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Summary
Background: Hepatitis delta virus (HDV), which causes the most severe form of viral 
hepatitis, is an obligated hepatitis B (HBV) satellite virus that can either infect naïve 
subjects simultaneously with HBV (co-infection), or chronically infect HBV carriers 
(super-infection). An estimated 12 million people are infected by HDV worldwide.
Aims: To summarise the most relevant aspects of the molecular biology of HDV, and 
to discuss the latest understanding of the induced pathology, interactions with the 
immune system, as well as both approved and investigational treatment options.
Methods: References for this review were identified through searches of PubMed 
with the terms “HDV” “viral hepatitis” “co-infection” and “super-infection,” published 
between 1980 and October 2021
Results: The limited access to the HDV-infected liver has hampered the investigation 
of the intrahepatic compartment and our understanding of the mechanisms of HDV 
pathogenesis. In the absence of standardised and sensitive diagnostic tools, HDV is 
often underdiagnosed and owing to its strong dependence on host cellular factors, 
the development of direct antiviral agents has been challenging. New therapeutic 
agents targeting different steps of the viral cycle have recently been investigated, 
among which bulevirtide (which was conditionally approved by EMA in July 2020) 
and lonafarnib; both drugs having received orphan drug designation from both the 
EMA and FDA.
Conclusions: The HBV cure programme potentially offers a unique opportunity to 
enhance HDV treatment strategies. In addition, a more comprehensive analysis of 
the intrahepatic compartment is mandated to better understand any liver-confined 
interaction of HDV with the host immune system.
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1  | INTRODUC TION

1.1 | Hepatitis delta virus biology

Hepatitis delta virus (HDV) causes the most severe form of viral 
hepatitis, currently infecting an estimated 12 million people world-
wide.1 HDV is the smallest virus known to infect humans (only 36 nm 
in diameter).2 First described in 1977 by Mario Rizzetto as a new 
antigen–antibody system associated with hepatitis B virus (HBV) 
infection,3,4 HDV is a negative-sense single-stranded RNA virus 
(Deltaviridae family, genus Deltavirus).

The first step in HDV replication is the synthesis of multimeric 
copies of a complementary RNA, the antigenome, by the DNA-
dependent RNA-polymerase II in the nucleus.5 An autocatalytic 
cleavage mediated by ribozymes that are included in both the ge-
nomic and anti-genomic strands produces monomeric molecules of 
either polarity of approximatively 1700 nucleotides.6 These mono-
mers are then ligated to form circular RNA with a high degree of self-
complementarity that mimics a dsDNA molecule.7 The HDV genome 
encodes a structural protein (the hepatitis delta antigen—HDAg) 
produced in two different isoforms (small—S-HDAg and large—L-
HDAg) following the editing of the anti-genomic molecule in posi-
tion 1012 by the host deaminase ADAR1, which converts the UAG 
stop codon into a UGG tryptophan codon, allowing a C-terminal 
extension of the translated protein.8,9 HDV RNA and both isoforms 
of HDAg interact to form the ribonucleoprotein (RNP). S-HDAg is 
produced in the first stages of the viral cycle and is necessary for the 
initiation of viral replication and HDV RNA accumulation. L-HDAg is 
synthesised later during infection and its 19 extra amino acids confer 
unique functional properties, such as inhibition of viral replication 
and viral assembly.10-12 Both antigens undergo post-translational 
modifications catalysed by host enzymes; particularly relevant is 
the prenylation on Cys211 in the C-terminal portion of L-HDAg, 
necessary for the interaction with HBV envelope proteins (HBsAg) 
expressed in the same cell, allowing the assembly of the viral enve-
lope and the formation of infectious particles.13,14 Therefore, even 
though HDV genome replication and RNP formation are HBV inde-
pendent, HDV can productively complete its infective cycle only in 
hepatocytes expressing HBsAg.3,15 HDV is, in effect, an obligated 

HBV satellite virus that can either infect naïve patients simultane-
ously with HBV (co-infection), or chronically infected HBV carriers 
(super-infection). Human species-specificity and liver tropism of 
HDV have been ascribed to the HBV envelope proteins (Figure 1), 
where HDV and HBV have been shown to share the same entry 
mechanism to infect hepatocytes through the Na+/taurocholate co-
transporting polypeptide (hNTCP).16,17 However, glycoproteins from 
HBV-unrelated viruses have recently been shown to have the capa-
bility to package HDV RNPs in vitro, and HCV's ability to propagate 
HDV infection in humanised mice has been reported, although this 
remains a subject of debate.18 Moreover, the clinical relevance of 
these findings remains uncertain. A recent study that involved 323 
HCV RNA-positive and HBsAg-negative patients could only detect 
HDV markers in eight HBV core antibody (anti-HBcore)-positive 
patients, representing prior HBV infections, but not among the re-
maining anti-HBcore antibody-negative patients, suggesting the 
occurrence of replicative HDV infections in HCV mono-infected pa-
tients is rare or unlikely.19 Another study investigating a cohort of 
160 patients from Venezuela infected with HCV (in the absence of 
molecular markers for HBV) detected two patients with anti-HDAg 
antibodies, and one patient with low-level circulating HDV RNA,20 
also indicating the occurrence of replicative HDV infections in HCV 
mono-infected patients an unlikely event.

Despite depending on HBV for new virion formation, HDV can 
survive in non-dividing human hepatocytes in the absence of HBV 
as observed in patients post liver transplantation. Importantly, these 
observations were confirmed both in in vitro and in vivo experimental 
settings in which HDV infection and replication was maintained in 
dividing human hepatoma cell lines and proliferating primary human 
hepatocytes in the presence of entry inhibitors, propagating among 
daughter cells for several weeks.21 Thus, HDV demonstrates unique 
persistence capacity which underlines why intrahepatic clearance is 
so rarely achieved.

1.2 | Genotypes and epidemiology

Eight different genotypes of HDV have been characterised to date, 
each showing a specific geographic distribution with the exception 

F I G U R E  1   Schematic representation 
of HBV and HDV virions and their 
components. Figures not drawn to scale. 
HBV, hepatitis B virus; HDV, hepatitis 
delta virus; rcDNA, relaxed circular DNA 
of HBV; ssRNA, single-stranded RNA
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of the ubiquitous clade HDV-1.22 The severity of the clinical mani-
festation is heterogeneous (with patients from South America 
reporting the most severe liver disease) and is potentially related 
to the infecting HDV genotype (HDV-1 and HDV-3 might be as-
sociated with greater severity, although studies are limited), or to 
genetic and environmental factors.23 Notably, few studies are avail-
able in patients of African origin with the less common genotypes 
(HDV-5 to HDV-8).24

Limited data are available about the specificity of the combina-
tion between HBV and HDV genotypes, in all cases restricted to 
defined geographical areas. The hypothesis of an association driven 
more by the relative abundance than by a higher affinity between 
HBV and HDV genotypes is currently accepted.25,26

It is estimated that 257–300 million people are chronically in-
fected with HBV, and approximately 4.5% have been exposed to 
HDV (anti-HDV antibody positive),1 however, this may be an under-
estimate of the true prevalence of HDV, due to limited testing world-
wide and thus the actual prevalence of HDV may be much higher. 
The risk factors for HDV infection are the same as those for HBV 
and include intravenous drug use and high-risk sexual behaviour. 
However, in areas where HDV remains endemic, or where migratory 
patterns from such countries is significant, perinatal or early child-
hood transmission accounts for a significant proportion of new in-
fections.27 Even though HBV vaccination programmes have reduced 
the global prevalence of HDV infection, there are regional differ-
ences in vaccine coverage, with the African, Eastern Mediterranean 
and European regions below the global average.28

2  | HOST–VIRUS INTER AC TIONS

2.1 | Animal models

Since the HDV envelope is composed of the small, medium and large 
HBV surface proteins (S-, M- and L-HBsAg's), both viruses share the 
same species-specificity and hepatotropism, exploiting the same 
entry mechanism. The three isoforms of HBsAg share the C-terminal 
portion (corresponding to the S protein) and differ in their N-termini. 
Following an early attachment step mediated by heparansulphate 
proteoglycans (HSPG),29 the pre-S1 domain of the L-HBsAg specifi-
cally interacts with hNTCP, a bile salt transporter expressed in the 
basolateral membrane of the hepatocytes, and the residues 157–165 
were identified to be critical for binding and entry for both HBV and 
HDV infection. Differences in residues within this motif between 
homologous NTCP in mammals determine the species-specificity of 
these pathogens.16

Humanised mice represent a useful tool for the study of HDV: 
livers of immune-deficient mice are engrafted with human hepato-
cytes, susceptible to HBV and HDV infection. These models have 
helped to elucidate some aspects of hepatitis delta virology, how-
ever, they do not permit the study of the interaction between the 
virus and the host adaptive immune system, although they do pro-
vide an understanding of innate immune responses.30,31

More recently, mouse models expressing the human transporter 
hNTCP or its humanised version were developed. hNTCP transgenic 
mice are able to support a transient single-round HDV infection of 
about 3% of hepatocytes in an age-dependent manner.32 Both neo-
nate and adult mice carrying the humanised receptor are susceptible 
to HDV infection, but surprisingly they are not able to support HBV 
infection, so that co-infection or super-infection cannot be stud-
ied.33 Moreover, the short-term transient infection achieved in these 
two models does not lead to liver damage, representing an important 
limitation for the study of HDV-related liver pathology.

Recombinant adeno-associated viral vectors have been used to 
successfully mimic co-infection in adult immunocompetent mice, 
including the editing of the HDV anti-genome, the expression of 
both S- and L-HDAg, in addition to long-lasting detectable viremia. 
Importantly, liver damage, inflammation and induction of the innate 
immune response were observed together with the upregulation of 
genes involved in hepatocellular carcinoma (HCC), cirrhosis, fibro-
sis, cell death and proliferation; processes which are exacerbated in 
HDV-infected patients. In this model, the HDAgs, but not the host 
immune response, are considered to be cytotoxic and induce liver 
injury.34-37

A similar induction of cell-intrinsic and innate immune response 
was also observed in both immunodeficient and immunocompetent 
HBV1.3× hNTCP dual transgenic mice, able to produce both isoforms 
of HDAg and release viral particles after HDV infection. However, 
in this immunocompetent mouse model, HDV viremia lasted only 
14 days and neither liver damage nor histological alterations were 
observed, suggesting a role for lymphocytes in counteracting HDV 
infection and in the clearance of HDV-infected hepatocytes.38

Conflicting results from the most recent aforementioned mouse 
models highlight the need for more in-depth studies in HBV-HDV 
co-infected patients and specifically the study of the antiviral im-
mune response.

2.2 | Current understanding from clinical samples

Current knowledge about the immune response against HDV is 
largely restricted to the analysis of peripheral blood mononuclear 
cells (PBMCs) in patients with chronic HDV infection.

In comparison to patients with HBV and HCV infections, a high 
frequency of cytotoxic perforin-positive CD4+ T cells have been 
found in the blood of patients with HDV chronic infection,39 with 
some MHC-I and MHC-II epitopes identified to date.40-43 The HDV-
specific T cell response generated in patients with chronic HDV in-
fection is, however, weak and insufficient to contain the infection, 
similar to that seen in HBV and HCV chronic infections.44 One study 
showed IL-2 and interferon-gamma (IFN-γ) production from HDV-
specific T cells, as well as an IP-10 response exerted by activated 
monocytes, contributing to the inflammatory environment.45

Broadly directed low-level HDV-specific CD4+ and CD8+ T-cell 
responses were detected after in vitro expansion in a number of 
patients with chronic HDV infection. No correlation was observed 
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between the magnitude of HDV-specific CD4+ or CD8+ T-cell re-
sponses and the level of viremia or clinical status of patients; sim-
ilarly, no difference was observed in patients with spontaneous or 
treatment-induced HDV PCR negativity. In the same study, one HBV 
patient super-infected with HDV was monitored during the acute 
phase of HDV infection, showing a strong CD8+ T cell response 
during the first month followed by a decrease in HDV viral load, sug-
gesting a role for T cell responses in the control of HDV viremia, 
analogous to HBV mono-infection.42

Another study identified six CD8+ T cell HDAg epitopes stimu-
lating PBMCs from lonafarnib/ritonavir-treated HDV patients; in this 
case, the ex vivo activation state correlated with transaminase activ-
ity and the production of IFN-γ after peptide stimulation correlated 
inversely with HDV titre. The majority of the HDV-specific CD8+ 
T cells presented with a memory-like phenotype (PD-1+ CD127+). 
These cells also expressed the activation marker CD38, and the tran-
scription factor TCF1 (known to be important for the formation of 
memory CD8+ T cells), being capable of a low-level IFN-γ response 
(Figure 2A).46

Recently, the ex vivo characterisation of paired blood samples 
and liver biopsies (LB) from patients with chronic HDV in comparison 

with non-viral controls has revealed that both HDV-specific and 
total liver CD8+ T cells express the innate-like receptor NKG2D, as-
sociated with TCR-independent activation. In the patients analysed 
in this study, the percentage of total CD8+ T cells expressing NKG2D 
correlate with liver inflammation, suggesting a role for cytokine-
mediated TCR-independent activation of non-antigen specific by-
stander CD8+ T cells in liver inflammation and disease.47

Since the observed specific adaptive immune response in HDV 
patients appears weak, more attention has recently been paid to 
innate immune responses. As in patients with HBV and HCV mono-
infection, HBV-HDV co-infected patients show a higher frequency 
of natural killer (NK) cells, but with a less activated phenotype (low 
expression of the activating receptors CD244 and CD48, resulting 
in impaired cytolytic activity and reduced cytokine production). In 
addition, the proportion of the CD56bright subset (less mature and 
immunoregulatory in nature) is increased in relation to the more 
mature and cytolytic CD56dim subset (Figure 2B). Inhibition of NK 
cell activity thus seems to be a common escape mechanism of hep-
atitis viruses, relying more on the inflammatory environment than 
on virus-specific factors.48 Moreover, the same study showed that 
NK cells from patients with HDV produced the highest amounts of 

F I G U R E  2   Characteristics of PBMCs subtypes in HDV patients. A, HDV specific CD8+ T cells presenting with a memory-like phenotype 
along with increased expression of the innate-like receptor NKG2D. B, The NK cell population is mainly composed of CD56bright cells with 
low cytotoxic potential and high cytokine production; both the CD56bright and the CD56dim subsets are characterised by a low expression 
of the CD244 and CD48 surface markers. C, Residual MAIT cells in HDV patients show an exhausted phenotype and a downregulation of 
costimulatory molecules. Shaded icons represent low expression. HDV, hepatitis delta virus; MAIT, mucosal-associated invariant T; NK, 
natural killer; PBMC, peripheral blood mononuclear cell
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IFN-γ and TNF-α among the different hepatitis virus infections, and 
this finding could in part explain the more aggressive liver damage 
observed in these patients. However, no correlation between NK 
cell phenotype and viral load was found, arguing against a direct ef-
fect specific to any single hepatitis virus on NK cells.48 Pegylated 
IFN-α (PEG-IFN-α-2a) treatment caused a significant change in NK 
cell differentiation status, with an enrichment in immature circu-
lating NK cells. Conversely, peripheral blood NK cells of untreated 
HDV-infected patients were phenotypically similar to healthy con-
trols, suggesting that the HDV effect on NK cells may be local and 
limited to the liver.49 While in previous studies increased NK cell 
activity in HBV patients was linked to liver injury, Lunemann et al. 
reported no correlation between NK phenotype and disease sever-
ity in the HDV untreated cohort. Instead, high frequency of CD56dim 
NK cells before treatment was associated with responsiveness to 
PEG-IFN-α-2a.49

Similarly, a loss of mucosal-associated invariant T (MAIT) cells 
was observed in the blood and LB of patients with chronic HDV but 
not of patients with HBV mono-infection in comparison with healthy 
controls; the reduction occurred preferentially in the CD8+ compart-
ment and did not affect non-MAIT cells. The reduction in this cell 
type correlates with the concentration of IL-12 and IL-18 in patient 
serum (higher than in patients with HBV and healthy controls), sug-
gesting that dysregulating cytokine levels may contribute to MAIT 
cell activation and loss in patients with chronic HDV. Moreover, re-
sidual MAIT cells in patients with chronic HDV presented with an 
abnormal phenotype, characterised by upregulation of activation 
and exhaustion markers (CD38, HLA-DR and PD-1), downregulation 
of co-stimulatory molecules (CD28, CD127), and altered expression 
of the transcription factor Helios (Figure 2C), resulting in reduced 
functionality.50

2.3 | HDV and the intrahepatic compartment

The common histopathology features of LB from HDV patients 
with chronic hepatitis are similar to other types of viral hepatitis, 
with piecemeal necrosis, portal inflammation, cytoplasmic dis-
sociation, sanded nuclei (loaded with viral antigens), and the pres-
ence of apoptotic bodies. The degree of inflammation and necrosis 
is enhanced in co-infection or super-infection, and the presence of 
delta antigen (mainly with a nuclear localisation) can be determined 
immunohistochemically.51

The liver is enriched in innate immune cells like NK, natural 
killer T cells (NKT), ILC and γδT cells (with NK and NKT cells consti-
tuting about 50% of total hepatic lymphocytes), and presents with 
a reversal of the CD4:CD8 ratio when compared with that of the 
peripheral compartment (CD8+ T cells being more abundant in the 
liver).52,53 Liver-resident lymphocytes share many phenotypic and 
transcriptional characteristics with other tissue-resident lympho-
cytes. Despite this, the specific tissue microenvironment can have 
an effect on their phenotype and function, providing unique prop-
erties, which may be key determinants in liver-related diseases 

and infections.53 This implies that what is known about peripheral 
blood lymphocytes may not be representative of the intrahepatic 
compartment; however, the analysis of the cells in the blood of 
HBV-HDV-infected patients is still the most accessible surrogate 
for the study of the intrahepatic immune response, since the use 
of LB is limited in many centres. Nevertheless, direct liver sam-
pling is still irreplaceable for the study of the immune response, 
virological markers and gene expression profiling.54,55 Some data 
now exist delineating tissue-specific immune responses in HDV, 
but these still require further evaluation to fully understand in-
nate and adaptive immune interactions in the liver, requiring liver 
sampling.

In this context, fine-needle aspiration (FNA) has been shown to 
be a safe and well-tolerated technique that allows a broad analysis of 
the intrahepatic lymphocyte compartment, with significant correla-
tion with the results obtained by LB and confirming the differences 
previously reported with PBMC composition. Furthermore, its re-
duced invasiveness could potentially allow repeated sampling and 
monitoring of the kinetics of the immune response during different 
disease stages or during treatment.56,57 This technique has a proven 
track record in longitudinal monitoring of HCV infected patients,58,59 
and its suitability to quantify HBV antigen-expressing hepatocytes 
by flow cytometry has also been reported.60 More recently, FNAs 
were demonstrated to be able to sample tissue-resident subsets of 
T61 and NK cells62 in the context of HBV infection, as well as to pro-
vide viable hepatocytes and myeloid cells.63 It would also be of inter-
est to explore the role of other non-parenchymal cell types (hepatic 
stellate cells and liver sinusoid epithelial cells) and their response to 
the cytokines present in the HDV-infected liver. At present, FNAs 
are not able to be utilised for diagnostic purposes for liver disease, 
thus remain a research tool, but can still provide detailed relevant 
scientific information which may aid future translational research 
advances.

Due to the complex cellular composition of the liver, only a com-
prehensive analysis of the site of infection can lead to a better un-
derstanding of all the players involved in HBV-HDV co-infection and 
their specific roles in the observed pathology.

3  | CLINIC AL A SPEC TS

3.1 | Diagnosis

European Association for the Study of the Liver (EASL) recom-
mends HDV screening for all patients diagnosed with HBV infection, 
whereas AASLD recommends risk-based screening. However, for 
various reasons, these recommendations are not always followed in 
the real-world clinical setting, and in some areas, there is limited ac-
cess to robust diagnostics. This impedes a more accurate estimation 
of the prevalence of HDV infection, in addition to a more precise 
definition of the natural history of the disease.

Clinical differentiation between co-infection and super-infection 
can be challenging. Co-infection is based on the simultaneous 
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presence of HBsAg and HDV RNA in serum. High-titre anti-HBcore 
IgM antibodies are a distinguishing feature of acute hepatitis delta 
co-infection since they are absent in chronic hepatitis. HBV-HDV 
co-infection is also characterised by an increase in serum amino-
transferases, high serum HDV RNA levels and hepatitis B viremia, 
dependent on the degree of inhibition exerted by HDV on HBV. 
Anti-HDAg IgG antibodies appear late and at low titres. Conversely, 
since anti-HBcore IgM is not present during chronic HBV infection, 
the concomitant presence of high-level HDV viremia, high-titre and 
persistent anti-HDAg antibodies in the absence of anti-HBcore IgM 
indicates super-infection. In this clinical profile, the antibody for 
HBcAg is usually IgG, and HBV DNA titre is more commonly low or 
undetectable.64,65 Anti-HDAg IgM antibodies can increase and cor-
relate with disease activity during chronic infection and frequently 
do not allow distinction between acute and chronic infection. Early 
studies showed that anti-HDAg IgM persists in patients with pro-
gressive disease, while it declines and subsequently disappears in 
carriers with disease resolution; the kinetics of total antibodies 
(combined IgM and IgG) is similar but slower and appears less accu-
rate.66 Levels of anti-HDAg IgM were found to positively correlate 
with biochemical and histological activity, but not with serum HDV 
RNA levels, and to associate with the clinical long-term outcome.67 
Anti-HDAg IgM is, therefore, a good indicator of disease activity and 
has been suggested as a prognostic marker, to help stratify which 
patients may benefit most from treatment. Due to the anti-HDAg 
IgM association with disease activity, it can assist the differential di-
agnosis of acute co-infection (where its detection is more limited in 
time) and super-infection (where its detection is more persistent).

The majority of patients with anti-HDAg antibodies are HBeAg 
negative, but no difference has been found in the long-term outcome 
of the disease between HBeAg-positive and -negative patients.23,68

Hepatitis delta virus RNA quantification is used as a diagnostic 
marker as well as to monitor response to treatment. In 2012, the first 
World Health Organisation International Standard for HDV RNA was 
made available; however, quantification is often performed with in-
house nucleic acid amplification protocols, impairing comparability be-
tween results from different centres.69 HDV RNA is the best indicator 
for the presence of replicating virus, but as long as standardised quanti-
fication is not widely implemented, anti-HDAg IgM or total anti-HDAg 
antibodies are still important tools for the diagnosis of HDV infection.

Figure 3 shows a simple algorithm for the diagnosis and manage-
ment of patients with HDV.

3.2 | Natural history

The clinical course of HDV infection largely depends on the underly-
ing status of the HBV infection and on the infecting HDV genotype. 
The simultaneous infection with HBV and HDV in a susceptible indi-
vidual usually leads to an acute self-limiting hepatitis similar to acute 
hepatitis B mono-infection, with a similar rate of progression to 
chronicity (between 2% and 5%). In 95% of cases, spontaneous reso-
lution is observed, but it remains an important differential diagnosis 

for severe or fulminant hepatitis, nonetheless. Super-infection, on 
the other hand, can cause fulminant hepatitis, but chronicity rates 
exceed 80%, with a higher risk of developing cirrhosis and HCC.64,65

In the case of co-infection, the incubation period of HDV is de-
pendent on the titre of the co-infecting HBV. HDV infection depends 
on the virulence of the concomitant HBV infection, since a limited 
expression of HBsAg may result in abortive HDV infection, while it 
has been proposed that an abundant expression will ensure success-
ful HDV propagation and pathogenicity. The clinical outcome of co-
infection varies from mild to severe or even fulminant hepatitis. More 
recently, HDV infection has been associated with a milder course 
than in the past, when fulminant hepatitis and rapid progression to 
cirrhosis was more commonly reported; this was most likely due to 
more pathogenic emerging strains of HDV rapidly circulating among 
HBeAg-positive subjects.70 Acute hepatitis can be either monophasic 
or biphasic depending on the relative titres of the two viruses, the first 
peak usually being caused by HBV and the second by HDV.64

In the setting of a super-infection, HDV takes advantage of 
the pre-existing HBsAg and immediately establishes infection. It 
can cause an exacerbation of the pre-existing chronic hepatitis B 
(CHB) or lead to an emergent hepatitis in a previously asymptomatic 
HBsAg carrier. Even though most of the chronic HBsAg carriers su-
perinfected by HDV develop progressive chronic HDV, a minority of 
them will experience self-limited hepatitis and clear HBV.64

Spontaneous fluctuation of both HBV and HDV viral markers has 
also been observed, and a recent retrospective study of untreated 
HDV patients showed that one-quarter of them achieved a spon-
taneous HDV RNA decline associated with HBsAg and HBV DNA 
decreases.71 Clinical details of HDV infection are summarised in 
Table 1 and Figure 4.

3.3 | Disease pathogenesis

The exact mechanisms of the pathogenesis of HDV infection are poorly 
understood; HDV is commonly considered a non-cytopathic virus 
since delta viremia has no correlation with the extent of liver dam-
age.72 Thus HDV-associated hepatic damage is thought to be immune-
mediated, akin to HBV and HCV infection.73,74 However, early studies, 
both in vitro and on autopsy specimens, suggest the possibility of a 
direct cytopathic effect of the viral components.75,76 In particular, in 
vitro studies suggested that S-HDAg expression can be responsible 
for direct cytotoxicity, significantly contributing to the hepatocyte 
injury observed during HDV infection.75 On the contrary, prenylated 
L-HDAg was demonstrated to activate TGF-β and AP-1 transduction 
signal in vitro, both alone and synergistically with the Hepatitis virus 
X protein, suggesting a mechanism by which HDV may contribute to 
fibrosis and cirrhosis, and that may explain why HDV super-infection 
in patients with HBV accelerates the progression of liver disease.77

The inhibitory activity of HDV over HBV replication is well rec-
ognised, with most patients with chronic HDV showing low or unde-
tectable levels of circulating HBV DNA. HBV replication is inhibited 
during the acute phase of HDV infection, and the two viruses can 
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have fluctuating patterns of predominance over time. The exact 
mechanisms of the inhibitory effect of HDV on HBV are thought 
to be independent of the adaptive immune system since the phe-
nomenon is reproducible in vitro. Inhibition of HBV replication can 
be due to a direct interaction between the two viruses inside the 
cells: HDV needs HBsAg for packaging and release, and it has been 
speculated that HDV is able to repress HBV replication maintaining 
surface protein production, for instance competing for RNA pol-II 
recruitment. The dominant role of HDV has been explained by in 
vitro data showing that both S- and L-HDAg can inhibit the activity 
of HBV enhancers; moreover, innate immune responses triggered by 
HDV infection represent an indirect mechanism of HBV suppression. 

Some patients, however, have both HBV and HDV replication, and 
fluctuations in their viral profile suggest a more complex interaction 
between the two viruses at the intrahepatic level.78-80

In chronic HDV infection, following the acute phase, HDV RNA lev-
els may subside (and become undetectable) in the presence of HDAg 
positivity. These patients, in the absence of ongoing HDV replication, 
can have normal serum transaminases and HBV replication may remain 
low, akin to HBeAg-negative chronic infection. There are limited stud-
ies in determining if these patients are at risk of reactivating HDV and 
thus their management remains uncertain. As there is no active HDV 
replication, anti-HDV therapy is not indicated, however, they may al-
ready have significant liver fibrosis depending on previous HDV activity 

F I G U R E  3   Management algorithm for the diagnosis and management of HDV infection. Flow chart indicating management of patient 
with HBV infection. Outlined are the required investigations and how to proceed according to the investigation results. +VE, positive; −VE, 
negative; Ab, antibody; HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B all envelope antigen; HBV, hepatitis B virus; HCV, hepatitis 
C virus; HDV, hepatitis delta virus; NA, nucleos(t)ide analogue; peg-IFN, pegylated interferon; TE, transient elastography; USS, ultrasound 
screening
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and the host immune response. Data are also limited on whether other 
non-invasive viral markers in these patients are similar to those with 
chronic HBV infection (e.g. HBV RNA, HBsAg).81 Further studies elu-
cidating the natural history of these subjects compared to those with 
active HDV replication and HBV mono-infection are needed.

3.4 | Prevention and treatment

The vaccination campaign against HBV has contributed to a sig-
nificant decrease in HDV prevalence in endemic areas in Southern 
Europe, Italy being a prime example where HDV is expected to dis-
appear from the domestic population in the near future.82 However, 
in high-income countries that have benefited from the vaccination 
programme, the HDV-positive population consists of a cohort of 
older native patients, some with advanced fibrosis or cirrhosis, with 
new infections often being introduced by younger immigrants from 
areas where HDV remains endemic.83

Owing to HDV's strong dependence on host cell factors, the devel-
opment of direct antiviral treatments is challenging. Since HDV does 
not encode any viral RNA polymerase, the only viral targets available 
are the HDAgs and the ribozyme. Specific inhibition of the ribozyme 
activity has been achieved in vitro with small molecules as well as with 
small interfering RNA (siRNA) strategies, avoiding multimeric RNA 
cleavage, functional genomic and antigenomic RNA production.84,85

One of the strategies used to date is the suppression of HBV rep-
lication and the induction of a strong immune response against the 
helper virus, with the aim of developing a protective titre of anti-HBsAg 
antibodies. Current treatments for chronic HBV infection comprise 
PEG-IFN-α-2a and nucleo(t)ide analogues, but only PEG-IFN-α-2a was 
shown to be an effective therapeutic strategy against HDV infection.

Alternative therapeutic approaches are currently being devel-
oped, exploiting molecules involved in three different mechanisms: 
stimulation of the innate immune response, inhibition of viral entry 
via competitive binding to hNTCP, and assembly and release of viral 
particles. Thus, IFN, entry inhibitors and prenylation inhibitors are 
under evaluation in large scale clinical trials (Table 2).86

The Food and Drug Administration (FDA) proposed that “drugs 
that are intended to be used as chronic suppressive therapy, a 
greater than or equal to 2-log10 decline in HDV-viral load and ALT 
normalisation on-treatment could be considered an acceptable 
surrogate endpoint reasonably likely to predict clinical benefit”.87 
An important issue to be considered, however, is the perfor-
mances of the available assays for HDV RNA-viral load quanti-
fication. A recent international quality-control study concluded 
that most of the assays dramatically underestimated or failed to 
detect/quantify positive HDV RNA samples, especially from pa-
tients infected with strains of African origin (HDV-1 and HDV-5 
to −8), highlighting the lack of robust tools to routinely monitor 
HDV RNA for the therapeutic management of infected patients.88 

TA B L E  1   Clinical characteristics of HDV infection64,65

Infection type
Incubation 
(wk) Serology Clinical features

Acute HDV co-infection 3–7 •	 HDAg initially present
•	 Anti-HDAg IgG low titre, late
•	 Anti-HDAg IgM transient (beyond HDAg 

clearance)
•	 anti-HBcore IgM high titre
•	 HDV RNA is high (initial phase, then 

reduces)
•	 HBV DNA variable

•	 ALT/AST elevation
•	 Cholestatic picture with jaundice
•	 Progressive liver damage

Acute HDV super-infection <3 •	 HDAg present
•	 anti-HBcore IgM absent
•	 Anti-HDAg IgG high titred persistent
•	 Anti-HDAg IgM high titred persistent
•	 HDV RNA very high (initially, then reduces)
•	 HBV DNA low/undetectable

•	 Initial high ALT/AST
•	 Rapid decrease of liver enzymes (with necrosis 

and reduced HDV replication)
•	 Hepatocellualr necrosis & inflammation
•	 Lymphocyte & KC portal & parenchymal 

infiltration
•	 Hepatocyte cytoplasmic swelling
•	 Eosinophilic degradation

Chronic HDV infection •	 HDAg present
•	 anti-HDAg IgG & IgM variable titres (IgM 

associated with inflammation and disease 
progression), decrease with fibrosis 
progression

•	 HBeAb present
•	 anti-HBcore IgM absent
•	 HDV RNA initially high
•	 HBV DNA low

•	 Elevated ALT/AST
•	 Hepatocellular necrosis
•	 Portal & parenchymal inflammation
•	 Progressive fibrosis

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDAg, hepatitis delta antigen; HDV, hepatitis delta virus: KC, 
Kupffer cells: wk, weeks
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A suitable quantification assay must have a good sensitivity to be 
able to detect early rebounds, regardless of the high genetic vari-
ability of the HDV-infected strains reported earlier. Therefore, it 
remains a subject of debate in the field whether a 2-log decrease 
in the HDV-RNA-VL, would be a relevant goal in the monitoring of 
on-treatment HDV-infected patients.

3.4.1 | Immune modulators

Pegylated-interferon-α-2a
At present, PEG-IFN-α-2a is the only available drug that has been 
proven to have long-term antiviral efficacy and fibrosis regression 
against chronic HDV infection, showing on-treatment virologic re-
sponse rates between 17% and 47%,89 but late relapses of HDV rep-
lication beyond week 24 following treatment cessation occurred in 
excess of 50% of responders. Long-term PEG-IFN-α-2a was proven 
effective in a group of patients for whom treatment extension was 
individually tailored based on HBsAg status. No liver-related deaths 
were recorded among patients achieving virological response (58% 
of participants), indicating that successful PEG-IFN-α-2a treatment 
can change the natural history of the disease and potentially re-
duce all-cause mortality by influencing chronic inflammatory sta-
tus.90 Furthermore, PEG-IFN-α-2a led to the regression of fibrosis 

in patients with advanced fibrosis.91 Treatment of longer duration 
(up to 96  weeks) of PEG-IFN-α-2a alone or in combination with 
tenofovir, showed relapse in 36%–39% of responding patients.27,89 
Although PEG-IFN-α-2a has not been approved by the FDA or the 
European Medicine Agency (EMA) for the treatment of chronic HDV 
infection, PEG-IFN-α-2a 180 μg/wk for 48 weeks has been recom-
mended by several international guidelines.27,89,92-96

Pegylated-interferon-lambda
Efficacy and tolerability of pegylated interferon lambda (PEG-IFN-λ) 
monotherapy or its combination with lonafarnib (prenylation in-
hibitor) and ritonavir (protease inhibitor and CYP3A4 inhibitor) have 
been evaluated in two phase 2 clinical trials (NCT02765802 and 
NCT03600714); IFN-λ partially shares biochemical pathways with 
IFN-α, inducing a common set of downstream genes, but with dif-
ferent kinetics. IFN-λ showed better tolerability than IFN-α, which is 
likely due to the narrower distribution of its receptor.97

3.4.2 | Direct-acting antivirals

Bulevirtide
Bulevirtide (Hepcludex®; previously Myrcludex®) is a myristoylated 
synthetic peptide of 47 amino acids derived from the S1 domain of 

F I G U R E  4   Natural history of hepatitis delta infection. Schematic representation indicating the time-course of (A) co-infection and (B) 
super-infection. Biochemical and serological parameters are indicated
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HBsAg that inhibits viral entry by interfering with viral binding to 
hNTCP, thus avoiding novel infection of hepatocytes. Hepcludex® 
was given conditional marketing authorisation by EMA in July 2020. 
Two clinical trials showed that a drug regimen of 2  mg/d is well 
tolerated and effective in reducing HDV RNA serum levels, alone 

or in combination with either PEG-IFN-α-2a or tenofovir, but the 
durability of response was observed in only a small fraction of re-
sponders (NCT03546621).98,99 Furthermore, bulevirtide has demon-
strated early virological efficacy and safety in a real world-setting 
confirming the potential of this new treatment. Further results to 

TA B L E  2   Currently employed and under development options for the treatment of HDV infection

Name Mechanism of action Endpoint Side effects
Duration of 
treatment Status

PEG-IFN-α-2a Immune modulator; 
enhancement of 
innate immunity 
(induction of 
interferon-
stimulated genes)

Change from 
baseline in 
HDV viral load; 
normalisation of 
ALT

Flu-like syndrome, myalgia, 
headache, fatigue, 
weight loss, depression, 
hair loss and local 
reactions at the site of 
injection.

Minimum 
24–48 wk

Recommended by 
international 
guidelines; not 
approved by 
regulatory authorities

Nucleotide analoguesa 
(entecavir, 
tenofovir 
disoproxil 
fumarate and 
tenofovir 
alafenamide)

Inhibitors of HBV 
replication

HBV DNA 
undetectable

Gastrointestinal, 
nephropathy, 
Fanconi syndrome, 
osteomalacia, lactic 
acidosis

Long-term Approved by FDA 
and EMA for the 
treatment of HBV, no 
efficacy for HDV

PEG-IFN-λ Immune modulator; 
enhancement of 
innate immunity 
(induction of 
interferon-
stimulated genes)

Change from 
baseline in 
HDV viral load; 
normalisation of 
ALT

Flu-like symptoms, 
gastrointestinal, loss 
of appetite, back 
pain, dizziness, dry 
mouth, taste changes 
(milder than with 
PEG-IFN-α-2a)

48 wk Phase 2 clinical trials; 
monotherapy or 
in combination 
with Lonafarnib or 
Ritonavir

Bulevirtide Entry inhibitor Change from 
baseline in HDV 
viral load

Raised levels of bile salts in 
the blood

24 wk in studies, 
long-term 
therapy 
(maintenance)

Conditional marketing 
authorisation by EMA; 
Phase 2 and 3 clinical 
trials with either 
Bulevertide alone or 
in combination with 
PEG-IFN-α-2a

Lonafarnib Prenylation inhibitor 
(assembly 
inhibitor)

Change from 
baseline in HDV 
viral load

Gastrointestinal Not yet 
determined

Phase 2 and 3 clinical 
trials with Ritonavir/ 
PEG-IFN-α-2a vs. 
with Ritonavir

Nucleic acid polymers Multiple: attachment 
inhibitor, HBsAg 
release inhibitor, 
assembly inhibitor

Change from 
baseline in HDV 
viral load

None reported so far for 
REP 2139-Ca and REP 
21-39-Mg

24 or 48 wk Phase 2 clinical trials in 
combination with 
tenofovir disoproxil 
fumarate and 
PEG-IFN-α-2a

siRNAa,b Inhibitors of viral 
replication

HBsAg loss Injection site reactions Not yet 
determined

Phase 2 clinical trials for 
HBV monoinfection. 
Different siRNA’s 
are combined with 
nucleotide analogues 
+/− PEG-IFN-α-2a or 
+/− capsid assembly 
modulators

Abbreviations: ALT, alanine aminotransferase; EMA, European Medicine Agency; HBV, hepatitis B virus; HDV, hepatitis delta virus; HBsAg, hepatitis 
B virus surface antigen; wk, weeks.
aDo not have a direct antiviral effect on HDV, but they reduce the formation rate of new HDV virions by inhibiting HBV replication and therefore 
limiting HBsAg availability.
bsiRNA have been studied so far only in clinical trials for HBV monoinfection, where they inhibit transcription from the cccDNA, therefore, reducing 
HBsAg production
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demonstrate long-term clinical benefits will be key in the wider use 
of bulevirtide.100 The EMA approved Hepcludex® at a dose of 2 mg 
subcutaneous per day for the treatment of chronic HDV infection 
in adult patients with compensated liver disease and positive HDV 
viremia. The optimal treatment duration has not been determined 
and treatment should be continued if a clinical benefit is observed 
with bulevirtide administration. Should the treatment be associated 
with HBsAg seroconversion for at least 6 months or where sustained 
virological and biochemical responses are observed, treatment dis-
continuation could be considered.

At present, bulevirtide efficacy and safety are being assessed 
in three ongoing phase 2 and phase 3 clinical trials exploring dif-
ferent doses employed alone or in combination with PEG-IFN-α-2a 
(NCT02888106, NCT03852719 and NCT03852433).

Lonafarnib
Prenylation of the last four C-terminal aa's of L-HDAg are known 
to be necessary for the interaction with HBsAg and virion assem-
bly.13,14 Safety, tolerability, and efficacy of the farnesyltransferase 
inhibitor, lonafarnib, previously used as an anti-cancer drug, were 
assessed during 4  weeks of treatment. Interestingly, in November 
2020, the U.S. FDA approved Zokinvy® (lonafarnib) capsules to re-
duce the risk of death due to Hutchinson-Gilford progeria syndrome 

and for the treatment of certain processing-deficient progeroid lami-
nopathies in patients 1 year of age and older.101

Preliminary results showed a significant reduction of hepatitis 
delta viremia, even though virological rebound was observed fol-
lowing treatment cessation. No mutation of L-HDAg was detected 
in the non-responders, and gastrointestinal (GI) side effects, previ-
ously reported with lonafarnib treatment for other purposes, were 
reported.102 More recent clinical studies have investigated optimal 
lonafarnib regimens, exploring different doses, combination with 
PEG-IFN-α-2a, PEG-IFN-λ or ritonavir and different treatment 
durations (NCT02511431, NCT03600714, NCT02430194 and 
NCT02527707). Low doses of lonafarnib (100  mg twice-daily) in 
combination with Ritonavir showed a greater antiviral activity with 
less GI side effects than lonafarnib monotherapy (up to 300  mg 
twice-daily), and similar results were obtained in combination with 
PEG-IFN-α-2a.103

Nucleic acid polymers
Nucleic acid polymers (NAPs) have been demonstrated to in-
hibit HIV-1 and HCV entry in a sequence-independent and size-
dependent manner.104,105 Antiviral activity of this class of compound 
was shown in vitro, having entry- and post-entry-inhibitor properties. 
The mechanisms underlying the antiviral activity of NAPs include 

F I G U R E  5   HDV life cycle and drug targets. HDV and HBV entry into the hepatocytes is inhibited by Bulevirtide through competitive 
binding to hNTCP; NAPs interfere with the first attachment of the virus to the cell surface mediated by HSPG. Lonafarnib inhibits post-
translational modification on L-HDAg, while NAPs interfere with viral particle assembly, both preventing the production of new virions. 
Pegylated forms of IFN-α and IFN-λ, upon binding with their specific receptor on the cell surface, initiate intracellular signalling cascades 
leading to the expression of antiviral genes. Parts of the figure were drawn by using pictures from Servier Medical Art (http://smart.servi​
er.com/), licensed under a Creative Commons Attribution 3.0 Unported Licence (https://creat​iveco​mmons.org/licen​ses/by/3.0/). HBV, 
hepatitis B virus; HCV, hepatitis C virus; HDAg, hepatitis delta antigen; HDV, hepatitis delta virus; hNTCP, human Na+/taurocholate co-
transporting polypeptide; HSPG, heparansulphate proteoglycans; IFN, interferon; ISRE, Interferon-sensitive response element; NAP, nucleic 
acid polymer
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inhibition of the interaction between HBsAg and HSPG on the cell 
surface, inhibition of HBsAg release and inhibition of subviral parti-
cle assembly; a direct interaction between NAPs and the HDAgs has 
been hypothesised.106-108

Targeting HBsAg is a promising strategy to achieve HBV and 
HDV cure.109 Safety and efficacy results of 48-week treatments 
with two different HBsAg-targeting NAPs, REP-2139-Mg or REP-
2165-Mg, combined with tenofovir and PEG-IFN-α-2a, were re-
ported in CHB patients110 with around half of the patients achieving 
HBsAg loss/HBsAg seroconversion. These promising results need to 
be confirmed in larger studies.110,111

A first clinical trial using the lead compound REP 2139-Ca has 
been completed with a limited number of patients with chronic 
HDV.112-114 A follow-up period of 3.5 years, confirmed the durabil-
ity of HDV functional cure in seven out of nine responders, four of 
whom also achieved HBV functional cure after a REP 2139-Ca and 
PEG-IFN-λ combination treatment.115 HBsAg loss was often accom-
panied by ALT normalisation, suggesting an alteration of immune 
function; a direct immune-modulatory effect of NAPs has not been 
confirmed to date, but specific analysis of B and T cell functionality 
will be introduced in future trials.116

Even if direct-acting antivirals likely do not interact with the host 
immune system, it is believed that they can restore the HBV-specific 
antiviral immune responses by lowering the viral antigen load, lead-
ing to long-term recovery of the immune dysfunction in patients with 
HBV-HDV. In addition to the described therapeutic targets against 
HDV, a number of molecules in the quest for HBV functional cure are 
also in the clinical trial pipeline, including siRNA's, anti-sense oligo-
nucleotides (ASO's), checkpoint inhibitors, immune stimulators used 
alone or more likely in combination approaches.117,118 It remains to 
be determined if these agents potentially offering HBsAg loss and 
HBV functional cure, can also be employed effectively to treat HDV.

Figure 5 indicates the HDV life cycle and the therapeutic inter-
actions within it.

For all new treatment approaches, we need a long-term clinical 
response which would include an improvement in survival with a re-
duction in the development of cirrhosis, decompensation events and 
the development of HCC. Finally, we can expect a reasonable and 
achievable short to medium-term endpoint: virological and biochem-
ical response. While an ideal and more robust clinical endpoint would 
be HBsAg loss, it is recognised that this will be more challenging to 
achieve and should be considered a medium to long-term endpoint. 
However, it will be equally important to ascertain if novel therapies 
which can reduce HBsAg levels may also result in restoration of the 
immune response with better treatment outcomes in HDV.109

4  | CONCLUSIONS

Due to its relatively low frequency with higher prevalence in less 
economically developed countries, HDV infection has been a ne-
glected disease. The implementation of the prophylactic HBV vac-
cine remains the best preventative strategy to limit HDV spread, 

which should be combined with a wider accessibility to reliable diag-
nostics. The need for widely available standardised and more sensi-
tive diagnostic tools in addition to the fact that many HBV-positive 
patients are not screened for HDV,28 raise the possibility that the 
actual global HDV prevalence could be significantly underestimated.

The lack of a specific antiviral treatment to date has provided a 
path for bulevirtide and lonafarnib to receive orphan drug designation 
from both the EMA and FDA. However, since the best preliminary 
results to date were obtained when a direct-acting antiviral (bule-
virtide or lonafarnib) were combined with an immune-modulator, 
PEG IFN is likely to have a continued role in HDV management until 
more effective and well-tolerated immune modulators become avail-
able. Moreover, network meta-analysis will be required to assess the 
safety and efficacy of bulevirtide and other antivirals used alone or 
in combination with PEG-IFN-α-2a in comparison with PEG-IFN-
α-2a monotherapy.

This review highlights that our understanding of HDV patho-
genesis is limited by access to HDV-infected liver tissue. In partic-
ular, important gaps in our knowledge concern the proportion of 
HBV-positive hepatocytes also infected by HDV, the relevance of 
integrated HBV DNA in HDV co-infection and super-infection, and 
the extent of HDV direct toxicity in the liver. We believe a more 
comprehensive analysis of the intrahepatic compartment is neces-
sary to determine the presence of liver-specific immune cells or any 
liver-confined effect of HDV on the host immune response, given 
the partially contradictory observations reported between immune 
cell phenotype, viral load and the degree of liver injury observed in 
HDV patients. This remains a major unmet need and requires further 
investigation in tandem with the exploration of new therapies to 
manage HDV infection, while simultaneously exploring the efficacy 
of novel HBV therapies in the management of HDV.
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