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Thesis Abstract 
 

Assembly and analysis of whole genomes is now a routine part of genetic 

research, but effective tools for the visualization of whole genomes and their 

alignments are few. Here we present two approaches to allow such visualizations 

to be done in an efficient and user-friendly manner. These allow researchers to 

spot problems and patterns in their data and present them effectively. 

 

First, FluentDNA is developed to tackle single full genome visualization and 

assembly tasks by representing nucleotides as colored pixels in a zooming 

interface. This enables users to identify features without relying on algorithmic 

annotation. FluentDNA also supports visualizing pairwise alignments of well-

assembled whole genomes from chromosome to nucleotide resolution.  

 

Second, Pantograph is developed to tackle the problem of visualizing variation 

among large numbers of whole genome sequences. This uses a graph genome 

approach, which addresses many of the technical challenges of whole genome 

multiple sequence alignments by representing aligned sequences as nodes which 

can be shared by many individuals. Pantograph is capable of scaling to thousands 

of individuals and is applied to SARS and A. thaliana pangenomes. 

 

Alongside the development of these new genomics tools, comparative genomic 

research was undertaken on worldwide species of ash trees. I assembled 13 ash 

genomes and used FluentDNA to quality check the results and discovered 

contaminants and a mitochondrial integration. I annotated protein coding genes 

in 28 ash assemblies and aligned their gene families. Using phylogenetic analysis, 

I identified gene duplications that likely occurred in an ancient whole genome 

duplication shared by all ash species. I examined the fate of these duplicated 

genes, showing that losses are concentrated in a subset of gene families more 

often than predicted by a null model simulation. I conclude that convergent 

evolution has occurred in the loss and retention of duplicated genes in different 

ash species. 
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Introduction to Polyploid Evolution 
 

Author Contribution 
I wrote the entire text of this chapter. Special thanks to Jonathan Wendel for reviewing 

an earlier draft of this chapter and references. 

Abstract  

1. Gene duplication plays a critical role in evolution because it provides the raw 

materials necessary to explore sequence space by allowing one or both gene copies to 

mutate down different paths (neofunctionalization and subfunctionalization). 

Without the branching options provided by duplication, genes necessary for cell 

survival would likely become trapped in local optima.  

2. In plants, individuals with more genome copies than their parents (polyploids) are 

pervasive but most newly-formed polyploids do not survive. Polyploidy can have 

profound effects on phenotype, reproductive isolation, and evolutionary trajectory. 

Polyploids are frequently crosses of parents who cannot produce viable diploid 

offspring, creating hybrids with novel combinations of genes and gene regulatory 

sequences. This can sometimes include gene expression ranges outside those found 

in either parent (transgressive expression). Such novelties can be important to plant 

breeders looking for large changes in quantity or size of a trait as well as the potential 

for local adaptation. Polyploidization has many evolutionary consequences ranging 

from reproductive isolation (minority cytotype exclusion) and transcriptomic shock, 

but also a possibility of expanding into new ecosystems. The wide range of 

consequences means there is still much about polyploidy to be researched. 

3. Sequence evidence across a wide range of plants suggests rounds of ancient 

duplications (paleopolyploidy) followed by gene copy loss (fractionation). From this 

we infer that all extant species of seed plants are the descendants of rare successful 

polyploids that overcame physiological and reproductive challenges associated with 

polyploidy. Whole genome duplication (WGD) represents a wide scale disruption to 

gene regulatory network dynamics, but at the same time may be more survivable than 

a partial genome duplication because all relative ratios are preserved and cytoplasmic 

volume is increased. The Boom and Decay model explains long term genome size 

staying relatively stable despite rounds of duplications, due to loss of the majority of 

duplicated genes. 

4. Loss of duplicated genes after whole genome duplications could be random, or biased 

by biological factors which influence whether gene copies are retained versus lost 

during fractionation. These factors may include the toxic effects of incorrect absolute 

dosage of certain gene products and the stoichiometric constraints of protein 

complexes whose dosage is determined by the correct interaction and binding of all 

parts. It is also posited that early Biased Expression from subgenome dominance 

strongly influences long term retention of some duplicated genes. There may also be 

a “Lag Time” after WGD, where many homeologs (copies created in a WGD) are not 

lost for millions of years. 

5. Studies of Fraxinus and Olea can serve as a model for testing these hypotheses 

because Fraxinus and Olea share a WGD at 26 million years ago (Mya) and Olea has 

a second WGD. The 28 species sequenced in the worldwide Fraxinus genome project 
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gives us a unique opportunity to test the reproducibility of fractionation outcomes 

and expand our understanding of whole genome duplication dynamics. 

1.1 Gene Duplication in Evolution 

1.1.1 Homologs and Paralogs 
Plant and animal genomes show extensive evidence of duplications of coding and non-

coding genetic material. The history of genes within an organism’s genome can be 

understood through the lens of a history of duplications. When two genes are related 

through a duplication event, they are called paralogs and can occur in different positions 

within the same genome or across species (Thornton and DeSalle 2000). When two 

genes are related through a speciation event, they are called homologs and these often 

continue to maintain the same function. This history of evolution of one gene can be 

represented using a gene tree where branches in the tree represent either speciation 

events or duplications. The bioinformatic methods for identifying homologs are 

discussed in 3.2.5. Speciation is a rare event requiring a sustainable breeding population, 

but gene duplications can be specific to a single cell. 

1.1.2 Sequence Space 
Evolution is a gradual two step process requiring 1) the creation of random genetic 

diversity through mutation and 2) the elimination of genetic diversity through selective 

survival and breeding. In order to model similar gene sequences in a mathematically 

robust way it is useful to view two sequences as points in a high dimensional space. For 

example, a typical CDS of 900 nucleotides (Brocchieri and Karlin 2005) would be ‘edit 

distance’ of one from a homologous duplicate sequence with a single nucleotide changed. 

These two sequences could be considered adjacent neighbors in sequence space because 

a single change moves from one state to the other. Each nucleotide is a degree of freedom 

in this high dimensional space meaning that the typical 900 nucleotide CDS has 2,700 

(900 * (4-1)) adjacent neighboring sequences that differ by only one nucleotide.  

As a mathematical model, sequence space has properties which can be studied. The 

number of possible variations on a sequence increases exponentially with an increasing 

number of nucleotide changes from the base sequence. The number of possible 

sequences is roughly (3N)k where N is the base sequence length and k is the number of 

single nucleotide changes. The vast majority of sequence changes are neutral or nearly 

neutral and indetectable to selection (Kimura 1979). 

Stable folding proteins are made from secondary structures called alpha-helices and 

beta-sheets (Bungard et al. 2017). These secondary structures are only formed from 

sequence motifs which make up a minority of sequence space (Carvunis et al. 2012), thus 

the majority of sequence space will not form stable protein folds (Nartey et al. 2017).  De 

novo gene evolution is the term given for these rare instances where DNA which has not 

been selected as an amino acid sequence begins producing an expressed protein. 

Examples of de novo gene birth that are not rescued pseudo-genes are so rare that it’s 

difficult to verify their existence. Bungard et al. (2017) advance Bsc4 as one such example 

and point to its apparent function despite lack of a stable quaternary fold as an 

intermediary evolutionary step to a stable globular protein. Typically, mutations 

accumulate in extant stable proteins. While mutations may be random, the starting 

sequence that each new generation mutates is, by definition, adjacent to a functional 

sequence that its parent used to survive. 
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Duplication of protein coding sequences provides branches along gene trees that allow 

new evolutionary possibilities that have the advantage of starting with a functional 

sequence and stable protein folds.  Duplication allows genes to escape selection pressure 

to explore adjacent sequence space while one copy maintains survival critical functions. 

Sequence duplication may contribute to adaptation. For example, Faba bean necrotic 

stunt virus uses gene copy number changes to adapt while still maintaining small 

genomes (Sicard et al. 2016).  

1.1.3 Subfunctionalization and Neofunctionalization 
The most common outcome of duplicated sequence is for the duplicate to be lost (Lynch 

and Conery 2003). For duplicates that are retained, there are two possible routes to 

divergent functions. When a generalist ancestor protein has duplicates that each evolve 

to only carry out a subset of the ancestor’s function, this is called subfunctionalization 

(Konrad et al. 2011). For example, given an enzymatic protein with several substrates or 

products, it is possible for different copies to lose enzymatic activity in different subsets 

of substrates or products: this subfunctionalization leaves behind two proteins with more 

specialized functions. 

The second possible outcome of gene duplication is evolving a function not present in the 

ancestor, called neofunctionalization (Ohno 1970). Neofunctionalization can mean the 

development of new and more nuanced morphological features, as in the well studied 

case of flower morphology development through gene duplication. APETELA3 is one 

such gene family whose diverged copies control stamen identity in the flower. 

Duplications can lead to new petal parts (Kramer et al. 2003). Neofunctionalization can 

also be an enzymatic activity in a new substrate or higher catalytic activity (Mindrebo et 

al. 2016). Aharoni et al. were able to artificially evolve two protein variants that had 40-

fold increase in hydrolizing activity and 2,000-fold increase in specificity (Aharoni et al. 

2004). Neofunctionalization can also occur in the form of a transcription factor binding 

to a new sequence or protein (Teufel et al. 2018); for example, a duplicated KRAB zinc-

finger protein with a higher binding affinity for a new transposon subfamily (Ecco, 

Imbeault, and Trono 2017; Imbeault, Helleboid, and Trono 2017).  

This ongoing process of duplication and subsequent divergence is thought to have left its 

mark in genomes in the form of large gene families with varying sequences to support 

nuanced function. For example, the body plans of animals are determined by tandem 

repetitions of 39 HOX genes whose sequence variations allow them to specify different 

sections of the body plan (Kuraku 2011).  

 

1.2 Polyploidy 

Whole genome duplications (WGD) commonly occur in plants (Spoelhof et al. 2017; 

Adams and Wendel 2005; Ramsey and Schemske 1998). These events produce polyploid 

offspring with more genome copies than either parent and can frequently facilitate 

hybrid crosses that are unviable in diploid progeny, or sterile due to failure of 

chromosome pairing; these are sometimes called wide hybrids (Dodsworth, Chase, and 

Leitch 2016). Hybrid polyploids are known as allopolyploids and are often viable because 

chromosomes can pair in meiosis (Darlington et al. 1937).  
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In plant pest and pathogen systems, we are presented with an evolutionary paradox. If 

tree generation times are orders of magnitude slower than insect and fungal generational 

times how is it that trees have been able to keep up in the evolutionary arms race against 

pests and pathogens over millions of years? Wininger and Rank (2017) in a review of 117 

studies found that plants primarily adapt to pathogens through gene for gene 

interactions. Whereas, plants predominantly adapt to herbivores through escape and 

radiate responses.  

Whole genome duplication creates additional copies relevant to gene-for-gene adaptation 

races through subfunctionalization (1.1.3). Furthermore, WGD have historically been 

associated with increased radiation into new niches in times of changes such as the 

Cretaceous-Tertiary extinction event (Fawcett et al. 2009). We explore the evolutionary 

dynamics of plant whole genome duplications here. 

1.2.1 Endopolyploidy 
Endopolyploidy is a tissue specific polyploidy found widely in multicellular organisms 

where the ploidy level of a particular tissue is a multiple of the base ploidy level of the 

gametes. For example 60% of Arabidopsis tissue is endopolyploid (Galbraith, Harkins, 

and Knapp 1991), meaning that the tetraploid state is already exposed to selection 

pressure every generation (I. J. Leitch and Dodsworth 2001). Endopolyploidy also exists 

in animal tissue with protein production functions such as nourishment of embryos, 

secretion, and platelet formation (Neiman et al. 2017; Cross 2005; Flemming et al. 2000; 

Ravid et al. 2002). Endopolyploidy is achieved through modifications of the cell cycle 

and can result in polytene chromosomes that do not fully separate. Other endo-

duplications can occur through partial amplification of a section of chromosome, rather 

than the entire genome (Lee, Davidson, and Duronio 2009). Endopolyploidy frequently 

occurs in cancers (Storchova and Pellman 2004). 

Endopolyploidy means the polyploid state is already under selection pressure every 

generation. At a tissue level, the polyploid state must be a viable state for gene regulatory 

machinery to function in any organism that makes extensive use of endopolyploidy such 

as A. thaliana. Endopolyploidy then acts as a selectable intermediary to a viable 

polyploid organism. Since random changes to one gene are more likely to cause 

nonfunctionalization than neofunctionalization, statistically, making random changes to 

every gene in an organism is certain to be deleterious (Bataillon 2000; Belancio, Roy-

Engel, and Deininger 2010; Böndel et al. 2019). This is because any extant organism 

occupies a small area of sequence space (1.1.2) that has been repeatedly tested to be more 

fit than every adjacent variant. The same is true of gene regulatory networks. However, 

polyploidy is not a random change. It is merely switching from one gene regulatory 

regime under selection (diploidy) in one tissue to another regulatory regime which was 

already under selection in the same organism albeit in a different tissue 

(endopolyploidy). While this change can cause large disruptions (1.2.2.2, 1.2.2.3, 1.2.2.4, 

1.2.2.5) it is in no way comparable to the lethal genome rearrangements caused by high 

doses of ionizing radiation or aneuploid cancer lines like K562 (Zhou et al. 2018).  

1.2.2 Immediate Consequences Of WGD 

 

1.2.2.1 Minority Cytotype Exclusion 
One common immediate consequence of polyploidy is reproductive isolation from the 

parental species. This may be advantageous as it frees a polyploid to evolve in new 
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directions without gene flow from its parents (Pannell, Obbard, and Buggs 2004). On the 

other hand, it produces an immediate reproductive disadvantage and the possibility of 

producing no fertile offspring; this is called minority cytotype exclusion (Levin 1975). In 

order to establish a breeding population, a polyploid must overcome this barrier. 

1.2.2.2 Phenotypic Effect of Genome Size 
Polyploidy may cause immediate phenotypic novelties. Whole genome duplication may 

directly affect cell size, cytoplasmic volume versus surface area, and changes to the 

transcriptome and molecular transport due to the increased distances between cell parts. 

These affects in autopolyploids (polyploids which are not hybrids) of Glycine, 

Arabidopsis, and Solanum are reviewed in Doyle and Coate (2019). Phenotypic novelties 

may mean that new polyploids can occupy a new niche. There are many examples of new 

polyploids colonizing new ecosystems (Beest et al. 2012). Polyploid invasiveness was first 

proposed by Levin (1983)  and explained by increased robustness e.g. drought and 

salinity tolerance, however, the cause is still debated.  

1.2.2.3 Expression Changes 
Another immediate consequence of polyploidy may be changes to gene expression 

regulation. When these changes are immediate and widespread it is called transcriptomic 

shock (Hegarty et al. 2006; Arrigo and Barker 2012; Yoo, Szadkowski, and Wendel 2013; 

Buggs et al. 2011). New polyploids may have numerous novel regulatory interactions that 

are beneficial or deleterious to the organism. These come from both gene copy number 

changes, and the interactions of two genomes which have diverged significantly in the 

case of allopolyploids (Kashkush, Feldman, and Levy 2002).  

1.2.2.4 Hybridity and Parent Subgenome Dominance 
In some allopolyploids, hybridity is the most important factor in gene expression 

changes. This seems to be the case in Arabidopsis, Gossypium, and Brassica 

allopolyploids but less so in maize and Senecio (Doyle et al. 2008). When a hybrid is 

formed, the gene expression and traits are not a 50/50 mix of the two parents. In 

allopolyploids, a bias towards the expression of one parent’s genes over the other, called 

Parent Subgenome Dominance, is often observed (Emery et al. 2018). This dominance 

appears to be linked to gene regulatory machinery, where one subgenome has more 

positive feedback regulation or more completely silences the other subgenome. 

Intriguingly, this dominance can be tissue type specific as in the case of cotton which 

expresses different subgenomes per tissue type (Hovav et al. 2015). One can easily see 

how this could contribute to morphological complexity, though not necessarily 

adaptation, by giving the plant different copies of expression machinery per tissue, each 

which can continue to evolve complementary specializations for their given tissues. 

1.2.2.5 Genome Instability 
New polyploids often have severe genome instability resulting from unstable connections 

between homeologous chromosomes during meiosis. During cell division (meiosis or 

mitosis) matching chromosomes pair up across from each other along the fission plane 

and are separate by the centrioles. This delicate process can be complicated by the 

presence of homeologous chromosomes in polyploids which may imperfectly match if 

paired during crossing over of meiosis. A study of the 100-year-old neopolyploid 

Tragopogon miscellus revealed substantial fluctuations in the content of each 

chromosome between individuals (Buggs et al. 2012; Chester et al. 2012). Similar results 

can be seen in the 140-year-old allopolyploid Senecio cambrensis (Hegarty, Abbott, and 
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Hiscock 2012). In 2005 (Salmon, Ainouche, and Wendel 2005) found two independent 

hybrids of Spartina have undergone the same sequence region losses in the last 165 

years. Similarly repeatable losses have been observed in wheat F1 hybrids (Shaked et al. 

2001). 

1.2.2.6 Transposon Instability in Neopolyploids 
Transposons can likely explain this rapid repeatable gene loss in allopolyploids. 

Transposon silencing mechanisms can be disrupted in a hybrid which can lead to rapid 

sequence loss (Hawkins et al. 2009). In rice (Oryza sativa) LTR activity has been 

observed as a precursor of rapid DNA loss (Vitte, Panaud, and Quesneville 2007). 

Transposons create many similar sequences throughout the genome. This can lead to 

non-homologous gene conversion where one copy of a sequence is stamped over another 

similar copy, eliminating sequence diversity even in sites that are not alleles paired up 

during meiosis (Ellison and Bachtrog 2015). 

Parental subgenome dominance information is often not available for very old polyploids 

because parental sequences are not available. In recent hybrids such as Tragopogon, 

Senecio, Spartina, and Cotton determining which sections of sequence belong to which 

subgenome is fairly straight forward because their parental population are still living. As 

we look at older polyploids, assignment becomes more difficult, especially if the parental 

populations have gone extinct. Phylogenetic analysis requires sequence from one of the 

parental populations in order to assign subgenomes (Edger et al. 2018). Without this, 

claims of subgenome dominance become circular reasoning since silenced DNA and 

tissue specific expression are also observed in species lacking a history of WGD, such as 

humans. From a comparison with the sea lamprey genome, it appears the human lineage 

last underwent a WGD 550 mya at the base of the vertebrate lineage (Smith and Keinath 

2015). 

1.2.3 Longer Term Evolutionary Consequences 
After WGD, most duplicated sequences are expected to be hidden from selection and 

gradually lost as mutations accumulate. In order for a gene to be retained in the long 

term, there needs to be selective pressure in favor of its retention. The process by which 

most of the genome gradually returns to a diploid (diploidization) whilst some regions 

remain in a duplicated state is known as fractionation. William Bateson first used the 

term “fractionation of factors” in 1915 to refer to a similar distillation of phenotypic traits 

in successive generations of inheritance, before the discovery of DNA or genes, making it 

possibly the oldest usage of the term fractionation of an organism through evolution 

(British Association for the Advancement of Science 1915). Langham et al. (2004) used 

fractionation specifically for diploidization to refer to how the fraction of genes under 

some criteria will be preserved in duplicate. Which genes are lost and which are retained 

depends upon a number of factors, which are still an active area of research (L. Flagel et 

al. 2008). 
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Table 1.1 The Link between Biased Fractionation and Subgenome Dominance 

Taxon or taxa 
Approximate 
WGD age 
(mya) 

Biased 
fractionation? 

Genome 
dominance? 

Reference 

Arabidopsis suecica 0.02 Yes Yes 
(Chang et al. 2010; 
Novikova et al. 2017) 

Capsella bursa-
pastoris 

0.2 No No (Douglas et al. 2015) 

Zea mays 8 Yes Yes 
(Schnable, Springer, and 
Freeling 2011; Swigoňová 
et al. 2004) 

Glycine max 13 No No (Garsmeur et al. 2014) 

Cucurbita spp. 3–26 No No (Sun et al. 2017) 

Brassica rapa 15 Yes Yes 
(Cheng et al. 2016; 
Mandáková et al. 2017) 

Arabidopsis thaliana 47 Yes Yes 

(Garsmeur et al. 2014; 
Thomas, Pedersen, and 
Freeling 2006; Hohmann 
et al. 2015) 

Medicago sativa 58 Yes N/A (Garsmeur et al. 2014) 

Gossypium spp. 60 Yes Yes (Renny-Byfield et al. 2015) 

Musa acuminata 65 No No 
(Garsmeur et al. 2014; 
D’Hont et al. 2012) 

Populus trichocarpa 65 No No (Garsmeur et al. 2014) 

Poaceae 70 Yes Yes (Garsmeur et al. 2014) 

Biased fractionation occurs when parental subgenome dominance leads dominant genes from one 
parent to be preferentially retained in descendants (Bottani et al. 2018). In the 12 species 
reviewed, parental subgenome dominance and biased fractionation always occurred together 
(yellow highlighting). Five of the 12 species showed no biased fractionation nor subgenome 
dominance. No correlation with WGD age and biased fractionation is evident. Source: Table 1.1 
used with permission from Wendel et al. (2018). 

 

It is posited this Subgenome Dominance is due to a difference in transposable element 

(TE) load and proximity to genes. TEs are targeted for silencing using small RNA 

silencing machinery and histone modifications which can affect neighboring genes 

(Vicient and Casacuberta 2017). A primary mechanism of DNA silencing is methylation, 

which can lead to a region becoming closed chromatin. This is consistent with the idea 

that Subgenome Dominance is driven by TE load and position. From Tragopogon, there 

is some evidence that dominance appears to be intrinsic to a parent genome. Genes from 

T. pratensis were preferentially retained over T. dubius genes, regardless of which was 

the maternal or paternal genome (Buggs et al. 2012). In maize, Woodhouse et al. 2010 

found that biased fractionation occurs mainly through single gene loss in regions flanked 

by evidence of intra-chromosomal recombination. The subgenome with more losses also 

had more targets for transposon removal (Woodhouse et al. 2010). From all this we can 

potentially predict that if two genomes diverge in TE content and then produce a hybrid, 

the one with fewer TEs will have dominant expression and is more likely to retain genes 

in its descendants. 

1.2.3.1 Evolutionary Advantages 
There has been much conversation about the mix of advantages and disadvantages of 

polyploidy and the long term evolutionary consequences of duplication (Ohno 1970; L. E. 

https://paperpile.com/c/8LRn4m/ONF7+qtLa
https://paperpile.com/c/8LRn4m/ONF7+qtLa
https://paperpile.com/c/8LRn4m/spbb
https://paperpile.com/c/8LRn4m/g8XoB+7w83
https://paperpile.com/c/8LRn4m/g8XoB+7w83
https://paperpile.com/c/8LRn4m/g8XoB+7w83
https://paperpile.com/c/8LRn4m/Lz8XU
https://paperpile.com/c/8LRn4m/ljFV
https://paperpile.com/c/8LRn4m/S5Hx+ycBE
https://paperpile.com/c/8LRn4m/S5Hx+ycBE
https://paperpile.com/c/8LRn4m/Lz8XU+DXBKD+t4nz
https://paperpile.com/c/8LRn4m/Lz8XU+DXBKD+t4nz
https://paperpile.com/c/8LRn4m/Lz8XU+DXBKD+t4nz
https://paperpile.com/c/8LRn4m/Lz8XU+DXBKD+t4nz
https://paperpile.com/c/8LRn4m/Lz8XU
https://paperpile.com/c/8LRn4m/xjcN
https://paperpile.com/c/8LRn4m/Lz8XU+D4GZ
https://paperpile.com/c/8LRn4m/Lz8XU+D4GZ
https://paperpile.com/c/8LRn4m/Lz8XU
https://paperpile.com/c/8LRn4m/Lz8XU
https://paperpile.com/c/8LRn4m/ZEWcd
https://paperpile.com/c/8LRn4m/TVar7
https://paperpile.com/c/8LRn4m/OxrX8
https://paperpile.com/c/8LRn4m/wvydH
https://paperpile.com/c/8LRn4m/VzoWK
https://paperpile.com/c/8LRn4m/R9fAN+9kw2S+vjJga+3Z7CV


21 |  
 

Flagel and Wendel 2009; I. J. Leitch and Leitch 2013; Douglas E. Soltis et al. 2014; 

Mayrose et al. 2011). Here we discuss several important examples.  

Freeling and Thomas propose that preferential retention of transcription factors (TFs) 

and developmental genes after a WGD is sufficient to explain a predictable increase in 

morphological complexity in plants (Freeling and Thomas 2006). We note that in order 

for this to be true, the theory requires that: 1) morphological complexity actually requires 

subfunctionalization of TFs, 2) complexity results in higher fitness 3) fitness gains are 

large enough to offset the disadvantages of large, duplicated genomes. 

It may be that patterns of fractionation could lead to adaptation. A polyploid’s wide range 

of redundant genes could be silenced in order to rapidly adapt to new environments 

without the need to wait for nucleotide changes (Ohno 1970; Werth and Windham 1991). 

This rapid adaptation ability is seen even in polyploids of yeast (Selmecki et al. 2015). In 

theory, short term silencing through methylation after a WGD then removes selection 

pressure to maintain the gene copy which can then be lost in subsequent generations 

(1.2.2.4) (De Smet et al. 2013; Woodhouse et al. 2010, 2014). Angiosperms become 

polyploid far more frequently than gymnosperms which has possibly driven the 

increased number of species in angiosperms. This potential for rapid adaptation is 

postulated as the reason angiosperms dominated niches previously filled by 

gymnosperms in the ancient past (A. R. Leitch and Leitch 2012). However, two recent 

reviews concluded that WGDs themselves were not associated with higher species 

diversification in angiosperms at present (Landis et al. 2018; Mayrose et al. 2011).  

1.3 Evidence for Paleopolyploidy 

Given the extensive effects of polyploidy in modern day organisms, how extensively has 

polyploidy affected the ancestors of extant species? Here we look at the evidence for 

ancient polyploids (paleopolyploidy) and the challenges in analysis. As we have seen, new 

polyploids frequently undergo genome instability (Buggs et al. 2012) on the scale of 100 

years. The artificial autotetraploid Phlox drummondii has been observed to lose 25% of 

its genome in the first two generations as the karyotype stabilizes with concomitant 

increase in seed viability. No further changes were observed in subsequent generations 

(Raina et al. 1994). Naturally, this means ancient evidence of paleopolyploidy does not 

include a complete copy of a genome. Instead, many duplicates which share the same age 

(Ks and phylogenetic analysis) or blocks of duplicated sequence in the same order 

(shared synteny) are the primary sources of evidence.  

1.3.1 Ks 
The level of sequence divergence in alignable regions is measured by the frequency of 

synonymous codon mutations, called Ks. Ks is used as an estimate of long ago the 

duplicate was created. A peak in the Ks plot is evidence that all the duplicates came from 

the same event (Jiao et al. 2011). A peak in the Ks plot is a clear indication of a WGD 

(Figure 1.1) in the last 80My given only a single genome assembly. More precise 

bioinformatics can separate multiple WGD or detect events deeper in the past. However, 

there are technical challenges as more ancient peaks blur together and require mixture 

modeling to separate (Ruprecht et al. 2017; Maere et al. 2005; Smith, Brown, and Walker 

2017). 4DTv is a stricter version of Ks that only uses sites that are 4-fold synonymous 

codons for comparing the two genomes to ensure clock like behavior. 
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Ks plots are calculated using nucleotide sequence alignments between pairs of 

paralogous genes identified by sequence similarity. Ks is the synonymous substitution 

rate: the frequency at which the synonymous third position of codons differs between 

gene copies. Synonymous substitutions are assumed to be neutral to selection and thus a 

better clock-like estimate of the amount of time passed since the duplication event which 

created the second copy. A peak in the Ks plot would indicate a large number of genes 

which were all created around the same time. Currently, the only known cause for a 

significant fraction of the genome to be duplicated is a WGD. Duplication events which 

happened further back in time will have larger Ks values. More ancient WGDs are also 

expected to have wider peaks because every gene does not accumulate synonymous 

mutations at exactly the same rate. Paralogs with Ks values which do not group into a 

peak are assumed to be small scale duplications (SSD) (Maere et al. 2005). 

 

Figure 1.1 Ks Plots: are a graph of the number of synonymous substitutions in the 
wobble position of paralogous genes within an individual. Peaks are used to estimate at 
what time a group of genes were duplicated together in a WGD. In this graph, the peak at 
zero is likely caused by a recently duplicated SSD or assembly artifacts from the diploid 
phase. The peak at 0.25 is from the aWGD 25 million years ago shared by all of Fraxinus 
and Olea. An older duplication, around 60 Mya is also shared by Jasmineae. Source: 
Figure generated from raw data gathered in Sollars et al. (2017). 

1.3.2 Phylogenetic Analysis 
Phylogenetic analysis is a second method, which makes WGD timing more precise by 

noting whether two species share the WGD and so constrain the timing. To make WGD 

timing more precise, researchers use phylogenetic analysis to tell if two species share the 

WGD so that the timing can be constrained to before or after their species divergence 

(Rabier, Ta, and Ané 2014). 

The Barker lab has developed an algorithm called MAPS which uses a more advanced 

form of phylogenetic analysis (Li et al. 2015). Their approach takes any number of 

species which may share multiple WGD. MAPS iterates through each species gene trees 

and analyzes which gene tree subsets would support a WGD at a particular node. This 

process is iterated until all probable WGD are identified in Newick format. The results 

are compared against a null model to avoid false positives. 

https://paperpile.com/c/8LRn4m/S34jK
https://paperpile.com/c/8LRn4m/69vxe
https://paperpile.com/c/8LRn4m/VYeAr
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1.3.3 Shared Synteny 
Synteny is the co-occurrence of homologous genes at the same genomic locus in two 

separate species. Before genome assemblies, co-localization was defined at the level of 

chromosomes. With genome assemblies, synteny now often refers to a region of two 

assemblies that share the same ordering of homologous genes. This new understanding 

of synteny can be more specifically referred to as shared synteny. 

Shared synteny evidence can be seen when plotting all hits of shared sequence between 

two genomes on a dot plot, with genome A as the x-axis and genome B as the y-axis. 

When two species share >10 Mbp regions of sequence in the same order, then it can be 

inferred they have been broken up by translocations and chromosome fusions after a 

WGD (E. H. Lyons 2008; E. Lyons et al. 2008). Synteny evidence has the advantage that 

it is improbable to occur by chance and may give additional information about which 

genes have been selected and retained together.  

Unfortunately, fitness selection for sets of sequence to be colocated also means synteny is 

not a neutral clock-like indicator of history. The recently growing study of chromatin 

conformation capture demonstrates there are biological consequences for transcription 

regulation based on the location of genes (Lieberman-Aiden et al. 2009; Rao et al. 2014; 

Grob, Schmid, and Grossniklaus 2014; Delaneau et al. 2019). The fitness neutral 

assumption of location in synteny analysis is analogous to synonymous substitutions 

used in Ks plots to track clock-like accumulation of neutral mutations in homeologous 

pairs. Non-synonymous positions are not used as a molecular clock, since divergent 

bases are interpreted as positive selection and identical bases are interpreted as purifying 

selection regardless of evolutionary distance (Loewe 2008). To apply this comparison, 

discoveries of function in chromatin conformation shift synteny out of the domain of 

clock-like historical indicators and into the domain of shared (or divergent) functional 

indicators. The exact kilobase resolution of function for super enhancers, chromatin 

loops, and nuclear subcompartments (Rao et al. 2014) sets the upper bound on the 

feature size of micro-synteny that can confidently be labeled as neutral historical signal 

free from functional constraints. 

1.3.4 Paleopolyploidy in Angiosperms 
These techniques have identified evidence for paleopolyploidy throughout the tree of life, 

particularly in angiosperms (Li et al. 2016). Newer techniques allow researchers to detect 

events further back in evolutionary time. An expressed sequence tag (EST) study in 

Asteraceae first identified 5 different WGD among 18 species (Blanc and Wolfe 2004; 

Barker et al. 2008). Jiao et al. (2011) identified ancient polyploid ancestors further back 

in time for all seed plants and angiosperms. All three studies use phylogenetic analysis 

and Ks plots based on aligned sequences. 

As sequencing increases, almost every new plant genome brings new reports of 

paleopolyploidy: for example in maize, tomato, and Brachypodium (Schnable, Springer, 

and Freeling 2011; Tomato and Consortium 2012; Gordon et al. 2017). This provides an 

opportunity to look at the long-term outcomes of theories of new polyploids and see how 

they compare with the ancient past. For example, Garsmeur et al. (2014) demonstrate 

that parental subgenome dominance can be detected in the ancient past by examining 

different signatures of gene copy loss and gene expression. They show that 

autopolyploids and allopolyploids can be distinguished because ancient autopolyploids 

have unbiased fractionation and equivalent gene expression between their subgenomes. 

https://paperpile.com/c/8LRn4m/SsYTy+xbgzF
https://paperpile.com/c/8LRn4m/cBY6+WvG4+MhPS
https://paperpile.com/c/8LRn4m/cBY6+WvG4+MhPS
https://paperpile.com/c/8LRn4m/KOPnX
https://paperpile.com/c/8LRn4m/3m12Q+A8oeT
https://paperpile.com/c/8LRn4m/3m12Q+A8oeT
https://paperpile.com/c/8LRn4m/g8XoB
https://paperpile.com/c/8LRn4m/g8XoB
https://paperpile.com/c/8LRn4m/zksKB
https://paperpile.com/c/8LRn4m/oJ1AM
https://paperpile.com/c/8LRn4m/Lz8XU
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To support their claim they reconstruct the chromosome lineage of Musa through two 

WGD to trace duplication and loss. 

1.3.4.1 Retained Percentages of Genomes 
The observed and theoretically predicted drop in the percentage of the genome retained 

in duplicate after diploidization is notable because only a small minority of sequence 

remains behind as evidence (Figure 1.2). Ren et al. (2018) conducted a review of 105 

angiosperms and found 17 new WGD. Their study included transcriptomes with no full 

assembly as a separate class of data. While useful, this approach prompted further 

discussion on data quality and possible confounding factors (Zwaenepoel et al. 2019; 

Wang et al. 2019). Figure 1.3 shows how the merging of these two lines of evidence 

begins to blur the line between false positive (grey dots) and true positive (red and purple 

dots) WGD detection.  

 

Figure 1.2: Duplicate gene retention as a function of time since WGD: Across all 
studied angiosperms, the percentage of genes retained levels off around 12% after a Ks based age 
of 0.75. This means the rate of loss is much higher directly after a WGD and gradually converges 
to a subset of gene families retained in duplicate. Source: Figure 3 of (Li et al. 2016) is reprinted 
here with permission. 

https://paperpile.com/c/8LRn4m/PYiAP
https://paperpile.com/c/8LRn4m/pbSlB+044og
https://paperpile.com/c/8LRn4m/pbSlB+044og
https://paperpile.com/c/8LRn4m/KOPnX
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Figure 1.3: A Model for Exponential Decrease over Time of Number of Duplication 
Events with Actually Detected GDs: The authors present a scatter plot of 105 Angiosperms by 
percentage duplicates and synonymous substitution rates among inferred homeologs. Source: 
Figure 2 of (Ren et al. 2018) is reprinted here with permission. 

 

1.3.5 Boom and Decay Model 
The “Boom and Decay” model developed by (Wolf and Koonin 2013) proposes that 

occasional WGDs are followed by long periods of genome size reduction (fractionation). 

They postulate a gradual increase in genome size and concomitant morphological 

complexity over hundreds of millions of years as genes families which survive multiple 

rounds of WGD and fractionation can quickly reach 128x their original copy number. The 

Boom and Decay model explains several factors, including evidence for paleopolyploids, 

the current stable state of many plant genome sizes, and the disproportionate effect that 

WGDs have had on some gene families while others appear untouched. This model posits 

that most changes happen very early on after duplication and this can be contrasted with 

the Lag Time model. 

 

https://paperpile.com/c/8LRn4m/PYiAP
https://paperpile.com/c/8LRn4m/ykQNS
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Figure 1.4: “Boom and Decay” model of nuclear gene content: Source: Figure from the 
Marie Curie grant proposal that generated the current PhD thesis topic (Cooper, 2014), used with 
permission. 

 

1.4 Biological Factors Affecting Fractionation 

The above discussion has focused on factors influencing entire subgenomes. In this 

section, we examine factors which determine why a specific gene or gene family is either 

retained in duplicate or quickly reduced to single copy after a WGD. Changing dosage of 

even a single gene can have a profoundly negative impact upon an organism. For 

example, Huntington’s disease is caused by an excess of copies of a small repeat whereas 

Down Syndrome is caused by an extra copy of human’s smallest chromosome (Bahlo et 

al. 2018; Makino and McLysaght 2010). While plant genomes are surprisingly robust to 

large changes compared to animals, they still include a complex gene regulatory network 

that can be disrupted (Kejnovsky, Leitch, and Leitch 2009). 

1.4.1 Retention by Gene Function 
Gene function influences which genes have been retained over deep time. For instance, 

De Smet et al. (2013) identify a set of singleton genes conserved across all eukaryotes 

which are resistant to duplication over deep time and possess many gene function 

specific attributes. They are over-represented in essential housekeeping genes expressed 

across a wide range of cell types, and highly expressed. In contrast, another notable 

review analyzes 37 angiosperms and finds that the set of gene families based on sequence 

and reflected in function is consistently retained in duplicate after WGD (Li et al. 2016). 

Specifically, they show that the number of gene families that remain single copy is much 

higher than null model simulations. The null model simulation and classification of 

single-copy gene families versus multi-copy gene families serves as the template for the 

Fraxinus analysis in Chapter 4 of this thesis.  

1.4.2 Dosage Constraints 
An individual gene may have absolute dosage constraints if protein abundance is the 

limiting step in critical metabolism. Evidence can be found in Saccharomyces cerevisiae, 

whose WGD increased the absolute dose of genes necessary to ferment glucose in the 

presence of oxygen (Chen, Xu, and Gu 2008). The ancient WGD-β (70 Mya) in 

Arabidopsis shows limited evidence for increasing the dose of individual genes, however 

they conclude the more recent WGD-𝛼 (20 Mya) has no such association (Bekaert et al. 

2011). The evidence for constraints on relative dosage in a network of proteins is far more 

prevalent. 

https://paperpile.com/c/8LRn4m/BWG3p+U7lfw
https://paperpile.com/c/8LRn4m/BWG3p+U7lfw
https://paperpile.com/c/8LRn4m/CKEMW
https://paperpile.com/c/8LRn4m/KOPnX
https://paperpile.com/c/8LRn4m/0k7hJ
https://paperpile.com/c/8LRn4m/hbx7N
https://paperpile.com/c/8LRn4m/hbx7N
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1.4.3 Stoichiometric Constraints 
Genes that operate in a pathway or protein complex are sensitive to changes in their 

relative abundance. Stoichiometric constraints refer to ratios between genes, frequently 

called “Relative Dosage” in the literature. A survey of the minimal genome of Arabidopsis 

thaliana found clusters of “connected genes” which were retained after a duplication 

(Thomas, Pedersen, and Freeling 2006). This is seen as evidence of the Gene Balance 

Hypothesis, which states that the relative quantities, not absolute amounts of gene 

products, are under selection. Chief among gene families amplified by WGD are 

transcription factors which regulate hundreds of genes per protein and can have a 

profound effect on gene expression. Studies have repeatedly confirmed that TFs are 

retained in duplicate after WGD and show very little copy number variation outside of 

these events (Edger and Pires 2009).  

Proteins which form complexes are a prime example of stoichiometric constraints and 

can also be found clustered in Yeast genomes (Teichmann and Veitia 2004). The relative 

proportions of each part of a complex determines their reaction rates and thus the final 

number of complexes formed. One protein can be involved in multiple complexes which 

creates the counterintuitive effect that organisms with more of one protein will create 

less of the final complex due to lack of availability of the other parts (Birchler et al. 

2005). Oberdorf and Kortemme (2010) note that it is protein complex topology, not 

membership, which determines a gene’s dosage sensitivity because complexes assemble 

in a stepwise process. From this dynamic, it is predicted that genes in complexes will not 

be duplicated in small scale duplications (SSD), but commonly duplicated in WGD. 

1.4.4 Retention Rate In Homeologs Is Different From Small Scale 

Duplications 
The final piece of evidence for the Dosage Balance Hypothesis comes from how genes 

react to different types of duplications. In addition to WGD, genes can be duplicated in 

tandem, in large segments of chromosomes or through transposition. Experimental 

evidence points to dosage sensitive “connected genes” copy number variation only being 

non-deleterious when the gene is duplicated along with its partners such as in WGD and 

segmental duplications (Freeling 2009). This pattern of duplication tolerance in WGD 

appears to be a widespread principle as it occurs in Arabidopsis, Oryza, Saccharomyces 

and Tetraodon as well as other taxa (Paterson et al. 2006). In the soybean Glycine max it 

was discovered that genes in the photosystem are exclusively duplicated in WGD, while 

genes in the Calvin Cycle did not show this same dosage balance sensitivity (Coate et al. 

2011). 

1.4.5 Lag Time Model 
Lag Time was proposed to explain observations in cases where one class of gene was 

retained for millions of years after WGD, while another class of genes were immediately 

reduced to single copy number (Schranz, Mohammadin, and Edger 2012; Tank et al. 

2015). The Lag Time model proposes that these genes are essential and dosage sensitive 

when first duplicated, however subsequent mutation accumulation in both copies can 

gradually relax the dosage constraint, leading to the copy’s eventual loss (Dodsworth, 

Chase, and Leitch 2016; Robertson et al. 2017; Cheng et al. 2018; Clark and Donoghue 

2017).  

https://paperpile.com/c/8LRn4m/DXBKD
https://paperpile.com/c/8LRn4m/uVbrV
https://paperpile.com/c/8LRn4m/e4VGh
https://paperpile.com/c/8LRn4m/ZiuC8
https://paperpile.com/c/8LRn4m/ZiuC8
https://paperpile.com/c/8LRn4m/SvzMX
https://paperpile.com/c/8LRn4m/U6ODS
https://paperpile.com/c/8LRn4m/k4hbM
https://paperpile.com/c/8LRn4m/OPRaM
https://paperpile.com/c/8LRn4m/OPRaM
https://paperpile.com/c/8LRn4m/Oa0s7+oEPwK+H71jP
https://paperpile.com/c/8LRn4m/Oa0s7+oEPwK+H71jP
https://paperpile.com/c/8LRn4m/Oa0s7+oEPwK+H71jP
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1.4.6 Lag Time Evidence 
We can use Bekaert et al.’s study of Arabidopsis thaliana to estimate time scales for 

when Lag Time model begins and ends (Bekaert et al. 2011). Bowers et al. (2003) 

identified three WGD in the A. thaliana lineage: WGD-𝛼 (20 Mya), WGD-β (70 Mya) and 

gamma (170 Mya). Given two competing models, the researchers compare which model 

best predicts each WGD retained gene set. WGD-𝛼 duplicated genes are consistent with 

the Dosage Balance hypothesis, not the Lag Time model. In contrast, β duplicated genes 

are necessary for high metabolic flux, while the Dosage Balance model fails to predict 

which genes will be retained in duplicate from the WGD-β. From this they conclude that 

Lag Time restrictions are already fully resolved in the more ancient WGD-β. This would 

place Lag Time resolution between 20 to 70 million years after a WGD in plants with 

similar dynamics.  

It is difficult to find a consensus on these dates since the Arabidopsis line has apparently 

had an anomalously high synonymous substitution rate and different studies using 

different plants will arrive at different dates (Jaillon et al. 2007). This review uses dates 

from (Unver et al. 2017) for Arabidopsis thaliana. Since the organism under study 

matters, next we’ll discuss paleopolyploidy studies, specifically in Fraxinus and 

Oleaceae. 

1.5 Fraxinus Model System 

Oleaceae is the family of Asterids including Ash trees (Fraxinus), Olive trees (Olea), and 

Jasmine (Jasmineae). Oleaceae has economic significance as Ash trees are the most 

common hedgerow tree in the UK and olives are a food staple for Mediteranean diets. In 

Europe, Ash trees are dying off in unprecedented numbers due to an Ash Dieback fungus 

(Hymenoscyphus fraxineus) which spread from Asia in 2012 where it was approximately 

in equilibrium with the native Fraxinus species. In America, Ash trees are threatened by 

the Emerald Ash Borer (Agrilus planipennis). Some species of Fraxinus are more 

resistant to these threats than others, so a wide scale sequencing project was launched in 

2013 in the hopes of discovering which sequence traits confer resistance. A total of 28 

species of Fraxinus were sequenced for the world-wide Fraxinus genome project (see 

Chapter 2: Genome Assembly and Annotation). We also have high quality chromosome 

assemblies for Fraxinus excelsior (N50=103,995) and Fraxinus pennsylvanica 

(N50=27,152,721, Table 3.2); the key species for the UK and US respectively.  

1.5.1 Ash Trees as a Model for Studying Fractionation 
Fraxinus may be an ideal model organism for testing theories about paleopolyploidy 

because all 28 species share an ancient WGD 25 million years ago (Julca et al. 2018, 

Figure 1.1). Other studies reviewed here never go beyond a ratio of 3 species per single 

WGD. A 28:1 ratio in Fraxinus provides an opportunity to test predictions about the 

repeatability of evolution. Specifically, are the same gene families always lost during 

fractionation in independent lineages? What is the timing of these losses? Which gene 

families are preserved in duplicate? Can gene function or network interactions be used to 

predict gene copy number? 

1.5.2 Evidence of Fraxinus WGD 
The main evidence for an ancient whole genome duplication (aWGD) in Fraxinus are 

peaks in the Ks plots between paralogs, indicating a large number of genes that were all 

duplicated at the same time. With the sequencing of Fraxinus excelsior (Sollars et al. 

https://paperpile.com/c/8LRn4m/hbx7N
https://paperpile.com/c/8LRn4m/ZvxYW
https://paperpile.com/c/8LRn4m/UG7Z4
https://paperpile.com/c/8LRn4m/h7wJ
https://paperpile.com/c/8LRn4m/8JZ6Q
https://paperpile.com/c/8LRn4m/8JZ6Q
https://paperpile.com/c/8LRn4m/69vxe
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2017) and Olea europaea evidence was found indicating these species share two WGDs 

(Figure 1.5). Olea europaea has a third WGD distinct to genus Olea (Julca et al. 2018).  

1.5.3 Separating Two Fraxinus WGD 
In order to be used as a model system, we need to first assess what resources are 

available to be able to separate different WGD events. When two WGDs happen very 

close together in time, it can be impossible to separate out genes which were duplicated 

in each event. Probabilistic inference or a separate genome that shares one, but not both 

events can be used to distinguish them (Rabier, Ta, and Ané 2014; Tiley, Ané, and 

Burleigh 2016).  

 

Figure 1.5: Angiosperm WGD in the last 150 million years are marked as grey rectangles. 
Species divergence times are marked by red dots with confidence intervals for their age. Fraxinus 
excelsior and Olea europaea share two WGD (blue rectangles). Source: Figure 2 of (Unver et al. 
2017) used with permission from publisher. 

In Fraxinus, there are two WGD events estimated at 26 Mya and 60 Mya (Fig. 5). Olea 

europaea also has a WGD not shared with Fraxinus (Fig. 6). The older WGD shared by 

Fraxinus and Olea does not include Jasmineae (Figs. 5 & 6). Jasmineae could be used to 

separate the Fraxinus WGD from the older Oleaceae WGD. However, as of the time of 

writing there was not a full genome assembly available for Jasminus sambac (Y.-H. Li, 

Zhang, and Li 2015) and is not used in this study. Also, Phillyrea angustifolia (sister 

species to O. europaea in Figure 1.6) is an allotetraploid (Olofsson et al. 2019). This 

unfortunately means there’s no diploid species outgroup to contrast with the Fraxinus 

WGD. This is addressed further in Chapter 2 using Gene Tree Reconciliation. 

 

Figure 1.6: Jasminus and Olea WGD: This 
species tree from Julca 2017 shows the relevant 
species for this thesis along with three WGD 
events (stars). Red stars are WGD not in the 
Fraxinus lineage. The second green star is a 
WGD at 26 Mya and the subject of study in 
Fraxinus excelsior for this thesis. Source: Fig. 5 
of (Julca et al. 2018) is used under the Creative 
Commons Attribution 4.0 International License  
(http://creativecommons.org/licenses/by/4.0/). 
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1.5.4 Timing of Shared Duplications 
It is very likely that the most recent Fraxinus WGD is shared with Olea because there is 

evidence the same set of duplicated genes is shared between species. This evidence, in 

the form of Ks (4DTv) graphs, has been calculated using paralogs between Fraxinus and 

Olea to verify shared timing of the same WGD (see Julca et al. 2018 Fig. 3 and Fig. S7). 

Unver et al. (2017) estimate the most recent WGD to 26 Mya and the divergence of Olea 

and Fraxinus to 5 million years later. Given the confidence interval on both the species 

divergence time and the timing of the WGD, it is possible that the WGD contributed to 

the divergence of the Olea and Fraxinus lineages.  

The exact dates of lineage divergence in the Oleaceae differ among published 

phylogenetic trees. For the purposes of methodological consistency, we have identified a 

single source that includes all species under study in this thesis. (Zedane 2016) uses 

plastid and rDNA sequences to construct a time tree with over 136 species in Oleaceae. 

Using organellar DNA has the advantage that WGD nuclear genome instability will not 

cause artifacts in the dating methods. Zedane’s time tree is used for all future calibration 

dates in this thesis (see Table 3.1, 3.2.3). 

1.6 Conclusion 

The dynamics of how polyploidy affects evolutionary outcomes is worthy of further study. 

Polyploids, both past and present, have played a role in the geographic expansion of 

plants into new regions and the expansion in copy number and diversity of some gene 

families. Ample evidence in the form of shared timing of gene duplicates indicates seed 

plants are the descendants of multiple rounds of ancient whole genome duplication and 

fractionation. Despite minority cytotype exclusion, genome instability, and transgressive 

expression drawbacks these paleopolyploid organisms outcompeted all of their diploid 

relatives to become the ancestor of all future generations.  

The process of fractionation of genes to a diploid state is still not fully understood. There 

is broad evidence that some gene families are preferentially retained after WGD 

including transcription factors and developmental genes. WGDs provide a rare 

opportunity for the duplication of gene sets which are constrained by relative dosage in 

protein complexes or pathways.  

However, there are still causal relationships to untangle. Given that most WGD events 

studied so far have only a few species per event, how repeatable are these outcomes? 

Even if fractionation is repeatable, is it driven by positive selection of fitness or neutral 

evolution attributes like the chromosome position of a gene? The Worldwide Fraxinus 

genome project provides a novel opportunity to test the repeatability of fractionation 

using 28 diploid species that all share the same whole genome duplication event. 

1.7 Future Chapters 

In the next chapters, we will apply the methods discussed here to use 28 new Fraxinus 

genomes to address these questions. Chapter 2 will introduce genome sequence 

visualization and genome alignments, which serves as the introduction for the second 

aspect of this bioinformatics thesis. I introduce FluentDNA, a new tool for genome 

assembly construction and exploration. Chapter 3 details the methods used to construct 

https://paperpile.com/c/8LRn4m/K73R7
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the 28 Fraxinus genome assemblies. Gene families with Reconciled Gene Trees are 

constructed to identify gene pairs (homeologs) from the most recent Fraxinus WGD. 

Chapter 4 will leverage this data to answer questions on the repeatability of fractionation 

after a Whole Genome Duplication. Chapter 4 uses Fraxinus to test three key theories 

about paleopolyploidy from the literature: i) the repeatability of fractionation is tested 

using convergent evolution in 28 Fraxinus species ii) Gene Balance Hypothesis is tested 

using GO term enrichment analysis on fractionated families iii) Lag Time Model is tested 

by constructing a detailed timeline of gene losses over the Fraxinus lineage. 

Chapter 5 broadens the scope of comparative genomics from gene families to whole 

genome alignment. We address the technical challenges in multiple sequence alignment 

for entire genomes with many rearrangements using Graph Genomes. Chapter 5 

introduces Pantograph, the first Graph Genome browser capable of scaling to thousands 

of individuals. Chapter 6 discusses the challenges and future directions for comparative 

genomics. Transitioning from comparing a pair of genomes to analyzing large sets of 

complete genomes requires a new set of genomic tools and methods. 
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FluentDNA: Nucleotide visualization of whole genomes, 

annotations, and alignments  
 

Author Contributions and Collaborations 
This chapter was previously published separately in the journal Frontiers in Genetics in 

April, 2020, co-authored with Richard Buggs. It is included here with minor edits to fit 

the thesis. FluentDNA started as a Python rewrite of DDV implemented by Tomasz 

Neugebauer which could visualize a column layout for single sequences of length up to 

300Mbp. Initial FluentDNA source code was co-authored with Bryan Hurst and this was 

subsequently massively extended to support whole genome visualization. The authors 

thank Yan Wong for identifying Peano curves could be used in chromosomes and 

creating a JavaScript prototype showing a path with configurable radices.   

 

Abstract 
Researchers seldom look at naked genome assemblies instead, the attributes of DNA 

sequences are mediated through statistics, annotations and high-level summaries. Here 

we present software that visualizes the bare sequences of whole genome assemblies in a 

zoomable interface. This can assist in detection of chromosome architecture and 

contamination by the naked eye through changes in color patterns, in the absence of any 

other annotation. When available, annotations can be visualized alongside or on top of 

the naked sequence. Genome alignments can also be visualized, laying two genomes side 

by side in an alignment and highlighting their differences at nucleotide resolution. 

FluentDNA gives researchers direct visualization of whole genome assemblies, 

annotations and alignments, for quality control, hypothesis generation, and 

communicating results. 

 

2.1 Introduction 
An intrinsic part of the analysis of genomic data is the summarization of large sequence 

datasets. This accomplishes three primary tasks: (1) quality checking an output, (2) 

understanding a sequence in context and (3) communicating about sequence data in 

talks, posters and articles.  This summarization is commonly achieved via metrics or by 

visualization. Simple metrics have the advantage of being precise, concise and easy to 

transmit, for example: N50, GC content, the mean size of exons and introns, and percent 

alignments. Tables of metrics can be used to convey information about, for example, 

overrepresented k-mers, or the location of low complexity regions or gene annotations. 

On the other hand, visualizations can give a broad, spatially explicit overview of sequence 

data.  

Many software tools exist to visualize DNA sequence data, but in those that do include 

the bare sequence, it is only shown at the smallest scales. Genome browsers display 

nucleotide sequence only when zoomed to sub-kilobase scales, but not in broader 

overviews, and usually show annotations as linear blocks or line graphs in parallel tracks 

(Robinson et al. 2011; Kuhn et al. 2013; Buels et al. 2016). Multiple-Sequence Alignment 

https://paperpile.com/c/oPgfau/Mg48m+cIJoR+obcN0
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(MSA) editors such as Jalview have zoomable depictions of nucleotides or amino acids as 

colored blocks allowing variation between vertically organized samples to be picked out 

by the naked eye (Waterhouse et al. 2009; Katoh et al. 2017). Chromosome painting gives 

large scale summaries of genome structure, for example showing translocations between 

chromosomes using different colors (Serov et al. 2005; Kemkemer et al. 2006; 

Rasmussen et al. 2014). Circos plots visualize large scale rearrangements, such as 

syntenic blocks, with arcs (Krzywinski et al. 2009). SynTView uses heat-maps to depict 

variation among sequences (Lechat et al. 2013). To investigate tandem repeats and the 

subtle repeat pattern of codon bias, the tool SpectroFish uses a vertical axis to represent 

frequency (Sussillo et al. 2004; Sánchez and Lopez-Villasenor, 2006). DNA Walk 

visualizes sequence in terms of spatial steps (Arakawa et al. 2009). Ensembl, VisGenome 

and BugView all offer a browser view for aligned genomes, though they focus on larger 

features such as genes (Leader, 2004; Jakubowska et al. 2007; Zerbino et al. 2018) or 

gene presence/absence. These approaches do not show the negative space of intervening 

sequence (Hennig et al. 2015). In contrast, dot plots do show negative space and can 

handle densely connected or noisy data well; they are used for synteny analysis by 

duplicating the x-axis to form a square matrix of matching sequences (Lyons, 2008). 

More abstract visualizations which still use sequence are CGR, which shows k-mer 

representation (Deschavanne et al., 1999; Joseph and Sasikumar, 2006). BioJS sequence 

viewer (Yachdav et al. 2015; Paladin et al. 2020), and Genome Projector (Arakawa et al. 

2009) provide multiple ways of viewing genomic information and sequence variation at a 

range of scales. For genome assembly and pan-genome studies, visualization is used for 

quality control, for example, in Pan-Tetris (Hennig et al. 2015), Blobtools (Laetsch and 

Blaxter, 2017), Hawkeye and AMOS (Schatz et al. 2013).  

In several areas of information technology, direct visualization of big data has accelerated 

data analysis. This has been key to the success of the company Palantir, whose software 

enables humans to work out complex interrelations in data (Khurana et al. 2009; Wright 

et al. 2009; Hossain et al. 2011). Other companies use the visualization of raw binary 

data representing executable code in computer security research to seek the location of 

passwords, encryption, obfuscation and malware. One approach uses Hilbert space filling 

curves to calculate the entropy of programs (Conti et al. 2010; Cortesi, 2011). The 

software Cantor Dust uses this approach together with k-mer representation graphs 

(https://sites.google.com/site/xxcantorxdustxx/). Cantor Dust was acquired by Batelle, a 

think-tank for the CIA (Miller et al. 2001), though some features are available in open 

source derivatives Veles and Senseye (Stahl; Rombouts, 2014).  

Given the success of raw sequence visualization in other areas of big data analysis, it is 

reasonable to ask whether these techniques would also aid in genetic research and 

communication. A simple way to visualize large sequence files has been pioneered by 

DNA Rainbow (Bierkandt and Bierkandt, 2009), DNASkittle (Seaman and Sanford, 

2009) and DDV (Neugebauer et al. 2015). These depict single DNA sequences as colored 

pixels (like an MSA editor), but introduce line breaks which wrap long sequences into 2D 

blocks. DNA Rainbow has a single raster column per chromosome with a fixed width of 

3,500 pixels; this makes all but very large features difficult to discern by eye. DNASkittle 

has a variable column width optimized for tandem repeats and a suite of visualizations 

for exploring sequence similarity features in detail; this single column layout and 1D 

zoom is not ideal for use on large datasets, and it handles draft genomes and multiple 

chromosomes poorly. DDV introduces a more intuitive 2D zoom feature using sets of 

columns in a single layout, but does not support annotations.  

https://paperpile.com/c/oPgfau/iFFd7+uE3UT
https://paperpile.com/c/oPgfau/WSJKG+kSmYt+B036n
https://paperpile.com/c/oPgfau/WSJKG+kSmYt+B036n
https://paperpile.com/c/oPgfau/4kVrq
https://paperpile.com/c/oPgfau/VrpWX
https://paperpile.com/c/oPgfau/ncO1r+VysMD
https://paperpile.com/c/oPgfau/WLwCb
https://paperpile.com/c/oPgfau/OoIqt+44YA8+9Qmrp
https://paperpile.com/c/oPgfau/oJevO
https://paperpile.com/c/oPgfau/pUmxw
https://paperpile.com/c/oPgfau/FBGAR+n7nfI
https://paperpile.com/c/oPgfau/dRB7u
https://paperpile.com/c/oPgfau/WLwCb
https://paperpile.com/c/oPgfau/WLwCb
https://paperpile.com/c/oPgfau/oJevO
https://paperpile.com/c/oPgfau/R2Iud
https://paperpile.com/c/oPgfau/R2Iud
https://paperpile.com/c/oPgfau/Pnd3F
https://paperpile.com/c/oPgfau/ZBHN+emEY+nSOP
https://paperpile.com/c/oPgfau/ZBHN+emEY+nSOP
https://paperpile.com/c/oPgfau/U4ltE+6X0fz
https://sites.google.com/site/xxcantorxdustxx/
https://paperpile.com/c/oPgfau/zhLyl
https://paperpile.com/c/oPgfau/UliMn+J0qUH
https://paperpile.com/c/oPgfau/aSZfz
https://paperpile.com/c/oPgfau/ku9VK
https://paperpile.com/c/oPgfau/ku9VK
https://paperpile.com/c/oPgfau/4JIRF
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In this paper, we present the tool FluentDNA, which visualizes sequence data with 

nucleotides as colors in a 2D layout with a zoomable interface. The layout can scale to 

accommodate any number of chromosomes and scaffolds. Individual nucleotides are 

visible when zoomed in and colors are averaged in zoomed out images. Even in the 

absence of any annotation of a genome, FluentDNA allows the human eye to pick out key 

features of a genome assembly by size and nucleotide composition. With practice, major 

features of chromosome architecture including centromeres, isochores, telomeres, and 

tandem repeats can be identified from the naked sequence because changes in k-mer 

usage cause changes in color and texture. Contamination is visible because of G/C 

content and coverage differences. FluentDNA expands on DDV’s visual paradigm with a 

suite of features such as the ability to handle multi-part FASTA files and whole genome 

assemblies, output different layout types, and visualize annotations, repeats, and 

alignments. It works on Windows, Mac and Linux. FluentDNA thus gives researchers 

direct visualization of their data files, for quality control, hypothesis generation, and 

communicating results. It can also promote the public understanding of science through 

public webpages and interactive museum displays. 

2.2 Methods  
We designed our software to use the following conceptual methods for an easy-to-use 

whole genome visualization tool. 

2.2.1 Nucleotides As Pixels 

Nucleotide sequences can be depicted as a series of pixels where the four bases are 

represented by four colors. The ideal color palette will conform to the following criteria: 

(1) high contrast; (2) friendliness to color-blindness; (3) typical nucleotide compositions 

should be viewable for over 20 minutes without causing discomfort (i.e. greens and blues 

should predominate)(Kaya and Epps; Mehta and Zhu, 2009).  

2.2.2 Depiction of One-Dimensional Locality In Two Dimensions 

To visualize long nucleotide sequences meaningfully in two dimensions, locality in the 

second dimension of the visualization must approximate locality in the one-dimensional 

source data. The simplest way to do this is a linear sequence with frequent line breaks, 

ordered into a set of nested tiles. In this Tiled Layout, horizontally-neighboring pixels are 

true neighbors in the source data, whereas vertical neighbors are spaced in the source 

data by the size of the column width. Another approach, referred to here as an Ideogram 

Layout, uses space filling curves. These are fractal shapes which fold a one dimensional 

continuous path to fill a 2D (or higher) area (Bially, 1969; Haverkort and van 

Walderveen, 2010) with no line breaks. One type, the Peano curve, is made of spirals of 

spirals, continually wrapping back in on itself to occupy the available space nearest to its 

origin. This process is recursive so locality is preserved at all scales. Peano curves 

approximate more closely the arrangement of nucleotide sequences in the interphase 

nucleus than do tiled arrangements (Lieberman-Aiden et al. 2009). However, it is 

impossible for the human eye to trace exact nucleotide sequences in a Peano curve: their 

utility is mainly restricted to broad overviews of data.  

2.2.3 Pan-And-Zoom Functionality 

Eukaryotic genomes tend to be hundreds of megabases and even gigabases in length. 

When visualizing them in two dimensions, rapid and seamless pan-and-zoom 

https://paperpile.com/c/oPgfau/L5Fes+7Eqp3
https://paperpile.com/c/oPgfau/1FtCY+rv8Z2
https://paperpile.com/c/oPgfau/1FtCY+rv8Z2
https://paperpile.com/c/oPgfau/TMop7
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functionality is essential. When zoomed out, pixel colors should be merged together to 

give an approximate representation of the nucleotide content by color.  

2.2.4 Mouseover Functionality 

To move from visualization to analysis of specific genomic features with other software, 

users should be able to retrieve the sequence at any given point in the visualization 

simply by hovering over it. It should be possible to export snippets of DNA sequence as 

letter codes for further analysis.  

2.2.5 Annotations 

Annotations can be visualized in two ways: (1) by directly highlighting nucleotides which 

are present in a genome feature; this works for both tiled and ideogram (see above) 

visualizations or (2) by a side-by-side column in a tile layout showing the location of 

features.  

2.2.6 Whole Genome Alignments 

Whole genome alignments are commonly available as liftOver files. Using these, 

reference and query genome sequences can be visualized in side-by-side tile layouts 

where indels are depicted as gaps in one or the other genome. To highlight differences 

due to SNPs, indels, and rearrangements, extra columns can be added showing 

nucleotide differences between the two genomes, making them visible at a wide range of 

zoom scales. Different background colors can be used to indicate different types of 

rearrangements, though rearrangements within rearrangements will be hard to portray.  

2.3 Implementation 
These methodological concepts are implemented by FluentDNA in a Python code base 

with Javascript for browsing and mouseover. Python code handles the rendering of fasta 

files, annotations, and genome alignments as well as a file server. Javascript code 

depends on OpenSeadragon 2.4, Biojs Sequence 1.0, and jQuery 1.7 (OpenSeadragon; 

Resig et al. 2006; Yachdav et al. 2015). FluentDNA is available on MacOS and Windows 

as an executable command line tool or a GUI. It is available on all platforms as a python 

standalone library. The logical framework on FluentDNA is shown in Figure 2.1. 

 

https://paperpile.com/c/oPgfau/JiQM+dRB7u+FjSQ
https://paperpile.com/c/oPgfau/JiQM+dRB7u+FjSQ
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Figure 2.1: FluentDNA Implementation UML showing the relationship between objects in 
the program. Green diamonds mean an object has one or more of the connected objects. Blue 
arrow mean one object inherits all the properties of another object. Based on the input files 
provided (left), FluentDNA uses different rendering modes specified by the user, routed through 
FluentDNA.py. A FASTA sequence can be rendered in Tile or Ideogram style, each of which can 
also have gene annotations (GTF/GFF2/GFF3) overlaid with HighlightedAnnotation.py. Whole 
Genome Alignments handled by ChainParser.py require two FASTA files and a LiftOver file. 
Annotation Track Layout and Alignments both use the Parallel Genome Layout module and 
provide pseudosequences for further analysis. On the right, FluentDNA produces a web directory 
containing all input files and parameters (for reproducibility). The Visualization Webpage (top 
right) requires no installation and provides mouseover sequence retrieval. A glossary of files is 
listed in Supplemental 2. 

2.3.1 Input Data 

FluentDNA reads single or multiple sequence FASTA files of any size that the host 

machine’s memory can accommodate. For annotations, it reads GFF, GFF2 and GFF3 

files. Visualizing whole genome alignments requires input of two genome assemblies in 

FASTA format and a liftOver file describing their alignment. The FluentDNA dispatch 

selects the appropriate layout based on input data and user parameters entered through 

the command line or GUI.  

2.3.2 Tile Layout 

A FASTA file of any size can be visualized by FluentDNA in a tile layout (Figure 2.2). The 

default layout is arranged in powers of ten: rows of 100 pixels (each pixel representing 

one base), in columns of 1,000 rows containing 100 Kbp. One hundred columns are 

arranged in 10 Mbp mega-rows. Chromosomes occupy mega-columns composed of 

enough mega-rows to accommodate the largest chromosome (default 260 Mbp). 

Chromosomes are laid out side by side and several smaller chromosomes can share a 

single mega-column. In the default layout there is no white space within and between 

rows, 3 pixels of white space between columns, 9 between mega-rows, 700 pixels 

between chromosome columns.  This default layout is defined in FluentDNA by a list of 

radices followed by a list of padding sizes: i.e. ([100, 1000, 100, 26, 999],[0, 0, 3, 9, 

700]). Users can change this using the --custom_layout option.  
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Figure 2.2: Visualization Method. A) In the Tile Layout sequence reads left to right like 
English text. B) The Ideogram Layout uses Peano curves painted with sequence colors. In this 
example, the radices are x=(3,3,3) y=(5,3,3) and scale=2 to insert whitespace around the curve. 
FluentDNA uses scale=1, meaning the same path shape is present but there is no whitespace 
separating disjointed nucleotides. C) The default width of one column is 100bp. Features visible 
from bare sequence are annotated on the right. D) In the default Tile Layout, 100 x 1000 bp 
columns are arranged in rows within mega-columns that represent chromosomes.  

2.3.3 Ideogram Layout 

In Ideogram Layout, FluentDNA depicts the linear DNA sequence as a Peano curve 

(Figure 3.2B). This has an overall bounding box defining the 2D space filled by the curve, 

and internal bounding boxes that define how frequently the curve bends. The bounding 

boxes are defined internally by a set of (x, y) radices (Sagan, 1994).  

2.3.4 Pan-And-Zoom Functionality 

The basic output of FluentDNA is a single master image file depicting the input DNA 

sequence. This file is inevitably very large for long sequences, making panning and 

zooming very memory intensive using direct image viewers. FluentDNA therefore 

automatically precomputes a “zoom stack” using the DeepZoom library, and sets up a 

local HTTP server which uses the OpenSeadragon platform (OpenSeadragon; Khouri-

Saba et al. 2013) to view the zoom stack as a website using a web-browser.  Interactive 

zooming can be disabled with the --no_webpage command line option. The position of 

the viewport, combined with the zoom level, generates a small list of tiles to be streamed 

to the browser. This allows for constant time performance on any device with any size 

dataset.  

2.3.5 Mouseover Algorithm 

https://paperpile.com/c/oPgfau/B262n
https://paperpile.com/c/oPgfau/JiQM+xelc
https://paperpile.com/c/oPgfau/JiQM+xelc
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FluentDNA allows the selection of small sequence snippets in browser using mouse clicks 

over the image. Users can save 300bp snippets of sequence using a keyboard shortcut 

which will add the coordinates and sequence to a log. This is often useful for BLAST or 

manually checking a result. Since the image is not itself a text object, FluentDNA uses an 

inverse function of each layout transformation to retrieve the original sequence position 

in the fasta input file and output the snippet’s DNA sequence in letter codes. 

2.3.6 Annotations  

Annotation information from GTF, GFF2 or GFF3 files are visualized by FluentDNA as 

highlighted sequences within tiled or ideogram layouts, or in an annotation track next to 

a tiled layout. Currently, VCF and BED annotations are not supported. 

Highlighted annotations are painted directly on top of the sequence using lightening, 

darkening, or outlines. Up to three different annotation files can be rendered with a 

different appearance. Gene annotations are specified with --ref_annotation and appear 

as lightened areas of the sequence, with lower opacity for introns and higher opacity for 

exons. Overlapping annotations are visible as doubly highlighted areas. Particular genes 

of interest can be highlighted with a drop shadow by specifying a second gene set with --

query_annotation. Set intersections are used to detect shadows that collide with other 

annotated regions so that they can be adjusted to look natural. Repeat annotations 

specified with --repeat_annotation are rendered as dark regions. Gene name labels are 

rendered directly onto the rectangular bounding box of the annotated region. Label font 

size scales up for larger annotation areas. In the Tile Layout, gene labels are always 

placed at the start of the gene respective of strand: genes on the positive strand have their 

label at the top of the bounding box, while genes on the negative strand have labels at the 

bottom of the bounding box. In the Ideogram Layout, gene name labels are placed in the 

geometric centroid of the annotated nucleotides. The maximum and minimum x and y 

coordinates are used to determine a bounding rectangle to approximate the size of the 

gene region. Label font size and opacity is determined in a lookup table so larger genes 

get larger, more transparent labels painted onto them.  

Annotations in a parallel track are depicted as a pseudosequence based on the GFF file. 

Only one annotation type can be present at any given location in the annotation track, so 

priority is given in order: CDS, exon, mRNA, gene. The annotation pseudosequence is 

interlaced side-by-side with the nucleotide sequence columns. As the annotation 

sequences are less information dense than the DNA sequence, the number of horizontal 

pixels in the annotation column can be set to a lower value than in the sequence column. 

The display width of the annotation column can be set with the --annotation_width 

parameter. When an annotation spans multiple columns, the median point is used to 

identify the column to fill with a label.  

Gene names are rendered and stored as pixels, which leads to a key limitation of 

FluentDNA’s design: the lack of seek functionality. In the current implementation it is 

not possible to use the name of a gene or other query to jump to a location in a genome. 

The information needed for this jump is not present in the pixels. However, FluentDNA 

stores all input files, including annotations in the /sources/ directory for reproducibility. 

Seek functionality would require javascript access to indexed annotation static files in a 

manner similar to how Jbrowse serves annotations without the need for a server (Buels 

et al. 2016).  

https://paperpile.com/c/GxsSdv/Q11N
https://paperpile.com/c/GxsSdv/Q11N
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2.3.7 Whole Genome Alignments  

FluentDNA can visualize whole genome alignments when provided with FASTA files for a 

reference and a query genome, and a liftOver file defining the genome coordinates of 

regions aligning between the two genomes. The liftOver file must have been previously 

generated using external whole genome alignment software. FluentDNA generates two 

gapped sequences from the reference and query genomes, using information from the 

liftOver file. It outputs a tiled layout with four columns: the reference genome, variants 

unique to the reference genome, variants unique to the query genome, and finally the 

query sequence (Figure 2.3). The two middle sequence columns highlight inversions, 

transpositions and translocations using background color (white: syntenic, blue: 

intrachromosomal transposition, red: interchromosomal translocation). In this way, 

differences between the two genomes in terms of SNVs, indels, inversions and 

translocations are visible at a range of zoom scales. FluentDNA also outputs a table 

quantifying these differences. 

Figure 2.3: Design of An Alignment Visualization. An example from a whole genome 
alignment visualized in FluentDNA.  25Kbp of Homo sapiens (Hg38) chr19:458,731 and Pan 
troglodytes (panTro5 2017).  From left to right: gene annotation, human sequence, human unique 
sequence, Chimp unique sequence, and aligned Chimp sequence. Genome elements in the 
sequence can be seen without an annotation because of changes in nucleotide 
composition.  Simple and tandem repeats appear as a texture. The two center “difference” 
columns generated by FluentDNA show the differences between the two sequences.  Background 
colors indicate the source of the aligned region: syntenic (white), inversion and transposition 
(blue), or interchromosomal translocation (red). Two human gene annotations for ODF3L2 and 
SHC2 appear on the left with blue introns and yellow exons. a) Chimpanzee has a ~1700bp 
sequence not present in human. b) The blue background indicates a transposition within the same 
chromosome covering half this figure. Sequence in the center left is human specific, for example 
the highly A/T rich region that overlaps the end of SHC2’s exon annotation. c) A small 
translocation from another chromosome marked in red. d) The transposition ends in a AAAC 
tandem repeat where human has twice as many copies as chimpanzee. e) Human and chimpanzee 
share a syntenic region where Chimpanzee has 300bp and 130bp inserts. 
 

Whole genome alignment liftOver files, such as those available for many species pairs 

and assembly versions on the UCSC genome download site, contain a list of chain objects 

defined by a start position and strand in the reference and query genomes. Each chain is 

a series of entries with a contiguous alignment punctuated by gaps in the query or 

reference. Where two genomes are assembled to chromosomal level and highly similar, a 
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single chain may cover much of the sequence data for each chromosome. Translocations 

and inversions introduce new chains. Multiple translocations from the same 

chromosome in the same orientation may be netted together depending on a distance 

cutoff. Ideally, a liftOver file will aggregate the alignment into as few chain objects as 

possible.  

In order to turn the list of chains in a liftOver file into a visualization, it is necessary to 

linearize the alignment, pull in the sequence, and rearrange translocated sequences. 

FluentDNA sorts all chain entries in a UCSC Chained LiftOver file into a single list on the 

reference positive strand.  The first large chain (referred to as the master chain) is used to 

establish a shared coordinate frame with the query genome.  Other chains are then 

inserted into position, meaning all chains become intermixed.  The reference genome 

stays in the same order and copy number but gaps may be inserted.  The query genome 

sequence is rearranged to match the ordering and copy number of the reference genome 

(though if the liftOver file is for a reciprocal best alignment each sequence in the query 

genome will only be represented once).  Each nucleotide index range tracks information 

about the source sequence: syntenic, intrachromosomal, or interchromosomal.  New 

query sequence is brought in to fill unaligned gaps in the initial master chain alignment 

until all known alignments are composited into a single visualization. 

When the master chain covers a large proportion of the query chromosome, unaligned 

query sequence is brought in with the master chain, introducing gaps in the reference 

and allowing the user to see sequence that is unique to the query genome. However, if the 

master chain covers only a small proportion of the query chromosome (for example 

because the genomes are highly divergent, or the query genome assembly is highly 

fragmented), then a design limitation of FluentDNA will become apparent. Little to zero 

unaligned query sequence can be included in the visualization and few gaps will be 

introduced into the reference genome. It will thus appear that the query genome is a 

subset of the reference genome because regions of the query genome that cannot be 

aligned to the reference genome will not be placed within the visualization. This 

limitation could only be ameliorated with a search of the remaining alignment file to 

verify that adjacent sequence was not allocated elsewhere, requiring additional compute. 

The background of the columns in the four-column alignment layout are colored to show 

which query alignments come from the master chain (shown by a white background: 

these are syntenic alignments), secondary chains with the same chromosome label as the 

master chain (shown by a blue background: these are normally due to inversions or 

translocations within a chromosome) and secondary chains with a different chromosome 

label (shown by a red background: these are normally due to translocations among 

chromosomes). FluentDNA can also output an image that only shows the nucleotides 

unique to the reference genome, using the option --layout=unique. The script 

AlignmentStats.ipynb can be used to aggregate genome alignment statistics for a whole 

genome.  

2.3.8 Phylogenomic Multiple Sequence Alignments  

FluentDNA can visualize many multiple sequence alignments (MSA) in a single field of 

view, such as a set of genes aligned for a phylogenomic study. This allows users to, for 

example, pick out poorly aligned sequences. This function requires a directory of FASTA 

files as input. Each file in the directory contains multiple aligned sequences, representing 

one MSA. The file name is rendered as a text label over the sequence block. Files are 



41 |  
 

either rendered in alphabetical order or in descending count of FASTA entries if --

sort_contigs parameter is used. In the rendering engine, each MSA is listed as a separate 

layout with its own width and height. Mouseover sequence is handled by storing the 

origin point of each layout in the HTML.  

2.3.9 Image Generation For Publications 

FluentDNA produces PNG visualizations at different scales for publications. The script 

Image_resize_script.py allows the user to set the level of magnification for any image 

output without introducing aliasing artifacts. Vector graphics are a proxy for providing 

super resolution which removes pixel artifacts around text, curves etc. Since FluentDNA 

directly provides super resolution through a zooming interface and the export of images 

of any size, it does not provide vector output as well. 

2.3.10 Publishing Results on Public Web Pages 

Each genome visualized is stored in /results/ inside of the FluentDNA installation folder. 

Visualization webpages can be published by placing this folder on any public facing 

server. No special FluentDNA server is required. For example, a visualization with --

outname=“HumanHg38”, the user would copy the folder results/HumanHg38 to the 

server then link to HumanHg38/index.html. Javascript runs on the client’s machine and 

downloads for all the source files are available through links to HumanHg38/sources/. 

Image browsing requires a small amount of traffic per user regardless of the size of the 

genome. Sequence mouseover generates more server traffic but can be disabled by 

deleting the /chunks/ directory. Similarly, source downloads can be disabled by deleting 

the /sources/ directory to protect private data. 

2.3.11 Museum Display 

FluentDNA can support an interactive museum display allowing visitors to explore a 

whole genome assembly. A large poster is printed showing a tiled or ideogram image of a 

whole genome assembly, and overlaid with a touch sensitive screen. A flat screen monitor 

is built into the display. When visitors touch a point on the genome poster, a zoomed in 

image of that region is shown on the flat screen, together with annotation information 

and the DNA letter-code sequence. Detailed instructions for setting up such a display are 

given in Supplemental 1. 

2.4 Results 
Here, we show the various outputs of FluentDNA for the latest version of the human 

genome, and its alignment to the chimpanzee genome. We also show how FluentDNA 

can be used to make a museum display. The commands to generate these visualizations 

are available with the published version of this chapter, found here: 

https://www.frontiersin.org/articles/10.3389/fgene.2020.00292/full. The time and 

memory required to render specific figures is listed in Table 2.1. 

Table 2.1 . FluentDNA Time And Memory Requirements 
 

Input Size Time  Memory 

HG chr18 Tile Layout without Annotation 80 Mbp 0:01:18  920 MB 

HG chr18 Tile Layout with Annotation (Figure 2.4A) 80 Mbp 0:06:00 14 GB 

https://www.frontiersin.org/articles/10.3389/fgene.2020.00292/full
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HG chr18 Ideogram with Annotation (Figure 2.4B) 80 Mbp 0:13:16 18 GB 

Hg38 whole genome without Annotation 3 Gbp 1:18:54 55 GB 

Hg38 whole genome with Annotation (Figure 2.5) 3 Gbp 4:52:22 110 GB 

Human-Chimp chr19 Alignment Visualization (Figure 2.3) 58 Mbp 00:08:00 18 GB 

Time performance is roughly linear with respect to input data size. Chr18 processed 0.975 Mbp 
per minute. Rendering a dataset 37.5x larger, the human genome processed 1.16 Mbp per minute. 
A Highlighted Annotation takes three times as much memory as the nucleotide sequence alone 
since two images are created to make the overlay image. Compared to Tile Layout, Ideogram 
Layout takes additional time to compute the Peano curve coordinates.  
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2.4.1 Visual Analysis of The Human Genome 

A tile layout was generated for the Hg38 version human genome assembly chromosome 

18 (Hg38) with default settings and highlighted gene annotations (Figure 2.4A). An 

ideogram (see Figure 2.4B) was made for the same chromosome with highlighted gene 

annotations for comparison. In both layouts the centromere is clearly visible as a 

homogenous gene free region. One advantage of the Ideogram Layout is that gene names 

can be drawn larger than the Tile Layout columns.  

Figure 2.4: Side by Side Comparison of Tiled and Ideogram Layouts. The same 
sequence is shown in two different layouts. Genes on human Chr18 Tile and ideogram layouts side 
by side with highlighted annotation. A) The whole structure of human Chr18 with GenCode v30 
Genes Highlighted rendered in the Tile layout. Gene labels are drawn in the center and scaled to 
the size of the region. Centromeres can be clearly seen as a two-row region devoid of gene 
annotations. Isochores defined by changes in G/C content can be seen as changes in the 
background color. FluentDNA’s zooming interface allows users to see the whole chromosome then 
zoom in on areas of interest to see smaller features. B) The whole structure of human 
chromosome 18 is rendered in the Ideogram layout. The gene label DLGAP1 can be seen in the 
upper chromosome arm. Large gene name labels are drawn with greater transparency so that they 
can overlap with smaller opque gene labels which may be embedded in the same region. The 
Peano curve snakes from left to right then right to left and is padded by a small amount of 
whitespace to mimic a chromatin fiber. Live 
versions: https://FluentDNA.com/Human_Genome_Hg38_chr18_with_Gencode_v30/ and 
https://FluentDNA.com/Human_Ideogram_Hg38_chr18_with_Gencode_v30/ 
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For example, DLGAP1 at the top of Figure 2.4B is visible at chromosome scale because of 

its size. At high magnification, the advantage shifts to Tile Layout. Tandem repeats 

appear as coherent vertical lines in Tile Layout or are at least recognizable as a diagonal 

slope. However, in Ideogram they are much more difficult to spot as little more than an 

unusually homogenous area or quilt pattern. Tile Layout also renders much faster which 

is important for whole genome renders like Figure 2.5. At the whole genome level, users 

can see entire chromosome structures as well as prominent features like isochores and 

gene deserts (Figure 2.5).  

Figure 2.5: Webpage View of FluentDNA Visualization of the entire human genome 
(hg38) in tiled layout with overlaid gene annotations. Users can zoom in on an element of interest 
to investigate in more detail. Users can see any sequence currently under the mouse pointer and 
save 300bp snippets to a log including the scaffold name and position of each snippet. The exact 
nucleotide under the mouse is shown in a BioJS sequence component (Gómez et al. 2013). The 
live version with sequence retrieval alongside annotations is available: 
https://FluentDNA.com/Human_Genome_Hg38_and_Genes_Gencodev30/ 

In Figure 2.6A, we use FluentDNA to visualize the repeat content of human chromosome 

19 using a multiple sequence alignment gallery. RepeatMasker annotation positions 

downloaded from UCSC were used to extract the sequence for every non-simple repeat 

from Hg38, clustered by name, and aligned using the repEnd coordinate. This shows 

several families of LINES all with the same characteristic enrichment in 3’ ends. Alu 

repeats also have a distinctive dimer structure where often only one L or R monomer is 

found in the genome. The result is equivalent to Figure 2.6B copied from Imbeault et al. 

(2017) which made it clear L1 has many more copies of the 3’ end than the 5’ end due to 

its copying mechanism.   

https://paperpile.com/c/oPgfau/9NRwI
https://fluentdna.com/Human_Genome_Hg38_and_Genes_Gencodev30/
https://paperpile.com/c/oPgfau/GCsm
https://paperpile.com/c/oPgfau/GCsm
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A) 

B) 
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Figure 2.6: Multiple Sequence Alignment Gallery Visualization. A) This figure is a 
panoramic view of all instances of repeats on Human chr18 annotated by RepeatMasker. 
FluentDNA adjusts the layout width to match the consensus length of the repeat family. Starting 
in the Upper Left, major features are ALR centromere, Alu broken into subfamilies. Dominating 
the middle are long green repeats of L1, followed by the less conserved L2, then a collection of less 
abundant repeat families. RepeatMasker annotation positions downloaded from UCSC were used 
to extract the sequence for every non-simple repeat from Hg38, clustered by name, and aligned 
using only the repEnd coordinate (Kuhn et al. 2013; Smit et al. 2015). Live version: 
https://FluentDNA.com/Human_Hg38_Chromosome_18_Repeats_-_alphabetical/ B) All 
copies of L1 from the whole human genome are aligned in this figure copied from Imbeault et al. 
(2017). Each of the 12,671 horizontal lines is one copy of L1. Zinc Finger protein occupancy is 
painted onto the individual copies. This visualization clearly illustrates the deletion of the ZNG93 
target site in L1PA3, L1PA2, and L1HS. The same preference for L1 3’ retention can be seen in 
both visualizations as a ragged edge on the left side. This figure was the inspiration for the MSA 
Gallery view, by making it clear it was possible to visualize all sequences, not by their chromosome 
position, but by their sequence similarity coordinates. FluentDNA’s approach favors quantity over 
quality by displaying all repeat types in a single collage. This could be further refined with 
preprocessing to group and align similar repeat subfamilies as in Figure 2.6B to improve clarity. 

 

2.4.2 Human and Chimpanzee Comparison 

As an example of using FluentDNA for inspecting whole genome alignments, we used 

(Human (Hg38, Dec. 2013) and Chimpanzee (PanTro6, Jan. 2018) assemblies available 

at UCSC and their corresponding liftOver file 

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToPanTro6.over.chai

n.gz accessed March 2018. The full browsable alignment at nucleotide resolution is 

available at: https://FluentDNA.com/Human_Hg38_vs_Chimpanzee_PanTro6/. 

We can visually compare across species two chromosomes in the “Alignment” layout. 

Figure 2.3 shows human chr18 compared with the rest of the chimpanzee genome. We 

can tell from the white background color in the central two columns that the entire lower 

chromosome arm is covered by a single syntenic alignment chain, indicating that 

Chimpanzee has an equivalent syntenic chromosome 18. The upper arm background 

color is blue, indicating the same chromosome, but not the master chain. This can be 

caused by an inversion in chimp or, more likely, because the chaining algorithm has not 

joined chains from the upper and lower chromosome arms. Around the telomeres and 

centromeres we see smaller regions with a red background: this indicates these 

alignments are pulled in from other chimpanzee chromosomes. These patches can be due 

to biological translocations or spurious alignments from another chromosome. Two 

obvious examples of this are in chunks 14,900,000 and 15,000,000 where regions 

brought in from other chromosomes show a markedly lower sequence identity in the 

middle difference columns.  

Finally, sequence unique to either the reference genome or query show up as 

interruptions in the four column layout when zoomed out. This allows users to quickly 

get a sense of how much the alignment covers and where. Users can zoom in on unique 

sequences of interest. For example, chunk 30,100,000 contains 50 Kbp of non-repetitive 

unique human sequence whereas the chunk before 30,000,000 contains 10 Kbp where 

the aligner simply failed to cover two regions which are visibly similar. 

In addition to generating a visualization for each chromosome, FluentDNA calculates 

alignment statistics to quantify alignment coverage, sequence identity, and the 

distribution of gap sizes in the alignment (Table 2.2). Since centromeres and 

https://paperpile.com/c/oPgfau/KRzF+Mg48m
https://fluentdna.com/Human_Hg38_Chromosome_18_Repeats_-_alphabetical/
https://paperpile.com/c/oPgfau/GCsm
https://paperpile.com/c/oPgfau/GCsm
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToPanTro6.over.chain.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/hg38ToPanTro6.over.chain.gz
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unsequenced regions correspond to biological features, calculations including N’s and 

centromeres are listed in parentheses. Initial alignment coverage is 95.57% (90.9%) of 

the Hg38 reference, and identity within the alignment of 98.65%. We used the “Unique” 

FluentDNA renderer to show the regions of Hg38 not covered by the alignment (Figure 

2.7). This visualization immediately shows that over half the unique human sequence is 

actually centromere alpha satellite repeat, and sub-centromeric repeats, which are fully 

sequenced in humans but represented by Ns in PanTro6. FluentDNA allows us to 

quantify these regions with more customizable precision than a generic repeat-masking 

would: by visual inspection, we were able to make a custom annotation of centromere 

and sub-centromeric regions. This allowed us to calculate the total human unique 

sequence that is attributable to centromere repeats of all kinds. With centromeres 

excluded, coverage of the chimpanzee alignment is 97.9% of the human genome.  

 

Figure 2.7: Human-Unique Sequence & Annotation Render of Hg38. FluentDNA’s 
Unique layout allows researchers to subtract one genome from another, leaving only the 
difference for inspection. Human sequence not covered by the alignment between Chimpanzee 
and human is displayed in chromosome order within two layout pages. The unique portion is 135 
MBp, about the same size as chr9. Each visible row is a concatenation of the unique sequence 
from one chromosome starting with a small label, while chrX takes up more than one row and has 
a large label. This is because chrX has more human unique sequence than any other chromosome. 
The grey-blue region in the middle of each chromosome is the sequenced centromere alongside a 
manual annotation (see Results and Table 2.2). Outside the centromeres, a variety of tandem 
repeats and non-repeat content are visible. In the annotation track, introns are orange, exons are 
blue, and CDS is red. The visualization shows approximately half of the human-unique sequence 
is intronic, while exons are a small minority and CDS unique to human are rarer still. Examples of 
human specific protein sequence are shown in Table 2.3. Live version: 
https://FluentDNA.com/Unique_Human_Genes_and_Centromere_vs_Chimpanzee_PanTro6/ 
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Table 2.2.2 Alignment Statistics for Human Genome Hg38 Compared To The Entire 
Chimpanzee Pantro6 Genome. 

Feature Statistic 

Reference Length (N's included) (independent calc) 3,088,269,832 

Reference length (No N's) (independent) 2,937,639,113 

Total alignment Length 2,807,378,393 

Unaligned sequence within reference 149,173,906 

Alignment length / Reference length 95.57% 

Identical bases within alignment 2,769,610,997 

Non-identical bases within alignment 37,767,396 

Identical bases / Alignment length 98.65% 

Number of gaps introduced in reference by alignment 2,139,409 

Ref Gaps larger than 10bp 241,691 

Ref Gaps larger than 100bp 54,321 

Ref Gaps larger than 1000bp 18,911 

Ref N to query bp 150,636,009 

Query N to ref in bp 15,139,025 

Number of gaps introduced in query by alignment 2,216,928 

Query Gaps larger than 10bp 266,110 

Query Gaps larger than 100bp 53,587 

Query Gaps larger than 1000bp 17,145 

Centromeric sequence length (manual annotation) 72,352,500 

Reference length minus centromeres 2,865,286,613 

Alignment length / Reference length minus centromeres 97.98% 

Identical bases / Reference length minus centromeres 96.66% 

The top 18 rows are available for any alignment processed with FluentDNA. Using the script 
Stats_Aggregator.ipynb, which collects statistics across many chromosomes and aggregates them 
into a summary of a whole genome alignment. Statistics for chromosomal alignment are 
generated automatically as a single file per reference chromosome by FluentDNA. In the Hg38 
versus PanTro6 alignment,“Alignment length / Reference length” is lower than expected because 
Hg38 has almost fully sequenced centromeres, whereas the PanTro6 has largely unassembled 
centromeres. Using FluentDNA’s UniqueOnlyChainParser, we rendered the unalignable regions of 
Hg38 and used the tool to mark the beginning and end of sub-centromeric regions based on 
sequence. Using these coordinates, we calculated Alignment length / Reference length minus 
centromeres. Statistics for this manual analysis are shown in the final four rows.  
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FluentDNA also quantifies the source of aligned sequence for every nucleotide, shown by 

different background colors in the visualizations (see AlignmentStats.ipynb (Seaman and 

Buggs 2020)). In the UCSC whole genome alignment of PanTro6 to Hg38, the first chain 

for each chromosome covers 52.9% of Hg38 excluding Ns and centromeres (49.1% 

including Ns and centromeres) of the genome; 78.8% (73.1%) is covered by the first two 

chains and 87.3% (81.0%) is covered by the first three chains. In total, 95.7% (88.8%) of 

the Hg38 genome is covered by chains derived from the same homologous chromosome 

in chimpanzee (including chimpanzee chromosomes 2A and 2B as both corresponding to 

human chromosome 2). Another 2.2% (2%) of Hg38 is covered by chimpanzee chains 

that are not derived from homologous chromosomes for a total of 97.9% (90.8%).  

We can use the visualization to find and explore the context of putative human-specific 

protein coding sequences. Browsing the webpage for Figure 2.7, one can find rare patches 

of red in the annotation column, indicating protein coding (CDS) sequence. For example, 

we identified 8 segments on Chr1 containing unique CDS and used the FluentDNA 

feature to clip and store each of the sequences (Table 2.3). This log was then submitted as 

a BLAST query against Hg38 which returns annotated features. Gene functions returned 

include: amiloride-sensitive sodium channel subunit delta, vascular cell adhesion 

protein, neuroblastoma breakpoint family member 19, mucin-1 isoform 19 precursor, 

HHIP-like protein 2 precursor, olfactory receptor 2T10 (Table 2.3). HHIPL2 

(https://www.ncbi.nlm.nih.gov/gene/107970260) is related to HOX genes, possibly 

crucial, and deserves closer scrutiny. This result is caused by a 200bp segment of protein 

coding DNA in Hg38 that is not covered by the PanTro6 alignment. BLAST searches for 

this sequence in Pan troglodytes returns hits at the expected 98.66% identity, so it is safe 

to conclude that the sequence is present but the whole genome alignment is imperfect. In 

contrast, olfactory receptor 2T10 is genuinely missing from Pan troglodytes but present 

in Gorilla gorilla and Pongo abelii (Seaman and Buggs, 2020, Supplemental File: 

Hominidae - 7 unique genes from chr1.asn). 

  

https://www.frontiersin.org/articles/10.3389/fgene.2020.00292/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.00292/full
https://www.ncbi.nlm.nih.gov/gene/107970260
https://www.frontiersin.org/articles/10.3389/fgene.2020.00292/full
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Table 2.3 Example Human Exons On Hg38 Chromosome 1 Showing No Alignment 
With Pantro6 

Start position in 
Ch1 (Fig 9) 

300 bp sequence from human CDS 
showing no chimpanzee alignment 

 

BLAST 
Chimp  

Gene Feature 

122,005 

GGCCCAGGGTAGGGAGGCCTGAGTGGGTGCAGGCCGGG

CCCTGCTGAGGCCACTCTGCACACAGGCTGCAGCCCAG

ACGCCCCCCAGGCCGGGGCCACCATCAGCACCACCACC

ACCACCCAAGGAGGGGCACCAGGAGGGGCTGGTGGAGC

TGCCCGCCTCGTTCCGGGAGCTGCTCACCTTCTTCTGC

ACCAATGCCACCATCCACGGCGCCATCCGCCTGGTCTG

CTCCCGCGGGAACCGCCTCAAGACGACGTCCTGGGGGC

TGCTGTCCCTGGGAGCCCTGGTCGCGCTCTGCTG 

present (79% 
cov.) 

amiloride-sensitive 
sodium channel subunit 
delta 

1,782,205 

CAAGAATACAGTTATTTCTGTGAATCCATCCACAAAGC

TGCAAGAAGGTGGCTCTGTGACCATGACCTGTTCCAGC

GAGGGTCTACCAGCTCCAGAGATTTTCTGGAGTAAGAA

ATTAGATAATGGGAATCTACAGCACCTTTCTGGAAATG

CAACTCTCACCTTAATTGCTATGAGGATGGAAGATTCT

GGAATTTATGTGTGTGAAGGAGTTAATTTGATTGGGAA

AAACAGAAAAGAGGTGGAATTAATTGTTCAAGGTGAGT

AGAATGTGAAAAAGGAATGATAAAGGTGCTGTCA 

missing 
vascular cell adhesion 
protein 1 isoform b 
precursor 

5,892,205 

TGAAATCTAGCTGGGGCTGTGTGGTTTCTGATTCCCCC

TGGCTTATTCTTTACTTTTTCCCACTTTTCCAGGCTCA

GCAGGGAGCTGCTGGATGAGAAAGGGCCTGAAGTCTTG

CAGGACTCACTGGATAGATGTTATTCAACTCCTTCAGG

TTGTCTTGAACTGACTGACTCATGCCAGCCCTACAGAA

GTGCCTTTTACATATTGGAGCAACAGTGTGTTGGCTTG

GCTGTTGACATGGATGGTGAGTACCTTTCTATGAAGGT

GATAAGGATCCACTGAGTCTTCTGGTTAGGGTCA 

present 
neuroblastoma 
breakpoint family 
member 19 

5,966,905 

CTGTCCCCAGGTGGCAGCTGAACCTGAAGCTGGTTCCG

TGGCCGGGGCCAGAGTGACATCCTGTCCCTGAGTGGTG

GAGGAGCCTGAACCGGGGCTGTGGCTGGAGAGTACGCT

GCTGGTCATACTCACAGCATTCTTCTCAGTAGAGCTGG

GCACTGAACTTCTCTGGGTAGCCGAAGTCTCCTTTTCT

CCACCTGGGGTAGAGCTTGCATGACCAGAACCCGTAAC

AACTGTTGCGGGTTTAGGGGCTGTGGTAGCTGTAAGAA

GTTAAAGTCATAGGGTTGG 

present (92% 
cov) 

mucin-1 isoform 19 
precursor 

7,216,105 

GACTTCTGCCAGCTCGCTTCTGCTCTGCTGATGGCCTC

ATCCTGCCACTGTGGCTTTTCAGGCTCTTCCTCCTCTT

GCCCTGGCGGACGTGGGGCCCCACTCTGGCTTTCTTCT

TTGTACCAGGCCCTCGCAATGTATTCTTGCTGCTTGTA

GGAGAAGCCAGCTTCTTGGAGGAGCCTTTCTCAGACAA

ACCCTGGGCTGGGCCAGAAGCTAAGGTTGCACTGGAAG

ATTTTCTAGCAGCTTTCTCTGATTGTTCCTTTAGCAAG

TCCAAGACTGTCTCTGAGAAATCAGTATTTATTT 

present 
HHIP-like protein 2 
precursor 

7,225,305 

CCTGTGATTATCCGAGTTCTAGTAAGCAGAAATCAAAC

AACTCTGTACATTTGTTACCTGCTTCATCTTCAGCAAA

GGAGATGATGAACTTGCTATGGGTGCTGATCAGCCCTG

GGAAGGCACAGGACGTGGTGCTGCCCAGGCAAAGATCC

TGCTTCTTCCATTTCTTGTTTTTTCTATCTTCCTGCAA

AGCCATAAGTCGACTAGACAAAAAATAAACCCTTATGT

TTAGGAATCCATATATCCACTCTGCAGAATACTTTTTC

TCCTAGAATCAGAGATCCCTGAGTACTAGGACTG 

present 
HHIP-like protein 2 
precursor 

7,711,805 

CAGCACTCTGCACCTCCCAACTGCAGGTAGAAGTACAT

CTGGGTGCCACACCCAAGGACCGAGATGGTCTTGTCTT

TGGCCAGCTGGTTCACCAGCATTTTGGGGACAGTGACA

GAAATATATGTCAAGTCTATGAGTGAGAGCTGGTTTAT

AAAGAAGTACATGGGAGTATGCAGAGAGGAGTCAATGT

GGATCAGAAGTATCAATGTAATATTCCAAGACACAGCC

ATCAAAAATATACTGAAGATAAGCAAGCAGAGGCGGCC

AGGGT 

missing (73% 
ident 
homolog) 

olfactory receptor 2T10 

From the online version of Figure 9, 300 bp regions of human CDS regions with no alignment to 
chimpanzee sequence were snipped out (Column 2). These were searched for in the GenBank nr 
database, restricted to hominidae, and showing putative human-specific exons on Chr1.  
 

2.4.3 Poster Images 

FluentDNA images are useful for communication of genomic data. For example, Figure 

2.8 shows a poster made displaying the entire malaria genome. In which images made 

using FluentDNA were arranged using desktop publishing software. The legend uses 

organelle genomes to demonstrate the shape of the Peano curve. 

https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=1280662&to=1291610&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=1280662&to=1291610&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=1280662&to=1291610&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=100719861&to=100738283&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=100719861&to=100738283&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=100719861&to=100738283&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=149475933&to=149554738&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=149475933&to=149554738&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=149475933&to=149554738&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=155186135&to=155192843&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=155186135&to=155192843&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=222522601&to=222548044&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=222522601&to=222548044&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=222522601&to=222548044&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=222522601&to=222548044&RID=S41B7GYR015
https://www.ncbi.nlm.nih.gov/nucleotide/NC_000001.11?report=gbwithparts&from=248592830&to=248593768&RID=S41B7GYR015
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Figure 2.8: Poster Made Using FluentDNA Outputs. The entire malaria genome was 
rendered as a poster by arranging the 14 chromosomes in descending order of size. The legend 
uses organelle genomes to demonstrate the shape of the Peano curve by rendering at scale = 2 
with whitespace and magnified. Rendered at standard scale, organelles would be tiny and 
indiscernibly covered in gene annotations. Major visible features include repetitive telomeres at 
the end of every chromosome. There are no obvious centromeres. Malaria is visibly much more 
gene dense than Anopheles gambiae or Homo sapiens. While Mitochondria are familiar to every 
geneticist, the Apicoplast organelle is specific to Phylum Apicomplexa protozoan parasites 
(Gardner et al., 1991; Egea and Lang-Unnasch, 1996). 

 

2.4.4 Museum Display 

The first FluentDNA display was set up in the visitor area of the Millennium Seed Bank 

as part of Surviving or Thriving: An exhibition on plants and us (March 2019 - October 

2020). Arabidopsis thaliana was selected as the display organism because it is well 

annotated and has a small genome size. The poster acts as a macro navigation device 

while the monitor displays the GO Slim functional annotation of the gene as well as the 

sequence at the position selected (Swarbreck et al. 2008). Using the museum display, it 

is possible to locate a mitochondrial integration in the centromere of chromosome 2. By 

touching the visibly orange region (G/C rich) and dragging their finger around, visitors 

can see genes labeled “mitochondria”, “ATP synthesis”, “Transmembrane electron 

transport”, etc. Even without detailed knowledge of the technical terms used, every 

visitor may take away something learned from the display, from the basics of genetic 

code up to finding clusters of transfer RNA genes. Instructions for creating similar 

museum displays can be found in Supplemental 1. 

2.5 Conclusions 
Previous software tools have focused almost exclusively on rendering annotations and 

markers while the bare sequence is only visible at the smallest scales. We note that 

FluentDNA is not intended to replace standard genome browsers, but is a useful 

complement for quality assurance and genome comparison. FluentDNA places emphasis 

on nucleotides, while placing less emphasis on annotation direction and exon 

boundaries. Visualization of bare sequence can be informative because gene elements 

https://paperpile.com/c/oPgfau/Som6z+qxf2X
https://paperpile.com/c/oPgfau/4aHk
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often introduce visible changes in k-mer usage. This is useful in genome assembly for 

quickly spotting artifacts. FluentDNA is a significant improvement on other direct 

sequence visualizations (e.g. DDV, DNASkittle) because it can handle multipart FASTA 

files and scale to viewing entire genomes at once. It also offers a range of capabilities for 

browsing annotations, protein families and aligned genomes. As a new tool, it does not 

support every possible file format but extensions are planned, including a VCF render 

already in development. Finally, FluentDNA allows the creation of posters and museum 

displays that can make genetic information more accessible to scientists and museum 

visitors alike. 

2.6 Availability of Data and Materials 
The FluentDNA software is available for download at 

https://github.com/josiahseaman/FluentDNA/releases under the Apache 2.0 open 

source license. The genome data and visualizations in this MS are available at 

https://FluentDNA.com/. 

 

  

https://github.com/josiahseaman/FluentDNA/releases
https://dnaskittle.com/ddvresults/dnadata/Publication/
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Genome Assembly, Annotation, and Gene Families  

Author Contribution and Collaborations 
I produced new assemblies for 13 ash species and liaised with Dovetail over the F. 

pennsylvanica assembly. I did all visualizations, annotations and alignments of gene 

families. I visualized a whole genome alignment between the F. pennsylvanica and F. 

excelsior assemblies constructed by Carey Metheringham. Laura Kelly, Elizabeth Sollars, 

and Jasmin Zohren contributed to Ash genome data and assemblies used in this chapter. 

 

Abstract 
Comparative genomics is based upon a foundation of quality genome assemblies, gene 

trees, and alignments. This chapter focuses on improving 13 of the assemblies of the 

worldwide Ash genome project with new sequence data and generating the gene 

annotations and alignments necessary for studying convergent evolution in the genus 

(Chapter 4). My reassembly using 800bp libraries brought median scaffold N50 sizes 

from 2,997 to 5,583 for an improvement of 86.2%. This draft genome was then used to 

produce chromosome level scaffolds of F. pennsylvanica by Dovetail Genomics using 

their Hi-C based assembly method. I used FluentDNA visualization (Chapter 3) to 

investigate the new assemblies, finding several putative bacterial and fungal 

contaminants. I discovered a nuclear integration of the mitochondrial genome on 

chromosome 4 of the F. pennsylvanica assembly along with a bacterial endophyte 

Sphingomonas. All genomes were annotated using GeMoMa with a F. excelsior reference 

guided model. To facilitate studies of gene copy number evolution, I used OrthoFinder to 

group genes into gene families. OrthoFinder classified the majority of our Fraxinus 

genomes as diploidized, with 75.8% of genes being single copy per genome. We evaluated 

and visualized a whole genome alignment between F. excelsior and F. pennsylvanica to 

test if a reference-guided assembly method would be practical for further improvement 

of the 13 species genomes. We ultimately rejected this scaffolding approach due to the 

divergence between the two genomes and technical limitations of the pairwise alignment 

format. A superior alignment approach using graph genomes is explored in Chapter 5.   

 

3.1 Introduction 
3.1.1 Genome Assemblies 

In order to study the repeatability of fractionation following a shared whole genome 

duplication (WGD), one must first start with a dataset of genome assemblies descended 

from the same WGD event. The Fraxinus worldwide genome project provides such a 

dataset. The full species list can be found in Table 3.2. The sequencing and assembly of 

28 Fraxinus species genomes was first carried out and published by Kelly et al. (2019).  

Previous sequencing work in Fraxinus left the assemblies at differing levels of quality. 

Fraxinus pennsylvanica received the most sequencing attention and is of particular 

interest because it is economically important in America and is threatened by the 

Emerald Ash Borer (Poland and McCullough 2006; Kelly et al. 2019). Fraxinus excelsior, 

as the first and highest priority genome assembled, is the draft genome with the largest 

scaffold size. Out of the 28 draft genomes assembled, there were six “clade exemplars” 

https://paperpile.com/c/gNh4ZA/ZZpt
https://paperpile.com/c/gNh4ZA/bN1T+ZZpt
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picked to be higher quality representatives of their respective six Fraxinus clades (Table 

3.2).  

3.1.2 Assembly Quality Control 

During the assembly and quality control process, a number of tools can be used to help 

check results, these tools are outlined below. While the results include tables of assembly 

statistics, there was no browsable way to inspect the genome sequences themselves for 

anomalies, either biological or artefactual. Genome browsers are primarily designed to 

inspect genome annotations and experimental data painted onto the assembly coordinate 

frame. They do not provide a scalable method to inspect the nucleotide sequence itself 

across 28 separate 1 Gbp genomes. To this end, a direct sequence visualization was 

developed, called FluentDNA. Chapter 3 consists of a manuscript published on 

FluentDNA with detailed methods. 

3.1.3 Fraxinus Species Tree Without Dates 

The most highly-evidenced Fraxinus species tree to date used a filtered set of 272 genes 

found to be in single copy in every species was inferred via Bayesian concordance 

analysis with BUCKy (Kelly et al. 2019).  This can be placed in the larger context of the 

complete family wide species tree calculated by Zedane (2016) using plastid and rDNA 

sequences across 136 Oleaceae species (See also section 1.5). Zedane’s work included date 

estimates while Kelly’s tree used branch lengths exclusively for concordance values, 

meaning no date information was estimated. However, Zedane’s phylogeny contained 

fewer Fraxinus species and was based on many fewer loci. This study also makes use of 

Roalson and Roberts (2016) to place a date on Erythranthe divergence. The study 

covered 768 Gesneriaceae species and uses aligned sequence and fossil evidence to create 

a calibrated species tree.  

3.1.4 Gene Annotation 

There are many possible approaches for gene prediction depending on the biological 

question and materials available. F. excelsior was first annotated in section 3.4 of Sollars’ 

thesis (2017) and later published in (Sollars et al. 2017) using AUGUSTUS with RNA-seq 

evidence to identify splice site locations. AUGUSTUS is a machine learning approach that 

uses generalized hidden markov models to model what gene sequences look like given a 

wide list of examples in other plant species (Stanke and Morgenstern 2005). When RNA-

seq is not available but a closely related species has been previously annotated, a 

reference guided approach can be used. 

GeMoMa is a reference guided gene annotation software that utilizes homology to 

annotate a target genome (Keilwagen et al. 2016). It was used by Kelly et al (2019) to 

annotate the 27 other species using F. excelsior as a reference genome. GeMoMa uses 

introns to increase the discovery power of divergent sequences and is particularly well-

matched for identifying genes with surrounding sequence similarity from a large scale 

duplication as opposed to protein motifs conserved due to function, not ancestry 

(Keilwagen et al. 2016).  

3.1.5 Gene Family Boundaries 

Gene families are sets of similar genes that are likely to have arisen via duplications of a 

single ancestral gene. Estimating the size and boundaries of gene families require a 

judgement call depending on the biological question at hand. To ensure that there are no 

https://paperpile.com/c/gNh4ZA/ZZpt
https://paperpile.com/c/gNh4ZA/crG3O
https://paperpile.com/c/gNh4ZA/6IsjQ
https://paperpile.com/c/gNh4ZA/pQf9
https://paperpile.com/c/gNh4ZA/pQf9
https://paperpile.com/c/gNh4ZA/42yY
https://paperpile.com/c/gNh4ZA/zzcM
https://paperpile.com/c/gNh4ZA/TTLA
https://paperpile.com/c/gNh4ZA/TTLA
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false negative gene counts, resulting in a lowered gene count in a species, it is best to 

define gene superfamilies as broadly as possible. However, if the goal is to identify only 

sets of genes with a high level of confidence then a minimal set will be preferable. If 

investigating homeologs (paralogous gene copies arising from a whole genome 

duplication), it is important these genes be in single copy number before the WGD under 

study lest a few large gene families skew the results.  

OrthoFinder (2.2.5.2) is a gene clustering tool which uses a technical definition of a gene 

family called Orthogroups that is based on the scope of the species tree provided, not on 

sequence divergence. Orthogroups were defined as the clade of genes descended from a 

single gene at the time of the last common ancestor (LCA) (Emms and Kelly 2015; Tekaia 

2016). An orthogroup could include functional paralogs (1.1) depending on the placement 

of the LCA.  

3.1.6 Whole Genome Alignment 

In some cases, a close relative genome assembly can be used as scaffolding to order the 

contigs of a genome with less coverage or quality. This practice was particularly common 

when sequencing was much more expensive (Chimpanzee Sequencing and Analysis 

Consortium 2005). A similar approach was considered in the case of the worldwide Ash 

genome project using a chromosome level assembly such as F. pennsylvanica. Such an 

approach would first need to verify that Fraxinus genomes do not have a prohibitive 

amount of structural rearrangements. Angiosperms have a much higher tolerance for 

repeat content and rearrangement than mammalian genomes (Kejnovsky et al. 2009). 

3.1.7 Current Work 

This chapter describes the improvement of 13 Fraxinus genome assemblies using new 

sequence data from 800bp libraries. In addition, a chromosome level F. pennsylvanica 

genome was assembled in collaboration with Dovetail Genomics using their 

HiRise/Chicago technology. Inspection in FluentDNA output revealed several surprises 

(3.3.2). A new gene annotation for all 28 species of the Fraxinus worldwide genome 

project (3.1.1) was reported. Annotation is based Fraxinus excelsior genes as a template 

for any number of highly similar genes in another assembly. These genes were then 

grouped into gene families, and gene trees were computed based on sequence differences 

both within species (paralogs) and across all species (orthologs). A whole genome 

alignment of F. excelsior and F. pennsylvanica was calculated to determine if there was 

sufficient structural similarity to justify using a scaffolding approach for other 

chromosome assemblies. I visualized this alignment using FluentDNA (Chapter 2) to 

determine the degree of synteny and whether heterozygosity would be enough to disrupt 

the alignment process. 

3.2 Methods 
3.2.1 Improving Fraxinus Assemblies 

The Worldwide Fraxinus Genome Project has sequenced 31 genomes representing 28 

species of Ash tree. Most are at draft-genome quality level. As this project is dependent 

on good assembly quality, it was necessary to improve the existing assemblies as much as 

possible. Additional 800 bp insert libraries were ordered from the Liverpool Center for 

Genomic Research for the 13 assemblies across 11 species that still lacked this data: F. 

pennsylvanica (FRAX09, FRAX10), F. quadrangulata, F. ornus, F. mandshurica, F. 

dipetala, F. angustifolia, F. velutina, F. latifolia, F. paxiana, F. sieboldiana, F. 

https://paperpile.com/c/gNh4ZA/Xero+DgMb
https://paperpile.com/c/gNh4ZA/Xero+DgMb
https://paperpile.com/c/gNh4ZA/2Ofy
https://paperpile.com/c/gNh4ZA/2Ofy
https://paperpile.com/c/gNh4ZA/hNkg
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caroliniana1 (FRAX03), and F. apertisquamifera (Table 3.2). We selected six species to 

be exemplars of their clade and performed additional long-mate pair sequencing with 3 

Kbp and 10 Kbp insert sizes. The clade exemplars are F. mandshurica, F. ornus, F. 

pennsylvanica, F. quadrangulata, F. gooddingii, and F. excelsior.  

3.2.1.1 Assembly Process 
Assembly methods adopted to improve these genomes are identical to methods described 

in (Sollars et al. 2017; Kelly et al. 2019). Python automation scripts for a pipeline across 

the various tools used in genome assembly were developed in order to allow 

reproducibility. These scripts are available in the DNA_Duplications github repo 

https://github.research.its.qmul.ac.uk/btx142/DNA_Duplications. 

3.2.1.1.1 Trimming 
Each genome was sequenced with a target coverage of 44x using Illumina NextSeq and 

HiSeq platforms. Initial library insert sizes were 300, 350, 500, and 550 bp. The 13 

individuals were improved by a second round of sequencing with the addition of an 

800bp insert library prepared at University of Liverpool. Paired reads were made from 

total genomic DNA. Clade exemplars also included 3 Kbp and 10 Kbp long mate pair 

(LMP) libraries with 125 nucleotides on each side from an Illumina HiSeq 2500 to a 

depth of c. 10x coverage of 1C genome size. LMP was prepared from sequence from the 

Centre for Genomic Research and University of Liverpool. 

Reads were adapter trimmed and length and quality filtered using FastQC v0.11.5 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were clipped using the 

fastx_trimmer tool in the FASTX-Toolkit v.0.0.14 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html) to remove the first 5-10 

nucleotides and the last 5 nucleotides. Cutadapt v.1.8.1 was used to remove adapters with 

a minimum overlap of five bases on either end (Martin 2011). Sickle v.1.33 was used with 

parameters: -pe -t sanger -q 20, -l 50 to quality filter read pairs (Joshi, Fass, and Others 

2011). Singletons were discarded.  

3.2.1.1.2 CLC 
De novo assembly of the filtered read pairs, with a minimum read length of 50 bp, was 

conducted in the CLC Genomics Workbench under the following parameter settings: 

automatic optimization of word (k-mer) size; maximum size of bubble to resolve = 

5,000; minimum contig length = 200bp.  

As total genomic DNA was sequenced and assembled, contigs in the assembly include 

those that originate from the organellar genomes, as well as those from the nuclear 

genome. All assemblies contained a single contig representing the Illumina PhiX control 

library. This contig was removed from the assemblies using a Python script provided by 

Illumina. SSPACE v3.0 was used to join contigs into scaffolds using default parameters. 

Library insert lengths were given an error range of ±40%. Gaps in the SSPACE scaffolds 

were filled using GapCloser v1.12 with default parameters. Average library insert lengths 

from SSPACE outputs were fed into GapCloser. Genome assembly metrics were 

generated using Assemblathon statistics script (https://github.com/ucdavis-

 

1 FRAX03 was originally labeled as F. caroliniana but subsequently identified by Eva Wallander 
as F. pennsylvanica (see 2.3.1.2)  

https://paperpile.com/c/gNh4ZA/42yY+ZZpt
https://github.research.its.qmul.ac.uk/btx142/DNA_Duplications
https://paperpile.com/c/gNh4ZA/CZ3s
https://paperpile.com/c/gNh4ZA/ayNl
https://paperpile.com/c/gNh4ZA/ayNl
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bioinformatics/assemblathon2-analysis/blob/master/assemblathon_stats.pl) which 

includes N50.  

3.2.1.1.3 F. pennsylvanica Assembly Using HiRise 
The above assembly process was applied to make the F. pennsylvanica FRAX09 draft 

genome of comparable quality and short contigs as all other assemblies in this chapter. 

This assembly was sent to Dovetail along with biological material for processing using 

their Chicago/HiRise technology built on Hi-C chromatin conformation capture 

(Lieberman-Aiden et al. 2009; Putnam et al. 2016). Hi-C uses the distance-dependent 

stochastic nature of cross-linking whole chromosomes followed by sequencing ligated 

pairs to estimate the distances between loci that may be >10MBp apart. This allowed 

production of chromosome level scaffolds for F. pennsylvanica by placing existing 

scaffolds in order along the chromosome. The technique only places existing scaffolds in 

the correct order with N gaps of approximately the correct size. Since each contig is likely 

separated by a gap, the technique does not improve contig size, but is able to improve 

scaffold length to the size of pseudochromosomes. F. pennsylvanica was the first genome 

assembly visualized in FluentDNA, since chromosome scale scaffolds make it easier to 

find structural features. Once visualized, contamination was discovered in the assembly 

(3.3.2.1). I designed filtering criteria for removing the contaminating reads. Dovetail then 

built a new assembly using my filtering criteria. 

3.2.2 Visualization of Assemblies 

A visualization tool was developed to quickly compare different genome assemblies and 

quality check for anomalies in the process. This tool, FluentDNA, is covered in detail in 

Chapter 2. FluentDNA turns the four nucleotides into four colors; A: Green, T: Blue, G: 

Red, C: Gold, N: Grey. Pixels read left to right, just like text, and wraps to the next line at 

100bp intervals. Larger scales are wrapped and stacked together in powers of 10: 100Kbp 

columns, 10Mbp rows, 100Mbp pages, 1.2 Gbp tiles, etc. (Figure 2.2). This allows 

comparing genomes and gauging size because the layout itself acts as a scale bar. The 

program uses a satellite image style zooming interface that allows browsing images of 4 

GB or more with web technology which can run on a smartphone. FluentDNA can 

visualize genomes, whole genome alignments, and annotations. 

After genome assembly, the full FASTA file, containing one entry for each scaffold (or 

chromosome) was input as the --fasta= parameter to FluentDNA and visualized using the 

default Tiled Layout. At this point in the process, gene annotation is not available. 

FluentDNA is used to visually scan for anomalies such as:  

• Anomalous distribution of scaffold sizes, e.g., one large scaffold or a 

profusion of <10 bp scaffolds. 

• Distinctive GC and kmer usage concentrated in a minority of scaffolds. 

(Organellar DNA as well as contaminants may have very different kmer 

signatures.) 

• Distribution of N’s, which can indicate problems in the assembly process, 

e.g., scaffolds with 100bp at beginning and end separated by >10 Kbp of 

N’s indicate long mate pairs that were never placed inside a larger 

scaffold. 

• Long homo-polymers such as 1 Kbp of T’s, potentially caused by jams in 

the sequencing machine. 

https://paperpile.com/c/gNh4ZA/p8ske+JoIa6
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• Species with repetitive or gene poor centromeres are visible in bare 

sequence. 

• Tandem repeats including monomers of >1 Kbp which are missed by other 

tools 

• Isochores, chromosome scale changes in GC usage in some species, which 

are readily visible in chromosome assemblies  

After gene annotation, assemblies were re-rendered to check for anomalies in the 

annotation process, such as: 

• Abnormally large genes or overlapping exons. 

• Tandem arrays of genes of the same size and composition. 

• Areas of chromosomes with no gene annotations, potentially centromeres. 

• Annotations that include the beginning or end of the scaffold, which may 

indicate genes that were truncated by draft genome assembly quality. 

Human reasoning and knowledge of expected sequence features is applied to identify any 

biological surprises. Any such anomalies were followed up with BLASTN (Altschul et al. 

1990; Camacho et al. 2009) searches in the selected contigs against the nr (non-

redundant) NCBI database and noted in Supplemental File 1: Assembly Inspection 

Notes. 

3.2.3 Constructing A Fraxinus Time Tree Using r8s 

The species tree developed by Kelly et al. (2019) had a topology but no branch lengths 

(3.1.3). Here, I augment the species tree with estimated timing for the divergence of each 

speciation event, called a Time Tree. Time estimates use a combination of calibration 

points listed in Table 3.1, such as estimated dates of speciation events speciation events 

and fossil species, plus degree of sequence divergence to estimate branch lengths using 

the r8s program. The final tree is made ultrametric, meaning that all branch lengths are 

normalized so every path sums to the same present day time point. In the Orthofinder 

run, RAxML produces relative branch lengths based on sequence differences in the 

multiple sequence alignment (MSA). Branch lengths for the tree were calculated using 

RAxML GAMMA model over 265,591 phylogenetically informative sites from 25,182,399 

sites (SpeciesTreeAlignment.fa). These relative branch lengths were then fed into r8s 1.8 

to estimate the actual dates using calibration dates taken from the literature (Table 3.1) 

(Sanderson 2003). The time tree produced by r8s was modified by hand to round dates 

to the nearest whole integer with a minimum branch length of 1 million years while 

maintaining the ultrametric property, that is all paths from root to tip sum to 79 million 

years. The resulting file was saved as 

Species_tree_corrected_root_ultrametric_integers.tre in Newick format. 

  

https://paperpile.com/c/gNh4ZA/JFoW+qaAf
https://paperpile.com/c/gNh4ZA/JFoW+qaAf
https://paperpile.com/c/gNh4ZA/nxnl
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Table 3.1 Calibration Times 

Clade 1 Clade 2 LCA Mya Source 

Fraxinus Solanum 79 Zedane 2016  

Fraxinus Erythranthe 72 Roalson 2016* 

Jasmium Olea 54 Zedane 2016  

Fraxinus Olea 36 Zedane 2016  

F. quadrangulata F. ornus 19 Zedane 2016  

F. angustifolia F. ornus 14 Zedane 2016  

F. quadrangulata F. americana 11 Zedane 2016  

Calibration times for the species tree were taken from Zedane (2016, Figure 2.4). This study 
included plastid and ribosomal genes from Oleaceae species. This source was used exclusively for 
calibration dates to preserve methodological consistency and to avoid conflicts that often comes 
from different inferred rates of evolution in different studies.  
*Note: In order to include Erythranthe I collated all conflicting date estimates using timetree.org 
(“TimeTree :: The Timescale of Life” n.d.). Roalson and Roberts (2016) estimate Oleaceae-
Erythranthe split (87 Mya) further back in time than the median estimates for Oleaceae-Solanum 
split (79 Mya) (Schneider et al. 2004; Naumann et al. 2013; Barreda et al. 2015). To reconcile for 
this study, I used Roalson and Roberts (2016)’s estimate which includes both Erythranthe and 
Solanum in one study to derive an age ratio. That ratio was then calibrated with the 79 Mya date 
from Zedane (2016) to ensure it was on the same scale as the rest of the Fraxinus dates. Using 
cross multiplication to maintain proportions, we obtain 79 * 87 / 96 = 71.59 Mya for the last 
common ancestor of Erythranthe - Olea. This method ensures the proportions are maintained 
even if the absolute rates are less certain in more ancient nodes. 

 

3.2.4 Gene Annotation Methods 

Annotation transfer of all Fraxinus species using the latest assemblies was carried out 

with GeMoMa v1.5.0 using F. excelsior as reference genome (Keilwagen, Hartung, and 

Grau 2019; Keilwagen et al. 2016). Settings allow up to 10 prediction models per 

reference transcript, which is crucial to allow copy number variation for this study. This 

setting differs from the results in Kelly et al. (2019). The source GFF was 

Fraxinus_excelsior_38873_TGAC_v2.longestCDStranscript.gff3 (available from 

http://www.ashgenome.org/transcriptomes) with the longest splice variant for each gene 

model. File formatting was performed with Extractor with the following parameter 

settings: v=true f=false r=true Ambiguity=AMBIGUOUS. GeMoMa uses tblastn to index 

align genome fragments. Tblastn was used with the following parameter settings: -

num_threads 24 -db ./blastdb -evalue 1e-5 -outfmt "6 std sallseqid score nident positive 

gaps ppos qframe sframe qseq sseq qlen slen salltitles" -db_gencode 1 -matrix 

BLOSUM62 -seg no -word_size 3 -comp_based_stats F -gapopen 11 -gapextend 1 -

max_hsps 0.  

3.2.4.1 Redundant Annotations 
GeMoMa 1.5.0 was run for each assembly and each F. excelsior gene model had the 

potential to create multiple genes. Many different models could annotate the same gene 

region, especially in the case of large multi-gene families. GeMoMa’s tool, GAF, was used 

https://paperpile.com/c/gNh4ZA/crG3O
https://paperpile.com/c/gNh4ZA/wHz4I
https://paperpile.com/c/gNh4ZA/6IsjQ
https://paperpile.com/c/gNh4ZA/pVyjs+1w3j9+xniHJ
https://paperpile.com/c/gNh4ZA/6IsjQ
https://paperpile.com/c/gNh4ZA/crG3O
https://paperpile.com/c/gNh4ZA/5zrL+TTLA
https://paperpile.com/c/gNh4ZA/5zrL+TTLA
https://paperpile.com/c/gNh4ZA/ZZpt
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to select only the longest non-overlapping transcript for each gene region. Annotations 

were then quality checked using GAF with default settings.  

Genome size was estimated using flow cytometry for each accession before sequencing 

was performed. These estimates were used as a first pass to exclude polyploids and to 

calibrate expected coverage. There is no reason to think that F. excelsior would be 

anomalous in genome size or gene density, therefore an anomalously high gene count 

would indicate reference bias in annotation. Reference bias was checked by comparing 

the number of annotated genes in F. excelsior with all other species. A similar check is 

carried out in Chapter 4 to measure whether the reference creates an inflated gene 

retention rate compared with other species.  

3.2.5 Gene Family Assignment with OrthoFinder 

In this study, 28 Fraxinus specimens plus Olea europaea, Erythranthe guttata and 

Solanum lycopersicum were included as outgroups that do not share the same whole 

genome duplication events. This gene family definition allows us to capture genes that 

were in single copy number before the two rounds of WGD in Olea.  

3.2.5.1. Outgroup Species 
OrthoFinder 2.2.6 is a pipeline of tools which allows researchers to study orthologous 

genes. The input is a proteome for each species. Orthofinder produces orthogroups 

(a.k.a. gene families), multiple sequence alignments, reconciled gene trees, and lists of 

orthologous genes using a set of tools. The script translation_from_annotation.sh uses 

the GeMoMa gene annotations and assemblies to generate a proteome for each species. 

The proteome for each Fraxinus was extracted from the annotations (see 3.2.4) using 

Cufflinks v.2.2.1 gffread utility (Trapnell et al. 2012). Jalview was used to inspect the 

protein multiple sequence alignment (MSA) of Fraxinus orthogroups to ensure two 

dissimilar families had not been mistakenly fused together. The Jalview overview 

window feature was very useful for quickly identifying species with large deletions 

(Waterhouse et al. 2009). 

Outgroup species were included to set the scope of orthogroups. Proteomes were 

collected from Solanum lycopersicum, and Olea europaea (Tomato and Consortium 

2012; Julca et al. 2017). Erythranthe guttata was downloaded from Phytozome 12 using 

Mguttatus_256_v2.0.protein_primaryTranscriptOnly.fa from the v2.0 of the genome 

assembly (Hellsten et al. 2013).  

3.2.5.2 OrthoFinder Pipeline 
The internals of the OrthoFinder pipeline are as follows: DIAMOND uses proteome files 

to perform an all-against-all sequence search (Buchfink, Xie, and Huson 2015, Figure 1). 

The MCL clustering algorithm is used to group genes into families generating the 

Orthogroups.csv file (Enright, Van Dongen, and Ouzounis 2002; Van Dongen 2000). 

From these orthogroups, mafft 7.310 is used to produce MSAs of the amino acid files 

which are then converted to gene trees using raxml 8.2.11 (Stamatakis 2014; Katoh and 

Standley 2013). Unless otherwise noted, parameters used were those contained inside 

the OrthoFinder pipeline for external tools, which can be found in OrthoFinder’s 

config.json. 

OrthoFinder used hybrid overlap and the DLC algorithm to reconcile this species tree 

with the gene trees generated by sequence alone (Emms and Kelly 2019). The species tree 

https://paperpile.com/c/gNh4ZA/2WnD
https://paperpile.com/c/gNh4ZA/FhBWl+KxS6Z
https://paperpile.com/c/gNh4ZA/FhBWl+KxS6Z
https://paperpile.com/c/gNh4ZA/mo5JS
https://paperpile.com/c/gNh4ZA/zLUaj
https://paperpile.com/c/gNh4ZA/MFcaB+4qxuF
https://paperpile.com/c/gNh4ZA/BZWUL+rpJ6Z
https://paperpile.com/c/gNh4ZA/BZWUL+rpJ6Z
https://paperpile.com/c/gNh4ZA/EqB0
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used in this study was created by Laura Kelly using phylogenetically informative genes in 

an earlier version of GeMoMa annotations published in (Kelly et al. 2019). The protein 

MSA and reconciled gene trees are used for homeolog identification and analysis in 

Chapter 4. 

 

Figure 3.1: Diagram of OrthoFinder: From left to right: Gene membership in gene trees is 
determined by sequence-driven clustering using DIAMOND and MCL on protein sequences. 
MAFFT is used to construct one MSA from the protein sequences of each orthogroup. RAxML is 
used to calculate maximum likelihood gene trees from the MSA. Finally, each gene tree is 
reconciled with the user-provided species tree (Emms and Kelly 2015, 2019). Source: 
OrthoFinder User’s Manual with command line arguments edited out. Used with permission 
(Emms and Seaman 2020).  

 

3.2.6 LiftOver Whole Genome Alignment of F. pennsylvanica and F. 

excelsior 

Given 28 related genomes and a chromosome-level assembly of F. pennsylvanica, this 

study constructed a whole genome alignment of F. excelsior and F. pennsylvanica to 

determine if there was sufficient structural similarity as well as overlap in alignable 

regions to justify using F. pennsylvanica as a scaffold. Further, I sought to measure how 

distantly related a Fraxinus genome could be before this was no longer a valid approach. 

LiftOver whole genome alignment files were generated by following the Methods 

described in UCSC LiftOver Tutorial 

(http://genomewiki.ucsc.edu/index.php/LiftOver_Howto). LASTZ with default settings 

was used to align scaffolds of F. excelsior BATG 0.5 to F. pennsylvanica 

(fraxinus_pennsylvanica_26Jul2017_uXjxm.fa) chromosome level assembly (Harris 

2007). Each of the 29 F. pennsylvanica scaffolds was run against all F. excelsior scaffolds 

and then the results were combined by selecting the best match for each F. excelsior 

scaffold based on total alignment scores (Figure 3.2). This process discards the 

possibility of duplications existing in F. pennsylvanica that are not present in F. excelsior 

but it also removes off-target alignments. This is a crucial step to get an accurate measure 

of alignment coverage. 

https://paperpile.com/c/gNh4ZA/ZZpt
https://paperpile.com/c/gNh4ZA/Xero+EqB0
http://genomewiki.ucsc.edu/index.php/LiftOver_Howto
https://paperpile.com/c/gNh4ZA/yCSm
https://paperpile.com/c/gNh4ZA/yCSm
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Figure 3.2: Genome Alignment Pipeline: The whole genome alignment process starts with a 
series of small alignment seeds from LASTZ. It uses a series of PERL scripts under UCSC Kent 
Utilities to sort alignments and aggregate them into chains. These chains are netted together into 
syntenic sections that can be minimally expressed in the LiftOver format. Source: Carey 
Metheringham 2018 Queen Mary University PhD Progress Report. 

 

3.3 Results 
3.3.1 Assemblies and Quality Metrics 

3.3.1.1 N50 
In all, 13 Fraxinus genomes were improved using 800bp inserts including two Fraxinus 

pennsylvanica genomes. The assembled genomes show a wide range of quality. Scaffold 

N50 (the size of the scaffold necessary to cover 50% of the genome starting with the 

largest scaffolds) is used as a proxy for quality. After adding the 800bp insert libraries, 

scaffold N50 improved between 20% and 115% for an average improvement of 60%. This 

number excludes Dovetail’s F. pennsylvanica assembly, which improved by a factor of 

1,455x. F. sieboldiana was the least well assembled diploid with an N50 of 3,085 bp and 

F. quadrangulata was the best non-reference assembly with an N50 of 89,782 bp (Table 

3.2). F. apertisquamifera and F. uhdei were classified as polyploids after sequencing. 
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Table 3.2 Global Fraxinus species genomes with assembly statistics. 

 Note Scaffold N50 Improved Size Genes 

FRAX09 F. pennsylvanica (Dovetail) Exemplar 27,152,721 145420.77% 961,215,495 37,125 

FRAX00 F. excelsior Exemplar 103,995  867,496,965 38,949 

FRAX11 F. quadrangulata Exemplar 89,782 77.63% 690,460,750 36,439 

FRAX06 F. mandshurica Exemplar 41,613 38.05% 851,290,057 36,628 

FRAX10 F. pennsylvanica (PE_48)  35,102 1588.41% 922,824,354 N/A 

FRAX19 F. goodingii Exemplar 26,688  737,681,323 36,410 

FRAX07 F. ornus Exemplar 25,551 21.52% 881,712,383 36,925 

FRAX31 F. cuspidata  16,666  615,746,290 34,490 

FRAX27 F. anomala  10,033  647,623,079 34,693 

FRAX04 F. dipetala  8,701 115.26% 621,665,989 33,402 

FRAX33 F. platypoda  7,689  601,849,709 35,121 

FRAX26 F. albicans  7,428  704,954,495 35,385 

FRAX21 F. griffithii  7,160  724,907,964 32,786 

FRAX28 F. baroniana  6,176  705,684,858 34,856 

FRAX32 F. floribunda  5,677  700,666,799 34,842 

FRAX23 F. nigra  5,611  599,092,042 32,819 

FRAX01 F. angustifolia subsp. 
angustifolia 

 
5,583 71.05% 744,598,201 34,424 

FRAX25 F. xanthoxyloides  5,552  612,207,739 31,474 

FRAX30 F. chinensis  5,515  694,194,979 34,595 

FRAX13 F. velutina  5,090 69.84% 693,278,749 33,807 

FRAX05 F. latifolia  5,023 82.32% 789,353,522 35,005 

FRAX14 F. americana  4,583  641,723,771 32,428 

FRAX03 F. caroliniana  4,361 54.10% 761,576,543 33,674 

FRAX16 F. angustifolia subsp. syriaca  4,357  584,583,645 31,464 

FRAX20 F. greggii  4,303  678,125,092 31,543 

FRAX29 F. bungeana (sp. 1973-6204)  4,220  908,819,680 35,625 

FRAX15 F. angustifolia subsp. oxycarpa  3,952  713,783,305 32,452 

FRAX08 F. paxiana  3,724 40.74% 674,813,152 32,799 

FRAX12 F. sieboldiana  3,085 55.26% 858,547,996 33,583 

FRAX02 F. apertisquamifera Polyploid 2,665 40.56% 1,138,437,068 N/A 

FRAX34 F. uhdei Polyploid 2,413  750,530,219 N/A 

Highlighted assemblies were improved in this thesis. Clade exemplars were additionally 
sequenced using long mate pair libraries. The average genome had 34,419 genes. Some gene 
counts are unavailable because the assemblies were later dropped from the study. 

3.3.1.2 Notable Species 
Species that appeared to be recent polyploids based on genome size estimates and read 

heterozygosity were excluded from this study. These species are: F. apertisquamifera, F. 

lanuginosa, F. profunda, F. uhdei, F. chinensis subsp. rhyncophylla, F. biltmoreana 

(syn. F. americana var. biltmoreana). The remaining 23 genomes are draft quality, with 

large enough scaffolds to identify gene presence but not chromosome structure. Species 

names with subspecies and varietals can become unwieldy as filenames, so all assemblies 

were labeled FRAX00 through to FRAX34 for the purposes of consistency (Table 3.2). 

When selecting representative Fraxinus species, polyploids were identified based on 

estimated genome size and excluded due to additional difficulties in assembly. After 

sequencing, we updated the classification of several species. Sequenced individuals were 

https://docs.google.com/spreadsheets/d/1sMBai5odE8bvRUJUGy_-d77h8ltMElxe_KqBtYZ05Ro/edit?usp=sharing


64 |  
 

identified by Eva Wallander using ITS sequence data and morphology based on her 

previous classification methodology of the genus (Wallander 2012). F. apertisquamifera 

was excluded as a likely hybrid based on its heterozygosity, and on the basis of 

preliminary phylogenetic analyses using ITS and plastid genome sequence data, which 

suggest it may be a diploid hybrid between section Ornus and section Fraxinus. F. uhdei 

was later excluded from analysis as a polyploid after assembly. There are a few special 

considerations for assemblies. FRAX09 and FRAX10 are both F. pennsylvanica that are 

biological replicates taken from different individuals (accessions). FRAX03 was 

originally labeled as F. caroliniana but subsequently identified by Eva Wallander as F. 

pennsylvanica. Our sample of F. bungeana was determined to be a probable hybrid 

between the F. ornus lineage and another lineage in the same sect, and so was designated 

as Fraxinus sp. 1973-6204.  

3.3.2 Visual Inspection of Fraxinus pennsylvanica Reveals 

Endophyte and Nuclear Integration 

The Chicago/HiRise technique employed by Dovetail genomics placed all our existing 

scaffolds in their estimated positions along the chromosomes with N gaps of 

approximately correct size between each scaffold. This did not significantly improve 

contig N50, but scaffold N50 went from 18.6 kbp to 27,152 kbp (whole chromosomes). 

The assembly contains 29 megabase scale scaffolds which roughly correspond to the ash 

tree’s 23 haploid chromosomes (Figure 3.3). Using an optical map alignment, the 

orientation of the six chromosomes with two scaffolds were placed by hand, while the 

other 17 chromosomes are represented by a single scaffold. Visual inspection revealed 

two notable features: a mitochondrial integration and a bacterial endophyte. 

3.3.2.1 Sphingomonas Discovered as F. pennsylvanica Endophyte 
FluentDNA was used to inspect the genome assembly before annotation. One GC rich 

scaffold immediately stands out as high-coverage, large, and a clear outlier (also 3.3.2.2). 

Smaller GC rich contigs that do not match the F. pennsylvanica nuclear background 

sequence model appear to come from the same source distribution of kmers. Using 

BLAST, the scaffold matches best to Sphingomonas sp. LK11 genome (Asaf et al. 2018). 

The scaffold covers 47% of the genome at 80% identity. This may be sufficient divergence 

to classify it as a different species than LK11, but further study is required. 

Sphingomonas has been observed as a plant endophyte in crops associated with 

improved growth and salinity tolerance (Ottesen et al. 2013; Halo et al. 2015). Using 

these observations, Sphingomonas contigs could be prefiltered by kmer usage into a 

separate sequencing pipeline before HiRise scaffolding to obtain an assembly without 

mixing the two sources. 

3.3.2.2 Contaminant Survey of Fraxinus Using FluentDNA 
Next, I used visual checks of other Fraxinus assemblies to see if F. pennsylvanica 

contamination was unusual. Other contaminants could be identified because of their 

varying kmer composition and searched for in BLAST. Soil bacteria Delftia acidovorans 

was present in F. velutina, F. quadrangulata, F. paxiana, and F. angustifolia (Olm et al. 

2017). Cryptococcus neoformans, a fungal aerobe that lives in plants and animals was 

present in F. sieboldiana (Buchanan and Murphy 1998). These contaminants are 

mentioned here in case it is later discovered there are comorbidities with Ash pests or 

microbiome resistance. Further notes including sequences used in BLAST are available 

in S2: Assembly Inspection Notes. FluentDNA revealed that scaffolds containing 

https://paperpile.com/c/gNh4ZA/pB3i
https://paperpile.com/c/gNh4ZA/m26eh
https://paperpile.com/c/gNh4ZA/pXDFi+1xCE3
https://paperpile.com/c/gNh4ZA/3duc
https://paperpile.com/c/gNh4ZA/3duc
https://paperpile.com/c/gNh4ZA/F4G9
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organellar sequence were typically among the largest scaffolds and relatively easy to 

identify by hand, however these scaffold sizes are still too small to indicate whether they 

are connected to the nuclear genome. 

 

3.3.2.3 Mitochondrial Genome Integration in Nuclear Chromosome 4 
Fraxinus pennsylvanica chromosome 4 has a 50kbp region that lacks N gaps and has 

higher GC content (Fraxinus: 0.36 Mitochondria: 0.44)2. BLAST results matched to 

"Hesperelaea palmeri voucher E. Palmer 81 (MO) mitochondrion", an extinct member of 

the same Oleaceae family (Moran 1996). Visual inspection of the contig showed clear 

boundaries in kmer usage between mitochondrial and nuclear sequence, but no 

corresponding N gaps that would indicate an assembly error. FluentDNA was used to 

manually pick locations for PCR primers that spanned both styles of kmer usage. PCR 

tests indicated that the sequences were present in extracted DNA and thus the nuclear 

integration was a biological reality. Additional reads from actual mitochondria would still 

map to a nuclear integration during assembly, leading to an anomalously high coverage 

in the nuclear genome.  

 

2  In FluentDNA user trials using F. pennsylvanica assembly, the majority of naïve users were able 
to spot the outlier mitochondria sequence unaided within one minute. 

https://paperpile.com/c/gNh4ZA/29lNs
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Figure 3.3: Fraxinus pennsylvanica Assembly: Visualization of whole F. pennsylvanica 
genome assembly using FluentDNA (Figure 2.2). The genome scaffolded using HiRise technology 
yielded chromosome-level scaffolds seen in this figure as 29 large rectangular bars of mixed color. 
A) A nuclear integration of the mitochondrial genome was found on F. pennsylvanica 
chromosome 4. It can be seen on the left as a slightly higher G/C content and lack of N gaps region 
due to the higher coverage. B) The genome of a newly discovered endophyte related to 
Sphingomonas can be seen as a 3.87Mbp scaffold with a high G/C content (red and gold). C) 
Whole F. pennsylvanica genome with A and B positions marked. D) Unscaffolded short reads are 
shown at the end (lower right). Of the genome, 23.5% is unassembled contigs, 76.5% is ostensibly 
assembled into chromosomes. This figure was generated with FluentDNA, a new visualization tool 
developed in Chapter 2. An interactive visualization is available at 
https://fluentdna.com/archive/Fraxinus%20pennsylvanica%20June%202017%20sorted/ 

3.3.3 Fraxinus Time Tree with Dates 

We can make several notable observations from the calibrated time tree (figure 3.4) of 

Fraxinus. The first, most outstanding, feature is that F. cuspidata is an extreme outlier in 

genus Fraxinus. Olea europea split from F. excelsior 36 million years ago but F. 

cuspidata split only 34 million years ago. The rest of genus Fraxinus share 15 million 

years of history with F. excelsior before the next speciation event. Several of the species 

with questionable identification can be seen next to each other on the time tree. F. 

caroliniana clusters with F. pennsylvanica, while the three F. angustifolia individuals 

group together. 

https://fluentdna.com/archive/Fraxinus%20pennsylvanica%20June%202017%20sorted/
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Figure 3.4: Fraxinus Time Tree with Dates: Speciation dates were inferred using RAxML 
and R8s with aligned sequence evidence. Branch lengths indicate millions of years between 
branch nodes. Branch colors indicate Fraxinus clades defined by Wallander (2012) and 
represented by clade exemplars (colored circles). Clades are:section Dipetalae (dark blue), section 
Fraxinus (dark green), section Melioides (light blue), section Ornus (light green),  section 
Pauciflorae (purple), section Sciadanthus (brown). All outgroups and unplaced species are 
colored black. 
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3.3.4 Gene Family Results 

The number of genes annotated in the original reference-based annotations varied from 

99.2% - 99.55% of F. excelsior gene counts in Kelly et al. (2019). All genomes had 

approximately the same number of GeMoMa annotated genes, varying by 0.35%, despite 

varying genome sizes, morphological differences, and tens of millions of years of 

evolutionary divergence during a diploidization process that reduced genome sizes by 

nearly half (1.5.2). This is a higher level of annotation concurrence than is seen on the 

same individual under two different annotation runs with different settings (data not 

shown). One explanation is the high level of concurrence is an artifact of the method in 

essence requiring a one to one annotation of the non-reference genome with each F. 

excelsior gene, resulting in identical gene count. 

Every gene has multiple isoforms, the gene count is based on taking only the longest 

isoform of each gene. However in Kelly et al. (2019) the genes are allowed to overlap, 

even in the same frame. If F. excelsior has fewer copies than F. cuspidata then true F. 

cuspidata genes will remain unannotated since each gene is only allowed one copy. If, 

however, F. excelsior has more copies than F. cuspidata then multiple overlapping 

annotations with slight variations will be mapped to the same F. cuspidata region. Either 

way, one annotation is generated for each F. excelsior gene. The only outcome which 

does not generate an identical annotation count is when an individual has lost an entire 

gene family and its associated pseudogene sequence which is present in F. excelsior. 

More varied gene counts were acquired by allowing each F. excelsior gene to template 

multiple gene copies then excluding overlapping gene annotations (3.2.4). The new 

genome annotation performed on all 28 specimens here shows gene counts between 

81.2% - 95.8% of F. excelsior gene count (Table 3.2). These results show 1) a more 

biologically realistic range of gene counts and 2) a reference bias in the annotation where 

the reference genome still has the highest gene count. The gene families which were 

annotated in all 28 species were the subset of families present in F. excelsior. This 

reference bias is unavoidable due to lack of availability of RNA-seq data for other 

specimens. 

GeMoMa annotated an average of 34,419 genes per Fraxinus species (Table 

3.2).  OrthoFinder grouped these into 28,362 Orthogroups, meaning that for any given 

genome 75.88% of annotated genes are only present as a single copy. For each species, 

the average percentage of Orthogroups containing that species is 70.3%.  Species specific 

orthogroups were 0.1% of all orthogroups (Table 3.3).  

  

https://paperpile.com/c/gNh4ZA/ZZpt
https://paperpile.com/c/gNh4ZA/ZZpt
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Table 3.3 Orthogroup Results 

Number of genes 1,153,334 

Number of genes in orthogroups 1,117,046 

Number of unassigned genes 36,288 

Percentage of genes in orthogroups 96.9% 

Percentage of unassigned genes 3.1% 

Number of orthogroups 28,362 

Number of species-specific orthogroups 243 

Number of genes in species-specific orthogroups 1,439 

Percentage of genes in species-specific orthogroups 0.1% 

Mean orthogroup size 39.4 

Median orthogroup size 32 

G50 (assigned genes) 60 

G50 (all genes) 59 

O50 (assigned genes) 6,257 

O50 (all genes) 6,561 

Number of orthogroups with all species present 6,609 

Number of single-copy orthogroups 309 

Date 2018-06-25 

Statistics generated by OrthoFinder after clustering genes from 28 Fraxinus genomes plus 3 
outgroup species (Olea europaea, Erythranthe guttata, and Solanum lycopersicum) into 
orthogroups. 

3.3.5 Whole Genome Alignment shows significant shuffling and 

highlights technical hurdles 

The calculated whole genome alignment covered 62.3% of the F. pennsylvanica genome 

and 52.6% of the F. excelsior genome. Only 54.9% of F. excelsior contigs have an 

alignment mapping, but those contigs account for 95.9% of the total genome length and 

97.8% of its predicted genes. This indicates the unaligned scaffolds are mostly short and 

do not contain genes (Figure 3.3D). We may infer from this correlation that the 

intragenic regions are more diverged between the two species. Figure 3.5 shows an 

example alignment visualization. 
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Figure 3.5: FluentDNA is used to inspect an alignment generated between F. 
pennsylvanica (left) and F. excelsior (right) visualized with FluentDNA. The center left column 
shows F. pennsylvanica specific sequence while the center right column shows F. excelsior 
specific sequence. A) Tandem duplication of 3,000 bp in F. pennsylvanica. The aligner finds a 
similar region in F. excelsior (right) but does not match it to the second copy as well. B) Region 
that did not align to F. excelsior. See Figure 2.3.6 for another example of this type of comparison. 

 

3.4 Discussion 
3.4.1 Genome Assembly 

The inclusion of 800bp insert libraries improved all 13 genome assemblies that 

represented a wide range of assembly qualities. By scaffold N50, the worst and best 

assembly quality improved from 1,987 - 50,545 to 3,085 - 89,782. No amount of 

parameter changes were able to overcome the inherent lack of long mate pair libraries or 

low coverage in problematic areas in order to obtain chromosome-level assemblies. In 

contrast, the Chicago / HiRise method uses polymer physics plus extensive sequencing to 

reveal which sequences are located physically close to each other. This technique was 

capable of generating chromosome-level assemblies where no amount of in silico 

bioinformatics could. I will be recommending this approach in the future. 

3.4.2 Visualization 

FluentDNA assisted in the assembly quality control process by making the unknown 

known. While it was not as fast or concise as a readout listing the percentage of N’s in the 

genome, it did provide nuance between two scenarios that would otherwise have 

identical statistics. Scenario A: N’s are in large scaffolds after successfully joining many 

contigs (F. mandshurica), or Scenario B: N gaps are mainly from orphaned long mate 

pairs (LMP) that were never successfully chained into other contigs (F. 

quadrangulata). An LMP comes with a built-in N gap insert size that doesn’t carry any 

real information about the contiguity of the assembly or genome size of the organism if 

it’s not placed. To the author’s knowledge there are no tools that automatically annotate 

these two different outcomes. Once the use case is identified, it’s relatively trivial to write 
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a script to quantify the number of unplaced LMP scaffolds and remove them from the N 

content statistics. Visualization makes these invisible possibilities apparent (3.4.2.2, 6.1). 

In most cases, the largest contigs were mitochondria, which are readily identifiable with 

BLAST. However, in the case of F. pennsylvanica it was possible to detect a true nuclear 

integration of the mitochondrial genome that is also likely to have aggregated 

mitochondrial reads, creating abnormally high coverage. FluentDNA was useful in 

picking out specific sequences to test in the context of GC changes and N gaps. This 

particular use case could be fulfilled by a dynamically zooming line graph of GC content.  

3.4.2.1 Contamination 
In almost every single genome, I was able to detect bacterial or fungal contaminants 

within two minutes of visualization due to the extreme differences in GC content between 

the genomes from different kingdoms. BlobTools offers a similar functionality by plotting 

contigs with GC content on one axis and read coverage on the other axis (Laetsch and 

Blaxter 2017). This fulfills one job that FluentDNA does but at higher sensitivity; 

however, FluentDNA can fulfill a broader range of tasks. The majority of user time was 

spent copying sequence snippets from FluentDNA into BLAST and waiting for results. 

Deep integration of sequence search and other assembly support tools into FluentDNA 

would enable users to rapidly interrogate and annotate their assemblies, particularly for 

identifying organelles, contaminants, and repeat families (Maaten and Hinton 2008; 

Crusoe et al. 2015; Laetsch and Blaxter 2017; Smit et al. 2015; Procter et al. 2021; 

Buchfink et al. 2015).  

3.4.2.2 Advantages of Visualization Tools 
Elhai (2011) discussed the importance of a capacity for surprise in biological research 

and pointed to bioinformatic black boxes as the primary problem area. He argues that, 

just as an explorer must maintain a deep awareness of their surroundings, a researcher 

must maintain a deep awareness of the inner workings of their wet lab and bioinformatic 

procedures. In this regard, abstractions can be misleading representations of the 

biological reality. FluentDNA and other visualizations bypass these black boxes by 

involving the researcher in every stage, staying close to the raw data, and taking 

advantage of the human capacity for creating explanations by combining biological 

knowledge with new observations.  

A key attribute of using FluentDNA to explore new genome assemblies is that it 

maintains the possibility to show the researcher something unexpected. Scripts and rigid 

analysis tools can only show what is already anticipated and accounted for in the 

procedural recipe. Researchers working in wet labs or in the field use their senses in 

feedback loops to constantly inform and update what they are working on. A key 

weakness of automation is its tendency to blindly carry on after the situation has gone 

outside of the original intended task. It cannot adapt to information not already explicitly 

within its programming. Researchers, by necessity, are searching for new information 

and new connections. They are searching for surprise. Surprises are best recognized in 

rich, high bandwidth data. 

3.4.4 Annotation & Gene Families 

Within one species genome, the majority of genes do not cluster into a gene family with 

other paralogous copies. In this multispecies study, 96.9% of all genes clustered into an 

orthogroup with members of another species. Some of this may be due to the GeMoMa 

https://paperpile.com/c/gNh4ZA/h9ia
https://paperpile.com/c/gNh4ZA/h9ia
https://paperpile.com/c/pXs8hX/LZtY+r9ID+m6lS+rPBz+vmeK+toLl
https://paperpile.com/c/pXs8hX/LZtY+r9ID+m6lS+rPBz+vmeK+toLl
https://paperpile.com/c/pXs8hX/LZtY+r9ID+m6lS+rPBz+vmeK+toLl
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reference-based annotation method being more likely to find similar genes across 

species. Without the additional evidence from transcriptomes, we will be less likely to 

annotate novel genes specific to one Fraxinus species that lack homologs in F. excelsior. 

Since the F. excelsior gene count is the highest of any genome, caution will need to be 

taken in chapter 4 when interpreting a corresponding lower rate of gene loss inferred 

since the last common ancestor for all Fraxinus. 

3.4.5 Moving Beyond Whole Genome Alignment Technical Challenges 

Performing whole genome alignment was an important prerequisite to move our 

comparative genomics beyond gene families to whole genome assemblies. Unfortunately, 

a truly syntenic contiguous genome alignment has remained out of reach for technical 

reasons that have gone unaddressed for decades. There are a few factors that may have 

led to this neglected area of research between 2004 Chimpanzee genome alignment and 

2018 update of UCSC alignment protocols. First, academic publishing has a known bias 

against publishing negative results, so it is possible the continual failure to produce 

satisfactory whole genome alignments has gone unpublished (Ioannidis et al. 2014). 

Second, intergenic regions are less conserved across species, more difficult to align, and 

also of less biological interest. A simple invocation of OrthoFinder or similar will give a 

researcher aligned protein families or cDNA alignments relevant to most research 

questions. Third, an automated pipeline for aligning genomes is most useful to a genomic 

center with many genomes such as EBI, NCBI or UCSC. Of those, UCSC has decided to 

focus on comparative genomics as a service rather than releasing software for researchers 

to run at their own institutions.  

Researchers who decide to compute their own genome alignments will face significant 

technical challenges. The draft alignments of F. pennsylvanica and F. excelsior used in 

this thesis, for example, took Carey Metheringham several months of work writing scripts 

and sorting through old documentation (Metheringham 2018): 

“The task of aligning two genomes took significantly longer than anticipated. This 

was partly due to my unfamiliarity with the methods and difficulties in managing 

the time and memory requirements of LAST and LASTZ, and in part due to the 

lack of support available for alignment of partially assembled genomes. 

Alignment tools tend to focus either on mapping a large number of short reads to 

a reference or aligning two fully assembled genomes. In this case the F. excelsior 

genome was divided across 89,513 contigs and F. pennsylvanica across 243,852 

scaffolds. While the LASTZ algorithm can perform alignments with multiple 

sequences as its query or target, using multiple target sequences produces an 

exponential increase in runtime. In order to bring run time under the cluster’s 

threshold, only F. pennsylvanica genes that had been placed on the linkage map 

were used as the target genome. This may have resulted in a loss of alignment 

coverage as parts of the F. excelsior genome would align to the unplaced F. 

pennsylvanica scaffolds, however alignment to the smaller unplaced scaffolds 

would provide limited additional information and was deemed not to be worth 

the computational cost. Many of the delays in the alignment process were due to 

difficulties in mismatched file formats and difficulties in conversion between 

formats. Converting the output of LASTZ (maf or axt files) into a LiftOver file was 

not a well-supported process and was once again hampered by the large number 

of files in use.”  

https://paperpile.com/c/gNh4ZA/bOcD


73 |  
 

As the rate of sequencing continues to outpace researchers’ rate of understanding, 

comparative genomics will become ever more important. Bioinformatics depends on 

good alignment protocols and formats. As of 2018, these whole genome alignment 

methods were superseded inside UCSC by newer scripts and a tool that allows 

researchers to select genomes hosted on UCSC for alignment. While this tool makes 

LiftOver generation more user-friendly, the ultimate goal of this study has been to 

generate an alignment of 28 Fraxinus genomes that had not been uploaded to UCSC. 

LiftOver files are still inherently pair-based. In Chapter 5 of this thesis, I discuss a much 

better method of representing pangenome alignments using Graph Genomes. 

3.5 Data Availability 
All newly assembled Fraxinus genomes were deposited in EBI Nucleotide Archive which 

is available through the BioProject PRJEB20151  

(https://www.ebi.ac.uk/ena/browser/view/PRJEB20151). These are placed alongside 

the first draft assemblies from Kelly et al. (2019) where improved scaffolding is shown in 

Table 3.2. The BioProject does not currently include the latest F. pennsylvanica Dovetail 

assembly, which will receive its own publication. 

All other data associated with this chapter is available on Zenodo, here: 

https://zenodo.org/record/4302552 

 

 

  

https://www.ebi.ac.uk/ena/browser/view/PRJEB20151
https://paperpile.com/c/gNh4ZA/ZZpt
https://zenodo.org/record/4302552%23.X8gxHs1KheA
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Abstract 
A core question in evolutionary biology is whether a particular event is due to chance or 

inevitability. Would the same outcome be repeated given the same starting conditions? 

Gene copy number change is a key factor in plant genome evolution and whole genome 

duplications (WGD) create a copy of every gene, most of which are lost over subsequent 

generations. In this study, I quantify the repeatability of gene copy loss using 28 new 

Fraxinus assemblies which share the same ancient WGD. Since many species share the 

same duplication, this is a powerful system in which to distinguish loss events that occur 

independently (i.e., convergently) in different lineages from loss events that occur once 

and are passed to all descendent lineages. I used patterns of gene presence/absence 

among the Fraxinus species to calculate rates of independent loss in different gene 

families, and compared these with a null model simulation where every gene family has 

an equal chance of loss.  

I find evidence for convergent gene loss during the diploidization of Fraxinus through 

the concentration of losses in specific orthogroups while other orthogroups are retained 

in duplicate. Observed results have much wider distribution in the number of gene losses 

per family than predicted by the null model. My results show there were more subtrees 

(i.e., gene families) with zero losses (2.6x) and more subtrees with greater than five 

losses (4.8x) than under the null model. I discuss how repeated outcomes in evolution 

indicate some underlying cause, which can be either selection or physical constraints in 

neutral evolution (4.1.2.2). Protein function is found to be a weak predictor of gene 

duplicate retention, with developmental genes and transcription factors being 

overrepresented as retained duplicates. In contrast to some other studies, I find no 

evidence of different retention rates in one subgenome of the Fraxinus ancient 

allopolyploid over the other (no biased fractionation). I find evidence for convergent 

evolution of gene loss in Fraxinus. This study demonstrates a powerful method for 

detecting convergent evolution which could be applied to any clade which had undergone 

WGD and subsequent speciation.   
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4.1 Introduction 
4.1.1 Distinguishing WGD in Species Trees 

Whole genome duplications can be identified within a species tree using phylogenetic 

analysis. There are two possible approaches, one is to treat the tree topology as an 

unknown parameter and measure bootstrap values for a collection of tree topologies as 

was done in (Jiao et al. 2011; Julca et al. 2018). This method is particularly useful in the 

case of allopolyploidy, where the two parents can have different species trees combined 

in their descendant.  

The second approach is to assume species tree topology and use the timing and position 

of the WGD as the unknown parameter. Maximum likelihood of observed gene counts in 

extant species is used to test the validity of a hypothesized WGD event. WGDgc is one 

such software simulation that uses gene copy birth/death rates to estimate the most 

likely timing of multiple WGD along a phylogenetic branch (Ta et al. 2013; Rabier et al. 

2014). This method works best with multiple species with a wide range of divergence 

times before and after the WGD event. Underlying both methods is an attempt to identify 

consistent patterns of duplication across all gene trees that would indicate the presence 

of a WGD. 

4.1.1.1 Verification Using Ks Values 
Synonymous substitutions (Ks) can be used for independent cross-validation for the 

phylogenetic method of identifying WGD. Ideally, the two approaches to identify WGD 

(Ks and phylogeny) would agree (Ren et al. 2018 Figure S4).  

An advantage in comparing techniques is that different techniques have complementary 

strengths and weaknesses at different time scales. The right technique will depend on the 

species and data available, but multiple methods is always better than one. The 

phylogenetic approach is less susceptible to the Ks saturation problems noted in 

Vanneste, Van de Peer, and Maere (2013) but required multiple surviving species. Shared 

synteny (blocks of homologous sequence in the same order in disparate organisms) is a 

third technique which can also provide evidence of higher ploidy levels but will lose 

coherence over time with high recombination rates and requires good quality assemblies 

(Bowers et al. 2003; Lyons, 2008; Lyons et al. 2008). 

4.1.2 Superior Detection Power of Convergent Fractionation in 

Fraxinus 

Chapter 1 proposes the Worldwide Ash Genomes (ashgenome.org/worldwide) be used as 

a test bed for a series of theories about paleopolyploidy already in the literature. For 

example, are gene losses primarily concentrated immediately after the WGD as predicted 

in Wolf and Koonin (2013) or do essential genes require a lag time to subfunctionalize as 

predicted by Robertson et al. (2017)? Ash trees provide a rare opportunity because there 

are 28 genomes sequenced of diploidized species that all share the same WGD. In other 

studies (Figure 1.5) there is a close to one-to-one relationship between the number of 

species sequenced and the number of WGDs discovered. Largely, this is due to the 

research incentive to sequence and study diverse model organisms while sequencing was 

very expensive. Now that sequencing is orders of magnitude cheaper, we will see more 

studies of closely related organisms. Figure 4.1 shows how the power to detect 

https://paperpile.com/c/j1LjdZ/19qu+kpNSj
https://paperpile.com/c/j1LjdZ/DqtB7+RzaWW
https://paperpile.com/c/j1LjdZ/DqtB7+RzaWW
https://paperpile.com/c/j1LjdZ/79ce9/?suffix=Figure%20S4
https://paperpile.com/c/j1LjdZ/f7A6e
https://paperpile.com/c/j1LjdZ/0Obf+IBuA+c2wl
http://www.ashgenome.org/worldwide
https://paperpile.com/c/j1LjdZ/ndkp
https://paperpile.com/c/j1LjdZ/yN5MS
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repeatability of evolution after a specific WGD (convergent fractionation) increases with 

the number of internal nodes in the species tree.  

 

Figure 4.1: Example of Repeated Independent Gene Loss After WGD: Starting with a 
WGD at 2 copies (top), this example diagram shows how to infer the most likely series of events 
from present species gene copy numbers. Across the bottom, circles represent each species which 
has either one or two copies of the gene family remaining. From left to right: 1, 1, 2, 1, 1, 2 gene 
copies. Light green circles represent internal nodes from ancestral organisms where the gene copy 
is inferred rather than observed. A) If two species currently have a single copy of a gene family, 
then their immediate ancestor (node 7) is inferred to have one gene copy. If we infer that ancestor 
9 had two copies, then a gene copy loss event is place in between the two ancestral nodes (marked 
in red). B) With four species there are sufficient internal nodes to detect repeated losses in two 
different branches. Starting with species 3 and 4, we can infer their ancestor 8 had two copies 
because species 3 still retains two copies. At this point, we’ve detected our first pair of convergent 
loss events (7-9 & 8-4). C) With six extant species at the tips, the species tree includes five internal 
nodes with inferred copy numbers and proportionately more detection power for independent 
changes. Species 5 and 6 add nodes 10 and 11 along with the inferred convergent loss 10-5.  

All events and copy number of internal nodes can only be inferred using parsimony (the 

simplest explanation is usually best) and probabilistic modelling. For example, in the 

case of diploidization gene loss and gene gain do not have equal probabilities. Gene loss 

is many times more likely than gene duplication as is predicted in 1.4.4 and directly 

estimated in 4.3.2. This means that a longer chain of high probability events may have a 

higher combined probability than a single low probability event, despite the low 

probability event being more parsimonious. Figure 4.1 contains a direct example of this 

scenario. If instead, we inferred that nodes 8, 9, and 10 only had one copy, then a single 

duplication event could be placed at species 3. This would explain the existing copy 

number distribution with two events, instead of three. However, if the net probability is 

greater for three losses than a loss and a duplication, then the former scenario will be 

chosen as the most likely explanation. Evidence for convergent loss can also be backed by 

shared synteny (1.3.3), since novel duplications will not arise at the ancestral genome 

locus. 

4.1.2.1 CAFE Simulation of Gene Copy Evolution 
In a species tree with more than three species and each species with tens of thousands of 

gene families, there are many possible histories of gene duplication and loss that would 

all produce the same present day observed outcomes. CAFE is an algorithm that 

simulates the gene birth and death process that estimates the most likely rates of change 
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in different parts of the species tree (De Bie et al. 2006). A major source of concern when 

measuring gene copy loss is that a gene may be present in the organism but simply not 

annotated, called a false negative annotation. The authors emphasize that their model 

accounts for noisy data by approximating the false negative annotation rate (Han et al. 

2013). False negative rate is the percentage of all missing annotations which are due to 

errors as opposed to biological reality. If this number is estimated too low, then a poor 

annotation will lead to inferring the genome has lost significant gene content. If this 

number is too high, the tool would disregard true losses as noisy data, asserting few real 

losses had occurred. CAFE also includes detailed outputs of where gene copy changes 

likely occurred (4.3.2.1) that are normally only available in forward evolution simulations 

like MEGA5 (Tamura et al. 2011). 

4.1.2.2 Neutral Evolution vs. Selection 
The repeatability of evolution does not necessarily prove the action of selection in this 

study. Beyond technical artifacts, there are physical biological reasons why we might 

expect the same outcome to be repeated given the same starting conditions that have 

nothing to do with selection pressure mediated by the fitness of the organism’s survival 

or the number of offspring it produces. For example, if a gene is near the telomere it is 

more likely to be lost because of the physics of polymerase, telomerase, and 

recombination. These factors bear equally on all sub-telomeric genes regardless of their 

fitness advantage. This set of dynamics is covered in neutral evolutionary theory and it 

highlights the large amounts of sequence which are not under selection pressure (Kimura 

1979). Similar physical forces apply to the likelihood of nonallelic homologous 

recombination, silencing due to proximity to a transposon, or sequence robustness to 

mutation (Kidd et al. 2010; Ecco et al. 2016; Schulte et al. 2014).  

Selection is one possible explanation for repeated outcomes in evolution. It may be the 

most likely explanation for convergent features in unrelated species, such as the 

independent development of echolocation in mammals: toothed whales, dolphins, and 

bats (Parker et al. 2013). However, in this study, where the physical constraints of the 

ancestor are identical in all organisms, neutral evolution is an equally viable explanation.  

4.1.3 Null Model From Li Et al. 2016 

A major advantage of stochastic simulations is that they can be used as a null model by 

removing input data or constraints, running the simulation, and comparing the resulting 

outcomes. The specification for stochastic simulations of gene birth/death which 

included WGD was introduced in Rabier, Ta, and Ané (2014) and implemented in the R 

package WGDgc (Ta et al. 2013). More recently, (Li et al. 2016) employed a null model 

following the same specifications and used the Wilcoxon rank sum to test the probability 

the null and observed data were from the same distribution.  

CAFE 4.2 includes a null model which can be used to establish a baseline distribution for 

the amount of gene copy loss per gene family expected by chance (Han et al. 2013). While 

it does not support WGD, CAFE genfamily includes detailed simulation of a large 

number of gene families with different sizes and a complete history of change along the 

species tree topology. The simulation runs until it matches the observed distribution of 

gene family sizes in the actual data. 

4.1.4 Parental Subgenomes and Biased Fractionation 

https://paperpile.com/c/j1LjdZ/p2p6
https://paperpile.com/c/j1LjdZ/xwPey
https://paperpile.com/c/j1LjdZ/xwPey
https://paperpile.com/c/j1LjdZ/YVjQ
https://paperpile.com/c/j1LjdZ/RzaWW
https://paperpile.com/c/j1LjdZ/DqtB7
https://paperpile.com/c/j1LjdZ/X48SV
https://paperpile.com/c/j1LjdZ/xwPey
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In polyploids where a parental genome is still available, it is possible to detect which 

subgenome came from which parent and thus determine how much of each parental 

contribution may have been lost in fractionation (Edger et al. 2018). In cases such as 

Oleaceae where a parental population is no longer available, investigating biased 

fractionation is usually not possible.  

4.1.5 Functional Enrichment Analysis 

Many of the key explanations for why genes are lost or retained are tied to the functions 

of their proteins (1.4.1, 1.4.2, 1.4.3). Functional enrichment analysis seeks to establish 

that certain functional categories are overrepresented in the set of retained genes. For 

example, if transmembrane proteins made up 7% of an organism’s proteome but 21% of 

the study set, then transmembrane proteins would be 3-fold enriched in the study set 

(Huang, Sherman, and Lempicki 2009). GOenrich is a Python library which uses the 

hypergeometric survival function to calculate the odds the same category would be 

picked multiple times (Rudolph et al. 2016). The calculation uses a background model 

based on the entire genome(s) provided and then calculates enrichment of terms for the 

subset of genes provided as a second list (Huntley et al. 2015).  

4.1.5.1 Challenges of Non-model Functional Annotation 
When working with non-model organisms there are methodological challenges in 

function annotation. For example, the pipelines used on F. excelsior and Olea europaea 

are based on finding similar sequences in well-annotated genomes like Arabidopsis 

thaliana and conjecturing they have the same function in a distantly related plant. In 

reality, even proteins with very similar sequences and protein folds can have different 

functions (Mindrebo et al. 2016). Many studies mitigate this shortcoming by focusing on 

high level functional categories that are less susceptible to change (Li et al. 2016; Maere 

et al. 2005; Rodgers-Melnick et al. 2012). The GO ontology structure is ideally suited to 

this hierarchical approach.  

Finally, studies in one domain of life can limit themselves to appropriate terms for the 

organism. For example, GO Slim Plants is the subset of terms relevant to plants and 

would exclude animal or bacterial terms. Term relevancy is also accounted for by using 

the background model of the full genome to calibrate term frequencies for the organism. 

4.1.6 Introduction Summary 

In this chapter, I investigate the fates of genes which were duplicated in the last whole 

genome duplication (WGD) shared by Olea and different species of Fraxinus. This study 

focuses on quantifying the repeatability of evolution in Fraxinus. Through the analysis of 

28 species we have greater power to detect repeated gene loss than any previous study 

(4.1.2). CAFE serves as the basis for phylogenetic inference and null models while I 

replicate the Wilcoxon ranksum test used in Li et al. (2016) and Han et al. (2013). I find 

the rate of gene loss has accelerated as predicted by the Lag Time model (4.3.2.2 & 1.4.5) 

( Schranz, Mohammadin, and Edger 2012; Dodsworth, Chase, and Leitch 2016; 

Robertson et al. 2017; Cheng et al. 2018; Clark and Donoghue 2017). Protein functions 

are shown to be weak predictors of gene retention (4.1.5) in non-model organisms (1.4; Li 

et al. 2016). Finally, I find no evidence of biased fractionation in parental subgenomes, 

which is consistent with reviews showing this is not a universal phenomenon (Table 1.1; 

Wendel et al. 2018). 

https://paperpile.com/c/j1LjdZ/ZWYJ
https://paperpile.com/c/j1LjdZ/lGzX
https://paperpile.com/c/j1LjdZ/Bbfe
https://paperpile.com/c/j1LjdZ/gEoV
https://paperpile.com/c/j1LjdZ/XBDy2
https://paperpile.com/c/j1LjdZ/X48SV+bcLXI+Bx9p
https://paperpile.com/c/j1LjdZ/X48SV+bcLXI+Bx9p
https://paperpile.com/c/j1LjdZ/X48SV+xwPey
https://paperpile.com/c/j1LjdZ/yN5MS+vEOz+XxkMv
https://paperpile.com/c/j1LjdZ/yN5MS+vEOz+XxkMv
https://paperpile.com/c/j1LjdZ/X48SV
https://paperpile.com/c/j1LjdZ/X48SV
https://paperpile.com/c/j1LjdZ/9lBgA
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4.2 Methods 
The exomes of the worldwide Ash genome project (3.3) served as the input sequences for 

this study, plus Olea europaea (2.2.5.1). Since this study focuses on the Oleaceae WGD, it 

excludes Solanum and Erythranthe. As mentioned in 3.3.1. notable species, F. 

apertisquamifera and F. uhdei were later excluded as polyploids or hybrids. F. 

pennsylvanica is represented by the FRAX09 draft assembly, rather than the 

chromosome level assembly in 3.3.2, so FRAX09 is methodologically consistent with the 

other genomes in the results and in Chapter 2. The genes of interest in this chapter are 

the identified homeologs in 4.2.1 and compared against the background gene annotation 

set from GeMoMa section 3.3.4. 

Data Availability 

Scripts used in this study are all available in a single git repository: 

https://github.research.its.qmul.ac.uk/btx142/DNA_Duplications 

Figures and Supplemental Data Files are available on Google Drive: 

https://drive.google.com/drive/folders/1hcvcYvN_tOGA-

hyqH_pqJrUEiQa51KDz?usp=sharing 

4.2.1 Homeolog Filtering Based on Reconciled Gene Trees 

To ensure only the fate of homeologs was studied, the set of all Oleaceae genes from 

Chapter 2 was filtered down to a subset of homeologs. This chapter focuses solely on the 

subset of genes which were duplicated during the two WGDs at the Oleaceae root. Since 

Jasmine data was not available at the time (Figure 1.6) I was unable to phylogenetically 

separate the first and second Oleaceae WGD, however they clearly separate based on Ks. 

Gene trees have duplication nodes any time a gene was duplicated in an ancestor (Figure 

4.2A), leading to two subtrees containing one copy each per species of the two paralogs. 

For a gene family starting with one copy, which then went through two WGDs without 

loss, there would be three duplication nodes resulting in four gene copies. For the sake of 

clarity, I focus on the subset of homeologs with only one detectable duplication at the 

Oleaceae root. This criteria removes the effects that could be introduced from gene 

families of different sizes and significantly simplifies interpretation of the results. 

Starting from a single progenitor gene before two WGD, there are three scenarios that I 

consider here which can generate this outcome: 1) The older duplicate from the first 

WGD was lost and recent duplicates were retained. 2) Old duplicates are retained, one 

recent copy from each subtree is lost. 3) More copies were retained, but OrthoFinder did 

not assign them to the same orthogroup. The Ks results described in 4.3.1.2 indicate that 

scenarios 1 and 3 are unlikely due to the inclusion of outgroups in the rooting of 

orthogroups and the reference based annotation of GeMoMa (2.2.4). In effect, this study 

focuses on gene families which have a history of reducing to single copy number, making 

them ideal candidates for studying diploidization. 

Gene trees from section 3.3.5 processed with OrthoFinder were used as input for the 

complete gene set to ensure only the fate of homeologs was studied; the set of all 

Oleaceae genes from chapter 2 was filtered down using gene tree criteria. OrthoFinder 

outputs the file Duplications.csv which lists, for each gene family, the duplication nodes 

in the reconciled gene tree and the corresponding species tree node found using the DLC 

search algorithm (Emms and Kelly 2019). The Oleaceae root where both WGDs occurred 

https://github.research.its.qmul.ac.uk/btx142/DNA_Duplications
https://drive.google.com/drive/folders/1hcvcYvN_tOGA-hyqH_pqJrUEiQa51KDz?usp=sharing
https://drive.google.com/drive/folders/1hcvcYvN_tOGA-hyqH_pqJrUEiQa51KDz?usp=sharing
https://paperpile.com/c/j1LjdZ/YQ6H
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is labeled N2 in the species tree. The Homeologs_Analysis.ipynb script was written to 

process the file and collect the total number of mentions of N2 duplications per 

orthogroup. Orthogroups which contained only one duplication at N2 were selected for 

study (Figure 4.2B). These selected genes are hereafter referred to as “homeologs”. 

 

Figure 4.2: Example 
of reconciled gene 
tree with homeologs. 
A) The example gene tree 
(black lines) for 
orthogroup OG0006370 
was specifically chosen 
for its small size. This 
subtree shows all 
detected gene copies 
arising from a single 
duplication event (star) 
distributed across three 
species. Gene trees 
cannot differentiate 
between the two WGD 
on the same Oleaceae 
branch, but we know 
from the position this 
subtree are homeologs. 
B) Gene tree 
reconciliation maps the 
gene tree topology onto 
the species tree, which 
can have a very different 
topology from the 
species tree (blue lines). 
Duplications (star) are 
branches in the gene tree 
with no corresponding 
speciation event (white 
nodes). Homeologs are 
identified as gene copies 
tracing back to an 
ancestral node that maps 
to the species tree 
position where we know 
the WGD occurred (N2 - star). In the simplest case, this creates two copies of the species tree 
topology in the gene tree, with one F. excelsior and one Olea europaea copy in each subtree. In 
total, two gene copies are retained in F. excelsior and Olea europaea. The scenario depicted here 
shows one copy retained in F. angustifolia subsp. syriaca (FRAX16) and one lost, while both 
copies are lost in all other Fraxinus species. Given its close relationship to F. excelsior it is also 
possible that it acquired its copy through hybridization. 

 

4.2.1.2 Independent Validation of Homeologs with Ks and 4DTv 
To verify the correct genes were selected using gene tree criteria, I used Ks values as an 

independent estimator of gene copy divergence time. The script KsPlots.ipynb was 

written to gather all the CDS sequences for all the identified homeologs and compare 

their aligned sequences against their homeolog pairs within the same genome. 

Comparisons were only made within each species and not between species, to avoid 

introducing additional factors such as a speciation peak. However, once the Ks values 
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were calculated, the data were aggregated across all species under the assumption that all 

Fraxinus species have roughly the same rate of synonymous mutation accumulation.  

The function count_synonymous_sites uses a standard codon table to count the number 

of synonymous substitutions that have occurred between the two sequences. The 

difference between Ks and 4DTv is that 4DTv only counts those positions which are four-

fold degenerate codons (32 out of 64 possible codons) as opposed to wobble positions, 

and is intended to be less sensitive to mutational noise. I use non-calibrated Ks plots with 

the x-axis being a literal count of the ratio of synonymous changes per 100 opportunities 

for a synonymous change. Correct selection of homeologs would be indicated by a Ks 

peak at the second peak in Figure 1.6 on the WGD. A failure in the filtering steps outlined 

in 4.2.1 would be indicated by a lack of change in the shape of the Ks graph as opposed to 

the background Ks distribution. 

4.2.2 CAFE for Phylogenetic Inference of Gene Loss Events 

4.2.2.1 Preparing Orthogroups for CAFE 
The contents of Orthogroups.GeneCount.csv was filtered to remove Orthogroups 

containing only one gene copy or over 100 copies as the designers of CAFE have found 

that very large gene families can inflate the estimation for rates of gene copy gain and 

loss (“CAFE Tutorial: Computational Analysis of Gene Family Evolution” 2016). I used 

the provided script cafetutorial_clade_and_size_filter.py to produce 

2020_Feb08_homeolog_filtered_counts.txt which contains the full list of 

7,836 homeolog subtrees analyzed below. 

4.2.2.2 Estimating Birth and Death Rates With CAFE 
CAFE 4.2 was used to estimate the birth (lambda) and death (mu) rates of gene copies for 

the entire species tree. The data file (filtered_OG_counts.txt) contains a table with a row 

for each Orthogroup and a column for each species with the number of copies in each 

table cell. The input time tree for CAFE was 

Species_tree_corrected_root_ultrametric_integers.tre. Using the estimated values for 

lambda and mu, CAFE then inferred the most likely gene count for each node in the 

input tree for each gene family using the Viterbi algorithm (Forney 1973; Han et al. 

2013).  

4.2.2.3 CAFE Used For WGD Fractionation 
CAFE 4.2 does not support the simulation of whole genome duplication or an immediate 

copy loss parameter, unlike the R package WGDgc (Ta et al. 2013). However, CAFE was 

selected for its rich output and tracking of specific genes and time points. The solution 

was to hand-craft the data to use CAFE to answer the biological question of fractionation. 

The two homeolog subtrees created by the WGD for each locus were each submitted as 

their own “gene family.” For example, OG0000069 was submitted to CAFE as 10000069 

and 20000069 and copy numbers were tracked separately. Assignment to 1000* or 

2000* is purely for tracking subtree pairs consistently and does not imply a particular 

parent subgenome. Consequently, the simulation was initiated with two ancestral copies 

at the time of the WGD, after which point the copy number could change in the 

simulation to account for extant patterns of variation.  

The input data includes only subtrees of genes which are considered to have duplicated at 

the base of Oleaceae, it therefore excludes duplicated genes from Solanum (Solanaceae) 

and Erythranthe (Phrymaceae). While their inclusion in Chapter 2 influences the scope 

https://paperpile.com/c/j1LjdZ/1ocBB
https://paperpile.com/c/j1LjdZ/y8glX+xwPey
https://paperpile.com/c/j1LjdZ/y8glX+xwPey
https://paperpile.com/c/j1LjdZ/DqtB7
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of orthogroups, their evolution rates and copy numbers are not present in these results. 

Finally, rate estimates did not include the WGD event itself. The simulation is a study of 

only the decay phase of the Boom and Decay Model (Figure 1.3; Wolf and Koonin 2013) 

because the assumed short term genome instability immediately following WGD leaves 

no evidence behind for study ~60 million years after the event.  

4.2.2.3.1 CAFE Simulation Inputs 
The species counts for each of the split homeolog subtrees was used as the input for a 

CAFE simulation of maximum likelihood ancestral copy number inference (Han et al. 

2013). First, an estimate of global annotation error rate was calculated using the 

caferror.py script included with CAFE. This script performs a grid search for the error 

parameter which maximizes the probability of observing the data. The starting error 

estimate input was 0.08 based on species overlap statistics. Per species error rates were 

not estimated. 

CAFE was then used to run a search for the most likely birth (lambda) and death (mu) 

rates using the obtained error rate (lambdamu -s). Separate rates were used for birth and 

death since this study specifically focuses on the preferential loss of homeologs after a 

large duplication. Finally, the included Python script cafetutorial_report_analysis.py was 

used to summarize results. 

load -i 2020_Feb08_homeolog_filtered_counts.txt -t 8 -l 

onerate/Feb008_homeologs_onerate_0.1_error.log 

tree 

((((((((((FRAX30:2.0,FRAX32:2.0):1.0,FRAX28:3.0):2.0,FRAX12:5.0):4.0,(

FRAX07:8.0,FRAX29:8.0):1.0):4.0,FRAX08:13.0):1.0,(((((FRAX01:2.0,FRAX1

6:2.0):4.0,FRAX15:6.0):2.0,FRAX00:8.0):2.0,(FRAX06:9.0,FRAX23:9.0):1.0

):3.0,FRAX25:13.0):1.0):3.0,FRAX21:17.0):2.0,(((FRAX19:8.0,FRAX20:8.0)

:2.0,((FRAX11:5.0,FRAX27:5.0):4.0,FRAX04:9.0):1.0):1.0,(((((FRAX03:1.0

,FRAX09:1.0):1.0,FRAX13:2.0):2.0,(FRAX26:2.0,FRAX14:2.0):2.0):3.0,FRAX

05:7.0):2.0,FRAX33:9.0):2.0):8.0):15.0,FRAX31:34.0):2.0,Oeuropea:36.0) 

errormodel -model cafe_errormodel_0.1.txt -all 

lambdamu -s 

report onerate/Feb008_homeologs_onerate 

 

4.2.2.3.2 Convergent Losses in Homeolog Lines 
Using the inferred copy numbers the amount of convergent gene loss was quantified: 

specifically, how many times has the same gene family lost a copy in independent 

lineages. For each homeolog subtree, the species tree was traversed. Each time a direct 

child node had a copy number lower than its parent node, a “loss event” was recorded in 

a table for that homeolog subtree (Figure 4.1). The total number of independent loss 

events for each homeolog subtree was used to measure the degree of polyphyly in the 

pattern of gene loss since all homeologs started at the same copy number and had the 

same number of opportunities for loss in the species tree. The process was repeated for 

gene copy gains. The code can be found in the notebook 

TreeCountAnalysis_Oleaceae_Homeologs.ipynb in the method 

populate_history_histogram. 

4.2.2.4 Rate of Change Analysis 
To test whether the rate of change has been constant over time, the number of changes 

inferred with the time elapsed was compared. The timeline of gain and loss events was 

https://paperpile.com/c/j1LjdZ/ndkp
https://paperpile.com/c/j1LjdZ/xwPey
https://paperpile.com/c/j1LjdZ/xwPey
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aggregated into one-million-year time interval bins according to the phylogenetic branch 

where the event occurred. Each branch contributed their total number of events 

normalized by their branch length to each interval. With more extant species there are 

more possible events that can happen, so the total number of events per time interval is 

normalized by the number of extant branches in that time interval. If many branches are 

present at a particular time point, they add granularity to the results, but do not 

artificially inflate the rate of change. The code can be found in the notebook 

TreeCountAnalysis_Oleaceae_Homeologs.ipynb in the method 

populate_change_histogram. 

4.2.3 Null Model Simulation 

A null model was generated in order to compare actual results with the results expected 

from gene birth and death rates along the same species tree topology. The CAFE function 

genfamily was used to simulate a stochastic birth-death process over the actual species 

tree. The simulation was restricted to contain the exact same number of homeologs with 

the same count per extant species and the same root size distributions estimated from 

ancestral copy number inference in the previous step. This restriction ensured the only 

variable between the null model and observed data was the distribution of events in the 

internal nodes of the species tree. Parameters used for genfamily match the maximum 

likelihood estimates from the previous steps: Birth: 0.00093971443748; Death: 

0.00947308078407; errormodel with copy number transition probabilities: +1= 5%, +0= 

90%, -1= 5%. The null model uses the following script: 

load -i 2020_Feb08_homeolog_filtered_counts.txt -t 8 -l 

simulate_onerate/simulate_onerate.log 

tree 

((((((((((FRAX30:2.0,FRAX32:2.0):1.0,FRAX28:3.0):2.0,FRAX12:5.0):4.0,(

FRAX07:8.0,FRAX29:8.0):1.0):4.0,FRAX08:13.0):1.0,(((((FRAX01:2.0,FRAX1

6:2.0):4.0,FRAX15:6.0):2.0,FRAX00:8.0):2.0,(FRAX06:9.0,FRAX23:9.0):1.0

):3.0,FRAX25:13.0):1.0):3.0,FRAX21:17.0):2.0,(((FRAX19:8.0,FRAX20:8.0)

:2.0,((FRAX11:5.0,FRAX27:5.0):4.0,FRAX04:9.0):1.0):1.0,(((((FRAX03:1.0

,FRAX09:1.0):1.0,FRAX13:2.0):2.0,(FRAX26:2.0,FRAX14:2.0):2.0):3.0,FRAX

05:7.0):2.0,FRAX33:9.0):2.0):8.0):15.0,FRAX31:34.0):2.0,Oeuropea:36.0) 

errormodel -model cafe_errormodel_0.1.txt -all 

lambdamu -l 0.00093971443748 -m 0.00947308078407 

genfamily simulate_onerate/simulation -t 1 

load -i simulate_onerate/simulation_1.tab -t 8 -l 

simulate_onerate/simulation_viterbi.log 

report simulate_onerate/simulate_onerate 

 

4.2.3.1 Wilcoxon Rank Sum for Comparing Null Model Metrics 
To quantify the probability that the simulated and actual data came from the same 

distribution, the two sets of observations were compared using the Wilcoxon Rank Sum 

test (Wilcoxon et al. 1970). This test was also used against null distributions of rate of 

change in gene copy number, repeated events in one homeolog subtree, and biased 

fractionation. It is a non-parametric test which counts the number of times one 

observation in set A is larger than an observation in set B for all pairwise combinations 

(Wild and Seber, 1999). This test is used to check the significance of the difference 

between null simulation and actual data for 4.2.2.4 Rate of Change, 4.2.2.3.4 Number of 

Repeated Losses per Homeolog. 

https://paperpile.com/c/j1LjdZ/OHqd6
https://paperpile.com/c/j1LjdZ/vREqM
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4.2.3.2 Species Overlap Probabilities 
The significance of overlap in loss of gene families between distantly related species is 

used to control for loss caused by errors in annotation. To test whether losses in one 

species could predict losses in other species, a set intersection of the set of genes lost in 

one species and the set of genes lost in another species for all pairwise combinations of 

species was performed. The probability of an overlap in two randomly distributed 

independent samples is the probability of observing k successes in n draws where there 

are no replacements is defined by the hypergeometric distribution (Rice, 2006). Scripts 

for these comparisons can be found in TreeCountAnalysis_Oleaceae_Homeologs.ipynb 

starting with simple_overlap_prob. 

4.2.5 Functional Enrichment Analysis 

Function categories were assigned by taking the existing functional annotations from F. 

excelsior present in each orthogroup (3.3.4) and transferring those functions to all other 

member genes of the same orthogroup. This is a low precision inclusive approach that is 

well suited to test claims in the literature that resistance to fractionation is associated 

with high level categories such as developmental genes and transcription factors (Li et al. 

2016). This analysis focuses primarily on high-level functional categories, which are 

likely to be stable over great phylogenetic distances. 

Gene function annotation of all Fraxinus was based on the annotation produced in 

(Sollars et al. 2017) available in the file 

Fraxinus_excelsior_38873_TGAC_v2.gff3.functional_annotation.tsv. For this study, a 

script for annotation transfer was written and is available in 

FunctionsForFamilies.ipynb. Final results are in GO_Enrichment.ipynb. Each F. 

excelsior gene has a set of GO terms associated with it. Each F. excelsior gene has one 

orthogroup clustered by OrthoFinder (3.3.5). The union of all F. excelsior GO terms for 

genes contained inside each orthogroup are assigned to the orthogroup in a lookup table. 

All orthogroups with no GO terms are removed from this analysis. 

Goenrich 1.10.1 (https://github.com/jdrudolph/goenrich) was used to carry out the 

enrichment analysis. The ontology used was go-basic.obo available at 

http://geneontology.org/ontology/go-basic.obo. The background model was built from 

all orthogroups that have GO terms. Note that this treats large or small gene families as 

one sample each, eliminating the effects of large gene families. Similarly, selection 

criteria for a query set is based on the entire orthogroup, not individual genes. 

Enrichment of the query set also treats large or small families as one sample each. 

Goenrich analyses the query set against the background and outputs an HTML table 

sorted by p-value. Internally, enrichment probabilities are calculated with the same 

hypergeometric survival function (4.2.3.2).  

Given the dependence between gene functions and orthogroup selection, accurately 

reporting the magnitude of overlap significance is problematic, though the significance 

ranking is stable. A 10% overlap in a set of 10 orthogroups is not significant, however a 

10% overlap in a set of 1,000 genes is highly significant. If the calculation is done using 

gene counts, the top results will be p < 10-80. When calculated by orthogroup, the order is 

the same but all results are p > 0.001. These conservative probabilities are the values 

reported in the final results. 

4.3 Results 

https://paperpile.com/c/j1LjdZ/I9M0D
https://paperpile.com/c/j1LjdZ/gjWLr
https://github.com/jdrudolph/goenrich
http://geneontology.org/ontology/go-basic.obo
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As the number of species in the study increases, the number of internal nodes increases 

geometrically and with it the detection power for repeatability of evolution. For this 

research, a pilot study was originally carried out using only the 6 exemplar Fraxinus 

species and Olea europaea in a species tree with only 5 internal nodes. The results were 

too coarse to draw any meaningful conclusions (data not shown). In this study, data was 

pulled from a species tree with 28 species and 26 internal nodes which share the same 

WGD. I was able to detect up to 20 independent events per gene family. My results have 

enough granularity to support statistical analysis such as rate of change (4.3.2.3), 

separate out categories of gene families (4.3.4), and contrast with the results of a null 

model birth/death process simulation (4.3.3). 

4.3.1 Identifying Homeolog Nodes Inside of Gene Trees 

There were 4,076 orthogroups which contained one duplication in the Oleaceae root 

branch, in total 44.4% of the possible orthogroups were used in the study (Figure 4.3). 

Only genes in the subtrees under the selected duplication nodes (not the whole 

orthogroup) were included: 198,955 genes in total. 

 

Figure 4.3: Number of Gene Families with Multiple Duplication Events at Oleaceae 
Root: A) Only 4,076 orthogroups were selected (green) out of the 9,356 orthogroups with a 
duplication event at the appropriate node. These orthogroups only had a single duplication event. 
The remaining 66% of orthogroups have more than one duplication event and are thus more 
complex to interpret. B) Same orthogroup counts as A graphed on a log scale y-axis. The slope of 
this line indicates each bar in (A) is 54% the size of the previous bar. The first 3 duplications can 
be explained by two WGD (see 4.1.1), while further duplications require small scale duplications 
(SSD) and large gene families to explain. The odds of duplication is remarkably consistent out to 
10 duplications or 1,024x amplification, possibly hinting at a deeper biological phenomena. The 
consistency of the ratio of n+1 duplications is indicated by the straightness of the line in the log 
scale plot. Standard deviation of the ratios is 6.2% from the mean of 54%. 

 

4.3.1.2 Homeolog Filtering Identifies Older Oleaceae WGD 
It was previously known that Oleaceae had two WGD, at 36 Mya and 60 Mya respectively 

(Figure 1.5). It was unknown which WGD would contribute the majority of homeologs 

after filtering based on the criteria of only a single Oleaceae duplication event (4.2.1). Ks 

values show that the majority of homeologs after filtering were duplicated during the 60 

Mya WGD (Figure 4.4 & 4.5). Manual checks with F. excelsior gene names confirm that 

36 Mya diverged homeologs were almost all filtered out leaving only the 60 Mya set. The 

filtered study set only includes 18.6% of the total Fraxinus genes so the majority outcome 

for the study set is not the most likely scenario for all Fraxinus genes. In the majority of 

study genes, the gene started as a single copy at the Oleaceae root over 60 Mya and was 

A) B) 
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duplicated in the 60 Mya WGD. After this, there is no surviving evidence of the second 36 

Mya WGD. I would infer that immediately after the WGD there were four copies. After 

this, any combination of two gene losses that left one homeolog from each of the 60 Mya 

subtrees will allow the homeolog gene tree to pass the filtering criteria be used for the 

study. Initial genome instability of neopolyploids (1.2.2.5) is a possible explanation for 

this undetectable loss. Aimed at studying diploidization, the target genes consist of 

orthogroups with a tendency to reduce to single copy number but only after being 

retained in duplicate for at least 24 million years.  

CAFE simulations (4.3.2, 4.3.3) only operate on a branching phylogenetic tree, and thus 

encompass the most recent 36 million years starting at the divergence of Olea and 

Fraxinus. Meaning there are 24 million years between the 60 Mya WGD that created the 

study homeolog pairs and the start of the species branching necessary for simulation. 

Going back farther than this is not possible without additional species. However, this 

does not pose a major problem for interpretation since the root copy number for each 

gene family is inferred by observed gene counts in filtered Orthofinder output 

(2020_Feb08_homeolog_filtered_counts.txt). Counts may be less than two, accounting 

for the history that transpired in the 24 million years not included in the simulation. The 

study here focuses on the events inside genus Fraxinus.  

 

Figure 4.4: Ks of all Fraxinus Genes: Synonymous substitutions per site (Ks) were used to 
verify the divergence time of gene copies matched the second peak, or older Oleaceae WGD ~60 
million years ago (Mya). Effective filtering for homeologs should eliminate the first peak and 
amplify the second peak. Fraxinus homologs across all Fraxinus species were used to measure Ks. 
The first peak on the left corresponds to the first WGD at 21 Mya. Using all genes within a gene 
family containing homeologs (pink line) makes only a small difference in the filtering. Filtering by 
gene tree using only the genes descendent from a WGD node (4.2.1) completely eliminates the 
first peak and leaves only the second peak intact. These results validate that the gene tree filtering 
criteria used in the rest of study are effective in filtering homeologs with a consistent age from 
other kinds of duplications. There is a third WGD centered at 25 substitutions which corresponds 
to the ~135 Mya “beta” WGD in eudicots (Yu et al. 2017) seen in Figure 1.5. Note: To ensure the 
distributions were of comparable size, random samples were taken from “All Genes” set to match 
the size of the set of homeologs.  

https://paperpile.com/c/j1LjdZ/KpDm
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Figure 4.5: 4DTv Across Fraxinus Genes: 4DTv plots also show a selection for the more 
ancient WGD peak between 10-25 substitutions per 100 four-fold degenerate codons. Four fold 
synonymous substitution (4DTv) is a special case of Ks that focuses exclusively on the 24 codons 
that code the same amino acid in all four values of the wobble position. 4DTv saturates faster and 
can provide better time resolution for more recent evolutionary events. 

 

4.3.2 CAFE Copy Number Simulation Results 

4.3.2.1 Ancestral Copy Number Inference 
CAFE estimated the average rate of gene copy birth or death (respectively) per homeolog 

subtree per million-year interval at Lambda (Birth) = 0.00093971443748 and Mu 

(Death) = 0.00947308078407 with a log likelihood score of -139824. Individual gain and 

loss at each species tree node in the simulation are shown in Figure 4.6. After CAFE 

accounted for estimated annotation error, birth went down by a factor of 3.2x and death 

went down by 1.9x, further widening the gap between birth and death rates.  

The CAFE errormodel (4.2.2) estimated the annotation error rate at 10%. Meaning the 

5% chance of false positive annotation and a 5% chance of false negative annotation 

results (+1: 5%, +0: 90%, -1: 5%). From this, it was estimated each species has roughly 

407 (8,152 * 5%) species-specific losses due to annotation errors.  
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Figure 4.6 Tree of Inferred Copy Number Changes: All gains and losses of homeolog pairs 
at each node using CAFE maximum likelihood ancestral copy number inference. Branch lengths 
are given on the x-axis in millions of years since the WGD. Out of an average of 6,338 surviving 
study homeologs per individual , one can estimate the proportion of additional ancestral copies 
that are now lost by totaling the changes along any path from root to tip. Starting from the 
Oleaceae root (left) we see very few gene gains or losses in the internal nodes shared by large 
groups of species compared to the tips. Losses in each species are either unique or polyphyletic. In 
particular, the Oleaceae branch containing the two WGD (far left) that gave rise to both Olea and 
Fraxinus was not assigned any gene losses because there was no shared fractionation between the 
two genera (Figure 4.9). For example, the total estimated gene history for F. excelsior from tip to 
root would be 248-731 +14-162 +22-169 +7-292 +4-89 +0-281 +1-1,207 +0-23 = -2635 change in 
gene copy number. Meaning that diploidization has removed 2,635 total copies in the selected 
gene families between the common Fraxinus ancestor and F. excelsior. This is a typical outcome 
with F. quadrangulata at 2,332 net losses and F. cuspidata at 2,735 net losses. I note that F. 
excelsior (the annotation reference) is not an outlier in gene copy gains, but does have more gene 
counts (Table 3.2). This may be because F. excelsior is better assembled and has fewer paralogs 
collapsed together into a single gene model, but this had a negligible effect on family level 
aggregated counts. For F. excelsior, diploidization has removed 27.3% of the original gene content 
in the study homeologs. 

 

4.3.2.2 Fractionation Follows Repeatable Patterns Across All Genes 
Repeatability of evolution can be expressed in terms of the number of independent 

species show the same loss in the same gene family. For each gene family, each species 

only starts with two copies, so the maximum number of losses is two. However, with 28 

species the maximum number of detectable species that have lost a gene family is 26, 

leaving two species with a shared gene family in order to establish its existence. Out of 26 

possible losses across 28 species, the most common number of losses per gene family was 

two with a maximum observed of 20 losses in a single gene family (Figure 4.8). Given 

two sister species that share the same loss, CAFE will assign the loss to the ancestor 
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node. Meaning the maximum number of losses detectable is less than 26 and 20 may be 

the theoretical maximum given the species tree topology (4.1.2). The shape of the 

distribution of losses did not match a normal distribution and was strikingly linear past 

two losses. 

4.3.2.3 Rate of Change has Accelerated 
In Figure 4.7 A&B, the rate of change over time was plotted from the WGD to present. 

For the x-axis of this graph, the WGD is assumed to immediately precede the split 

between Olea and Fraxinus (Unver et al. 2017). The simulation is started after the second 

WGD due to technical limitations of CAFE. Simulated data is relatively flat or decreasing 

in time. In both graphs, the first ~15 million years of the tree show little variation in rate 

because rates can only be calculated between nodes of the tree. For example, only one 

estimate can be obtained for the period from 2-17 Mya. Using the Wilcoxon Rank Sum 

test, the total distributions between simulated and actual data are not significantly 

different (p > 0.477). However, excluding the uniform first 20 million years, there is a 

significant difference in the last 16 million years (p-value = 4.6931e-05). 

 

Figure 4.7: Rate 
of Change Over 
Time: The rate of 
change in 
simulated data is 
predominated by 
gene loss in red. 
Simulations show 
a much flatter 
distribution of 
rates (top panel). 
Whereas the real 
data (middle 
panel) is most 
consistent with an 
increasing rate of 
change in recent 
times (right) and 
intermittent 
spikes of losses at 
key speciation 
points. These 
spikes may be 
artefactual. Care 
has been taken to 
normalize for the 
number of extant 
species branches 
at every time 
point (bottom 
panel) on the 
shared x-axis 
between timeline and species tree. Changes in the height of the histograms correspond to the start 
of new species branches, but they do not artificially force higher values, as shown in the simulated 
data. This upward trend supports the Lag Time Hypothesis, the idea that genes retained after 
WGD must first diverge in sequence before they are free to be lost entirely (Schranz et al. 2012; 
Dodsworth et al. 2016). 

 

https://paperpile.com/c/j1LjdZ/brQj6
https://paperpile.com/c/j1LjdZ/HsDs
https://paperpile.com/c/j1LjdZ/HsDs
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4.3.3 Repeated Loss is Greater Than Expected By Chance 

The number of independent gene loss events inferred in the actual data approached the 

maximum theoretical number of events that could be observed given the species tree 

topology (4.1.2). Null model simulations do not have any subtrees with more than 11 loss 

events (Figure 4.8). Subtrees with greater than ten independent loss events are only 

possible in cases where there are no losses in the ancient, shared branches and losses 

only occur in many recent, polyphyletic losses (Figure 4.7). 

Figure 4.8: Null Comparison: Number of Loss Events per Homeolog Subtree: The same loss 

counting method was applied to both actual results and simulated birth / death process using the 
same species tree, rates, and starting distribution. The difference in the two histograms indicates 

actual observations of losses had a much higher variance. There were 2.6x more subtrees with 

zero losses and 4.8x more subtrees with greater than five losses than under the null model. The 

difference between actual and simulated distributions using the Wilcoxon Rank Sum Test was Z-
score = 38.34 corresponding to a probability too small to calculate (p-value ≈ 0.0) (Wilcoxon, 

Katti, and Wilcox 1970).  

 

4.3.3.1 Gene Set Overlap Between Species 
Next, I tested whether or not the same genes were repeatedly lost in disparate species by 

looking at the intersection of sets of genes. Randomly distributed errors have a low 

probability of overlapping by chance, unless an unspecified attribute of the gene makes 

them more likely to cause annotation errors. Convergent evolution is detected by gene 

copy losses that are shared across species that cannot be attributed directly to the 

ancestral state. The significance of overlap between sets of genes lost between 

polyphyletic species was tested using the hypergeometric survival function (see Methods: 

Species Overlap Probabilities).  

Out of 406 species pairs, 74.6% had an overlap significance less than p < 0.001 and 

51.5% had p < 0.000000001 (Figure 4.9). The simulated null model had significant 

overlaps in less than 13.5% of pairs at p < 0.001 and 0 pairs at p < 0.000000001. 

 

https://paperpile.com/c/j1LjdZ/OHqd6
https://paperpile.com/c/j1LjdZ/OHqd6


91 |  
 

 

Figure 4.9: Number Of Gene Families With Loss Of Both Homeolog Copies Shared 
Between Species: Loss events were compared for agreement across all pairs of species. Due to 
the size of this table, it is presented here as a heatmap. The raw numbers are available as 
S4.1_Homeolog_Loss_Species_Overlaps.csv. Red indicates a higher than average level of overlap 
in losses. Blue indicates lower overlap, more genes are conserved. Rows and columns were sorted 
to maximize clusters. The dominant trend is that well-assembled genomes F. gooddingii, F. 
quadrangulata, F. pennsylvanica, F. ornus, and F. excelsior retain more genes and thus share 
fewer losses with every clade. Poor assemblies such as F. greggii and F. xanthoxyloides had more 
overlap with all genome losses. Clade structure is still visible, for example F. angustifolia and F. 
nigra as well as F. velutina, F. americana, F. latifolia, and F. pennsylvanica [FRAX03] cluster 
together, but the two F. pennsylvanica assemblies did not cluster together. Real biological signals 
are still visible; for example, F. anomala is closely related to F. dipetala and F. pennsylvanica still 
matches to its clade. Olea europaea has an additional WGD and higher gene copy numbers which 
meant its gene families rarely met the double loss criteria for overlap in this figure. 

 

4.3.4 Functions of Homeologs 

Functional enrichment results are shown starting from least specific to most specific 

filtering. The set of orthogroups containing one or more Oleaceae root duplications 

(57.4% of background) was notably enriched for transcription factors. Notable terms 

include: sequence-specific DNA binding (124/189), DNA-binding transcription factor 

activity (177/279), transcription regulatory region DNA binding (11/13), and 

transcription factor complex (193/311). There was also a notable enrichment in 
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reproduction terms: fertilization (9/10) and sexual reproduction (32/46). The statistical 

significance in all terms was poor (0.01 < p < 0.08). It is not possible to obtain a 2x 

deviation from expected when the query includes over half of the background.  

The inclusive set of orthogroups which contain homeologs with a single N2 duplication 

node per my definition in 4.2.1 is 25.3% of all annotated genes. The inclusive set is the 

same as “Homeolog Gene Families” in Figure 4.4 and should not be confused with the 

homeologs themselves. This set had the least significant term enrichment. It was notably 

enriched for gibberellin-related terms: response to gibberellin (20/49), cellular response 

to gibberellin stimulus (4/4), with no other significant results.  

Next, I focused exclusively on homeolog genes and normalized p-values by genes instead 

of gene families (13.8% of background). Significant terms are too many to list here. 

However, the 90th percentile includes morphogenesis of anther, organ, and branching 

structures which are notable for their developmental consequences. Gibberellin, COP9, 

and stress-response signaling may be notable for response to new environments. The 

methodological difference is that the number of genes in the homeologous subtree affects 

the term enrichment as opposed to the background level. Without this effect, the results 

would be identical to the above inclusive set. Using a smaller percentage of the 

background and a much larger N allows for vastly smaller p-values. Full results can be 

found in S4.2 Homeolog Functional Enrichment.html. 

The set of orthogroups which contain 6 or more duplication nodes (3.8% of background) 

at the Oleaceae root is necessarily filtered for high copy number within Oleaceae. Sorted 

by p-value, top results are all related to ribosomes until defense response (33/397), 

response to bacterium (18/204), response to fungus (14/139), and polysaccharide 

binding (6/36). These gene families were likely in multiple copies before the two 

Oleaceae WGDs.  

4.4 Discussion 

4.4.1 Homeolog Identification 
Phylogenetic filtering plus requiring only a single Oleaceae duplication successfully 

selected homeologs arising from the older 60 Mya WGD (Figure 4.4). Timing of 

fractionation rates are best calibrated when all of the study homeologs arose at the same 

time. The selected homeologs only represent 18% of the average gene content available 

and more could be selected if I was to include gene trees with multiple Oleaceae 

duplications (Figure 4.3A). For example, if I allow two and three duplications in Figure 

4.3A to open up homeologs that were affected by both WGD, then I would add another 

3,609 to the existing 4,076 orthogroups, nearly doubling the number of orthogroups. Not 

all orthogroups are of equal size, and so this may more than double the number of study 

genes given that they have more duplication nodes in each gene tree. 

Another option to expand the study would be to include future sequence data from 

Jasmine. Inclusion of Jasmine would allow me to phylogenetically separate homeologs 

from the two WGDs (Figure 1.6) and contrast the diploidization rates of the two sets of 

homeologs independently of each other. Contrasting the effects of homeolog age on 

diploidization would be particularly interesting for investigating Lag Time hypotheses 

since the homeologs in question would coexist inside the same organism and thus share a 

complete history where the only experimental variable is the age of a gene copy 

divergence. Contrasting in this way would also help to separate out the effects of species 
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bottlenecks from divergence age. For example, in Figure 4.6 why are there only 27 losses 

in 2 million years in the branch immediately following F. cuspidata’s speciation? One 

possibility which could be tested by this setup is that this branch is still to soon after the 

WGD.  

4.4.2 Repeatability of Homeolog Loss 
The results suggest the repeatability of gene loss is related to a linear scalar attribute of 

the gene family, rather than a separate category of gene families. Close inspection of 

Figure 4.8 shows there is no indication of a second peak that would indicate a second 

category of genes. Most observed losses were polyphyletic and towards the tips of the 

species tree (Figure 4.6). By itself, this would be evidence of incomplete annotation, 

however losses correlate strongly across diverse species, showing either convergent 

evolution or an intrinsic property of the gene that makes annotation less reliable, e.g., 

short or repetitive sequence. In either case, the polyphyletic pattern itself is highly 

significant and the species tree does not explain the cross species overlap of gene losses.  

Current estimates of annotation error rates from CAFE can account for between one 

third and one quarter of the observed variation in gene copy number (4.3.2). If the error 

rate were 3x higher, the majority of results could be explained away as artefactual. Even 

the correlations and highly statistically significant patterns could be explained in terms 

of the deeply shared genetic structure within the genus which makes all downstream 

observations and events deeply correlated.  

To further reject this null hypothesis, I could establish that lack of annotations were 

caused by true lack of necessary sequences. Every study is of limited scope. Given more 

resources, the next steps would be to define clear criteria for the depth and synteny 

expected for true positive alignment in non-pseudogenized genes that were not 

annotated and establish if there are reads that map in the species ostensibly missing 

those genes. It would also be helpful to analyze how overlapping genes affected the 

results. The Extractor tool in 2.2.4 was used to remove overlapping genes unlike Kelly et 

al. (2020) which returned an average of 4,530 less gene models under nearly identical 

settings and inputs. 

4.4.2.1 Support For the Lag Time Model 
Fraxinus data shows an increase in homeolog loss in the last 6 million years, which 

matches what is predicted by the Lag Time Model from literature (Robertson et al. 2017; 

Cheng et al. 2018; Clark and Donoghue 2017). In Figure 4.7, the first 30 million years 

after the WGD show a lower rate of loss of homeologs. The Lag Time Model predicts 

significant evolutionary time is necessary for dosage-sensitive genes to differentiate 

enough through subfunctionalization or other means so one copy can be lost without 

significant detriment, specifically Robertson et al. (2017) reports a 50 million year time 

frame for Salmonid lines to fully diploidize. By 54 million years after the first WGD (30 + 

24 My between WGD) there are already ten extant species, so subsequent loss of these 

previously dosage-sensitive genes would necessarily be polyphyletic. An alternative 

explanation is that the Lag Time Model was developed to explain recurrent 

methodological artefacts (4.4.3.1). 

4.4.3 Cause of Repeated Loss 
The null model assumes every homeolog has the same probability of loss and repetition 

is by chance. The results irrefutably show that gene copy losses are concentrated in a 

https://paperpile.com/c/j1LjdZ/RbWG
https://paperpile.com/c/j1LjdZ/RbWG
https://paperpile.com/c/j1LjdZ/yN5MS+vEOz+XxkMv
https://paperpile.com/c/j1LjdZ/yN5MS+vEOz+XxkMv
https://paperpile.com/c/j1LjdZ/yN5MS
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subset of gene families. Actual observations are most consistent with a continuous trait, 

enriched in a subset of gene families, which makes gene copy loss more probable within 

that gene family.  

However, this does not necessarily mean that natural selection is the only explanation for 

the repeatability of gene loss. A wide variety of factors, both biological and technical, will 

be specific to gene families and capable of explaining a higher tendency towards loss or 

retention.  

4.4.3.1 Some Gene Loss Overlap May Be Explained by Assembly 

Quality 
Gene set overlap may be explained by a mix of genome assembly quality and species tree 

topology. Notice F. cuspidata which by the species tree in Figure 4.6 is the most 

divergent species after Olea, yet has a similar trend of overlap in the heat map as F. 

excelsior. This level of agreement can best be explained by its rank of 8th highest 

assembly quality in Table 3.2. The hypothetical scalar property of gene families 

mentioned in 4.4.2. could simply be the gene family’s sensitivity to assembly errors. 

Families which are more sensitive to poor assembly are underrepresented in low quality 

genomes and highly correlated, regardless of the genome’s position in the species tree. In 

genomes with high assembly quality, a low degree of overlap means that losses among 

homeologs are not correlated and are mostly independent from each other. Therefore, 

quality issues appear to only be affecting the genomes with N50 < 7 kbp (Table 3.2). 

Doubling N50 in these genomes would likely bring scaffold size above the range where 

annotation errors are an issue in the future. 

4.4.4 Parental Subgenome Dominance 
In neo-polyploids one parental genome is frequently observed showing preferential 

expression and retention over the other subgenome (Buggs et al. 2012; Cheng et al. 2018; 

Yoo, Szadkowski, and Wendel 2013). Hypothetically, the presence of one copy makes the 

loss of the other copy more likely because it is invisible to selection or even overdosed 

(Emery et al. 2018).  

In Garsmeur et al. (2014) the authors discuss two distinct classes of paleopolyploidy 

determined by either biased or unbiased fractionation. Based on the lack of parental 

dominance, Fraxinus appears to be a Class II unbiased fractionation lineage, along with 

banana, poplar, and soybean. They propose the difference is due to ancient allopolyploids 

versus autopolyploids, but there are now known counterexamples. Oleaceae and 

Cucurbita are ancient allopolyploids and show unbiased fractionation (Sun et al. 2017; 

Julca et al. 2018). For Olea europaea the picture is complicated because there are three 

WGDs, each of which could be allo- or auto-polyploids. 

It is conceivable there is biased fractionation of the genome which is not detectable 

without assigning each homeolog subtree to a parental genome and then pooling the 

results for each subgenome. If the “shoulder” in Figure 4.10 was all phased to the same 

subgenome it would match more closely with the preferential retention observed 

elsewhere (Emery et al. 2018). Phasing could conceivably be accomplished using the F. 

pennsylvanica chromosome assembly. However, subgenome assignment has challenges 

of its own and is beyond the scope of this chapter (Edger et al. 2018).   

https://paperpile.com/c/j1LjdZ/iOp4+vEOz+hnWB
https://paperpile.com/c/j1LjdZ/iOp4+vEOz+hnWB
https://paperpile.com/c/j1LjdZ/u02m
https://paperpile.com/c/j1LjdZ/nSAY
https://paperpile.com/c/j1LjdZ/rHGO+kpNSj
https://paperpile.com/c/j1LjdZ/rHGO+kpNSj
https://paperpile.com/c/j1LjdZ/u02m
https://paperpile.com/c/j1LjdZ/ZWYJ
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4.4.5 Functions of Homeologs 
GO term enrichment was carried out because the majority of the theories and models in 

the literature center around the interaction between gene function and gene copy 

number under selection. It is possible to show repeatability of evolution without any 

strong connection to function if it is driven by other factors such as position on the 

chromosome. Still, it can be noted where the GO term enrichment parallels findings from 

other studies. 

The broadest set of Oleaceae homeologs was enriched for transcription factors, though 

not specifically developmental genes. Thomas, Pedersen, and Freeling (2006) report 

Arabidopsis homeologs are enriched for ribosomes and transcription factors. Rensing 

(2014) and Edger and Pires (2009) tie morphogenic transcription factors to plant 

development and use this category as a proxy for dosage sensitivity. The inclusion of 

ribosomes, which are already in high copy number in the absence of WGD, raises the 

question of whether these are simply filtering for categories which are generally high 

copy number to begin with. Other functional enrichment trends were either not present 

or not observable in Fraxinus. Unlike Arabidopsis and Populus, the only enriched signal 

transduction was gibberellin signaling (Rodgers-Melnick et al. 2012; Thomas, Pedersen, 

and Freeling 2006).  

4.5 Conclusions 
In this study, I used numerical simulations to measure the differences between chance 

distributions and convergent evolution in Fraxinus. A subset of gene families were found 

to have lost a disproportionate number of copies while other homeologs were retained 

over a 60 million year time frame. These losses were polyphyletic, recent, and 

significantly overlapped across species, but did not show evidence of biased 

fractionation. 

I have demonstrated it is feasible to use 28+ species to analyze a single WGD for 

repeatability of evolution. Alignment and annotation of large numbers of genomes entails 

a host of technical challenges. It is never possible to completely eliminate the possibility 

that correlated results are due to both similarities in biology as well as shared methods. 

The next chapter will examine Graph Genomes as a way to capture the full genetic 

diversity of an entire species in a single alignment data structure. 

 

 

  

https://paperpile.com/c/j1LjdZ/5S74
https://paperpile.com/c/j1LjdZ/szht
https://paperpile.com/c/j1LjdZ/szht
https://paperpile.com/c/j1LjdZ/EsCKv
https://paperpile.com/c/j1LjdZ/Bx9p+5S74
https://paperpile.com/c/j1LjdZ/Bx9p+5S74
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A Scalable Approach to Pangenome Visualization  
 

Author’s Contribution 

Collaboration Notes: This chapter was written solely by Josiah Seaman while working 

in collaboration with the 1001 Genomes Project. Portions of this chapter are planned for 

inclusion in an upcoming publication of Pantograph. 

The Pantograph Team includes: Josiah Seaman, Simon Heumos, Andrea 

Guarracino, Artem Tarasov, Bonface Munyoki, Christian Kubica, Christine Seaman, 

Dmytro Trybushnyi, Eloi Durant, Hannah Sewell, Jack Tierney, Jacob Windsor, Jerven 

Bolleman, Jörg Hagmann, Katherine Innamorati, Njagi Mwaniki, Robert Fornof, Mark 

Seaman, Michael R. Crusoe, Stacie Seaman, Thomas Townsley, Torsten Pook, Toshiyuki 

T. Yokoyama, Travis Clark, and Erik Garrison. 

Josiah Seaman wrote the entire text of this chapter. Pantograph was a highly 

collaborative project with JS serving as the main originator of visualization concepts, the 

project manager, and lead developer regarding JavaScript. Pantograph arose from 

hackathons held in Fukuoka, Japan in September 2019 and Tübingen, Germany in 

November 2019, at which the concepts were developed and preliminary implementations 

made. The pangenome visualization schematic designs were developed by Josiah Seaman 

in discussion with other team members, and Artem Tarasov wrote Component 

Segmentation code. Torsten Pook integrated HaploBlocker and developed chromosome 

recombination breakpoints; Simon Heumos worked on the RDF database, programmed 

the browser, and evaluated the graph sorting algorithm; Jerven Bolleman developed an 

RDF representation of graph genomes and built data access tools; Erik Garrison had 

previously developed odgi including binning and pangenome matrix concepts and 

extended it to support this project, as well as being a consultant for the project’s 

direction. Pantograph development was started in earnest at a virtual Hackathon April 

2020 with daily meetings led by Josiah Seaman and Simon Heumos. Josiah Seaman, 

Bonface Munyoki, Mark Seaman, and Stacie Seaman did project management. Christine 

Seaman did product testing. Pantograph was presented at ISMB 2020 by Josiah Seaman, 

Simon Heumos, Toshiyuki Yokoyama, Torsten Pook, Jerven Bolleman, Andrea 

Guarracino, and Thomas Townsley. Christian Kubica and Sebastian Vorbrugg generated 

the A. thaliana pangenome as part of the 1001 Genomes project. 

 

COVID-19 Foreword 
Pantograph as a project started in 2018 as a way to unlock the next level of population 

genetics for researchers for organisms including bacteria, ash trees and humans. Graph 

Genomes discussed here are a new way of capturing sequence data designed to fix 

problems systemic to the technology we’ve been using for the past 30 years. For example, 

reference bias means genetic analysis is more accurate for Europeans than for Africans 

(Liverpool 2019). Pantograph was being developed by a team of ten scientists before 

COVID-19 emerged as a global pandemic.  

We quickly realized that Pantograph could be extremely relevant to the current pandemic 

because the success or failure of our efforts to fight the disease rely upon the sequence 

https://paperpile.com/c/GxsSdv/WAaN


97 |  
 

diversity of the virus itself. Tests for infection rely on knowing the exact sequence being 

tested. A rearrangement in the order of genes, even if the content is the same, will return 

a false negative test if the rearrangement changes the order of the target sequence. 

Second, the vaccine targeting the Spike protein on the outside of the virus relies on a lack 

of genetic diversity in the Spike protein sequence (“NIH Clinical Trial of Investigational 

Vaccine for COVID-19 Begins” 2020). If there are any strains with a mutant protein, the 

vaccine could be rendered ineffective and the virus would continue to spread. SARS-CoV-

2 is an RNA virus that will likely infect billions of people, giving it a much higher 

mutation capability than has been previously dealt with in pandemics. For example, the 

common cold is impossible to eradicate precisely because of the number of people 

infected and thus the high number of mutations which exist around the globe (Kistler et 

al. 2007). Current sequencing techniques may be under-representing the full sequence 

diversity of the virus because they are reference based. Eliminating reference bias and 

enabling species genetic diversity on thousands of individuals is the core goal of using a 

graph genome. 

Thus, COVID-19 became the central focus of Pantograph development. Pantograph is a 

very small piece in a worldwide effort to eradicate this disease. It is by no means the most 

important and the disease will likely attenuate without any involvement on our part. 

However, given the scale of the pandemic, even a tiny improvement or speedup can 

result in thousands of lives saved. That’s a difference which is worth investing our 

resources in. Pantograph will continue to be useful in a wide range of disease 

applications after the current crisis is averted, so we are never caught unprepared again. 

Abstract 
A single reference genome does not capture the genetic variation within a population. 

Reference bias is caused whenever genome representations in current use cannot capture 

variants in sequence absent from the reference. While we have effective multiple 

sequence alignment browsers for genes, we now need the ability to visualize the full 

genomes of hundreds of individuals. These limitations are holding back progress in 

understanding the genetic basis of important traits. Genome graphs are a recent solution 

to summarizing all variation within large sets of individuals, but we lack scalable 

approaches to their visualization. Structural variants are associated with many diseases, 

for example, cancers, mental illnesses, immune disorders, and most recently COVID-19. 

In order to make sequencing data actionable for clinicians, structural variants need to be 

put in the larger context of all known genetic variation.  

Here we present the design of Pantograph, which promises to be the first visualization 

tool with the scalability to render graph genomes from thousands of individuals over 

gigabase genome sizes with the ability to show both whole chromosome features as well 

as zoom into nucleotide sequence variation. No tool to date has satisfied all these criteria. 

Scalability is accomplished through graph sorting and binning adjacent sequences to 

create shared syntenic blocks called Components. Non-linear structural variants, called 

Links, are treated as a single feature which can be shared by many individuals. By 

separating the pangenome into syntenic Components connected through Links we have 

created a browser capable of displaying a graph at variable levels of complexity; making 

complicated alignments comprehensible to the researcher. Here, this tool is applied to A. 

thaliana and SARS-CoV-2 and lays the foundation for a Fraxinus graph genome. 

  

https://paperpile.com/c/GxsSdv/Yzln
https://paperpile.com/c/GxsSdv/Yzln
https://paperpile.com/c/GxsSdv/ipoQ
https://paperpile.com/c/GxsSdv/ipoQ
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5.1 Introduction 
5.1.1 Graph Genomes as a replacement for linear reference genomes 

Graph Genomes are a major disruptive technology now emerging in bioinformatics that 

may hold the key to solving deeply rooted problems in handling genetic variation (Figure 

5.1). Sequencing costs have been dropping exponentially for decades, making 

bioinformatic analyses the primary cost bottleneck and barrier to new discoveries. Single 

linear reference genomes are simple, easy to understand, easy to implement, and have 

been used in bioinformatics for over twenty years. However, they have intrinsic 

limitations when representing genetic variation. New sequencing technology has enabled 

researchers to deeply sequence the variation within model organism populations, 

revealing many alternative loci and novel insertions not present in the original reference 

genome (Telentia et al. 2016). Simultaneously, there is increasing evidence of function in 

non-protein coding regions of the human genome and increasing evidence of function in 

the 3D interactions of chromatin folding (ENCODE Project Consortium 2012; 

Rosenbloom et al. 2013; Pennisi 2012; Lieberman-Aiden et al. 2009). Structural 

rearrangements in functionally relevant sequences can cause long range and unexpected 

phenotypic consequences such as cancer (Gryder et al. 2017). 

Figure 5.1 Simple Graph: 
Graph Genomes store 
sequence in nodes identified by 
numeric IDs. A genome (or 
chromosome) is a Path 
through a series of node IDs. 
For example, Genome A could 
have path 1,2,4 and Genome B 
could have the path 1,3,4. Node 
1 and 4 would be conserved in 
both genomes, whereas Nodes 
2 and 3 would be alternative 
alleles found in the same 
position relative to Node 1. 
Nodes are bidirectional so a 
Path can visit the minus strand 
2- to represent an inversion 
and nodes can be visited in any 
order to represent any 
rearrangement. Nodes can be 
large enough to contain genes or as small as a single nucleotide to store SNPs. Image source: 
Masahiro Kasahara for the Pantograph ISMB poster, used with permission. 

Until now, technology has been directed towards short reads which bias results towards 

the discovery of Single Nucleotide Polymorphisms (SNPs) and short indels. Researchers 

have therefore focused on disease etiologies that are possible to understand through the 

data available. To move to complex epistatic interactions involving large scale structural 

rearrangements and chromosome conformation changes, data arising from long reads 

and phased assemblies must first be made accessible to researchers. Variant Call Format 

(VCF) is the current most common format for storing the genetic variation within a 

species. Variants are called relative to a reference genome coordinate frame and a major 

versus minor allele. The format is not capable of storing certain kinds of variation, such 

as an insertion within an insertion (Yokoyama et al. 2019). The ideal format should also 

have a single representation to allow equality checks. VCF has four different ways to 

represent an inversion depending on which tool it came from. It does not specify which 

unit of a tandem repeat was lost in the case of copy number variation.  

https://paperpile.com/c/GxsSdv/7bMd
https://paperpile.com/c/GxsSdv/rQXs+Mlrf+OGVx+Jnr2
https://paperpile.com/c/GxsSdv/rQXs+Mlrf+OGVx+Jnr2
https://paperpile.com/c/GxsSdv/kArt
https://paperpile.com/c/GxsSdv/MykO7


99 |  
 

Graph Genomes can represent complex structural variants among many genomes in a 

self-consistent format (Yokoyama and Kasahara 2020). Graph Genomes do not contain 

the same reference bias problems inherent to assigning a major and minor allele at every 

position and using a single reference coordinate frame. For example, a study in humans 

found that reference guided tools overestimated the differences between two Africans 

when using a European reference genome (Liverpool 2019). By way of analogy, this is 

equivalent to translating from Japanese to English then to Mandarin Chinese, instead of 

translating directly from Japanese to Mandarin. Graph Genomes allow a more direct 

translation of findings, coordinates, and shared variation (The Computational Pan-

Genomics Consortium 2018, Paten et al. 2017). We predict the next generation of 

reference genomes will be Graph Genomes that more fully contain the knowledge 

acquired about the total genetic diversity of the species under study (Ballouz, Dobin, and 

Gillis 2019), (X. Yang et al. 2019). This change is already under way in humans and A. 

thaliana.  

While Graph Genomes require new tools, they also make many tasks much easier. With a 

reference Graph Genome, it is possible to do fast and accurate haplotype mapping of 

complex sequences such as the MHC region of the human genome, which is clinically 

relevant for immune response and precision medicine. The significant divergence of 

MHC region has impeded accurate genotyping thus far. Graph reference increases the 

mapping rate for these regions (Garrison et al. 2018, Dilthey et al. 2015, Dilthey et al. 

2016). This allows allele-specific expression levels to be inferred from RNA-seq data. 

Graph Genomes can also enable alternative-splicing-aware alignment, comparative 

genomics, and increased accuracy of reference guided assembly.  

These examples show the rich potential of a Graph Genome based approach. Some 

pipelines are already being explored, others are still under development (Llamas et al. 

2019, Garrison et al. unpublished). Therefore, the continuous development of graph tools 

is needed.  

Graph Genomes as defined in Figure 5.1 deviate from generic graph data structures in 

some crucial aspects. Graphs have existed as a field of mathematics for over a two 

centuries (Biggs et al. 1986). A graph is typically composed of a set of Nodes 

interconnected by Edges, which can be directional or unidirectional. Both Nodes and 

Edges can be decorated with other attributes. Some tools from graph theory are usefully 

applied to Graph Genomes such as the minium number of cuts to make a graph acyclic. 

However, Paths and the large scale biological linearity of Graph Genomes deviate from 

the generic concept of graphs in important ways.  

To keep the biological context in mind, users will want a visualization that maintains a 

pseudo-linear format (akin to a braid), whereas most graph approaches make no 

assumption about network topology by default. Custom created visualizations for a 

specific task consistently out-perform generic tools (O'Donoghue et al. 2018, page 281). 

Visualization tools help to not only understand genome variants, but also improve and 

debug Graph Genome construction. 

5.1.2 Visualization Tools  

Clear visualizations for browsers are necessary to facilitate human reasoning about the 

complex interactions between structural variants and biological questions. As the scale of 

input data increases, our visualization techniques must also be able to scale to thousands 

https://paperpile.com/c/GxsSdv/kVG2T
https://paperpile.com/c/GxsSdv/WAaN
https://paperpile.com/c/GxsSdv/i4Ks
https://paperpile.com/c/GxsSdv/i4Ks
https://paperpile.com/c/GxsSdv/oTpn
https://paperpile.com/c/GxsSdv/t07q
https://paperpile.com/c/GxsSdv/t07q
https://paperpile.com/c/GxsSdv/tX4a
https://paperpile.com/c/GxsSdv/sTXad
https://www.ncbi.nlm.nih.gov/pubmed/25915597
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005151
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005151
https://f1000research.com/articles/8-1751
https://f1000research.com/articles/8-1751
https://github.com/vgteam/graph-genomics-review
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of eukaryote genomes. A review of currently available Graph Genome visualization tools 

shows many desirable features and a wide range of techniques, however, none of them 

can scale to thousands of individuals with gigabase genomes while maintaining the 

nonlinear nature of a graph. The scalability of an algorithm can be calculated 

mathematically based on what is being rendered. In this chapter, I focus exclusively on 

tools that influenced the design of Pantograph and are thus comparable in approach. For 

a complete overview of the field see Eizenga and Novak (2020) and Yokoyama and 

Kasahara (2020).  

Previous work on Graph Genome visualization follows three main areas: 1) force directed 

layouts (Figure 5.2), 2) Sequence Tubemaps (Figure 5.3) and 3) rectangular matrices 

(Figure 5.4). 

Force Directed Layout visualizations (Figure 5.2) use a physics model to layout graphs in 

a natural way. Its strength is aesthetic appeal and clearly communicating components 

and topological complexity but annotation and navigation is more challenging than a 

linear layout. Bandage and Jason Chin’s Graphviz both utilize layout methodologies that 

predate graph genomes (Wick et al. 2015; Chin 2019; Ahmed A. et al. n.d.). A major issue 

with these methods is their runtime scalability. Force directed layout has quadratic or 

even cubic costs with respect to graph size. Whilst heuristics exist to make force directed 

layout practical for large graphs (Barsky et al. 2008), they are in general not effective for 

graph genomes because in these graphs, their edges do not fully capitulate the spatial 

layout that allows them to be most effectively interpreted. An ideal Graph Genome layout 

will be predominantly linear while allowing for the possibility of non-linear 

rearrangements across large distances in the pangenome. Equally difficult, inversions 

require a clear sense of Edge directionality be communicated which is much easier to 

maintain when the visualization has a strict left to right orientation to reference off of. 

Figure 5.2: Force 
Directed Layouts: Jason 
Chin’s Graphviz utilizes 
preexisting layout 
methodologies to visualize 
graph genomes (Chin 2019). 
He divides a variant graph 
into two categories: 
conserved regions are 
marked in blue and share a 
single set of nodes between 
all individuals. Variable 
regions are marked in 
orange and can contain 
alternate alleles for different 
individuals. This keeps the 
overall linear structure while 
allowing for local non-
linearity. Deletions are 
shown as faint shortcut 
edges for some individuals. 

Sequence Tubemap uses 

nodes containing 

sequence and visualizes 

paths as colored bands which visit nodes (Beyer et al. 2019). Tubemaps are very clear at 

communicating rearrangements and users can follow a single path with very little 

https://paperpile.com/c/GxsSdv/Qfk7e+kVG2T
https://paperpile.com/c/GxsSdv/Qfk7e+kVG2T
https://paperpile.com/c/GxsSdv/GarL+YkH6+3McV
https://paperpile.com/c/GxsSdv/5R3XD
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training (Figure 5.3A). Sequence Tubemap is a novel enough approach it merits special 

discussion here. MoMI-G also integrates its own modified implementation of Sequence 

Tubemap to visualize genomic rearrangements (Yokoyama et al. 2019). Sequence 

Tubemaps will no doubt go on to influence projects in the future. 

Figure 5.3B shows scalability challenges in real world data. For nonlinear ordering, paths 

must be rendered above all nodes in between, creating undesirable pileups around high 

traffic nodes. This approach suffers from scalability issues for rendering thousands of 

individuals. It uses nodes for both linear SNP differences and non-linear 

rearrangements, meaning that as the number of individuals increases, fragmentation and 

vertical stacking also increase linearly. Sequence Tubemap could be made performant, 

that is, with increased speed, by only rendering Edges; rendering which variants exist in 

the population without rendering which individual has each variant. Examples of where 

Sequence Tubemap scalability breaks down can be seen in Supplemental 4. 

 

Figure 5.3: Sequence Tubemap: A) Example visualization given in Sequence Tubemap 
publication (Beyer et al. 2019). Each colored path (blue or orange) represents one chromosome 
which visits Nodes (outlined) containing sequence. The Tubemap analogy is particularly 
appropriate for communicating traversal direction in inverted segments, however the visual 
clutter for inversion is high when the original and inverted start positions are far apart in the 
visualization. In simple examples Tubemap is both compact and easy to understand, but when 
applied to complex examples, scalability challenges become apparent. B) Human HLA regions in 
12 individuals. Tangles (arrows) are due to the need to retread all nodes laid out in between nodes 
relevant to the path, even when that path does not interact with any of the intervening nodes.  

Odgi uses a rectangular Matrix View (Figure 5.4) (https://github.com/vgteam/odgi/). 

The Matrix View’s strength is in clarity for showing presence/absence visualization. It 

works at the single nucleotide level and can extend to the full chromosome level (5.3.7), 

which gives it many of the scalability properties necessary to render thousands of paths. 

Its one shortcoming is that odgi bin has not been designed as an interactive visualization. 

A single image is simply too small to capture all of the rearrangements in a pangenome 

A) 

B) 

https://paperpile.com/c/GxsSdv/MykO7
https://paperpile.com/c/GxsSdv/5R3XD
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while still allowing it to be decipherable. Nonlinear links are nearly impossible to follow 

by panning over a large image. Interactivity allows for selective filtering, search, and 

jumping to relevant features in a complex pangenome. If odgi bin had interactive 

navigation of rearrangements it would satisfy most of the criteria necessary for a scalable 

Graph Genome browser. 

 

Figure 5.4: odgi Matrix: 12 Arabidopsis thaliana individuals on chromosome 1 from the 1001 
Genomes project (5.1.3). Each row is one individual. X-axis roughly corresponds to position along 
the chromosome due to pangenome sorting (5.3.4). Cells indicate the presence or absence of a Bin 
in an individual (5.3.7). Bins are shaded by Path position which shows that all individuals largely 
agree in overall ordering across the chromosome. This would be expected for organisms still 
capable of sexual recombination. Red bins indicate regions which are inverted in eight individuals 
on the upper chromosome arm. One can also see many private insertions in the middle where 
unique sequence variation close to the centromere is not shared between other individuals. 

5.1.2.1 The Density Problem 
As graphs become larger, their topology can become more complex, because the number 

of potential connections (edges) grows with the square of the number of nodes. The 

number of possible paths through those edges grows even faster, and in the case of fully 

connected graphs, increases factorially with the number of nodes. However, in graph 

genomes, the number of variants (nodes) which can be realized is practically limited by 

biology, and the number of paths is at most the number of observed organisms involved. 

Though it is worth noting that draft genomes introduce many more paths, graph 

genomes are in general sparse, and thus when visualized as matrices, they are 

predominantly white-space (Henry, Fekete, and McGuffin 2007), this is demonstrated in 

Figure 5.5. 

Figure 5.5: Density Problem: Erik Garrison’s odgi Matrix using human genome data. Used 
with permission (Garrison, 2019, Private Communication).  

Sequence Tubemap suffer from a similar issue when path stacking pushes the layout of 

sequence nodes further and further apart. As the number of paths or copy number 

increase, the percentage area of the image which communicates sequence approaches 
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zero. Force directed graphs have the opposite challenge caused by undesirable line 

crossing of unconnected paths which is unavoidable in two-dimensional space. This leads 

to large datasets becoming indecipherable “hairballs”, a problem fundamentally rooted in 

their structureless nature. 

Here we introduce the design and implementation of Pantograph, a new Graph Genome 

browser made to address the scalability challenges of showing the complete genetic 

diversity of one thousand individuals of a species simultaneously. Pantograph combines 

the clear presence/absence matrix of odgi bin with a hybrid of Sequence Tubemap 

connectors that maintain browsable information about non-linear rearrangements, 

called Links. Collectively, this layout paradigm that the software tool Pantograph uses to 

visualize data is called Pangenome Schematics for its ability to enumerate all the genetic 

variants which exist in the population. Care has been taken in the design to reuse the 

same rendered element in every individual who inherited the same variant to reduce 

visual clutter. Pedigree and lineage relationships can also be exploited to compress and 

further optimize visualization of the pangenome (see 5.3.8). 

5.1.3 1001 Genomes Project 

Pantograph is being used in the 1001 Genomes project to quality check assemblies, 

alignments and the Graph Genome construction process in a similar manner to how 

FluentDNA was employed in 3.3.2. The 1001 Genomes project seeks to sequence and 

assemble 10 individuals from 10 different ecotypes in 10 regions around the world plus 

the reference TAIR10 assembly, totaling 1001 genomes.  

The pilot project graph has all five nuclear chromosomes from 12 individuals assembled 

together with links between them. This graph is then used to diagnose challenges in the 

assembly of a larger graph involving 24 individuals, which in turn form the foundation 

for a larger resequencing effort in the future. In the Results, I show how Pantograph can 

be used to investigate large scale features in chromosome graph assemblies and address 

scalability problems as they arise. This same browser can be used to zoom in and 

investigate nucleotide level variation in Arabidopsis thaliana or as demonstrated in the 

SARS-CoV-2 pangenome. 

5.2 Methods 
5.2.1 Quantifying Performance Characteristics 

The scalability of an algorithm can be calculated mathematically based on the method of 

rendering. Computer scientists use Big-O notation to describe how an algorithm will 

scale given arbitrarily large inputs (Knuth 1970). This analysis can be carried out as a 

mathematical proof on a design without the need for a running program or actual 

computer because the key aspects defining the scalability of an approach are in the 

design, not the implementation. This section briefly describes the method for 

mathematically evaluating the scalability of a visualization. All aspects of the design of 

Pantograph are covered in 5.3.  

The criteria for evaluating the scalability of a visualization are: 

1. The number of elements rendered (minimize) 

2. Layout time for the visualization (minimize) 

3. Number of processed individuals demonstrated with non-linear 

rearrangements in eukaryotes (maximize) 

https://paperpile.com/c/GxsSdv/pQ6x
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For criteria 1 and 2, designs are judged based on a theoretical dataset containing N 

nodes, P paths, S SNPs, and R structural rearrangements. The Big-O notation is the 

equation which tells either the number of rendered elements or layout time in arbitrary 

units. Number of rendered elements (1) is a proxy for both visual complexity and 

rendering time independent of rendering platform. Layout time (2) includes all 

computation required to setup the visualization, and is usually a one-time precompute.  

Finally, Demo Individuals (3) are based on concrete examples from this study or found in 

the literature. Examples must include structural variation beyond simple insertions and 

deletions. These examples are by no means hard maximums and are most likely to 

change. 

5.2.2 Arabidopsis thaliana graph preparation  

The pilot graph was constructed with the following 12 representative individuals: 

TAIR10, AT9784, AT7328, AT6906, AT1741, AT6909, AT7213, AT5784, AT6911, AT7186, 

AT6981, AT9518. Only sequence from the five nuclear chromosomes was used, but no 

pre-filtering was done for mapping to a reference genome. Graph sorting was Path 

guided stochastic gradient descent (SGD) (Recht et al. 2011) on 32 cores with 1TB of 

RAM available. We found experimentally that 128 GB of RAM was not enough to sort the 

graph. The command used was: 

odgi sort -Y -i sebastian.Athaliana.all.50000.gfa.odgi -o 

Athaliana.all.50000.gfa.odgi.sorted -t 32 

To check the extent of evidence for ancient whole genome duplications in Arabidopsis 

thaliana the TAIR10 v26 assembly was used on CoGe using their SynMap2 tool (Lyons 

and Freeling 2008, Haug-Baltzell et al. 2017). CDS was based on 

Arabidopsis_thaliana.TAIR10.26.gff3 (Lamesch et al. 2012). Note that dot plots are 

frequently only computed over CDS rather than whole genome content in order to 

exclude repetitive elements. 

5.3 Pantograph Design 
Our method for visualizing pangenomes combines approaches used in odgi bin Matrix 

and Sequence Tubemap and builds upon them. Pantograph is implemented as a pipeline 

of software modules, each step is explained further in its own numbered section (Figure 

5.6). The approach is as follows:  

1. Segment the pangenome into shared syntenic blocks by identified the minimum 

set of structural rearrangements (5.3.1) 

2. Use a rectangular Multiple Sequence Alignment (MSA) to represent those 

syntenic blocks present in the population that are not broken by segregating 

structural rearrangements, using columns rather than colors to represent SNPs 

(5.3.2).  

3. Use colorful Links representing structural rearrangements to join these MSA 

blocks (Components) (5.3.3).  

4. Minimize the number of Links needed using gradient descent to sort the 

pangenome (5.3.4).  

5. Use color within the MSA to represent copy number variation and inversions 

(5.3.5). 

6. Annotated features with its own path and coloring (5.3.6).  
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7. Enable zooming from nucleotides, to gene regions, to whole chromosomes by 

binning of sequence content (5.3.7). 

8. Cluster related individuals by sorting the rows into haplotypes (5.3.8).  

9. Reduce graph complexity by unrolling copies of distributed repeats (5.3.9).  

10. Scale the width of variants by their frequency in the population (5.3.10). 

 

Figure 5.6: Modules of the Pantograph Data Pipeline: Pantograph takes GFA Graph 
Genome files as input and provides a React JavaScript browser as output (github.com/graph-
genome/pipeline). GFA is a common, human readable format for storing Graph Genome files. 
First, odgi is used to read the graph into memory, sort the nodes, and bin them into a JSON file 
and a pangenome FASTA. The bin size is set by the user; large bins create small files with more 
information lost. These bins are segmented into collinear Components by Component 
Segmentation (github.com/graph-genome/component_segmentation). HaploBlocker optionally 
identifies recombination breakpoints and sorts rows by haplotypes 
(github.com/tpook92/HaploBlocker). Components are read into Schematize and displayed as 
React components (github.com/graph-genome/Schematize). The ability to jump to a particular 
nucleotide index in an individual is enabled by the Path Index Server which uses ‘Odgi server’ 
microservice built on a compressed path index file. Spodgi makes outputs of odgi bin and 
Component Segmentation available through a SPARQL endpoint by storing the results in RDF 
(.ttl format) for use in other tools. Image Source: Designed by Simon Heumos for Pantograph 
ISMB presentation (Seaman et al. 2020). 

5.3.1 Component Segmentation 

Component Segmentation is the key conceptual step underlying the Pantograph 

pangenome schematic visualization paradigm. It breaks the pangenome into sections 

based on the presence of major structural rearrangements. Each section is called a 

Component. The algorithm seeks to minimize the number of Components better because 

they represent rearrangements within the population. Too many rearrangements create 

too many Components, which makes the visualization less clear to understand.  

https://paperpile.com/c/GxsSdv/84Ib
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Therefore, efforts are taken to merge similar structural variants into a single shared 

feature. Sorting (5.3.4) maximizes the contiguity of Components and places likely 

mergeable variants next to each other. Next, the pangenome coordinates of all 

rearrangements are listed as possible dividers. For each divider, Component 

Segmentation checks the occupancy until the next closest rearrangement. If no 

individuals have any intervening sequence, then the two rearrangements can be merged 

into a single divider without loss of information. Scanning for a viable merge is done for 

the next and previous divider for each divider. Whenever a merge is successful, the new 

divider is rescanned. After one pass through the pangenome, every divider will be 

constrained, and no further merges are possible. 

The reference implementation of Component Segmentation is written in Python and is 

available at https://github.com/graph-genome/component_segmentation. This 

implementation has received extensive optimization work, resulting in over 110x 

reduction in runtime since optimization work started (https://github.com/graph-

genome/component_segmentation/issues/20). The only obvious way to optimize it 

further would be to integrate the logic directly into odgi in order to give it direct access to 

the graph object model in memory, removing the need for file I/O. 

5.3.2 Pangenome Matrix Depiction of Single Nucleotide Variants 

In a multiple sequence alignment (MSA) browser such as Jalview, SNPs are represented 

by the presence of different nucleotides/amino acids in the same column (Waterhouse et 

al. 2009). In a Pangenome Matrix, each variant has its own column and is shown as 

either present or absent in each individual (Figure 5.7). In this binary representation of 

the multiple sequences, SNPs, insertions, and deletions are all represented in the same 

way.  

However, the matrix itself is not an efficient means of depicting nonlinear structural 

rearrangements. Therefore, the matrix is broken up into blocks, called Components, 

where the ends of each Component correspond to the break-points for inversions and 

translocations in the genome (5.3.1).  

 

https://github.com/graph-genome/component_segmentation
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Figure 5.7: Pangenome Matrix: Top: Example of SNPs using color to communicate nucleotide 
information in an MSA. Middle: Trivariate site in the center is expanded to three columns. The 
color coding becomes redundant since all information is encoded in position plus the pangenome 
sequence. Bottom: Color is freed to communicate other pieces of information like inversion or 
copy number. 

5.3.3 Links to Join Components  

Pantograph uses colored arrows to show Links, structural variations present in the 

pangenome. These join different components in different ways for each individual. A 

Link is an alternative Edge representing a structural rearrangement that shows the order 

of matrix components in each individual (Figure 5.8A). Graph Genomes use edges for 

every kind of variant. Our Component Segmentation software identifies the rare few 

edges (<1%) that are nonlinear rearrangements and groups individuals sharing the same 

structural rearrangement (5.3.1 Component Segmentation). If rearrangements are rare, 

one Component can contain thousands of Graph Genome Nodes.  

Figure 5.8: Link Columns 
and Structure Variant 
Only View: A: Each box is 
one Component. Adjacent 
Components are connected by 
black Links. Alternative Links 
are structural variants shown 
in various colors. The allele 
frequency is shown as a bar 
for each Link column based 
on the number of individuals 
that share the structural 
variant. B: For more detail, a 
Link Column underneath 
each Link can show which 
experimental subjects 
contain each structural 
variant with a colored cell. 
Individual rows with no 
rearrangements have a black 
adjacent Link to the next 
Component. On the far left, 

we can see Subjects 1 and 3 do not contain the pink structural rearangement. On the far right, we 
can see Subjects 2 and 4 end with a structural rearrangement indicated by the yellow Link. 

In order to show clearly which Link applies to which individual, we introduce Arrival and 

Departure columns at the beginning and end of each Component respectively (Figure 

5.8B). Links are drawn with an arrow point on the Arrivals side, and presence/absence of 

that particular Link is shown in the Link Column below for each individual. There can be 

more than one Departure or Arrival Column at the edges of one component, to show 

multiple structural rearrangements at the same pangenome position.  

To follow a particular individual, the user can hover over an individual to highlight the 

entire path. Each Link can be used to jump the genome browser to the other side of the 

Link when the corresponding Component is outside the viewport.  

5.3.3.1 Integrating Structure and Matrix Views 
Pantograph integrates the concepts of a Pangenome matrix and the structure diagram 

(Figure 5.8) into a single view called Pangenome Schematics (Figure 5.9). These 

schematics allow the user to read every nucleotide from every aligned individual in a 

A) 

B) 
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pangenome and supports all types of structural variants. Examples follow with 

equivalent Multiple Sequence Alignments (MSA) for reference.  
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TCCAA   ---CTCTCTGTGGTTCC  GGTT  GCTAT* 

TCCAA   GGTCTCTCTGTGGTTCC  ----  GCTAT* 

TCCAA   ---CTCTCTGGGGTTCC  GG-T  GCTAT* 

TCCAA   GGTCTCTCTGAGGTTCC  ----  GCTAT* 

TCCAA   GGTCTCTCTGTGGTTCC  GG-T  GCTAT* 

 

Figure 5.9: Pantograph Schematic Layout for Graph Genomes: Top: The five aligned 
sequences that were used to generate the Graph with color coded components. Bottom: Schematic 
showing all information available inside of a Graph Genome: SNPs, indels, structural 
rearrangements, and copy number variation. The last row of GGTT is colored more darkly because 
of the two traversals of the same Component. Every component reads from left to right; only 
follow each Link once. 

Components are always separated by sets of Link Columns and black Adjacent 

Connectors. The grey bounding boxes for each Component can be removed as 

unnecessary chart junk to give a more simplified visual style (Figure 5.10). The simple 

style was chosen for the Pantograph 1.0 release because it scales better with large 

pangenomes. 
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TCCAA ---  CTCTCTGTGGTTCC      GGTT      GCAT*    

TCC-A GGT  CTCTCTGTGGTTCC      ----      GCAT GGT* 

TCCAA ---  CTCTCTGGGGTTCC      GG-T      GTAT GGT* 

TCC-A GGT  CTCTCTGAGGTTCC      ----      GTAT*    

TCC-A GGT  CTCTCTGTGGTTCC      GG-T      GTAT* 
   

 
Figure 5.10: Schematic with Distributed Repeats: Top: Five example sequences in a 
multiple sequence alignment. Similar sequences have been colored by hand to indicate 
rearrangements not shown in a multiple sequence alignment. Bottom: Pangenome Schematic 
showing all the same variation but including the transpositions and duplications. SNPs, 
duplications, and rearrangements are shown from five individuals.  

5.3.4 Sorting the Graph 

Graph sorting imposes a single linear coordinate system on the whole graph by 

determining an order to list Nodes. This is extremely useful for implementation and 

navigation. The global coordinates do not exactly match a reference genome or any other 

genome. However, the Graph Genome is already mostly linear. From an evolutionary 

standpoint, we start with a single individual with a linear genome. Deletions and SNPs 

add more columns to the matrix, but it is still collinear (syntenic). Inversions and 

translocations introduce the first truly non-linear variation. 

Finding an ideal sort is a difficult problem addressed by the ‘odgi sort’ subcommand. The 

goal is to place all syntenic variant Nodes next to each other, then the few rare Links will 

bridge long distances across the pangenome to describe the unique ordering of each 

individual genome. A bad sort results in too many Links and chromosomes scrambled 

together. To address the challenges posed by bad sorting outcomes, a series of sorting 

algorithms are used in a pipeline to refine the number of Links spanning across the graph 

genome.  

First a topological sort is applied to the graph with a chunksize specified to partition 

sections to be sorted at each phase (Garrison 2019). Sorting then moves from the 

previous sorted partition to the next unsorted chunk in the graph. Second, there are two 

rounds of Stochastic Gradient Descent (SGD) meant to smooth out local problems in the 

sort by minimizing an energy function when moving a single pair of nodes at a time 

(Zheng, Pawar, and Goodman 2019). Sorting has diminishing returns, but additional 

steps can be set by the user. 

5.3.5 Inversion 

Inversions are shown as an entire component row colored in red for specific individuals. 

Inversions still use the same Arrival and Departure columns but their sequence is 

interpreted as the reverse complement of the listed pangenome sequence. The 

https://paperpile.com/c/GxsSdv/FnLm
https://paperpile.com/c/GxsSdv/FBVo
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visualization does not pick which strand to present a set of nodes, but graph construction 

should place the majority of individuals on the plus strand. 

AGTA -----------TAG-CTACG-TAGCAT T-AG AATTA* 

ACTA T-ATT T-AG ATGCTA-CGTAG-CTA* 

AGTA -----------TAG-CTACG-TAGCAT TTAG AATTA* 

ACTA T-ATT T-AG ATGCTA-CGTAG-CTA* 

AGTA -----------TA-ACTAC-ATAGCAT TTAG AATTA* 
 

 
Figure 5.11: Inversions: Top: A best effort MSA of the same five sequences. MSAs are not ideal 
for showing inversions (underlined) and it’s impossible to use a pure linear ordering to place the 
flipped pink and yellow sequences in inverted positions in this nested inversion. Bottom: 
Inversions are red rows in the inverted individuals that run the length of a Component. Insertions 
can be inverted although the upstream is still on the left and downstream on the right, the 
sequence content is interpreted as the reverse complement. The node AATTA would be TAATT in 
the inverted individuals. In this example, we show an inversion (TTAG) nested inside a larger 
inversion (center 3 Components) in order to show how Pantograph handles complex topology in 
many individuals.  

5.3.6 Annotation 

Annotation can be carried out as either Path objects in a new row of the matrix, or a rich 

graphic rendered by JBrowse2 and placed in context of the pangenome (Cain and Buels 

2020). JBrowse2 integration is a future planned feature for Pantograph 1.2. The 

advantage of using JBrowse2 is the immediate ability to render any kind of annotation. 

We do not wish to reinvent the wheel in displaying different types of annotation: repeats, 

wiggles, ChIP, etc. 

Since all annotations are paths, they are stretched to the same pangenome coordinate 

system, allowing easy comparison. Overlapping annotation Paths take up more than one 

row of the matrix, similar to the layout of Sequence Tubemap. More complex annotation 

types will only be present in a synchronized JBrowse2 panel. 

Pantograph contains a script which takes a GFF annotation and GFA Graph Genome as 

input and outputs a new GFA with the annotation integrated in. The program loads the 

graph into memory using odgi and then locates the beginning of each annotation using 

the Path position (5.3.11.4). Annotations typically start in the middle of Nodes, which are 

the split into two Nodes to mark the start coordinate of the newly created annotation 

Path. The same procedure is repeated for the end position and any gaps in coverage 

created by introns. The Path is given a name matching the annotation name, such as a 

gene name. Metadata.json tags these paths as genes so that they may have special 

coloring and be sorted to the top of the display. All Paths in Pantograph have mouseover 

text that shows the Path positions, name, and type of the path under the cursor which 

https://paperpile.com/c/GxsSdv/icl2
https://paperpile.com/c/GxsSdv/icl2
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allows researchers to quickly see the cDNA position and compare between individuals 

down to single nucleotide variances. 

5.3.7 Binning Nucleotides for Scale 

In order to be able to visualize the largest variation across a gigabase genome, some noise 

reduction is required. Binning makes data quantities viable for browsing, while zooming 

in is handled by decreasing the bin width for greater and greater detail. Given a sorted 

graph, the sequences of each Node are laid out in order into a Pangenome Sequence. This 

sequence is meaningless without the graph since alternative variants are listed in order, 

rather than taking a single consensus at each position. The pangenome sequence will be 

longer than any individual sequence since it expands to contain variants and private 

insertions.  

From this pangenome sequence, odgi creates Bins of fixed width (e.g. 100bp) by binning 

together sets of bin width nucleotides at a time. Crucially, this means that multiple nodes 

end up in one bin and one node can be split across two bins. Bins allow us to describe 

generalization about a genomic region across all individuals. A bin can be present or 

absent in an individual, making large deletions visible. Bins have a coverage value and an 

inversion value that is a floating point, because they are the sum of many individual 

nucleotides that may be present, absent, or inverted. This can all be visualized in a 

rectangular grid for a quick overview of a large number of individuals across sequence 

space of any size (Figure 5.4). Notably, this approach differs slightly from gene 

presence/absence matrices like PanTetris (Hennig, Bernhardt, and Nieselt 2015) in that 

it does not require a gene annotation to function. With an annotation, the two methods 

become comparable. Binning allows us to zoom out in a consistent and performant way.  

5.3.8 Haplotyping and Break Points 

Additional scalability and insight can be gained by sorting similar individuals into groups 

called Haplotypes. Pantograph integrates a pre-existing tool called Haploblocker because 

its approach to SNP data already used a graph simplification algorithm which works on 

graph genomes with only minor modification (Pook et al. 2019). We first quantize the 

floating-point coverage values based on user defined threshold in order to create discrete 

features for analysis. The default thresholds are Absent: c < 0.1; Low: 0.1 <= c < 0.8; 

Normal: 0.8 < c  <= 1.2; High: c >1.2. Rows are then clustered together based on sharing 

small features and a multi-step process attempts to stitch together larger and larger 

features into haplotype blocks. Absent areas are given less weight because an absence is 

less informative than shared sequence. Eventually the growing boundary of a haplotype 

block reaches a point where adding more sequence would reduce the local similarity 

score and the block stops growing.  

Using coverage thresholds as the primary feature addresses a wide range of biological 

phenomena relevant to real haplotypes. SNPs, insertions and deletions will all cause 

drops in the coverage of pangenome loci where they occur. Clamping the coverage to 

thresholds allows some variation robustness while the user can still make the test more 

sensitive by adding additional levels if desired. Discrete features also save compute time.  

For visualization, the more interesting challenge is finding the ideal order to sort the 

rows by haplotype. Different loci have different optimal row sort orders and break points 

make the constraints local and solvable. Haplotype rows lose coherence along the 

chromosome (Figure 5.12), meaning no single row sort order is globally optimal. This 

https://paperpile.com/c/GxsSdv/GHA6
https://paperpile.com/c/GxsSdv/pmCDc
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loss of coherence means, in a formal sense, that the set of individuals which share a 

correlated sequence similarity through inheritance at one locus are not the same set of 

individuals at a distant locus. The common cause for this mixed ancestry is sexual 

recombination when chromosomes crossover in eukaryotes, splicing together two 

ancestral chromosomes from different parents. These crossing over points are not 

randomly distributed.  

Our solution was to introduce break points where the rows could be rearranged and a 

new sort order introduced. The position of these break points is determined based on 

maximizing r: 

r = fbreak ∗ (1 − fcontinues), 

Where fbreak is the frequency of individuals in a block ending at that locus and fcontinues is 

the frequency of individuals in a block spanning that locus. These are not redundant 

measures because haplotype blocks can overlap. A smoothing function is applied to r and 

then a target number of break points are chosen by iteratively picking the point with the 

highest score, ensuring they are separated by at least 
1

8 × 𝑛𝑏𝑟𝑒𝑎𝑘
 (Nadaraya 1964; Watson 

1964). The end result is fairly distributed break points allowing the rows to be resorted 

along probable recombination hotspots to make haplotypes clearly visible in the data. 

 

Figure 5.12: Row Sort Demonstrating Break Points: Top: Haploblocks of 501 Maize lines 
which were characterized using SNP data show very poor coherence when sorted by their middle 
coordinate. Bottom: Introducing seven break points where rows are reordered to maximize 
vertical neighbor matching haploblocks reveals distinct blocks for the majority of the dataset. 
Break points were developed for Pantograph row sorting to allow visual scaling to much larger 
datasets while still showing coherent patterns. Image Source: Torsten Pook for “Pantograph: A 
Scalable Method for Visualizing Diverse Pangenomes” (in preparation); co-author Josiah Seaman.  

5.3.9 Unrolling Distributed Repeats 

In software compilers, unrolling is an operation where an instruction is replaced by the 

output of that instruction. For example, “It’s a small world” (repeat five times) would be 

replaced with “It’s a small world, It’s a small world, It’s a small world, It’s a small world, 

It’s a small world”. This is our main tool for decreasing topological complexity in the 

displayed graph. The main source of Link complexity originates from cases where a 

single component is inserted into many different places. We can see each of these pairs of 

Links as an instruction “insert X here” which we can replace with a copy of X, with 

appropriate coverage for each row. 

https://paperpile.com/c/djb2Wp/JWiA+cUBA
https://paperpile.com/c/djb2Wp/JWiA+cUBA
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A-BCDCCEFGHI  

AHB-D-CEFG-I    
 

Figure 5.13: Unrolling Distributed Repeats: The same end sequence can be simplified 
topologically by unrolling one component into copies at each site where the component occurs. 
The Links are eliminated, and the information migrated to the Matrix while the only information 
lost is that Copy #1 and Copy #2 are related. Notice at top H has coverage in both rows, however 
at the bottom image, the two copies of H each only have one cell filled. The top figure has seven 
Components, whereas the bottom only has one. The last step unrolls “C” into “CC” tandem repeat.  

Unrolling is a type of zoom that reduces topological complexity (Figure 5.13). It is 

triggered by a threshold for the size of insert that justifies a Link. Any smaller insert will 

be unrolled. The size threshold for unrolling will be increased as the user zooms out, 

keeping the number of components on the screen at a relatively stable number even as 

the amount of sequence brought in increases by orders of magnitude. Since Links define 

the boundaries between Components, unrolling eliminates Links and joins Components. 

Large Components can be visually compressed to hundreds of megabases because they 

can be treated like an image and squished along the x-axis (this is called coverage 

binning). 

Each level of unrolling is precalculated as a separate pangenome coordinate frame 

(5.3.11.2). The Path Position Server must keep a separate index for each unrolling level 

and annotations must be mapped onto each level separately (5.3.11.4). This change in 

pangenome coordinates will cause some jittering and warping as a user unrolls a graph. 

User affordances such as animations should make this transition as intuitive as possible. 

5.3.10 X-scaling: Proportionate Representation of Variants 
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Rare variants are a major source of the Density Problem because a 10 bp private 

insertion in 1 individual out of 1,000 will create 10 * 999 = 9990 pixels of white space 

(Figure 5.5). Low density can be fixed with a dynamically scaled x-axis. The width of each 

sequence column is proportional to the percentage of the population which has that 

variant—i.e., the coverage of that column. X-scaling means that the sum of two exclusive 

columns carrying an allele at 50% frequency will be 50% + 50% = 100% the width of one 

conserved column. A 10 bp private insertion in 1,000 individuals will be 1/1,000th its 

expected width of 1/100th of one highly conserved column.  

Fractional columns will require vector graphics. When zoomed in, one bin column is 

multiple screen pixels. Depending on zoom, some minor alleles could be less than one 

screen pixel. A minimum size will ensure that minor alleles are never completely hidden. 

However, this choice depends on the dataset and the chance of sequencing noise. The 

more common an allele is in the population, the more prominently it appears to the user. 

Regardless of their appearance, minor alleles will still affect membership in haplotypes 

which are visible to the user at megabase scale (5.3.8). 

5.3.11 Pantograph Infrastructure 

5.3.11.1 Data Representation 
Internally, all coordinates are features are stored as lists of pangenome coordinates. 

Pangenome coordinates are particular to a ZoomLevel (5.3.11.3) since the pangenome 

will be different sizes at different levels. All data from the original odgi matrix is broken 

up into a series of smaller matrices and stored in Pantograph Components. Each 

Component has two lists of ordered Link Columns. Arrivals are incoming Paths that start 

traversal at the beginning of the Component. Departures are outgoing Paths that link to 

other components. Link coordinates are in pangenome coordinates, according to bin size, 

and in JSON these are stored twice for fast lookup: once as a departure, and once as an 

arrival. Link Columns are ordered starting closest to the Component matrix and new 

columns are appended on the outsides (see Supplemental 5 for more details). 

5.3.11.2 Precalculation 
Many of the performance improvements of Pantograph are based on storing 

precalculated layouts for fast rendering. This architecture was based on lessons learned 

from FluentDNA. We were able to scale up to real-time rendering of every nucleotide of 

gigabases of genome by precalculating the color averages of pixels laid out and stored in 

advance. In this tool, Component Segmentation and sorting are the main precalculation 

steps. Either RDF storage or JSON storage of Components are ready for Schematize to 

render on demand. Unlike FluentDNA, the stored information is not an image and so 

schematize still requires some computation to layout the vertical stacking of links and to 

calculate the exact XY coordinates of elements based on user settings. 

There is a direct trade-off between the flexibility of user settings and the amount of 

storage space used by precalculations. If a user setting would require a separate copy of 

the data to be stored, then each possible setting is a multiplier for storage requirements. 

This situation can become untenable if there are multiple interacting user settings which 

create an exponential increase in the number of combinations of possible parameters 

which need to be stored. Currently the only example of this is the interaction between bin 

size and the level of unrolling. If there are 10 different bin sizes available then 

Pantograph must store 10 copies of the pangenome. If there are also 10 different levels of 

unrolling available at every bin size then 100 copies are now needed for storage. The 
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practical solution is to tie the level of unrolling with the level of binning. There is no point 

in storing data which can never be understood in a visualization. Binning and unrolling 

are both types of zoom. We recommend only two unrolling levels, Simple and Complex, 

available at each bin size. With two unrolling levels, only 20 precalculation copies are 

necessary instead of 100. 

A more advanced architecture has even better storage performance. If all fetches for 

precalculated data are formed as SPARQL queries to an RDF triple store (5.3.11.3), then 

calculations can be done only after they are needed the first time. New calculations can 

be stored in the database so similar queries in the future would be much faster. This 

optimization is ideal for datasets which have a few hotspots of interest and would 

otherwise require large amounts of storage. Currently, this on demand computation 

would require Component Segmentation to be ported and integrated into odgi (see 

5.3.11.1).  

5.3.11.3 Semantic Variation Graphs using RDF 
Pantograph uses an RDF triple store (see below) for storing the graph genome along with 

all metadata, and precalculated analysis. RDF is a semantic web technology which makes 

it easily compatible with a host of other features. Key among those is “A System to Link 

Knowledge Graphs and Genome Graphs” proposed in Moustafa et al (undated preprint): 

“Knowledge graphs can be represented as directed graphs where nodes represent 

any kind of assertions (accession number, date of collection, isolation source, 

etc.). Different types of edges can express different relationships between those 

assertions. “Genome Edges” represent genomes and include all the assertions that 

are true for that genome. “Categorical Edges” allow grouping of nodes by 

category, for example grouping all accession numbers in single edge. 

“Relationship Edges” describe known relationships between assertions, for 

example if a set of SNPs is correlated to a disease. Finally “Query Edges” are 

constructed on the fly and represent a subset of assertions that the user is 

interested in, for example “all the isolation dates this year”. 

One can therefore construct a genome graph using the genomes represented by 

edges that intersect any number of categorical, relationship, and/or query edges.” 

RDF is a general purpose format/protocol that consists of triples: subject, relation and 

object. This is used in life sciences to store various kinds of annotations. All data 

necessary to run Pantograph can be stored in an RDF triple store. Both odgi and 

Component Segmentation output RDF triples in Turtle output (TTL) using the 

pangenome ontology defined by the Pantograph team (Figure 5.14). A JSON format was 

developed as a temporary measure for transferring data between Odgi, Component 

Segmentation, and Schematize. However, to make our data accessible to the wider 

community we plan to exclusively use RDF for future development.  

One concern to address was estimating the scalability of storage and speed of RDF for 

gigabase genomes. RDF is already used in the Swiss Institute of Bioinformatics for large 

datasets. We compared the storage size of a human chromosome variation graph in odgi 

with the same data exported in spodgi and found the RDF was roughly twice as large 

(data not shown). In most target applications, doubling the storage requirement was not 

prohibitive. Similarly, storing the entire precomputed ZoomLevel pyramid (Figure 5.14) 

required four times the space of the original compact variation graph in odgi. These 
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storage requirements are geometrically identical to FluentDNA’s DeepZoom stack 

(OpenSeadragon n.d.) with the same trade-off: more storage requirements for faster 

retrieval time and performance. 

The standardization of pangenome data format is necessary for interoperability. A query 

syntax similar to SQL called SPARQL allows federated queries from all RDF triple stores 

using the same ontologies. Pantograph output can be stored on the SPARQL endpoint, 

which can be queried from Schematize. This means we do not have to publicly serve a 

pre-built JSON format. Instead, other services can access the same inputs that 

Schematize uses through SPARQL queries. Our ultimate goal is enabling a federalized 

query for retrieving subgraphs and annotations from one query, which means that we 

can completely relate genome variation graphs (vg ontology 

github.com/vgteam/vg/tree/master/ontology) and annotation knowledge graphs 

(geneontology.org). Bridging these two worlds will likely require a further extension of 

the vg ontology with relations such as “has_annotation”. The complete vg ontology 

including Pantograph extensions is available at http://biohackathon.org/resource/vg. 

Pantograph was specifically built using this version: 

https://github.com/vgteam/vg/commit/606acd28fe29f98b06a3f829622c06b55894e35

a. 

 

 

Figure 5.14: Pangenome Ontology: This diagram shows the hierarchical nature of the 
semantic graph genome ontology which can be found at http://biohackathon.org/resource/vg 
(Supplemental 5). Each ZoomLevel contains a complete copy of the pangenome at that level of 
detail with its own set of bins containing inversion and position information. Paths are traversed 
via forward and reverse link edges connecting Components. Every cell has Faldo region 
coordinates which map back to universal standard nucleotide coordinates for reference genomes 
found in the Path Position Server (5.3.11.4). Image Source: Yokoyama et al. (2020), used with 
permission.  

http://biohackathon.org/resource/vg
https://paperpile.com/c/GxsSdv/70yz
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5.3.11.4 Path Position Server 
Pantograph uses a single set of pangenome coordinates which are global but do not 

correspond to any assembly. The reference genome and all other genome annotations use 

their own coordinates which disagree. The Odgi Path Position Server transforms all of 

these coordinates to pangenome coordinates, allowing complete navigation and 

comparison. Queries contain the path name and the position along the path, which starts 

from one rather than zero. The server references a file containing the “succinct variation 

graph index” for the closest node in the path and adds the remainder. For more 

information about this file format see Garrison et al. (2018). odgi commands for 

generating and using the server are documented at 

https://pangenome.github.io/odgi/odgi_docs.html.  

5.4 Results 
5.4.1 Pantograph Scalability Properties 

All software designs were evaluated based on the scalability criteria laid out in Methods 

(5.2). Table 5.1 contains the Big-O performance equation while the legend details a 

rationale for why each tool received the score it did per column. Overall, we find that 

Pantograph scales very favorably in terms of number of elements rendered compared to 

other tools. It achieves this through additional precalculated layout work. odgi bin also 

scales to a large number of individuals in tests, however it generates static images 

whereas Pantograph is a fully feature interactive genome browser. 

  

https://paperpile.com/c/GxsSdv/sTXad
https://pangenome.github.io/odgi/odgi_docs.html
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Table 5.1 Visualization Scalability Metrics 
 

Elements ⇓ Layout Time ⇓ Demo Individuals ⇑ 

Bandage NP N2 1 

Sequence Tubemap NP + Rnp 1 12 

Odgi Bin view R N 1000 

Pantograph log(S)log(R) N + R + P 167 

Each metric is scored based on an equation given N nodes, P paths, S SNPs, and R structural 
rearrangements. S and R increase as P increases, since there are more total variants in the 
population. Visualizations that allow shared variation use log(S) to denote the probability that 
variation is shared between multiple individuals. 
Elements: Bandage renders one segment for each Node or contiguous set of Nodes without 
branching. Since Bandage is not currently applied to variation graphs, it is not clear how this will 
scale in the future with multiple Paths sharing Nodes. Sequence Tubemap draws a new vector 
entity for every Node/Path pair (NP). Every rearrangement causes the retraversal of every 
Node/Path pair between the start and end of the rearrangement (np). While this number is not as 
large as NP, Sequence Tubemap contains no sorting to minimize the size of np. Odgi Bin uses a 
square matrix and so does not actually render more elements to show an increasing number of 
SNPs. Moreover, binning actually hides SNPs. However, each Rearrangement requires an arc 
drawn and there’s little effort to merge arcs shared between individuals. Pantograph performs 
somewhat better by merging nearby Rearrangements, but has the added complexity of rendering 
separate Components proportionate to the number of Links or log(R).  
Layout Time: Bandage’s force directed simulations require tensions between all nearby node 
pairs (N2). Sequence Tubemap makes no real attempt to sort the pangenome beyond very quickly 
flattening the Node list. Odgi Bin and Pantograph use the same sort, which is run for a time linear 
to the number of Nodes in the graph (N). Pantograph also requires Segmentation which has loops 
for Nodes, Paths, and Rearrangements, though never multiplicative.  
Demo Individuals: Bandage’s original publication only lists examples with one genome (Wick 
et al. 2015). Sequence Tubemap examples online don’t include enough structural variation to be 
comparable. Figure 5.3 contains 12 HLA Paths. odgi was used on the 1000 Human Genomes 
Project dataset in a tool comparison in Eizenga et al. (2020) though not specifically for 
visualization. Pantograph release 1.0 on graphgenome.org featured 167 SARS-CoV-2 individuals 
with an admittedly small amount of structural variation.  

 

5.4.2 Haplotyping SARS Pangenome Overlap 

SARS-CoV-2 was our initial target application for public release of Pantograph 1.0 in July 

2020. However, as a recent viral subpopulation it does not yet have many structural 

rearrangements. A more interesting view is the haplotype view which allows us to 

compare across potential sources of SARS-CoV-2 (Figure 5.15). SARS1, SARS-bat HKU 

and SARS-CoV-2 share the majority of their genome content in terms of pangenome 

locus. However, at a bin size of 1w, only 5% of haplotype blocks are shared between 

SARS1 and SARS-CoV-2. To investigate this further, we modified the Haploblocker 

algorithm to only create blocks shared by the two SARS families and only 14.16% of the 

pangenome was covered, indicating substantial differences in the variants between the 

two viral lines. The reason for this difference is biologically apparent, since each 

population comes from a separate recent radiation after a presumed genetic bottleneck 

that would have fixed a set of variants. 

https://paperpile.com/c/GxsSdv/GarL
https://paperpile.com/c/GxsSdv/GarL
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Figure 5.15: Aligned Graph Genome Haplotypes for SARS lines: This Graph Genome 
was constructed from sequences of 343 SARS individuals from SARS1, SARS-CoV-2 and bat 
variants (SARS-bat HKU / KF / MG). Colored blocks are haplotypes which may be overlapping. 
Lighter colors indicate no sequence present in the individual at that pangenome locus. Black 
indicates sequence is present but not assigned to a haplotype, particularly common in the lines 
where we have fewer individuals sampled. Each SARS line appears to have just one major 
haplotype, unlike typical populations with multiple haplotypes present. There are exceptions for 
example at position 50,000 nearly half of the SARS-CoV-2 individuals have a minor haplotype. 
From the large degree of overlap in SARS-bat HKU we can infer that there are bats carrying a very 
similar virus and from KF and MG we can infer that some small portions of sequence are likewise 
shared with other viruses that presumably have their own unique sequences not shown in this 
graph. Ideally, we would have been able to observe a SARS bat sample with overlapping 
haplotypes with SARS-CoV-2. An in-depth analysis of the topic is beyond the scope of this thesis. 
Image Source: Torsten Pook for “Pantograph: A Scalable Method for Visualizing Diverse 
Pangenomes” (in preparation, co-authored by Josiah Seaman). 

 

5.4.3 Arabidopsis thaliana Pangenome 

To truly test Pantograph on a complex eukaryote genome, we visualized twelve 

Arabidopsis thaliana individuals from the pilot of the 1001 Genomes Project. Unlike 

SARS-CoV-2, the majority of visual columns of the pangenome schematic are Link 

Columns showing complex topology rather than Matrix cells with genome content. This 

ratio makes optimizing the sort a top priority to simplify the visualization (5.3.4). Manual 

inspection of problem areas shows that bins contain a wide array of discontinuous 

ranges. Components often have Link Columns pointing to themselves to facilitate 

internal rearrangements. Similarly, the majority of Links point to a Component that 

immediately points back to the current Component. Unrolling (5.3.9) is designed to 

address these problems but is not yet implemented. Arabidopsis thaliana results 

indicate implementing unrolling and addressing self-referencing Components will be 

mission critical to keep the number of Component manageable. 
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The most notable structural feature starting at the beginning of chromosome 1 and 

covering the majority of all chromosomes are a set of symmetrical concentric nested 

Components linked in pairs such that they alternate left and right around a focal point 

Component (Figure 5.17). These symmetrical structures can be found nested inside one 

another following a tree structure (Figure 5.18). For brevity, I refer to this symmetrical 

structure as a chiasmus (plural chiasmi), a literary term meaning a motif whose 

beginning is repeated at the end in inverted order. I used Pantograph to determine what 

was causing the chiasmi.  

 

Figure 5.17: Example Chiasmus on Chromosome 5 of A. thaliana: The chiasmus 
pictured here is a symmetrical pattern of interlinked Components centered around a focal point. 
In the center, a smaller section with entirely black colored links makes it easier to see the 
alternating left-right link direction characteristic of a chiasmus. Each grey column of Matrix 
contains 20,000bp of sequence, the Bin width at top, and contains multiple genes. To check that 
this chiasmus was not simply an artifact of the sorting process, I have edited in a visualization of 
the last chromosome position for each Bin along the bottom row in red. Light red is the 5’ end 
progressing to dark red at the 3’ end, color scale is relative to the view window. This smooth 
spectrum shows that the sort is a real feature along the chromosome. It even highlights the 
exceptions to the spectrum (purple and forest green links) also do not match the larger structure. 

 

Figure 5.18: Nested Chiasmus: This nested symmetrical structure covers over 30 megabases 
of pangenome sequence. The chiasmus can be represented by the parenthesis sequence in Vienna 
notation: (x(()()())) where x is the region with no long range Links. This entire figure can be seen 
as a small feature in Figure 5.16B. 

A few key observations of chiasmi in the Arabidopsis thaliana pangenome are as follows. 

They cover nearly the entire pangenome with one or two major chiasmi per chromosome 

arm (Figure 5.18). They do not appear to span centromeres, telomeres, or interconnect 
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multiple chromosomes. For example, if these were caused by sequence similarities by 

homeologs on different chromsosomes, we would expect to see Links spanning telomere 

boundaries to interconnect multiple chromosomes together. The same is true of real 

biological rearrangements that would place sequence in different individuals on different 

chromosomes as well as technical artifacts arising from interchromosomal alignments. 

Instead, they appear to be localized to one chromosome arm.  

They can be nested up to the maximum resolution of the current visualization of 10,000 

bp (Figure 5.17). Bins near the middle of a chiasmus have more discontinuous ranges 

than Bins which are not part of a chiasmus. These observations led to a hypothesis of the 

chiasmus discussed in the next section.  

The results from the 1001 Genomes pilot project made it clear that addressing the 

accumulation of Links was necessary for the scalability of Pantograph to thousands of 

megabase genomes. Binning did not fully address structural scalability because large 

Bins had more discontinuous ranges with a higher probability of a Link extending 

outside the Bin. Self-loops, where Components have a Link to themselves need to be 

suppressed to keep the number of Components down. The undesirable visual complexity 

of Figure 5.16 is due in large part to unnecessary segmentation from internal reordering 

of Bins. The Links are being added to facilitate the ordering of elements that are invisible 

to the user. Given the high number of ranges inside a chiasmus, this reordering behavior 

iteratively subdivides them into individual Bins. From this new information, Component 

Segmentation Issue #50 (https://github.com/graph-

genome/component_segmentation/issues/50) was created to address Component self-

loops and implementing unrolling will fix repeat content causing complications. 

5.5 Discussion 
5.5.1 Arabidopsis thaliana Pangenome Symmetry 

The visualization of Arabidopsis thaliana pangenome demonstrated it was practical to 

browse a eukaryote Graph Genome in a browser and use it to diagnose assembly 

challenges. I uncovered several expected chromosome rearrangements (Figure 5.16 A 

and C) but also a mystery in the form of ubiquitous symmetrical nested structures called 

chiasmi. From all the observations, I would hypothesize that chiasmi are an emergent 

phenomenon from the combination of sorting algorithm, visualization, and the 

underlying chromosome structure. Chiasmi do not appear everywhere or in all datasets 

using the same settings (e.g. SARS-CoV-2), so they are likely symptomatic of large 

similar sequences which can be aligned but which still pass through the smaller repeat 

filters (10 bp).  

There are two classes of repeated sequences with an intertwined history: transposons and 

ancient whole genome duplicates (1.2.2.6). Transposons are often found concentrated to 

one specific chromosome arm and chiasmi also do not cross chromosome boundaries. 

Transposons are likely to be the primary cause of many discontinuous ranges in the same 

Bin. Between the base angiosperm ancestor and Arabidopsis thaliana there have been 

three rounds of WGD which have left extensive evidence of homeologs in A. thaliana’s 

small diploidized genome (Figure 5.19). Based on a dot plot of the TAIR10, 87.5% of the 

CDS has at least one extra copy present in the genome (Lyons and Freeling 2008; Haug-

Baltzell et al. 2017). It is possible a chiasmus is an artefact of the sorting algorithm 

struggling to reconcile nodes shared because of matching sequences left over from an 
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ancient WGD. It is also possible it is a degenerate case of sorting that is only apparent 

given some types of input data. 

 

Figure 5.19: Dot Plot showing Arabidopsis thaliana homeologs: The x and y axis both 
represent position along the TAIR10 A. thaliana genome as rendered in this CoGe dot plot (Lyons 
and Freeling 2008). Dots indicate a sequence match between distant regions in the genome, 
filtered for superfluous repeats, these are indicators of homeologs left from ancient WGD. Color 
indicates level of sequence identity: orange is more ancient, blue and green are more recent. To 
determine what percentage of the exome is homeologs, one can visually extend columns up and 
down from every point on this dot plot. From this method I obtain an estimate that 87.5% of the 
exome has at least one similar sequence match . This dot plot can be explored interactively at 
https://genomevolution.org/r/rz0o.  

 

5.5.2 Genome Browsers in the Age of Graphs 

Most users interact with genome visualizations in the context of genome browsers like 

UCSC (Rosenbloom et al. 2013), JBrowse (Buels et al. 2016), or Ensembl (Zerbino et al. 

2018). Visualization is the adapter layer between the realm of human cognitive 

capabilities and the realm of computational resources. Databases, data mining, and AI 

are all locked within silicon and lack the ability to progress without human 

https://genomevolution.org/r/rz0o
https://paperpile.com/c/GxsSdv/Mlrf
https://paperpile.com/c/GxsSdv/Q11N
https://paperpile.com/c/GxsSdv/Um2l
https://paperpile.com/c/GxsSdv/Um2l
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understanding. Clear visualizations are needed to facilitate human reasoning about the 

complex interactions between structural variants in the data and research questions. This 

bridge brings together the best of both worlds. Insight without evidence is impotent. 

Data without reasoning is useless. 

Big Data has been a major focus of 2010-2020, but significantly less has been said about 

scalable Big Data Visualization. Visualizations must continue to scale in order for new 

genomic data to be useful. The switch from a single genome, to a genome alignment 

graph is not simply a change in quantity, but a change in kind which requires a 

completely new toolset. Graph genomes allow researchers to access new types of features 

that would have been removed or invisible in previous sequencing techniques.  

Pantograph’s major contribution to the field is the ability to treat structural 

rearrangements as a single point feature that can be shared by many individuals in the 

same manner as a SNP can be shared and be assigned an allele frequency. Component 

Segmentation makes this ability far more powerful by identifying that many similar 

rearrangements in different individuals could originate from a common ancestor. 

Clustering by shared ancestry using haplotypes is also what enables the y-axis to scale to 

rendering possibly thousands of rows if each individual no longer needs their own visible 

row.  

The second key lesson of Pantograph scalability is “acceptable losses” when zooming out 

to whole chromosomes. Binning based on Node sort order is not mathematically perfect, 

but it creates a comprehensible representation for large scale features at the cost of small 

scale features being lost in the averages. Unrolling discards some Links, but maintains 

the largest, most informative rearrangements. This is designed to mimic human vision of 

distant objects, which start small and blurry but become gradually more detailed as they 

move closer. There are two ways Pantograph implements this. First, through physical 

size controlled by Row Height and Column Width as well as browser zoom. Second, 

through semantic zooming implemented by Bin Size (5.3.7) and Unrolling (5.3.9) which 

actually reduces the level of detail presented to the user. A key aspect of the user interface 

is that it clearly labels what level of detail is visible, e.g. 10bp bin size, so users know 

features below that size will be indistinguishable. 

The third lesson is the difficulty of picking a performant online rendering platform. For 

Pantograph’s 2020 implementation, the team chose ReactJS with the intention of 

integrating with JBrowse2 in order to support the largest possible array of annotation 

formats (Cain and Buels 2020). Once we began collaborating with 

covid19.genenetwork.org and began loading pangenome with over 300 individuals, 

Pantograph became prohibitively slow. ReactJS, while faster than HTML, still required 

optimizations for the number of elements on screen, requiring significant extra 

development time. The contrast became most apparent at ISMB when Pantograph was 

presented alongside GenomeSpy, which had similar features for SNPs but was 

implemented in WebGL (Lavikka et al. 2020). GenomeSpy has no buffers or chunking, it 

simply loads the entire dataset as a single file over the Internet and renders all elements 

at once with smooth real-time animations. By comparison, Pantograph was much slower. 

The difference is due to taking advantage of the hardware acceleration of graphics cards 

which have benefitted from 40 years of R&D in the video game industry. A similar 

change in the Matrix rendering component of Pantograph could change its implemented 

rendering speed by 100-1,000x. GenomeSpy also uses the Vega visualization notation 

https://paperpile.com/c/GxsSdv/icl2
https://paperpile.com/c/GxsSdv/CtxS
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framework for streaming updates which may contribute to its responsiveness 

(Satyanarayan et al. 2016). 

In general, genome graphs are not planar (Weisstein 2021); hence any 2D rendering will 

have overlapping edges whereas in 3D, edges will not overlap. Consider Point A inside a 

square perimeter of edges which needs to connect to Point B outside the perimeter. In 

2D, there is no path where the edge does not cross the perimeter, whereas in 3D it can be 

connected to infinitely many points above or below the perimeter. Pantograph’s design 

makes a conscious attempt to keep the 3D nature of a graph contained in rectangular 

grids on a 2D surface. This is strictly a usability consideration because working with a 3D 

object on a 2D monitor is so inefficient.  

This will continue to be the case as long as the dominant mode of interaction is using 

monitors and mice, rather than augmented or virtual reality. Data visualization and user 

interface expert, Bret Victor has spent his career designing what an ideal interface might 

look like, called Seeing Spaces (Victor 2014). Ideally, we would construct a building out 

of our knowledge that one could walk through, explore, and learn. Memory experiments 

have found that storing facts in a mental memory palace is best for retaining and 

retrieving memories at later dates (Roediger 1980). This is likely because human brains 

are adapted to work in real 3D spaces with objects, containers, and journeys. The 

abstract land of computer interfaces is a poor match and foreign to our primate brains. 

For now, we continue to be constrained by the tools at hand. 

5.5.3 Benefits of Graph Genomes as a Storage Medium 

I predict that Graph Genomes will gradually become the data type underlying all genome 

data stores. The reason is the unavoidable reality that data can always be put through a 

lossy transformation for convenient consumption, but once data is discarded it can never 

be recovered. This reality has led to the archiving of short read data; a practice which 

requires enormous amounts of storage space and limits the applicability of sequencing 

technology as a field if it cannot scale (Pavlichin and Weissman 2018). The best solutions 

to this problem require using short read data as a temporary intermediary to an 

alignment with complete markup for all variants in the population such as (Kelleher et al. 

2019) which is capable of storing all of humanity’s SNPs in less than an extra gigabyte.  

Graph Genomes have the capability to store any kind of genomic variation. When stored 

in RDF, the same database can contain any other annotation and metadata built directly 

into the pangenome. This degree of flexibility means that short reads can be stored as a 

series of small updates to a reference Graph Genome. Once all possible metadata is 

wrung from the short reads, they can be discarded to save space for the next batch of 

individuals to be sequenced. This trade-off becomes more practical as sequencing costs 

drop at a faster rate than compute and storage costs. 

Any desired FASTA flat file can be served from a Graph Genome. One genome FASTA is a 

single set of paths from a pangenome. This paper has focused on variant graphs but 

Graph Genomes can also store an assembly graph of one individual. A genome assembly 

is a destructive flattening and linearization of an assembly graph. It is prudent to keep 

the original assembly graph so researchers can update it with new sequencing or use 

different assembly parameters to acquire a linear genome. Repeat annotations (which 

often account for more than 50% of the genome) are also driven by alignments which can 

be preserved as edges in the graph. 

https://paperpile.com/c/GxsSdv/0SGz
https://paperpile.com/c/GxsSdv/H3Do
https://paperpile.com/c/GxsSdv/ehWE
https://paperpile.com/c/GxsSdv/JjFf
https://paperpile.com/c/GxsSdv/JjFf
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5.5.3.1 Science Enabled by Semantic Graph Genomes 
Taken as a whole, we can envision a near future where Graph Genomes enable a much 

better-connected bioinformatics. Biologists will be free to sequence specimens with 

abandon without concerns for running out of storage space. All new information is stored 

as updates to the species pangenome and then raw data is discarded. Bioinformatics is 

currently the largest cost factor in sequencing and automation is the only cure. Human 

reasoning still stays in the loop using interactive visualizations and browsers such as 

Pantograph to highlight new features added by the latest rounds of sequencing.  

Sequence classification can be separated using a decision tree composed of convolutional 

neural networks trained by user picked sequence examples (Frosst and Hinton 2017). In 

a more advanced future application, the topology of the decision tree could be learned 

through observing a user’s actions in a pipeline environment like Galaxy (Giardine et al. 

2005) using Cooperative Inverse Reinforcement Learning (Hadfield-Menell et al. 2016). 

The filtering and action flowchart is then amplified by AI which mimics the researcher’s 

actions across all similar regions of the pangenome. The AI then returns results of 

interest based on a scoring metric learned from watching researchers use Pantograph 

and tag areas of interest to them. Any new knowledge gained can be published in papers 

which reference the specific nodes in RDF for reproducibility. This type of collaborative 

human machine environment is an ongoing area of research in DARPA (Draper 2021). 

More radically, micro-publications in the form of metadata added directly to the 

pangenome RDF can communicate new knowledge in a way that appears in genome 

browsers and is machine readable. These micro-publications can be federated through 

SPARQL and hosted on journal or university servers. Pantograph focuses on the 

scalability of a visualization technique for thousands of individual specimens, but there’s 

a more fundamental scalability problem: the scalability of the human mind. Every day 

over 20,000 biology publications are published and after May 2020 there were an 

average of 282 COVID-19 publications every day (Sarkar et al. 2020; Pacchioni 2018). No 

human could possibly keep up with this rate of discovery and so we compensate through 

subspecialization and hopefully filtering by quality. However, research has shown that 

replicability (the most objective metric of quality) has no correlation with how often a 

paper is cited and published in high impact journals (Y. Yang, Youyou, and Uzzi 2020; 

Camerer et al. 2018). I propose machine readable micro-publications as a more realistic 

solution to the larger scalability challenge of comparative genomics as a whole (Clark et 

al. 2014; Raciti et al. 2018). 

5.5.4 Cross Species Graph Genomes 

This thesis started with the goal of comparing similar Ash tree species to understand how 

large-scale changes in genome content occur after a whole genome duplication. 

Pantograph’s presence/absence matrix appears to be the ideal tool to visualize the 

repeatability of gene loss between 27 Fraxinus species (Chapter 4). So why is it not 

present in the Results section? Pantograph is primarily a browser for existing datasets. 

Graph construction is a separate and challenging topic which bears some discussion 

here. In order for the Fraxinus pangenome to be visualized in Pantograph, we must first 

construct a cross species Graph Genome. Constructing a Fraxinus genus pangenome 

graph could be another entire thesis topic, as explained below.  

https://paperpile.com/c/GxsSdv/PqAT+bJvw
https://paperpile.com/c/GxsSdv/V1gJ+eo7b
https://paperpile.com/c/GxsSdv/V1gJ+eo7b
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5.5.4.1 Graph Construction Challenges 
All of the applications discussed so far have been restricted to within species pangenomes 

because additional technical challenges arise when comparing genomes across species. 

For Graph Genome approaches to become the default solution for comparative genomics, 

they must be applied to a diverse group of species, for example the 200 mammal 

alignments currently under development (Birren and Karlsson 2021). As of 2020, there 

was no turnkey solution for cross-species graph construction of gigabase-size genomes.  

Most aligners still use a bottom up approach which matches small kmers, identifies 

syntenic kmers, and builds larger blocks from there. Examples of graph construction 

programs are vg, REVEAL graph, and seqwish (Novak, Garrison, and Paten 2017). A 

problem is introduced when SNPs are approximately as common as the base kmer size. 

The fundamental building blocks for alignments become disrupted and the graph 

dissolves into an array of variant nodes with few shared connections between species, 

even when overall sequence identity is high. Programs like BLAST solved this problem 

decades ago by allowing edits for short sequences, but those solutions aren’t necessarily 

performant on gigabases of sequence. It is likely just a matter of getting the right team 

with time and funding to implement a complete solution to this engineering problem 

(Brown et al. 2020; Pritt et al. 2018).  

5.5.4.2 Within vs. Across Species 
When constructing a graph containing multiple species, do we include one reference 

individual from each species or a diverse panel of individuals? Likely both approaches 

will be used because of their advantages and disadvantages. Using only one reference per 

species is the simplest approach and reduces the chances of information overload by 

ensuring that every variant encountered is a difference between two species. However, 

this could be misleading.  

There exist trans-species polymorphisms; which is variation present both within one 

species and also between species. For example, ABO blood types are preserved in 

primates (Ségurel et al. 2012). This can be created by incomplete lineage sorting and 

maintained by balancing selection. Trans-species polymorphisms will only be visible in a 

Graph Genome containing multiple individuals from each species. Within a few years, we 

should be able to detect and catalog large numbers of a new category of variants using 

Graph Genomes: trans-species structural variants.  

Without Graph Genomes, it is possible to study trans-species structural variants. The 

base sequences a researcher would use to identify the trans-species polymorphisms are 

present in the per species genome assemblies. Existing genomes can be aligned to create 

LiftOvers which can be mined for these polymorphisms. Literature can be searched for 

already identified instances. However, the metadata tagging a trans-species 

polymorphisms in a machine readable format is not necessarily available. Currently 

examples of trans-species structural variants are few and far between for example, the 

FLCD variant is restricted to within Drosophila species (Yassin et al. 2016). Convergent 

fractionation reported in 4.3.3.1 could be considered a large scale trans-species structural 

variant, whereas non-convergent fractionation is not.  

5.5.4.3 Steps for a Fraxinus Graph Genome 
Building a Graph Genome of the 27 Fraxinus species discussed in Chapters 2 and 4 

would certainly be thwarted by the technical limitations discussed above (5.5.4.1). Until 

https://paperpile.com/c/GxsSdv/ldY3
https://paperpile.com/c/GxsSdv/2NBH
https://paperpile.com/c/GxsSdv/PMjO
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tools such as seqwish, REVEAL graph, or vg have received further development this level 

of species diversity in a single graph is simply not practical. While all of Fraxinus is 

technically within the same genus, Section 3.3.6 established that F. pennsylvanica and F. 

excelsior are too diverged to use for scaffolding, which reflects on their number of 

relative rearrangements. Fraxinus has been diverging over at least 34 million years 

(3.3.3) and plants can tolerate a higher degree of genome change than mammals 

(Kejnovsky, Leitch, and Leitch 2009).  

To be mathematically precise, excluding indels, the number of SNPs in aligned regions is 

approximately 1 in 10 between F. pennsylvanica and F. excelsior. Given an assembly size 

of 961 megabases (Table 3.2) a kmer of 15 nucleotides will only occur by chance once in 

the whole genome (415=1,073,741,824), making shared kmers between the two genomes 

evidence of homology. However, a kmer of 15 nucleotides is longer than the average 

distance between SNPs, meaning the majority of kmers will be disrupted before they can 

seed a node in the graph. A more robust graph construction method is required in these 

difficult cases.  

5.5.4.4 Pantograph Cross Species Scalability 
Finally, we should consider whether the Pantograph visualization design will scale across 

species and in applications with high divergence. It is difficult to be completely certain 

without a dataset to test against, but specific aspects can be tested. The matrix scales very 

well with a high number of SNPs still maintaining a rectangular coordinate frame. Rare 

variants can be hidden using x-scaling (5.3.10) without limit. An increasing number of 

rearrangements is more problematic if rearrangements are not shared between 

individuals as would be likely across species. In this case, Link Columns suffer from the 

Density Problem (5.1.2) while an increasing amount of vertical space is taken up by their 

ribbon stacking as we’ve seen in Sequence Tubemap (Supplemental 3).  

Binning is disrupted by Cmponent boundaries, which can be prevented by a good sort. It 

is an open research question whether or not trans-species pangenomes have a well-

ordered sort. The fact that chromosome painting is possible at all is positive evidence for 

a feasible global sort (Serov et al. 2005; Kemkemer et al. 2006). Unrolling would mainly 

be useful for simplifying the chromosome level views across species by removing 

information about small similarities that cannot be reconciled in the sort. These 

similarities would still be browsable locally when zoomed in. Other design issues will 

have to be addressed when test datasets become available. Current development is being 

carried out using synthetic genomes. Further design work is needed in order to hide 

irrelevant data to scale Pantograph to cross species comparative genomics. 

 

5.6 Conclusions 
Researchers will face significant scalability challenges in the years ahead in the transition 

from flat files of a reference individual to a network of annotated population variation in 

a species. Graph Genomes are the correct data structure to represent the full range of 

genetic variation possible. Previous tools for visualizing Graph Genomes cannot scale to 

thousands of individuals and megabases of sequence. Pantograph achieves this through 

precomputed analysis of shared variation to create syntenic blocks connected by key 

structural rearrangements. Presence/absence matrices are extended to SNPs and 

https://paperpile.com/c/GxsSdv/tkzy
https://paperpile.com/c/GxsSdv/TvdW+NDjq
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structural rearrangements and binning allows Pantograph to zoom out to chromosome 

scales. 

Pantograph 1.0 is currently able to interactively browse annotated pangenomes of 200+ 

SARS-CoV-2 individuals and 24 aligned A. thaliana individuals. Future planned 

development will bring in more complete support for haplotypes, minor allele scaling, 

unrolling distributed repeats, and richer annotation support.  

Graph Genome features identified in Pantograph are available through SPARQL queries 

for integration into any other program. Federated queries are machine readable and can 

be used to augment annotations as micro-publications. Pantograph is composed of a 

pipeline of software modules designed for reuse and future collaborations. It is our hope 

that tools such as Pantograph will enable faster research and discovery, as well as more 

open knowledge sharing s that resources invested in scientific research can have a  

multiplicative return to the public. 

Software Availability 

Pantograph is Open Source, under the Apache 2 license and available on GitHub in the 

Graph-Genome organization github.com/graph-genome/. You can learn more about the 

project at GraphGenome.org and browse a live demo of 169 SARS-CoV-2 individuals at 

graph-genome.github.io/Schematize/. Contributions and feedback are welcome on our 

GitHub page. 
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Conclusions 
 

6.1 Accessible Visualizations 
In this thesis, I have addressed core challenges in the scalability of visualization, 

exploration, and interaction with genome sequence datasets. A particular emphasis has 

been placed on making the visualizations as close to the raw sequence data as possible, 

rather than seeing only the annotations generated by programs. In comparative 

genomics, this allows researchers to see individual SNPs and indels even at the scale of 

megabases. Crucially, it also keeps human judgement in the feedback loop as we move to 

greater degrees of automation. FluentDNA and Pantograph both allow researchers to 

manually double check the outputs of their assembly as seen with the discovery of 

endophytes and mitochondria in 3.3.2 and major chromosomal rearrangements in 5.4.3.  

FluentDNA allows users to visualize entire gigabase genomes on a single screen and 

explore them interactively while retrieving sequences. This level of accessibility has been 

used for museum displays and lab posters to enable interactions that simply would not 

have happened beforehand. This is not simple iterative improvement but a step change 

in what is possible in communicating about genomics. Similarly, Graph Genomes are not 

browsable by a human in their current state except as a way to gather statistics about 

population heterozygosity. Pantograph will enable scalable pangenomic studies of 

eukaryotic populations that would not happen otherwise. 

6.2 Polyploidy and Fractionation 
In the arena of paleopolyploidy, I was able to demonstrate through comparative 

genomics of 28 assemblies (including Olea europaea) that the same gene families were 

repeatedly lost in independent lines after a shared whole genome duplication. Gene 

families with greater than five losses were enriched 4.8x over null model expectations. 

Thus, the process of fractionation (the loss of redundant gene copies after a whole 

genome duplication) is a somewhat replicable evolutionary process. A similar study was 

recently published in cotton, based on five species genomes (Chen et al. 2020). The 

methodologies laid out in this thesis are scalable to large numbers of genomes and larger 

clades. As every plant clade is the descendant of at least one WGD, many more similar 

studies could be done. The method could also be extended to account for the 

compounding effects of multiple WGD, allowing a systematic analysis of taxa 

fractionation rates to be conducted. 

Accounting for the total effects of duplication and fractionation of genes across the 

history of plants would be a major contribution to our understanding of plant evolution.   

WGD can have an exponential compounding effect on gene family size, affecting the 

genes that survive fractionation disproportionately to create areas of sequence space with 

abundant diversity, such as transcription factors and secreted plant volatiles (Dudareva 

et al. 2013; Mindrebo et al. 2016). This storehouse of genetic diversity plus plant’s 

inherent physiological and genomic robustness combined with their ability to evolve by 

whole genome duplication and fractionation may give plants an evolutionary tool largely 

unavailable to other kingdoms of life. This may help answer fundamental questions, such 

as: if tree generation times are orders of magnitude slower than insect and fungal 

generational times how is it that trees have been able to keep up in the evolutionary arms 

https://paperpile.com/c/yz6Bj9/1lTs
https://paperpile.com/c/yz6Bj9/zCa4+YXjB
https://paperpile.com/c/yz6Bj9/zCa4+YXjB
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race against pests and pathogens over millions of years? The study of fractionation in 

Fraxinus shows that evolution is a repeatable process which affects a subset of genes 

while leaving others untouched. The implications of this for pest and pathogen resistance 

are a promising area for future exploration.  

In terms of scale, plants can produce fertile offspring by the millions and still grow to 

soak in sunlight, weighing in at metric tons as adults. The potential scale increase means 

that evolutionarily successful combinations can pull in a great deal of energy and produce 

many more offspring than the most successful mammal ever could. But evolution tends 

to work in small steps, which is again why WGD has the potential to be advantageous by 

creating larger selectable units of change which are nonetheless more likely to be 

clustered around functional sequence space (1.1.2). Duplicated genes are functional 

homeologs. Duplicated regulatory regions maintain their relative dosage since the entire 

regulatory network is copied together (1.4.3). Allopolyploid hybrids can show immediate 

gene expression novelty (1.2.2.3) or even express different parent genomes per tissue 

type (1.2.2.4). No other mutation mechanism generates this wide range of selectable 

features genome wide while not being immediately lethal to the organism. 

An organism changing its gene copy number can be a type of adaptation via adjusting 

gene dosage. It also provides branches for future evolutionary search (1.1.1). Second, 

allopolyploids have massive epistatic innovations in their regulatory machinery, 

particularly transposon suppression networks, which can lead to immediate 

transgressive expression and long-term biased or unbiased fractionation (1.2.2.4, 1.2.2.6, 

1.2.3). Or in lay terms, they can be brought together to create new and useful 

combinations, which we can thank for many of our crop breeds today (Stace 1987; 

Gornicki et al. 2014; Darrow 1955).  

These adaptations may explain why plants have been able to outlast the constant 

bombardment of pests and microbes who would benefit from eating them while plants 

must simply endure (1.2; Wininger and Rank 2017). Humans rely on plants for every 

aspect of their lives and we need to better understand this robustness as we go about 

changing the planet so that we do not accidentally threaten their continued existence. 

6.3 The Biological Reality of Phylogenetic Networks 
Chapters 2 and 5 of this thesis are focused on how the bioinformatic tools researchers use 

influence the science and the fact that virtually every tool requires a strictly bifurcating 

species tree. It seems only appropriate then to note that in section 3.3.1.2 (Notable 

Species), we excluded a number of hybrids from the study since they occur frequently 

within the genus, yet in sections 3.3.3 and 4.2.2 the species tree assumes complete 

separation of species after speciation. We know this is not the case because of evidence 

for hybridization and incomplete lineage sorting. The deepest nodes of the Fraxinus 

species tree show much lower support for separating the relationships between clades 

based on concordance values (Kelly et al. 2019). Zohren (2016) demonstrated that 

Fraxinus species often hybridize and facilitate introgression into distant populations, 

tying together previous ecological studies (Gerard, Fernandez-Manjarres, and Frascaria-

Lacoste 2006; Thomasset et al. 2011). Except for F. cuspidata, the branch lengths 

between clades are short enough to allow incomplete lineage sorting.  

It is my hope that tools like PhyloNetworks begin to gain popularity in bioinformatics 

communities as they better reflect the complex biological realities (Solís-Lemus, Bastide, 

and Ané 2017; Huson 1998). While not intended by Darwin, the neo-Darwinian synthesis 

https://paperpile.com/c/yz6Bj9/HN7P+wpjt+ndhb
https://paperpile.com/c/yz6Bj9/HN7P+wpjt+ndhb
https://paperpile.com/c/gNh4ZA/0CBL6+bskIT+WawHY
https://paperpile.com/c/gNh4ZA/0CBL6+bskIT+WawHY
https://paperpile.com/c/gNh4ZA/xhcC
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posits the existence of a single globally optimal tree which explains the sequence 

alignment of all species (Theobald 2010). In practice, this is impossible as locally optimal 

sequence alignments won’t agree with each other, and thus never agree with global 

optimums. There will always be boundary lines at multiple scales, such as haploblocks 

(5.3.8) and linkage disequilibrium where the set of “nearest neighbors” have to be 

reordered (Pook et al. 2019). This means the construction of graph genomes in chapter 5 

from local alignments is non-trivial and fraught with the same technical challenges as 

phylogenetics. The difference is that graph topologies have many more degrees of 

freedom and thus are capable of expressing patterns of relatedness that species trees 

cannot. 

6.4 The Future of Comparative Genomics 
The future of genomic research will increasingly involve comparisons of multiple whole 

genomes. This is driven by the simple mathematical reality that there are hundreds of 

thousands of species to sequence and most species have millions of individuals with 

millions of informative variants to correlate to phenotypes. While studying a single 

individual reference genome and doing extensive lab experiments can slowly lead to 

some biological insights, the insights that can be gained from comparative genomics are 

exponential in nature. Much of biology is built on a simple principle: what is learned in 

one species can possibly be generalized to thousands of other species. We can set up our 

infrastructure to maximize these cross-species gains. 

The very nature of the Tree of Life is ideal for automated discovery, deep learning, and 

knowledge networks. However, that scalability would require highly consistent data 

formats and more importantly, consistent methodologies. The Pantograph team made 

the decision to begin using RDF and semantic web technologies in order to help facilitate 

the transition to a more unified and standardized future in bioinformatics. 

Methodological consistency is still a key unresolved problem which has led to the 

ongoing replication crisis on multiple fronts (Ioannidis 2005; Engber 2017; Baker 2016). 

Enabling automated knowledge discovery does not replace the need for researchers but 

rather amplifies the return on investment in work time and education (Elhai 2011). Clear 

visualizations for browsers are still necessary to facilitate human reasoning about the 

complex interactions between structural variants and clinical questions.  

Comparative genomics is essential in particular for two important applications: human 

health and crops. In human health, genetics is faced with the constraint that genetic 

experimentation is completely disallowed for ethical and practical reasons. However, we 

make regular use of transgenic mice, rats, bacteria, and human cell colonies. The out of 

bounds nature of human genetic engineering redirects the substantial needs and 

resource of human health into interspecies studies. Comparative genomics is the 

necessary bridge to translate insights gained in these experimental systems to a clinical 

application. The success or failure of early medical research is dependent on the ability to 

jump the gap from an experimental setup to human biology. 

Analyzing existing variation in the human population serves as a stand-in for creating 

variation through experiments. Complete coverage of single gene knockout phenotypes 

have been obtained through forward genetics mutagenesis experiments in Drosophila 

melanogaster and Arabidopsis thaliana (Adams and Sekelsky 2002; Alonso and Ecker 

2006). With the advancement of CRISPR-Cas9 technology any nucleotide position 

knockout can be made in an experimental organism. However, locating a living person 

https://paperpile.com/c/gNh4ZA/5bU8
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who has a specific mutation requires thorough sequencing of millions of people (All of Us 

Research Program Investigation 2019). Even after sequencing the whole human 

population it will not be possible to find particular combinations of three or more SNPs 

due to the exponential drop-off in the probability of large combinations called the 

Waiting Time Problem (1000 Genomes Project Consortium et al. 2015; Chatterjee et al. 

2014; Tuğrul et al. 2015). Epistatic interactions are observed by sets of variants 

interacting with each other, either in an individual or compared across species. If we 

cannot access organismal information about human epistatic interaction then the only 

remaining avenue is comparative genomics for similar variants in other species with the 

same pathways. 

Interspecies knowledge is even more important in crops because much of the world’s 

food production comes from a surprisingly small number of genera. Cauliflower, 

broccoli, swede, turnip, kohlrabi, cabbage, collard greens, kale, brussels sprouts, 

mustard, and rapeseed are all in the genus Brassica. This means that studies in one 

species are rapidly translated to others and have a multiplicative return on investment. 

Similarly, Solanum includes tomato, potato, and eggplant while Triticeae contains 

wheat, spelt, barley, and rye. Furthermore, the nature of molecular biology can lead to 

surprising generalizations. Research into plant polyploidy helped scientists to better 

understand genome duplication effects which led to insights in childhood cancers 

(Storchova and Pellman 2004).  

As we move into a future of Big Data, AI, and increasing automation, tools like 

Pantograph will help to keep human insight central to the process of scientific discovery. 

This thesis has demonstrated that comparative genomics on the order of tens to 

hundreds of genomes is now practical. The presence or absence of genes across millions 

of years of fractionation can be analyzed and simulated to test the degree of repeatability 

in evolution. Graph Genomes are a likely future of genomics and will lead to a more 

traceable, machine readable form of genome science. This transition is requiring the 

development of a new set of tools. As a scientific community, we will also need to 

continue to address issues of reproducibility and accessibility; and RDF federation is a 

major tool along that road. The end prize is a new kind of science infrastructure with 

exponential benefits in every arena from human health, to crops, to basic science.  

https://paperpile.com/c/GxsSdv/T5bF+fIv5+2lxL
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Supplemental 
S1: FluentDNA Museum Display  

Supplement to Chapter 3 
These instructions step through everything required to setup a FluentDNA museum 

display. The original image file generated by FluentDNA was edited in Photoshop to add 

the interpretation text and legend and then reprocessed by DeepZoom to ensure the 

monitor and poster match. Finally, since gene labels are not rendered on the poster, the 

color palette was modified so that genes were saturated colors and intergenic regions are 

lightened to draw attention to the genes.  

The Arabidopsis thaliana genome required special processing for this exhibit. 

Chromosomes were broken into a series of genes with the FASTA entry name carrying 

the functional annotation for that gene. This was used as a specialized annotation 

retrieval since FluentDNA shows the name of each FASTA entry under the mouse. GO 

Slim was selected to minimize the length of technical jargon in the annotation. 

Centromeres, largely lacking genes, are easily visible in the final display. 

The physical setup was a 2-meter-tall display case with a 1.5-meter poster behind 

plexiglass. Behind the poster was a 72cm x 124cm touch sensitive film manufactured by 

Displax. Since touch sensors use changes in electrostatics, they can sense touch through 

several layers of material. The Displax touch sensor sends touch events to a computer 

running FluentDNA with a copy of the exact same poster. The monitor positioned inside 

the poster shows a magnified version of the poster (Figure Supplemental-1.1).  

 First, sequence and functional annotation were downloaded from TAIR10 

(https://www.arabidopsis.org/download/index-

auto.jsp?dir=%2Fdownload_files%2FGO_and_PO_Annotations%2FGene_Ontology_A

nnotations) (accessed March 2019). GO Slim was selected to minimize the length of 

technical jargon in the annotation. The annotation was processed through 

Functional_Annotation_Arabidopsis.ipynb to remove all genes that did not have a 

known function. The remaining gene annotations had their numeric names replaced with 

their GO Slim function and placed in a new GFF file.  

The function write_functional_gene_contigs_from_chromosome() reads 

nucleotide sequence and gene annotation together and outputs consecutive contigs with 

the fasta header as the function followed by the complete sequence inside the gene 

annotation. Regions with no annotation are all labeled “between genes - not yet 

understood”. Each FASTA file then contains one chromosome with a FASTA entry for 

each gene and intergenic region. There are some obvious downsides to this approach, 

primarily that overlapping genes compete for label space. However, this was a quick and 

effective way to get annotation mouseover in FluentDNA and more than accurate enough 

for a museum display. 

Using the modified FASTA file, FluentDNA can be used to render a poster of one 

chromosome. In order to layout multiple chromosomes using the Ideogram layout, a 

modified version of the software must be used. The “wakehurst” branch on GitHub 

contains some special exceptions that must be modified for each project. The origin 

coordinates of each of the chromosomes are calculated and entered by hand to whatever 

poster layout the developer prefers. While it appears the poster uses 

HighlightedAnnotations.py it actually uses the FASTA headers themselves. Whenever a 

https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FGO_and_PO_Annotations%2FGene_Ontology_Annotations
https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FGO_and_PO_Annotations%2FGene_Ontology_Annotations
https://www.arabidopsis.org/download/index-auto.jsp?dir=%2Fdownload_files%2FGO_and_PO_Annotations%2FGene_Ontology_Annotations
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contig called “between genes - not yet understood” is rendered, the color palette is 

switched to a lighter shade which mimics highlighting. This allows attention to be drawn 

to the genes rendered in saturated dark colors while the intergenic regions are whitened 

out. Gene labels are not rendered since the monitor already serves that function.  

After the initial render, the now 150MB PNG file was brought into Photoshop where the 

rest of the poster design was carried out. Poster layout design was done by Samantha 

Seaman. Final color choice and fonts were done by Adomas Mockus at Rockbrook 

Engineering. The final poster design was re-rendered back into FluentDNA DeepZoom 

stack so that the monitor and poster matched perfectly. 

When a user touches a point on the poster, Displax Connect interprets that into a x,y 

coordinate on the touch surface. This is sent through Windows HID service to a screen. 

The display screen is purely informative and doesn’t match the User Interface 

represented by a poster. Therefore, a second logical screen was required to act as a digital 

counterpart to the poster. On HDMI and newer displays Windows logical screens always 

map to a physical device. However, Windows contains legacy support for VGA monitors 

that would not report their resolution. Declaring a monitor as a VGA monitor in 

Windows allows one to add another monitor in display settings and manually set the 

resolution without Windows requiring feedback from a physical monitor.  

The small desktop used for the display did not have an onboard VGA port, so it was 

necessary to plug in a USB to VGA adapter. Bridging VGA pins 1 (Red) and 6 (Red 

Ground) with an insulated cable caused the computer to recognize it as a connected 

monitor of unknown resolution. The resolution was then set to exactly match the 

resolution of the Displax touch surface and place in Portrait orientation.  

The faked logical monitor is then used to translate Displax touch coordinates into HTML 

coordinates for a portion of the webpage that generates JavaScript commands but is 

never seen by the user. The OpenSeadragon Navigator element is placed on this second 

screen since it never changes position and allows the user to navigate globally. In each 

display, the positioning of the navigator on the second screen will require manual 

adjustment to match the poster position and scale. This process was helped greatly by 

using TeamViewer on a laptop to see the contents of the virtual screen and Chrome’s 

ability to live edit JavaScript source files. 

Finally, in order to get the sequence to display, a mouseover event must be simulated in 

the middle of the screen. A quarter-second loop which creates a fake mouse hover event 

and asserts the zoom level was enough to trigger FluentDNA mouseover functionality. 

The whole setup is shut down at night and boots up every morning using a BIOS rule that 

checks for power. The program LaunchLater (https://jeffcox111.github.io/LaunchLater/) 

is used to launch the FluentDNA server, then a browser 5 minutes later. The Chrome 

browser is run in Kiosk mode which removes all the usual browser decorations and 

pointed directly to the locally served webpage. Chrome windows will preserve their size 

after reboots and can span multiple screens as long as they are not Maximized. Using this 

setup one browser window handles both the display and hidden UI elements. 

 

https://jeffcox111.github.io/LaunchLater/
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Figure Supplemental-1.1: Final poster displayed in the Millennium Seed Bank. The left two 

thirds of the poster are backed by Displax touch sensitive film (visible as an orange strip on the 

far left) for user input. On the right, an embedded computer monitor running FluentDNA with a 
digital copy of the poster. Touching the poster causes the monitor to zoom in on the 

corresponding place in the genome and display the sequence and function of the gene that was 

touched. 
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S2: Fraxinus Assembly Inspection Notes. Supplement to 

Chapter 2 
This section includes the original research notebook from the inspection of Fraxinus 

assemblies using FluentDNA. This can be used as an example of how FluentDNA can be 

used in a practical way in a lab setting. Entries include screenshots with visible GC 

patterns. Clipped sequences were used as BLAST queries to check for matches in other 

species which would often be matches to mitochondria, plastids, or various contaminant 

sources. Specific scaffold names are mentioned taken from both the visual rendered 

names as well as the mouse over information.  

F. mandshurica 
Scaffold3&4 are the Fraxinus mitochondrion. There is a sizable collection of scaffolds 

<20 Kbp with a high GC content. These most likely represent another organism. At 5 Kbp 

sizes, it approaches ⅓ of all scaffolds. 

F. velutina 

The two largest scaffolds are more GC rich than the rest of the genome and likely 

represent organellar genomes. Scaffold248 is an extreme outlier in GC, possibly 

representing contamination. The assembly lacks N’s or large scaffolds because no long 

mate pair libraries were available. 

scaffold1|size195872: (101 - 400) (BLAST: Mitochondrion) 

CGTAATAGTGAACTCTTTCACAAGAGAGATAGAAGAAAGAAGATCTGTCTCGATTCTAT

CTCTATCTTTCGACATCTCATCTCTATAATACGATAATAGTGGGTGGAGAATCCTTGTGT

ATTCTACTGGTATAGAATCTTTGTTTATTACTAGGAAGGCGGGCTACTTCCGTCTAGCG

GTCATGGGAAAGCCAAAACTTATATATAATAAGTCAATACTGGGTCGGTCGAGACTCTT

TCTTAGTGAAGTGGGAAGACAGCACCGAATCAGACGGGCACAGAAGAAGAAGTGGTTT

CATCC 

scaffold2|size135753: (301 - 600) (BLAST: Mitochondrion) 

TTAGGATCGTAATAGCTCATACGAAAAATCTGCATAGATAGCGTTGGCGCTGTCAAGCA

ATCCTCGATATCCACTTTGTACTGAGTCCAAAAAATCTCTTGAGCCTTCTGGAAAACACC

GCCTAACAGACGAATATCCTGTTTCAGATAATCCAACAATTCTTCCCTATTATTCAGAAG

ATTCGACACTCCAACTTCGTCATGTTGGATAGAGCCTTTAACACCTAATTGAGGACATA

AAGCCTTAGCCAATGTTGCCAGACTACTACTGAGTAGAGTGTATGAATCTCTTATACGG

AAG 
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scaffold248|size21911: (1,201 - 1,500) (Delftia acidovorans) 

GGGCAGGCTCGCTGCCATGCTGCAGCACCTGCAGGCACTGCAGCATGCCGGGCCCGCC

GTGGGTCTCGTACTTGTTGGCGCTGGCAACGCCGCGCACCTGGCAGAAGTCTTCCTGG

GGCAGACGCGCAATCCAGCCCTGGGCCGTCCAGGCGCGGTCAAAGCGCTCCACGCACA

GCACCTGCTGCCCGCCAAAGGTCTCGATGCTGCTGTCGGCCACGGCAAAGCCCAGCTCG

GCCAGCAGCCGGGCGCACAGCCACTCATTGGCCACTGACTCGCTCAGGTCGTAGTGCC

AGTGCGGCA 

 

F. quadrangulata 

 

Larger scaffolds, containing small N gaps from long mate pair libraries (LMP) correctly 

used. Half the genome is covered by scaffolds that are larger than the 3rd largest scaffold 

in F. velutina. Scaffold7 is a GC outlier, possibly organellar: 

scaffold7|size243779: (801 - 1,100) (BLAST: Mitochondrion) 

CACTTATAGTCCAGTGGCAAGATCAATGTCTTTTATTGGCTTCTCTGTCCCTGGAACAAT

ATATCCTCTTTTATTTCTTTGTTTTTTTCAAATAAAGACCTCTTTCTGTCTTCTCGGGCAG

TGGATTTGCCAACTCTATTGCTCTTATATCGGTCTGAATTCCTCTTCATCTTGCTTTTCG

CTTTTGGTTTGTGGATTCTATTTCCCCCTGTGCTTCCACTTCCCCTGCCTCGAGATCGTG

CCTTTTTTTTACTCGACTCGCTCCCTGCTCAAAAAAGTCGATCTTATTCCGCAACTCGG 

Scaffolds are large enough that multiple genomic elements with different kmer 

compositions are visible. For example, a low complexity GC rich region: 

scaffold3395|size178564: (57,501 - 57,800) (BLAST: No matches, 14% match to Olea 

europaea var. sylvestris pentatricopeptide repeat-containing protein At4g19440, 

chloroplastic-like) 

CGGAATCGTCTGCATAGTGAGCTGGTCAGGCGCGTCTGCCGGAAAAGTGGTCGGATCG

TGGTGAATCTGGGTTTGGAACCCAGATTGCTCAACTGCTTTCCGCCAACTTCCATCCTT

CCTGCCGTCGCCTGAAGTCCCCACCTCCACCCAGAGGTTCTCACCTGGGATTTCTGCTC

CGGTCTGAGCGGCGGTGCCAGGGTTTCCACCTAAGGCCGCCGCTTGTGAGTGTGGGTG

TTGGCCGGAATGGCCATAGGGGTGTGGCGTGAGGCCGGTAGAGGTGGGTTCGCCGGT

CGATACCTC 

Scaffold1602 appears to be a minor outlier. Mouseover not available. 

 

https://www.ncbi.nlm.nih.gov/nucleotide/XM_022990412.1?report=genbank&log$=nuclalign&blast_rank=1&RID=F50BHJFB01N
https://www.ncbi.nlm.nih.gov/nucleotide/XM_022990412.1?report=genbank&log$=nuclalign&blast_rank=1&RID=F50BHJFB01N
https://www.ncbi.nlm.nih.gov/nucleotide/XM_022990412.1?report=genbank&log$=nuclalign&blast_rank=1&RID=F50BHJFB01N
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A large number of 10 - 20 Kbp scaffolds with a large N gap indicate LMP that did not 

chain scaffold to larger regions. 

There are 6 scaffolds <10 Kbp that show extreme GC indicative of another organism. It 

could be an unremoved phiX Illumina control sequence. Mouseover unavailable. 

 

Sequence from Image: GTTGTAGGCAGGTCTGAGCCTTATTCTCTGGACAC matches 

Delftia acidovorans soil bacteria (Olm et al. 2017).  

 

F. paxiana 
GT rich region on scaffold1147 matches with low significance to Carp genome. 

 

CGTCAGCGCGGCGCTGCAGCTCGGCGCAGCAGATC matches Delftia acidovorans soil 

bacteria (Olm et al. 2017).  

Processed around the same time. Were these collected and extracted in diverse 

geographic locations? Western arboretum. BlobTools.  

Run phiX.  

 

 

https://www.ncbi.nlm.nih.gov/nucleotide/CP019171.1?report=genbank&log$=nuclalign&blast_rank=1&RID=F4Z2U9EM014&from=2824037&to=2824071
https://paperpile.com/c/gNh4ZA/3duc
https://www.ncbi.nlm.nih.gov/nucleotide/LN594169.1?report=genbank&log$=nucltop&blast_rank=1&RID=F73V7BEX016
https://www.ncbi.nlm.nih.gov/nucleotide/CP019171.1?report=genbank&log$=nuclalign&blast_rank=1&RID=F4Z2U9EM014&from=2824037&to=2824071
https://paperpile.com/c/gNh4ZA/3duc
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F. sieboldiana 
“sieboldiana 10969.fa” doesn’t match anything in BLAST nr database.  

CCTGCCTCGCCAAGTAAGTATGAGGGGCAACAATTAAGCCAATTCTAGATGCTTAAATT

TACTCCAATTGGCAGTCACCCTGCTGGCCATGGGATACATAGACCCTTTCACCGACCCC

CCGCACGGGCTACCGTGCCCCATGCAAAAGCCCACCCAATCCTTCGTATCCGTACCCTT

GGATACCCTGGTCACAGACCCTGAAAACGCCCGCTTACACCCAGATGCTAACTTGGATG

CCATCACCGGCAGCCTAGAGCTATTTGGCCAGGTTGAGCCCTTGGTGGTGCAGCAAGG

CACAC 

F. sieboldiana scaffold14 belongs to a relative of Cryptococcus neoformans, a fungal 

aerobe that lives in plants and animals (Buchanan and Murphy 1998). 

Sacffold8 appears to be a sequence from Aspergillus, a genus of airborne molds. 

 

F. angustifolia 
Scaffold1 is the chloroplast. Scaffold58 and many fragments belong to the same Delftia 

acidovorans bacteria. The question is, was it lab contamination, or was this a prominent 

soil bacteria when they were all gathered from the same experimental forest?  

Scaffold2-5 are mitochondria. 

 

T-rich scaffolds 

 

F. apertisquamifera 
Scaffold 125 is mitochondria. 

 

 

F. caroliniana 
There’s a medium GC-rich element that appears as Scaffold 362 and also many small 

contigs. It doesn’t appear to match well to any sequence. Out of 300bp queries, 60-70 bp 

segments map to diverse mitochondria at ~80% identity. Diverse species include 

https://paperpile.com/c/gNh4ZA/F4G9
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Hannaella oryzae (fungi), Ustilago triodiae (fungi teliospore), Vulgatibacter incomptus 

(proteobacteria), Rhodotorula glutinis (pink yeast), and Oerskovia (gram-positive 

bacteria). 

 

F. dipetala 
scaffold54|size37094: (17,801 - 18,100) 

CGTAACTAGATAGACTATGGGTAGTTCAGATGCGCTTAAAGTCTTATATAACGCATGCC

GATGTTGCCACCGACAAACGGTTGACTTTGACTGTGAAAAGCTCCAAATAGGCACACGG

TAGTTTAGAGTAGAAGGAGCTCGAAGTTGGAATTCAATAGTCTACAAGCCCGCCCCTGA

GAGCGAAGTTGGAAGAATCTCTGTTGCCGTATCCGATGATGCTAGCGCAGTCAGAAGA

ATGGGTCAAGTGGGAATTGATTCGTTTAAGTTTCCGAAGTAAGTTCGCCTAGTTTTAGG

TTTTAG 

Scaffold54 is a mitochondrial sequence, which is not surprising, but it matches most 

closely to Phoenix dactylifera (date palm) and Nepenthes ventricosa (pitcher plant) 

mitochondria at 100% coverage at 98% identity.  

Scaffold5 mitochondrial sequence most closely matches Hesperelaea palmeri, a now-

extinct species from Tribe Oleeae found in Guadalupe Island (“World Checklist of 

Selected Plant Families: Royal Botanic Gardens, Kew” n.d.; L. Zedane et al. 2016). 

Scaffold134 is also mitochondria matching to Olea europaea as expected. 

 

F. latifolia 
Mitochondria: scaffolds 1,2,4,5. 

 

F. ornus 
Ornus scaffold 1&2 mitochondrial genome may have sequences attached from a nuclear 

integration. The sequence shows a sharp change in GC content to nuclear background 

levels and that looks similar to the F. pennsylvanica integration. The sequence in 

question matches to O. europeaea; unfortunately, it is an unplaced scaffold. The same 

scaffold also matches to Solanum lycopersicum cultivar I-3 chromosome 10. 

  

https://paperpile.com/c/gNh4ZA/3Id5+rIi6
https://paperpile.com/c/gNh4ZA/3Id5+rIi6
https://www.ncbi.nlm.nih.gov/nucleotide/XM_023002102.1?report=genbank&log$=nuclalign&blast_rank=2&RID=F722ARB901R
https://www.ncbi.nlm.nih.gov/nucleotide/CP023766.1?report=genbank&log$=nuclalign&blast_rank=7&RID=F723Y6PY01R
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S3: Terms and Files Referenced in Chapter 2 
DDVUtils.py - copy, fetch, filter, sort long lists of contigs 

Fluentdna.py - server architecture, rendering modes, table of user input options 

Layouts.py - modular layout design enables mouseover sequence for any layout style, 

user defined layouts 

TileLayout.py - Standard rectangular layout visualization. Default is Powers of 10 

Layout (Figs. 2, 4 & 5). 

Index.html - what is packaged inside a FluentDNA visualization. Contig Spacing JSON, 

layout JSON. 

nucleotideNumber.js - Inverse algorithm for each layout, chromosome sequence 

streaming 

Annotations.py - Read Annotation GFF2 and GFF3. Filtering annotation types. 

Generate pseudosequence from a GFF. 

HighlightedAnnotation.py - Uses shading in alpha channel to highlight regions 

covered by an annotation. Labels lay over top the sequence and scale by the area 

available. Larger annotations get bigger labels (Figs. 4 & 5). 

AnnotatedTrackLayout.py - More traditional rectangles with gene name labels to run 

alongside sequence visualization (Fig. 3 & 8).  

MultipleAlignmentLayout.py - Proteome MSA gallery. Each Fasta file gets one MSA 

and one block of visualization. MSA blocks are arranged in rows and laid out in 2D 

according to size (Fig. 6).  

ParallelGenomeLayout.py - Handles the interlacing of multiple files for Annotation 

Tracks or Whole Genome Alignments. Renders boxes for columns of aligned genome 

pairs. Whole Genome Alignments are rendered from pseudosequences produced by 

ChainParser.py (Figs. 3, 7 & 8). 

ChainFiles.py - parser for UCSC Chained LiftOver files. A Chain contiguous alignment 

represented by a series of Chain entries which each have a size, gap_query, and gap_ref. 

ChainParser.py - Handles the main logic of parsing whole genome alignments into a 

visualization. It generates two gapped sequences from reference and query genomes, 

then computes the differences between the two genomes (Figs. 3, 7 & 8).  

AnnotatedAlignment.py - Apply gaps to GFF pseudosequence as a LiftOver 

visualization (Fig. 7). 

Span.py - Utility class for intersecting ranges of coordinates and handling gaps inside 

them. 

UniqueOnlyChainParser.py - See Unique sequence content by subtracting one 

genome from another. 
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Ideogram.py - Peano curve layout designed to look like a packed chromosome under 

the microscope. This layout preserves locality, causing gene regions to appear as bumpy 

regions like counties on a map (Figs. 2B & 4B). 

Processing Scripts 

Image_resize_script.py - Set the level of magnification for any image. Useful for 

generating figures upscaled larger than screen display size. Downsample Genome posters 

for printing. 

Stats_Aggregator.ipynb - Collect stats on a whole genome alignment across many 

chromosomes. 

RepeatAnnotations.py - Fetch all sequences from RepeatMasker output - Show 

Repeat Diversity within Human  

AnnotationAlignment.py - Use chain file to perform RepeatAnnotations fetch on a 

query genome 

TransposonLayout.py - Layout for RepeatAnnotations 
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S4: Sequence Tubemap Scalability Limits Supplement to 

Chapter 5 
The first set of examples are a synthetic toy dataset with four nodes used to demonstrate 

the lack of reuse of Edges. While 4 nodes only have 16 edges between them, Sequence 

Tubemap creates a new entity for each Path which traverses the Edge. This leads to more 

of the screen being taken up by Path stacking as the number of individuals increases. 

 
Figure: 4 Nodes, 16 Edges, 20 Paths traversing the Nodes in a random ordering. 
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Figure: 4 Nodes, 16 Edges, 100 Paths traversing the Nodes in a random ordering. 
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Figure: 4 Nodes, 16 Edges, 1000 Paths traversing the Nodes in a random ordering. This 
image was composited because it overloaded the browser’s ability to zoom out. 
Sequence Tubemap has undeniable artistic appeal, even in failure conditions. 
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S5. Link Column Ordering 
This section contains design details for developers for edge cases with Link Columns in 

Components with multiple traversals. It delves into technical design decisions that 

require a deep understanding of the subject matter. First, when interpreting a 

pantograph schematic, each Link is only followed once, otherwise anything with a repeat 

would be an infinite loop. Each component has sequence content in the middle, arrivals 

(upstream Links) on the left and departures (downstream Links) on the right.  

Inversion Split Criteria 

Inversions are read in the same direction, left to right but their 

sequence is interpreted as the reverse complement of the whole 

component sequence. In order for this to work, inversion must be a 

criteria for splitting of a Component. Nested inversions are possible 

through the use of Links. A whole Component row must be either 

inverted or not inverted. In reality, using binning we get a decimal 

percentage of inversion per bin e.g. 0.817 inversion. This is due to a necessary lack of 

resolution over an entire bin which will contain multiple nodes which are either inverted 

or not. For our criteria, an entire component row must be either above 0.5 inversion 

(colored inverted) or below 0.5 for the entire length. 

Link Ordering stacks from Inside Out 

When constructing a Matrix component, the sequence content starts in the middle 

flanked by arrivals on the left and departures on the right. Each time a path traverses the 

component, a pair of Link Columns is added to the outermost (far left and far right) of 

the component. Traversals read from the inside out. Following these rules, a single path 

that traverses the same Link multiple times would create multiple Link Columns with 

redundant Links of different colors. It is likely simpler to 1) reuse the same color and 

Link in multiple Link Columns or 2) collapse all traversals of an Link into one Link 

Column and assign it a copy number in the “coverage” metadata. Both of these 

compressions are lossy for duplications but not rearrangements. Which is the best 

implementation will depend on how repetitive the input data is.  

In our implementation, we use (1) because counting the number of active cells in a 

particular row is their copy number. Visually, this means every Link Column is also a 

histogram of copy number. Traversals aren’t ambiguous given a column number when 

following a Link (hyperlinked in the browser). Vertically, this has the same scalability as 

option (2) for the same reasons that Link visualization is better than Sequence 

Tubemap’s vertical Path stacking. 

Incompatible Link Column Orderings 

The Link Column ordering for a sorted pangenome schematic containing one path is 

guaranteed to correct and unambiguous. However, because Link Columns are created 

one path at a time and reused by successive paths, there are rare edge cases where the 

schematic implies the wrong ordering of Link Column traversals. A Link Column is 

created when the first path traverses that Link. Subsequent Paths that traverse the same 

Link will reuse the same column whose column order was determined by the first Path. It 

is conceivable that this will create cases where the interpretation will put the traversal of 

paths in the wrong order. This is a consequence of the lossy compression in favor of 
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scalability. The intention is that the majority of cases are lossless, but there will always be 

some ambiguous cases when reusing the same visual space. 

Ambiguous Variation in Copies 

The most prominent case of lossy compression in 

the visualization is sequence variation within a 

repeat. Consider the last row in the figure on the 

right. The last individual has two traversals of the 

GGTT Component. We can see that in one case the 

sequence reads GGT and the other reads GGTT, 

but we will not be able to tell which traversal has 

the deletion from the visualization. There was no 

apparent solution to this ambiguity that does not 

sacrifice scalability. Mouseover will need to cover 

these shortcomings by listing the real sequences for each Component traversal in order. 

The Implied Adjacent Column 

The Adjacent Connector is a Link Column that is given special treatment 

because it is the most common and also the most unremarkable. All 

Components are sorted to maximize adjacency to their neighboring 

Component. Ideally, the most common Link is the charcoal colored 

Adjacent Connector between Components. In the typical case, there is a 

single Adjacent Link Column that is shared between the two adjacent 

Components. When one path has more than one traversal of the same two 

Components, additional Adjacent Columns have to be added to reflect the 

increased copy number. Additional Adjacent connectors are not yet 

implemented in the Pantograph 1.0 release. 

 

S6. Example SPARQL Query from Semantic Variation Graph 

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 
PREFIX uniprotkb: <http://purl.uniprot.org/uniprot/> 
PREFIX uberon: <http://purl.obolibrary.org/obo/uo#> 
PREFIX taxon: <http://purl.uniprot.org/taxonomy/> 
PREFIX sp: <http://spinrdf.org/sp#> 
PREFIX SLM: <https://swisslipids.org/rdf/> 
PREFIX skos: <http://www.w3.org/2004/02/skos/core#> 
PREFIX sio: <http://semanticscience.org/resource/> 
PREFIX sh: <http://www.w3.org/ns/shacl#> 
PREFIX schema: <http://schema.org/> 
PREFIX rh: <http://rdf.rhea-db.org/> 
PREFIX pubmed: <http://rdf.ncbi.nlm.nih.gov/pubmed/> 
PREFIX patent: <http://data.epo.org/linked-data/def/patent/> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX orthodb: <http://purl.orthodb.org/> 
PREFIX orth: <http://purl.org/net/orth#> 
PREFIX obo: <http://purl.obolibrary.org/obo/> 
PREFIX np: <http://nextprot.org/rdf#> 
PREFIX nextprot: <http://nextprot.org/rdf/entry/> 
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PREFIX mnx: <https://rdf.metanetx.org/schema/> 
PREFIX mnet: <https://rdf.metanetx.org/mnet/> 
PREFIX mesh: <http://id.nlm.nih.gov/mesh/> 
PREFIX lscr: <http://purl.org/lscr#> 
PREFIX keywords: <http://purl.uniprot.org/keywords/> 
PREFIX identifiers: <http://identifiers.org/> 
PREFIX glyconnect: <https://purl.org/glyconnect/> 
PREFIX glycan: <http://purl.jp/bio/12/glyco/glycan#> 
PREFIX genex: <http://purl.org/genex#> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
PREFIX eunisSpecies: <http://eunis.eea.europa.eu/rdf/species-
schema.rdf#> 
PREFIX ensembltranscript: 
<http://rdf.ebi.ac.uk/resource/ensembl.transcript/> 
PREFIX ensemblterms: <http://rdf.ebi.ac.uk/terms/ensembl/> 
PREFIX ensemblprotein: 
<http://rdf.ebi.ac.uk/resource/ensembl.protein/> 
PREFIX ensemblexon: <http://rdf.ebi.ac.uk/resource/ensembl.exon/> 
PREFIX ensembl: <http://rdf.ebi.ac.uk/resource/ensembl/> 
PREFIX ec: <http://purl.uniprot.org/enzyme/> 
PREFIX dc: <http://purl.org/dc/terms/> 
PREFIX cco: <http://rdf.ebi.ac.uk/terms/chembl#> 
PREFIX chebihash: <http://purl.obolibrary.org/obo/chebi#> 
PREFIX CHEBI: <http://purl.obolibrary.org/obo/CHEBI_> 
PREFIX bibo: <http://purl.org/ontology/bibo/> 
PREFIX allie: <http://allie.dbcls.jp/> 
PREFIX GO: <http://purl.obolibrary.org/obo/GO_> 
PREFIX orthodbGroup: <http://purl.orthodb.org/odbgroup/> 
PREFIX vg: <http://biohackathon.org/resource/vg#> 
PREFIX insdc: <http://ddbj.nig.ac.jp/ontologies/nucleotide/> 
PREFIX faldo: <http://biohackathon.org/resource/faldo#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX up: <http://purl.uniprot.org/core/> 
SELECT 
    DISTINCT 
     ?insdCDS #?insdCDSBegin ?insdCDSEnd ?step 
     ?uniprot ?stepBeginInProteinSpace ?stepEndInProteinSpace 
?annotationText 
WHERE 
{ 
#  Find CDS annotated by INDSC that do not match a UniProt protein. 
  ?insdCDS insdc:translation ?sequence ; 
        a insdc:Coding_Sequence ; 
        faldo:location ?insdCDSLocation . 
  MINUS { 
      ?uniprotSequence rdf:value ?sequence . 
  } 
  
#   Get the range of this CDS and make sure the coordinates are on 
the 
#  path we need later 
  ?insdCDSLocation faldo:begin [ faldo:reference ?path ; 
                              faldo:position ?insdCDSBegin] ; 
                faldo:end [ faldo:reference ?path ; 
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                              faldo:position ?insdCDSEnd] . 
  
  ?step a vg:Step ; 
      vg:path/skos:closeMatch ?path ; 
 vg:node ?node ; 
      faldo:begin [ faldo:reference/skos:closeMatch ?path ; 
       faldo:position ?insdcStepBegin ] ; 
      faldo:end [ faldo:reference/skos:closeMatch ?path ; 
           faldo:position ?insdcStepEnd ] . 
## I always forget how to interval ranges :( 
  FILTER ( (?insdcStepBegin >= ?insdCDSBegin && ?insdcStepBegin <= 
?insdCDSEnd) || 
     (?insdCDSBegin >= ?insdcStepBegin && ?insdCDSBegin <= 
?insdcStepEnd) || 
     (?insdcStepEnd >= ?insdCDSEnd && ?insdcStepEnd <= 
?insdCDSBegin) || 
     (?insdCDSEnd >= ?insdcStepEnd && ?insdCDSEnd <= 
?insdcStepBegin) ) 
##  Then we look for a node close to the ones in the CDS in genome 
graph space (one step) 
  ?node vg:linksForwardToForward ?nextNode . 
  ?step2 a vg:Step ; 
      vg:path/skos:closeMatch ?nextPath ; 
 vg:node ?nextNode . 
##  Where that node is on a uniprot matching sequence 
  ?nextinsdCDS insdc:translation ?nextSequence ; 
        a insdc:Coding_Sequence ; 
        faldo:location/faldo:begin/faldo:reference ?nextPath . 
  ?uniprot up:sequence/rdf:value ?nextSequence . 
  BIND(IF(?insdCDSBegin > ?insdcStepBegin, ?insdCDSBegin, 
?insdcStepBegin - ?insdCDSBegin)/3 AS ?stepBeginInProteinSpace) 
  BIND(IF(?insdCDSEnd > ?insdcStepEnd, ?insdcStepEnd, ?insdCDSBegin - 
?insdcStepEnd)/3 AS ?stepEndInProteinSpace) 
  ?uniprot up:annotation ?annotation . 
  ?annotation a up:Active_Site_Annotation . 
  ?annotation up:range ?annotationRegion . 
  ?annotation rdfs:comment ?annotationText . 
  ?annotationRegion faldo:begin/faldo:position ?annotationBegin . 
  ?annotationRegion faldo:end/faldo:position ?annotationEnd . 
  FILTER (?annotationBegin >= ?stepBeginInProteinSpace && 
?annotationEnd < ?stepEndInProteinSpace ) 
} 
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