshold and we elucidate the mechanisms behind the effects.

More importantly, we reveal how the multiplex nature of the multiplex hypergraph en-

sembles can be exploited to propose higher-order percolation problems which display

rich interplays between higher-order topology and dynamics and a rich set of phenom-

ena, including discontinuous hybrid transitions and multiple percolation transitions.

4.2 Models

4.2.1 Random hypergraph model

The random hypergraph is widely used in the literature. A random hypergraph H =

(V,H) is formed by a set of nodes V with N = |V | elements and a set of hyperedges

of different cardinality m ≤ M . The number of hyperedges incident to a node is called

the hyperdegree of the node. Thus, if all the hyperedges have the cardinality m = 2,

namely all edges describe pairwise interactions, the hypergraph will reduce to an or-

dinary network, and the hyperdegree will reduce to the degree. In a general random

hypergraph composed of nodes and hyperedges with different cardinalities, the hyperde-

gree is obtained by counting the number of hyperedges incident to a node, despite their

cardinalities.

The simplest model of hypergraph called here the random hypergraph model is a

maximum entropy model with given hyperdegree distribution P (k) and the cardinality

distribution of hyperedges P̂ (m). This maximum entropy ensemble of hypergraphs can

be expressed as an ensemble of factor graphs. The factor graph is a bipartite network

GB(Ṽ , Ũ , Ẽ) formed by a set of nodes Ṽ , a set of factor nodes Ũ and a set of pairwise

links Ẽ between nodes and factor nodes. Here we show how to map a hypergraph to a

factor graph whose factor nodes connect to distinct sets of nodes. The set of nodes of

a hypergraph V can be directly mapped to the set of nodes of the corresponding factor
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graph; the hyperedges from H can be mapped to the factor nodes from Ũ and the inter-

action between a node and the hyperedges that it belongs to is expressed by the pairwise

links between nodes and factor nodes. Note that though a hypergraph can always be

mapped to a factor graph, the opposite is not always true, since it does not exclude a

priori that two factor nodes connect the same set of nodes. Nevertheless, in the sparse

network regime where structural cutoffs are present, the number of factor nodes that

connect to the same set of nodes is negligible. Within this sparse limit, the hyperdegree

distribution P (k) and the cardinality distribution of hyperedges P̂ (m) correspond to the

degree distribution of nodes and factor nodes in the factor graph expression, respectively.

In the uncorrelated hypergraph ensemble where the hyperdegree distribution P (k) and

cardinality distribution P̂ (m) have structural cutoffs, the probability that a node i be-

longs to a hyperedge α (or equivalently, in the factor graph representation, a node i

connects to a factor node α) is given by

p̃iα =
kimα

⟨k⟩N
(4.1)

where ki and mα indicate the hyperdegree of the node i and the cardinality of the

hyperedge (or equivalently, the factor node) α respectively.

4.2.2 Random multiplex hypergraph model

The random hypergraph model introduced in the previous section is a maximum en-

tropy model determined with hyperdegree distribution P (k) and the hyperedge cardi-

nality distribution P̂ (m). This model reduces to the Poisson random network when the

hyperedge cardinality distribution admits only links as hyperedges, i.e., P̂ (m) = δm,2.

Therefore, this model neglects any heterogeneity between the nodes. In order to ac-

count for the heterogeneity we propose a hypergraph model called multiplex hypergraph

model that accounts for this cardinality information. Specifically, we consider a maxi-

mum entropy hypergraph model determined by a generalized hyperdegree distribution

P (k) ≡ P (k[2], k[3], · · · , k[M ]) and the hyperedge cardinality distribution P̂ (m). The gen-
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eralized hyperdegree of a node i, ki ≡ (k
[2]
i , k

[3]
i , · · · , k[M ]

i ) includes the information that

the node belongs to k
[m]
i hyperedges with cardinality m. This setting allows to control

the number of hyperedges of a given cardinality incident to each node and it provides a

more refined hypergraph model than the random hypergraph. As we will see, the model

can be mapped to a multiplex network model, as its name indicates.

The random multiplex hypergraph H = (V,H) is formed by a set V of N = |V |

nodes and a set of hyperedges H with different cardinality 2 ≤ m ≤ M . The structure of

the hypergraph is fully characterized by a set of generalized adjacency tensor A[m] where

2 ≤ m ≤ M . The tensor A[m] determines the hyperedges with cardinalitym. Specifically,

A[m] has the element A
[m]
i1,i2,··· ,im = 1 if an hyperedge α = [i1, i2, · · · , im] ∈ H. Otherwise,

A
[m]
i1,i2,··· ,im = 0. Thus, ki = (k

[2]
i , k

[3]
i , · · · , k[m]

i , · · · , k[M ]
i ), the generalized hyperdegree of

a node i is given by

k
[m]
i =

∑
j1,j2,··· ,jm−1

Ai,j1,j2,··· ,jm−1 (4.2)

Now let us show that a random multiplex hypergraph can be mapped to a mul-

tiplex network where each layer of the multiplex network encodes the interactions of a

given cardinality. Specifically, the layer m of a random multiplex hypergraph can be con-

structed starting from the well-established configuration model of pure (m−1)-simplicial

complexes [164]. The random multiplex hypergraph can be generated by the following

algorithm (see Figure 4.1).

(1) Consider a multiplex network with M−1 layers and hyperedges with cardinality m

which 2 ≤ m ≤ M and N nodes corresponding to the N nodes of the hypergraph.

(2) A set of generalized hyperdegree {ki}i=1,··· ,N is drawn from the generalized hyper-

degree distribution P (k). For layer m, first, we use the configuration model of sim-

plicial complexes [164] with the generalized hyperdegree sequence {k[m]}i=1,2,··· ,N ≡

{k[m]
1 , k

[m]
2 , · · · , k[m]

N } to generate a pure (m − 1)-dimensional simplicial complex.
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(d)

(e)

(f)

(a)

(b)

(c)

Figure 4.1: A schematic representation of the multiplex network construction
of the hypergraph with given generalized hyperdegree sequences
for hyperedges of cardinality m1 = 2 (layer 1) and m2 = 3 (layer
2). First, a configuration model is used to generate a simple net-
work capturing the 2-body interactions of the hypergraph (panel
a). Second, the configuration model of simplicial complexes [164]
is used to generate a pure simplicial complex formed exclusively by
triangles. Only the information about the 3-body interactions is
retained (panel b). Finally, the information of the different layers
is aggregated to generate the desired hypergraph including hyper-
edges of size m = 2 and m = 3 (panel c). This construction can
be generalized to an arbitrary number of layers. The factor graph
representation of the multiplex hypergraph is shown in panels (d),
(e), and (f).

From this simplicial complex, we extract the hypergraph formed exclusively by the

simplicial complex facets. This layer can be characterized by the aforementioned

generalized adjacency tensor A[m] which encodes all the m-body interactions.

(3) The resulting multiplex hypergraph is obtained by aggregating all the layers, i .e.,

including all the m-body interactions with 2 ≤ m ≤ M . Note that this aggregated

hypergraph, differently from the aggregated multiplex network with pairwise in-
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teractions, retains its multilayer nature, as the hyperedges of different cardinality

can be easily distinguished and the aggregated hypergraph can be precisely recov-

ered to its multiplex representation, while this is not true for aggregated multiplex

network with only pairwise interactions.

As we will show in the following sections, the random multiplex hypergraph provides

a useful statistical mechanics tool to model unbiased random hypergraphs with hyper-

edge correlations. Moreover, the multiplex hypergraph model has a natural physical

interpretation when hyperedges of different cardinality are associated with interactions

of different natures and connotations. For instance, the multiplex hypergraph can be use-

ful to model brain networks, to distinguish between brain regions connected by pairwise

blood vessels [165] and higher-order functional interactions [42], or it can be useful to

model real social networks where pairwise interactions (such as phone call interactions)

and higher-order interactions (such as face-to-face interaction or online group interac-

tions between more than two people) [160, 166] are present at the same time.

4.3 Percolation on random hypergraph model

Thanks to the mapping between a random hypergraph and the corresponding factor

graph, the percolation theory on ordinary networks can be directly extended to factor

graphs and subsequently to random hypergraphs. Since the factor graph considered here

is in the sparse regime and hence locally tree-like, we can write self-consistent equations

for Ŝ denoting the probability that starting from a node and following a link (in the factor

graph representation) we reach a factor node (hyperedge) in the giant component, and

S denoting the probability that starting from a factor node (hyperedge) and following a

link we reach a node in the giant component. Assuming that nodes are initially retained

with probability p[N ] and hyperedges are retained with probability p[H] despite their
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(a) (b)

Figure 4.2: A schematic illustration of Eqs. 4.3 for Ŝ and S are shown in panels
(a) and (b) respectively. Black circles represent nodes; triangles,
squares, and hexagons represent factor nodes (hyperedges) with
different cardinalities.

cardinality. The self-consistent equations of Ŝ and S read:

Ŝ = p[H]
∑
m

m

⟨m⟩
P̂ (m)

[
1− (1− S)m−1

]
,

S = p[N ]
∑
k

k

⟨k⟩
P (k)

[
1−

(
1− Ŝ

)k−1
.

]
(4.3)

A diagrammatic representation of these two equations is shown in Figure 4.2. Fol-

lowing a link of a node in the factor graph representation, if we reach a factor node in

the giant component (with probability Ŝ), the factor node must connect to at least one

node in the giant component and not initially be damaged. Similarly, following a link

of a factor node, if we reach a node in the giant component, the node must connect to

at least one hyperedge that is in the giant component. Note that in this model, when a

node is damaged, the hyperedges that this node belongs to are not damaged. Instead,

they act as active hyperedges with small cardinalities.

The percolation problem is fully characterized by the order parameters R and R̂,

indicating the probability of finding a node and a hyperedge in the giant component,

respectively. In the case of the random hypergraph model, the order parameters R and
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R̂ can be expressed in terms of Ŝ and S:

R = p[N ]
∑
k

P (k)

[
1−

(
1− Ŝ

)k]
,

R̂ = p[H]
∑
m

P̂ (m) [1− (1− S)m] . (4.4)

These self-consistent equations Eq. 4.4 and Eq. 4.3 are used in the percolation

theory to investigate the critical properties, such as critical threshold pc which reflects the

robustness of a network. Particularly, by imposing p[H] = 1 or pN = 1, the percolation

model above will reduce to node percolation or hyperedge percolation respectively. If the

hypergraph exclusively contains hyperedges with cardinality m = 2, i.e., P̂ (m) = δm,2,

the node (hyperedge) percolation on hypergraphs will reduce to node (link) percolation

on networks.

The critical thresholds p
[H]
c and p

[N ]
c that characterize the phase transition are ob-

tained when the non-trivial solutions of Eq. 4.3 emerge. Since S = Ŝ = 0 are always

solutions of Eq. 4.3, the critical threshold is obtained when the trivial solutions lose

stability. This happens when the largest eigenvalue Λ of the Jacobian matrix J of Eq.

4.3 is greater than 1. By imposing this condition at S = Ŝ = 0, we find that p
[H]
c and

p
[N ]
c must satisfy

p[N ]
c p[H]

c

⟨k(k − 1)⟩
⟨k⟩

⟨m(m− 1)⟩
⟨m⟩

= 1. (4.5)

Thus, the critical threshold pHc of hyperedge percolation (where p[N ] = 1) satisfies

p[H]
c

⟨k(k − 1)⟩
⟨k⟩

⟨m(m− 1)⟩
⟨m⟩

= 1. (4.6)

and the critical threshold p
[N ]
c of node percolation where p[H] satisfies

p[N ]
c

⟨k(k − 1)⟩
⟨k⟩

⟨m(m− 1)⟩
⟨m⟩

= 1. (4.7)
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Figure 4.3: The fraction of nodes in the giant component R is shown versus

p[H] = p for random hypergraphs. The hyperdegree distribution
P (k) is Poisson distribution and the distribution of cardinality of
hyperedges P̂ (m) is exponential distribution P̂ (m) = rm−m0/(1−
r) with minimum m0 = 3.

In Figure 4.3 we show the result of hyperedge percolation (p[N ] = 1) on hypergraphs

with Poisson hyperdegree distribution and exponential cardinality distribution. The

order parameter R is displayed versus p ≡ p[H] with different average hyperdegree and

cardinalities.

If the distribution P̂ (m′) reduces to δm,m′ , indicating that the hypergraph is formed

exclusively by hyperedges with cardinality m, the critical thresholds p
[H]
c and p

[N ]
c will

satisfy

p[N ]
c p[H]

c

⟨k(k − 1)⟩
⟨k⟩

(m− 1) = 1, (4.8)

which has been reported in [24].
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4.4 Percolation on multiplex hypergraph model

Similar to percolation defined on the random hypergraph model, here we study the per-

colation on the multiplex hypergraph model, i.e., the nodes or hyperedges of a random

multiplex hypergraph with generalized hyperdegree distribution P (k) is initially retained

with probability p[N ] and p[H], respectively. The self-consistent equations that charac-

terize the percolation process can be written in a similar fashion. Using the factor graph

representation, we indicate with Ŝm the probability that following a link of a node in

layer m we reach a m-factor node (m-hyperedge) that belongs to the giant component

and Sm the probability that following a link of a m-factor node (m-hyperedge) in layer

m we reach a node in the giant component. On a locally tree-like multiplex factor graph,

the probabilities Ŝm and Sm satisfy the following self-consistent equations

Ŝm = p[H]
[
1− (1− Sm)m−1

]
,

Sm = p[N ]
∑
k

km
⟨km⟩

P (k)

[
1−

∏
m′

(
1− Ŝm′

)km′−δm,m′
]
. (4.9)

The self-consistent equations can be interpreted diagrammatically as in Figure 4.4.

Following a link of a node in layer m, if we reach a m-factor node in the giant component

(with probability Ŝm), the factor node must connect to at least one node in the giant

component and not initially damaged. Similarly, following a link of a m-factor node in

layer m, if we reach a node in the giant component, the node must connect to at least

one hyperedge (despite its cardinality) that is in the giant component.

The order parameters for percolation on a random multiplex hypergraph, i.e., the

expected fraction of nodes R and the expected fraction of hyperedges R̂ in the giant

component, are given by:

R̂ = p[N ]
∑
k

P (k)

[
1−

∏
m

(
1− Ŝm

)km]
,

R = p[H]
∑
m

P̂ (m) [1− (1− Sm)m] . (4.10)
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Figure 4.4: A schematic illustration of Eqs. 4.9 for Ŝm and Sm are shown
in panels (a) and (b) respectively. Red circles represent nodes;
squares, pentagons, and hexagons represent factor nodes (hyper-
edges) with different cardinalities.

Eq. 4.9 and Eq. 4.10 fully characterize the critical properties of the percolation

process defined on the random multiplex hypergraph model. In particular, they can be

used to investigate the effect of correlation between hyperedges in different layers on the

robustness of the random multiplex hypergraph against random damage of nodes and

hyperedges.

Using a similar approach to the random hypergraph model, we can write the Jobobian

matrix of Eq. 4.9. Note that Eq. 4.9 is consisted of 2(M − 1) equations (the equations

of Ŝm and Sm with 2 ≤ m ≤ M). We can merge the 2(M − 1) equations to (M − 1)

equations, by inserting the equation of Sm to the equation of Ŝm. The Jacobian G of

the modified equations with size (M − 1)× (M − 1) has entries:

Gmn =


p[H]p[N ](n− 1)⟨knkm⟩/⟨km⟩ for m ̸= n,

p[H]p[N ](m− 1)⟨km(km − 1)⟩/⟨km⟩ for m = n.

(4.11)
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Therefore, the critical threshold of node and hyperedge percolation p
[N ]
c and p

[H]
c are

obtained by imposing the largest eigenvalue Λ of G equals to 1.

In the following sections, we will study the percolation threshold in some important

examples of random multiplex hypergraphs and we will characterize the role that correla-

tions among hyperdegree of different layers plays on the robustness properties of random

multiplex hypergraphs.

4.4.1 Case 1: Hypergraph with fixed cardinality of hyperedges

If the multiplex hypergraph is formed by one single layer that only includes hyperedges

of cardinality m, we have

P̂ (m′) = δm,m′ , (4.12)

the Jacobian G reduces to a scalar given by

G ≡ Gmm = p[N ]p[H](m− 1)
⟨km(km − 1⟩

⟨km⟩
. (4.13)

Thus by imposing G = 1, we recover the expression obtained in Eq. 4.8.

4.4.2 Case 2: Independent layers with Poisson generalized hyperdegree

distribution

A more interesting case where we can appreciate the multiplex structure of the model is

the one in which the hyperedge distribution of each layer of the random multiplex hyper-

graph is an independent Poisson distribution with layer-dependent average hyperdegree

zm. This case greatly simplifies the expression of the critical thresholds.

The generalized hyperdegree distribution with independent Poissonian layers is char-

acterized by factorized form

P (k) =
∏
m

Pm(km) (4.14)
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where

Pm(km) =
zkmm exp(−zm)

km!
(4.15)

Using the well-known expressions of the moments of Poisson distribution and the inde-

pendent condition, we have

⟨knkm⟩
⟨kn⟩

=
⟨km⟩⟨kn⟩

⟨kn⟩
= ⟨km⟩ = zm,

⟨km(km − 1)⟩
⟨km⟩

= zm. (4.16)

Thus the Jacobian matrix G is simplified and has entries

Gmn = p[H]
c p[N ]

c (m− 1)zm. (4.17)

This expression indicates that the matrixG only depends on one indexm, i.e., rank(G) =

1. Thus, the only non-zero eigenvalue Λ equals the trace of the matrix:

Λ = Tr(G) = p[N ]
c p[H]

c

∑
m

(m− 1)zm. (4.18)

By imposing Λ = 1, we find the critical threshold p
[N ]
c and p

[H]
c satisfying

1

p
[N ]
c p

[H]
c

=
∑
m

(m− 1)zm. (4.19)

Notice that in Case 1 if we only consider a single layer of the multiplex hypergraph and

the hyperdegree distribution Pm(km) is a Poisson distribution with average hyperdegree

zm, Eq. 4.8 will further reduce to

p[H,m]
c p[N,m]

c =
1

zm(m− 1)
(4.20)

Here we use p
[N,m]
c and p

[H,m]
c to denote the critical threshold of the node and hyper-

edge percolation that are defined on single-layer hypergraphs formed exclusively by m-

hyperedges. Thus, comparing Eq. 4.20 and Eq. 4.19, we observe the relationship between
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the critical threshold of the aggregated multiplex hypergraph and its component layers:

1

p
[N ]
c p

[H]
c

=
∑
m

1

p
[H,m]
c p

[N,m]
c

(4.21)

This relationship implies that the product of the percolation threshold p
[H]
c p

[N ]
c for the

multiplex hypergraph model is smaller than the corresponding product of percolation

threshold p
[H,m]
c p

[N,m]
c for each layer of the multiplex hypergraph, hence the multiplex

hypergraph is more robust than each of its layers taken in isolation.

4.4.3 Case 3: Independent layers with power-law generalized hyperde-

gree distribution

In the case of independent layers with power-law hyperdegree distribution, the general-

ized hyperdegree distribution is given by

P (k) =
∏
m

Pm(km) (4.22)

where

Pm(km) = cmk−γm
m , (4.23)

with γm > 2 and cm indicating the normalization constant. Note that the Jacobian G

of the modified equations has elements

Gmn =


p[H]p[N ](n− 1)⟨knkm⟩/⟨km⟩ for m ̸= n,

p[H]p[N ](m− 1)⟨km(km − 1)⟩/⟨km⟩ for m = n.

(4.24)

Since γm > 2, ⟨kn⟩ is finite at the infinite network limit when N → ∞, i.e., all the layers

are sparse. If one layer m is scale-free, i.e., γm ∈ (2, 3], ⟨km(km − 1)⟩/⟨km⟩ diverges

as the second moment diverges. This implies the divergence of the trace of G, as a

consequence, the maximum eigenvalue diverges as well. Thus, as long as at least one
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layer has a scale-free hyperdegree distribution,

p[N ]
c p[H]

c → 0 (4.25)

in the infinite network limit N → ∞. This result implies that for standard percolation

on multiplex hypergraphs, having one scale-free layer can already significantly increase

the robustness of the multiplex hypergraph.

4.5 Effects of hyperdegree correlation

In general, random multiplex hypergraphs have non-trivial correlations between the hy-

perdegree of the same nodes, i.e., the hyperdegree distribution P (k) does not always

take the factorized form. Thus, in the general correlated cases

⟨knkm⟩ ≠ ⟨kn⟩⟨km⟩. (4.26)

Let us define the correlation between the hyperdegrees of the same node connected to

hyperedges of cardinality n and m respectively, i.e.,

Cmn = ⟨knkm⟩ − ⟨kn⟩⟨km⟩. (4.27)

Here we consider a simple and exactly solvable 2-layer multiplex hypergraph, formed by

hyperedges of cardinality m1 and m2. Without changing the structure of each layer, we

are able to construct multiplex hypergraphs with different correlations by permuting the

labels of nodes in one layer. In particular, we can permute the labels of replica nodes

in such a way that the correlation between the generalized hyperdegree is maximized

(either positively or negatively), namely the Maximally Positive Correlated Multiplex

Hypergraph (MPCMH) and the Maximally Negative Correlated Multiplex Hypergraph

(MNCMH). This can be constructed via a similar way that constructs the maximally

positive/negative correlated multiplex networks proposed in Ref. [14]. Therefore, in

order to generate a Maximally Positive Correlated Multiplex Hypergraph (MPCMH),
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we can rank the hyperdegree of nodes in both layer in increasing order or decreasing

order, then assign the same labels to nodes with the same rank in both layers. On

the contrary, a Maximally Negative Correlated Multiplex Hypergraph (MNCMH) can be

generated by first ranking hyperdegrees in one layer in increasing order and the other

layer in decreasing order and assigning the same labels to nodes with the same rank

in both layers. In order to compare the effects of hyperdegree correlation, we generate

the Uncorrelated Multiplex Hypergraph (UMH) by randomly assigning labels to nodes

in both layers as a null model. In order to assess the effects of correlation on critical

thresholds, we investigate the dependency of the critical thresholds p
[H]
c and p

[N ]
c on the

correlation coefficient Cmn between two layers.

Consider a 2-layer multiplex hypergraph formed by hyperedges with cardinalities m1

and m2. The matrix G can be written explicitly as

G = p[H]p[N ]

 m̂1κ1 m̂2K1

m̂1K2 m̂2κ2

 , (4.28)

where m̂r ≡ mr − 1 for r ∈ {1, 2} and we use κr and Kr to denote

κr ≡
⟨kmr(kmr − 1)⟩

⟨kmr⟩
, Kr ≡

⟨km1km2⟩
⟨kmr⟩

, r ∈ {1, 2}. (4.29)

The critical thresholds are obtained by imposing the maximum eigenvalue of G equals

to 1, which can be expressed explicitly in this duplex hypergraph as

p[N ]
c p[H]

c = 2
[
κ1m̂1 + κ2m̂2 +

√
∆
]−1

(4.30)

where

∆ = (κ1m̂1 − κ2m̂2)
2 + 4K1K2m̂1m̂2. (4.31)

From Eq. 4.30 we observe that, for this specific percolation process, the hyperedge
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Figure 4.5: The fraction R of nodes in the giant component for MPCMH (Pos-
itive), for the UMH (Uncorrelated) and for MNCMH (Negative) is
shown for hyperedge percolation (panel(a)) and for node percola-
tion (panel (b)). The considered duplex hypergraph has N = 104

nodes and hyperedges of cardinality m1 = 2 (layer 1) and m2 = 3
(layer 2). The generalized hyperdegree distributions are Poisson
distributions with z2 = 0.5 (for layer 1), z3 = 1.5 (for layer 2).

percolation (when p[N ] = p
[N ]
c = 1) and node percolation (when p[H] = p

[H]
c = 1) have

the same critical threshold since K1K2 depends on the correlation coefficient in the

following form:

K1K2 =
(Cm1m2 + ⟨km1⟩⟨km2⟩)

2

⟨km1⟩⟨km2⟩
. (4.32)

Eq. 4.30 together with Eq. 4.31 and Eq. 4.32 indicates that positive correlations,

which have a larger K1K2, increase the robustness of the multiplex hypergraph against

random attack (a smaller critical threshold) and negative correlations decrease the ro-

bustness (a larger critical threshold). In Figure 4.5, we show the effects of degree cor-

relation on both pure node percolation and hyperedge percolation. We observe that

indeed MPCMH has a larger critical threshold compared with MNCMH, which agrees

with the theoretical analysis above. Furthermore, we observe a worth-noting crossing of

the curves of the fraction of nodes in the giant component R of MPCMH and MNCMH
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versus the probability p of retaining a node (p ≡ p[N ]) or a hyperedge (p ≡ p[H]). This

indicates that different from the critical behavior, when the damage to the network is

minor, MNCMH has greater stability compared with MPCMH.

This effect of degree correlation on the robustness of multiplex hypergraphs with the

different entities of damage can be interpreted as follows. When the network is sig-

nificantly damaged (p close to the critical threshold), the robustness of the multiplex

hypergraph is determined by the high-degree nodes as they are less prone to be dam-

aged in presence of positive correlations, leading to a smaller percolation threshold of

MPCMH. On the contrary, when the damage to the network is minor, the robustness of

the hypergraph is determined by the low-degree nodes. In particular, the role of low-

degree nodes is more pronounced when in each layer there is a non-negligible number of

isolated nodes. In presence of positive correlations, the number of nodes isolated in both

layers or connected to a small number of hyperedges (regardless of their size) is larger.

As a consequence, MNCMH have a larger fraction of nodes in the giant component than

MPCMH. Indeed while in absence of isolated nodes, i.e., there is only one connected

component in the network, this effect remains but it is strongly suppressed.

4.6 Higher-order percolation on multiplex hypergraphs

The higher-order and multiplex nature of the random multiplex hypergraph allows for

the investigation of various higher-order percolation problems. Higher-order percolation

problems are characterized by collaborative phenomena, namely, the activation of one

node (or hyperedge) requires the presence of multiple active neighbor hyperedges (or

nodes). These higher-order percolation problems have highly non-trivial critical prop-

erties, as we will show in this section, including discontinuous hybrid phase transition,

tricritical points, or even multiple phase transitions which have not been reported yet in

this context.

In this section, we discuss four types of higher-order percolation, namely Interdepen-
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dent Node percolation, Interdependent Hyperedge percolation, Node K-core percolation,

and Hyperedge K-core percolation. Inspired by the parallelism between multiplex hyper-

graphs and multiplex networks, we can define the interlayer node dependency also on

multiplex hypergraphs, i.e., if a node is in the giant component (active), it must be in the

giant component (active) in all layers. In particular, we will show that this higher-order

percolation process displays a discontinuous hybrid phase transition at criticality. If

partial dependence is considered, the transition will become continuous at the tricritical

point.

Similarly, an interlayer dependency can be associated with hyperedges as well. Thus

we can define Interdependent Hyperedge percolation, i.e., a hyperedge is in the giant

component (active), only when all the nodes that belong to this hyperedge are in the giant

component (active). This highly non-trivial percolation problem displays a discontinuous

hybrid transition at criticality if all the hyperedges are involving more than two nodes. In

presence of hyperedges of cardinality two (links), the transition can become continuous

at a tricritical point in some cases. More interestingly, with certain parameters, the

percolation will display multiple transitions, characterized by more than one critical

point, which has not been observed before in this context. Note that this interdependent

hyperedge percolation is strongly related to the higher-order contagion model proposed

and studied in Ref. [1, 3].

Another class of higher-order percolation problem we will discuss in this section is the

higher-order K-core percolation inspired by K-core percolation on networks [112, 113].

In the case of Node K-core percolation, a node is in the giant component, if at least K

hyperedges that include this node are in the giant component. Similarly, in the case

of Hyperedge K-core percolation, a hyperedge is in the giant component if at least K

nodes that belong to it are in the giant component. In either one of these last two

models, the transition is discontinuous as long as K > 2 and the distributions P (k) and

P̂ (m) have finite second moments. These different higher-order percolation processes are

summarized in Figure 4.6.
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Figure 4.6: Schematic representation of the equations for Ŝm and for Sm de-
termining higher-order percolation models defined on multiplex
hypergraphs. Panel (a) represents node interdependent percola-
tion. Panel (b) represents hyperedge interdependent percolation.
Panel (c) represent Node K-core percolation. Panel (d) represent
hyperedge K-core percolation.

4.6.1 Interdependent node percolation

4.6.1.1 General framework

The interdependent node percolation on multiplex hypergraphs formulated here is an

analogy with interdependent node percolation on multiplex networks. In a multiplex

hypergraph, a node is in the giant component if each of its replica nodes belongs to at

least one hyperedge that is in the giant component. The rationale behind this definition

is that in real networks, hyperedges with different cardinalities can encode interactions of

different natures. For instance, in a duplex hypergraph that represents a brain network,

the giant component of interdependent node percolation (active component) is formed

by brain regions (nodes) connected by both blood vessels (pairwise interactions) and

functional interactions (higher-order interactions). Similarly, in social networks, we can

consider agents (nodes) connected in both mobile phone connection networks (pairwise

80



interactions) and face-to-face or online group networks (higher-order interactions). The

order parameters of the interdependent node percolation on multiplex hypergraphs can

be obtained in the following way. Let us define the probability Ŝm that starting from

a node we reach a m-factor node (hyperedge with cardinality m) that is active and the

probability Sm that starting from a m-factor node (hyperedge with cardinality m) we

reach a node that is active. Ŝm and Sm follow the relationship

Ŝm = p[H]
[
1− (1− Sm)m−1

]
(4.33)

Sm = p[N ]
∑
k

km
⟨km⟩

P (k)
∏
m′

[
1−

(
1− Ŝm′

)k′m−δm,m′
]
. (4.34)

Subsequently, the order parameters R denoting the probability of a node belonging

to the giant component and R̂ denoting the probability of a hyperedge belonging to the

giant component follow the relationship

R = p[N ]
∑
k

P (k)
∏
m

[
1−

(
1− Ŝm

)km]
(4.35)

R̂ = p[H]

[
1−

∑
m

P̂ (m)(1− Sm)m

]
(4.36)

4.6.1.2 Independent layers

In order to reveal the mechanism behind the discontinuous phase transition, we con-

sider a simpler model, in which the hyperdegrees of a node are independent. This

indicates that the generalized hyperdegree distribution P (k) factorizes according to

P (k) =
∏

m Pm(km), Eq. 4.34 and Eq. 4.35 reduce to

Sm = p[N ]
(
1−G1,m(1− Ŝm)

) ∏
m′ ̸=m

(
1−G0,m′(1− Ŝm′)

)
(4.37)

R = p[N ]
∏
m′

(
1−G0,m′(1− Ŝm′)

)
(4.38)

where G0,m(x) and G1,m(x) denote the generating function
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G0,m(x) =
∑
km

Pm(km)xkm

G1,m(x) =
∑
km

km
⟨km⟩

Pm(km)xkm−1 (4.39)

By choosing then hyperdegree distribution Pm(km) in each layer to be Poisson dis-

tribution with expectation zm, the generating functions reduce to

G0,m(x) = G1,m(x) = 1− exp (−zm(1− x)) (4.40)

Thus, according to Eq. 4.37 and Eq. 4.38, Sm ≡ S = R for all m. Inserting Eq. 4.33

into Eq. 4.38, we obtain that the order parameter R = S obeys a single equation

h(S) ≡ S − p[N ]
∏
m

[
1− exp

(
−p[H]zmSm−1

)]
= 0. (4.41)

For multiplex hypergraphs with more than one layer, the node interdependent percolation

displays a discontinuous hybrid phase transition it can be obtained by imposing (see

Figure 4.7)

h(Sc) = h′(Sc) = 0. (4.42)

4.6.1.3 Effects of the generalized hyperdegree correlation

The generalized hyperdegree correlation has a significant effect on the higher-order

node interdependent percolation transition of multiplex hypergraphs as well. This phe-

nomenon is the higher-order version of the corresponding phenomenon known to occur

on pairwise multiplex networks [14, 49]. Here we again consider the duplex hypergraph

with tunable correlations of the generalized hyperdegrees that we use in Sec. 4.5. We
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Figure 4.7: The fraction R of active nodes in interdependent node percolation

is shown versus p[H] for a duplex multiplex hypergraph with p[N ] =
1. The layers of the duplex networks are formed by hyperedges of
cardinality m1 = 3 (layer 1), and m2 = 4 (layer 2). Both layers
have Poisson generalized degree distribution with z3 = z4 = 2.5.
The inset displays the function h(R) defined in Eq. 4.41 calculated

at the critical point, i.e., for p[H] = p
[H]
c .

observe that MPCMH are always more robust than MNCMH for every entity of the dam-

age, i.e., positive correlations between generalized hyperdegrees of different layers always

increase the robustness of the multiplex hypergraph (see Figure 4.8), which is different

from our observations for standard percolation on multiplex hypergraphs discussed in

Sec. 4.5. This difference has a simple interpretation. The maximum positive correlation

will minimize the number of isolated nodes (thus inactive) in at least one layer while the

maximum negative correlation will maximize this quantity. In the node-interdependent

percolation problem, an isolated (inactive) node in one layer will deactivate its replica

node in another layer, while this is not the case for standard percolation on multiplex

hypergraphs. This explains the difference between Figure 4.8 and Figure 4.5: for node
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Figure 4.8: The fraction of active nodes R for interdependent node percolation

is plotted versus p[H] when p[N ] = 1 (panel a) and versus p[N ] when
p[H] = 1 (panel b) for a MPCMH (Positive) a MNCMH (Negative)
and for a UMH (Uncorrelated). The layers of the duplex hyper-
graph are formed by hyperedges of cardinality m1 = 3 (layer 1),
m2 = 4 (layer 2), with Poisson layers of average generalized degree
z3 = 2.5, z4 = 2.5.

interdependent percolation, the order parameter R for percolation on MPCMH is always

larger than percolation on MNCMH, while we observe a crossing of the two curves in

standard percolation.

4.6.1.4 Partial interdependence

Partial interdependence has been introduced and investigated in detail for pairwise mul-

tiplex networks [11, 12, 49, 122]. On pairwise multiplex networks, when partial inter-

dependence is considered, it is possible to observe a change of critical behavior at the

so-called tricritical point. By decreasing the strength of partial interdependence, the

discontinuous transition could shift to a continuous transition at the tricritical point.

Here we extend this notion to multiplex hypergraphs to highlight the similarities and

differences between the two models. To be more precise, by partial interdependence, we

mean that the interdependence is not always present between replica nodes, but only

with a probability r. Therefore, for r = 1 we recover node interdependent percolation

discussed above, which displays a discontinuous hybrid transition, while for r = 0, the

replica nodes in two layers are independent and we recover the standard percolation dis-
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cussed in Sec. 4.4 which displays a continuous transition. Let us restrict our discussion

to the simple case of independent generalized hyperdegrees where the joint hyperdegree

distribution P (k) takes the factorized form according to P (k) =
∏

m Pm(km). In this

case, the equations for Ŝm and R̂ remain unchanged (Eq. 4.33 and Eq. 4.36) while the

equations for Sm and R (Eq. 4.34 and Eq. 4.35) become

Sm = p[N ]
(
1−G1,m(1− Ŝm)

) ∏
m′ ̸=m

(
1− rG0,m′(1− Ŝm′)

)
(4.43)

R = p[N ]
(
1−G0,m(1− Ŝm)

) ∏
m′ ̸=m

(
1− rG0,m′(1− Ŝm′)

)
(4.44)

Interestingly, due to the higher-order nature of the multiplex hypergraph model, these

equations cannot be reduced to a single equation even in the simple case of layers with

Poissonian generalized hyperdegree distribution. Nevertheless, the phase diagram of

the model can be investigated numerically. The phase diagram is characterized by a

tricritical point separating a regime of continuous transition (r < rT ) and a regime of

discontinuous hybrid transition (r > rT ). If we consider either node percolation (p[H]=1,

p[N ] ≡ p) or hyperedge percolation (p[N ]=1, p[H] ≡ p), the tricritical point (rT , pT ) can

be found numerically by solving the self-consistent equations Eq. 4.33 and Eq. 4.43

together with Λ = 1, where Λ is the largest eigenvalue of the Jacobian matrix of the

equations determining Ŝm and Sm (see Figure 4.9).

4.6.2 Interdependent hyperedge percolation

4.6.2.1 General framework

The higher-order interdependency can be defined not only on nodes but also on hyper-

edges. In the interdependent hyperedge percolation, a hyperedge is active only if all its

nodes are active as well, and a node is active if at least one of the hyperedges it belongs

to is active. The model considered here is complementary of the node interdependent

percolation, as in node interdependent percolation, a node is active if all of its replica

nodes are active, i.e., all of its replica nodes belong to at least one active hyperedge. The
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Figure 4.9: The percolation threshold pc = p
[H]
c of a duplex multiplex hyper-

graph is plotted versus r for the interdependent node percolation
process with partial interdependence. The solid line corresponds
to the line of the continuous critical point, the dashed line corre-
sponds to the line of discontinuous, hybrid transitions. The tricrit-
ical point separating the two lines is obtained for r = rT = 0.68 . . ..
The inset displays the value R = Rc of the fraction of active nodes
at the critical point as a function of r showing that Rc > 0 for
r > rT indicating that the transition is discontinuous. The layers
of the duplex hypergraph are formed by hyperedges of cardinality
m1 = 3 (layer 1), m2 = 4 (layer 2), with Poisson layers of average
generalized degree z3 = 2, z4 = 2. Here p[N ] is set equal to one.

interdependent hyperedge percolation model can be closely related to the higher-order

social contagion model proposed in [3] and investigated on random hypergraph in [1],

since in the higher-order contagion model, a node is infected if it belongs to at least one

m−hyperedge which contains m − 1 infected nodes. Nevertheless, there are two major

differences between the higher-order contagion model and interdependent hyperedge per-

colation: The first difference is that higher-order contagion models are usually studied

under the Susceptible-Infected-Susceptible (SIS) setting while the percolation model is
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Figure 4.10: The critical behavior of the interdependent hyperedge percolation
process on a duplex hypergraph is investigated by plotting the
function h(S) defined in Eq. 4.41 versus S (panels (a) and (c))
and by displaying the fraction of active nodes R for different
values of p = p[H] (panels (d) and (f)). The duplex hypergraphs
have layers with hyperedge cardinalities m1 = 2, m2 = 3 (panel
(a) and (d)), m1 = 2, m2 = 10 (panel (b) and (e)), and m1 = 3,
m2 = 5 (panel (c) and (f)). Each layer is characterized by Poisson
hyperdegree distributions with average degree zm1 (layer 1) and
zm2 (layer 2) with zm1 + zm2 = z = 6. In panel (d) we observe
continuous transitions and discontinuous transitions occurring for
different values of z2. In panel (e) we observe that the model
can display, for the same value of z3, two critical points pc1 and
pc2 corresponding to a continuous and discontinuous transition
occurring at a non-zero value of the order parameter. In panel
(f) we show that all the transitions are discontinuous.

known to map to the SIR model. This difference impedes a precise mapping between

the percolation model and SIS-type dynamic, however, it will not be critical here since

we are mainly concerned about the nature of the phase transition rather than the ac-

tual dynamic processes, and the SIR model and SIS model display very similar critical

behaviors. More importantly, the second difference is that in the higher-order contagion

model, bistable regimes can be observed, i.e., the contagion spreads either until it be-

comes pandemic, or the epidemic dies out, depending on the initial conditions. While in
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interdependent hyperedge percolation, such bistability does not exist, as in percolation

problems, we always take the largest solutions of the order parameters R and R̂ from

the self-consistent equations, even if there are multiple non-trivial solutions.

In the interdependent hyperedge percolation model, the probability Ŝm that starting

from a random structural node we reach an active m-factor node (in the factor graph

representation), and the probability Sm that starting from a m-factor node, we reach an

active structural node satisfy

Ŝm = p[H]Sm−1
m (4.45)

Sm = p[N ]
∑
k

km
⟨km⟩

P (k)

[
1−

∏
m′

(1− Ŝm′)km′−δm,m′

]
. (4.46)

The order parameter R̂ and R indicating the fraction of nodes and hyperedges in the

giant component respectively are given by

R̂ = p[H]
∑
m

P̂ (m)Sm
m (4.47)

R = p[N ]
∑
k

km
⟨km⟩

P (k)

[
1−

∏
m′

(1− Ŝm′)km′

]
. (4.48)

Here we note that in the simplest case, the multiplex hypergraph is formed by a

single layer containing hyperedges with cardinality m = 2, the equations will reduce to

link percolation on simple networks. Nevertheless, as long as the hypergraph contains

some hyperedges with cardinality m > 2, the equations of interdependent hyperedge

percolation are different from the simple link percolation.

In the following sections, we will characterize the phase transition of interdependent

hyperedge percolation and investigate the effect of the generalized hyperdegree correla-

tion.
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4.6.2.2 Interdependent layers

In order to study the critical properties of the interdependent hyperedge percolation

transition, let us consider the simple case of interdependent layers. In this case, Eqs.

4.45, 4.46, 4.47, 4.48 will reduce to

Ŝm = p[H]Sm−1
m ,

Sm = P [N ]

1−G1,m

(
1− Ŝm

) ∏
m′ ̸=m

G0,m′
(
1− Ŝ′

m

) ,

R = p[N ]

[
1−

∏
m

G0,m

(
1− p[H]Sm−1

m

)]
,

R̂ = p[H]
∑
m

P̂ (m)Sm
m . (4.49)

The generating functions G0,m(x) and G1,m(x) are defined in Eq. 4.39. By choosing the

generalized degree distributions as Poisson distribution defined in Eq.4.15, we observe

that Sm = R = S for any m with S satisfying

S = p[N ]

[
1− exp

(
−p[H]

∑
m

zmSm−1

)]
. (4.50)

In the simplified case of 2-layer multiplex hypergraph with cardinality m1, m2 and cor-

responding average generalized degree zm1 and zm2 , S satisfies

S = p[N ]
{
1− exp

[
−p[H]

(
zm1S

m1−1 + zm2S
m2
)]

,
}

(4.51)

or equivalently we write the equation above as

h(S) = S − p[N ]
{
1− exp

[
−p[H]

(
zm1S

m1−1 + zm2S
m2
)]}

= 0. (4.52)

Let us fix the expected number of hyperedges incident to a node despite their cardinality

by imposing

zm1 + zm2 = z (4.53)
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and we will characterize the interdependent hyperedge percolation transition as a func-

tion of zm1 . As a specific example, let us set m1 = 2 and m2 = 3. In one extreme case

that z2 = z and z3 = 0, the multiplex hypergraph reduces to a single network with only

pairwise connections. Thus the transition will reduce to standard link percolation whose

critical point is characterized by the following condition:

h(0) = h′(0) = 0. (4.54)

In the other extreme case where z3 = z and z2 = 0, the multiplex hypergraph reduces

to a single hypergraph that includes only 3-hyperedges. In this case, the transition is

discontinuous and is obtained at a non-zero value S = Sc which is characterized by

h(Sc) = h′(Sc) = 0. (4.55)

By increasing z2 from 0 to z, the percolation transition shifts from the region of contin-

uous phase transition to the region of discontinuous phase transition. These two regions

are separated by a tricritical point observed at z2 = zT that satisties

h(0) = h′(0) = h′′(0) = 0. (4.56)

For hyperedge interdependent percolation with p[N ] = 1, we obtain the tricritical point

at

zT =
2

3
z, p

[H]
T =

3

2z
. (4.57)

For hyperedge interdependent percolation with p[H] = 1, on the other hand, the tricritical

point is found at

zT =
√
1 + 2z − 1, p

[N ]
T =

√
1 + 2z + 1

2z
. (4.58)
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Interestingly, if we still limit our discussion to 2-layer duplex hypergraphs and as we

change the value of m1 and m2, different scenarios of phase transitions emerge. For

m1 > 2 and m2 > 2, the transition is always discontinuous. However, as we show in

Figure 4.10(b), when m1 = 2 and m2 > 3, the percolation transition can display not just

one but also two percolation transitions. The first transition describes the emergence

of the giant component which is continuous, while the second discontinuous transition

indicates an abrupt jump of the order parameter R from a non-zero value to a higher non-

zero value. To the best of our knowledge, this phenomenon has not been reported before,

not even for the higher-order contagion model studied in Refs. [1, 3]. These multiple

transitions can have an interesting interpretation as a sudden activation of hyperedges

of larger cardinality.

4.6.2.3 Effect of the generalized hyperdegree correlation

The general equations characterizing the hyperedge interdependent percolation can be

also used to study the effects of correlation between the generalized hyperdegrees of the

replica nodes. In this case, we observe (see Figure 4.11) that MPCMH displays a critical

threshold smaller than MNCMH which indicates that MPCMH is more robust. For small

entities of the damage, on the other hand, MPCMH has a smaller giant component than

MNCMH. This observation is expected as it has the same explanation of the correspond-

ing phenomenon observed and discussed in Sec. 4.5 for the case of standard percolation

on multiplex hypergraphs (see Figure 4.5).

4.6.3 Node K-core percolation

In this section, we discuss the node higher-order K-core percolation on multiplex hy-

pergraphs, as a generalization of both K-core percolation [112, 113] on simple networks

and aforementioned node interdependent percolation on multiplex hypergraphs. In stan-

dard K-core percolation on simple networks, a node is active if it has at least K active

neighbors, while in node K-core percolation defined on multiplex hypergraphs, a node

is active if it belongs to at least K hyperedges regardless of their cardinalities. In this
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Figure 4.11: The fraction of active nodes R in the interdependent hyperedge

percolation is plotted versus p[H] when p[N ] = 1 (panel a) and
versus p[N ] when p[H] = 1(panel b) for a MPCMH (Positive) a
MNCMH (Negative) and for a UMH (Uncorrelated). The layers
of the duplex hypergraph are formed by hyperedges of cardinality
m1 = 2 (layer 1), m2 = 3 (layer 2), with Poisson layers of average
generalized degree z2 = 4.8, z3 = 1.2 and z = z2 + z3 = 6.

case, the percolation equations read:

Ŝm = p[H]
[
1− (1− Sm)m−1

]
,

Sm = p[N ]
′∑
k

km
⟨km⟩

P (k)

1− K−2∑
q=0

Bq(k)

 (4.59)

where
∑′

k indicates the sum over k such that

∑
m

km ≥ K. (4.60)

Here Bq(k) is given by

Bq(k) =

′′∑
{q′m}

∏
m′


 k′m − δm,m′

qm′

 Ŝ
qm′
m′

(
1− Ŝm′

)k′m−δm,m′−qm′

 , (4.61)
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where
∑′′

{q′m} indicates the sum {q′m} such that

′∑
m

q′m = q. (4.62)

The order parameters R and R̂, denoting the fraction of nodes and hyperedges in the

giant component respectively, are given by

R̂ = p[H]

[
1−

∑
m

P̂ (m) (1− Sm)m
]
,

R = p[N ]

1− ′∑
k

P (k)
K−1∑
q=0

Dq

 (4.63)

where Dq is given by

Dq =
′′∑

{qm′}

∏
m′


 k′m

qm′

 Ŝ
qm′
m′

(
1− Ŝm′

)k′m−qm′

 . (4.64)

The node K-core percolation on multiplex hypergraphs will reduce to standard K-

core percolation if the multiplex hypergraph is formed by a single-layer hypergraph

containing exclusively hyperedges with cardinality m2 (simple network). For K-core

percolation on pairwise networks [112, 113], it is known that the phase transition be-

comes discontinuous and hybrid as long as K > 2. Here for node K-core percolation

on multiplex hypergraphs, we observe similar phenomena provided that the hyperdegree

distribution has a finite second moment (see Figure 4.12).

4.6.4 Hyperedge K-core percolation

Similar to the node K-core percolation, we can define the K-core percolation on hyper-

edges. In this case, a hyperedge is active only if at least K nodes belonging to it are also

active. In other words, it describes the physical scenario in which a node is active only if

a critical number of nodes belonging to the same hyperedge is active, thus it can describe
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Figure 4.12: The fraction R of active nodes for the node K-core percolation
on duplex hypergraphs with independent Poisson layers is shown
versus the probability of retaining a hyperedge p[H] = p. The du-
plex hypergraph includes N = 104 nodes and has layers formed
by hyperedges of cardinality m1 = 4 and m2 = 5 with indepen-
dent Poisson generalized hyperdegree distributions with average
z4 = z5 = 2. Here p[N ] is fixed to the constant value p[N ] = 1.
The node K-core percolation is discontinuous for K > 2.

another variation of contagion models or threshold models [167, 168]. The probability

Ŝm that starting from a node we reach a m-hyperedge that is active and the probability

Sm that starting from a m-hyperedge we reach a node that is active are given by

Ŝm =

 p[H]
[
1−

∑K−2
q=0 B̂q(m)

]
for m ⩾ K

0 for m < K
,

Sm = p[N ]

[
1−

∑
k

km
⟨km⟩

P (k)
∏
m′

(
1− Ŝm′

)km′−δm,m′
]
, (4.65)
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where Bq(m) can be expressed as

B̂q(m) =

 m− 1

q

 (Sm)q (1− Sm)m−1−q . (4.66)

Similarly, the order parameters R and R̂ denoting the fraction of node and hyperedge

that are in the giant component as

R̂ = p[H]
∑
m⩾K

P̂ (m)

1− K−1∑
q=0

 m− 1

q

Sq
m (1− Sm)m−q


R = p[N ]

[
1−

∑
k

P (k)
∏
m′

(
1− Ŝm′

)km′
]
. (4.67)

For hyperedge K-core percolation, we observe that the percolation transition is dis-

continuous and hybrid as long as K > 2 provided that the distribution of hyperedge

cardinality P̂ (m) has a finite second moment, which is consistent with the K-core per-

colation on pairwise networks [112, 113]. (see Figure 4.13)

4.7 Conclusion

In this chapter, we propose a random multiplex hypergraph model on which we investi-

gate standard and higher-order percolation processes. Random multiplex networks are

a natural generalization of random hypergraphs as the hyperedges of different cardinal-

ity are associated with different layers of the multiplex. This comprehensive framework

allows for exploring the rich interplay between the topology of the hypergraphs and prop-

erties of standard and higher-order percolation defined on these topological structures.

Moreover, thanks to the multilayer structure, we can explore the effects of interlayer

correlation on the critical properties of standard and higher-order percolation. In partic-

ular, we show that for standard percolation processes, close to the percolation transition,

positive correlations increase the robustness of the hypergraph while when the damage

is minor, negative correlations can enhance the network robustness. On the other hand,
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Figure 4.13: The fraction R of active nodes for the hyperedge K-core perco-
lation on duplex hypergraphs with independent Poisson layers is
shown versus the probability of retaining a hyperedge p[H] = p.
The duplex hypergraph includes N = 104 nodes and has layers
formed by hyperedges of cardinality m1 = 4 and m2 = 5 with
independent Poisson generalized hyperdegree distributions with
average z4 = z5 = 2. Here p[N ] is fixed to the constant value
p[N ] = 1. The transition is discontinuous for K > 2.

for node interdependent percolation, positive correlations always increase the robustness

of the hypergraph despite the level of damage to the hypergraph. Moreover, we have

formulated two higher-order percolation models that generalize the contagion model on

hypergraphs and interdependent percolation on multiplex networks (node interdepen-

dent percolation, hyperedge interdependent percolation) and two higher-order percola-

tion models that generalize the K-core percolation on networks. These models display

a rich phenomenology including discontinuous hybrid transition, tricritical points, and

multiple phase transitions.

In this chapter, we have provided a comprehensive view of the possible higher-order
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percolation processes on random multiplex hypergraphs, nevertheless, the processes in-

vestigated in this chapter do not exhaustively cover all relevant percolation processes

that can be defined on these structures. We hope that this work can generate further

interest in the interplay between the topological structure of higher-order networks and

the dynamical processes defined on them. The critical properties of percolation pro-

cesses defined on multiplex hypergraphs can provide new insights for the study of other

dynamical processes such as epidemic spreading and social contagion.
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Chapter 5

Higher-order network model of

epidemic spreading

Mathematical models of epidemics have played a significant role in pandemic control and

public health efforts. However, most of these models fail to capture the complexity of

real-world scenarios due to two defects. Firstly, they neglect the higher-order structure of

infections, which is a characteristic feature of transmission through environments such as

workplaces, restaurants, and households. Secondly, they assume a linear relationship be-

tween exposure to infected contacts and the risk of infection. In this chapter, we propose

a higher-order epidemic spreading model that overcomes the defects above, and consid-

ers the heterogeneity of environment and individual participation in these environments.

We show that the heterogeneous exposure to the infected contacts and the concept of

minimal infective dose induces a universal nonlinear relationship between the exposure

and infection risk. With nonlinear infection kernels, the epidemic spreading processes

display discontinuous transitions, super-exponential spread, and hysteresis. The results

presented in this chapter are published in [78].
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5.1 Introduction

Epidemic spreading models are playing an increasingly important role in modern society

[169]. Numerous theoretical models have been proposed to characterize the mechanism of

the spreading dynamic from various perspectives [170]. However, large-scale forecasting

comparisons show that statistical models often outperform mechanistic models that make

assumptions about the dynamic [171]. This suggests that there are potential defects in

the assumptions used by these mechanistic models.

In this chapter, we examine the two commonly used assumptions in the models: The

random mixing assumption and the linearity between infection risk and exposures to

infected individuals. While it is mathematically convenient to assume random mixing

in models of infectious diseases, this approach treats all contacts between susceptible

and infectious individuals as effectively equivalent. There are various models that lift

this assumption by introducing heterogeneity among individuals. For instance, in Ref.

[172, 173], individuals are distinguished by features such as their intrinsic susceptibility

or reaction to the infections, or in Ref. [8, 174], the underlying contact networks in-

cluding the heterogeneity are specified. However, almost all disease models rely on the

assumption of linearity. Doubling the number of contacts between susceptible and infec-

tious individuals doubles the risk of infection for the susceptible individuals. There are

few works in mathematical biology that consider the non-linear infection rates [175, 176]

but rarely used in practice. In other fields such as sociology, complex contagions that in-

troduce the non-linear relationship between infection rate and sources of infection allow

the model to consider mechanisms such as social reinforcement, i.e., multiple exposures

can have more impact than the mere sum of unique exposures.

In addition, the linearity assumption implies that all increments in total exposure

to infectious individuals are equivalent, which contradicts evidence from immunology.

The concept of minimal infective dose indicates that not all exposures are equal and a

minimal dose is required for an infection to occur. More precisely, the ID50 value is a

measure of the dose needed to cause an infection in 50% of individuals. This concept is
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needed since our immune system is usually able to handle microscopic challenges posed

by pathogens. While an infective dose of tuberculosis might only require between 1

and 5 bacteria [177], some enterics might require up to 109 pathogenic particles [178],

and others like common respiratory infections still require further study [179]. There are

indeed multiple different physical mechanisms behind immune evasion, for example, some

airborne viruses need to find their receptors on lung epithelial cells, while some bacteria

might instead require interaction with the immune system [180]. These mechanisms are

reviewed in Refs. [180–184] , and all of them combine to determine the ID50 of specific

pathogens. Likewise, the decay or clearing rates of pathogens in non-infectious courses

can also vary a lot, potentially requiring days for bacteria to hours for airborne viral

infections. For example, mathematical models for the pathogenesis of SARS-CoV-2 or

influenza A use decay rates of the order of 7-18 hours but empirical estimates vary wildly

(see Refs. [185] and [186]).

In order to study the effect of simultaneously relaxing these two assumptions, we

consider a social structure where individuals attend a certain number of environments

such as workplaces, gyms, or supermarkets. This division of contact structure in environ-

ments is motivated by the known role of superspreading events, which are for example

critical to the spreading of COVID-19 [187–194]. While variations at the individual level

are often used to explain superspreading [195], we focus here on the variability of envi-

ronments and of temporal patterns [51, 160, 196–200] at group level, which undoubtedly

affects epidemics [189], especially when a certain exposure within a certain time window

is needed to confidently spark an infection. Interestingly, available case data highlight

how there is no expected size or duration for such events. Transmission is highly context-

dependent on the settings (for instance, ventilation) and activity (for instance, singing

and shouting) such that the resulting superspreading events are heterogeneous in size,

duration and attack rate, as shown in Figure 5.1(a). Higher-order contact structures and

heterogeneous temporal patterns are therefore key ingredients for more realistic models

of spreading dynamics.
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Figure 5.1: Modeling contagions and superspreading events through higher-
order networks. (a) Scatter plot of superspreading events of
COVID-19 where the number of people involved (size), the dura-
tion of the event, and the resulting proportion of infected individ-
uals (attack rate) are all available (extracted from Refs. [201, 202].
(b)-(c) Framework for contagions on hypergraphs [203], where the
size m of the hyperedges (environment), the hyperdegree k of the
nodes (individuals), and the participation time to the environment
τ are all heterogeneous, distributed according to P̂ (m), P̃ (k), and
P (τ) respectively. For the sake of simplicity, we assume the same
distribution P (τ) for all environments. (b) At each time step t,
an individual participates for a time τ (drawn independently) to
each environment. (c) An individual gets infected with probability
θm(ρ) in the environment at time step t, which depends on the size
m and the fraction infected ρ.

Mathematically, the structure of higher-order contact is encoded in a hypergraph

[75, 204, 205]. Environments are described by hyperedges and we denote the cardinality

of a hyperedge m, indicating that the hyperedge contains m individuals. The hyperde-

gree of a node is denoted as k, representing the node incident to k hyperedges. Here we

consider all hyperedges of the same cardinality m to be equivalent. To model the het-

erogeneous temporal patterns, we consider a discrete-time process, where at each time

step t = 1, 2, · · · , we draw for each individual a participation time τ ∈ [1, τmax] for each

environment to which they are connected (see Figure 5.1(b)). The time steps correspond

to fixed temporal windows of size τmax, during which susceptible individuals can get

infected through their participation in environments.

We first study the impact of the spatiotemporal co-location patterns on the infection
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kernel θm(ρ), i.e., the probability of getting infected in an environment of size m when

a fraction ρ of the other participants are infected (see Figure 5.1(b)). We then analyze

the properties of the resulting contagion process.

5.2 Universal infection kernel from heterogeneous expo-

sure

Let us consider a susceptible individual participating in an environment of size m for a

duration τ ∈ [0, τmax], where a fraction ρ of the other participants are infected. During

this exposure period, the susceptible individual might receive an infective dose from

other infected individuals and here we assume the infective dose received takes the value

κ ∈ [0,∞] distributed according to π(κ;λ) where λ ≡ ⟨κ⟩ representing the average of the

dose distribution. A reasonable assumption is that the mean dose received is proportional

to the time spent in the environment and to the proportion of infectious people, i.e.,

λ = βf(m)τρ, (5.1)

where β is a rate of dose accumulation and f(m), unitless, modulates the typical number

of contacts in environments frequented by m individuals. We further assume that the

random variable for the dose can be written as κ = λu, where u is a random variable

that is independent of λ. In this case, u can be regarded as an intrinsic property of the

contagion process– determined by rates of viral shedding, diffusion in the environment,

variability of human interactions, etc, while λ acts as a scale parameter, i.e.,

π(κ;λ) = π(k/λ; 1) ≡ π(k/λ)λ. (5.2)

To incorporate the concept of minimal infective dose, we assume that an individual

is infected if the dose received κ > K, a perspective analogous to standard threshold

models [206–208] and related to the assumption that successful host invasion necessitates
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multiple attempts by the pathogen [209]. The probability of getting infected in the

environment is therefore

Π̄(K/λ) =

∫ ∞

K/λ
π(κ)dκ. (5.3)

Thus the infection kernel θm(ρ) is calculated as the average of π(κ;λ) over the dis-

tribution of participation duration P (τ). Note that here for our dose mechanism to be

well defined, we can only average over participation times τ ∈ [1, T ] where T ≤ τmax is

the clearing window, i.e., the characteristic time for the immune system to remove any

dose κ < K. Due to the threshold K, the characteristic time τc of getting infected in

the environment is obtained when

K = ⟨κ⟩ = βf(m)ρτc, i.e., τc =
K

βf(m)ρ
. (5.4)

If we assume that the clearing window is sufficiently large compared to the characteristic

time τc, the events where τ ≥ T can be neglected as they do not contribute significantly

to the infection kernel.

Here we focus on the case of heterogeneous exposure, where the distribution of par-

ticipation time P (τ) is described by a power-law distribution

P (τ) = Cατ
−α−1 (5.5)

where Cα is the normalization constant, α > 0 and τ ∈ [1, τmax]. Therefore the infection

kernel θm(ρ) reads

θm(ρ) =

∫ T

1
Π̄(τc/τ)P (τ)dτ

=
Cα

α

[
Π̄(τc)− Π̄(τc/T )T −α + τ−α

c

∫ τc

τc/T
π(y)yαdy

]
. (5.6)

When 1 ≪ τc ≪ T and π(y) decreases faster than y−α−1, then the integral on the right
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converges to a constant, the term in T −α can be neglected, and Π̄(τc) ≪ τ−α
c , which

implies

θm(ρ) ∼ Dατ
−α
c ∝ ρα, (5.7)

where Dα is a constant. The form of infection kernel is universal and driven by temporal

patterns, and it does not depend on the value of K (given K > 0) or on the particular

form of π. We illustrate it in Figure 5.2(a) using an exponential for the dose distribution

π(k;λ).

In fact, as long as P (τ) is asymptotically power-law for large τ , we can still obtain

a universal infection kernel θm(ρ) ∝ ρν in most cases but ν is not always directly equal

to α. In the following discussion, we limit our discussion to the power-law distributed

participation time P (τ).

5.3 Epidemic spreading with nonlinear infection kernel

Now we consider the dynamic of epidemic spreading on hypergraphs with nonlinear in-

fection kernel. To simplify the mathematical analysis, we consider a discrete Susceptible-

Infective-Susceptible (SIS) model. At each time step, infected individuals recover with

probability µ while susceptible nodes are infected with probability θm(ρ) via hyperedges

with cardinality m. Here we assume the probability of infection through each hyperedge

that a node belongs to is independent. This assumption indicates that the infective dose

cannot accumulate across multiple environments. For instance, if T is of the magnitude

of a few hours, and an individual participates in an environment once a day, the night

allows the immune system to clear any dose κ < K accumulated the day before.

In order to obtain analytical results, we consider an annealed infinite random hy-

pergraph [76] of hyperdegree distribution P̃ (k) and cardinality distribution P̂ (m). By

annealed we mean that at each time step, the connections between nodes and hyper-

edges are reshuffled. With the mean-field approximation, the probability of a node being
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infected at time t only depends on its hyperdegree k, which is denoted as ρk(t). The

global prevalence is hence expressed as

I(t) =
∑
k

ρk(t)P̃ (k) (5.8)

and the SIS-dynamic reads

ρk(t+ 1) = (1− µ)ρk(t) + [1− ρk(t)] Θk(ρ̄). (5.9)

where

Θk(ρ̄) = 1−
[
1− θ̄(ρ̄)

]k
(5.10)

denoting the probability for a susceptible node of hyperdegree k to be infected. ρ̄(t) is

the probability that a node belonging to any hyperedge is infected and θ̄(ρ̄) indicates

the probability for a susceptible node to get infected in any hyperedge, i.e.,

ρ̄(t) =
∑
k

kP̃ (k)

⟨k⟩
ρk(t) and θ̄(ρ̄) =

∑
m

mP̂ (m)

⟨m⟩
θ̄m(ρ̄) (5.11)

where θ̄m(ρ̄) is the probability for a node being infected in a hyperedge of cardinality

m. Due to the annealed structure, all the hyperedges with the same cardinality are

equivalent, thus θ̄m(ρ̄) is simply the average of θm(ρ) defined in Eq. 5.6 with ρ = i/(m−1)

over a binomial distribution:

θ̄m(ρ̄) =

m−1∑
i=1

 m− 1

i

 ρ̄i(1− ρ̄)m−1−iθm

(
i

m− 1

)
. (5.12)

The SIS dynamic reaches a steady state when

ρ∗k = (1− µ)ρ∗k + [1− ρ∗k] Θk(ρ̄
∗). (5.13)
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thus

ρ∗k =
Θk(ρ̄

∗)
Θk(ρ̄∗) + µ

. (5.14)

ρ̄∗ is associated with ρk
∗ via Eq. 5.11:

ρ̄∗ =
∑
k

kP̃ (k)

⟨k⟩
ρ∗k =

∑
k

kP̃ (k)

⟨k⟩
Θk(ρ̄

∗)
Θk(ρ̄∗) + µ

≡ G(ρ̄∗) (5.15)

5.4 Results

For contagions with a nonlinear infection kernel, the phase transition associated with the

order parameter, i.e., the global prevalence I∗ can be either continuous or discontinuous

with a bistable regime. Here, let us define the invasion threshold βc such that for all

β > βc, the absorbing state I∗ = 0 is unstable. Let us also define the persistence

threshold βp such that for all β < βp, the absorbing state I∗ = 0 is globally attractive.

For continuous phase transition, βc = βp, and is called the epidemic threshold; while for

a discontinuous phase transition, βp < βc, and for all β ∈ (βp, βc), there exists typically

three solutions, i.e., I∗1 = 0 and I∗2 , I∗3 > 0, with I∗1 and I∗3 locally stable.

The invasion threshold βc can be found by imposing G′(0) = 1, while the persistence

threshold βp is obtained by imposing

ρ̄∗ = G(ρ̄∗) and G′(ρ̄∗) = 1. (5.16)

Finally, any tricritical point can be found by imposing

G′(0) = 1 and G′′(0) = 0. (5.17)

Let us derive the exact expression for the invasion threshold βc. The derivative of G(ρ̄∗)
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Figure 5.2: Properties of contagions with nonlinear infection kernels induced
by heterogenous exposure. We use an exponential dose distribu-
tion π(κ;λ) ∝ e−κ/λ with a power-law distribution of participation
time P (τ) ∝ τ−α−1, a clearing window T → ∞, and f(m) = 1.
(a) Effective infection kernel using β = 0.1. The infection proba-
bility has a power law scaling θm(ρ) ∝ ρα. (b)-(c) We use Poisson
distributions for both P̃ (k) and P̂ (m), with ⟨k⟩ = 5 and ⟨m⟩ = 10,
and set µ = 0.05. We use Eqs. (5.9-5.11) to evolve the system. (b)
Supra-linear kernels α > 1 lead to a super-exponential growth for
the global prevalence I(t). We use β = 5 × 10−4, β = 0.025 and
β = 0.077 for α = 0.5, α = 1 and α = 1.5 respectively. τ̄ is the me-
dian exposure period. (c) The phase diagram for stable solutions
in the stationary state (t → ∞) can be continuous or discontin-
uous with a bistable regime. Sub-linear and linear kernels α ≤ 1
lead to a continuous phase transition, and the invasion threshold
βc vanishes for α → 0. Supra-linear kernels α > 1 can lead to a
discontinuous phase transition with a bistable regime.

defined in Eq. 5.3 reads

G′(ρ̄∗) =
∑
k

kP̃ (k)

⟨k⟩

[
Θ′

k(ρ̄
∗)

µ+Θk(ρ̄∗)
−

Θk(ρ̄
∗)Θ′

k(ρ̄
∗)

(Θk(ρ̄∗) + µ)2

]
. (5.18)

where

Θ′
k(ρ̄

∗) =
∂

∂ρ̄∗

{
1−

[
1− θ̄(ρ̄∗)

]k}
= k

[
1− θ̄(ρ̄∗)k−1

]∑
m

mP̂ (m)

⟨m⟩
θ̄′m(ρ̄∗) (5.19)

and

θ̄′m(ρ̄∗) =
m−1∑
i=1

 m− 1

i

 θm(
i

m− 1
)
[
iρ̄∗i−1(1− ρ̄∗)m−1−i − (m− 1− i)ρ̄∗m−2−iρ̄∗i

]
.(5.20)
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When ρ̄∗ = 0, we have θ(ρ̄)∗ = 0 and Θk(ρ̄
∗) = 0, thus

Θ′
k(0) = kθ̄′(0),

θ̄′(0) =
1

⟨m⟩
⟨mθ′m(0)⟩,

θ̄′m(0) = (m− 1)θm

(
1

m− 1

)
(5.21)

At invasion threshold βc

G′(0) =
⟨k2⟩θ̄′(0)
µ⟨k⟩

=
⟨k2⟩⟨m(m− 1)θm( 1

m−1)⟩
µ⟨k⟩⟨m⟩

= 1. (5.22)

Recall Eq. 5.7 and the characteristic time of getting infected in the environment τc ≡

K/βf(m)ρ, hence the infection kernel reads

θm(ρ) ∼ Dα

(
K

βf(m)ρ

)−α

. (5.23)

Thus, the invasion threshold βc reads

βc ∝
(

µ⟨m⟩⟨k⟩
⟨m(m− 1)1−α[f(m)]α⟩

⟨k2⟩
)1/α

. (5.24)

In analogy to the calculation above, the tricritical point (αt, βt) and persistence threshold

βp can be obtained numerically. However, we can get some insights for minimal kernel

exponent αt leading to a discontinuous phase transition from an asymptotic expansion.

At tricritical point (αt, βt),

G′(0) = 1 and G′′(0) = 0 (5.25)
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where G′(0) is given by Eq. 5.22 and G′′(0) reads

G′′(0) =
1

⟨k⟩

〈
kΘ′′

k(0)

µ
−

2k [Θ′
k(0)]

2

µ2

〉

=
1

µ⟨k⟩

{〈
k2
〉
θ̄′′(0)−

(〈
k2(k − 1)

〉
+

2
〈
k3
〉

µ

)[
θ̄′(0)

]2}
. (5.26)

and

θ̄′′(0) =
1

⟨m⟩
⟨mθ′′m(0)⟩,

θ̄′′m(0) = (m− 1)(m− 2)

[
θm

(
2

m− 1

)
− 2θm

(
1

m− 1

)]
(5.27)

From Eq. 5.22 we know that at tricritical point (αt, βt)

θ̄′(0) =
µ⟨k⟩
⟨k2⟩

, (5.28)

Thus Eq. 5.26 reduces to

G′′(0) =
1

µ⟨k⟩

{〈
k2
〉
θ̄′′(0)−

(〈
k2(k − 1)

〉
+

2
〈
k3
〉

µ

)
µ2⟨k⟩2

⟨k2⟩2

}
. (5.29)

Meanwhile, inserting the asymptotic approximation Eq. 5.23 into Eq. 5.27 we obtain

θ̄′′(0) ∝ βα

⟨m⟩
〈
m(m− 1)1−α(m− 2)[f(m)]α (2α − 2)

〉
. (5.30)

Note that at the tricritical point, β = βc, which is given by Eq. 5.24, hence Eq. 5.30

further reduces to

θ̄′′(0) ∝ µ
⟨k⟩
⟨k2⟩

〈
m(m− 1)1−α(m− 2)[f(m)]α (2α − 2)

〉
⟨m(m− 1)1−α [f(m)]α⟩

. (5.31)

We get three insights from Eqs. 5.26 and 5.31.

1. The condition α > 1 is necessary to have a tricritical point, but not sufficient: it

depends on the first three moments of P̃ (k), and in a more complicated manner
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on the distribution P̂ (m).

2. It is necessary to have P̂ (m) > 0 for at least one value m > 2, i.e., environments

of size m = 2 cannot lead to a discontinuous phase transition.

3. A more heterogeneous P̃ (k) will typically require a larger α to reach a tricritical

point. Indeed, if we keep ⟨k⟩ fixed, but increase the value for the second and third

moments (using a broader distribution for instance), the negative term on the right

in Eq. 5.26 increases, while the positive term is invariant.

5.5 Conclusion

Our framework captures many properties that are usually overlooked for the sake of

simplicity in epidemic models: the higher-order structure of contacts, the temporal het-

erogeneity of human activity, and threshold effects over the exposure due to the host

immune system. In particular, we recover a universal nonlinear infection kernel that

provides a connection between complex contagions based on nonlinear infection kernels

[210] and threshold models [206–208].

Our results challenge a key assumption of most epidemic models: Why assume a

linear relationship between the number of infectious contacts and the risk of infection?

This question is critical since three of the basic insights gathered from epidemic models

break down under nonlinear infection kernels: they can lead to a discontinuous rela-

tionship between disease transmissibility and epidemic size, to a bistable regime where

macroscopic outbreak and disease-free state co-exist, and to a super-exponential growth.

In fact, the super-exponential spread has been observed for influenza-like illness [211].

The phenomenology being drastically different from standard epidemiological models

induces the following question: Why do linear models work? Even for a nonlinear kernel

θm(ρ), the probability of infection θ̄m(ρ̄) (given by Eq. 5.12) is linear in ρ̄ if ρ̄ ≪ 1.

Therefore, linear models are a good approximation when the prevalence is sufficiently

low, but it breaks down at higher prevalence, for instance, as illustrated in Figure 5.2(b)
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when α = 1.5.

The mathematical framework we use to solve the SIS model depends on a mean-field

approximation, as in other studies [1, 3, 6, 212], thereby suppressing dynamic correla-

tions within hyperedges. Future works could investigate more thoroughly the interplay

between dynamical correlations, nonlinear kernels, and spatiotemporal heterogeneity.

Moreover, although we considered the SIS model to simplify the analysis, the universal

infection kernel θm(ρ) ∝ ρα could be directly integrated into other models such as SEIR

or SIRS models.

Altogether, our conclusions stress the need to embrace heterogeneity in disease mod-

eling; in the infection dynamics itself, in patterns of temporal activity, and in the higher-

order structure of contact networks. Epidemics should be seen as the result of a collective

process, where higher-order structure and temporal patterns can drive complex dynam-

ics.
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Chapter 6

Mitigation of epidemic spreading

with mobile apps

In this chapter, we consider a stylised SIR-like model for the epidemic spreading under

interventions, namely automated contact-and-tracing with mobile apps and isolation,

which has been widely used during the COVID-19 pandemic. With the help of percola-

tion theory and the powerful message-passing approach, we are able to analyze how this

containment measure can affect the epidemic-spreading process and the critical thresh-

old of a massive outbreak. Moreover, we propose optimal strategies for distributing

the contact-and-tracing app under limited resources available. Despite various empirical

studies of the contact tracing app [213–215] have been published recently, the present

model is one of the first theoretical studies on the subject. In this chapter, we do not

intend to apply this framework to real-world problems, however, this work might be in-

sightful to study the role of contact-and-tracing in real pandemics. The results presented

in this chapter are published in [138].
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6.1 Introduction

With the hit of new pandemic threats, scientific frameworks are needed to understand

the unfolding of epidemic spreading. The recent outbreak of the COVID-19 pandemic

has displayed some new features and requires new tools to control the spread. Due

to the asymptomatic transmission, only isolating infected individuals with symptoms

is insufficient to mitigate the pandemic. Thus, digital contact-and-tracing with mobile

apps has been extensively used in some countries to control new infections and contain

further propagation, as the traditional manual contact tracing is infeasible due to the fast

transmission. The basic mechanism behind contact-and-tracing with mobile apps is as

follows. Within a population that has adopted the tracing app, infected individuals can

upload their infectious status on the app when they are diagnosed. The app will send this

message to individuals who have adopted the app and have been in close contact with

this infected individual. These people will isolate themselves immediately to prevent the

further propagation due to the asymptomatic infection.

In order to obtain some theoretical insights about the above-mentioned process, the

traditional SIR model is insufficient, and a new theoretical framework for understanding

the epidemic processes in presence of contact tracing is therefore needed. In the past

years, a large variety of epidemiological models have been proposed, with different flavors

of complexity, while arguably the most popular one would be the SIR model, which allows

to find analytical expressions for the epidemic threshold in several scenarios. Although

these results might be only an approximation of observed features in real epidemics, they

still constitute a fundamental theoretical cornerstone in the field of epidemic processes.

Meanwhile, the SIR model can be mapped to a link percolation problem [7, 8] and the

percolation theory provides a simple mathematical framework that naturally applies to

critical diffusion (such as epidemic spreading in heterogeneous structures). Therefore,

a percolation theory based framework seems to be a natural option to understand the

epidemic spreading process with digital contact and tracing.

Recently, there have been several studies [213–215] investigating the effectiveness of
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contact-and-tracing policies as a measure to contain epidemic spreading from different

perspectives. In Ref. [214], Ferretti et al. propose a mathematical model to estimate

the basic reproductive number using real epidemic data and explore the feasibility of

controlling the epidemic with a digital contact tracing approach. They reveal that the

use of a contact-tracing app with immediate notification to contacts of positive cases

would be sufficient to stop the epidemic if used by enough people. In Ref. [213], the

authors discuss the effectiveness of the contact tracing approach under the different

ratios of asymptomatic transmissions and find that contact tracing is effective only for

intermediate level of asymptomatic infection and the impact of contact tracing depends

on the efficacy of reporting and isolation of the symptomatic cases.

There are several mathematical arguments proposed in the literature to justify the

above-mentioned effect. For instance, in [215] a simple generating function argument is

proposed in order to compute the probability that contact tracing stops the epidemic

propagation, however, a solid percolation approach that is able to capture analytically

the impact of a tracing app on the non-linear aspect of epidemic spreading has not been

proposed so far. In [138], we take a step forward in filling this gap by proposing a stylized

model for epidemic spreading with contact-and-tracing and testing policies based on link

percolation.

Here we propose a modified version of the Message-passing (MP) equation to capture

the dynamic of the epidemic-spreading process with contact-and-tracing and isolation.

We derive different MP equations that are able to predict the epidemic spreading de-

pending on the level of information available about the structure of the network and the

user adoption of the app [49]. The theoretical predictions are validated by comparing

them with extensive Monte Carlo simulations. Our results show that in general the more

the app is adopted by the population, the higher the value of the critical threshold pc.

Furthermore, we study different allocation strategies to mitigate the epidemic spreading

given a fixed app coverage on a random network ensemble. We find that the optimal

strategy which maximizes pc is the hub-targeting strategy. By applying the message-
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passing algorithm to real networks we also show that this strategy gives excellent results

compared with other state-of-the-art ranking algorithms for the centrality of nodes in

epidemic spreading.

6.2 Model description

Consider a contact network G(V,E) formed by |V | = N individuals i = 1, 2, 3, · · · , N

and the set of edges E among them. Each individual i is assigned a binary variable

Ti, indicating if the individual has the mobile app for contact-and-tracing (Ti = 1)

or not (Ti = 0). We formulate the spreading process based on the following rationale.

Infected individuals transmit the virus to a susceptible neighbor with probability p, called

transmissibility. Under an ideal assumption (with might be far from reality, but helps

simplify the analysis), an individual who has the app, will know almost instantaneously

if he/she has been contacted by an infected individual who also has the app, and he/she

will self-isolate immediately to prevent the further propagation of the virus. However,

if the infection comes from someone who does not have the app, he/she will only know

until the symptom shows, thus he/she can still spread the virus during the asymptomatic

period. In other words, individuals with the app (Ti = 1) can infect only if previously

infected by individuals without the app (Ti = 0), while individuals without the app can

infect regardless of the Ti value of the individual that has infected them (see Figure

6.1). Now, we propose a stochastic infection model as follows: for every link (i, j) we

draw a random variable xij ∈ {0, 1} indicating whether the eventual contact between one

infected and one susceptible node, found at the two ends of the link, leads to the infection.

We parametrize this dynamic by taking ⟨xij⟩ = p, where p indicates the transmissibility

of the epidemic. The stationary state of this spreading process on any network topology

can be simulated with the following Monte Carlo algorithm, thanks to the mapping

between the spreading process and percolation theory. We will show in the following,

how to implement the Monte Carlo algorithm to simulate the phase diagram and the

critical threshold, and more importantly, we will show the message-passing approach to
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Figure 6.1: Sketch of the infection pathways that leads to the epidemic spread-
ing in a population in which there are individuals that have
adopted the app and individual that have not adopted the app.

the model proposed above.

6.3 Monte Carlo simulation

In order to find which are the nodes infected in the epidemic outbreak, we adopt the

following algorithm that takes advantage of the mapping of the stationary state of the

epidemic to percolation. Firstly, we notice that the virus cannot propagate via a T-T

link. By T-T link we refer to the links connecting two individuals that both have adopted

the app. Therefore initially we remove all T-T links from the network. In practice, we

associate to each link (i, j) a variable yij ∈ {0, 1} defined as

yij = xij(1− TiTj), (6.1)

indicating whether the link contributes or not to the spread of the disease in the network.

Note that although the virus cannot be transmitted via a T-T link, both nodes at the

end of a T-T link still can be infected by other neighbors.

Secondly, using the mapping between epidemic spreading and link percolation, we

find the nodes in the giant component of the resulting percolation problem. In practice,

we assign to each node an indicator variable mi ∈ {0, 1} indicating if node i belongs or
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not to the giant component of the network with links according to the indicator function

yij . The nodes in the giant component are those who are infected by a chain of contacts,

in which we can never find two consecutive infected nodes with the app (as all the T-T

links have been removed).

Finally, we calculate the fraction of infected individuals. We need to sum not only all

the nodes in the giant component which is indicated by mi = 1, but also the nodes with

the app infected by nodes with the app. Here we define the indicator σi which indicates

if a node i is infected (σi = 1) or not (σi = 0). The value of σi is calculated by

σi = mi + (1−mi)

1−
∏

i∈N(i)

(1−mjTjTixij)

 . (6.2)

The second term of Eq. 6.2 means that a node i which is not in the giant component can

also be infected if, for at least one of its neighbor j, (1) node j is in the giant component;

(2) both node i and j have adopted the app; (3) an infection has taken place between i

and j.

6.4 Message passing approach

To analytically predict the propagation of the epidemic on a network, we use the powerful

MP approach [49, 140]. This approach is well-known to be very robust in the case of

real-world networks with loops [142], as long as the underlying MP converges, while the

approach is proven to give exact results only on locally tree-like networks. In this work,

we adopt the MP approach and we use it to predict the phase diagram of the spreading

process on network ensembles as a function of the level of adoption of the app in the

population.
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6.4.1 MP algorithm when the microscope structure of the infection is

known

The considered spreading model is stochastic and has different sources of randomness

that can be taken into account by different MP algorithms in which we average different

levels of information [49]. The simplest case of MP algorithm is the original stochastic

infection model proposed in Sec. 2.3. In this case, we know everything about the

spreading dynamics. This would entail first knowing the contact network, secondly

knowing which individuals have the app, i.e., the configuration {Ti}i∈V , and finally

knowing which links have led to an actual infection, i.e., {xij}(i,j)∈E . In this case, we

can derive the message-passing equation based on the following rationale. We denote

σ̃i→j = 1 if the node i spreads the virus to node j and σ̃i→j = 0 otherwise. If node i has

the app, i.e., Ti = 1, the node i can spread the virus to node j only in the case when (1)

node i has been infected by at least one neighbor node without the app and (2) the link

between node i and j that lead to the actual infection exists, i.e., xij = 1. If the node i

does not have the app (Ti = 0), on the other hand, the infection from node i to j will

happen if node i (1) is infected by at least one neighbor node (despite if the nodes have

the app or not) and (2) xij = 1. Now the message-passing algorithm reads

σ̃i→j = xijTi

1− ∏
ℓ∈N(i)\j

(1− (1− Tℓ)σ̃ℓ→i)

+ xij(1− Ti)

1− ∏
ℓ∈N(i)\j

(1− σ̃ℓ→i)

 ,

(6.3)

where N(i) denotes the set of neighbors of node i. Moreover, the quantity σ̃i which

indicates if the node i is infected (σ̃i = 1) or not (σ̃i = 0) is given by

σ̃i =

1− ∏
ℓ∈N(i)

(1− σ̃ℓ→i)

 . (6.4)

and the fraction of nodes infected, i.e., the size of the outbreak is given by

S =
1

N

N∑
i=1

σ̃i. (6.5)
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The epidemic threshold is determined by

Λ(B) = 1 (6.6)

where Λ(B) is the leading eigenvalue of the modified non-backtracking matrix B of ele-

ments

Bℓi→ij = xij(1− TiTℓ)Aℓi→ij (6.7)

with A defined in terms of the adjacency matrix of network a as

Aℓi→ij = aℓiaij(1− δℓj) (6.8)

where δℓj is the Kronecker delta.

6.4.2 MP algorithm when only the transmissibility of the disease is

known

In the case in which we only know the transmissibility of the disease p = ⟨xij⟩, the algo-

rithm above should be modified. In this case, the messages have real values σi→j ∈ [0, 1],

which indicate the probability that node i infects node j. The modified messages can be

obtained by averaging over all the configurations of {xij}(i,j)∈E [49]. The probability of

having a given configuration of {xij}(i,j)∈E is given by

P ({xij}) =
∏

(i,j)∈E
pxij (1− p)1−xij (6.9)

and the average messages read:

σi→j =
∑
{xij}

P ({xij})σ̃i→j (6.10)
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Using the definitions above, one can write the averaged message-passing equation as

σi→j = pTi

1− ∏
ℓ∈N(i)\j

(1− (1− Tℓ)σℓ→i)

+p(1−Ti)

1− ∏
ℓ∈N(i)\j

(1− σℓ→i)

 , (6.11)

and the averaged marginal probabilities σi read

σi =

1− ∏
ℓ∈N(i)

(1− σℓ→i)

 . (6.12)

The non-backtracking matrix reads

Bℓi→ij = p(1− TiTℓ)Aℓi→ij (6.13)

and the epidemic threshold p = pc is determined by Eq. 6.6. Here we note that Eq.

6.13 (as well as Eq. 6.7) clearly indicates that the epidemic threshold is dictated by

the non-backtracking matrix of the network where all the T-T links have been removed,

which is consistent with the above-mentioned Monte Carlo algorithm.

6.4.3 MP algorithm when only the adoption probability of the app is

known

In order to model different scenarios corresponding to different adoption patterns of the

mobile app, we might also assume that the configuration {Ti}i∈V is not known exactly.

A simple assumption can be that we will have access to the probability that a node adopt

the app, and the probability is a function of the degree of the nodes, i.e., ⟨Ti⟩ = T (ki)

with T (k) describing the probability that a node of degree k adopts the app. Although

in reality, the willingness to adopt the tracing app might be affected by many factors,

for instance, an additional social contagion process [216], here we use the minimum

assumption, without assuming any other information about the network, but using only

the intrinsic topological property of the network. Meanwhile, this minimum assumption

allows for deriving analytical calculations. For formulating the message passing algorithm
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in this case, we consider for every ordered pair of linked nodes (i, j) two messages

σ̂T
i→j = ⟨Tiσi→j⟩, σ̂N

i→j = ⟨(1− Ti)σi→j⟩, (6.14)

indicating the probability that node i infects node j given that node i has adopted

the app (σ̂T
i→j) or not (σ̂N

i→j). Then the message passing equation averaged over all

configurations {Ti}i∈V and {xij}(i,j)∈E reads

σ̂T
i→j = pT (ki)

1− ∏
ℓ∈N(i)\j

(1− σ̂N
ℓ→i)


σ̂N
i→j = p(1− T (ki))

1− ∏
ℓ∈N(i)\j

(1− σ̂N
ℓ→i − σ̂T

ℓ→i)

 , (6.15)

and the marginal probability that node i is infected σ̂i is given by

σ̂i =

1− ∏
ℓ∈N(i)

(
1− σ̂N

ℓ→i − σ̂T
ℓ→i

) . (6.16)

Now we use the method introduced in Sec. 2.3 to derive the critical threshold. By

linearizing the message passing equation Eq. 6.15 we obtain

σ̂T
i→j = pT (ki)

∑
ℓ∈N(i)\j

σ̂N
ℓ→i = pT (ki)

∑
ℓ∈N(i)

Aℓi→ij σ̂
N
ℓ→i,

σ̂N
i→j = p (1− T (ki))

∑
ℓ∈N(i)\j

(
σ̂N
ℓ→i + σ̂T

ℓ→i

)
= p(1− T (ki))

∑
ℓ∈N(i)

Aℓi→ij(σ̂
N
ℓ→i + σ̂T

ℓ→i). (6.17)
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Combining the two equations above, we have

σ̂N
i→j = p(1− T (ki))

∑
ℓ∈N(i)

Aℓi→ij (6.18)

×

σ̂N
ℓ→i + pT (kℓ)

∑
ℓ′∈N(ℓ)

Aℓ′ℓ→ℓip(1− T (ki))
∑

ℓ∈N(i)

Aℓi→ij σ̂
N
ℓ′→ℓ

 .

Therefore the modified non-backtracking matrix reads

Bℓ′ℓ→ij = pδℓ,iAℓ′i→ij(1− Tki) + p2Aℓ′ℓ→ℓiTkℓAℓi→ij(1− Tki), (6.19)

and the epidemic threshold p = pc is determined by Eq. 6.6. We check the validity of the

message-passing approach (Eq. 6.15 and Eq. 6.16) by comparing directly to the Monte

Carlo algorithm proposed in Sec. 6.3 (see Figure 6.2). The comparison is conducted on

both synthetic random networks and real networks and we find an excellent agreement

between the two approaches.

6.5 Ensemble method

In the case with the least information, we do not know the exact topology of the contact

network, i.e., we only know that the network is a random uncorrelated network with a

given degree distribution P (k), as well as the statistical properties of the configurations

{Ti}i∈V and {xij}(i,j)∈E which illustrated in the sections above. Here we use the ensemble

approach, as introduced in Sec. 2.2.1, to derive the self-consistent equations, which is

the message-passing equation averaged over the uncorrelated network ensemble. We

consider the variables S′
T and S′

N indicating the probability that by randomly following

a link, we reach an infected individual with the app or without the app, respectively.
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Figure 6.2: The fraction of infected nodes S is plotted versus p for several net-
works. The results obtained by averaging the Monte Carlo simula-
tions of the configurations {Ti}i∈V and {xij}(i,j)∈E are compared
with the results of the MP algorithm defined by Eq. 6.15 and
Eq.6.16, where T (k) is given by Eq. 6.29 with α = 0 and kc as
indicated in the legend of each panel. The value K in all pan-
els corresponds to the largest degree of the network and therefore
corresponds to the case of no app coverage. (a) Poisson network
with N = 5 × 104 nodes and average degree λ = 4. (b),(c),(d)
Friendship networks from the music streaming site Deezer in the
countries of Romania (N = 41773), Hungary (N = 47538) and
Croatia (N = 54573) respectively [217].

The self-consistent equations of S′
T and S′

N read:

S′
T = p

∑
k

kP (k)

⟨k⟩
(T (k))

[
1− (1− S′

N )k−1
]

S′
N = p

∑
k

kP (k)

⟨k⟩
(1− T (k))

[
1− (1− S′

N − S′
T )

k−1
]
, (6.20)
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where T (k) indicates the probability that a node of degree k adopts the app. The

probability that a random node gets infected is given by

S =
∑
k

P (k)
[
1−

(
1− S′

T − S′
N

)k]
. (6.21)

In order to calculate the critical threshold, we re-write Eq. 6.20 as

S′
T − p

∑
k

kP (k)

⟨k⟩
(T (k))

[
1− (1− S′

N )k−1
]
= 0

S′
N − p

∑
k

kP (k)

⟨k⟩
(1− T (k))

[
1− (1− S′

N − S′
T )

k−1
]
= 0, (6.22)

Using the same approach demonstrated in Sec. 2.2.1, the Jacobian of the equations is

given by

J =

 1 −pκT

−pκN 1− pκN

 , (6.23)

where

κN =
⟨k(k − 1)(1− T (k))⟩

⟨k⟩
,

κT =
⟨k(k − 1)T (k)⟩

⟨k⟩
. (6.24)

Imposing that the determinant of the Jacobian is zero we obtain that the transition is

achieved for

pc = min

(
1,

1

2κT

[
−1 +

√
1 + 4

κT
κN

])
. (6.25)

6.6 Optimization

In the previous section, we have obtained the analytical expression of critical threshold

pc on the uncorrelated network ensemble. Here we study the optimization of the critical
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threshold, i.e., how to maximize pc to delay the massive outbreak, with limited resources.

A simple and reasonable assumption is that the expected number of people who has the

app is restricted, due to some factors, for instance, the accessibility of the contact-and-

tracing app, personal concerns related to the privacy risk of the tracing app, etc. The

constraint reads

∑
k

P (k)T (k) = T . (6.26)

From Eq. 6.25 we notice that pc is an increasing function of κT , hence we simply need

to maximize κT under the constraint given by Eq. 6.26.

Thus, the optimization problem reads

max
T (k)

O =
∑
k

k(k − 1)P (k)T (k) subject to


∑

k P (k)T (k) = T ,

0 ≤ T (k) ≤ 1.

(6.27)

gives the discrete Heaviside step function (see details in Appendix C.)

T̃ (k) = θ(k − kc, α) (6.28)

taking the value 0 ≤ α = T −
∑

k>kc
P (k) < 1 at k = kc. Therefore the optimal solution

is to have all nodes of degree k > kc with 100% app adoption and the node with exactly

k = kc with the maximal adoption allowed by the constraint in Eq. 6.26.

6.7 Improvement on pc

From Eq. 6.25, we have learned that on an uncorrelated random network, given a fixed

app coverage T , the optimal strategy of app allocation in order to maximize the critical

threshold pc, i.e., maximally delay the outbreak of the pandemic, is targeting the hub

nodes. In order to verify the optimality of Eq. 6.25 compared to other strategies, we
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consider a more general form of T (k) given by:

T (k) = ρ+ (1− ρ)θ(k − kc, α), (6.29)

where θ(k−kc, α) is the aforementioned discrete Heaviside step function taking the value

α at k = kc, and ρ ∈ [0, 1] indicates a uniform fraction of indivuduals adopting the app.

Using Eq. 6.29 we can interpolate between a purely random strategy (when kc → ∞)

and the optimal strategy (when ρ → 0).

Thanks to the analytical expression of pc given by Eq. 6.25, we are able to investigate

the phase diagram characterized by the epidemic threshold pc of a Poisson random

network as a function of ρ and kc (see Figure 6.3). We observe that the adoption of the

contact tracing app can significantly increase pc, reflected in the phase diagram when

increasing ρ or decreasing kc.

To show the effect of increasing pc due to the adoption of the app, we consider an

epidemic spreading process on a real network, Livemocha social-network [218] (see Figure

6.4). We observe the random adoption strategy indicated by kc → ∞ yields a very small

increase in the value of pc, compared to the optimal distribution indicated by ρ → 0.

Hence, in a scenario of limited resources, represented by the constraint defined in Eq.

6.26, the optimal strategy corresponds to distributing the app from higher-degree nodes

to lower-degree ones until the resources are exhausted. The resulting increase in pc

computed according to Eq. 6.25 is dramatic and non-linear. For instance from Figure

6.4, if the app is optimally distributed among ∼ 40% of the population, the increase of pc

is ∼ 17-fold, while if the same percentage is covered randomly, the increase is∼ 1.2-fold.

In order to check how the obtained optimal strategy compares with other possible

mechanisms driving the adoption of the app, we compare the hub-targeting strategy with

other strategies, for instance targeting nodes with high eigenvector centrality [219], or

the high non-backtracking centrality [220] in a number of real datasets (see Figure 6.5).

In the investigated datasets, targeting nodes with high eigenvector centrality is not as
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Figure 6.3: The phase diagram of the epidemic model mitigated by the adop-
tion of the app is shown for a Poisson network of N = 104 nodes
with average degree λ = 4. Here T (k) is given by Eq. 6.29 with
α = 0. The epidemic threshold pc is plotted as a function of ρ for
different values of the cutoff kc.

efficient as targeting high-degree nodes, while targeting nodes with high non-backtracking

centrality performs much better, nevertheless, it does not change significantly the results

obtained by targeting high-degree nodes. These numerical results suggest that in a wide

range of real scenarios, targeting high-degree nodes can still be a very efficient algorithm

for mitigating an epidemic outbreak.

6.8 Conclusion

In this chapter, we have discussed a message-passing approach proposed in [138] that pre-

dicts the epidemic threshold of a disease spreading among a population using a contact-

tracing app. The simplicity of this model allows for deriving a simple analytical estima-
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Figure 6.4: (Color online) Relative increase of pc computed from Eq. 6.25
on the Livemocha social network (N ∼ 104 × 103 nodes, E ∼
2 × 106 edges) [218], where T (k) is given by Eq. 6.29 under the
constraint 6.26, and p0c = ⟨k⟩/⟨k(k − 1)⟩ represents the value of the
percolation threshold in the absence of app coverage (which can be
obtained from Eq. 6.25 in the limit κT → 0). Here p0c = 0.00306,
while the app coverage is fixed at T = 0.39175, corresponding to
an optimal T̃ (k) with kc = 20 and α = 1. The plot shows that
for this particular value of T , corresponding to ∼40% of the nodes
having the app, the optimal distribution is reached at ρ = 0 and
corresponds to a ∼17-fold increase of pc, whereas in the case of a
purely random strategy, obtained at ρ = T , the increase of pc is
∼1.2-fold.

tion for the epidemic threshold on uncorrelated random networks and leaves plenty of

room for taking into account more complex and realistic factors. The proposed mathe-

matical framework can be used to assess the expected impact of digital contact tracing

in the course of an epidemic. Our results show both numerically and theoretically that

the adoption of the app by a large fraction of the population increases the value of the
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Figure 6.5: We compare the efficiency of different strategies for targeting the
adoption of the app including targeting the nodes of high degrees,
the nodes of high eigenvector centrality and the nodes of high
non-backtracking centrality (NBC) on three different real social
network datasets. Specifically, we compare the fraction of infected
individuals S as a function of the transmissibility p obtained with
the Monte Carlo simulations when the same fraction f of nodes
of high centrality adopts the app but the centrality measures can
change. In panels (a), (b) and (c) we report results obtained on
the real datasets by comparing the strategy in which nodes of high
eigenvector centrality are targeted with the strategy in which the
same fraction of high-degree nodes are targeted. In panels (d) (e)
and (f) a similar comparison is made between the strategy tar-
geting nodes with high non-backtracking centrality and the strat-
egy in which nodes of high degree are targeted. Panels (a)&(d),
(b)&(e) and (c)&(f) show the results obtained on the friendship
networks from the music streaming site Deezer in the countries
of Croatia (N = 54573), Hungary (N = 47538) and Romania
(N = 41773) respectively [217].

epidemic threshold. In the scenario of uncorrelated random networks, we are able to

derive a closed analytical expression for pc which turns out to depend on both the degree

distribution P (k) of the network and the average app distribution T (k). Taking advan-

tage of this closed-form expression, we prove in the scenario of limited resources that

the critical threshold pc is maximized when high-degree nodes are targeted. Our results

129



show that optimal targeting gives rise to a dramatic increase in the value of pc when

compared to a strategy in which the same amount of resources is uniformly distributed,

and an increase of the randomness in app allocation will contribute to the decrease of

the effectiveness of the tracing app. In summary, our results show that even if the adop-

tion of a tracing app has the effect of preventing an epidemic wave, the app can still be

optimally distributed, by taking into account the heterogeneity of the contact network

among the population, in order to obtain a significantly better mitigation effect.

Although this framework is not proposed to precisely fit the current pandemic of

COVID-19 (for the sake of analytical results, in the simple model many realistic factors

which will also affect the epidemic spreading process have been excluded and some as-

sumptions used may not be precise in the real-world scenarios), the physical intuition we

grasp from the presented analysis may prove fundamental to prescribe the best strategy

for app adoption, as well as it captures the highly non-linear effect on the reduction of

the incidence provided by a certain fraction of app adoption, which may provide some

insights to the control of the current pandemic.
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Chapter 7

Conclusions

In this thesis, new insights into the relationship between network structure and their dy-

namic properties are provided. The main contributions of this thesis are two-fold. From

the perspective of percolation, percolation theories on higher-order network models are

developed, with two main contributions on Networks with Triadic Interactions and Ran-

dom Multiplex Hypergraphs. These novel percolation models deepen our understanding

of critical behaviors on higher-order networks. From the perspective of epidemic spread-

ing, two novel epidemic models, i.e., epidemic spreading on hypergraphs and epidemic

spreading with contact-and-tracing are presented. These models enrich our understand-

ing of the non-linear dynamic of epidemics on networks and provide new insights into

real pandemics.

In Chapter 3 and 4, we show how percolation is affected by higher-order network

topology on two examples, i.e., networks with triadic interactions and multiplex random

hypergraph model. The percolation on networks with triadic interactions provides a

framework for modeling systems with time-dependent functioning connectivity such as

brain networks and climate networks. By introducing signed triadic interactions that

regulate the connectivity of structural links, we define triadic percolation. Triadic per-

colation behaves very differently from ordinary percolation in the sense that the order
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parameter of triadic percolation is a time-dependent variable when both positive and

negative regulations are present. The order parameter of triadic percolation can dis-

play period doubling and a route to chaos as we change the control parameter, while

for ordinary percolation, the order parameter is always a fixed value. The results of

triadic percolation radically change our understanding of percolation on networks. It

provides new insights that can shed light on the study of brain networks and climate

networks. On the other hand, the simple and higher-order percolation processes de-

fined on the random multiplex hypergraph model [76] display very rich phenomenology

including the discontinuous phase transition, the tricritical point, and multiple phase

transitions which are reported for the first time in this context. Comparing simple and

higher-order percolation, we reveal that the collaboration effect, i.e., the requirement of

multiple activations leads to discontinuous transition. Indeed, this requirement can be

found in many critical phenomena that display discontinuous transitions, such as K-core

percolation [112], complex contagion [221], also in empirical studies [222]. Moreover,

the multilayer structure allows for defining hyperdegree correlations and investigating

the effect on critical behaviors. We show that hyperdegree correlations strongly affect

the percolation threshold and have different effects on simple percolation and higher-

order percolation. The multiplex hypergraph can be a suitable candidate for modeling

brain networks where interactions of different natures (for instance pairwise blood ves-

sels between neurons and higher-order functioning brain interactions) coexist. These

percolation models might be used to understand the mechanism of brain functioning.

There are several theoretical generalizations of these models that can be explored in

the future. In Chapter 3, we explore the networks with triadic interactions formed by

random structural networks and random regulatory networks. This simplified consid-

eration allows us to derive analytical results. In real systems such as brain networks,

climate networks, and biochemical reaction networks, the nodes interact in more compli-

cated ways. For instance, in brain networks that are formed by neuron-neuron structural

connectivity and glia-neuron regulatory connectivity is spatial due to the physical con-
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straints. Moreover, since neurons and glia are different types of cells, they can be modeled

by a multilayer network. Another example is the biochemical reaction network where

enzymes can regulate biochemical reactions that involved multiple reactants. All these

examples motivate generalizations of networks with triadic interactions, i.e., spatial net-

works, multilayer networks and hypergraphs with triadic interactions. Moreover, in [87]

we investigate the fraction of active nodes in the network, while there might be other

quantities of interest, for example, spatial features of active nodes which might provide

more insights into the modeling of brain networks.

In Chapter 5 and Chapter 6, we show how higher-order interactions and contain-

ment measures affect the epidemic spreading process in a highly non-trivial way. The

epidemic model with digital contact-and-tracing [138] provides theoretical insights into

the long-lasting discussion on the effectiveness of this novel way to tackle the COVID-

19 pandemic: automated contact-tracing can effectively increase the epidemic threshold

hence mitigate a pandemic, and does not require 100% of the population adopting the

contact-and-tracing app. The theory further reveals analytically the non-linear relation-

ship between the increment in the level of app adoption and the epidemic threshold. The

epidemic model on hypergraphs [78], on the other hand, challenges a commonly used as-

sumption in most epidemic models which is the linear relationship between the number

of contact with infected individuals and the risk of infection. We find that higher-order

interactions among individuals together with heterogeneous temporal human activity

and the threshold effects over the exposure induce a nonlinear infection kernel, which

could lead to a discontinuous relationship between disease transmission and epidemic

size, to a bistable regime where macroscopic outbreak and disease-free state coexist, and

to a super-exponential growth.

The theoretical results obtained in Chapter 5 and Chapter 6 provide rich insights

into real pandemics. Many directions can be further explored from the perspective of

applications. In the epidemic model with digital contact and tracing, some assumptions

used might be relaxed in real scenarios. For instance, in reality, tracing and isolation
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might be imperfect, and the probability that an individual adopting a tracing app might

not simply depend solely on the degree but on some external information or external

dynamic processes. There is some very recent literature examining the effectiveness of

the digital contact-and-tracing approach from various perspectives. Ref. [223] designs a

controlled experiment in a population to examine the effectiveness while Ref. [224] checks

high-resolution empirical data of contact. The results of both studies show evidence of

the usefulness of the digital contact-and-tracing approach. There are also a few new

theoretical models that consider other realistic factors. Ref. [225] proposes a SIR-like

model where awareness of prevention is controlled by the global and local prevalence

of the pandemic. Ref. [226] extends the model we propose in [138] by considering a

homophilic adoption of contact tracing apps in a population. These theoretical models

also suggest novel strategies to improve the mitigation of epidemic waves.

Altogether, we show in this thesis the rich interplay between network structures and

their dynamic properties from both perspectives of percolation and epidemic spreading.

Novel models proposed in this thesis have deepened our understanding of critical phe-

nomena on networks and their generalizations and we have answered some open questions

in this research area. We hope this thesis can generate further interest in the interplay

between the topological structure of networks and the dynamical processes defined on

them.
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Appendix A

Universality class of the route to

chaos of triadic percolation

In the main texts of Chapter 3, we have studied triadic percolation in different settings

and we have shown that the process can undergo a period-doubling transition. Here we

demonstrate that triadic percolation undergoes a route to chaos in the universality class

of the logistic map as long as the structural and regulatory degrees are uncorrelated and

the distributions P (κ̂±) are Poisson.

Triadic percolation can be captured at the mean-field level by a map

R(t) = h(R(t−1)) (A.1)

determining the relative size R(t) of the giant component at time t, given the relative

size R(t−1) of the giant component at time t− 1. Examples of these maps obtained from

uncorrelated structural Poisson networks are shown in Figure C.1.

Here we show that this map is in the universality class of the logistic map. In order to

show that, according to Feigenbaum classic result [147], it is enough to demonstrate that

the function h(R) is unimodal, i.e., has a single maximum at R = R⋆, and that close to
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Figure C.1: Example of the maps capturing triadic percolation. Panel (a)

shows the map R(t) = h(R(t−1)) (in blue) obtained for p = 0.3 in
the case of a Poisson structural network and uncorrelated regula-
tory network with Poisson distributions P (κ̂±). The intersections
between the red line R(t) = R(t−1) and the map (indicated in
blue) determine the fixed points. Here R denotes the minimum
non-trivial fixed point of the map. The map reaches its maximum
R̂ for R = R⋆. We denote with R̄ > R the point where h(R̄) = R.
Panel (b) displays the map R(t) = h(Rt−1) for different parameter
p. In both panels the structural network is a Poisson network with
average degree c = 30 and the distributions P̂±(κ̂±) are Poisson
with average degrees ⟨κ̂+⟩ = c+ = 1.8, ⟨κ̂−⟩ = c− = 2.5.

its maximum, i.e., for |R − R⋆| ≪ 1, the function h(R) has a quadratic approximation,

with

h(R) ≃ h(R⋆) +
1

2
h′′(R⋆)(R−R⋆)2. (A.2)

To demonstrate this scaling of the function h(R) close to its maximum we provide

here the explicit expression of the derivative dR(t)/dR(t−1) in terms of R(t−1) and R(t) =

h(R(t−1)).

Our starting point will be the formulation of triadic percolation for uncorrelated

structural and regulatory degrees of the nodes dictated by the Eqs. 3.7, 3.8 and 3.9,
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which we rewrite here for completeness,

S(t) = 1−G1

(
1− p

(t−1)
L S(t)

)
= F1

(
p
(t−1)
L , S(t)

)
, (A.3)

R(t) = 1−G0

(
1− p

(t−1)
L S(t)

)
= F2

(
p
(t−1)
L , S(t)

)
, (A.4)

p
(t)
L = pG−

0

(
1−R(t)

) [
1−G+

0

(
1−R(t)

)]
= F3

(
R(t)

)
, (A.5)

where G1(x), G0(x) and G±
0 (x) are defined in Eq. (3.10). Starting from Eq. (A.3) and

using the chain rule we get

dS(t)

dR(t−1)
=

∂F1

∂p
(t−1)
L

dp
(t−1)
L

dR(t−1)
+

∂F1

∂S(t)

dS(t)

dR(t−1)
. (A.6)

Thus,

dS(t)

dR(t−1)
=

∂F1

∂p
(t−1)
L

dp
(t−1)
L

dR(t−1)

(
1− ∂F1

∂S(t)

)−1

. (A.7)

Similarly, we can use the chain rule starting from Eq. (A.4) to express the derivative

dR(t)/dR(t−1), i.e.,

dR(t)

dR(t−1)
=

∂F2

∂p
(t−1)
L

dp
(t−1)
L

dR(t−1)
+

∂F2

∂S(t)

dS(t)

dR(t−1)
. (A.8)

Using Eq.(A.7) and the relation

∂F2

∂p
(t−1)
L

∂F1

∂S(t)
=

∂F1

∂p
(t−1)
L

∂F2

∂S(t)
, (A.9)

we obtain

dR(t)

dR(t−1)
=

∂F2

∂p
(t−1)
L

dp
(t−1)
L

dR(t−1)

(
1− ∂F1

∂S(t)

)−1

, (A.10)
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where

∂F1

∂p
(t−1)
L

= S(t)⟨k⟩G1

(
1− p

(t−1)
L S(t)

)
,

∂F1

∂S(t)
= p

(t)
L ⟨k⟩G1

(
1− p

(t−1)
L S(t)

)
,

∂F2

∂p
(t−1)
L

= S(t)G′
1

(
1− p

(t−1)
L S(t)

)
,

∂F2

∂S(t)
= p

(t)
L G′

1

(
1− p

(t−1)
L S(t)

)
, (A.11)

and

dp
(t−1)
L

dR(t−1)
= p

[
G−

0 (1−R(t−1))
〈
κ̂+
〉
G+

1 (1−R(t−1))− ⟨κ̂−⟩G−
1 (1−R(t−1))

(
1−G+

0 (1−R(t−1)
)]

.

Note that here G′
1(x) =

∑
k k(k − 1)xk−2/⟨k⟩. From Eq.(A.10) and Eqs.(A.11) it

follows that the derivative dR(t)/dR(t−1) vanishes if and only if either S(t) = 0 or

dp
(t−1)
L /dR(t−1) = 0. Consequently, the maximum of the map is determined by the

condition dp
(t−1)
L /dR(t−1) = 0. Let us now consider the case in which the distributions

P (κ̂±) are Poisson with average degree c±. In this caseG+
0 (1−R(t−1)) = G+

1 (1−R(t−1)) =

exp(−c+R(t−1)) and G−
0 (1−R(t−1)) = G−

1 (1−R(t−1)) = exp(−c−R(t−1)) and hence

∂p
(t−1)
L

∂R(t−1)
= pe−c−R(t−1)

[
−c− + (c+ + c−)e−c+R(t−1)

]
. (A.12)

In this case there is only one singular value R(t−1) = R⋆ at which dp
(t−1)
L /dR(t−1) = 0

given by

R⋆ =
1

c+
ln

(
c+ + c−

c−

)
. (A.13)

It is straightforward to show that

d2p
(t−1)
L

d(R(t−1))2

∣∣∣∣∣
R(t−1)=R⋆

= −pe−(c−+c+)R⋆
(c+ + c−)c+, (A.14)

and, as long as R̂ = h(R⋆) > 0, it follows immediately that

d2R(t)

d(R(t−1))2

∣∣∣∣∣
R(t−1)=R⋆

=
∂F2

∂p
(t−1)
L

∂2p
(t−1)
L

∂(R(t−1))2

(
1− ∂F1

∂S(t)

)−1
∣∣∣∣∣
R(t−1)=R⋆

< 0. (A.15)
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Hence the scaling of the map close to the maximum is quadratic proving that the univer-

sality class of triadic percolation is the one of the logistic map as long as the structural

and the regulatory degrees are uncorrelated and P (κ̂±) are Poisson distributions.
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Appendix B

Further information about the

real datasets

We provide further information about the two datasets studied in Figure 3.7 of the main

text. In Table D.1 we provide the major structural properties of the networks and in

Figure D.1 we report their degree distribution.
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Figure D.1: Degree distribution P (k) of structural mouse brain network (a)
and structural Human bio grid network (b) from [154].
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Network C kmin kmax N L R

Mouse Brain [154] 0 1 123 1029 1559 0.9592
Human bio grid [154] 0.1612 1 308 9436 31182 0.9642

Table D.1: Structural properties of the real-world networks: the averaged
clustering coefficient C, minimum degree kmin, maximum degree
kmax, number of nodes N , number of links L and the fraction of
node in the giant component R. Both networks are treated as
undirected networks.
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Appendix C

Optimization

In Chapter 6 we study the optimization problem that reads

max
T (k)

O =
∑
k

k(k − 1)P (k)T (k) subject to


∑

k P (k)T (k) = T ,

0 ≤ T (k) ≤ 1.

(C.1)

where k denotes the degree of a node, P (k) denotes a given degree distribution and T (k)

denotes the probability for a node with degree k to adopt the contact-and-tracing app.

The objective function indicates that when using the same amount of budget P (k)T (k)

from the constraint
∑

k P (k)T (k) = T , the terms with larger k in the summation have

more significant contributions to the objective. Thus, the maximum of the objective is

obtained by maximizing k(k − 1)P (k)T (k) from larger k. Each term k(k − 1)P (k)T (k)

reaches its maximum when T (k) = 1 hence we impose T (k) = 1 for all k > kc where kc

is a threshold that due to the constraint T (k) = 1 cannot be achieved at k = kc. Instead

T (k) = α where

0 ≤ α = T −
∑
k>kc

P (k) < 1. (C.2)
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In other words, at k = kc, all the remaining budget α = T −
∑

k>kc
P (k) is allocated.

Hence the optimal T̃ (k) is in the form of a discrete Heaviside step function that reads

T̃ (k) = θ(k − kc, α) (C.3)

taking the value 0 ≤ α = T −
∑

k>kc
P (k) < 1 at k = kc.
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