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Abstract 

 

Background: Cardiovascular disease remains the biggest cause of mortality and morbidity 

worldwide. New aetiological models for chronic non-communicable conditions, such as 

cardiovascular disease, propose a more extensive and complex network of interconnected disease 

determinants than is suggested by traditional risk factor models. Understanding novel disease 

determinants and their interactions across different organ systems may be key in alleviating the global 

burden of cardiovascular disease. The UK Biobank comprises comprehensive characterisation of 

demographics, lifestyle, and clinical status for over half a million participants along with prospective 

tracking of health outcomes and, for a large subset of participants, detailed cardiovascular magnetic 

(CMR) imaging. Thus, the UK Biobank provides an ideal platform for investigation of novel 

cardiovascular disease determinants. 

 

Methods: We present a series of observational studies investigating the association of several novel 

exposures with cardiovascular health in the UK Biobank, with consideration given to exposures acting 

across key organ systems (heart, brain, gut, bone) and integrated use of CMR data. Additionally, we 

describe and illustrate the utility of CMR radiomics, a novel image analysis technique for deeper 

cardiovascular phenotyping. Finally, in light of the coronavirus disease 2019 (COVID-19) pandemic, 

we investigate the association of pre-existing CMR phenotypes with incident COVID-19. 

 

Summary of results: Our findings demonstrate associations between cardiovascular health and novel 

disease exposures acting across different organ systems. We demonstrate the value of a multi-system 

approach to understanding cardiovascular health and the importance of cross-system interactions in 

disease occurrence and progression. We further illustrate the utility of large scale CMR data for 

epidemiologic research in gaining added insights into such relationships and demonstrate the use of 

deeper cardiovascular phenotyping with novel CMR radiomics. 

 

Conclusions: Our findings suggest that the search for such novel disease determinants is worthwhile 

and important for improving population burden of cardiovascular diseases.  
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1 Background 

1.1 Brief overview of cardiovascular epidemiology 

1.1.1 Historical public health perspectives 

In the 20th century, successful public health strategies led to dramatic improvements in population 

health and life expectancy1. The most striking achievements were in the prevention and control of 

infectious diseases, which placed a heavy burden on public health at the start of the century1. 

Improved sanitation greatly reduced infections transmitted through contaminated water, such as, 

typhoid and cholera. In addition, development of effective vaccines and coordinated global 

vaccination programmes resulted in the eradication of smallpox2 and control of conditions, such as 

polio, measles, rubella, tetanus, and diphtheria1. Furthermore, the development and availability of 

antimicrobial agents enabled control of conditions such as tuberculosis and sexually transmitted 

illnesses1. In the United Kingdom (UK), establishment of the National Health Service (NHS) 

permitted cohesive population level provision of public health programmes3. Life expectancy, in 

developed nations, increased more during the 20th century than in any previous century4. 

 

As population demographics shifted towards greater longevity and burden from infectious diseases 

declined, non-communicable conditions, in particular ischaemic heart disease (IHD), emerged as 

dominant public health problems5. The Framingham Heart Study, the first large scale study of 

cardiovascular disease epidemiology, was initiated in 1948 and led to identification of key 

cardiovascular risk factors, such as, cigarette smoking, high cholesterol, high blood pressure, and lack 

of exercise6. In 1964, the United States Surgeon General released a landmark report warning of the 

health hazards of cigarette smoking with relation to cancer and heart disease7. Risk factor 

modification, better treatments, and earlier disease detection resulted in significant improvements in 

cardiovascular outcomes in the latter years of the 20th century1. 

 

1.1.2 Contemporary state of cardiovascular epidemiology 

The 2018 Global Burden of Disease study documents a global epidemiological transition of reduced 

burden from infectious, maternal, and neonatal illnesses whilst, at the same time, reporting increasing 

burden from cardiovascular diseases and neoplasms8. Cardiovascular diseases caused an estimated 

17.8 million (17.5–18.0) deaths worldwide, the highest number of all non-communicable conditions8. 

In Europe, cardiovascular diseases account for 45% of all deaths and are estimated to cause over 4 

million deaths each year9. Of these, the most common underlying conditions are IHD and 

cerebrovascular disease, accounting for 1.8 million and 1.0 million deaths per year, respectively9. In 
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the UK, there are approximately 7.6 million people living with cardiovascular diseases and 168,000 

related deaths per year10. 

 

There are increasing reports of major heterogeneities in cardiovascular disease outcomes, with poorer 

outcomes observed in women and younger adults (<55 years-old)11. In Europe, the number of deaths 

from cardiovascular disease is higher in women (2.2 million) than men (1.8 million), with 

cardiovascular disease accounting for 49% of all deaths in women and 40% of all deaths in men9. 

Indeed, recent data indicate stagnation of improvements in cardiovascular outcomes for young adults, 

particularly for younger women9,11,12. The drivers of these sex and age differences are incompletely 

understood. 

 

1.1.3 New aetiological models for cardiovascular disease 

Early epidemiologic studies identified important modifiable risk factors for cardiovascular disease, 

such as, smoking, high blood pressure, high cholesterol, and lack of exercise13. Modification of these 

factors has led to substantial improvements in cardiovascular outcomes. However, recent data 

demonstrate that trends in improvement of cardiovascular outcomes are starting to plateau, indicating 

that the level of outcome improvement achievable from targeting these factors alone may be nearing 

saturation. Additionally, whilst control of classical cardiovascular risk factors remains a public health 

priority, it is evidently not feasible, with current available therapies, to fully optimise these risk 

factors in large populations14. Furthermore, it is increasingly apparent that chronic non-communicable 

diseases, such as cardiovascular diseases, are not adequately accounted for by traditional risk factor 

models, which rely on simplistic linear exposure-outcome relationships with large effect sizes. Newer 

aetiological models suggest that these conditions may be better explained through consideration of 

complex interactions between a wider network of causal agents, often acting across multiple organ 

systems15. Thus, there is, in general, strong support for seeking novel cardiovascular disease 

determinants, and understanding their interconnected relationships, to advance knowledge, improve 

disease prevention, and achieve further improvements in clinical outcomes16–18. 

 

1.1.4 The evolution of contemporary epidemiology approaches 

Epidemiology is concerned with the distribution and determinants of disease and other factors which 

influence health19. Investigating factors which may be causing disease is important, because it may be 

possible to prevent disease by intervening on causal agents17. However, disentangling cause and effect 

is difficult. 
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Suppose we wish to study the effect of smoking on cardiovascular disease. Using observational data, 

it may not be possible to isolate, with confidence, the causal effect of smoking. This is because 

smokers are, on average, different from non-smokers in other important ways. They are more likely, 

for example, to drink more heavily and have unhealthy diets. We cannot know for sure whether health 

differences between smokers and non-smokers are explained by these confounding factors or by 

smoking itself. The most common approach when seeking to establish an independent association is 

to fit a multivariable regression model and adjust for possible confounders20. However, even if we 

were to measure and adjust for these confounders, we may not measure them perfectly or there may 

be other confounders (e.g., socioeconomic status) that we have not measured. This means that there is 

always a possibility of residual confounding. On the other hand, erroneous adjustment for a mediating 

variable, which lies on the causal pathway, may attenuate the true exposure-outcome association. 

There is also the possibility that risk factors themselves may be modified by disease. For instance, as 

people become ill, they may cut down or give up smoking, which could reverse the true relationship 

by suggesting that reduced smoking increases the risk of disease. To reduce the likelihood of reverse 

causation or spurious associations resulting from confounding, we could randomly assign a group of 

people to smoke and another group to not smoke and follow them up to monitor their health. 

However, this would, of course, be neither ethical nor practical. 

 

Well conducted randomised controlled trials provide the most convincing causal evidence, however, 

due to practical and ethical constraints, they may only be applied to a narrow range of exposures21. 

Observational studies do not provide direct evidence of causal association but, in practice, most causal 

effects must be estimated from non-experimental data22. Unfortunately, many of the associations 

identified in epidemiological studies are likely explained by confounding, often by factors which are 

difficult to quantify20. In the last two decades, there has been greater recognition of the limitations and 

biases of non-experimental data, which has led to more cautious interpretation of findings and 

changes in approach to study design4. Whilst many of the core methods have remained unchanged, 

the approach to problem solving has shifted. 

 

Codification of epidemiology and attempts to develop more diligent and methodical ways of thinking 

about research questions have contributed to greater rigour and transparency in the field17. The 

counterfactual model for causal inference, which focuses primarily on counterfactual and potential 

outcome reasoning and utilises directed acyclic graphs (DAG) as a tool for visual representation, has 

gained particular popularity23,24. This model advocates explicit consideration of the role of each 

variable in the exposure-outcome relationship and provides a simple and transparent method for 

researchers to illustrate their knowledge, hypotheses, and assumptions25. Within this framework, all 

the key variables (such as, exposure, outcome, confounders, and mediators) are accounted for and any 

assumptions are declared (Figure 1.1)25. 
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This rule-based approach to reasoning ensures deliberate consideration of the research question and 

provides a logical structure to study designs. However, some have argued that limiting 

epidemiological approaches to the counterfactual model may have a stifling effect26. Complex and 

nuanced, but highly important concepts, such as, social inequality, do not neatly fit into the 

counterfactual model. Restricting research to questions that may be addressed by DAG based 

reasoning, may limit the types of questions that are asked, overlooking important aspects of public 

health, such as, the societal determinants of disease26. 

 

Figure 1.1. A directed acyclic graph approach to the smoking-cardiovascular disease problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has been proposed, through a framework termed “triangulation of evidence”, that the best way to 

reach definitive conclusions about the accuracy of a research finding is by integrating evidence from a 

range of study designs, which have different and unrelated biases27. The premise is, that a finding is 

more likely to be true if different studies using different approaches with independent sources of bias 

(preferably by different researchers and in different settings) show the same result, than if the same 

result was reported by several studies using the same approach. Of course, the key question about new 

methodologies and approaches, which as yet remains unanswered, is whether they result in real 

advances in our understanding of disease determinants and ultimately contribute meaningfully to the 

alleviation of disease28. 
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Outcome:  
cardiovascular disease 
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Mediator:  
Endothelial dysfunction 
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1.1.5 Summary 

In summary, there is evidence of dramatic epidemiological shifts in global disease patterns with 

greatly increased health burden from cardiovascular diseases. There have been substantial 

improvements in cardiovascular outcomes over the last four decades. However, cardiovascular 

disease remains the most common cause of morbidity and mortality worldwide with evidence of 

differential disease outcomes across age and sex8,9. To further improve cardiovascular disease 

outcomes, there is increased interest in understanding the relationships of novel disease determinants 

and their interconnectedness both within and across organ systems. Observational studies are helpful 

in understanding these relationships; however, such studies need to be planned carefully to minimise 

bias and reporting of spurious associations. 

 

1.2 Cardiovascular magnetic resonance (CMR) 

1.2.1 The role of CMR in clinical practice and research 

Cardiovascular imaging is the cornerstone of clinical decision making in cardiology. Cardiovascular 

magnetic resonance (CMR) imaging technology has advanced exponentially in the last 20 years29. 

Accurate volumetric quantification due to superior endocardial border definition, versatile imaging 

planes, and detailed tissue characterisation have established CMR as the reference modality for 

assessment of cardiac structure and function29. Global consensus standards for image acquisition 

ensure comparable images within and between centres30. Furthermore, CMR image acquisitions are 

less operator dependent than alternative modalities, such as, echocardiography, contributing further to 

its greater reproducibility29. Accordingly, CMR has gained an important role in clinical practice and a 

notable presence in international clinical guidelines31,32. Furthermore, the capability to produce 

uniform high quality images using a radiation-free approach has made CMR an attractive modality for 

population imaging studies33. Indeed, CMR has been used in several large cohort studies, including 

the Multi-ethnic Study of Atherosclerosis (MESA)34, the Framingham Heart Study35, and the UK 

Biobank36. 

 

1.2.2 The CMR assessment 

Magnetic resonance imaging (MRI) utilises the proton spin properties of hydrogen atoms within 

tissues, with signals generated through manipulation of their excitation and relaxation properties with 

magnetic fields and radiowaves. There are different types of CMR acquisition sequences. Most ‘cine’ 

imaging uses balanced steady state free precession (bSSFP) techniques. The protocol for CMR scans 

typically consists of a minimum basic dataset for cardiac chamber quantification and qualitative 
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assessment of valvular structure and function. The remainder of the scan is adapted to include 

acquisition of images tailored to the specific clinical question (e.g., detailed quantification of a valve 

lesion or assessment of myocardial perfusion defects).  

 

1.2.2.1 Left and right ventricular assessment 

CMR provides highly reproducible volumetric quantification of the left and right ventricles (LV, RV). 

Intrinsic contrast created by differences in inherent magnetic properties of the blood pool and 

myocardium results in high endocardial border definition. Unlike echocardiography, CMR is not 

reliant on acoustic windows for high quality imaging. Additionally, deliberate placement of the long 

axis image planes though the LV apex avoids foreshortening of the LV, a recognised source of 

inaccuracies for echocardiography. Accurate quantification of the LV and RV in end-systole and end-

diastole is performed using a series of short axis cine image slices covering the ventricles from base to 

apex. Contouring the endocardial and epicardial borders in the short axis stack images allows 

estimation of chamber volumes and LV mass (LVM) at different time points in the cardiac cycle. 

Image analysis software often include ‘threshold’ tools that allow semi-automatic identification of the 

myocardium and blood pool. Automated image analysis tools are now also increasingly available in 

clinical settings. The derived anatomic and functional CMR metrics are key to many important 

clinical decisions (e.g., referral for surgery or placement of an intracardiac defibrillator). 

 

1.2.2.2 Myocardial tissue characterisation 

CMR uniquely permits the non-invasive assessment of myocardial tissue character. These 

assessments are made using dedicated sequences including parametric mapping techniques such as 

myocardial native T1 mapping (a contrast-free technique), T2 mapping, and extracellular volume 

(ECV) fraction assessment. Evaluation of myocardial character can also be undertaken using late 

gadolinium enhancement (LGE) images, which requires administration exogenous contrast. 

 

1.2.2.3 Assessment of ischaemic heart disease 

There are three key features of IHD that may be assessed with CMR: resting LV function, functional 

significance of coronary artery disease (CAD), and myocardial infarction/viability. Resting LV 

function is assessed from volumetric quantification of the LV as described in section 1.2.2.1. The 

functional significance of CAD is typically assessed using pharmacological (typically adenosine) 

stress CMR with gadolinium contrast administered at peak stress. Evaluation of first-pass perfusion 

images can allow detection of inducible myocardial perfusion defects, which, particularly if within a 

coronary territory, are taken to indicate the presence of flow limiting CAD. Finally, identification of 

myocardial infarction can be undertaken using LGE images, with delayed wash-out of contrast from 



 23 

the myocardium indicating areas of infarction. The transmurality of an infarcted area is used as an 

indicator of viability, with 50% transmurality typically taken as a threshold for viable vs non-viable 

tissue. These assessments of viability are used to guide revascularisation decisions (i.e., coronary 

artery bypass grafting or percutaneous coronary intervention). 

 

1.2.2.4 Valvular heart disease 

CMR can provide a useful adjunct for assessment of valve disease, particularly for difficult to 

quantify lesions or when assessment of the consequences of valve disease on the ventricles and other 

structures (e.g. aorta) is needed. Indeed, CMR has received increased mention in the latest European 

and American Valve guidelines37,38. Assessment of valve disease with CMR requires careful planning 

of cut planes to properly align with appropriate valve planes and flow jets.  

 

1.2.3 Limitations of conventional CMR image analysis 

Current clinical CMR image analysis is largely reliant on basic geometric measures and qualitative 

descriptors. Existing quantifiers of tissue character, such as parametric mapping techniques are 

limited by ongoing technical challenges and poor discrimination of health and disease. There are 

shortcomings with the current approach to CMR image analysis. For example, it is not always 

possible to distinguish between conditions with similar morphology, such as, hypertensive heart 

disease and hypertrophic cardiomyopathy (HCM) or athletic cardiac remodelling and dilated 

cardiomyopathy. Such distinctions are important because treatment of these conditions is very 

different. Furthermore, predictions of important clinical outcomes are suboptimal. For example, 

almost half of the patients who receive a prophylactic intracardiac defibrillator based on low ejection 

fraction never need any therapies from their device39, whilst less than a third of sudden cardiac death 

cases would have been eligible for a primary prevention device based on existing guidelines40. Thus, 

whilst CMR has a central role in research and clinical decision making, there is need for novel 

imaging biomarkers that may improve its diagnostic accuracy and predictive capabilities. 

 

1.2.4 Background to CMR radiomics 

The application of radiomics analysis to CMR images is a novel method permitting extraction of 

quantitative ventricular shape and myocardial texture metrics. Image segmentations used for 

conventional volumetric quantification may be used to define regions of interest for radiomics 

analysis, which typically include the 1) RV cavity, 2) LV cavity, and 2) LV myocardium. These 

segmentations are used to build 3D masks of the defined regions of interest, from which radiomics 
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features are extracted. There are three categories of radiomics features: shape, first-order, and texture. 

The shape features provide advanced quantification of the geometry of the defined region of interest. 

These include metrics such as volume, axial dimensions, and quantitative descriptions of the overall 

shape (e.g., elongation, sphericity, flatness). The first-order and texture features are derived from 

analysis of the pattern and distribution of voxel signal intensities in the defined region of interest. The 

signal intensity levels in magnetic resonance images reflect the magnetic properties of the underlying 

tissue, which are in turn influenced by tissue composition29. Therefore, the radiomics signal intensity 

features applied to the LV myocardium may provide insight into myocardial tissue characteristics. 

First-order radiomics features describe the global distribution of signal intensities in the region of 

interest using histogram-based statistics such as mean, variation, and skewness. Texture features rely 

on more advanced statistical methods to describe local signal intensity patterns. Further details on 

CMR radiomics are provided in section 2.3 CMR radiomics. 

 

1.3 Objectives of this doctoral project 

This doctoral thesis makes use of the UK Biobank, a highly detailed research resource incorporating 

demographic, lifestyle, and clinical data for over half a million participants. A subset of participants 

has also completed CMR scanning as part of the UK Biobank Imaging study. 

 

We hypothesise that non-classical risk factors are influential in determining cardiovascular health and 

of importance in population health. Thus, we investigate the relationships between a selection of non-

classical exposures with indicators of cardiovascular health in the UK Biobank and aim to elucidate 

effects independent of classical vascular risk factors. 

 

The presented work comprises a series of observational studies exploring novel cardiovascular disease 

determinants with a focus on interconnected relationships across different organ systems (specifically: 

heart, brain, bone, gut) and integrated use of conventional CMR phenotypes. In addition, we describe 

a novel CMR image analysis technique, CMR radiomics, demonstrating the feasibility of this 

methodology and its utility as a research tool. Finally, in light of the coronavirus disease 2019 

(COVID-19) pandemic, we examine the relationship between CMR phenotypes and the subsequent 

risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the UK Biobank.  
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2 Methods and Resources 

2.1 The UK Biobank as a research resource 

2.1.1 Overview of UK Biobank 

The UK Biobank is a very large cohort study comprising over half a million men and women 

recruited from across the UK between 2006-2010 (Figure 2.1). Recruitment was by postal invitation 

of individuals aged 40-69 years identified from NHS registers. All participants completed a detailed 

baseline assessment including characterisation of demographics, lifestyle, medical history, as well as 

a series of physical measures and blood sampling41. The UK Biobank protocol is publicly available42 

and summary data may be viewed on the UK Biobank online data showcase43. In 2015, the UK 

Biobank imaging study was launched with the aim of scanning 100,000 of the original participants44. 

The imaging protocol comprises multisystem multimodality imaging, including magnetic resonance 

imaging of the brain, heart, and abdomen, carotid ultrasound, and dual-energy x-ray absorptiometry 

(DXA). Repeat imaging of 10,000 participants commenced in 2019. There is longitudinal tracking of 

health outcomes for all UK Biobank participants through linkages with Hospital Episode Statistics 

(HES), primary care records, death registers, and cancer registers. In addition, the UK Biobank has 

released adjudicated algorithmically defined incident health outcomes for key illnesses, such as acute 

myocardial infarction (AMI) and stroke, through integration of data from multiple sources45. 

 

Figure 2.1. Summary of participant phenotyping in the UK Biobank 

 

 

 

 

 

 

 

 

2.1.2 Tracking of incident health outcomes 

Prospective follow up of health outcomes is important, as it means that exposure-outcome 

associations may be interpreted with the knowledge that the two are temporally separate. This is 

relevant, as risk factors themselves may be modified by disease status, for example, the tendency to 

give up smoking after a heart attack. However, prospective cohorts need large samples, because 

although every participant is informative to the wider picture, only a subset will develop any 
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particular disease. The large number of participants recruited into the UK Biobank and their indefinite 

follow up means that adequate number of a wide range of incident illnesses are expected to be 

observed, permitting adequately powered statistical analyses (Table 2.1)42. Linkages with routinely 

collected national level data allow reliable recording of incident health events for the whole cohort. 

 

 Table 2.1. Estimated number of years from baseline to accrue cases of selected conditions in 

UK Biobank 

Table 2.1. COPD: chronic obstructive pulmonary disease; MI: myocardial infarction. *Estimated 

years from start of recruitment in 2006 with allowance for healthy cohort effect, overseas migration, 

and comprehensive withdrawal of 1 in 500 participants. Adapted from: UK Biobank: Protocol for a 

large-scale prospective epidemiological resource (2007)42. 

 

2.1.3 Repeat measurements 

Selected components of the baseline UK Biobank assessment were repeated for a random subset of 

20,000 participants between 2012-2013 and at both imaging visits. Repetition of measurements is 

important, because in order to understand how risk factors relate to incident disease, we need to 

distinguish between individuals on different disease trajectories before disease occurrence. Detailed 

baseline phenotyping is helpful in distinguishing the different trajectory groups, but it is not perfect, 

because overlap of measurements between groups may lead to misclassification of participants or 

inability to discriminate the different trajectories. However, assessment at more than one time point 

allows for more accurate stratification of both exposures and potential confounders20. Thus, repeat 

assessment of the same individual at multiple time points allows evaluation of longitudinal change, 

more accurate distinction between disease trajectories, and more confident assertions about exposure-

outcome associations. 

 

 Time to achieve 
 1,000 cases 2,500 cases 5,000 cases 10,000 cases 20,000 cases 
MI and coronary death 2 years 4 years 5 years 8 years 13 years 
Stroke 5 years 8 years 12 years 18 years 28 years 
Diabetes mellitus 2 years 3 years 4 years 6 years 10 years 
COPD 4 years 6 years 8 years 13 years 23 years 
Colorectal cancer 5 years 9 years 14 years 22 years 42 years 
Hip fracture 7 years 11 years 15 years 21 years 31 years 
Alzheimer’s disease 7 years 10 years 13 years 18 years 23 years 
Parkinson’s disease 6 years 10 years 15 years 23 years 37 years 
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2.1.4 The importance of scale and depth of participant characterisation 

Many studies of cardiovascular epidemiology are powered to detect large exposure-outcome effects. 

As such, these studies may overlook potentially important exposures with moderate effect sizes on 

which intervention is worthwhile. The scale and comprehensive participant characterisation in the UK 

Biobank allow consideration of many exposures with moderate effects and their possible interactions 

on a wide range of illnesses. The extensive phenotypic information also presents unique opportunities 

to investigate risk factors for disease across organ systems. 

 

2.1.5 Heterogeneity and generalisability 

In common with other similar cohorts, there is a healthy participant effect within the UK Biobank. 

That is, the UK Biobank participants, are on average healthier and more affluent than UK national 

averages46,47. Some have argued that this limits the generalisability of findings from the UK Biobank. 

However, to consider the practical importance of this observation, we should think about what 

representativeness actually means for a resource that is expected to be used internationally and have 

longevity across many decades. Even if the UK Biobank was representative of the current UK 

population, it is unlikely to be representative of the population in other countries or indeed of the UK 

population in 10 or 20 years’ time. Therefore, striving for representativeness of the current UK 

population would not provide a broad and long-term solution, because the characteristics of “general 

populations” are dynamic and location specific. For findings in the UK Biobank to be reliable and 

widely generalisable there is need for scale and heterogeneity in exposure levels. 

 

Consider that we are interested in the association of smoking with heart attacks. Although the overall 

proportion of smokers in the UK Biobank is lower than the current national UK average, there are still 

a large number of smokers (and non-smokers) and adequate number of heart attacks within the sample 

to allow reliable appreciation of associations. Whether the overall rate of smoking within the sample 

is similar to that of the general population is less relevant in this context. There is wide variation in 

risk factor levels and disease rates within the UK Biobank, including substantial number of 

participants at the extreme levels of exposure. This means that, in general, exposure-outcome 

associations from the UK Biobank are reliable and widely generalisable46–48. 

 

2.1.6 CMR in the UK Biobank 

Imaging in the UK Biobank is performed across four sites (Reading, Stockport, Newcastle, Bristol) 

using uniform staff training and equipment44. A dedicated 20 minute CMR acquisition protocol was 
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designed with the aim of obtaining comprehensive anatomic and functional information in a safe and 

time efficient manner36. CMR scans are performed using 1.5 Tesla scanners (MAGNETOM Aera, 

Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany). The acquisition protocol includes 

bright blood anatomic images (sagittal, coronal, axial), long and short axis cine images of the left and 

right ventricles (LV, RV), native T1 mapping, and imaging of the thoracic aorta49. The protocol does 

not include administration of contrast or stress agents, due to ethical and safety constraints33,36. 

 

Conventional LV and RV metrics (volumes, ejection fraction, stroke volume, LV mass) can be 

derived from the short axis cine stack, which covers both ventricles from base to apex. Chamber 

volumes (e.g., LV end-diastolic volume) are an indicator of cardiac remodelling and provide key 

information about cardiac health when interpreted in conjunction with functional measures50. LV 

mass51 and ejection fraction52 are established markers of cardiac risk. Measures of myocardial strain 

tend to be more sensitive to early and subclinical changes in myocardial function than measures such 

as ejection fraction53,54. They may, therefore, provide more detailed functional imaging phenotypes 

which are more sensitive to disease/risk factors. In the UK Biobank, myocardial strain may be 

estimated from long and short axis cine images using feature/tissue tracking techniques. Tissue 

tracking makes use of block-matching algorithms which mark regions of interest along the myocardial 

borders and use these to estimate myocardial motion55. Uniquely CMR imaging may be used to assess 

myocardial tissue character without the use of exogenous contrast agents. Non-contrast parametric 

mapping techniques (T1/T2 mapping) are increasingly used in clinical and research settings for 

identification of areas of myocardial fibrosis, infarction, and oedema56. The UK Biobank protocol 

includes native T1 mapping at the mid-ventricular level on short axis images. Aortic distensibility 

(AD) is a measure of local aortic compliance. It can be calculated from transverse cine image of the 

thoracic aorta, by considering the relative cross-sectional area change per unit pressure57. Lower 

distensibility indicates a less compliant (stiffer) aorta, poorer aortic bio-elastic function, and worse 

arterial health58. There is an inverse association between AD and cardiovascular risk, specifically, 

ischaemic heart disease and stroke59. Thus, AD provides a continuous measure of ischaemic 

cardiovascular risk. 

 

The large volume of images in the UK Biobank necessitates the development of automated 

standardised image analysis pipelines. The first 5,000 UK Biobank CMR scans have been manually 

segmented (all four cardiac chambers) by trained readers across two core laboratories (London, 

Oxford) according to pre-defined analysis protocols and standardised quality control procedures60. 

This 5,000 ground truth dataset has been used to develop and evaluate machine learning methods for 

cardiac chamber segmentation61. Notably, Attar et al.62 have used the 5,000 manual segmentation 

cohort to develop a fully automated image analysis pipeline for LV and RV segmentation from cine 
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images in the UK Biobank. Similarly, a fully automated image analysis tool for measurement of AD 

has also been developed and validated on a large subset of UK Biobank studies63. 

 

In summary, the UK Biobank CMR protocol provides a comprehensive assessment of cardiovascular 

health, providing measures of cardiac structure, function, and tissue characterisation alongside 

prognostic indices and imaging biomarkers of subclinical disease. The CMR imaging phenotypes 

allow objective assessment and quantification of exposure effects on cardiovascular health and permit 

finer delineation of disease trajectories with potential for disease-specific assertions. Automated 

image analysis tools enable derivation of CMR imaging phenotypes from large imaging samples. 

 

2.2 Use of UK Biobank in this project 

2.2.1 Ethics and data access 

The presented work is covered by the ethical approval for UK Biobank studies from the NHS 

National Research Ethics Service on 17th June 2011 (Ref 11/NW/0382) and extended on 10th May 

2016 (Ref 16/NW/0274). All participants provided written informed consent. Data access was granted 

through UK Biobank access application 2964. 

 

2.2.2 Characterisation of study participants 

Characterisation of study participants was based on information recorded at the baseline and/or 

imaging visits, unless stated otherwise. Assessments at these visits included a touchscreen 

questionnaire, a verbal face-to-face interview with a trained researcher, a series of physical measures, 

and blood sampling. 

 

We ascertained demographic details, such as sex and ethnicity based on self-report at baseline. Age 

was taken as recorded by UK Biobank at recruitment and, if needed, calculated for the time point of 

interest. The UK Biobank records the Townsend score as a measure of deprivation relative to national 

averages taking into account four components of home ownership, household size, car ownership and 

employment status64. A Townsend score of zero indicates deprivation levels similar to national 

averages, whilst negative scores indicate less and positive score more deprivation than average. 

Educational level, smoking status, and alcohol intake frequency were taken from self-report. The level 

of physical activity was self-reported by participants on a series of touchscreen questions. Using this 

information, we derived a continuous value for the amount of physical activity measured in metabolic 

equivalent (MET) minutes/week calculated by weighting different types of activity by its energy 

requirements using values derived from the International Physical Activity Questionnaire (IPAQ) 
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study65. Participants completed a food frequency questionnaire reporting their average weekly 

consumption of a range of food products over the preceding 12 months. The touchscreen questions 

also included a battery of cognitive function tests covering a range of skills including processing 

speed, memory, and reasoning. 

 

With regards physical measures, height and weight were recorded at baseline and imaging visits, we 

have used these to calculate body mass index (BMI) and body surface area (BSA). Blood pressure and 

resting heart rate were recorded using standardised equipment and measurement protocols. In 

addition, finger plethysmography was used to derive a non-invasive measure of large artery stiffness 

reported as the arterial stiffness index (ASI). Participants also had a quantitative heel ultrasound, 

which provided quantitative measures of bone quality. 

 

Cardiometabolic morbidities, including diabetes, hypertension, and high cholesterol were ascertained 

using a combination of self-report questions, blood biochemistry, and linked international 

classification of disease (ICD) codes from HES data (Table 2.2). 

 

Table 2.2. Approach to definition of cardiometabolic morbidities in UK Biobank 

Condition ICD code or 
data field Code description 

Diabetes 20002 diabetes 
Diabetes 2443 “Diabetes diagnosed by doctor” – Answer “Yes” 

Diabetes 6177 “Do you regularly take any of the following medications?”– Answer: 
“Insulin” 

Diabetes 6153 “Do you regularly take any of the following medications?”– Answer: 
“Insulin” 

Diabetes 30750 Glycated haemoglobin (HbA1c) ≥48mmol/mol indicates diabetes  
Diabetes E100 Type 1 diabetes mellitus: With coma 
Diabetes E101 Type 1 diabetes mellitus: With ketoacidosis 
Diabetes E102 Type 1 diabetes mellitus: With renal complications 
Diabetes E103 Type 1 diabetes mellitus: With ophthalmic complications 
Diabetes E104 Type 1 diabetes mellitus: With neurological complications 
Diabetes E105 Type 1 diabetes mellitus: With peripheral circulatory complications 
Diabetes E106 Type 1 diabetes mellitus: With other specified complications 
Diabetes E107 Type 1 diabetes mellitus: With multiple complications 
Diabetes E108 Type 1 diabetes mellitus: With unspecified complications 
Diabetes E109 Type 1 diabetes mellitus: Without complications 
Diabetes E110 Type 2 diabetes mellitus: With coma 
Diabetes E111 Type 2 diabetes mellitus: With ketoacidosis 
Diabetes E112 Type 2 diabetes mellitus: With renal complications 
Diabetes E113 Type 2 diabetes mellitus: With ophthalmic complications 
Diabetes E114 Type 2 diabetes mellitus: With neurological complications 
Diabetes E115 Type 2 diabetes mellitus: With peripheral circulatory complications 
Diabetes E116 Type 2 diabetes mellitus: With other specified complications 
Diabetes E117 Type 2 diabetes mellitus: With multiple complications 
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Condition ICD code or 
data field Code description 

Diabetes E118 Type 2 diabetes mellitus: With unspecified complications 
Diabetes E119 Type 2 diabetes mellitus: Without complications 
Diabetes E130 Other specified diabetes mellitus: With coma 
Diabetes E131 Other specified diabetes mellitus: With ketoacidosis 
Diabetes E132 Other specified diabetes mellitus: With renal complications 
Diabetes E133 Other specified diabetes mellitus: With ophthalmic complications 
Diabetes E134 Other specified diabetes mellitus: With neurological complications 

Diabetes E135 Other specified diabetes mellitus: With peripheral circulatory 
complications 

Diabetes E136 Other specified diabetes mellitus: With other specified complications 
Diabetes E137 Other specified diabetes mellitus: With multiple complications 
Diabetes E138 Other specified diabetes mellitus: With unspecified complications 
Diabetes E139 Other specified diabetes mellitus: Without complications 
Diabetes E140 Unspecified diabetes mellitus: With coma 
Diabetes E141 Unspecified diabetes mellitus: With ketoacidosis 
Diabetes E142 Unspecified diabetes mellitus: With renal complications 
Diabetes E143 Unspecified diabetes mellitus: With ophthalmic complications 
Diabetes E144 Unspecified diabetes mellitus: With neurological complications 
Diabetes E145 Unspecified diabetes mellitus: With peripheral circulatory complications 
Diabetes E146 Unspecified diabetes mellitus: With other specified complications 
Diabetes E147 Unspecified diabetes mellitus: With multiple complications 
Diabetes E148 Unspecified diabetes mellitus: With unspecified complications 
Diabetes E149 Unspecified diabetes mellitus: Without complications 
Diabetes G590 Diabetic mononeuropathy 
Diabetes G632 Diabetic polyneuropathy 
Diabetes H280 Diabetic cataract 
Diabetes H360 Diabetic retinopathy 
Diabetes M142 Diabetic arthropathy 
Diabetes N083 Glomerular disorders in diabetes mellitus 
Diabetes O240 Diabetes mellitus in pregnancy: Pre-existing type 1 diabetes mellitus 
Diabetes O241 Diabetes mellitus in pregnancy: Pre-existing type 2 diabetes mellitus 
Diabetes O243 Diabetes mellitus in pregnancy: Pre-existing diabetes mellitus, unspecified 
Diabetes O244 Diabetes mellitus arising in pregnancy 
Diabetes O249 Diabetes mellitus in pregnancy, unspecified 
Diabetes Y423 Insulin and oral hypoglycaemic [antidiabetic] drugs 

Hypertension 6177 “Do you regularly take any of the following medications?”- Answer: 
“Blood pressure medication” 

Hypertension 6153 “Do you regularly take any of the following medications?”- Answer: 
“Blood pressure medication” 

Hypertension 20002 “hypertension” 
Hypertension I10X Essential (primary) hypertension 
Hypertension I110 Hypertensive heart disease with (congestive) heart failure 
Hypertension I119 Hypertensive heart disease without (congestive) heart failure 
Hypertension I120 Hypertensive renal disease with renal failure 
Hypertension I129 Hypertensive renal disease without renal failure 
Hypertension I130 Hypertensive heart and renal disease with (congestive) heart failure 
Hypertension I131 Hypertensive heart and renal disease with renal failure 

Hypertension I132 Hypertensive heart and renal disease with both (congestive) heart failure 
and renal failure 

Hypertension I139 Hypertensive heart and renal disease, unspecified 
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Condition ICD code or 
data field Code description 

High cholesterol 20002 “high cholesterol” 

High cholesterol 6153 “Do you regularly take any of the following medications?”- Answer: 
“Cholesterol lowering medication” 

High cholesterol 6177 “Do you regularly take any of the following medications?”- Answer: 
“Cholesterol lowering medication” 

High cholesterol E780 Pure hypercholesterolaemia 
High cholesterol E782 Mixed hyperlipidaemia 
High cholesterol E783 Hyperchylomicronaemia 
High cholesterol E784 Other hyperlipidaemia 
High cholesterol E785 Hyperlipidaemia, unspecified 

Table 2.2. ICD: international classification of disease. 

 

2.2.3 Ascertainment of prevalent and incident cardiovascular disease 

Cardiovascular disease was ascertained from combining self-report at verbal interview, relevant ICD 

codes from HES, and UK Biobank Algorithmically defined outcomes. The latter combines data from 

multiple data sources and is produced by UK through a formal adjudication process66. Using this 

approach, we were able to define all cardiovascular diseases, which we subcategorised into broad 

disease subtypes (e.g., IHD), but with the ability to examine specific conditions in each category 

(Table 2.3). For incident outcomes, we selected events occurring after baseline as recorded by 

algorithmically defined outcomes, HES, or death register data. 

 

Table 2.3. Approach to definition of cardiovascular disorders in the UK Biobank  

Source Definitions and disease categories 
 Ischaemic heart disease 
Self-report Angina (data field 20002) 
Self-report heart attack/myocardial infarction (data field 20002) 
Algorithm AMI on algorithmically defined outcomes (data field 42000) 
ICD10 I20 Angina pectoris 
ICD10 I21 Acute myocardial infarction 
ICD10 I22 Subsequent myocardial infarction 
ICD10 I23 Certain current complications following acute myocardial infarction 
ICD10 I24 Other acute ischaemic heart diseases 
ICD10 I25 Chronic ischaemic heart disease 
 Valvular heart disease 
Self-report mitral stenosis (data field 20002) 
Self-report mitral regurgitation / incompetence (data field 20002) 
Self-report aortic valve disease (data field 20002) 
Self-report aortic stenosis (data field 20002) 
Self-report aortic regurgitation / incompetence (data field 20002) 
ICD10 I34.0 Mitral (valve) insufficiency 
ICD10 I34.2 Nonrheumatic mitral (valve) stenosis 
ICD10 I34.8 Other nonrheumatic mitral valve disorders 
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Source Definitions and disease categories 
ICD10 I34.9 Nonrheumatic mitral valve disorder, unspecified 
ICD10 I35.0 Aortic (valve) stenosis 
ICD10 I35.1 Aortic (valve) insufficiency 
ICD10 I35.2 Aortic (valve) stenosis with insufficiency 
ICD10 I35.8 Other aortic valve disorders 
ICD10 I35.9 Aortic valve disorder, unspecified 
ICD10 I36.0 Nonrheumatic tricuspid (valve) stenosis 
ICD10 I36.1 Nonrheumatic tricuspid (valve) insufficiency 
ICD10 I36.8 Other nonrheumatic tricuspid valve disorders 
ICD10 I36.9 Nonrheumatic tricuspid valve disorder, unspecified 
ICD10 I37.0 Pulmonary valve stenosis 
ICD10 I37.1 Pulmonary valve insufficiency 
ICD10 I37.2 Pulmonary valve stenosis with insufficiency 
ICD10 I37.8 Other pulmonary valve disorders 
ICD10 I37.9 Pulmonary valve disorder, unspecified 
ICD10 I38 Endocarditis, valve unspecified 
ICD10 I39.0 Mitral valve disorders in diseases classified elsewhere 
ICD10 I39.1 Aortic valve disorders in diseases classified elsewhere 
ICD10 I39.3 Pulmonary valve disorders in diseases classified elsewhere 
ICD10 I39.4 Multiple valve disorders in diseases classified elsewhere 
ICD10 I39.8 Endocarditis, valve unspecified, in diseases classified elsewhere 
ICD10 I05 Rheumatic mitral valve diseases 
ICD10 I06 Rheumatic aortic valve diseases 
ICD10 I07 Rheumatic tricuspid valve diseases 
ICD10 I08 Multiple valve diseases 
 Non-ischaemic cardiomyopathies 
Self-report Cardiomyopathy (data field 20002) 
Self-report hypertrophic cardiomyopathy (hcm/hocm) (data field 20002) 
ICD10 I42.0 Dilated cardiomyopathy 
ICD10 I42.1 Obstructive hypertrophic cardiomyopathy 
ICD10 I42.2 Other hypertrophic cardiomyopathy 
ICD10 I42.5 Other restrictive cardiomyopathy 
ICD10 I42.6 Alcoholic cardiomyopathy 
ICD10 I42.7 Cardiomyopathy due to drugs and other external agents 
ICD10 I42.8 Other cardiomyopathies 
ICD10 I42.9 Cardiomyopathy, unspecified 
ICD10 I43.0 Cardiomyopathy in infectious and parasitic diseases classified elsewhere 
ICD10 I43.1 Cardiomyopathy in metabolic diseases 
ICD10 I43.2 Cardiomyopathy in nutritional diseases 
ICD10 I43.8 Cardiomyopathy in other diseases classified elsewhere 
ICD10 I11.0 Hypertensive heart disease with (congestive) heart failure 
ICD10 I11.9 Hypertensive heart disease without (congestive) heart failure 
ICD10 I13.0 Hypertensive heart and renal disease with (congestive) heart failure 
ICD10 I13.1 Hypertensive heart and renal disease with renal failure 
ICD10 I13.2 Hypertensive heart and renal disease with both (congestive) heart failure and renal failure 
ICD10 I13.9 Hypertensive heart and renal disease, unspecified 
 Heart failure (unspecified aetiology) 
Self-report heart failure/pulmonary odema (data field 20002) 
ICD10 I50.0 Congestive heart failure 
ICD10 I50.1 Left ventricular failure 
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Source Definitions and disease categories 
ICD10 I50.9 Heart failure, unspecified 
 Cardiac arrhythmia 
Self-report sick sinus syndrome (data field 20002) 
Self-report svt / supraventricular tachycardia (data field 20002) 
Self-report atrial fibrillation (data field 20002) 
Self-report atrial flutter (data field 20002) 
ICD10 I44.1 Atrioventricular block, second degree 
ICD10 I44.2 Atrioventricular block, complete 
ICD10 I45.6 Preexcitation syndrome 
ICD10 I46.0 Cardiac arrest with successful resuscitation 
ICD10 I46.1 Sudden cardiac death, so described 
ICD10 I46.9 Cardiac arrest, unspecified 
ICD10 I47.0 Re-entry ventricular arrhythmia 
ICD10 I47.1 Supraventricular tachycardia 
ICD10 I47.2 Ventricular tachycardia 
ICD10 I47.9 Paroxysmal tachycardia, unspecified 
ICD10 I48.0 Paroxysmal atrial fibrillation 
ICD10 I48.1 Persistent atrial fibrillation 
ICD10 I48.2 Chronic atrial fibrillation 
ICD10 I48.3 Typical atrial flutter 
ICD10 I48.4 Atypical atrial flutter 
ICD10 I48.9 Atrial fibrillation and atrial flutter, unspecified 
ICD10 I49.0 Ventricular fibrillation and flutter 
ICD10 I49.5 Sick sinus syndrome 

Table 2.3. ICD: international classification of disease. 
 

2.2.4 General approach to statistical methods 

2.2.4.1 Descriptive summary statistics 

Categorical variables are summarised as frequencies and percentages. For continuous numerical 

variables, we present mean and standard deviation (SD) or, for variables with significantly skewed 

distributions, median and interquartile range (IQR). 

 

2.2.4.2 Approach to modelling 

The general principles outlined in Section 1.1.4 were considered when planning studies. At the outset, 

the study question and objectives were explicitly outlined. The analysis sample for each study was 

then defined based on selecting an appropriate sample for the study question whilst maximising 

sample size. We then defined the exposures and outcomes of interest with deliberate consideration 

given to potential confounders and biological mediators. True confounders were considered variables 

that associated with both the exposure and outcome. Mediators were considered as covariates 

potentially on the causal pathway. Covariates were defined a priori based on existing evidence and 

biological plausibility. In cases where there was uncertainty about the confounding effect of a 
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variable, we performed preliminary analysis to test its associations with the exposure and outcome. In 

general, the main models include adjustment for true confounders allowing quantification of the 

magnitude of the exposure-outcome association. In selected cases, we gave consideration to the 

impact of mediating variables, either through formal mediation analysis or additional adjustment for 

these variables. Multivariable linear regression models were used as the default approach to 

modelling. We tested for multicollinearity between covariates using variance inflation factor (VIF) 

setting a conservative limit (VIF <2). Where there was indication of possible non-linearity of 

relationships, this was explored either with polynomial terms or using cubic spline models. When the 

outcome of interest was an incident event, we used competing risk multivariable regression models, as 

per Fine and Gray methods67. When appropriate, p-values were corrected for multiple testing. 

 

2.2.5 Conventional CMR metrics 

2.2.5.1 LV and RV indices 

The UK Biobank acquisition protocol is discussed in Section 2.1.6 and detailed in a separate 

publication36. Assessment of the left and right ventricles (LV, RV) included a complete short axis 

stack acquired using balanced steady-state free precession sequences. The first 5,000 CMR scans 

were manually analysed according to a pre-defined segmentation protocol60 using CVI42® post-

processing software (Version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary, Canada). LV 

endocardial and epicardial borders were manually contoured in end-diastole and end-systole in the 

short axis view. The first phase of acquisition was selected as end-diastole. End-systole was defined 

as the phase with the smallest mid-ventricular LV intra-cavity blood pool as determined by visual 

inspection. The most basal slice for the LV was selected when at least half of the LV blood pool was 

surrounded by myocardium. LV papillary muscles were excluded from LV mass. RV endocardial 

borders were traced in end-diastole and end-systole with volumes below the pulmonary valve plane 

considered as part of the RV. This ground truth manual analysis dataset was used to develop a fully 

automated image analysis pipeline with inbuilt quality control, which has been applied to the first 

20,000 UK Biobank CMR studies62. Details of reproducibility performance of the automated 

algorithm are available in a dedicated publication60,62. This work has generated the following metrics: 

LV and RV volumes in end-diastole and end-systole, LV and RV ejection fraction, LV and RV stroke 

volume, and LVM. 
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2.2.6 Measures of arterial compliance 

2.2.6.1 Aortic distensibility 

As discussed in Section 2.1.6, AD is a direct measure of local aortic compliance. Higher distensibility 

indicates a more compliant aorta and better arterial health. AD is calculated by considering the 

relative in aortic cross-sectional area from systole to diastole (aortic strain) per unit pressure 

(Equation 1)68. 

 

Equation 1. Formula for calculation of aortic distensibility 
 

AD = A!"#	 − A!$%
A!$%	 × CPP

 

 
Equation 1. where Amax is the maximal and Amin the minimal aortic lumen area (mm2). AD: aortic 

distensibility; CPP: central pulse pressure. 

 

In the UK Biobank, aortic strain was measured from segmentation of the ascending and descending 

aorta on transverse cine CMR images at the level of the pulmonary artery bifurcation (Figure 2.2). 

Central pulse pressure was derived from Vicorder® readings taken at the time of imaging. A fully 

automated image analysis workflow has been developed for generation of AD measures in the UK 

Biobank63. This pipeline has been validated on a large subset of UK Biobank studies (n=5,065) and 

applied to the first 20,000 scans63. Thus, AD measured at the ascending aorta and the proximal 

descending aorta is available for 20,000 UK Biobank participants. 

 

Figure 2.2. Measurement of aortic distensibility from cardiovascular magnetic resonance 
images in the UK Biobank 

 

 

 

 

 

 

 
 

Figure 2.2. Aortic distensibility determined by considering systolic-diastolic variation in cross-

sectional lumen area of the ascending (AA) and descending aorta (DA) measured at the level of the 

pulmonary artery bifurcation (*) on transverse cine cardiac magnetic resonance images. Image used 

with permission of UK Biobank and reproduced from Raisi-Estabragh et al. 202069 

* 
AA 

DA 
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2.2.6.2 Arterial stiffness index 

ASI is an indirect measure of large artery stiffness. It is an independent measure of cardiovascular risk 

and can be measured non-invasively through analysis of the contour of a pulse waveform obtained at 

the fingertip using an infra-red sensor58,59. This digital volume pulse represents the time it takes for 

the pulse waveform to travel through the arterial tree and be reflected back to the finger58. Lower ASI 

values indicate greater arterial compliance and better vascular health. 

 

In the UK Biobank, ASI was measured at the baselined visit using the PulseTrace PCA2 (CareFusion, 

USA). Measurement was in lined with a pre-defined standard operating procedure, which is detailed 

in a dedicated document70. The participant was asked to remove or loosen restrictive clothing from the 

upper arm and seated with both feet flat on the floor and their arm fully supported on the desktop in 

the supine position. Prior to measurement recording the participant was asked to take five slow 

breaths in and out. The infra-red sensor was then clipped onto a finger. Measurement was 

preferentially taken from the index finger of the non-dominant hand, but any finger/thumb could be 

used. If the signal at the fingertip was poor due to dark nail varnish, the sensor could be placed 

transversely across the finger. Measurement was taken over 10-15s. The device generated a pulse 

trace with a systolic and diastolic peak and the time interval between the two peaks (Figure 2.3). 

 

Figure 2.3. Illustration of a digital volume pressure waveform from PulseTrace sensor 

 

 

 

 

 
 
 

 

Figure 2.3. Arterial stiffness index is calculated by dividing the subject height by the time between the 

systolic (a) and diastolic (b) peaks [peak-to-peak time (PPT)]. Reproduced from Raisi-Estabragh et 

al. 202069. 

 
The peak-to-peak time (PPT) is an estimate of the time taken to the pulse to propagate to the root of 

the subclavian artery and return to the fingertip. Faster reflections indicate stiffer arteries. As the path 

length for the pulse is dependent on the individuals’ height, ASI is obtained by dividing height by 

PPT. ASI is reported in the UK Biobank in m/s. It was a later addition to the UK Biobank protocol 
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and is available for 169,791 participants at baseline and for all participants completing the imaging 

study. 

 

2.3 CMR radiomics 

Radiomics is a novel image analysis technique, which allows derivation of a multitude of shape and 

texture quantifiers from voxel-level data71. Radiomics analysis does not require any dedicated 

acquisitions and may be retrospectively applied to region(s) of interest (ROI) on existing standard of 

care images from any modality. Indeed, existing work describes application of radiomics to computed 

tomography, ultrasound, positron emission tomography, and magnetic resonance images. Radiomics 

quantifiers (or features) provide deeper quantitative imaging phenotypes than conventional analysis 

methods. As such, they may provide novel insights into end-organ effect of various exposures. 

Furthermore, radiomics features may also be considered as predictor variables in statistical (or 

machine learning) models for disease discrimination or outcome prediction. 

 

The most extensive work on radiomics has been within oncology, where radiomics models have 

demonstrable utility for tumour classification72, prediction of treatment response73,74, and 

prognostication75. There is growing interest in application of radiomics analysis to cardiac imaging. 

Early attempts to apply radiomics analysis to echocardiography produced promising results for 

discrimination of conditions such as cardiac amyloid76 and haemochromatosis77. However, poor 

reproducibility of radiomics features from echocardiography severely limited the generalisability of 

these models. Radiomics analysis has also been applied to cardiac computed tomography images, 

producing promising results from detailed quantitative characterisation of coronary plaques and 

perivascular fat78,79. CMR is a highly attractive modality for radiomics analysis, due to highly 

reproducible standardised views and availability of large imaging datasets. Limited studies have 

demonstrated the feasibility and potential clinical value of CMR radiomics for disease discrimination 

and outcome prediction80–89. Thus, CMR radiomics has potential as a novel imaging biomarker. 

 

In the remainder of this section, we provide a general description of CMR radiomics pipeline, existing 

literature on the application of this methodology, and apply the technique in the study presented in 

Chapter 6. 
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2.3.1 The CMR radiomics pipeline 

2.3.1.1 Image acquisition 

Radiomics analysis can be applied to standard of care images with no requirement for dedicated 

protocols or acquisitions. Any image from the study may be selected for radiomics analysis. The short 

axis stack is the most convenient choice, as it allows use of existing segmentations for standard 

volumetric assessment avoiding extra image analysis steps. 

 

2.3.1.2 Volume segmentation 

Any ROI can be selected for analysis. For example, we could select a localised area in the LV 

myocardium which is suspicious for disease. Alternatively, we could select the entire LV myocardium 

for analysis. Using existing epicardial and endocardial contours in short axis stack images we can 

define three ROIs for analysis: LV cavity, LV myocardium, and RV cavity. Radiomics features may 

then be extracted from these defined regions within the image. Variation in contouring can have 

substantial impact on radiomics features and it is important that a standardised approach, preferably 

with minimal manual adjustment, is taken. 

 

2.3.1.3 Radiomics feature extraction 

Radiomics features may be extracted from defined ROIs using pipelines developed in-house or open 

access platforms, such as, pyradiomics90. Radiomics features have pre-defined mathematical 

definitions and are calculated in a standardised manner. Prior to feature extraction, normalisation 

techniques may be applied to images to ensure that variation in signal intensities reflected in 

radiomics features represent underlying biology rather than variation in image acquisition parameters. 

There are three categories of radiomics features: shape, first-order, and texture. Radiomics shape 

features provide advanced geometric quantifiers of the defined ROI. The first-order and texture are 

derived from pixel signal intensity levels (brightness) and describe the global distribution of signal 

intensity levels and the pattern of signal intensities. Intensity-based features are typically extracted 

from the whole or selected areas within the myocardium. 

 

2.3.1.4 Radiomics shape features 

Data derived from the ROI contours is used to build a 3D image mask, from which shape features are 

calculated. Radiomics shape features include basic measures such as volume and axis dimensions, as 

well as more complex geometric measures such as sphericity (how much the overall shape of the ROI 

resembles a sphere) or elongation (Figure 2.4). For example, standard epicardial and endocardial 
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contours from a short axis cine stack may be used to select radiomics features from three ROIs: LV 

myocardium, LV cavity, and RV cavity. 

 

Figure 2.4. Image mask derived from segmented cardiovascular magnetic resonance image and 

selected radiomics shape features 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Panel A: Conventional epicardial and endocardial contours from short axis cine images 

have been used to define three regions of interest for radiomics analysis: LV myocardium (turquoise), 

LV cavity (yellow), and RV cavity (purple). Panel B: The contours are used to build a 3D image mask 

of the three ROIs. Radiomics shape features are derived from these masks and include conventional 

and more advanced geometric quantifiers (exemplar list on right). CMR: cardiac magnetic resonance; 

LV: left ventricle; RV: right ventricle; ROI: region of interest). Reproduced from Raisi-Estabragh et al. 

202071. 

 

2.3.1.5 Radiomics first-order features 

Radiomics first-order features quantify the global distribution of pixel signal intensities within the 

defined ROI. Each pixel within the ROI is assigned an intensity (brightness) level. The intensity 

levels and the frequency with which they appear within the defined ROI are then simply plotted as a 

histogram. First-order features are histogram-based statistics derived from this signal intensity 

histogram (Figure 2.5). They include familiar metrics such as mean, median, and standard deviation, 

as well as less familiar measures such as, kurtosis (pointiness), entropy (disorder), and skewness. 
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Figure 2.5. Selected first-order histogram-based statistics to describe global signal intensity 

distribution within the selected region of interest 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

Figure 2.5. The figure depicts a histogram of signal intensity values observed in the region of interest 

selected for radiomics analysis. The x axis represents the signal intensity value of the voxels within 

the region of interest and the y axis the frequency with which these signal intensities values are 

observed. Below the figure we present a selection of the summary statistics derived from the 

histogram (histogram-based statistics). Reproduced from Raisi-Estabragh et al. 202071. 

 

2.3.1.6 Radiomics texture features 

First-order features quantify the intensity levels within the ROI as a whole, however, they do not 

provide information on the relationship of signal intensities between neighbouring ROIs. In order to 

quantify inter-pixel relationships, more complex mathematical approaches are required.  The first step 

involves building a ‘signal intensity matrix’ (Figure 2.6A). To do this, a signal intensity level 

(brightness level) is allocated to each pixel within the ROI. This data is then displayed in a matrix 

with positioning of pixels in the matrix corresponding to their positions within the ROI (this means 

that each pixel would have the same neighbouring pixels in the matrix as they do in the ROI). Texture 

features derived from this matrix are intended to quantify heterogeneity, repeatability, and complexity 

of the signal intensity matrix91,92. They are calculated by application of various mathematical 
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processes to new matrices which are constructed based on specified rules from the signal intensity 

matrix. The grey level co-occurrence matrix (GLCM) is commonly used to consider the relationship 

between pixels pairs. This secondary matrix is constructed by tabulating the frequency of different 

signal intensity pairings occurring within the signal intensity matrix (Figure 2.6B). Different 

mathematical processes are applied to the GLCM to calculate, as per standardised definitions, 

measures, such as angular second moment (homogeneity), contrast (local variation), and entropy 

(disorder)93. Another commonly used matrix is the grey level run length matrix (GLRLM)94–97. This 

matrix allows consideration of the spatial relationship of any number of voxels (not just pairs). The 

GLRLM is tabulated by recording the number of times a certain intensity level is recorded in an 

uninterrupted run within the signal intensity matrix in a specified direction (Figure 2.6C). In a 

simplified manner, we can think of this as the number of pixels with the same intensity level 

occurring in an uninterrupted run. The GLRLM is used to compute features such as short-run 

emphasis, run length non-uniformity, and run entropy. 

 

Several other matrices, constructed according to different rules, are available for calculation of 

additional texture features [grey level size zone matrix (GLSZM), grey level difference matrix 

(GLDM), neighbouring grey tone difference matrix (NGTDM)]. 

 

2.3.2 Making sense of radiomics features 

CMR radiomics analysis will yield a large number (hundreds) of features per study. The deep 

phenotyping provided can be used to gain novel insights into associations between cardiac phenotypes 

and exposures/outcomes. The features may also be used as predictor variables in models for disease 

discrimination or outcome prediction. As the number of features is large (often larger than number of 

study subjects), it is common to undertake a feature reduction/selection process prior to model 

building. This is to avoid overfitting the model (where the model is too closely modelled to the 

training set such that it picks up noise from the training set and thus performs poorly when applied to 

external datasets), to remove non-robust features, and features that represent inter-related metrics. The 

goal is to reduce the number of features based on robustness and non-redundancy. Recent work has 

provided guidance on repeatability and reproducibility performance of CMR radiomics features, this 

work may be used as a reference to guide selection of the most robust features in modelling98,99. From 

the remaining robust features, it is advisable to exclude inter-related features. A number of different 

strategies may be undertaken, including clustering analyses or forward feature selection. The reduced 

feature set may then be taken forward for modelling. Although simple methods, such as logistic 

regression, may be attempted, optimal model performance is often achieved using machine learning 

techniques such as support vector machine.  
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Figure 2.6. Simplified worked example of grey level co-occurrence and run-length matrices 

Panel A: Voxel signal intensity matrix for the 
selected region of interest 
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Panel B: Grey level co-occurrence matrix 
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Panel C: Grey level run-length matrix 
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Figure 2.6. Panel A: A signal intensity (SI) level is assigned to each voxel within the selected region 

of interest and tabulated in a matrix. In this example we suppose a 4×4 matrix with 16 voxels at four 

signal intensity levels. Panel B: Grey-level co-occurrence matrix corresponding to Panel A. In this 

example, we will consider any voxel with SI j, that appears to the right of a reference voxel with SI of 

i. e.g. to fill the orange cell (j=1, i=0), we count one instance in the Panel A matrix, where a voxel 

with signal intensity level of 1 (j=1) appears to the right of a voxel with signal intensity of 0 (i=0). 

Hence, we fill the cell in the GLCM matrix with the number one. Similarly, for the green cell (j=2, 

i=2), we observe that in the whole of the matrix in Panel A, there are three instances where a voxel 

with SI value of 2 (j=2) appears to the right of a voxel with the SI of 2 (i=2), hence cell (2, 2) is filled 

with the number 3. In the same way, the rest of the matrix is completed. Panel C: Grey-level run-

length matrix corresponding to Panel A. To complete this matrix, we consider the number of time 

Panel A contains an uninterrupted train of length j (measured in number of voxels) with SI of i. For 

example, consider the pink cell (j=2, i=1); in the matrix of Panel A, we count two instances of voxel 

with SI of 1 (i=1) occurring in an uninterrupted run of length 2 (j=2), hence the cell is filled with the 

number 2. Similarly, consider the blue cell (j=3, i=2), in our SI matrix, we count one instance where 

SI of 2 (i=2) appears in an uninterrupted run of three voxels (j=3), hence this cell is filled with the 

number 1. Reproduced from Raisi-Estabragh et al. 202071 
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2.3.3 Review of existing work in CMR radiomics 

Several studies have demonstrated the feasibility and potential clinical utility of CMR radiomics to 

distinguish healthy and disease states. Baessler et al.80 demonstrate significant differences between 

texture features of individuals with HCM (n=32) and healthy comparators (n=30). They identify 

GLevNonU (Grey-level non-uniformity), a feature derived from the GLRLM indicative of high 

heterogeneity of signal intensities, as the best discriminator of the two cohorts. This is interesting, 

because myocardial disarray and hypertrophy are key hallmarks of HCM and so the observations by 

Baessler et al.80 suggest, that radiomics texture features may reflect tissue level myocardial alterations 

in a pathologically meaningful manner. In a similar vein, Cetin et al.100 demonstrate the ability of 

radiomics models to distinguish, with good accuracy, the hearts of individuals with hypertension from 

those of healthy controls. The model comprised eleven LV texture features, suggesting that 

individuals with hypertension have myocardial level alterations detectable with radiomics analysis. 

Indeed, in a larger study, Cetin et al.82 demonstrate superior discrimination of several key 

cardiovascular risk factors (smoking, diabetes, hypertension, high cholesterol – vs healthy controls) 

with CMR radiomics models compared to conventional CMR indices. 

 

Radiomics models also have potential capability for distinguishing different disease states. For 

example, Neisius et al.83 demonstrate that radiomics analysis applied to native T1 maps provides 

incremental diagnostic accuracy over global T1 measures in distinction of hypertensive heart disease 

from HCM. In another study, Baessler et al.84 demonstrate the superior diagnostic accuracy of 

radiomics texture analysis applied to T1 and T2 maps in discriminating biopsy proven infarct-like 

acute myocarditis in comparison to mean T1, mean T2, or Lake Louise diagnostic criteria. 

 

Reliable assessment for myocardial infarction is a major strength of CMR and accounts for many 

clinical CMR requests. Existing approaches for detection of myocardial infarction are based on visual 

inspection of late gadolinium enhancement (LGE) images. These images necessitate administration of 

exogenous gadolinium-based contrast agents followed by a pause of approximately 10-20 minutes 

prior to image acquisition. Although modern cyclical gadolinium-based contrast agents have an 

excellent safety profile, there is risk of severe allergic reactions, nephrogenic sclerosing fibrosis 

(particularly where renal function is impaired), and possible adverse effects related to intracranial 

gadolinium deposition29,101. Furthermore, the wait time prior to image acquisition is a significant 

limiting factor. Several radiomics studies have demonstrated the possibility of making clinical 

distinctions that would ordinarily require contrast images, through analysis of gadolinium-free 

images. Such analysis is clearly highly desirable both from a safety and time efficiency perspective. 

For example, Baessler et al.85 demonstrate accurate discrimination of studies with myocardial 

infarction from healthy controls through texture analysis of contrast free cine images. Similarly, 
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Larroza et al.86 were able to discriminate non-viable myocardium (as per LGE) using texture analysis 

of non-contrast cine images. In another study, Larroza et al.87 demonstrate the ability of texture 

analysis to accurately identify myocardial infarction from non-contrast cine images. Furthermore, 

they demonstrate the ability to distinguish acute myocardial infarction (within a week of imaging) 

from chronic myocardial infarction (>6 months before imaging) from radiomics analysis of LGE 

images. 

 

Limited studies report on the potential of radiomics models for prediction of key health outcomes. In 

a study of 34 individuals with chronic myocardial infarction, Kotu et al.88 report incremental value of 

texture features extracted from LGE scar, over scar size and location in predicting life-threatening 

arrhythmias. Amano et al.102 demonstrate differences in textural features of LGE images in HCM 

patients with a history of ventricular tachycardia compared to those with no history of arrhythmia. 

Furthermore, Cheng et al.89 demonstrate strong association of LGE texture features with a composite 

of several adverse endpoints (including all-cause mortality and life-threatening arrhythmia) in 

individuals with HCM and impaired LV systolic function. 

 

Overall, work to date demonstrates the potential of CMR radiomics to enhance existing image 

analysis approaches and thus improve disease discrimination and outcome prediction. Radiomics may 

be applied to existing standard of care images without the need for dedicated acquisitions or image 

processing. As such radiomics analysis may be readily implemented into existing clinical pathways. 

The possibility of deriving from radiomics analysis of non-contrast images equivalent information to 

contrast enhanced images is highly desirable. Further, the limited CMR radiomics literature and the 

more extensive work from radiomics in cancer imaging suggest that image phenotype deciphered 

through radiomics texture analysis may represent cellular pathology, with the potential to provide, 

non-invasively, unique insights into disease pathophysiology103.  
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3 Resting heart rate and incident cardiovascular outcomes 

3.1 Abstract 

Objective: We sought to define the sex, age, and disease-specific associations of resting heart rate 

with cardiovascular and mortality outcomes in 502,534 individuals from the UK Biobank over 7–12 

years of prospective follow-up. 

 

Methods and Results: The primary outcomes were all-cause, cardiovascular, and IHD mortality. 

Additional outcomes included incident AMI, fatal AMI, and cancer mortality. We considered a wide 

range of confounders and the effects of competing hazards. Results are reported as hazard ratios (HR) 

for all-cause mortality and sub-distribution hazard ratios (SHR) for other outcomes with 

corresponding 95% confidence intervals (CI) per 10bpm increase in heart rate. In men, for every 

10bpm increment of heart rate there was 22% (HR: 1.22; 95% CI: 1.20, 1.24; p=3×10-123) greater 

hazard of all-cause mortality and 17% (SHR: 1.17; 95% CI: 1.13, 1.21; p=5.6×10-18) greater hazard of 

cardiovascular mortality; for women, corresponding figures were 19% (HR: 1.19; 95% CI: 1.16, 1.22; 

p=8.9×10-45) and 14% (SHR: 1.14; 95% CI: 1.07, 1.22; p=8.0×10-5). Associations between heart rate 

and ischaemic outcomes were of greater magnitude amongst men than women, but with similar 

magnitude of association for non-cardiovascular cancer mortality [men (SHR: 1.18; 95% CI: 1.15, 

1.21; p=5.2×10-46); women (SHR: 1.15; 95% CI: 1.11, 1.18; p=3.1×10-18)]. The magnitude of 

associations with all-cause, incident AMI, and cancer mortality was greater at younger than older 

ages. 

 

Conclusions: Resting heart rate is an independent predictor of mortality, with sex-, age-, and disease-

specific associations. Ischaemic cardiovascular diseases appeared an important driver of this 

relationship in men, but not in women. For both men and women, associations were more marked at 

younger ages. 
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3.2 Background 

Previous work suggests that resting heart rate may have potential as a low tech, inexpensive, and 

reliable risk predictor. Higher resting heart rate has been linked to greater risk of all-cause mortality in 

diverse healthy and disease cohorts104–108. There is consensus that for men, cardiovascular mortality is 

the main driver of excess mortality in this relationship. However, in women, the association of heart 

rate with cardiovascular mortality is inconsistently reported, ranging from a more pronounced 

relationship than men109 to a weakened or absent association110–113. 

 

Whilst sex differential patterns of cardiovascular disease are widely recognised9, potential sex specific 

associations of heart rate with cardiovascular mortality have not been adequately addressed. Women 

are under-represented in existing studies with several reports limited to men only cohorts114–116. 

Similarly, existing literature suggests a modifying effect of age, however findings from these reports 

are inconclusive117–119. Existing studies of the possible interaction effect of sex and age are limited by 

small sample sizes, lack of consideration of specific causes of death, and inadequate adjustment for 

confounders and competing outcomes. 

 

In this study, we report the sex, age, and cause-specific associations of resting heart rate with incident 

cardiovascular and mortality outcomes in the UK Biobank cohort. 

 

3.3 Methods 

3.3.1 Study population 

This analysis includes all UK Biobank participants who completed baseline assessment (n=502,534), 

further details on the cohort are presented in Section 2.1. 

 

3.3.2 Measurement of resting heart rate 

There was measurement and recording of resting heart rate at the baseline UK Biobank visit in 

accordance with a pre-defined standard operating procedure. The full protocol is published online120. 

Pulse rate was taken at the time of blood pressure measurement using the Omron 705 IT electronic 

blood pressure monitor (OMRON Healthcare Europe B.V. Kruisweg 577 2132 NA Hoofddorp). 

Participants were asked to sit with the soles of their feet resting on the floor, feet parallel to each 

other, and toes pointing forward. Researchers were instructed to avoid engaging in conversation with 

participants. Measurement was taken, preferably, from the left arm. In cases where using the left arm 
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was not possible (amputation, vascular shunt, axillary clearance), measurement was taken from the 

right arm. Tight or restrictive clothing on the upper arm was loosened or removed. The participant 

rested their arm on the desktop and was asked to take several slow relaxed breaths in and out. The 

circumference of the upper arm was measured at the midpoint to select the correct cuff size. The 

researcher started the measurement by selecting ‘start’ on the monitor; blood pressure and heart rate 

measures were generated by the machine and auto populated into the participants’ computer records. 

After obtaining one measurement, the inflation tube was disconnected from the monitor, the cuff 

remained in place but was allowed to fully deflate. The participant was asked to gently shake and 

open and close their hand. The blood pressure and pulse rate measurements were repeated after 

waiting for a minimum of one minute. There was an inbuilt timer in the measurement device, which 

ensured that it was not possible to take a second measurement before one minute has lapsed. In our 

analysis, we used the mean of the two heart rate readings. 

 

3.3.3 Ascertainment of outcomes 

We considered three main outcomes: all-cause mortality, cardiovascular disease mortality, and IHD 

mortality. The secondary outcomes included: incident AMI, fatal AMI, and cancer mortality. We 

considered outcomes occurring after baseline (2006–2010) to the latest available UK Biobank censor 

dates (mortality outcomes: 31/01/2018, incident AMI: 31/03/2017) giving follow-up duration of 7-12 

years. 

 

The mortality outcomes were ascertained from death register records of ‘primary cause of death’. For 

cardiovascular mortality, we included participants with record of primary cause of death due to any 

cardiovascular diseases defined from ICD codes as outlined in Section 2.2.3 and in Table 2.3. IHD 

mortality included deaths due to any manifestation of IHD as per ICD codes in Table 2.3. Incident 

and fatal AMI were derived from UK Biobank algorithmically defined outcomes, the outcome 

adjudication process for which is detailed in a dedicated document66. We considered cancer mortality 

as a secondary outcome representing a major cause of non-cardiovascular mortality, defined as 

primary cause of death due to any cancer. 

 

3.3.4 Statistical analysis 

Statistical analysis was with R studio version 3.6.0 [https://www.R-project.org/] and Stata version 

14 [StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP]. 

We modelled associations with all-cause mortality using Cox proportional hazard models. For all 

other outcomes, we used competing risk regression models, as per Fine and Gray67. Heart rate was 
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considered as a continuous exposure variable. Result of associations are reported as hazard ratios 

(HRs) for all-cause mortality and sub-distribution hazard ratios (SHRs) for all other outcomes per 10 

bpm (beats per minute) increase of heart rate, with corresponding 95% confidence intervals (CIs) and 

p-values. We tested for non-linearity of associations for all outcomes by comparing linear and non-

linear model fits. In cases where there was evidence of non-linearity, we further characterised the 

relationship using cubic spline models. 

 

3.3.5 Approach to covariate adjustment 

Confounders were identified a priori based on biological plausibility and existing literature and 

confirmed through preliminary analyses. We considered the following confounders as defined at 

baseline visit: age, sex, BMI, exercise level, smoking status, diabetes, hypertension, high cholesterol, 

deprivation, and heart rate modifying medications (Figure 3.1) The approach to ascertainment of 

covariates is as described in Section 2.2.2. Medications were self-reported by participants at baseline 

and coded by UK Biobank researchers. We considered ‘heart rate modifying medications’ as any 

formulation of beta-blockers, oral nitrates, non-dihydropyridine calcium channel blockers, 

amiodarone, digoxin, or flecainide. The full list of medications is presented in Table 3.1. We present 

models with sequential addition of covariates. There was no evidence of collinearity. Interactions with 

sex and age were investigated by adding interaction terms to the main models. Age and sex stratified 

analyses are presented for all outcomes. The threshold for statistical significance, for non-interaction 

regressions, was set at p=0.0008 after application of Bonferroni correction for multiple testing. 

 
Figure 3.1. Confounders considered in modelling association of resting heart rate and 

cardiovascular outcomes 
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Table 3.1. List of rate-modifying medications identified from self-report 

Oral betablocker preparations 
Atenolol 
bisoprolol 
metoprolol 
carvedilol 
propranolol 
inderal 10mg tablet 
apsolol 10mg tablet 
propanix 10mg tablet 
sotalol 
nebivolol 
dorzolamide+timolol 
atenolol+bendroflumethiazide 
latanoprost+timolol 
betaxolol 
atenolol+bendrofluazide 
nadolol 
prindolol 
Timolol  
ethambutolol 
pindolol 
atenolol+chlortalidone 
atenolol+nifedipine 50mg/20mg m/r capsule 
atenolol+chlorthalidone 
atenolol+co to amilozide 
nadolol+bendroflumethiazide 40mg/5mg tablet 
timolol maleate+bendroflumethiazide 10mg/2.5mg tablet 
bisoprolol fumarate+hydrochlorothiazide 10mg/6.25mg tablet 
celiprolol 
labetalol 
oxprenolol 
acebutolol 
propranolol hydrochloride+bendrofluazide 80mg/2.5mg capsule 
sotalol hydrochloride+hydrochlorothiazide 80mg/12.5mg tablet 
metoprolol tartrate+hydrochlorothiazide 100mg/12.5mg tablet 
beta to blocker 
tenormin 25 tablet 
bedranol 10mg tablet 
levobunolol 
sotalol hydrochloride+hydrochlorothiazide 80mg/12.5mg tablet 
propranolol hydrochloride+bendrofluazide 80mg/2.5mg capsule 
carteolol 
metoprolol tartrate+chlorthalidone 100mg/12.5mg tablet 
half beta to prograne 80mg m/r capsule 
beta to prograne 160mg m/r capsule 
timolol maleate+co to amilozide 10mg/2.5mg/25mg tablet 
cardinol 10mg tablet 
Non-dihydropyridine calcium channel blocker preparations 
cordilox 40mg tablet 
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adizem to xl plus m/r capsule 
diltiazem 
tildiem 60mg m/r tablet 
verapamil 
dilzem sr 60mg long acting m/r capsule 
diltiazem hcl+hydrochlorothiazide 150mg/12.5mg m/r capsule 
adizem to 60 m/r tablet 
slozem 120mg m/r capsule 
viazem xl 120mg m/r capsule 
zemtard 120 xl m/r capsule 
metazem 60mg m/r tablet 
bi to carzem sr 60mg m/r capsule 
adizem to xl plus m/r capsule 
Angitil sr 90 m/r capsule 
Oral nitrate preparations (excluding GTN spray/sl) 
mycardol 30mg tablet 
elantan 10 tablet 
isosorbide mononitrate 
ismn  to  isosorbide mononitrate 
imdur 60mg durule 
half to inderal la 80mg m/r capsule 
isosorbide dinitrate 
ismo  to  isosorbide mononitrate 
isosorbide mononitrate product 
xismox xl 60 m/r tablet 
monomil xl 60mg m/r tablet 
monomax sr 40 m/r capsule 
isib 20mg tablet 
ismo 10 tablet 
isdn  to  isosorbide dinitrate 
Other rate modifying drugs  
amiodarone 
digoxin 
flecainide 
digoxin product 
medigoxin 

 

3.4 Results 

3.4.1 Baseline population characteristics 

From the 502,534 participants who completed baseline assessment, resting heart rate was recorded for 

501,331 individuals (missing for 0.002%, n=1,203) all of whom were included in the analysis. Thus, 

the analysis sample comprised 228,594 men and 272,737 women. Men and women had comparable 

median ages of 58 [50-64] years and 57 [50-63] years respectively. The mean heart rate for women 

was 70.3 (10.6) bpm, slightly higher than the average for men at 68.4 (11.9) bpm. There were higher 

rates of all vascular risk factors in men compared to women: smoking 13% vs 9%, diabetes 7% vs 
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4%, hypertension 33% vs 24%, high cholesterol 24% vs 14%. Detailed baseline characteristics are 

presented in Table 3.2. 

Table 3.2. Baseline participant characteristics 

Table 3.2. Results are mean (standard deviation), number (percentage), or median [interquartile 

range]. AMI: acute myocardial infarction; bpm: beats per minute; MET: metabolic equivalent 

minutes. 

 

3.4.2 Follow up and number of events 

Median duration of follow-up from baseline was 9.0 [8.2-9.7] years for mortality outcomes and 8.1 

[7.5-8.8] years for incident AMI. In this period, 20,126 deaths and 8,605 cases of incident AMI were 

recorded. Full details of observed events are presented in Table 3.3. 

 

Table 3.3. Observed events during the study period for the whole cohort, and separately for 

men and women 

 

 

 

 

 

 

 

 

 

Table 3.3. Results are presented as number of outcomes (percentage). AMI: acute myocardial 

infarction; CVD: cardiovascular disease; IHD: ischaemic heart disease; IQR: interquartile range. 

 Whole cohort 
n= 501,331 

Men 
n=228,594 

Women 
n=272,737 

Age (years) 56.5(8.1) 56.7 (8.2) 56.3 (8.0) 
Townsend score -1.29 (3.10) -1.25 (3.16) -1.33 (3.04) 
Current smoker 52979 (10.6%) 28612 (12.5%) 24367 (8.9%) 
Body mass index (kg/m2) 27.4 (4.8) 27.8 (4.3) 27.1 (5.2) 
Systolic blood pressure (mmHg) 137.9 (18.7) 140.9 (17.5) 135.3 (19.2) 
Diastolic blood pressure (mmHg) 82.3 (10.1) 84.1 (10.0) 80.7 (10.0) 
Diabetes 26,833 (5.3%) 16,271 (7.1%) 10,562 (3.9%) 
Hypertension 141,019 (28.1%) 74,803 (32.6%) 66,216 (24.2%) 
Hypercholesterolaemia 93,822 (18.7%) 55,722 (24.3%) 38,100 (13.9%) 
Resting heart rate (bpm) 69.4 (11.3) 68.4 (11.9) 70.3 (10.6) 
Physical Activity (MET/week) 
 

2043.5 (2239.5) 
1370 [648 to 2586] 

2191.6 (2490.4) 
1413 [658 to 2772] 

1907.0 (1970.5) 
1308 [636 to 2445] 

 
Whole cohort 
(n= 501,331) 

Men 
(n=228,594) 

Women 
(n=272,737) 

All-cause mortality 20,126 (4.0%) 12,137 (5.3%) 7,989 (2.9%) 
CVD mortality 4,197 (0.8%) 3,069 (1.3%) 1,128 (0.4%) 
IHD mortality 2,285 (0.5%) 1,877 (0.8%) 408 (0.1%) 
Fatal AMI  920 (0.2%) 741 (0.3%) 179 (0.1%) 
Incident AMI 8,605 (1.7%) 6,069 (2.7%) 2,536 (0.9%) 
Cancer mortality 11,167 (2.2%) 6,041 (2.6%) 5,126 (1.9%) 
Follow-up (days) 
median [IQR] 
 
Death 
AMI 

 
 

 
9.0 [8.2-9.7] 
8.1 [7.5-8.8] 

 
 
 

8.9 [8.2-9.7] 
8.1 [7.4-8.8] 

 
 
 

9.0 [8.3-9.7] 
8.2 [7.5-8.8] 
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3.4.3 Association between resting heart rate and all-cause mortality 

Higher resting heart rate was associated with greater hazard of all-cause mortality in both men and 

women (Table 3.4). In fully adjusted models, a 10-bpm increase of heart rate was associated with 

22% (HR 1.22, CI 1.20-1.24, p=3 ×10-123) greater hazard of all-cause mortality in men and 19% (HR 

1.19, CI 1.16-1.22, p=8.9 ×10-45) greater hazard in women. 

 

3.4.4 Association between resting heart rate and cardiovascular outcomes 

Higher resting heart rate was associated with increased hazard of cardiovascular disease mortality in 

both men and women (Table 3.4). In men, every 10-bpm increase in heart rate was associated with 17% 

(SHR 1.17, CI 1.13-1.21, p-value 5.6 ×10-18) greater hazard of cardiovascular disease mortality in men 

and 14% (SHR 1.14, CI 1.07-1.22, p-value 0.00008) greater hazard in women. For men, ischaemic 

aetiology was a significant driver of this relationship: 14% (SHR 1.14, CI 1.09-1.19, p-value 1.2 ×10-

8) greater hazard of IHD mortality, 5% (SHR 1.05, CI 1.02-1.07, p-value 0.0003) greater hazard of 

incident AMI, and 12% (SHR 1.12, CI 1.05-1.21, p-value 0.002) greater hazard of fatal AMI per 10 

bpm increment of resting heart rate (Table 3.4). For women, there were no statistically significant 

associations between resting heart rate and IHD mortality or fatal AMI. 
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Table 3.4. Cox proportional hazard models and sub-distribution hazard models for resting heart rate-outcome relationships 

Outcomes Model 1: Univariate  Model 2: Age  
 

Model 3: Age, 
smoking, exercise, 
BMI  

Model 4: Model 3 + 
CVD risk factors*  

Model 5: Model 4 + rate 
modifying medications** 

All-cause mortality   
Men 1.25 (1.24 to 1.27) 1.26 (1.24 to 1.28) 1.21 (1.19 to 1.23) 1.19 (1.17 to 1.21) 1.22 (1.20 to 1.24) 
p-value 2.5 ×10-228 6.7 ×10-246 5.2 ×10-122 7.9 ×10-95 3.0 ×10-123 
Women 1.25 (1.23 to 1.28) 1.22 (1.20 to 1.25) 1.16 (1.14 to 1.19) 1.15 (1.13 to 1.18) 1.19 (1.16 to 1.22) 
p-value 7.2 ×10-119 1.2 ×10-98 2.6 ×10-35 4.4 ×10-32 8.9 ×10-45 
CVD mortality  
Men 1.21 (1.18 to 1.25) 1.22 (1.18 to 1.25) 1.14 (1.10 to 1.18) 1.10 (1.06 to 1.14) 1.17 (1.13 to 1.21) 
p-value 4.6 ×10-37 4.0 ×10-41 1.9 ×10-12 6.0 ×10-8 5.6 ×10-18 
Women 1.22 (1.16 to 1.29) 1.19 (1.13 to 1.26) 1.08 (1.01 to 1.17) 1.07 (1.00 to 1.15) 1.14 (1.07 to 1.22) 
p-value 5.6 ×10-13 9.2 ×10-11 0.028 0.042 0.00008 
IHD mortality      
Men 1.18 (1.14 to 1.23) 1.19 (1.14 to 1.23) 1.10 (1.05 to 1.15) 1.06 (1.01 to 1.11) 1.14 (1.09 to 1.19) 
p-value 4.0 ×10-17 5.1 ×10-19 0.0001 0.015 1.2 ×10-8 
Women 1.19 (1.08 to 1.30) 1.16 (1.06 to 1.27) 1.02 (0.87 to 1.12) 0.98 (0.87 to 1.10) 1.06 (0.94 to 1.18) 
p-value  0.0004 0.002 0.82 0.67 0.36 
Fatal AMI  
Men 1.16 (1.09 to 1.23) 1.17 (1.10 to 1.24) 1.08(1.00 to 1.16) 1.05 (0.98 to 1.12) 1.12 (1.05 to 1.21) 
p-value 1.4 ×10-6 2.7 ×10-7 0.044 0.21 0.002 
Women 1.05 (0.90 to 1.22) 1.03 (0.97 to 1.33) 0.85 (0.70 to 1.04) 0.85 (0.70 to 1.03) 0.92 (0.77 to 1.10) 
p-value 0.52 0.70 0.11 0.09 0.36 
Incident AMI  
Men 1.09 (1.07 to 1.11) 1.09 (1.07 to 1.11) 1.04 (1.01 to 1.06) 1.01 (0.99 to 1.04) 1.05 (1.02 to 1.07) 
p-value 1.1 ×10-15 6.7 ×10-16 0.007 0.36 0.0003 
Women 1.08 (1.04 to 1.13) 1.06 (1.02. to 1.11) 1.00 (0.95 to 1.05) 0.99 (0.94 to 1.04) 1.03 (0.98 to 1.08) 
p-value 0.0001 0.002 0.89 0.72 0.28 
Cancer mortality  
Men 1.20 (1.18 to 1.23) 1.21 (1.18 to 1.23) 1.18 (1.16 to 1.21) 1.17 (1.14 to 1.20) 1.18 (1.15 to 1.21) 
p-value 9.9 ×10-75 7.9 ×10-83 1.6 ×10-48 1.8 ×10-42 5.2 ×10-46 
Women 1.20 (1.17 to 1.23) 1.17 (1.15 to 1.20) 1.14 (1.11 to 1.18) 1.14 (1.10 to 1.17) 1.15 (1.11 to 1.18) 
p-value 6.8 ×10-48 6.4 ×10-39 2.9 ×10-17 1.7 ×10-16 3.1 ×10-18 

Table 3.4. Results are hazard ratio (95% confidence interval) for all-cause mortality and sub-distribution hazard ratio (95% confidence interval) for all other outcomes per 

10 beat per minute increase in resting heart rate. Significance level is p-value <0.0008. Those with prevalent MI have been excluded from analysis of incident AMI and fatal 

AMI. 
*
CVD risk factors: diabetes, hypertension, hypercholesterolaemia, deprivation. 

**
rate modifying medications include: betablockers, non-dihydropyridine calcium 

channel blockers, oral nitrates, digoxin, flecainide, amiodarone. AMI: acute myocardial infarction; BMI: body mass index; CVD: cardiovascular disease; IHD: ischaemic 

heart disease. 
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3.4.5 Non-linearity of association with AMI 

There was evidence of non-linearity for the association between resting heart rate and incident AMI in 

women (non-linear vs linear model: p-value=0.002, Table 3.5). Restricted spline models 

demonstrated a U-shaped relationship for this association. We further illustrated this relationship 

using stratified analysis by quintiles of heart rate (Table 3.6). For women, there was significantly 

increased hazard of incident AMI in the highest and lowest quintiles when compared to the middle 

quintile (Table 3.6). 

 

There was no evidence of significant non-linearity in the association of resting heart rate with any of 

the other outcomes, or with incident AMI in men (Table 3.5, Table 3.6). 

 

Table 3.5. Testing for non-linearity of the resting heart rate-outcome relationships 

 p-value non-linear vs. linear model 
All-cause mortality  0.39 
Men 0.94 
Women 0.13 
CVD mortality 0.11 
Men 0.21 
Women 0.38 
IHD mortality 0.06 
Men 0.14 
Women 0.21 
AMI mortality 0.78 
Men 0.69 
Women 0.66 
Incident AMI 0.03 
Men 0.53 
Women 0.002 
Cancer mortality 0.59 
Men 0.32 
Women 0.41 

Table 3.5. Results are from the fully adjusted model, including following covariates: age, diabetes, 

hypertension, hypercholesterolaemia, smoking, BMI, Townsend deprivation index, and rate modifying 

medications. AMI: acute myocardial infarction; CVD: cardiovascular disease; IHD: ischaemic heart 

disease. 
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Table 3.6. The association of resting heart rate with incident acute myocardial infarction in 

quintiles for men and women 

 Hazard ratio (95% confidence interval) 
heart rate (bpm) <59 59-64 65-70 71-77 ≥78 
Men 0.96 (0.87-1.06) 0.97 (0.88-1.06) 1.00 1.06 (0.96-1.16) 1.15 (1.05-1.27) 
heart rate (bpm) <62 62-67 68-72 73-78 ≥79 
Women 1.21 (1.02-1.42) 1.08 (0.91-1.28) 1.00 1.16 (0.98-1.36) 1.22 (1.04-1.43) 

Table 3.6. Results are hazard ratio as compared to the middle quintile, fully adjusted model (age, 

smoking, body mass index, exercise, diabetes, hypertension, hypercholesterolaemia, smoking, 

deprivation, rate modifying medications). AMI: acute myocardial infarction; bpm: beats per minute. 

 

3.4.5.1 Association between resting heart rate and cancer mortality 

Higher resting heart rate was associated with significantly greater hazard of cancer mortality in both 

men and women (Table 3.4). Every 10 bpm increase of resting heart rate was associated with 18% 

(SHR 1.18, CI 1.15-1.21, p-value 5.2 ×10-46) greater hazard of cancer mortality in men and 15% 

(SHR 1.15, CI 1.11-1.18, p-value 3.1 ×10-18) greater hazard in women. 

 

3.4.6 Modifying effect of age 

We tested the potential interaction of effect of age in fully adjusted models. There was evidence of 

significant interaction effect of age in associations with all-cause mortality, cancer mortality, and 

incident AMI (Table 3.7). For ease of interpretation, we present hazard ratios by age group in even 

deciles: <50years, 50-59years, >60years. In age-stratified analyses (Table 3.7), there was a significant 

trend for greater effect size in younger participants for all-cause mortality [HR 1.30 (1.24-1.36) <50 

years-old vs 1.15 (1.13-1.16) ≥60 years-old] and cancer mortality [HR 1.21 (1.13-1.30) <50 years-old 

vs 1.15 (1.13-1.18) ≥60 years-old]. Similarly, for incident AMI, the association was attenuated in the 

oldest age category [HR: 1.14 (1.06-1.22) <50 years-old vs 1.02 (0.99-1.05) ≥60 years-old]. 
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Table 3.7. Age interactions and age stratified analyses for all outcomes 

Outcome  Age group 
(years) 

n HR (95% CI)* interaction term p-
value (age-heart rate) 

All-cause mortality <50 
50-59 
≥60 

117,535 
166,778 
217,018 

1.30 (1.24 to 1.36) 
1.26 (1.22 to 1.29) 
1.15 (1.13 to 1.16) 

9.5 ×10-15 

CVD mortality  <50 
50 to 59 
≥60 

117,535 
166,778 
217,018 

1.11 (0.99 to 1.24) 
1.28 (1.21 to 1.36) 
1.15 (1.11 to 1.20) 

0.15 

IHD mortality  <50 
50 to 59 
≥60 

117,535 
166,778 
217,018 

1.06 (0.91 to 1.24) 
1.24 (1.15 to 1.34) 
1.11 (1.06 to 1.17) 

0.51 

Incident AMI  <50 
50 to 59 
≥60 

116,875 
164,030 
208,372 

1.14 (1.06 to 1.22) 
1.06 (1.02 to 1.10) 
1.02 (0.99 to 1.05) 

0.0004 

Fatal AMI   <50 
50 to 59 
≥60 

117,535 
166,778 
217,018 

1.09 (0.84 to 1.40) 
1.26 (1.11 to 1.43) 
1.05 (0.97 to 1.14) 

0.09 

Cancer mortality <50 
50-59 
≥60 

117,535 
166,778 
217,018 

1.21 (1.13 to 1.30) 
1.22 (1.18 to 1.26) 
1.15 (1.13 to 1.18) 

0.0007 

Table 3.7. Results are Hazard ratio (95% Confidence interval) per 10 bpm increase in heart rate. 

AMI: acute myocardial infarction; CI: confidence interval; CVD: cardiovascular disease; HR: 

hazard ratio; IHD: ischaemic heart disease. 

 

3.5 Summary of findings 

In this analysis of 228,594 men and 272,737 women with 7–12 years of prospective follow-up, we 

demonstrate the association of higher baseline resting heart rate with all-cause mortality and 

cardiovascular disease mortality in both men and women, independent of a wide range of 

confounders. For men, ischaemic cardiac events were a significant and consistent driver of this 

association. However, for women, there was no significant association between resting heart rate and 

IHD mortality or fatal AMI and there was a non-linear (U-shaped) relationship with incident AMI. 

Notably, for both men and women, the mortality association is not entirely explained by 

cardiovascular events. We demonstrate significant associations between higher resting heart rate and 

cancer mortality. With regards the modifying effect of age, the effect of resting heart rate appeared 

greater in younger individuals for all-cause mortality, cancer mortality, and incident AMI. 

 

3.6 Discussion 

3.6.1 Comparison with existing literature 

Multiple studies have demonstrated the association of higher resting heart rate with greater mortality 

risk 104–107. Our findings confirm these reports and provide added insight into sex and disease specific 

associations. In existing work, there is general agreement that greater cardiovascular mortality is a 
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major driver of the heart rate-mortality association in men114–116, reports in women are inconsistent109–

113. Furthermore, whilst in men these associations have been attributed to ischaemic cardiovascular 

outcomes, there are conflicting reports in women109–111.  

 

In a large population study, Tverdal et al.113 report no significant association between resting heart 

rate and cardiovascular mortality or IHD mortality in women. In contrast, in a prospective cohort of 

129,135 women, Hsia et al.121 report association of higher resting heart rate with greater risk of 

incident ischaemic cardiovascular events (composite of AMI and IHD mortality). The findings of 

Hsai et al.121 are consistent with several smaller studies111,119,122. A pooled analysis of 12 cohort 

studies, documents, in women, a positive association of resting heart rate with cardiovascular 

mortality but no significant association with ischaemic cardiovascular outcomes118. Our analysis, in 

the largest cohort studied internationally, demonstrates association of higher resting heart rate with 

greater all-cause mortality and cardiovascular mortality for both men and women. With regards 

specific link to IHD events, we demonstrate significant positive association between resting heart rate 

and IHD outcomes (incident AMI, fatal AMI, IHD mortality) in men, but not in women. This may 

indicate a disease-specific association for men. However, it may also reflect differences in the number 

of ischaemic events observed in men and women (Table 3.3). As there were notably fewer ischaemic 

events in women compared to men, we may have been underpowered to detect specific associations 

for these outcomes in women. Similar limitations may explain some of the inconsistencies observed 

in existing literature. The disease-specific associations likely reflect sex-differential pattern of 

cardiovascular diseases in middle age, rather than biological differences, although the latter cannot be 

ruled out. Overall, our results indicate that resting heart rate could be a useful indicator of 

cardiovascular risk for both men and women. 

 

Several studies suggest a possible differential effect of resting heart rate on mortality outcomes by 

age, however there are inconsistencies in reports of the nature of this relationship112,114,117. For 

example, whilst several studies demonstrate larger effect at younger ages 118,119, others have suggested 

that effects are larger for older ages117, and some report no differential relationship with age112. 

Overall, our findings from a much larger cohort indicate larger effects at younger ages. However, this 

relationship was less clear for cardiovascular disease mortality, IHD mortality, or fatal AMI 

outcomes. For these, the greatest magnitude of effect was seen in the middle age band, rather than a 

linear attenuation of effects with age. The interaction effect of age on incident AMI was convincing, 

and showed greater relative magnitude compared to all-cause mortality. It is possible, that age may 

influence the association between heart rate and incident AMI, but once an AMI has occurred, the 

subsequent mortality risk is less dependent on or differently influenced by prior resting heart rate. It is 
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also possible that the relationships with cardiovascular mortality are modified by medications which 

strongly influence heart rate (e.g. beta blockers). Although, we attempt to account for the influence of 

rate-modifying medications in our analysis, ascertaining this information based on self-report at a 

single time point likely does not fully capture the participants medication use and is subject to 

inaccuracies.  

 

3.6.2 Possible biological mechanisms 

Limited studies have proposed mechanisms by which the association between heart rate and 

cardiovascular outcomes may be explained (Figure 3.2). It has been suggested that faster resting heart 

rates have adverse haemodynamic consequences123,124, which promote pathological arterial and 

myocardial remodelling, thereby increasing the likelihood of atherogenesis and heart failure 

syndromes. Higher resting heart rate may be driven by variations in autonomic system balance and 

greater background sympathetic tone125. These observations are in line with the growing body of 

evidence in support of the interconnectedness of heart and brain health. It is also possible that higher 

resting heart rate is downstream of other systemic biological processes, such as, inflammatory 

cascades. These processes may themselves be the causal agents in promoting cardiovascular disease 

(heart rate is a proxy indicator of these processes) or they may act through the adverse haemodynamic 

related to higher heart rate (heart rate is the mediator). It is of course also possible, that higher resting 

heart rate is a consequence of subclinical cardiovascular disease. 

 

Figure 3.2. Possible mechanisms for the association of higher resting heart rate with increased 
cardiovascular mortality 
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3.7 Critical appraisal of the results 

In this study, we observed association of higher baseline resting heart rate with incident mortality and 

first occurrence of cardiovascular outcomes over 7-12 years follow-up, whilst adjusting for a range of 

confounders. Our findings are broadly consistent with previous studies, whilst providing more 

granularity regarding the sex and disease specific nature of these relationships. Measurement of the 

exposure (heart rate) was with standardised uniform equipment and according to a pre-defined 

protocol. The outcomes considered are unambiguous and their ascertainment through data linkage 

with death register data is highly reliable. Considering biological plausibility (as outlined in section 

3.6.2), a multitude of systemic physiological stressors linked to poorer health status may manifest as 

an elevation of resting heart rate. Thus, resting heart rate may plausibly be an early indicator of 

adverse health outcomes. In our study, the long temporal separation of the heart rate measurement 

from the incident events and the nature of events considered (mortality), means that reverse causation 

is highly unlikely for the events of interest. There are, inevitably, imperfections in measurement of 

potential confounders, which mean that we cannot exclude the possibility of residual confounding. 

These are in part limited by the nature of recording of variables in the UK Biobank (e.g., smoking 

status reported as a categorical rather than continuous variable). Overall, the relationships between 

resting heart rate and the incident events considered are likely an indirect causal relationship, with 

higher heart rate possibly a downstream effect of other biological factors. 

 

3.8 Conclusions 

We demonstrate in this large, well characterised cohort, the sex-, age-, and disease-specific aspects of 

the relationship between higher resting heart rate and greater risk of cardiovascular mortality 

outcomes. Our findings confirm resting heart rate as an independent predictor of all-cause and 

cardiovascular disease mortality for both men and women. In men, ischaemic outcomes were 

important and consistent drivers of the relationship. The association with ischaemic cardiac events 

was less convincing for women, perhaps due to fewer ischaemic events; suggesting that for this age 

group of women, non-ischaemic outcomes were more significant drivers of the relationship between 

resting heart rate and cardiovascular mortality. In conclusion, our findings in the largest cohort 

studied internationally to date, support consideration of resting heart rate as a risk indicator for 

cardiovascular outcomes in men and women.  
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4 Cardiovascular phenotypes and cognitive performance 

4.1 Abstract 

Objectives: Previous work indicates links between heart and brain health. We evaluated relationships 

between CMR phenotypes and cognition in 29763 UK Biobank participants. 

 

Methods and results: We included individuals with CMR and cognitive function testing. We 

included the fluid intelligence score (FI, 13 verbal-numeric reasoning questions), and reaction time 

(RT, a timed pairs matching exercise). Both were treated as continuous variables in models. We 

considered the following CMR measures: LV and RV volumes in end-diastole and end-systole, LV 

and RV ejection fractions, LV and RV stroke volumes, LV mass, and aortic distensibility. We used 

multivariable linear regression models to estimate the association of each CMR metric with FI and 

RT, adjusting for age, sex, smoking, education, deprivation, diabetes, hypertension, high cholesterol, 

previous MI, alcohol consumption, and physical activity. We report standardised beta-coefficients, 

95% CIs, and p-values with multiple testing adjustment. In this predominantly healthy cohort of 

middle-aged adults (average age 63.0±7.5 years), better cognition (higher FI, lower RT) was linked to 

larger LV/RV volumes, higher LV/RV stroke volumes, greater LV mass, and greater aortic 

distensibility, in fully adjusted models. There was suggestion of non-linearity in the association 

between FI and LV end-systolic volume, with reversal of the direction of association at very high 

volumes. These relationships were consistent for men and women and across different ages. 

 

Conclusions: Better cognition is associated with CMR measures likely representing a healthier 

cardiovascular phenotype. These relationships appeared significant after adjustment for a range of 

metabolic morbidities, lifestyle habits, and demographic variables, suggesting mediation of the 

relationship through novel biological pathways. 
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4.2 Background 

Increased life expectancy and global trends of population aging present significant public health 

challenges126. Age-related cognitive decline and related illnesses have been highlighted as a public 

health priority by the World Health Organisation127. The worldwide cost of dementia is estimated at 

1% of the aggregated world gross domestic product (GDP)128. Trends in dementia are expected to 

increase to epidemic levels with projected quadrupling of the prevalence by 2050129,130. However, our 

understanding of cerebral aging is limited. As a result, current disease prediction, treatment, and 

prevention strategies are inadequate. 

 

Existing work suggests interactions across heart-brain organ systems with potential inter-related 

disease mechanisms. There is evidence to suggest that the brain may be a target for end-organ damage 

from cardiovascular disease and risk factors131. Indeed, cardiometabolic illnesses have been linked to 

more rapid decline in cognitive ability132,133 and their optimised management with decelerated 

progression of dementia134. Cardiovascular risk factors have been associated with both vascular135 and 

Alzheimer’s dementia133. In people without dementia, vascular risk factors are linked to worse 

cognitive performance, with an incremental effect from increasing number of risk factors136. 

Furthermore, cardiovascular risk factors are associated with poorer brain health across grey and white 

matter macrostructure and microstructure assessed on brain magnetic resonance imaging137. 

 

There is support for common heart-brain disease pathways mediated by atherosclerosis131. However, 

the precise mechanisms by which cardiovascular diseases and risk factors may cause cognitive 

impairment are incompletely understood, and it is not known if alternative mechanisms may play a 

role in the observed associations. Exploring the relationship between cognitive performance and 

indices of cardiovascular structure and function may provide novel insights into these relationships 

and their underlying mechanisms; however, to date, this has not been studied in large cohorts. 

 

We investigate the association of CMR measures of cardiovascular structure and function with 

measures of cognitive performance in the UK Biobank. We hypothesised that poorer cognitive 

function would be associated with adverse CMR phenotypes. 

 

4.3 Methods 

4.3.1 Study population 

This analysis includes UK Biobank participants with CMR and cognitive performance testing data 

available. Further information about the study population is detailed in Section 2.1. Participants with 

dementia were excluded. 
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4.3.2 Measures of cognitive function 

We selected two components from the UK Biobank cognitive function assessment, fluid intelligence 

(FI) and reaction time (RT), based on biological relevance and repeatability. The FI test is designed to 

assess problem solving capabilities using logic and reasoning independent of acquired knowledge. RT 

is a measure of attention, reaction speed, and raw processing speed. Together these measures provide 

a broad assessment of cognitive performance across a range of different processes. In addition, for 

both measures, internal consistency and longitudinal stability has been demonstrated in previous 

publications138,139. Furthermore, the availability of these data points for a large subset of the UK 

Biobank imaging cohort, ensures adequately powered analyses of associations with CMR phenotypes. 

 

4.3.3 Fluid intelligence 

Assessment of FI in the UK Biobank comprised a series of 13 verbal numeric questions to be 

completed within a 2-minute time limit (Table 4.1). A point is awarded for each correct answer. 

There is no negative marking; unanswered or incorrect answers score zero. The final score is the sum 

of correct answers, the maximum possible score is 13 with higher scores indicating higher FI and 

better cognition. The full protocol for FI assessment in UK Biobank is available in a dedicated 

document140. The Cronbach alpha reliability (internal consistency) score for this test is 0.62138. As the 

FI variable in our sample was normally distributed, we treated it as a continuous numerical variable 

for the purpose of modelling, as per established methods141. 

 

Table 4.1. Fluid intelligence assessment questions 

Question Multiple choice options 
Add the following numbers together: 1 2 3 4 5, is the 
answer?  

13, 14, 15, 16, 17, Do not know, Prefer not to answer  

Which number is the largest?  642, 308, 987, 714, 253, Do not know, Prefer not to 
answer  

Bud is to flower as child is to?  Grow, Develop, Improve, Adult, Old, Do not know, 
Prefer not to answer  

11 12 13 14 15 16 17 18; Divide the sixth number to 
the right of twelve by three. Is the answer?  

5, 6, 7, 8, Do not know, Prefer not to answer  

If Truda’s mother’s brother is Tim’s sister’s father, 
what relation is Truda to Tim? 

Aunt, Sister, Niece, Cousin, No relation, Do not 
know, Prefer not to answer  

If sixty is more than half of seventy-five, multiply 
twenty- three by three. If not subtract 15 from eighty-
five. Is the answer?  

68, 69, 70, 71, 72, Do not know, Prefer not to answer  

Stop means the same as?  Pause, Close, Cease, Break, Rest, Do not know, 
Prefer not to answer  

If David is twenty-one and Owen is nineteen and 
Daniel is nine years younger than David, what is half 
their combined age?  

25, 26, 27, 28, 29, Do not know, Prefer not to answer 

Age is to years as height is to?  Long, Deep, Top, Metres, Tall, Do not know, Prefer 
not to answer  

150...137...125...114...104... What comes next?  96, 95, 94, 93, 92, Do not know, Prefer not to answer  
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Question Multiple choice options 
Relaxed means the opposite of?  Calm, Anxious, Cool, Worried, Tense, Do not know, 

Prefer not to answer  
100...99...95...86...70... What comes next?  50, 49, 48, 47, 46, 45, Do not know, Prefer not to 

answer 
If some flinks are plinks and some plinks are stinks 
then some flinks are definitely stinks?  

False, True, Neither true nor false, Not sure, Do not 
know, Prefer not to answer  

4.3.4 Reaction time 

The RT assessment comprised a pairs matching exercise. Participants were asked to press a button as 

soon as two identical cards (a match) appeared on the screen (Figure 4.1). The button was positioned 

under the dominant hand of the participant. Two cards were displayed on the screen at the same time. 

The exercise included a total of 12 card pairs (rounds). There was no time limit and no option to skip 

rounds. The RT variable is a derived variable representing the mean time in milliseconds (ms) to 

identify correct matches (i.e., mean time to press the button in cases where the card symbols 

matched). The first 4 rounds were considered as “training” and are not included in the calculation of 

the derived mean RT. 

 

Figure 4.1. In the UK Biobank reaction time was tested by measuring time to identifying 

matching cards as they appeared on a screen 

 

 

 

 

 

 

 

Figure 4.1. Reproduced with permission from UK Biobank cognitive function, resources, available 

at: http://biobank.ctsu.ox.ac.uk/crystal/crystal/images/ukb_snap.jpg 

 

4.3.5 CMR image acquisition and analysis 

The UK Biobank imaging study imaging protocol includes dedicated CMR scanning. The acquisition 

protocol is detailed in Section 2.1.6. We considered LV and RV quantification metrics and AD, with 

image analysis as described in Section 2.2.5.1 and Section 2.2.6.1, respectively. Thus, the following 

CMR measures were available for inclusion in the analysis: LV and RV volumes in end-diastole and 
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end-systole, LV and RV ejection fraction, LV and RV stroke volume, LV mass, AD (measured at the 

proximal descending aorta). 

 

4.3.6 Statistical analysis 

Statistical analysis was with R version 3.6.2142 and RStudio Version 1.3.1093143. Participants with 

history of dementia, as ascertained from UK Biobank algorithmically defined health outcomes, were 

excluded. We estimated the association of CMR measures with measures of cognitive function (FI 

and RT). Based on existing evidence and biological plausibility, we selected a priori the following 

covariates: age, sex, smoking, alcohol intake, exercise level, education, deprivation, diabetes, 

hypertension, hypercholesterolaemia, and prior myocardial infarction (Figure 4.2). There was no 

evidence of multicollinearity (VIF <2). We report standardised beta-coefficients with corresponding 

95% CIs and p-values. Therefore, results presented are standard deviation change in FI or RT per one 

SD increase in CMR measure. To account for multiple testing, p-values were corrected using the 

Benjamin Hochberg method, setting a conservative false discovery rate of below 5%144. Results are 

presented for the whole sample and separately for men and women. We test for evidence of 

interaction by age or sex. We used squared and cubic polynomial terms to screen all models for 

evidence of non-linearity. 

 

Figure 4.2. Covariates considered in the association between cognitive performance and 

cardiovascular phenotypes 

 

 

 

 

 

 

 

 

 

 

 

4.3.7 Ascertainment of covariates 

We used age and sex as recorded at the imaging visit. Smoking status, alcohol intake, exercise level, 

education, deprivation, hypertension, high cholesterol, and diabetes were ascertained as detailed in 

Confounders: 
Age 
Sex 

Smoking 
Diabetes 

Hypertension 
High cholesterol 

Prior myocardial infarction 
Alcohol intake 
Exercise level 

Education 
Deprivation 

Outcome:  
Cognitive 

performance 

Exposure: 
Cardiovascular structure 

and function 
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Section 2.2.2 and Section 2.2.3. Prior myocardial infarction was ascertained from UK Biobank 

algorithmically defined outcome data45. 

 

4.4 Results 

4.4.1 Baseline population characteristics 

There were 32,107 participants with CMR data and without dementia. Of these, FI and RT were 

available for 29,243 and 29,683 participants respectively. There were in total 29,763 participants with 

CMR data and at least one cognitive function measure, comprising 14,379 men and 15,384 women 

(Table 4.2). Mean age was 63.0 (± 7.5) years. Average FI and RT were 6.7 (± 2.1) items and 573 

[518, 644] ms respectively. 

 

Table 4.2. Baseline population characteristics 
 

Whole cohort 
(n= 29,763) 

Men 
 (n= 14,379; 48.3%) 

Women 
 (n= 15,384; 51.7%) 

Age at imaging 63.0 (±7.5) 63.7 (±7.6) 62.4 (±7.3) 
Current smoker 1,851 (6.2%) 1,066 (7.4%) 785 (5.1%) 
Education:    

Left school age ≤14 years 
without qualifications 

75 (0.3%) 42 (0.3%) 33 (0.2%) 

Left school at age ≥15 without 
qualifications 

1,981 (6.7%)  954 (6.6%) 1,027 (6.7%) 

High school diploma or 
equivalent 

3,900 (13.1%) 1,500 (10.4%) 2,400 (15.6%) 

Sixth form qualification or 
equivalent 

1,691 (5.7%) 751 (5.2%) 940 (6.1%) 

Professional qualification  8,283 (27.8%) 4,198 (29.2%) 4,085 (26.6%) 
Higher education university 
degree 

13,526 (45.4%) 6,782 (47.2%) 6,744 (43.8%) 

Townsend score -2.7 [-3.9, -0.7] -2.7 [-4.0, -0.7] -2.6 [-3.9, -0.6] 
Exercise level (MET minutes/week) 1,530 [671, 3,016] 1,590 [693, 3,111] 1,464 [642, 2,933] 
Alcohol intake    

Daily or almost daily 6,554 (22.0%) 3,832 (26.6%) 2,722 (17.7%) 
Three or four times a week 8,426 (28.3%) 4,388 (30.5%) 4,038 (26.2%) 
Once or twice a week 7,731 (26.0%) 3,632 (25.3%) 4,099 (26.6%) 
One to three times a month 3,223 (10.8%) 1,227 (8.5%) 1,996 (13.0%) 
Special occasions only 2,423 (8.1%)   717 (5.0%) 1,706 (11.1%) 
Never 1,390 (4.7%)   574 (4.0%)   816 (5.3%) 

Diabetes 893 (3.0%) 581 (4.0%) 312 (2.0%) 
Hypertension 4,016 (13.5%) 2,417 (16.8%) 1,599 (10.4%) 
High cholesterol 6,640 (22.3%) 3,616 (25.1%) 3,024 (19.7%) 
Prior MI 590 (2.0%) 494 (3.4%) 96 (0.6%) 
Fluid intelligence (items) 6.7 (±2.1) 6.8 (±2.1) 6.5 (±2.0) 
Reaction time (ms) 573 [518, 644] 565 [510, 636] 581 [526, 655] 
LVEDVi (ml/m2) 78.8 (±13.9) 83.8 (±14.7) 74.1 (±11.1) 
LVESVi (ml/m2) 31.1 [26.3, 36.7] 34.5 [29.5, 40.3] 28.3 [24.5, 32.7] 
LVEF (%) 59.5 (±6.1) 57.8 (±6.2) 61.0 (±5.6) 
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Whole cohort 

(n= 29,763) 
Men 

 (n= 14,379; 48.3%) 
Women 

 (n= 15,384; 51.7%) 
LVSVi (ml/m2) 46.6 (±8.3) 48.2 (±9.0) 45.1 (±7.4) 
LVMi (g/m2) 45.7 (±8.7) 51.1 (±7.9) 40.6 (±5.9) 
RVEDVi (ml/m2) 83.2 (±15.2) 90.0 (±15.3) 76.9 (±12.1) 
RVESVi (ml/m2) 35.9 (±9.4) 40.5 (±9.3) 31.5 (±7.1) 
RVEF (%) 57.2 (±6.1) 55.1 (±5.9) 59.1 (±5.6) 
RVSVi (ml/m2) 47.4 (±8.7) 49.5 (±9.3) 45.4 (±7.7) 
Aortic distensibility (10-3 mmHg-1) 2.3 [1.6, 3.1] 2.3 [1.7, 3.1] 2.2 [1.5, 3.0] 
Table 4.2. Continuous data is presented as mean (standard deviation) or median [interquartile range], 

categorical data as frequency (percentage; LVEDVi: left ventricular end-diastolic volume; LVEF: left 

ventricular ejection fraction; LVM: left ventricular mass; LVESVi: left ventricular end-systolic 

volume; LVSVi: left ventricular stroke volume; MET: metabolic equivalents; MI: myocardial 

infarction; RVEDVi: right ventricular end-diastolic volume; RVEF: right ventricular ejection 

fraction; RVESVi: right ventricular end-systolic volume; RVSVi: right ventricular stroke volume. i 

denotes indexation to body surface area. 

 

4.4.2 Association of CMR measures with fluid intelligence 

Higher FI (better cognition) was associated with larger LV volumes in end-diastole and end-systole, 

higher LV stroke volume, and greater LV mass in fully adjusted models (Table 4.3). There was no 

significant association between FI and LV ejection fraction. Higher FI was associated with greater 

AD (Table 4.3). For illustration, univariate relationships are presented in Figure 4.3. 

 

A similar pattern of associations was seen between FI and RV metrics with higher FI associated with 

larger RV volumes in end-diastole and end-systole, and with larger RV stroke volumes (Table 4.4). In 

stratified analyses, we observed comparable associations for men and women (Table 4.3, Table 4.4).  

 
There was no evidence of interaction effect with sex or age in relationships with the LV or RV 

measures (Table 4.5). For the association between FI and AD, we observed a significant interaction 

effect with age. On further examination of this relationship, we found that individuals with higher AD 

had less rapid age-related decline in FI (Figure 4.4). 
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Figure 4.3. Univariate linear regression models of the association between fluid intelligence and 
cardiovascular magnetic resonance measures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3. Each graph displays a kernel density plot of one CMR variable against one cognition 

variable. The nine coloured rings each represent a decile of the data, while the remaining 10% lies in 

the uncoloured area. Univariate linear regression is shown by black line. All plot areas are trimmed 

at the 1st and 99th percentile in both x and y directions. Fluid intelligence has had uniform random 

jitter/noise (-0.5, 0.5) added for visual smoothing. CMR: cardiovascular magnetic resonance; 

LVEDVi: left ventricular end-diastolic volume; LVEF: left ventricular ejection fraction; LVESVi: left 

ventricular end-systolic volume; LVSVi: left ventricular stroke volume; PDA AoD: Aortic 

distensibility at the proximal descending aorta. i denotes indexation to body surface area. 

Reproduced from Raisi-Estabragh et al (doi: 10.1093/ehjci/jeab075, in press) 

 

Figure 4.4. Interaction effect between aortic distensibility and age in the relationship with fluid 
intelligence 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.4. participants with higher distensibility show less rapid age-related decline in fluid 

intelligence. PDA AoD: aortic distensibility at the ascending aorta, units are x10-3 mmHg-1. 

Reproduced from Raisi-Estabragh et al (doi: 10.1093/ehjci/jeab075, in press) 
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Table 4.3. Multivariable linear regression models representing standard deviation change in 

fluid intelligence and reaction time per one standard deviation increase in cardiovascular 

magnetic resonance measures 

Table 4.3. Results are standardised beta coefficients with 95% confidence interval and p-value. An 

asterisk indicates where the p-value is significant using a false discovery rate of 5%. Each cell 

represents results from an individual linear regression model. Models are adjusted for: age, sex 

(whole cohort only), education, deprivation, diabetes, hypertension, hypercholesterolaemia, prior 

myocardial infarction, smoking, alcohol, exercise. CMR: cardiovascular magnetic resonance; FI: 

fluid intelligence; LVEDVi: left ventricular end-diastolic volume; LVEF: left ventricular ejection 

fraction; LVESVi: left ventricular end-systolic volume; LVSVi: left ventricular stroke volume; PDA 

  Whole cohort Men Women 

LVEDVi (ml/m2) FI 
0.043* 

[0.031, 0.056] 
0.046* 

[0.030, 0.062] 
0.040* 

[0.020, 0.060] 
  1.45 x 10-11 3.06 x 10-8 9.31 x 10-5 

 RT 
-0.028* 

[-0.040, -0.015] 
-0.031* 

[-0.047, -0.015] 
-0.024* 

[-0.044, -0.004] 
  1.24 x 10-5 1.64 x 10-4 0.018 

LVESVi (ml/m2) FI 
0.040* 

[0.028, 0.053] 
0.044* 

[0.028, 0.059] 
0.035* 

[0.014, 0.055] 
  2.76 x 10-10 6.28 x 10-8 0.001 

 RT 
-0.019* 

[-0.031, -0.006] 
-0.020* 

[-0.036, -0.005] 
-0.017 

[-0.038, 0.004] 
  0.003 0.011 0.104 

LVEF (%) FI 
-0.018* 

[-0.030, -0.006] 
-0.026* 

[-0.043, -0.010] 
-0.009 

[-0.026, 0.008] 
  0.003 0.002 0.303 

 RT 
0.002 

[-0.010, 0.014] 
0.002 

[-0.014, 0.018] 
0.002 

[-0.015, 0.019] 
  0.725 0.831 0.792 

LVSVi (ml/m2) FI 
0.026* 

[0.015, 0.038] 
0.027* 

[0.011, 0.043] 
0.026* 

[0.008, 0.044] 
  1.17 x 10-5 7.70 x 10-4 0.004 

 RT 
-0.024* 

[-0.035, -0.012] 
-0.028* 

[-0.043, -0.012] 
-0.019 

[-0.037, -0.001] 
  7.81 x 10-5 5.03 x 10-4 0.039 

LVMi (g/m2) FI 
0.048* 

[0.034, 0.063] 
0.042* 

[0.023, 0.060] 
0.058* 

[0.035, 0.081] 
  3.50 x 10-11 1.09 x 10-5 6.87 x 10-7 

 RT 
-0.039* 

[-0.053, -0.025] 
-0.045* 

[-0.063, -0.027] 
-0.032* 

[-0.055, -0.010] 
  8.25 x 10-8 1.26 x 10-6 0.005 

PDA AoD (x10-3 mmHg-1) FI 
0.030* 

[0.014, 0.045] 
0.033* 

[0.010, 0.057] 
0.032* 

[0.010, 0.053] 
  2.02 x 10-4 0.006 0.003 

 RT 
-0.017 

[-0.032, -0.001] 
-0.016 

[-0.039, 0.006] 
-0.015 

[-0.036, 0.006] 
  0.036 0.159 0.171 

  Whole cohort Men Women 

LVEDVi (ml/m2) FI 
0.043* 

[0.031, 0.056] 
0.046* 

[0.030, 0.062] 
0.040* 

[0.020, 0.060] 
  1.45 x 10-11 3.06 x 10-8 9.31 x 10-5 

 RT 
-0.028* 

[-0.040, -0.015] 
-0.031* 

[-0.047, -0.015] 
-0.024* 

[-0.044, -0.004] 
  1.24 x 10-5 1.64 x 10-4 0.018 

LVESVi (ml/m2) FI 
0.040* 

[0.028, 0.053] 
0.044* 

[0.028, 0.059] 
0.035* 

[0.014, 0.055] 
  2.76 x 10-10 6.28 x 10-8 0.001 

 RT 
-0.019* 

[-0.031, -0.006] 
-0.020* 

[-0.036, -0.005] 
-0.017 

[-0.038, 0.004] 
  0.003 0.011 0.104 

LVEF (%) FI 
-0.018* 

[-0.030, -0.006] 
-0.026* 

[-0.043, -0.010] 
-0.009 

[-0.026, 0.008] 
  0.003 0.002 0.303 

 RT 
0.002 

[-0.010, 0.014] 
0.002 

[-0.014, 0.018] 
0.002 

[-0.015, 0.019] 
  0.725 0.831 0.792 

LVSVi (ml/m2) FI 
0.026* 

[0.015, 0.038] 
0.027* 

[0.011, 0.043] 
0.026* 

[0.008, 0.044] 
  1.17 x 10-5 7.70 x 10-4 0.004 

 RT 
-0.024* 

[-0.035, -0.012] 
-0.028* 

[-0.043, -0.012] 
-0.019 

[-0.037, -0.001] 
  7.81 x 10-5 5.03 x 10-4 0.039 

LVMi (g/m2) FI 
0.048* 

[0.034, 0.063] 
0.042* 

[0.023, 0.060] 
0.058* 

[0.035, 0.081] 
  3.50 x 10-11 1.09 x 10-5 6.87 x 10-7 

 RT 
-0.039* 

[-0.053, -0.025] 
-0.045* 

[-0.063, -0.027] 
-0.032* 

[-0.055, -0.010] 
  8.25 x 10-8 1.26 x 10-6 0.005 

PDA AoD (x10-3 mmHg-1) FI 
0.030* 

[0.014, 0.045] 
0.033* 

[0.010, 0.057] 
0.032* 

[0.010, 0.053] 
  2.02 x 10-4 0.006 0.003 

 RT 
-0.017 

[-0.032, -0.001] 
-0.016 

[-0.039, 0.006] 
-0.015 

[-0.036, 0.006] 
  0.036 0.159 0.171 
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AoD: Aortic distensibility at the proximal descending aorta. RT: reaction time. i denotes indexation to 

body surface area. 

 

Table 4.4. Multivariable linear regression models representing standard deviation change in 
fluid intelligence and reaction time per one standard deviation increase in cardiovascular 

magnetic resonance measures 

  Whole cohort Men Women 

RVEDVi (ml/m2) FI 
0.072* 

[0.059, 0.085] 
0.070* 

[0.052, 0.087] 
0.075* 

[0.055, 0.096] 
  4.24x10-27 2.98x10-15 3.31x10-13 

 RT 
-0.036* 

[-0.049, -0.023] 
-0.038* 

[-0.055, -0.021] 
-0.035* 

[-0.056, -0.015] 
  5.26x10-8 1.25x10-5 6.94x10-4 

RVESVi (ml/m2) FI 
0.079* 

[0.066, 0.093] 
0.072* 

[0.055, 0.089] 
0.091* 

[0.070, 0.112] 
  1.01x10-31 4.92x10-16 1.52x10-17 

 RT 
-0.035* 

[-0.049, -0.022] 
-0.035* 

[-0.053, -0.018] 
-0.038* 

[-0.058, -0.017] 
  1.50x10-7 5.13x10-5 4.59x10-4 

RVEF (%) FI 
-0.039* 

[-0.050, -0.027] 
-0.033* 

[-0.050, -0.016] 
-0.045* 

[-0.062, -0.028] 
  2.76x10-10 1.60x10-4 1.76x10-7 

 RT 
0.012 

[-0.000, 0.024] 
0.011 

[-0.006, 0.028] 
0.013 

[-0.004, 0.030] 
  0.052 0.195 0.136 

RVSVi (ml/m2) FI 
0.035* 

[0.024, 0.047] 
0.038* 

[0.022, 0.054] 
0.031* 

[0.013, 0.049] 
  5.83x10-9 2.70x10-6 6.80x10-4 

 RT 
-0.022* 

[-0.033, -0.010] 
-0.025* 

[-0.040, -0.009] 
-0.019 

[-0.037, -0.000] 
  3.49x10-4 0.002 0.044 

Table 4.4. Results are standardised beta coefficients with 95% confidence interval and p-value. An 

asterisk indicates where the p-value is significant using a false discovery rate of 5%. Each cell 

represents results from an individual linear regression model. Covariates included: age, sex (whole 

cohort only), education, deprivation, diabetes, hypertension, hypercholesterolaemia, prior myocardial 

infarction, smoking, alcohol, exercise. RVEDVi: right ventricular end-diastolic volume; RVEF: right 

ventricular ejection fraction; RVESVi: right ventricular end-systolic volume; RVSVi: right ventricular 

stroke volume. i denotes indexation to body surface area. 
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Table 4.5. Interaction effects between cardiovascular magnetic resonance measures and age, 

and between cardiovascular magnetic resonance and sex for fluid intelligence in fully adjusted 

models 

Table 4.5. Models adjusted for: age, sex, education, deprivation, diabetes, hypertension, 

hypercholesterolaemia, prior myocardial infarction, smoking, alcohol, exercise. AoD PDA: aortic 

distensibility at the proximal descending aorta; LVEDVi: left ventricular end-diastolic volume; 

LVEF: left ventricular ejection fraction; LVESVi: left ventricular end-systolic volume; RVEDVi: right 

ventricular end-diastolic volume; RVEF: right ventricular ejection fraction; RVESVi: right 

ventricular end-systolic volume; LVSVi: left ventricular stroke volume; RVSVi: right ventricular 

stroke volume. i denotes indexation to body surface area. An asterisk indicates where the p-value is 

significant using a false discovery rate of 5%. 

 

4.4.3 Association of CMR metrics with reaction time 

Shorter RT (better cognition) was associated with larger LV volumes in end-diastole, higher LV 

stroke volume, and greater LV mass in fully adjusted models (Table 4.3). This pattern of associations 

was consistent across RV measures (Table 4.4). Lower RT was also associated with higher AD, but 

this relationship was not statistically significant (Table 4.3). Overall, associations were consistent for 

both men and women (Table 4.3). For illustration, univariate relationships are presented in Figure 

Interaction term CMR measure Fluid intelligence 
(p-value) 

Reaction time  
(p-value) 

CMR with age LVEDVi (ml/m2) 0.8721 0.6148 
 LVESVi (ml/m2) 0.6195 0.7075 
 LVEF (%) 0.8935 0.5582 
 LVSVi (ml/m2) 0.7148 0.7223 
 LVMi (g/m2) 0.9119 0.0828 
 RVEDVi (ml/m2) 0.7007 0.1755 
 RVESVi (ml/m2) 0.6907 0.0378 
 RVEF (%) 0.0410 0.1080 
 RVSVi (ml/m2) 0.4968 0.891 
 PDA AoD (10-3 mmHg-1) 7.09x10-4 * 0.0109 * 
CMR with sex LVEDVi (ml/m2) 0.2904 0.9246 
 LVESVi (ml/m2) 0.2668 0.8309 
 LVEF (%) 0.1278 0.8687 
 LVSVi (ml/m2) 0.5094 0.8088 
 LVMi (g/m2) 0.4451 0.6434 
 RVEDVi (ml/m2) 0.8876 0.7219 
 RVESVi (ml/m2) 0.3882 0.5442 
 RVEF (%) 0.4180 0.8233 
 RVSVi (ml/m2) 0.2858 0.9470 

 PDA AoD (10-3 mmHg-1) 0.0548 0.3882 
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4.5. There was no evidence of interaction effect with sex or age in relationships with the LV or RV 

measures (Table 4.5). 

 

Figure 4.5. Univariate linear regression models of the association between reaction time and 
cardiovascular magnetic resonance measures 

 
Figure 4.5. Each graph displays a kernel density plot of one CMR variable against one cognition 

variable. The nine coloured rings each represent a decile of the data, while the remaining 10% lies in 

the uncoloured area. Univariate linear regression is shown by black line. All plot areas are trimmed 

at the 1st and 99th percentile in both x and y directions. CMR: cardiovascular magnetic resonance; 

LVEDVi: left ventricular end-diastolic volume; LVEF: left ventricular ejection fraction; LVESVi: left 

ventricular end-systolic volume; LVSVi: left ventricular stroke volume; PDA AoD: Aortic 

distensibility at the proximal descending aorta. i denotes indexation to body surface area. 

Reproduced from Raisi-Estabragh et al (doi: 10.1093/ehjci/jeab075, in press). 

 

4.4.4 Non-linearity of relationships 

All models were screened for non-linearity with cubic and squared polynomials. For both FI and RT, 

in fully adjusted models, there was a trend towards attenuation of associations at the high extremes of 

the distribution for LV volumes and mass (very high volumes and mass). This appeared most 

convincing for the relationship between FI and LV end-systolic volume, where there was suggestion 

of attenuation and possible reversal of the direction of association at the very high extremes of the 

distribution (Figure 4.6). However, nested model testing indicated that none of the non-linear models 

showed a statistically significant improvement upon linear model fits (Table 4.6). 
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Figure 4.6. Fully adjusted linear (blue) and polynomial (red) models of associations between 
fluid intelligence (A) and reaction time (B) with cardiovascular magnetic resonance measures 

 

Figure 4.6. CMR: cardiovascular magnetic resonance; LVEDVi: left ventricular end-diastolic 

volume; LVEF: left ventricular ejection fraction; LVESVi: left ventricular end-systolic volume; 

LVSVi: left ventricular stroke volume; PDA AoD: Aortic distensibility at the proximal descending 

aorta. i denotes indexation to body surface area. Reproduced from Raisi-Estabragh et al (doi: 

10.1093/ehjci/jeab075, in press). 
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Table 4.6. Comparison tests between linear and non-linear models 

 Fluid intelligence Reaction time 

CMR Linear vs 2d 
polynomial 

Linear vs 3d 
polynomial 

Linear vs 2d 
polynomial 

Linear vs 3d 
polynomial 

LVEDVi (ml/m2) 0.4956 0.2325 0.0991 0.1555 
LVESVi (ml/m2) 0.0076 0.0233 0.0495 0.1251 

LVEF (%) 0.2230 0.4714 0.4174 0.6345 

LVSVi (ml/m2) 0.5845 0.2343 0.6092 0.4265 
LVMi (g/m2) 0.7945 0.8490 0.0351 0.1069 

RVEDVi (ml/m2) 0.4312 0.5715 0.7481 0.8136 

RVESVi (ml/m2) 0.3604 0.4604 0.8565 0.8858 
RVEF (%) 0.0526 0.1496 0.5481 0.8097 

RVSVi (ml/m2) 0.2767 0.2204 0.9821 0.8759 

PDA AoD (x10-3 mmHg-1) 0.8463 0.8409 0.0078 0.0020 

Table 4.6. Numbers are p-values, (pr(F)) from analysis of variance tests for nested models. None of 

the p-values above were significant using a false discovery rate of 5%. Significance threshold is 

p<0.0013. PDA AoD: aortic distensibility at the proximal descending aorta; LVEDVi: left ventricular 

end-diastolic volume; LVEF: left ventricular ejection fraction; LVESVi: left ventricular end-systolic 

volume; RVEDVi: right ventricular end-diastolic volume; RVEF: right ventricular ejection fraction; 

RVESVi: right ventricular end-systolic volume; LVSVi: left ventricular stroke volume; RVSVi: right 

ventricular stroke volume. i denotes indexation to body surface area. 

 

4.4.5 Interpretation of associations with cardiovascular phenotypes 

There is a significant healthy participant effect in the UK Biobank, as such, our analysis sample 

comprises a predominantly healthy cohort. As such, observed associations are trends within the 

spectrum of normality rather than transitions from health to “disease”. 

 

Our findings demonstrate association of better cognitive performance with larger ventricular cavity 

volumes, larger LV and RV stroke volumes, and higher LV mass. This pattern of associations, 

interpreted within the spectrum of normality, reflects a pattern of decelerated heart aging (the pattern 

of associations is the reverse of the pattern of alterations seen in healthy aging). At the high extremes 

of the distribution for LV end-systolic volume, there was suggestion of reversal of the direction of 

associations with FI, indicating that LV volumes larger than the normal range are linked with poorer 

cognition. However, model fit was not significantly improved with the non-linear models. This may 

be because there were very few participants with extreme CMR measures in our sample. Better 

cognitive performance was also linked to greater AD, further supporting argument that the observed 

associations indicate a healthy cardiovascular phenotype. 
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4.5 Summary of findings 

In this study of a predominantly healthy cohort of 29,763 UK Biobank participants, we demonstrate 

association of better cognitive performance with CMR measures likely representing a healthier 

cardiovascular phenotype, independent of a range of lifestyle, demographic, and vascular risk factors. 

In particular, better cognitive function (higher FI, lower RT) was associated with larger LV and RV 

volumes, greater LV and RV stroke volumes, higher LV mass, and greater AD. There was some 

evidence of non-linearity for the relationship between FI and LV end-systolic volume, with a trend 

towards reversal of the direction of association at the high extremes of the distribution (very high 

volumes). Associations appeared consistent for men and women and with age. 

 

4.6 Discussion 

4.6.1 Comparison with existing literature 

Existing studies of the association between cognitive performance and cardiovascular imaging 

phenotypes are highly heterogeneous and limited to small cohorts of highly select patient populations. 

In a study of 57 patients with systolic heart failure, Zuccala’ et al.145 report an independent association 

between poorer LV ejection fraction on echocardiography and worse cognitive performance as 

assessed by the mini mental examination and Raven score. In another study of a small heart failure 

cohort (n=58), Vogels et al.146 report greater pathological brain magnetic resonance imaging (MRI) 

alterations (periventricular and white matter hyperintensities, lacunar and cortical infarcts, global and 

medial temporal lobe atrophy) in patients with heart failure compared to a comparator group. In a 

study of 93 dementia patients, Oh et al.147 demonstrate association pathological white matter 

alterations on brain MRI with atrial dilatation, an early indicator of LV diastolic dysfunction. Other 

studies have also demonstrated greater rates of diastolic impairment in patients with Alzheimer’s 

dementia compared to controls148,149. Manolio et al.150 document an association between greater 

carotid intima medial thickness (marker of poorer vascular health) and greater cerebral atrophy on 

brain MRI in a study of 303 individuals. 

 

Our study is the first to evaluate association of cardiovascular phenotypes in a large cohort of 

predominantly healthy adults. We demonstrate association of poorer cognitive performance with 

smaller ventricular volumes and smaller stroke volumes, together with the association with greater 

aortic stiffness. These observations are in keeping with studies linking poorer brain health with 

diastolic dysfunction and poorer arterial health. Overall, our findings are supportive of links between 

brain and cardiovascular health and demonstrate that these links extend beyond disease cohorts to 

apparently healthy populations. 
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4.6.2 Potential biological mechanisms 

Multiple studies have linked classical vascular risk factors to worse cognition151–155 and with both 

vascular and Alzheimer’s dementia135,156,157. It has thus been suggested that the links between 

cardiovascular disease and brain health may be mediated by these common risk factors and the 

systemic atherosclerotic disease that occurs as a result (Figure 4.7). However, in our study, the 

associations between CMR phenotypes and cognitive performance were broadly robust to adjustment 

for cardiometabolic morbidities indicating the importance of alternative mechanisms. For example, 

limited studies in small cohorts of Alzheimer’s patients have suggested that the Aβ protein, which is 

characteristically deposited in the brain may also accumulate in the myocardium of these patients and 

manifest as a cardiac amyloid phenotype149. It is also possible, that poorer brain and heart health may 

be a reflection of accelerated multisystem aging, which may occur as a result of indolent elevation of 

inflammatory cytokines (inflammaging) and has been linked to both cardiovascular disease and 

dementia158,159. Whatever the underlying case, it seems that initiation of disease in one organ system 

initiates a positive feedback cycle of adverse heart-brain interactions which perpetuates poorer health 

in both systems (Figure 4.7). 

 

Figure 4.7. Possible mechanisms for the associations between heart and brain health 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7. Reproduced from Raisi-Estabragh et al. (doi: 10.1093/ehjci/jeab075) 
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4.7 Critical appraisal of the results 

Our findings indicate cross-sectional associations between cardiac structure and function derived from 

detailed CMR and cognition measured using validated cognitive performance tests. Our findings are 

consistent with existing work and extend previous reports of heart-brain relationships in disease 

cohorts to a large population-based cohort. Previous studies using clinical diagnoses of heart disease 

may be limited by subjectivity and misclassification of these diagnoses. Furthermore, due to their 

binary nature, such classifications of heart health status are limited in the detail that they provide. The 

use of CMR measures is advantageous in providing objective, quantitative, and continuous indicators 

of heart health. Furthermore, CMR in the UK Biobank is performed in a highly standardised manner 

in dedicated imaging centres and using uniform acquisition and analysis protocols. Thus, active steps 

are taken to minimise potential systemic measurement bias of these variables. The cognitive function 

tests in the UK Biobank were conducted according to pre-defined protocols and their repeatability 

performance has been evaluated in dedicated publications. Inherent to all such measures of cognitive 

performance, it is challenging to separate cognition from prior knowledge and life experiences. 

Furthermore, we cannot exclude residual confounding due to imperfections of covariate measurement. 

The precise mechanisms through which the heart and brain may be independently linked are yet to be 

outlined. We demonstrate cross-sectional associations between heart and brain health independent of 

common classical vascular risk factors. Thus, our findings indicate independent relationships between 

the two organ systems. The direction of the association (which may also be bidirectional) and precise 

mechanisms require further evaluation. 

 

4.8 Conclusions 

In this study, better cognitive performance was associated with CMR and AD measures likely 

representing a healthy cardiovascular phenotype. The associations were consistent between men and 

women and remained robust after accounting for lifestyle, demographic, and vascular risk factors, 

implying a potential importance of alternative underlying mechanism. Our findings indicate 

relationships between cardiovascular and brain health, provide insight into possible mechanisms, and 

support a rationale for a cross-system approach to risk stratification for related clinical endpoints. 
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5 Bone and cardiovascular health 

5.1 Abstract 

Objectives: Osteoporosis and ischaemic heart disease (IHD) are important public health problems. 

Previous work suggests an association between the two conditions beyond shared risk factors, with a 

potentially causal relationship. We evaluated the relationship between bone and vascular health in the 

UK Biobank. 

 

Methods and Results: We tested the association of calcaneal SOS from quantitative heel ultrasound 

with (1) CMR measures of arterial compliance (AD); (2) finger photoplethysmography (ASI); and (3) 

incident AMI and IHD mortality. We considered the potential mediating role of selected blood 

biomarkers and cardiometabolic morbidities and evaluated differential relationships by sex, 

menopause status, smoking, diabetes, and obesity. Furthermore, we considered whether associations 

with arterial compliance explained association of SOS with ischemic cardiovascular outcomes. Higher 

SOS was linked to lower arterial compliance by both ASI and AD for both men and women. The 

relationship was most consistent with ASI, likely due to larger sample size available for this measure 

(n= 159,542 vs n= 18,229). There was no convincing evidence of differential relationships by 

menopause, smoking, diabetes, or BMI. Blood biomarkers appeared influential in mediating the 

observed relationships for both men and women, but with differing directions of effect and did not 

fully explain the observed effects. In fully adjusted models, higher SOS was associated with 

significantly lower IHD mortality in men, but less robustly in women. The association of SOS with 

ASI did not explain this observation. 

 

Conclusions: Our findings support positive association of bone and vascular health independent of 

shared risk factors. These relationships were consistent for men and women, and with menopause 

status. The underlying mechanisms are likely complex and vary by sex. 
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5.2 Background 

Osteoporosis and IHD are major public health problems, particularly in aging populations. IHD is a 

global public health priority and the most common cause of morbidity and mortality worldwide8. 

Fragility fractures, that occur as a consequence of osteoporosis, place a significant burden on 

individuals, society, and health and social care services. In the UK, approximately one in three 

women and one in five men will sustain at least one fragility fracture in their lifetime160. Fragility 

fractures cost the UK economy approximately £4.4 billion each year161. 

 

Osteoporosis and atherosclerosis have several shared risk factors, such as older age, cigarette 

smoking, and sedentary lifestyle. Existing work suggests links between the two conditions beyond 

these shared risk factors162–165. Furthermore, limited studies indicate possible common biological and 

genetic mechanisms underlying bone mineralisation and atherogenesis166–168. Thus, existing evidence 

suggests possible common causal mechanisms linking the two disease processes. Understanding such 

novel disease pathways may provide new targets for disease prevention or treatment. However, 

existing studies are limited by small sample size, lack of robust objective measures of bone and 

vascular health, and inadequate consideration of mediating and confounding variables. In addition, 

although sex differential disease patterns and the modifying effect of menopause status are widely 

reported for both conditions, such distinctions have not been adequately addressed in existing work. 

 

We hypothesised that poorer bone health would be associated with poorer vascular health. We thus 

studied the association of quantitative heel ultrasound measures of bone health with measures of 

arterial compliance (AD, ASI). We considered a wide range of covariates and potential differential 

relationships by sex, menopause, smoking status, diabetes, and obesity. We assessed the mediating 

effect of a range of metabolic morbidities and blood biomarkers in driving the association between 

bone health and arterial stiffness. Finally, we evaluated the association of heel ultrasound measures 

with incident ischaemic cardiovascular outcomes (incident AMI, IHD mortality) and tested the 

importance of arterial stiffness in driving these relationships. 

 

5.3 Methods 

5.3.1 Study population 

This analysis includes all UK Biobank participants who completed heel ultrasound at baseline, finger 

photoplethysmography measurement at baseline visit, and/or CMR at the imaging visit. Further 

information about the study population is detailed in Section 2.1. 
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5.3.2 Quantitative heel ultrasound 

Quantitative heel ultrasound is a non-invasive and radiation-free method for objective assessment of 

bone quality. Quantitative ultrasound metrics associate reliably with reference standard bone mineral 

density measured by DXA and with incident fragility fractures169,170. In the UK Biobank, bone quality 

was assessed at the baseline visit based on heel ultrasound measures obtained from the Sahara 

Clinical Bone Sonometer (Hologic, USA) (Figure 5.1). Measurement was taken according to a pre-

defined standard operating procedure, which is detailed in a dedicated document171. There were 

standardised quality control checks of the sonometer using a phantom at the start of each day. 

Measurement was not taken for participants with open wounds, breaks, sores, or metal implants (e.g. 

plates, wires, pins) around the heel area.  

 

Figure 5.1. The Sahara bone sonometer 

 
Figure 5.1. Adapted from “UK Biobank, Ultrasound Bone Densitometry, 2011”171; Figure used with 

permission from UK Biobank. 

 
The participant was asked to remove shoes and socks. The lateral and medial sides of the heel (where 

the measurement was to be taken from) were cleaned and dried with disposable wipes. Gel was 

applied to the sonometer transducer pads. The participant was asked to sit with their back straight and 

the heel was guided to fit snugly into the device footwell and secured in position using straps. The 

‘measure now’ option was then selected, which generated two readings: the speed of sound (SOS) and 

broadband ultrasound attenuation (BUA). SOS is the speed at which the ultrasound pulse traverses the 

body part under study and is calculated by dividing the ultrasound transit time by the distance 

travelled. BUA is the slope between the attenuation of the signal amplitude and its frequency as it 

propagates through the soft tissue and bone. Higher SOS and BUA values indicate better bone health. 

Within the UK Biobank, in cases where BUA was missing, it was estimated from the SOS measure. 

For this reason, in our analysis, we consider SOS as the measure of bone health, as it is always 

directly measured. In the early stages of UK Biobank, measurement was taken from a single foot. In 
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the latter stages, bilateral measurements were made. In cases where two measurements were available, 

we took the mean value. 

5.3.3 Measures of arterial compliance 

We consider AD and ASI as measures of arterial compliance, derived from CMR and finger 

plethysmography respectively, as described in Section 2.2.6. 

 

5.3.4 Ascertainment of cardiovascular outcomes 

Approach to outcome ascertainment was as discussed in Section 2.2.3. The clinical endpoints of 

interest were incident AMI and IHD mortality. We considered outcomes occurring after baseline 

assessment (2006-2010) to the latest available UK Biobank censor dates (mortality: 31/01/2018, 

incident AMI: 31/03/2017). Thus, follow up duration was between 7-12 years. We defined IHD 

mortality was as primary cause of death attributed to any IHD manifestation on death registration (as 

per ICD codes in Table 2.3). Incident AMI was derived from algorithmically defined outcomes 

generated by UK Biobank66. 

 

5.3.5 Ascertainment of covariates 

Covariates were taken as defined at baseline UK Biobank assessment. Age, sex, ethnicity, smoking, 

alcohol intake, deprivation, exercise level, hypertension, diabetes, high cholesterol, and BMI were 

ascertained as detailed in Section 2.2.2. Menopause status was recorded as a binary variable based on 

self-report at baseline. The following serum biochemistry measures (from bloods collected at the 

baseline visit) were considered as potential mediators: C Reactive Protein (CRP), Creatinine, Vitamin 

D, Calcium, Alkaline Phosphatase (ALP), Insulin-like Growth Factor 1 (IGF1), Sex Hormone 

Binding Globulin (SHBG), Testosterone, Testosterone/SHBG, Oestradiol, Phosphate, Cystatin C. 

 

5.3.6 Statistical analysis 

Statistical analysis was performed using R studio version 3.6.0 [https://www.R-project.org/] and Stata 

version 14 [StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp 

LP]. The analysis considers the relationships as summarised in Figure 5.2. 

 

We used the Tukey method for outlier elimination (1.5× IQR method)172 to remove outliers from the 

SOS, ASI, and AD variables. We used multivariable linear regression models to estimate the 

association of SOS with measures of arterial compliance (ASI, AD). Analysis was performed 
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separately for men and women. Models were adjusted for age, exercise level, smoking, material 

deprivation, alcohol intake, hypercholesterolaemia, diabetes, and hypertension. Results are reported as 

SD change in vascular measure per 1 SD increase of SOS, alongside corresponding 95% CIs and p-

values. We tested for potential non-linearity using restricted cubic spline models. We tested for 

differential relationship by menopause status, diabetes, smoking, and obesity.  

 

Figure 5.2. Potential confounding and mediating pathways considered in the relationship 
between bone and cardiovascular health 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. ALP: Alkaline Phosphatase; CRP: C Reactive Protein (CRP), Insulin-like Growth Factor 

1 (IGF1); IHD: ischaemic heart disease; SHBG: Sex Hormone Binding Globulin. 

 

Based on review of the literature, we identified and evaluated the potential mediating effect of a range 

of blood biomarkers (CRP, Creatinine, Vitamin D, Calcium, ALP, IGF1, SHBG, Testosterone, 

Testosterone/SHBG, Oestradiol, Phosphate, Cystatin C) and cardiometabolic conditions 

(hypertension, diabetes, hypercholesterolaemia). The mediating effect of each mediator was first 

tested individually, variables with a significant effect (p<0.003, corrected for 15 mediators), were 

taken forward for multiple mediation analysis. As such, we were able to report the proportion of effect 

mediated by each variable independent of other potential mediators. Independent indirect effects were 

calculated as described by Van Der Weele and Vansteelandt173 and CIs were derived using bootstrap 

re-sampling. We thus calculate the direct and indirect effect of each mediator and present the 

proportion of effect mediated as a percentage of the total effect. A variable associated with a positive 
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effect from this analysis indicates mediation effect from the variable, whilst a negative effect indicates 

a suppression (rather than mediation) effect on the exposure-outcome association. 

 

Finally, we tested, separately for men and women, associations between SOS and incident AMI and 

IHD mortality using multivariable competing risk regression models, as per Fine and Gray67. We 

report SHR per one standard deviation increase in SOS, with 95% CIs and p-values. We tested the 

importance of the associations of SOS with arterial compliance in mediating the relationships with 

ischaemic cardiac outcomes. 

 

5.4 Results 

5.4.1 Baseline population characteristics 

There were 159,542 participants with both SOS and ASI recorded at baseline (Table 5.1A) with 

average age of 58 [50-63] years and comprising 71,949 men and 87,593 women. There was a greater 

burden of cardiovascular risk factors in men. Most women were post-menopause (73.0%). There were 

18,229 participants with both SOS and AD data available (Table 5.1B). 

 

Table 5.1. Baseline participant characteristics 

A: Baseline participant characteristics (SOS and ASI) 
 Whole cohort 

(n=159,542) 
Men 

(n=71,949) 
Women 

(n=87,593) 
Age 58 [50-63] 59 [51-64] 58 [50-63] 
Ethnicity (White Caucasian) 145,627 (91.9%) 65,804 (92.2%) 79,823 (91.6%) 
Townsend deprivation score -1.8 [-3.4 to 0.8] -1.8 [-3.4 to 0.8] -1.8 [-3.4 to 0.7] 
Body mass index (kg/m2) 26.7 [24.1 to 29.8] 27.2 [24.9 to 29.9] 26.1 [23.4 to 29.8] 
Current smoking 16,085 (10.1%) 8,637 (12.0%) 7,448 (8.5%) 
Regular alcohol use 67,664 (42.5%) 36,478 (50.9%) 31,186 (35.7%) 
Physical activity 
(METS/week) 

1,891 [874 to 3,786] 1,908 [864 to 3,930] 1,866 [878 to 3,666] 

Hypertension  44,626 (28.0%) 23,676 (32.9%) 20,950 (23.9%) 
Diabetes 8,981 (5.6%) 5,351 (7.4%) 3,630 (4.1%) 
Hypercholesterolaemia 31,465 (19.7%) 18,571 (25.8%) 12,894 (14.7%) 
Post-menopausal – – 53,940 (73.0%) 
ASI (m/s) 9.0 [6.9 to 11.2] 9.8 [7.8 to 11.8] 8.3 [15.3 to15.7] 
SOS (102m/s) 15.5 (0.3) 15.6 (0.3) 15.5 (0.3) 

B: Baseline participant characteristics (SOS and AD) 
 Whole cohort 

(n=18,229) 
Men 

(n=8,767) 
Women 

(n=9,462) 
Age 56 [49-61] 57 [50-62] 55 [48-60] 
Ethnicity (White) 17,701 (97.4%) 8,485 (97.2%) 9,216 (97.6%) 
Townsend deprivation score -2.7 [-3.9 to -0.7] -2.7 [-4.0 to -0.7] -2.6 [-3.9 to -0.7] 
Body mass index kg/m2 26.0 [23.6 to 28.7] 26.7 [24.5 to 29.0] 25.2 [22.9 to 28.3] 
Current smoking 1,147 (6.3%) 671 (7.7%) 476 (5.0%) 
Regular alcohol use 5,069 (57.9%) 4, 167 (44.0%) 9,236 (50.7%) 
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 Whole cohort 
(n=18,229) 

Men 
(n=8,767) 

Women 
(n=9,462) 

Physical activity 
(METS/week) 

1,733 [810 to 3,339] 1,740 [809 to 3,394] 1,714 [810 to 3,306] 

Hypertension  3,597 (18.7%) 2,121 (24.2%) 1,476 (15.6%) 
Diabetes 472 (2.6%) 308 (3.5%) 164 (1.7%) 
Hypercholesterolaemia 2,435 (13.4%) 1.632 (18.6%) 803 (8.5%) 
Post-menopausal – – 5,129 (64.4%) 
AD at the ascending aorta  
(10-3 mmHg-1)  

1.2 [0.8-1.9] 1.3 [0.8-1.9] 1.2 [0.7-2.0] 

AD at the descending aorta  
(10-3 mmHg-1) 

2.3 [1.8-2.9] 2.2 [1.7-2.8] 2.3 [1.8-2.9] 

Speed of sound (102 m/s) 15.6 (0.3) 15.6 (0.3) 15.5 (0.3) 
Table 5.1. Continuous variables are median [interquartile range] or mean (standard deviation). 

Discrete data are frequencies (percentages). ASI: arterial stiffness index; SOS: speed of sound; 

METS: metabolic equivalent minutes. 

5.4.2 Association of SOS with measures of arterial compliance 

In fully adjusted multivariable linear regression models, higher SOS was associated with lower ASI 

(Table 5.2), that is, better bone health was associated with better vascular health. This association was 

significant for both men and women with similar magnitude of effect. Higher SOS was associated 

with greater AD at the ascending aorta for women, but not for men (Table 5.2). Higher SOS was 

associated with greater AD at the descending aorta for men, but not for women (Table 5.2). There 

was no convincing evidence of a sex differential relationship as per stratified analysis and the 

interaction effect of sex was not statistically significant. There was no evidence of non-linearity of 

these associations (Table 5.3). In stratified analysis by menopause status, higher SOS was associated 

with lower ASI in pre- and post-menopausal women (Table 5.4). The associations with AD were not 

significant, perhaps due to loss of power with the smaller sample size. Overall, we did not find 

evidence for a modifying effect of menopause. 
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Table 5.2. Association of speed of sound with measures of arterial stiffness in men and women 

  
Model 1: Age 

Model 2: Age, 
exercise, smoking, 

deprivation, alcohol 

Model 3: Model 2+ 
hypercholesterolaemia, 
diabetes, hypertension 

 ASI  
Men B 

(95% CI) 
-0.030 

(-0.037, -0.023) 
-0.021 

(-0.028, -0.013) 
-0.020 

(-0.028, -0.012) 
n=71,949 p-value 4.8×10-17* 1.5×10-7* 2.6×10-7* 
Women B  

(95% CI) 
-0.027 

(-0.034, -0.021) 
-0.024 

(-0.031, -0.016) 
-0.026 

(-0.033, -0.018) 
n=87,593 p-value 5.6×10-16* 6.0×10-10* 2.8×10-11* 
p-value for interaction  0.605 0.541 0.307 
 AD (ascending aorta) 
Men B 

(95% CI) 
0.018 

(0.000, 0.036) 
0.017 

(-0.002, 0.036) 
0.017 

(-0.002, 0.036) 
n=8,767 p-value 0.046 0.085 0.085 
Women B 

(95% CI) 
0.025 

(0.008, 0.042) 
0.020 

(0.000, 0.039) 
0.020 

(0.000, 0.039) 
n=9,462 p-value 0.004* 0.045* 0.043* 
p-value for interaction  0.588 0.846 0.829 
 AD (descending aorta) 
Men B 

(95% CI) 
0.040 

(0.021,-0.059) 
0.037 

(0.018, 0.057) 
0.037 

(0.017, 0.056) 
n=8,767 p-value 2.2×10-5* 0.0002* 0.0002* 
Women B 

(95% CI) 
0.017 

(-0.000, 0.035) 
0.019 

(-0.001, 0.039) 
0.019 

(-0.000, 0.039) 
n=9,462 p-value 0.057 0.063 0.054 
p-value for interaction  0.081 0.194 0.217 

Table 5.2. ASI: arterial stiffness index; AD: aortic distensibility; B: beta coefficient; CI: confidence 

interval; SOS: speed of sound. B= increase (number of SDs) in outcome for a 1 SD increase in SOS. 

*indicates p-value <0.05. 

 

Table 5.3. Tests for non-linearity using cubic spline models with 5 knots showing p-values for 
non-linear vs linear models 

Table 5.3. AD: aortic distensibility; ASI: arterial stiffness index. 

  Model 1: Age adjusted  Model 2: Age, exercise, 
smoking, deprivation, 
alcohol 

Model 3: Model 2+ 
hypercholesterolaemia, 
diabetes, hypertension  

 ASI  
Men p-value 0.354 0.117 0.099 
Women p-value 0.126 0.782 0.849 
 AD (ascending aorta) 
Men p-value 0.909 0.755 0.823 
Women p-value 0.764 0.724 0.699 
 AD (descending aorta) 
Men p-value 0.494 0.608 0.560 
Women p-value 0.393 0.640 0.654 
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Table 5.4. Multivariable linear regression models showing association of speed of sound with 
measures of arterial stiffness in women stratified by menopause status 

Table 5.4. ASI: arterial stiffness index; AD: aortic distensibility; B: beta coefficient; CI: confidence 

interval; SOS: speed of sound. Beta= SD increase in outcome per 1 SD increase in SOS. 

5.4.3 Association of SOS and arterial compliance stratified by sex and smoking status 

In multivariable models stratified by sex and smoking status, we observed no evidence of a significant 

differential relationship between SOS and AD or ASI in the different subgroups (Table 5.5).  

  Model 1: Age Model 2: Age, 
exercise, smoking, 
deprivation, alcohol 

Model 3: Model 2+ 
hypercholesterolaemia, 
diabetes, hypertension 

 ASI  
Pre-menopause Beta 

(95% CI) 
-0.026 

(-0.041, -0.011) 
-0.025 

(-0.041, -0.008) 
-0.025 

(-0.042, -0.009) 
n=33,653 p-value 0.0008* 0.003* 0.003* 
Post-menopause Beta 

(95% CI) 
-0.019 

(-0.028, -0.010) 
-0.015 

(-0.025, -0.005) 
-0.018 

(-0.028, -0.007) 
n=53,940 p-value 4.9×10-5* 0.005* 0.0009* 
p-value for interaction  0.433 0.327 0.449 
 AD (ascending aorta) 
Pre-menopause Beta 

(95% CI) 
0.016 

(-0.017, 0.049) 
0.012 

(-0.024, 0.048) 
0.012 

(-0.024, 0.048) 
n=4,333 p-value 0.338 0.522 0.516 
Post-menopause Beta 

(95% CI) 
0.013 

(-0.011, 0.037) 
0.011 

(-0.016, 0.038) 
0.012 

(-0.015, 0.039) 
n=5,129 p-value 0.288 0.483 0.370 
p-value for interaction  0.884 0.964 0.984 
 AD (descending aorta) 
Pre-menopause Beta 

(95% CI) 
0.003 

(-0.029, 0.036) 
0.001 

(-0.035. 0.036) 
0.001 

(-0.035, 0.036) 
n=4,333 p-value 0.837 0.973 0.957 
Post-menopause Beta 

(95% CI) 
0.004 

(-0.020, 0.028) 
0.008 

(-0.019, 0.035) 
0.009 

(-0.018, 0.035) 
n=5,129 p-value 0.741 0.563 0.513 
p-value for interaction  0.977 0.749 0.727 
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Table 5.5. Multivariable linear regression models showing association of speed of sound with 

measures of arterial stiffness stratified by sex and smoking status 

Table 5.5. ASI: arterial stiffness index; AD: aortic distensibility; B: beta coefficient; CI: confidence 

interval; SOS: speed of sound. B= increase (number of SDs) in outcome for a 1 SD increase in SOS. 

*indicates p-value <0.05. 

  Model 1: Age  Model 2: Age, 
exercise, deprivation, 
alcohol 

Model 3: Model 2+ 
hypercholesterolaemia, 
diabetes, hypertension  

Men ASI 
Non-smokers B (95% CI) -0.023 (-0.030, -0.016) -0.021 (-0.028, -0.013) -0.020 (-0.028, -0.013) 
n=63,312 p-value 8.8×10-11* 1.2×10-7* 2.1×10-7* 
Current smokers B (95% CI) -0.042 (-0.060, -0.024) -0.037 (-0.058, -0.017) -0.037 (-0.058, -0.016) 
n=8,637 p-value 5.9×10-6* 0.0004* 0.0004* 
p-value for interaction  0.054 0.142 0.138 
 AD (ascending aorta) 
Non-smokers B (95% CI) 0.018 (0.001, 0.037) 0.015 (-0.004, 0.034) 0.015 (-0.004, 0.034) 
n=8,096 p-value 0.040* 0.127 0.116 
Current smokers B (95% CI) 0.029 (-0.032, 0.090) 0.039 (-0.025, 0.104) 0.036 (-0.028, 0.101) 
n=671 p-value 0.354 0.233 0.271 
p-value for interaction  0.754 0.474 0.539 
 AD (descending aorta) 
Non-smokers  B (95% CI) 0.043 (0.023, 0.062) 0.037 (0.016, 0.057) 0.036 (0.016, 0.057) 
n=8,096 p-value 1.6×10-5* 0.0005* 0.0006* 
Current smokers  B (95% CI) 0.034 (-0.033, 0.100) 0.040 (-0.031, 0.111) 0.038 (-0.033, 0.108) 
n=671 p-value 0.324 0.268 0.297 
p-value for interaction  0.793 0.928 0.969 

Women ASI  
Non-smokers B (95% CI) -0.018 (-0.026, -0.011) -0.020 (-0.029, -0.012) -0.023 (-0.031, -0.014) 
n=80,145 p-value 5.5×10-7* 1.7×10-6* 1.1×10-7* 
Current smokers B (95% CI) -0.026 (-0.050, -0.003) -0.023 (-0.050, 0.004) -0.026 (-0.053, 0.001) 
n=7,448 p-value 0.025* 0.096 0.056 
p-value for interaction  0.536 0.873 0.818 
 AD (ascending aorta) 
Non-smokers B (95% CI) 0.011 (-0.007, 0.030) 0.007 (-0.013, 0.028) 0.008 (-0.012, 0.028) 
n=8,986 p-value 0.223 0.496 0.444 
Current smokers B (95% CI) 0.023 (-0.06, 0.107) 0.005 (-0.087, 0.097) 0.012 (-0.080, 0.103) 
n=476 p-value 0.586 0.909 0.800 
p-value for interaction  0.786 0.970 0.936 
 AD (descending aorta) 
Non-smokers B (95% CI) 0.007 (-0.011, 0.025) 0.009 (-0.011, 0.029) 0.009 (-0.011, 0.029) 
n=8,986 p-value 0.464 0.396 0.380 
Current smokers B (95% CI) -0.020 (-0.101, 0.062) -0.028 (-0.118, 0.062) -0.021 (-0.111, 0.069) 
n=476 p-value 0.635 0.536 0.644 
p-value for interaction  0.533 0.429 0.521 
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5.4.4 Association of SOS and arterial compliance stratified by sex and diabetic status 

Subgroup analysis by sex and diabetes, appeared to demonstrate a differential relationship with 

greater effect in non-diabetes (Table 5.6). The interaction term (diabetes × SOS) was significant 

(p=0.012) in fully adjusted models of the association between SOS and ASI in men (Table 5.6).  

 

Table 5.6. Multivariable linear regression models showing association of speed of sound with 

measures of arterial stiffness stratified by sex and diabetic status 

Table 5.6. ASI: arterial stiffness index; AD: aortic distensibility; B: beta coefficient; CI: confidence 

interval; SOS: speed of sound. B= increase (number of SDs) in outcome for a 1 SD increase in SOS. 

*indicates p-value <0.05. 

  Model 1: Age adjusted  Model 2: Age, 
exercise, smoking, 
deprivation, alcohol 

Model 3: Model 2+ 
hypercholesterolaemia, 
hypertension 

Men ASI     
Non-diabetic B (95% CI) -0.033 (-0.040, -0.026) -0.025 (-0.033, -0.018) -0.025 (-0.032, -0.017) 
n=66,598 p-value 6.4×10-22* 3.5×10-11* 6.8×10-11* 
Diabetic B (95% CI) -0.002 (-0.025, 0.021) 0.009 (-0.017, 0.036) 0.011 (-0.016, 0.037) 
n=5,351 p-value 0.873 0.489 0.436 
p-value for interaction  0.012 0.014 0.012 
 AD (ascending aorta) 
Non-diabetic B (95% CI) 0.019 (0.002, 0.037) 0.015 (-0.004, 0.033) 0.015 (-0.003, 0.034) 
n=8,459 p-value 0.03* 0.120 0.109 
Diabetic B (95% CI) 0.053 (-0.045, 0.151) 0.071 (-0.031, 0.172) 0.068 (-0.033, 0.169) 
n=308 p-value 0.289 0.171 0.187 
p-value for interaction  0.504 0.286 0.312 
 AD (descending aorta) 
Non-diabetic B (95% CI) 0.042 (0.023, 0.061) 0.037 (0.017, 0.058) 0.037 (0.017, 0.057) 
n=8,459 p-value 0.00001* 0.0003* 0.0003* 
Diabetic B (95% CI) 0.026 (-0.08, 0.134) 0.013 (-0.101, 0.127) 0.004 (-0.110, 0.118) 
n=308 p-value 0.638 0.818 0.942 
p-value for interaction  0.773 0.684 0.574 

Women ASI     
Non-diabetic B (95% CI) -0.026 (-0.033, -0.019) -0.022 (-0.030, -0.013) -0.023 (-0.031, -0.015) 
n=83,963 p-value 2.1×10-12* 2.6×10-7* 3.5×10-8* 
Diabetic B (95% CI) -0.025 (-0.058, 0.007) -0.020 (-0.060, 0.019) -0.022 (-0.061, 0.018) 
n=3,630 p-value 0.129 0.321 0.289 
p-value for interaction  0.981 0.943 0.936 
 AD (ascending aorta) 
Non-diabetic B (95% CI) 0.012 (-0.006, 0.030) 0.007 (-0.013. 0.027) 0.008 (-0.012, 0.028) 
n=9298 p-value 0.185 0.487 0.439 
Diabetic B (95% CI) 0.026 (-0.116, 0.169) 0.013 (-0.161, 0.188) 0.025 (-0.149, 0.199) 
n=164 p-value 0.719 0.881 0.780 
p-value for interaction  0.850 0.945 0.850 
 AD (descending aorta) 
Non-diabetic B (95% CI) 0.042 (0.021, 0.061) 0.037 (0.017, 0.058) 0.037 (0.017, 0.057) 
n=9,298 p-value 0.00001* 0.0003* 0.0003* 
Diabetic B (95% CI) 0.061 (-0.081, 0.203) 0.048 (-0.125, 0.221) 0.057 (-0.115, 0.229) 
n=164 p-value 0.398 0.585 0.519 
p-value for interaction  0.773 0.684 0.574 
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5.4.5 Association of SOS and arterial compliance stratified by sex and BMI 

We stratified BMI into three categories of normal (BMI ≤25 kg/m2), overweight (BMI >25 but ≤30), 

and obese (BMI >30). Stratified analysis by sex and these BMI categories suggested a possible 

differential effect of SOS on ASI in men, with significant negative associations in the 

normal/overweight categories and a non-significant relationship in the obese category (Table 5.7). 

The p-value for interaction effect in this model was significant (p=0.0008).   
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 Table 5.7. Multivariable linear regression models showing association of speed of sound with 
measures of arterial compliance stratified by sex and body mass index 

Table 5.7. ASI: arterial stiffness index; AD: aortic distensibility; B: beta coefficient; BMI: body mass 
index; CI: confidence interval; SOS: speed of sound. B= increase (number of SDs) in outcome for a 1 
SD increase in SOS. Overweight (BMI >25 but <= 30 kg/m2); Obese (BMI >30 kg/m2). *indicates p-
value <0.05. 

  Model 1: Age adjusted  Model 2: Age, exercise, 
smoking, social 
deprivation, alcohol 

Model 3: Model 2+ 
hypercholesterolaemia, 
diabetes, hypertension  

Men ASI  
Normal B (95% CI) -0.054 (-0.066, -0.041) -0.037 (-0.050, -0.023) -0.036 (-0.050, -0.023) 
 p-value 2.3×10-17* 1.0×10-7* 1.7×10-7* 
Overweight B (95% CI) -0.040 (-0.050, -0.031) -0.036 (-0.046, -0.025) -0.035 (-0.046, -0.025) 
 p-value 1.1×10-17* 8.1×10-12* 9.1×10-12* 
Obese B (95% CI) -0.004 (-0.017, 0.009) 0.001 (-0.014, 0.015) 0.001 (-0.014, 0.015) 
 p-value 0.545 0.946 0.944 
p-value for interaction  2.1×10-7 0.0006 0.0008 
 AD (ascending aorta) 
Normal B (95% CI) 0.030 (-0.001, 0.061) 0.028 (-0.005, 0.061) 0.028 (-0.005, 0.061) 
 p-value 0.059 0.095 0.098 
Overweight B (95% CI) 0.021 (-0.003, 0.044) 0.013 (-0.012, 0.038) 0.014 (-0.011, 0.038) 
 p-value 0.301 0.310 0.279 
Obese B (95% CI) 0.003 (-0.039, 0.044) 0.007 (-0.037, 0.052) 0.006 (-0.038, 0.051) 
 p-value 0.901 0.742 0.788 
p-value for interaction  0.352 0.474 0.461 
 AD (descending aorta) 
Normal B (95% CI) 0.068 (0.034, 0.101) 0.067 (0.031, 0.103) 0.067 (0.032, 0.103) 
 p-value 8.6×10-5* 0.0002* 0.0002* 
Overweight B (95% CI) 0.028 (0.002, 0.054) 0.022 (-0.006, 0.049) 0.020 (-0.007, 0.048) 
 p-value 0.036* 0.125 0.147 
Obese B (95% CI) 0.049 (0.004, 0.094) 0.044 (-0.004, 0.092) 0.042 (-0.006, 0.089) 
 p-value 0.031 0.070 0.085 
p-value for interaction  0.322 0.269 0.233 

Women ASI  
Normal B (95% CI) -0.035 (-0.045, -0.024) -0.030 (-0.042, -0.018) -0.030 (-0.042. -0.018) 
 p-value 2.5×10-10* 1.2×10-6* 7.1×10-7* 
Overweight B (95% CI) -0.032 (-0.044, -0.021) -0.024 (-0.038, -0.011) -0.025 (-0.039, -0.012) 
 p-value 4.9x10-8* 0.0003* 0.0002* 
Obese B (95% CI) -0.024 (-0.039, -0.010) -0.026 (-0.043, -0.009) -0.027 (-0.044, -0.010) 
 p-value 0.001* 0.003* 0.002* 
p-value for interaction  0.262 0.657 0.687 
 AD (ascending aorta) 
Normal B (95% CI) 0.012 (-0.013, 0.037) 0.007 (-0.021, 0.034) 0.008 (-0.019, 0.035) 
 p-value 0.351 0.634 0.570 
Overweight B (95% CI) 0.007 (-0.023, 0.037) 0.003 (-0.031, 0.036) 0.003 (-0.031, 0.036) 
 p-value 0.641 0.883 0.873 
Obese B (95% CI) 0.020 (-0.028, 0.067) 0.013 (-0.042, 0.068) 0.014 (-0.040, 0.069) 
 p-value 0.421 0.638 0.614 
p-value for interaction  0.827 0.876 0.894 
 AD (descending aorta) 
Normal B (95% CI) 0.003 (-0.022, 0.027) -0.000 (-0.027, 0.027) 0.001 (-0.026, 0.028) 
 p-value 0.816 0.976 0.964 
Overweight B (95% CI) 0.008 (-0.022, 0.037) 0.011 (-0.022, 0.044) 0.011 (-0.022, 0.043) 
 p-value 0.616 0.499 0.526 
Obese B (95% CI) -0.009 (-0.056, 0.037) 0.012 (-0.041, 0.065) 0.012 (-0.040,0.065) 
 p-value 0.680 0.658 0.644 
p-value for interaction  0.797 0.556 0.585 
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5.4.6 Mediation analysis 

In testing the effect of various mediators, we elected to focus on the association between SOS and 

ASI, as this analysis allowed inclusion of the largest sample size and because the ASI relationships 

had demonstrated most consistency in the previous analyses. In separate analyses for men and 

women, we considered the potential mediating effect of the following variables: CRP, Creatinine, 

Vitamin D, Calcium, ALP, IGF1, SHBG, Testosterone, Testosterone/SHBG, Oestradiol, Phosphate, 

Cystatin C, hypertension, diabetes, and hypercholesterolaemia. 

 

In the first instance, we evaluated the mediating effect of each variable individually for men (Table 

5.8) and women (Table 5.9). Variables with a significant mediating effect in this analysis were taken 

forward for multiple mediation analysis. In the final models, we included variables that had 

statistically significant effects in the multiple mediator model (Table 5.10, Table 5.11). In the 

multiple mediation analysis, biomarkers relating to bone mineralisation appeared important for both 

men and women. For men, ALP, phosphate, and vitamin D accounted for 7.5%, 4.6%, and 3.2% of 

the observed effect. In women, ALP and phosphate accounted for 9.6% and 13.2% of the observed 

effect. CRP accounted for 6.1% of the mediated effect in men and -8.6% in women. SHBG had an 

important suppressing effect for both men and women as adjustment for this variable increased the 

effect by 17.1% and 19.6% respectively. 

 
Table 5.8. Indirect effect (mediated effect) of speed of sound on arterial stiffness index through 

each mediator in men, tested individually 

Mediator Beta 95% CI p-value Percentage mediated 
Alkaline phosphatase -0.003 (-0.004, -0.002) 1.5×10-18* 11.5% 
Calcium 0.000 (0.000, 0.0001) 0.45 0.2% 
Phosphate -0.001 (-0.002, -0.001) 0.00002* 4.1% 
Vitamin D -0.001 (-0.002, -0.001) 1.2×10-9* 4.8% 
C Reactive Protein -0.003 (-0.003, -0.002) 9.3×10-13* 10.1% 
Creatinine -0.001 (-0.001, 0.000) 0.02 2.1% 
IGF1 -0.001 (-0.002, -0.001) 0.00002* 4.0% 
SHBG 0.005 (0.004, 0.006) 3.4×10-25* -17.2% 
Testosterone -0.002 (-0.002, -0.001) 1.1×10-11* 6.7% 
Oestradiol 0.000 (0.000, 0.001) 0.493 -0.6% 
Cystatin C -0.001 (-0.001, 0.000) 0.00008* 2.8% 
Testosterone/SHBG 0.003 (0.002, 0.004) 10.0×10-10* -11.9% 
Hypertension -0.0004 (-0.001, -0.00008) 0.011 1.6% 
Hypercholesterolaemia 0.000 (0.000, 0.00004) 0.839 0.0% 
Diabetes 0.000 (0.000, 0.0002) 0.088 -0.4% 

Table 5.8. CI: confidence interval; IGF1: insulin like growth factor 1; SHBG: Sex hormone binding 

globulin. Significance level p<0.003. *indicates p-value<0.003. 
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Table 5.9. Indirect effect (mediated effect) of speed of sound on arterial stiffness index through 

each mediator in women, tested individually 

Mediator Beta 95% CI p-value Percentage mediated 
Alkaline phosphatase -0.004 (-0.005, -0.004) 4.7×10-30* 23.8% 

Calcium -0.0002 (-0.0004, -0.0001) 0.012 0.0% 
Phosphate -0.003 (-0.003, -0.002) 9.9×10-15* 13.6% 
Vitamin D 0.000 (0.000, 0.001) 0.303 0.0% 

C Reactive Protein 0.003 (0.002, 0.004) 1.4×10-12* -14.3% 
Creatinine 0.000 (0.000, 0.0002) 0.57 0.0% 

IGF1 -0.0002 (0.000, 0.000) 0.028 0.0% 
SHBG 0.006 (0.005, 0.007) 4.4×10-32* -27.3% 

Testosterone -0.0001 (0.000, 0.0004) 0.182 0.0% 
Oestradiol -0.0001 (0.000, 0.0002) 0.576 0.0% 
Cystatin C -0.001 (-0.001, -0.0002) 0.007 4.8% 

Testosterone/SHBG 0.003 (0.002, 0.004) 1.9×10-10* -12.0% 
Hypertension 0.002 (0.001, 0.002) 5.1×10-14* -5.0% 

Hypercholesterolaemia 0.0004 (0.000, 0.0007) 0.001* -2.0% 
Diabetes 0.0008 (0.001, 0.0012) 9.9×10-6* -4.0% 

Table 5.9. CI: confidence interval; IGF1: insulin like growth factor 1; SHBG: Sex hormone binding 

globulin. Significance level p<0.003. *indicates p-value<0.003. 

 
Table 5.10. Independent indirect effect (mediated effect) of speed of sound on arterial stiffness 

index through each mediator in men 

Mediator Beta 95% CI p-value Percentage mediated 

Alkaline phosphatase -0.0021 (-0.0028, -0.0015) 6.6×10-11 7.5% 

Phosphate -0.0013 (-0.0018, -0.0008) 1.8×10-7 4.6% 

Vitamin D -0.0009 (-0.0012, -0.0005) 0.00001 3.2% 

C Reactive Protein -0.0017 (-0.0023, -0.0012) 1.4×10-9 6.1% 

IGF1 -0.0016 (-0.0022, -0.001) 7.0×10-8 5.7% 

SHBG 0.0048 (0.0032, 0.0064) 3.2×10-9 -17.1% 

Testosterone 0.001 (0.0005, 0.0014) 0.00009 -3.6% 

Cystatin C -0.0004 (-0.0006, -0.0001) 0.004 1.4% 

Table 5.10. CI: confidence interval; IGF1: insulin like growth factor 1; SHBG: Sex hormone binding 

globulin. Significance level p<0.006. 
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Table 5.11. Independent indirect effect (mediated effect) of speed of sound on arterial stiffness 

index through each mediator in women 

Mediator Beta 95% CI p-value Percentage mediated 

Alkaline phosphatase -0.0021 (-0.0027, -0.016) 3.1×10-13 9.6% 

Phosphate -0.0029 (-0.0036, -0.0022) 4.1×10-17 13.2% 

C Reactive Protein 0.0019 (0.0013, 0.0025) 2.1×10-9 -8.6% 

SHBG 0.0043 (0.0035, 0.0051) 1.6×10-27 -19.6% 

Hypertension 0.0007 (0.0004, 0.0011) 0.00003 -5.5% 

Table 5.11. CI: confidence interval; IGF1: insulin like growth factor 1; SHBG: Sex hormone binding 

globulin. Significance p<0.01. 

 

In summary, for men, the overall effect of the mediating variables was mediation, that is, the 

magnitude of the main exposure-outcome relationship was reduced by adjustment for the mediators. 

In women, the effect was one of suppression rather than mediation as the magnitude of the exposure-

outcome relationship increased when we added the potential mediators. The association between ASI 

and SOS remained significant with all the mediators in the model. 

 

5.4.7 Association of SOS with ischaemic cardiovascular outcomes 

We estimated the association of bone quality as measured by SOS with IHD mortality and incident 

AMI. There were 477,683 participants with SOS recorded at baseline, including 263,273 women and 

214,410 men. Baseline characteristics are presented in Table 5.12. For IHD mortality, follow-up time 

was 2,342,445 person years for women and 1,888,767 for men. During this period, there were 388 

IHD deaths in women (incidence rate=0.17 per 1000 person years) and 1,722 (incidence rate=0.91 per 

1000 person years) in men. Follow-up time for incident AMI was 2,123,170 person years for women 

and 1,659,850 person years for men. There were 2,415 AMI events in women (incidence rate=1.14 

per 1000 person years) and 5,616 events (incidence rate=3.38 per 1000 person years) in men. 

 

In crude models, with age adjustment only, SOS was associated with significantly reduced hazard of 

both incident AMI and IHD mortality in men; the associations in women were weaker and not 

statistically significant. The association with incident AMI was attenuated with adjustment for age, 

exercise, material deprivation, and alcohol. In a final model, with addition adjustment for 

hypertension, hypercholesterolaemia, and diabetes, SOS was associated with significantly lower risk 

of IHD mortality in men. In the fully adjusted model, one standard deviation increase of SOS was 

associated with 14% lower hazard of IHD mortality [SHR 0.86 (0.75-1.00), p-value 4.0×10-7] in men 

(Table 5.13). We considered whether the relationship of SOS with IHD mortality may be explained 
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by previously observed associations of SOS with ASI. Thus, in a separate model, we added ASI as a 

covariate in the fully adjusted competing risk models. The magnitude of effect or statistical 

significance of the relationship were not altered in this model (Table 5.14). Thus, it appears that the 

association with IHD mortality may be occurring through alternative mechanisms to the ASI 

association. 

 

Table 5.12. Baseline participant characteristics (ischaemic heart disease outcomes sample) 

 Men Women 
 No IHD death 

(n=212,688) 
IHD death 
(n=1,722) 

No IHD death 
(n=262,885) 

IHD death 
(n=388) 

Age 58 [50 to 64] 63 [58 to 66] 58 [50 to 63] 64 [60 to 67] 
Ethnicity (White) 201,008 (95.0%) 1,631 (95.7%) 248,596 (94.9%) 371 (96.6%) 
Townsend deprivation score -2.2  [-3.7 to 0.6] -1.0 [-3.0 to 2.3] -2.2 [-3.7 to 0.4] -0.9 [-3.0 to 2.0] 
Body mass index kg/m2 27.2 [24.9 to 

29.9] 
28.5 [25.9 to 32.0] 26.1 [23.5 to 29.7] 28.4 [25.0 to 32.7] 

Current smoking 26,295 (12.4%) 456  (26.7%) 23,297 (8.9%) 83 (21.6%) 
Regular alcohol use 109,932 (51.8%) 796 (46.4%) 96,430 (36.8%) 87 (22.7%) 
Physical activity (metabolic 
equivalent minutes/week) 

1,862 [824 to 
3,822] 

1,573 [582 to 
3,506] 

1,765 [820-3492] 1242 [506.5 to 3232.5] 

Multimorbidity  
(number of non-cancer illnesses) 

1 [0-3] 3 [2-5] 1 [0-3] 3 [2-5] 

Hypertension  68,407 (32.2%) 1,053 (61.1%) 63,260 (24.1%) 232 (59.8%) 
Diabetes 14,326 (6.7%) 419 (24.3%) 9,840 (3.7%) 91 (23.5%) 
Hypercholesterolaemia 51,304 (24.1%) 934 (54.2%) 36,669 (13.9%) 178 (45.9%) 
Post-menopausal  - - 159766 (72.3%) 301 (93.7%) 
Arterial stiffness index (m/s) 9.8 [7.7 to 11.8] 10.6 [8.5 to12.6] 8.3 [6.3 to 10.5] 9.6 [7.5 to 12.5] 
Speed of sound (102m/s) 15.57 (0.30) 15.50 (0.32) 15.48 (0.29) 15.41 (0.32) 

Table 5.12. Data based on information collected at baseline assessment. Continuous variables 

presented as median [interquartile range] or mean (standard deviation). Discrete data presented as 

frequencies (percentages). IHD: ischaemic heart disease. 
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Table 5.13. Competing risk models of the association of speed of sound with incident acute 
myocardial infarction and ischaemic heart disease mortality 

Table 5.13. AMI: acute myocardial infarction; ASI: arterial stiffness index; CI: confidence interval; 
IHD: ischaemic heart disease; SHR: subdistribution hazard ratio; SOS: speed of sound. *indicates p-
value <0.05. 

 

Table 5.14. Competing risk models of the association of speed of sound with incident acute 
myocardial infarction and ischaemic heart disease mortality 

  Model 2: Age, exercise, 
smoking, deprivation, alcohol + 

ASI 

Model 3: Model 2+ 
hypercholesterolaemia, diabetes, 

hypertension+ ASI 
 IHD mortality   

Men SHR (95% CI) 0.85 (0.76-0.95) 0.85 (0.76-0.95) 
 p-value 5.6×10-3* 3.5×10-3* 

Women SHR (95% CI) 0.77 (0.54-1.09) 0.73 (0.51-1.03) 
 p-value 0.134 0.076 

Table 5.14. AMI: acute myocardial infarction; ASI: arterial stiffness index; CI: confidence interval; 

IHD: ischaemic heart disease. SHR: subdistribution hazard ratio; SOS: speed of sound. *indicates 

p<0.05. 

 

5.5 Summary of findings 

We demonstrate the association of better bone health with better vascular health. Specifically, our 

results indicate association of higher SOS measured by heel ultrasound with greater arterial 

compliance measured by AD (CMR) and ASI (finger plethysmography). The relationship was 

consistent in men and women and by menopause status. There was no clear differential relationship 

by smoking status, diabetes, or BMI. In the case of diabetes and BMI, results of stratified analysis are 

likely highly influenced by unbalanced sample sizes in the different strata. We considered the 

potential mediating effect of a range of blood biomarkers on the ASI and SOS relationship. Although 

there was some commonality, in general, the pattern of mediation varied for men and women, and in 

neither did these markers provide a complete explanation of the observed associations. Finally, we 

n=477,683  Model 1: Age Model 2: Age, 
exercise, smoking, 

deprivation, alcohol 

Model 3: Model 2+ 
hypercholesterolaemia, 
diabetes, hypertension 

 Incident AMI 
Men (n=214,410) SHR (95% CI) 0.96 (0.93-0.99) 0.99 (0.96-1.02) 0.99 (0.96-1.02) 

 p-value 0.002* 0.651 0.658 
Women (n=263,273) SHR (95% CI) 0.97 (0.93-1.01) 1.03 (0.97-1.08) 1.00 (0.95-1.05) 

 p-value 0.159 0.352 0.987 
 IHD mortality 

Men (n=214,410) SHR (95% CI) 0.81 (0.77-0.85) 0.86 (0.81-0.91) 0.86 (0.81-0.91) 
 p-value 7.8×10-15* 9.9×10-7* 4.0×10-7* 

Women (n=263,273) SHR (95% CI) 0.92 (0.82-1.02) 0.91 (0.78-1.05) 0.86 (0.75-1.00) 
 p-value 0.093 0.184 0.051 
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estimated the association of SOS with incident ischaemic cardiovascular outcomes.  In fully adjusted 

models, higher SOS was associated with significantly lower risk of IHD mortality in men (and less 

robustly in women). This relationship was not attenuated with addition of ASI to the model, 

indicating importance of alternative mechanisms. 

 

5.6 Discussion 

5.6.1 Comparison with existing literature 

Previous studies have examined the association of bone quality with arterial stiffness, as measured by 

pulse wave velocity (PWV). There is little data on differential relationships by sex or menopause 

status. In a cohort of 7,685 individuals from Japan, Hirose et al.174 report association of better bone 

quality (quantitative heel ultrasound) with lower arterial stiffness (PWV) in men and women; they 

report greater magnitude of effect in post-menopausal women. Avramovski et al.175 and Zhang et al176 

also report similar associations between BMD and arterial stiffness, but are underpowered to test for 

any modifying effect of age or menopause. These associations have been replicated in smaller studies 

of  Korean177 and Turkish women178. For men, the relationship is less clear from existing studies. For 

example, in a cohort of 633 individuals, Giallauria et al.179 report association of higher bone quality 

assessed by computed tomography and lower arterial stiffness by PWV for women, but not for men. 

Our analysis, in the largest sample studied to date, confirms the previously reported associations 

between bone and vascular health and demonstrates that these associations are consistent for men and 

women and in both pre- and post-menopausal women. 

 

The association between better bone quality (higher SOS) with reduced risk of IHD mortality in men 

in our study, is consistent with previous findings, which, in common with our results, demonstrate a 

stronger relationship in men180–182. However, smaller studies in older women183,184, and a larger study 

of 5,816 women185 have demonstrated that these mortality associations are also applicable to women. 

In these reports, the study population was comprised of an older cohort of women, compared to our 

sample. Accordingly, we observed fewer events in the women in our sample compared to these 

cohorts, and compared to the men in our cohort. Therefore, it is possible that we were underpowered 

to detect specific associations with IHD outcomes for women. 

 

5.6.2 Potential biological mechanisms 

Limited studies have considered potential common biological processes linking bone mineralisation 

and atherosclerotic processes. To this end, several studies have considered the relationship between 

serum markers of bone metabolic and arterial stiffness. In a study of 1,003 diabetic patients, Sharif et 

al.186 demonstrate association of higher levels of osteopontin (a plasma regulator of bone metabolism) 
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with higher arterial stiffness. In a study of 144 post-menopausal women, Albu et al.187 document 

association of greater plasma osteoprotegerin levels with higher arterial stiffness, but not with 

osteopontin, suggesting possible differences in biological mechanisms for men and women. It is 

worth noting, that both osteoprotegin and osteopontin have been directly implicated in vascular 

pathology as well as bone mineralisation. Therefore, these observations do not necessarily indicate 

direct mechanisms between bone and vascular health188. We considered the potential mediating effect 

of a wide range of blood biomarkers (for the SOS-ASI relationship). Our results indicate likely sex-

specific disease mechanisms, however the mediators studied did not provide an adequate explanation 

for men or women. Furthermore, whilst it seemed plausible that the association of SOS with IHD 

mortality may be mediated through its relationship with ASI, we did not find this to be the case. These 

observations demonstrate the complexity of the relationship between bone and cardiovascular health 

and the challenges in elucidating specific biological mechanism. 

 

5.7 Critical appraisal of the results 

Our findings adds strength to previous work suggesting independent links between bone and 

cardiovascular health. Additionally, we further existing knowledge by demonstrating the consistency 

of these relationships across the sexes and in pre- and post-menopause. The use of objectively defined 

standardised imaging and physical measures of bone and arterial health limits bias from misdiagnoses 

or subjectivity of clinical assessments. The clinical outcomes considered (incident AMI, and IHD 

death) are reliably and completely identified through data linkage with HES and death register data. 

The SOS measure was obtained at the baseline visit, whilst AD was measured several years later at 

imaging. Similarly, we considered incident clinical outcomes occurring after SOS measurement. 

Thus, there is temporal separation of SOS and arterial health indicators by a number of years. Overall, 

this makes a causal relationship between bone and vascular health likely. Of course, causal inference 

from observational data is highly challenging, particularly as, despite extensive consideration of 

confounders, residual confounding cannot be excluded. Dedicated causal inference methods, such as 

Mendelian Randomisation analysis would add strengths to our findings. 

 

5.8 Conclusions 

The results from this analysis support a positive link between bone and vascular health, which is 

consistent in men and women and with menopause. Analysis of underlying mediating mechanisms did 

not provide a complete explanation but indicated likely differences in mechanism for men and 

women. Higher SOS was associated with lower risk of IHD mortality in men (and less robustly in 

women), this relationship was not explained by association of SOS with ASI. Thus, although links 

between heart and musculoskeletal health appear robust, the underlying pathophysiology of the bone 
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heart axis is complex and likely varies by sex. Further research into biological mechanism is 

warranted.  
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6 Meat consumption and cardiovascular phenotypes 

6.1 Abstract 

Objectives: Higher intake of red and processed meat has been linked to poorer clinical cardiovascular 

outcomes. However, the association of these exposures with CMR phenotypes has not been studied. 

We evaluate associations of meat intake with CMR metrics and investigate underlying mechanisms 

through consideration of a range of covariates. 

 

Methods and Results: The analysis sample includes 19,408 UK Biobank participants with CMR data 

available. We calculated a continuous measure of average daily red and processed meat intake from 

food frequency questionnaires. Oily fish was studied as a comparator, previously associated with 

healthier cardiovascular endpoints. We examined associations with conventional CMR metrics 

(ventricular volumes, ejection fraction, stroke volume, LV mass), novel CMR radiomics features 

(shape, first-order, texture), and arterial stiffness metrics (ASI, AD). We estimated the association of 

the dietary exposures with cardiovascular phenotypes using multivariable linear regression models, 

adjusting for confounders (age, sex, deprivation, educational level, smoking, alcohol intake, exercise) 

and potential mediators (hypertension, hypercholesterolaemia, diabetes, BMI). Greater red and 

processed meat consumption was associated with an adverse LV and RV remodelling, poorer 

ventricular function, and less compliant arteries. In comparison, higher oily fish intake was linked to 

healthier cardiac structure and function measures and more compliant arteries. There was partial 

attenuation of the red meat-CMR associations with addition of potential mediators, indicating a 

possible mechanistic role for these cardiometabolic factors. However, other associations were not 

altered with inclusion of these covariates, suggesting importance of alternative underlying biological 

mechanisms. CMR radiomics provided deeper phenotyping, demonstrating association of the different 

dietary habits with distinct ventricular geometry and LV myocardial texture patterns.  

 

Conclusions: Greater red and processed meat consumption is associated with impaired cardiovascular 

health, both in terms of markers of arterial disease and of cardiac structure and function. 

Cardiometabolic morbidities appeared to have a mechanistic role in the associations of red meat with 

ventricular phenotypes, but less so for other associations suggesting importance of alternative 

mechanism for these relationships. 
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6.2 Background 

The association between greater meat consumption and poorer cardiovascular endpoints has been 

repeatedly demonstrated in epidemiological studies189–192. Greater consumption of red and processed 

meat in particular has been linked to greater burden of atherosclerosis193, higher risk of incident 

ischaemic cardiovascular events194 and heart failure195. Animal studies have demonstrated association 

of higher red meat intake with adverse ventricular remodelling and heart failure phenotypes196. 

However, the impact of these exposures on cardiovascular phenotypes in humans has not been 

adequately studied. 

 

Cardiometabolic morbidities have been proposed as possible mediators of these relationships197,198. 

Furthermore, recent studies suggest novel causal underlying mechanisms pertaining to cross-system 

interactions with the gut microbiome199. 

 

In this study, we examined novel associations between red and processed meat intake and 

cardiovascular structure and function quantifiers in the UK Biobank, considering a wide range of 

confounder and mediators. We included conventional CMR indices, novel CMR radiomics features, 

and measures of arterial compliance. We considered associations between oily fish intake as a 

comparator previously linked with favourable cardiovascular endpoints194. We hypothesised that 

greater red and processed meat intake would be linked to unhealthy cardiovascular phenotypes, whilst 

oily fish would be associated with healthy phenotypes.  

 

6.3 Methods 

6.3.1 Study population 

We included UK Biobank participants with CMR or arterial stiffness index data. The cohort is 

described in detail in Section 2.1. 

 

6.3.2 Ascertainment of meat intake variables 

The UK Biobank baseline touchscreen questionnaire included a series of questions about dietary 

intake covering the main food groups. Participants were required to estimate their average weekly 

intake of a range of food products over the last 12 months. From the questionnaire, we extracted three 

main dietary exposure categories of interest: 1) Unprocessed red meat, 2) Processed meat, 3) Oily 

fish.  
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Unprocessed meat comprised a composite of average beef, lamb or mutton, and pork consumption; 

we also considered association with each of these categories individually. Processed meat comprised 

average consumption of any processed meat products (e.g., bacon, ham, sausages, meat pies, kebabs, 

burgers). Oily fish included consumption of any fresh oily fish (e.g., sardines, salmon, mackerel, 

herring). Please see Table 6.1 for further details of the food frequency questionnaire items relating to 

these food products. We converted reported portion frequencies into probabilities of daily intake and 

multiplied by standard portion sizes200 to derive average daily consumption in grams. As such, we 

were able to consider the meat exposures as continuous variables, as has been published previously 

using this dataset201. 

 

Table 6.1. Selected components of the UK Biobank food intake questionnaire 

Meat type Touchscreen question Help message* 
Lamb How often do you eat lamb/mutton? 

(Do not count processed meats) 
 

Please provide an average considering your intake 
over the last year.  
 
If you are unsure, please provide an estimate or 
select Do not know. 

Beef  How often do you eat beef? (Do not 
count processed meats) 
 

Please provide an average considering your intake 
over the last year.  
 
If you are unsure, please provide an estimate or 
select Do not know. 

Pork  How often do you eat pork? (Do not 
count processed meats such as bacon 
or ham) 
 

Please provide an average considering your intake 
over the last year.  
 
If you are unsure, please provide an estimate or 
select Do not know. 

Processed meat  How often do you eat processed meats 
(such as bacon, ham, sausages, meat 
pies, kebabs, burgers, chicken 
nuggets)? 

Please provide an average considering your intake 
over the last year.  
 
If you are unsure, please provide an estimate or 
select Do not know. 

Oily fish  How often do you eat oily fish? (e.g., 
sardines, salmon, mackerel, herring) 
 

Please provide an average considering your intake 
over the last year.  
 
If you are unsure, please provide an estimate or 
select Do not know.  
 
Oily fish include: Salmon, Anchovies, Trout, 
Swordfish, Mackerel, Bloater, Herring, Cacha, 
Sardines, Carp, Pilchards, Hilsa, Kipper, Jack fish, 
Ee,l Katla, Whitebait, Orange roughy, Tuna (fresh 
only), Pangas, Sprats 

Table 6.1. *The help message was displayed if the participant activated the help button. For all 

questions the following answers were possible: never, less than once a week, once a week, 2-4 times a 

day, 5-6 times a week, once or more daily, do not know, prefer not to answer. 

 



 102 

6.3.3 Conventional CMR indices 

CMR image acquisition and analysis was as described in Section 2.1.6 and Section 2.2.5.1. For the 

present analysis, data was available from 19,408 CMR studies, including the following metrics: LV 

and RV volumes in end-diastole and end-systole, LV and RV ejection fraction, LV and RV stroke 

volume, and LV mass. 

 

6.3.4 Novel CMR radiomics features 

CMR radiomics is a novel image analysis technique which generates a large number of quantitative 

indices of shape and texture from a defined region of interest71. Radiomics features provide 

information that is complementary and potentially incremental to conventional CMR indices71. A 

detailed description of this methodology is presented in Section 2.3. 

 

In the present study, we made use of existing segmentations from conventional CMR analysis, as 

described in Section 2.2.5.1 to define three regions of interest in end-diastole and end-systole for 

radiomics analysis: 1) RV cavity, 2) LV cavity, 3) LV myocardium (Figure 6.1). 

 

Figure 6.1. Three regions of interest were selected from short axis cine images 

 

 

 

 

 

Figure 6.1. From left to right: 2D short axis mid-ventricular slice; segmentation of the three regions 

of interest shown overlaid on the image: LV myocardium (blue), LV blood pool (light blue), and RV 

blood pool (green); 3D reconstructions of the segmented regions. For illustration, we present regions 

of interest in end-diastole, in the analysis, we considered also these three regions, derived in the same 

manner, in end-systole. Adapted from Raisi-Estabragh et al.99. 

From the RV and LV cavity regions, we extracted radiomics shape features. From the LV 

myocardium region, we extracted signal intensity-based features, specifically, histogram derived first-

order features and texture features. We used the PyRadiomics open-source platform for radiomics 

feature extraction90. The list of features extracted and used in this study is presented in Table 6.2. 
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To ensure that variation in signal intensity levels and patterns were due to biological differences 

rather than technical variations related to image acquisition, we performed intensity normalisation of 

CMR images through histogram matching, using as reference one of the studies from the dataset202. 

For grey level discretisation, we used a fixed bin width of 25 intensity values. 

 

Table 6.2. List of cardiovascular magnetic resonance radiomics features extracted and included 

in the analysis grouped by feature category 

Shape features First-order features Texture features 
Volume Energy Autocorrelation (GLCM) 
Surface Area Total Energy Joint Average (GLCM) 
Surface Area To Volume 
Ratio 

Entropy Cluster Prominence (GLCM) 

Sphericity Minimum Cluster Shade (GLCM) 
Maximum 3D Diameter 10th Percentile Cluster Tendency (GLCM) 
Maximum 2D Diameter 
(Slice) 

90th Percentile Contrast (GLCM) 

Maximum 2D Diameter 
(Column) 

Maximum Correlation (GLCM) 

Maximum 2D Diameter 
(Row) 

Mean Difference Average (GLCM) 

Major Axis Length Median Difference Entropy (GLCM) 
Minor Axis Length Interquartile Range Difference Variance (GLCM) 
Least Axis Length Range Joint Energy (GLCM) 
Elongation Mean Absolute Deviation Joint Entropy (GLCM) 
Flatness Robust Mean Absolute 

Deviation 
Informal Measure Of Correlation 1 (GLCM) 

 Root Mean Squared Informal Measure Of Correlation 2 (GLCM) 
 Skewness Inverse Difference Moment (GLCM) 
 Kurtosis Inverse Difference Moment Normalized (GLCM) 
 Variance Inverse Difference (GLCM) 
 Uniformity Inverse Difference Normalized (GLCM) 
  Inverse Variance (GLCM) 
  Maximum Probability (GLCM) 
  Sum Average (GLCM) 
  Sum Entropy (GLCM) 
  Sum Of Squares (GLCM) 
  Small Area Emphasis (GLSZM) 
  Large Area Emphasis (GLSZM) 
  Grey Level Non Uniformity (GLSZM) 
  Size Zone Non Uniformity (GLSZM) 
  Size Zone Non Uniformity Normalized (GLSZM) 
  Zone Percentage (GLSZM) 
  Grey Level Variance (GLSZM) 
  Zone Variance (GLSZM) 
  Zone Entropy (GLSZM) 
  Low Grey Level Zone Emphasis (GLSZM) 
  High Grey Level Zone Emphasis (GLSZM) 
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Shape features First-order features Texture features 
  Small Area Low Grey Level Emphasis (GLSZM) 
  Small Area High Grey Level Emphasis (GLSZM) 
  Large Area Low Grey Level Emphasis (GLSZM) 
  Large Area High Grey Level Emphasis (GLSZM) 
  Short Run Emphasis (GLRLM) 
  Long Run Emphasis (GLRLM) 
  Grey Level Non Uniformity (GLRLM) 
  Run Length Non Uniformity (GLRLM) 
  Run Length Non Uniformity Normalized 

(GLRLM) 
  Run Percentage (GLRLM) 
  Grey Level Variance (GLRLM) 
  Run Variance (GLRLM) 
  Run Entropy (GLRLM) 
  Low Grey Level Run Emphasis (GLRLM) 
  High Grey Level Run Emphasis (GLRLM) 
  Short Run Low Grey Level Emphasis (GLRLM) 
  Short Run High Grey Level Emphasis (GLRLM) 
  Long Run Low Grey Level Emphasis (GLRLM) 
  Long Run High Grey Level Emphasis (GLRLM) 
  Coarseness (NGTDM) 
  Contrast (NGTDM) 
  Busyness (NGTDM) 
  Complexity (NGTDM) 
  Strength (NGTDM) 
  Small Dependence Emphasis (GLDM) 
  Large Dependence Emphasis (GLDM) 
  Grey Level Non Uniformity (GLDM) 
  Dependence Non Uniformity (GLDM) 
  Dependence Non Uniformity Normalized (GLDM) 
  Grey Level Variance (GLDM) 
  Dependence Variance (GLDM) 
  Dependence Entropy (GLDM) 
  Low Grey Level Emphasis (GLDM) 
  High Grey Level Emphasis (GLDM) 
  Small Dependence Low Grey Level Emphasis 

(GLDM) 
  Small Dependence High Grey Level Emphasis 

(GLDM) 
  Large Dependence Low Grey Level Emphasis 

(GLDM) 
  Large Dependence High Grey Level Emphasis 

(GLDM) 
Table 6.2. CMR: cardiovascular magnetic resonance; GLCM: grey level co-occurrence matrix; 

GLDM: grey level dependence matrix; GLRLM: grey level run length matrix; GLSZM: grey level size 

zone matrix; NGTDM: neighboring grey tone difference matrix; LV: left ventricle. 

 



 105 

6.3.5  Aortic distensibility 

AD is a measure of local aortic compliance. AD results were obtained from a fully automated image 

analysis pipeline as described in Section 2.2.6.1. 

 

6.3.6 Arterial stiffness index 

ASI was measured at both baseline and imaging visits using finger photoplethysmography according 

to a standardised protocol70. Further details on this measure are presented in Section 2.2.6.2. We used 

a 1.5 IQR rule to remove outliers from the ASI variable, consistent with previous publications28. 

 

6.3.7 Statistical analysis 

For the statistical analysis, we used R Version 3.6.2142 and RStudio Version 1.2.5019143. We used 

multivariable linear regression to estimate the association of each dietary exposure (unprocessed red 

meat, processed meat, oily fish) with each cardiovascular metric. For ease of interpretation, we report 

change in cardiovascular metric per 100g increase in daily meat consumption, alongside 

corresponding 95% confidence intervals (CIs) and p-values. As ASI was available at two time points 

(baseline, imaging), we estimated associations between the dietary intake exposures with measures 

taken at both baseline and imaging visits. In addition, in preliminary analyses, we identified 

significant interval change in ASI from baseline to imaging. Therefore, we also considered “change in 

ASI” as an additional outcome, expressed using standardised residuals derived from regression of ASI 

at imaging on ASI at baseline. The average time interval between baseline and imaging assessment 

was 7.5 years in the CMR set and 8.2 years in the ASI set. 

 

We identified covariates on basis of association with both exposure and outcome in preliminary 

analyses and review of current evidence (Figure 6.2). In the main models, we control for potential 

confounders (age, sex, material deprivation, education, smoking, alcohol intake, exercise) to estimate 

the magnitude of the exposure-outcome associations. We selected hypertension, 

hypercholesterolaemia, diabetes, and body mass index (BMI) as potential mediators of the 

relationship, i.e., covariates potentially on the causal pathway (Figure 6.2). Covariates were 

ascertained as described in Section 2.2.2 and Section 2.2.3. 

 

In order to evaluate the impact of these variables, we tested associations with additional inclusion of 

these factors in the main models, with the expectation that covariates on the causal pathway would 

attenuate exposure-outcome associations. Thus, we present two sets of models: 1) Confounder 

adjusted models 2) Confounder and mediator adjusted models. 
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Figure 6.2. Covariates considered in the relationship between red and processed meat 
consumption and cardiovascular phenotypes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.2. CMR: cardiovascular magnetic resonance. Reproduced from Raisi-Estabragh et al.203  

 

6.3.7.1 Additional steps for the radiomics analysis 

To derive effect sizes that were comparable across different radiomics features, prior to regression 

analysis, we performed z-score normalisation of the features, this means that all the features were put 

on the same scale. The results for associations with radiomics features are thus reported as standardised 

beta coefficients per 100g daily increase in meat/fish intake. For the radiomics associations we present 

results from confounder adjusted models only. 

 

Since the number of radiomics texture features was large (n=144), to improve interpretation, we 

performed cluster analysis to identify correlated feature groupings (Figure 6.3)204. We hierarchically 

clustered features using complete linkage on Pearson correlation distance between features. The optimal 

number of clusters was determined by computing the average silhouette using the cluster package in 

R204. The silhouette statistic is a measure of cluster consistency and represents the average distance 

between data points in the same cluster compared against average data points in other clusters and 

allows judgement of the optimal number of clusters within a sample. This approach ensures that clusters 

are constructed such that the distance between datapoints within clusters are minimised whilst the 

distance with datapoints outside the cluster (other clusters) is maximised. Higher silhouette statistics 

indicate better conformity with these criteria. We computed average silhouette statistic for 2 to 10 

clusters. In our sample, the highest silhouette statistic was observed with 7 clusters, which we took as 

reflecting the optimal number of clusters (Figure 6.3).  
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We then examined the features within each cluster and assigned descriptive names to each cluster on 

the basis of the properties represented by its constituent features. Therefore, for the texture features, we 

present the mean beta-coefficient and 95% CIs for each cluster for the different dietary exposures. We 

compare effects between exposure categories through testing for the difference in mean beta 

coefficients using Kruskal-Wallis statistical testing followed by Dunn’s correction for multiple 

comparisons. 

 
Figure 6.3. Illustration of clustering method (hierarchical) and approach to defining the number 

of clusters (average silhouette approach) for the LV myocardium radiomics texture features 

Figure 6.3. (A) Average silhouette statistic for complete-linkage hierarchical clustering of texture 

feature correlations. The silhouette statistic reflects the average distance between data points in the 

same cluster compared against average data points in other clusters and allows judgement of the 

optimal number of clusters within a sample, such that distance between datapoints within clusters are 

minimised whilst maximising distance with datapoints from other clusters. We computed average 

silhouette statistic for 2 to 10 clusters. Maximum silhouette statistic was observed with 7 and 8 

clusters. Hence, we take 7 clusters as representing the optimal number of clusters within our samples. 

(B) Correlation heatmap, rows and columns correspond to all texture features creating grid with all 

possible pairs of texture features, grid colour corresponds to Pearson Correlation between pair of 

features at that point. Grid rows re-ordered by hierarchical clustering of correlations with tree 

coloured for optimal seven cluster cut of the tree. Reproduced from Raisi-Estabragh et al.203 
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6.4 Results 

6.4.1 Baseline population characteristics 

The analysis includes 10,105 women and 9,303 men, for whom CMR data were available. The 

average age was 55.0 (±7.5) years (Table 6.3). Most participants (97%, n= 18,810) were of White 

ethnic background; Black, Asian, and Other ethnicities made up 0.5%, 1.0%, and 1.5% of the study 

population respectively. The cohort was predominantly healthy, with only 5.5% (n=1,062) having a 

history of pre-existing cardiovascular disease. Hypertension, hypercholesterolaemia, diabetes, and 

smoking were present in 13.9%, 23.0%, 3.1%, and 6.4% respectively. Average consumption of 

unprocessed red meat was 22.3 (±15.2) grams/day. Average intake of processed meat and oily fish 

were 15.7 (±15.0) grams/day and 11.7 (±10.8) grams/day respectively. 

 
Table 6.3. Baseline population characteristics (n=19,408) 

Table 6.3. Results are frequencies and percentages for categorical variables; mean (standard 

deviation) or median [interquartile range] for continuous variable. IPAQ: international physical 

activity questionnaire; METS: metabolic equivalents. 

Population characteristic Frequency or. mean (SD)/median[IQR] 
Male 
Female  

9,303 (47.9%) 
10,105 (52.1%) 

Age (years) 55.0 (±7.5) 
Townsend deprivation index -2.0 (±2.6) 
Body mass index (kg/m2) 26.6 (±4.2) 
Smoking (current smoker) 1,238 (6.4%) 
Diabetes 606 (3.1%) 
Hypertension  2,690 (13.9%) 
Hypercholesterolaemia  4,464 (23.0%) 
IPAQ score (METS/week) 1525.00 [2396.25] 
Educational level: 
Left school age 14 or younger without qualifications 
Left school age 15 or older without qualifications 
High school diploma  
Sixth form qualification  
Professional qualification  
Higher education university degree  

 
53 (0.3%) 
1,394 (7.2%) 
2,679 (13.8%) 
1,114 (5.7%) 
5,506 (28.4%) 
8,456 (43.6%) 

Alcohol intake frequency: 
Never 
Special occasions only 
1-3 times a month 
1-2 times a week 
3-4 times a week 
Daily or almost daily 

 
954 (4.9%) 
1,587 (8.2%) 
2,103 (10.8%) 
4,997 (25.7%) 
5,496 (28.3%) 
4,260 (21.9%) 

Unprocessed red meat intake (grams/day)  
Beef  
Lamb 
Pork 

22.3 (± 15.2) 
9.5 (± 9.0) 
6.3 (± 5.4) 
6.5 (± 5.9) 

Processed meat intake (grams/day) 15.7 (± 15.0) 
Oily fish intake (grams/day) 11.7 (± 10.8) 
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6.4.1.1 Association of meat and fish intake with conventional CMR indices 

In the main confounder adjusted models, greater consumption of unprocessed red meat was associated 

with smaller LV volumes in end-diastole and end-systole, higher LV mass, and lower LV stroke 

volume (Table 6.4). Greater red meat consumption was also associated with smaller RV volumes in 

end-diastole and end-systole and smaller RV stroke volumes. These relationships were consistent 

across the different red meat types. Greater consumption of processed meat was associated with 

smaller RV and LV volumes in end-diastole and end-systole and with lower RV and LV stroke 

volumes (Table 6.4). Association with LV mass trended towards higher mass but did not reach 

statistical significance. Greater oily fish consumption was associated with larger RV and LV volumes 

in end-diastole and end-systole, greater LV mass, and higher RV and LV stroke volumes (Table 6.4). 

 

In the models with additional adjustment for potential mediators (confounder and mediator adjusted 

models), the associations between unprocessed red meat consumption and RV and LV end-systolic 

and end-diastolic volumes and strokes volumes were attenuated, whilst associations with LV mass 

remained robust (Table 6.5). Associations between processed meat intake or oily fish intake and LV 

and RV CMR metrics remained largely unchanged with addition of these potential mediators (Table 

6.5). 

 

6.4.2 Association of meat and fish intake with arterial compliance measures 

There was documentation of ASI for 167,432, 30,474, and 10,436 participants at baseline, imaging, 

and both time points respectively. We estimated associations between the dietary intake exposures 

and ASI recorded at baseline (n=167,432) and imaging (n=30,474). Additionally, for the participants 

with ASI recorded at both time points (n=10,436), we calculated standardised residuals to indicate 

“interval change in ASI” and considered this as another cardiovascular outcome. The baseline 

characteristics of the imaging set were largely similar to the CMR cohort (as reported in Table 6.3). 

However, the baseline set had slightly poorer cardiometabolic profile than the imaging cohort (Table 

6.6). For aortic distensibility, the sample was as for the CMR subset. 

 

In the confounder adjusted models, higher intake of red or processed meat was associated with higher 

ASI, indicating greater vascular resistance, at both the baseline and imaging visits (Table 6.7, Figure 

6.4). Associations were consistent across red meat subgroups. In addition, higher unprocessed red 

meat intake was associated with significantly greater interval increase in ASI than would be expected 

from the baseline ASI (Table 6.7).
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Table 6.4. Multivariable linear regression models showing change in cardiovascular magnetic resonance indices per 100g increase in daily meat/fish 
consumption (confounder adjusted model)  

Table 6.4. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. First, 
second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. CMR: cardiovascular 
magnetic resonance; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEF: left ventricular ejection fraction; 
LVM: left ventricular mass; LVSV: left ventricular stroke volume; RVEDV: right ventricular end-diastolic volume; RVEF: right ventricular ejection fraction; 
RVESV: right ventricular end-systolic volume; RVSV: right ventricular stroke volume i denotes indexation to body surface area calculated according to the 
Du Bois formula. *denotes p-value <0.05.  

 
LVEDVi 
(ml/m2) 

LVESVi 
(ml/m2) 

LVEF (%) LVSVi 
(ml/m2) 

LVMi (g/m2) RVEDVi 
(ml/m2) 

RVESVi 
(ml/m2) 

RVSVi 
(ml/m2) 

RVEF (%) 

Unprocessed 
red meat 

-2.18* -0.96* 0.04 -1.22* 1.57* -1.77* -0.61 -1.16* -0.30 

  [-3.36, -1.00] [-1.70, -0.23] [-0.504, 0.587] [-1.97, -0.47] [0.91, 2.23] [-3.30, -0.24] [-1.54, 0.33] [-2.11, -0.21] [-0.97, 0.37] 
  2.91×10-4 0.010 0.8817 0.002 3.19×10-6 0.02 0.20 0.02 0.37 

Beef -3.05* -1.25* -0.011 -1.80* 2.13* -3.77* -2.14* -1.63* 0.50 
  [-5.04, -1.06] [-2.48, -0.007] [-0.933, 0.911] [-3.07, -0.54] [1.01, 3.24] [-6.33, -1.22] [-3.70, -0.58] [-3.22, -0.05] [-0.62, 1.62] 
  0.003 0.049 0.9811 0.005 1.85×10-4 0.004 0.007 0.04 0.38 

Lamb -5.59* -2.67* 0.149 -2.92* 2.27* -1.42 1.37 -2.79* -2.53* 
  [-8.96, -2.22] [-4.76, -0.58] [-1.403, 1.701] [-5.06, -0.78] [0.39, 4.15] [-5.86, 3.04] [-1.34, 4.09] [-5.55, -0.02] [-4.48, -

0.59] 
  1.10×10-3 0.012 0.8509 0.008 0.018 0.53 0.322 0.048 0.01 

Pork -2.81 -1.29 0.129 -1.53 3.52* -2.07 -0.19 -1.89 -1.25 
  [-5.84, 0.21] [-3.16, 0.59] [-1.271, 1.529] [-3.45, 0.40] [1.83, 5.21] [-6.12, 1.98] [-2.66, 2.29] [-4.41, 0.64] [-3.02, 0.52] 
  0.068 0.179 0.857 0.12 4.43×10-5 0.32 0.88 0.14 0.17 

Processed 
meat 

-2.88* -1.12* -0.121 -1.77* 0.57 -2.88* -0.84 -2.05* -0.57 

  [-4.12, -1.65] [-1.89, -0.35] [-0.693, 0.451] [-2.55, -0.98] [-0.12, 1.26] [-4.46, -1.31] [-1.80, 0.13] [-3.03, -1.07] [-1.26, 0.13] 
  4.70×10-6 0.0042 0.6785 1.06×10-5 0.11 3.46×10-4 0.09 4.30×10-5 0.11 

Oily fish 4.13* 1.75* 0.103 2.38* 2.38* 3.67* 1.97* 1.70* -0.39 
  [2.46, 5.80] [0.71, 2.79] [-0.671, 0.878] [1.32, 3.45] [1.44, 3.31] [1.51, 5.82] [0.66, 3.29] [0.36, 3.03] [-1.33, 0.55] 
  1.28×10-6 9.68×10-4 0.7938 1.13×10-5 6.40×10-7 8.47×10-4 0.003 0.01 0.42 
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Table 6.5. Multivariable linear regression models showing change in conventional cardiovascular magnetic resonance indices per 100g increase in 
daily meat/fish consumption (confounders and mediator adjusted models) 

 
LVEDVi 
(ml/m2) 

LVESVi 
(ml/m2) 

LVEF (%) LVSVi 
(ml/m2) 

LVMi 
(g/m2) 

RVEDVi 
(ml/m2) 

RVESVi 
(ml/m2) 

RVSVi (ml/m2) RVEF (%) 

Unprocessed 
red meat 

-1.11 -0.57 0.09 -0.54 1.02* -0.54 -0.14 -0.393 -0.190 

  [-2.28, 0.07] [-1.31, 0.17] [-0.46, 0.64] [-1.29, 0.22] [0.36, 1.68] [-2.06, 0.99] [-1.08, 0.79] [-1.342, 0.556] [-0.863, 0.484] 
  0.066 0.13 0.75 0.16 0.003 0.49 0.77 0.4169 0.5811 

Beef -1.41 -0.64 0.05 -0.78 1.19* -1.85 -1.40 -0.448 0.664 
  [-3.40, 0.58] [-1.88, 0.60] [-0.88, 0.98] [-2.04, 0.49] [0.08, 2.30] [-4.39, 0.70] [-2.96, 0.16] [-2.030, 1.135] [-0.459, 1.787] 
  0.16 0.31 0.92 0.23 0.04 0.15 0.08 0.5793 0.2463 

Lamb -3.63* -1.97 0.27 -1.66 1.51 0.74 2.11 -1.375 -2.236* 
  [-6.98, -0.29] [-4.06, 0.12] [-1.29, 1.83] [-3.79, 0.46] [-0.36, 3.38] [-3.68, 5.15] [-0.60, 4.82] [-4.123, 1.372] [-4.186, -0.287] 
  0.03 0.06 0.73 0.13 0.11 0.74 0.13 0.3264 0.0245 

  Pork -1.06 -0.65 0.21 -0.41 2.62* -0.05 0.59 -0.640 -1.081  
[-4.07, 1.95] [-2.53, 1.23] [-1.20, 1.61] [-2.32, 1.50] [0.94, 4.30] [-4.07, 3.97] [-1.88, 3.06] [-3.143, 1.863] [-2.858, 0.696] 

  0.49 0.50 0.77 0.68 0.002 0.98 0.64 0.6163 0.2330 
  Processed 

meat 
-2.08* -0.82* -0.09 -1.26* 0.05 -1.96* -0.473 -1.487* -0.500 

  [-3.31, -0.85] [-1.59, -0.05] [-0.67, 0.48] [-2.04, -0.48] [-0.64, 0.74] [-3.53, -0.39] [-1.436, 0.489] [-2.464, -0.511] [-1.193, 0.193]  
9.23×10-4 0.04 0.75 0.002 0.88 0.01 0.3351 0.0028 0.1571 

  Oily fish 4.34* 1.83* 0.10 2.51* 2.32* 4.06* 2.168* 1.894* -0.402 
  [2.68, 6.00] [0.79, 2.86] [-0.67, 0.88] [1.46, 3.57] [1.39, 3.24] [1.93, 6.19] [0.861, 3.476] [0.567, 3.220] [-1.343, 0.539] 
  2.94×10-7 5.42×10-4 0.80 3.07×10-6 9.73×10-7 1.89×10-4 0.0012 0.0051 0.4028 

Table 6.5. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level, body 

mass index, hypertension, hypercholesterolaemia, diabetes. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% 

confidence interval and p-value, respectively. CMR: cardiovascular magnetic resonance; LVEDV: left ventricular end-diastolic volume; LVESV: left 

ventricular end-systolic volume; LVEF: left ventricular ejection fraction; LVM: left ventricular mass; LVSV: left ventricular stroke volume; RVEDV: right 

ventricular end-diastolic volume; RVEF: right ventricular ejection fraction; RVESV: right ventricular end-systolic volume; RVSV: right ventricular stroke 

volume. i denotes indexation to body surface area calculated according to the Du Bois formula.
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Table 6.6. Baseline population characteristics (arterial stiffness index at baseline) 

Population characteristic Frequency or. mean (SD)/median[IQR] 
Male 
Female  

76,989 (45.9%) 
90,525 (54.1%) 

Age (years) 56.7 (±8.2) 
Townsend deprivation index** -1.10 (±3.0) 
Body mass index (kg/m2) 27.5 (±4.8) 
Smoking (current smoker) 16,682 (10.0%) 
Diabetes 10,795 (6.4%) 
Hypertension  35,514 (21.2%) 
Hypercholesterolaemia  49,476 (29.6%) 
IPAQ score (METS/week) 1593.00 [2644.50] 
Educational level*: 
Left school age 14 or younger without qualifications 
Left school age 15 or older without qualifications 
High school diploma  
Sixth form qualification  
Professional qualification  
Higher education university degree  

 
1,323 (0.8%) 
24,545 (14.7%) 
28,249 (16.9%) 
9,506 (5.7%) 
45,817 (27.4%) 
56,158 (33.5%) 

Alcohol intake frequency: 
Never 
Special occasions only  
1-3 times a month 
1-2 times a week 
3-4 times a week 
Daily or almost daily 

 
14,745 (8.8%) 
20,461 (12.2%) 
18,933 (11.3%) 
41,901 (25.0%) 
37,095 (22.2%) 
33,743 (20.2%) 

Unprocessed red meat intake (grams/day): 
Beef  
Lamb 
Pork 

22.4 (±16.32) 
9.1 (±9.0) 
6.6 (±6.3) 
6.8 (±6.8) 

Processed meat intake (grams/day) 16.4 (±15.9) 
Oily fish intake (grams/day) 12.1 (±11.6) 
Table 6.6. Results are frequencies and percentages for categorical variables and mean standard 

deviation for continuous variable. *High school diploma includes: O levels, GCSE, CSE, or 

equivalent; Sixth form qualification includes: A levels/AS levels, or equivalent; professional 

qualifications refer to nursing, teaching, or equivalent. I IPAQ: international physical activity 

questionnaire; METS: metabolic equivalents.** **Townsend index: zero, positive, and negative 

scores indicate average, higher, and lower levels of material deprivation respectively relative to UK 

national averages. 
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Table 6.7. Multivariable linear regression models showing change of arterial compliance 
measures per 100g increase in daily meat/fish consumption (confounder adjusted model) 

 Table 6.7. Each cell represents a separate model, adjusted for: age, sex, social deprivation, 

educational level, smoking, alcohol intake, and exercise level (confounder adjusted model). For 

‘interval change in ASI’, results are average standard deviation change from that expected from 

baseline. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% 

confidence interval and p-value, respectively. AD: aortic distensibility; ASI: arterial stiffness index. 

*indicates p-value <0.05. 

 
Oily fish intake demonstrated a reverse pattern of associations compared to the meat exposures, with 

greater consumption linked to lower ASI at both time points and with a smaller interval increase in 

ASI (not statistically significant) than would be expected from the baseline ASI (Table 6.7). 

 

These pattern of associations with arterial compliance with aortic distensibility were consistent with 

those observed with ASI. Specifically, greater red and processed meat consumption was associated 

with lower aortic distensibility (lower compliance) and greater oily fish consumption was associated 

with higher aortic distensibility (higher compliance), however these associations did not reach 

statistical significance, likely due to smaller sample size and more noise associated with this metric 

(Table 6.7, Figure 6.4). In models additionally adjusted for mediators, the observed associations were 

broadly unchanged (Table 6.8).  

 

 
AD 

(mm ×10-3) 
ASI  

(baseline, m/s) 
ASI  

(imaging, m/s) 
Interval change in ASI 
(baseline-imaging, m/s) 

Unprocessed red meat -0.06 0.49* 0.35* 0.15* 
  [-0.13, 0.02] [0.41, 0.57] [0.15, 0.55] [0.03, 0.27] 
  0.12 2.26×10-31 5.46×10-4 0.02 

Beef -0.12* 0.68* 0.53* 0.24* 
  [-0.25, -0.001] [0.53, 0.83] [0.19, 0.86] [0.02, 0.46] 
  0.05 1.19×10-19 0.002 0.03 

Lamb -0.02 0.89* 0.42 0.22 
  [-0.23, 0.19] [0.68, 1.10] [-0.14, 0.97] [-0.13, 0.58] 
  0.85 1.86×10-16 0.14 0.22 

Pork -0.08 0.83* 0.72* 0.26 
  [-0.27, 0.10] [0.64, 1.03] [0.22, 1.22] [-0.05, 0.57] 
  0.38 1.32×10-16 0.005 0.10 

Processed meat -0.00 0.45* 0.22* 0.05 
  [-0.08, 0.08] [0.36, 0.53] [0.02, 0.43] [-0.07, 0.17] 
  1.00 4.47×10-24 0.03 0.43 

Oily fish 0.01 -0.22* -0.43* -0.17 
  [-0.09, 0.12] [-0.34, -0.11] [-0.71, -0.16] [-0.34, 0.01] 
  0.81 1.70×10-4 0.002 0.06 
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Figure 6.4. Multivariable linear regression results for arterial compliance measures displaying 

beta coefficients and 95% confidence intervals per 100g increase in daily intake of meat/fish 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.4. Each bar is from a separate model adjusted for age, sex, social deprivation, educational 

level, smoking, alcohol intake, exercise level (confounder adjusted model). AD: aortic distensibility; 

ASI: arterial stiffness index. 

 
Table 6.8. Multivariable linear regression models for change of arterial compliance measures 

per 100g increase in daily meat/fish intake (confounder and mediator adjusted models) 

Table 6.8. Each cell represents a separate model, adjusted for: age, sex, social deprivation, 

educational level, smoking, alcohol intake, exercise level, body mass index, hypertension, 

hypercholesterolaemia, diabetes (mediator adjusted models). For ‘interval change in ASI’, results are 

average standard deviation change from that expected from baseline. First, second, and third row for 

every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, 

respectively. AD: aortic distensibility; ASI: arterial stiffness index. 

 
AD 

(mm ×10-3) 
ASI  

(baseline, m/s) 
ASI 

(imaging, m/s) 
Interval change ASI 

(baseline-imaging, m/s) 
Unprocessed red meat -0.048 0.274* 0.203* 0.102 

  [-0.121, 0.024] [0.191, 0.356] [0.004, 0.402] [-0.022, 0.226] 
  0.1919 7.15×10-11 0.0457 0.1075 

Beef -0.108 0.374* 0.311 0.173 
  [-0.230, 0.014] [0.227, 0.521] [-0.023, 0.646] [-0.044, 0.389] 
  0.0834 6.43×10-7 0.0683 0.1173 

Lamb -0.018 0.551* 0.159 0.123 
  [-0.224, 0.188] [0.339, 0.763] [-0.399, 0.716] [-0.232, 0.479] 
  0.8658 3.53×10-7 0.5774 0.4966 

  Pork -0.060 0.429* 0.472 0.180  
[-0.245, 0.125] [0.231, 0.626] [-0.029, 0.972] [-0.127, 0.487] 

  0.5258 2.11×10-5 0.0649 0.2516 
  Processed meat 0.011 0.249* 0.108 0.020 

  [-0.065, 0.087] [0.163, 0.335] [-0.096, 0.312] [-0.100, 0.140]  
0.7685 1.56×10-8 0.3005 0.7449 

  Oily fish 0.014 -0.254* -0.434* -0.181* 
  [-0.088, 0.116] [-0.368, -0.140] [-0.710, -0.158] [-0.355, -0.007] 
  0.7850 1.31×10-5 0.0021 0.0418 



 115 

6.4.3 Association of meat and fish intake with LV and RV radiomics shape features 

We extracted 13 radiomics shape features from each ventricle (LV and RV) in end-diastole and end-

systole (i.e., 26 shape features in total for each ventricle). Higher oily fish intake was associated with 

significantly larger LV volumes, larger short and long axis cavity dimensions, and larger LV cavity 

surface area (Figure 6.5, Figure 6.7). 

 

Greater consumption of red and processed meat was associated with lower “flatness” [range: 0 (a flat 

object) to 1 (sphere-like)], lower “elongation” [range: 0 (a maximally elongated object, i.e., a one-

dimensional line) to 1 (non-elongated)], and lower “sphericity” (range: 0 to 1, “sphericity” is a 

dimensionless measure of the roundness of the region of interest relative to a sphere where a value of 

1 indicates a perfect sphere). Thus, greater red and processed meat intake is associated with a more 

elongated, less spherical, LV shape (Figure 6.5, Figure 6.7). In contrast, greater oily fish 

consumption showed trends toward greater elongation and flatness (not statistically significant) 

indicating a more spherical overall shape of the chamber. 

 

Considering these relationships as well as association with lower LV stroke volume, the overall 

picture suggests that greater red and processed meat intake is associated with of an unhealthy LV 

phenotype with impaired myocardial contractility. The pattern of associations of cardiac structure and 

function metrics with greater oily fish intake is distinctly different to that of the meat exposures and, 

considered alongside previously observed associations of higher stroke volume, overall suggestive of 

a healthy phenotype. 

 

The same pattern of associations was observed across the different red meat types in end-diastole and 

end-systole (Figure 6.5) and consistent associations were observed with RV shape radiomics (Figure 

6.6, Figure 6.7). Results from individual associations between meat and fish exposures and LV and 

RV radiomics features in end-diastole and end-systole are presented in Table 6.9, Table 6.10, Table 

6.11, and Table 6.12. 
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Figure 6.5. Multivariable linear regression models showing change in left ventricular radiomics shape features per 100g increase in daily meat 
consumption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5. Each bar represents standardised beta coefficients corresponding to the indicated radiomics shape feature. Each bar is from a separate model 

adjusted for age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level (confounder adjusted model). Reproduced from Raisi-

Estabragh et al.203  
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Figure 6.6. Multivariable linear regression models showing change in right ventricular radiomics shape features per 100g increase in daily meat 
consumption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6. Each bar represents standardised beta coefficients corresponding to the indicated radiomics shape feature. Each bar is from a separate model 

adjusted for age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level (confounder adjusted model). Black lines represent half-

length of confidence interval for the corresponding bar. Reproduced from Raisi-Estabragh et al.203.



 118 

Figure 6.7. Summary of the association of the oily fish, processed meat, and unprocessed red 
meat intake with the radiomics shape and signal intensity-based features 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7. Greater red and processed meat intake was associated with smaller ventricular volumes, 

reduced short axis dimension, and a more elongated shape; lower global signal intensity levels, and 

less variation in SI levels within the LV myocardium. Greater oily fish consumption was associated 

with larger ventricles with overall less elongated (more spherical) shape, higher global myocardial 

intensity levels and more variation of myocardial intensities. *Histograms are from a selection of 

most illustrative cases and do not represent findings from the whole dataset. Reproduced from Raisi-

Estabragh et al.203.
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Table 6.9. Multivariate linear regression models showing change in left ventricular radiomics shape features in end-diastole per 100g increase in 
daily meat/fish consumption 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Volume 
0.0126 0.0109 0.0033 0.0121 0.0048 0.0347* 

[0.0013, 0.0239] [-0.0003, 0.0221] [-0.008, 0.0145] [0.001, 0.0234] [-0.0069, 0.0164] [0.0234, 0.046] 
0.0285 0.0575 0.5692 0.0335 0.4236 1.9x10-9 

Surface Area 
0.024* 0.0212* 0.0093 0.0206* 0.014 0.0344* 

[0.013, 0.0351] [0.0102, 0.0322] [-0.0017, 0.0204] [0.0096, 0.0316] [0.0025, 0.0254] [0.0233, 0.0455] 
2.09×10-5 0.0002 0.0983 0.0002 0.0167 1.33x10-9 

Surface Area To Volume Ratio 
0.011 0.0096 0.0086 0.0068 0.0107 -0.025* 

[-0.0018, 0.0238] [-0.0032, 0.0223] [-0.0042, 0.0214] [-0.0059, 0.0196] [-0.0025, 0.024] [-0.0379, -0.0122] 
0.0924 0.142 0.1855 0.2944 0.1125 0.0001 

Sphericity 
-0.0447* -0.0391* -0.0227 -0.0352* -0.0306* -0.0085 

[-0.0585, -0.0309] [-0.0528, -0.0253] [-0.0364, -0.0089] [-0.049, -0.0215] [-0.0449, -0.0164] [-0.0224, 0.0054] 
2.21×10-10 2.53×10-8 0.0013 4.8×10-7 2.54×10-5 0.2305 

Maximum 3D Diameter 
0.0224* 0.0211* 0.0036 0.021* 0.0087 0.0205 

[0.0104, 0.0343] [0.0092, 0.033] [-0.0083, 0.0155] [0.0092, 0.0329] [-0.0037, 0.021] [0.0086, 0.0325] 
0.0002 0.0005 0.5544 0.0005 0.1678 0.0008 

Maximum 2D Diameter (Slice) 
0.0113 0.0115 0.0045 0.0071 0.0045 0.0151 

[-0.0019, 0.0245] [-0.0016, 0.0247] [-0.0086, 0.0177] [-0.006, 0.0203] [-0.0092, 0.0181] [0.0018, 0.0283] 
0.0945 0.0853 0.4985 0.2855 0.5198 0.0259 

Maximum 2D Diameter 
(Column) 

0.0256* 0.0241* 0.0077 0.0209* 0.0151 0.0289* 
[0.0143, 0.037] [0.0128, 0.0354] [-0.0037, 0.019] [0.0096, 0.0321] [0.0034, 0.0268] [0.0175, 0.0403] 

9.77×10-6 3.00×10-5 0.1852 0.0003 0.0117 6.76x10-7 

Maximum 2D Diameter (Row) 
0.0259* 0.0237* 0.0067 0.0233* 0.0124 0.0251* 

[0.0141, 0.0377] [0.012, 0.0355] [-0.0051, 0.0184] [0.0116, 0.035] [0.0002, 0.0246] [0.0132, 0.0369] 
1.66×10-5 7.41×10-5 0.2667 9.87×10-5 0.0465 3.39x10-5 

Major Axis Length 
0.0279* 0.0243* 0.0114 0.0231* 0.0215* 0.0247* 

[0.0166, 0.0392] [0.013, 0.0356] [0.0001, 0.0227] [0.0118, 0.0343] [0.0098, 0.0332] [0.0133, 0.0361] 
1.39×10-6 2.37×10-5 0.048 5.77×10-5 0.0003 2.06x10-5 

Minor Axis Length 0.0098 0.0099 0.0021 0.0079 0.0005 0.0285* 
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 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
[-0.0026, 0.0221] [-0.0024, 0.0222] [-0.0103, 0.0144] [-0.0044, 0.0202] [-0.0122, 0.0133] [0.0161, 0.0409] 

0.1216 0.1149 0.7411 0.2074 0.933 6.94x10-6 

Least Axis Length 
0.0081 0.0082 0.0028 0.0056 -0.0033 0.032* 

[-0.0042, 0.0203] [-0.004, 0.0204] [-0.0094, 0.015] [-0.0065, 0.0178] [-0.0159, 0.0094] [0.0197, 0.0443] 
0.1967 0.188 0.6539 0.3655 0.612 3.46x10-7 

Elongation 
-0.0186 -0.0145 -0.0103 -0.0154 -0.0215 0.0014 

[-0.0327, -0.0045] [-0.0286, -0.0005] [-0.0244, 0.0038] [-0.0294, -0.0014] [-0.036, -0.0069] [-0.0128, 0.0155] 
0.0098 0.0429 0.1518 0.0312 0.0039 0.8509 

Flatness 
-0.0209 -0.0167 -0.01 -0.0183 -0.0259* 0.0036 

[-0.0351, -0.0068] [-0.0307, -0.0026] [-0.0241, 0.0041] [-0.0323, -0.0043] [-0.0404, -0.0113] [-0.0105, 0.0178] 
0.0036 0.0202 0.1656 0.0105 0.0005 0.6143 

Table 6.9. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. Results 

are degree of change in radiomics shape feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals and p-values. 

First, second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. Bonferroni adjusted 

significance threshold p-value =0.0006 (corrected for 78 comparisons). 
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Table 6.10. Multivariate linear regression models showing change in left ventricular radiomics shape features in end-systole per 100g increase in 
daily meat/fish consumption 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Volume 
0.0076 0.0082 -0.0008 0.0074 0.0011 0.0263* 

[-0.0041, 0.0194] [-0.0035, 0.0199] [-0.0126, 0.0109] [-0.0043, 0.0191] [-0.011, 0.0132] [0.0145, 0.0381] 
0.2015 0.1704 0.8879 0.2131 0.8611 1.2x10-5 

Surface Area 
0.0176* 0.0177* 0.005 0.0135* 0.008 0.0267* 

[0.0063, 0.029] [0.0064, 0.029] [-0.0063, 0.0163] [0.0023, 0.0248] [-0.0037, 0.0197] [0.0153, 0.0381] 
0.0023 0.0021 0.3824 0.0182 0.1813 4.16x10-6 

Surface Area To Volume Ratio 
0.0124 0.0095 0.0116 0.0076 0.0078 -0.015* 

[-0.0003, 0.0252] [-0.0032, 0.0222] [-0.0011, 0.0244] [-0.0051, 0.0203] [-0.0054, 0.021] [-0.0278, -0.0022] 
0.0562 0.144 0.0736 0.2405 0.2457 0.0218 

Sphericity 
-0.0438* -0.0405* -0.0245* -0.0292* -0.0235* -0.0097 

[-0.0574, -0.0301] [-0.0542, -0.0269] [-0.0382, -0.0108] [-0.0428, -0.0156] [-0.0376, -0.0094] [-0.0235, 0.004] 
3.69×10-10 5.67×10-9 0.0004 2.59×10-5 0.0011 0.1654 

Maximum 3D Diameter 
0.0182* 0.0182* 0.0087 0.011 0.0048 0.0149* 

[0.0062, 0.0302] [0.0062, 0.0301] [-0.0033, 0.0206] [-0.0009, 0.023] [-0.0076, 0.0172] [0.0029, 0.027] 
0.003 0.0029 0.156 0.0697 0.4477 0.0153 

Maximum 2D Diameter (Slice) 
0.0141* 0.0162* 0.0058 0.0057 0.0039 0.0109 

[0.0014, 0.0268] [0.0035, 0.0289] [-0.0069, 0.0185] [-0.0069, 0.0184] [-0.0092, 0.0171] [-0.0019, 0.0237] 
0.0301 0.0123 0.3676 0.3755 0.5598 0.0945 

Maximum 2D Diameter 
(Column) 

0.0173* 0.0161* 0.0076 0.0127* 0.0066 0.0186* 
[0.0055, 0.0291] [0.0043, 0.0278] [-0.0041, 0.0194] [0.001, 0.0244] [-0.0056, 0.0187] [0.0067, 0.0304] 

0.0039 0.0072 0.2024 0.0335 0.2886 0.0021 

Maximum 2D Diameter (Row) 
0.0169* 0.0163* 0.0085 0.011 0.0086 0.0186* 

[0.005, 0.0287] [0.0045, 0.0281] [-0.0034, 0.0203] [-0.0008, 0.0228] [-0.0037, 0.0208] [0.0067, 0.0305] 
0.0052 0.0068 0.1608 0.067 0.1693 0.0022 

Major Axis Length 
0.0214* 0.02* 0.0107 0.0141* 0.0131* 0.0188* 

[0.0099, 0.0329] [0.0085, 0.0314] [-0.0007, 0.0222] [0.0027, 0.0255] [0.0012, 0.025] [0.0073, 0.0304] 
0.0003 0.0006 0.0665 0.0153 0.0307 0.0014 

Minor Axis Length 0.0135* 0.0161* 0.0028 0.0074 0.0038 0.0197* 
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 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
[0.0013, 0.0257] [0.004, 0.0283] [-0.0094, 0.0149] [-0.0047, 0.0195] [-0.0087, 0.0164] [0.0075, 0.0319] 

0.0299 0.009 0.654 0.2298 0.5486 0.0016 

Least Axis Length 
0.0091 0.0117 -0.0009 0.006 -0.0026 0.0228* 

[-0.003, 0.0212] [-0.0004, 0.0238] [-0.013, 0.0112] [-0.0061, 0.018] [-0.0152, 0.0099] [0.0106, 0.035] 
0.1418 0.0579 0.8867 0.3332 0.6825 0.0003 

Elongation 
-0.0086 -0.0037 -0.0089 -0.0079 -0.0113 0.0009 

[-0.0229, 0.0057] [-0.0179, 0.0105] [-0.0231, 0.0054] [-0.022, 0.0063] [-0.026, 0.0035] [-0.0134, 0.0153] 
0.2373 0.6126 0.2218 0.2769 0.1338 0.8975 

Flatness 
-0.0138 -0.0087 -0.0126 -0.0105 -0.0181* 0.0029 

[-0.028, 0.0004] [-0.0229, 0.0054] [-0.0268, 0.0016] [-0.0246, 0.0037] [-0.0328, -0.0034] [-0.0114, 0.0172] 
0.0569 0.2266 0.0823 0.1471 0.0157 0.6946 

Table 6.10. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. 

Results are degree of change in radiomics shape feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals and 

p-values. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. Bonferroni 

adjusted significance threshold p-value =0.0006 (corrected for 78 comparisons). 
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Table 6.11. Multivariate linear regression models showing change in right ventricular radiomics shape features shape radiomics in end-diastole per 
100g increase in daily meat/fish consumption 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Volume 
0.0079 0.0054 0.0044 0.0069 0.008 0.0281* 

[-0.0028, 0.0185] [-0.0052, 0.016] [-0.0062, 0.015] [-0.0037, 0.0175] [-0.003, 0.019] [0.0174, 0.0388] 
0.1479 0.3177 0.4173 0.2006 0.152 2.61x10-7 

Surface Area 
0.0009 -0.0017 -0.0004 0.0043 0.0006 0.0336* 

[-0.0099, 0.0117] [-0.0125, 0.009] [-0.0111, 0.0104] [-0.0064, 0.015] [-0.0105, 0.0118] [0.0228, 0.0444] 
0.8687 0.7495 0.9424 0.4286 0.912 1.13x10-9 

Surface Area To Volume Ratio 
-0.022* -0.0214* -0.0127 -0.0115 -0.0197 -0.013 

[-0.0338, -0.0102] [-0.0332, -0.0096] [-0.0245, -0.0009] [-0.0233, 0.0003] [-0.0319, -0.0075] [-0.0249, -0.0012] 
0.0003 0.0004 0.0344 0.0552 0.0016 0.0316 

Sphericity 
0.0275* 0.0289* 0.0181 0.0104 0.0271* -0.0215 

[0.0132, 0.0418] [0.0147, 0.0431] [0.0038, 0.0323] [-0.0038, 0.0246] [0.0124, 0.0419] [-0.0359, -0.0072] 
0.0002 6.79×10-5 0.0129 0.1519 0.0003 0.0033 

Maximum 3D Diameter 
0.0015 0.0018 -0.0055 0.0044 -0.004 0.0279* 

[-0.0101, 0.0131] [-0.0098, 0.0133] [-0.017, 0.0061] [-0.0071, 0.0159] [-0.016, 0.008] [0.0163, 0.0395] 
0.7979 0.7626 0.3541 0.4512 0.5112 2.59x10-6 

Maximum 2D Diameter (Slice) 
-0.0246* -0.0229* -0.0163 -0.0145 -0.0202 0.0176 

[-0.0375, -0.0117] [-0.0358, -0.01] [-0.0292, -0.0034] [-0.0273, -0.0017] [-0.0336, -0.0069] [0.0046, 0.0305] 
0.0002 0.0005 0.013 0.0269 0.003 0.008 

Maximum 2D Diameter 
(Column) 

0.0139 0.0125 0.0034 0.0125 0.0143 0.0379* 
[0.0019, 0.026] [0.0005, 0.0246] [-0.0087, 0.0154] [0.0005, 0.0245] [0.0018, 0.0268] [0.0258, 0.05] 

0.0238 0.0409 0.582 0.041 0.0248 9.36x10-10 

Maximum 2D Diameter (Row) 
0.0041 -0.003 0.0093 0.0062 0.0029 0.0239* 

[-0.0081, 0.0164] [-0.0152, 0.0092] [-0.0029, 0.0215] [-0.006, 0.0183] [-0.0097, 0.0155] [0.0116, 0.0362] 
0.5086 0.6321 0.1355 0.3205 0.6543 0.0001 

Major Axis Length 
-0.0025 -0.0039 -0.0075 0.0044 -0.0131 0.0255* 

[-0.0142, 0.0093] [-0.0156, 0.0078] [-0.0192, 0.0043] [-0.0073, 0.0161] [-0.0252, -0.001] [0.0137, 0.0373] 
0.6785 0.5165 0.2117 0.4596 0.0341 2.29x10-5 

Minor Axis Length -0.0085 -0.0098 -0.0035 -0.0044 -0.0066 0.0266* 
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 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
[-0.0208, 0.0038] [-0.0221, 0.0024] [-0.0158, 0.0088] [-0.0166, 0.0079] [-0.0193, 0.0061] [0.0143, 0.039] 

0.1741 0.1158 0.5794 0.484 0.3095 2.41x10-5 

Least Axis Length 
0.0175 0.0169 0.0077 0.0117 0.0232* 0.0277* 

[0.0056, 0.0295] [0.005, 0.0288] [-0.0043, 0.0196] [-0.0001, 0.0236] [0.0109, 0.0355] [0.0157, 0.0397] 
0.004 0.0053 0.2074 0.0529 0.0002 6.02x10-6 

Elongation 
-0.0056 -0.0061 0.0038 -0.0077 0.0048 0.0068 

[-0.0199, 0.0087] [-0.0203, 0.0081] [-0.0105, 0.018] [-0.0219, 0.0065] [-0.0099, 0.0196] [-0.0075, 0.0212] 
0.4403 0.4018 0.6042 0.2861 0.5206 0.3511 

Flatness 
0.019 0.0193 0.0143 0.0076 0.0336* 0.0048 

[0.0049, 0.033] [0.0053, 0.0333] [0.0003, 0.0283] [-0.0064, 0.0216] [0.0191, 0.0482] [-0.0093, 0.0189] 
0.0082 0.007 0.046 0.2872 5.64×10-6 0.5056 

Table 6.11. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. 

Results are degree of change in radiomics shape feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals and 

p-values. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. Bonferroni 

adjusted significance threshold p-value =0.0006 (corrected for 78 comparisons). 
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Table 6.12. Multivariate linear regression models showing change in right ventricular radiomics shape features shape radiomics in end-systole per 
100g increase in daily meat/fish consumption 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Volume 
0.0105 0.0057 0.0106 0.0078 0.0114 0.0255* 

[-0.0003, 0.0212] [-0.0051, 0.0164] [-0.0001, 0.0214] [-0.0029, 0.0185] [0.0003, 0.0226] [0.0147, 0.0363] 
0.0576 0.2989 0.0527 0.1529 0.0443 4.03x10-6 

Surface Area 
0.0071 0.0035 0.0069 0.0059 0.0063 0.0283* 

[-0.0036, 0.0177] [-0.0071, 0.0142] [-0.0037, 0.0176] [-0.0047, 0.0165] [-0.0047, 0.0173] [0.0176, 0.039] 
0.1938 0.5145 0.2014 0.2742 0.2597 2.29x10-7 

Surface Area To Volume Ratio 
-0.0176 -0.0134 -0.015 -0.0106 -0.0181 -0.0176* 

[-0.0293, -0.0059] [-0.0251, -0.0018] [-0.0267, -0.0033] [-0.0222, 0.001] [-0.0302, -0.006] [-0.0294, -0.0059] 
0.0031 0.024 0.0118 0.0736 0.0033 0.0033 

Sphericity 
0.0196 0.0153 0.0177 0.0108 0.0236 -0.0092 

[0.0053, 0.0339] [0.001, 0.0295] [0.0034, 0.032] [-0.0034, 0.025] [0.0088, 0.0383] [-0.0236, 0.0052] 
0.0071 0.0359 0.0151 0.1361 0.0018 0.2096 

Maximum 3D Diameter 
0.0109 0.0111 0.006 0.0044 0.0094 0.0294* 

[-0.0009, 0.0226] [-0.0005, 0.0228] [-0.0057, 0.0177] [-0.0072, 0.0161] [-0.0027, 0.0215] [0.0176, 0.0412] 
0.0694 0.0617 0.3159 0.4572 0.129 9.88x10-7 

Maximum 2D Diameter (Slice) 
0.001 -0.0024 0.0041 0.0019 0.0023 0.0162 

[-0.0119, 0.014] [-0.0153, 0.0105] [-0.0089, 0.017] [-0.0109, 0.0148] [-0.0111, 0.0156] [0.0032, 0.0293] 
0.8794 0.7178 0.5383 0.7666 0.7394 0.0144 

Maximum 2D Diameter 
(Column) 

0.0177 0.0158 0.0069 0.0145 0.0216 0.0285* 
[0.0054, 0.0301] [0.0036, 0.0281] [-0.0054, 0.0192] [0.0023, 0.0268] [0.0089, 0.0343] [0.0161, 0.0409] 

0.0048 0.0114 0.2696 0.02 0.0009 6.38x10-6 

Maximum 2D Diameter (Row) 
0.0049 0.0001 0.0097 0.0035 0.0046 0.016 

[-0.0079, 0.0177] [-0.0127, 0.0129] [-0.0031, 0.0225] [-0.0093, 0.0162] [-0.0086, 0.0178] [0.0031, 0.0289] 
0.452 0.9873 0.1384 0.5928 0.4951 0.015 

Major Axis Length 
0.0061 0.0055 -0.0004 0.0065 0.0001 0.0149 

[-0.0061, 0.0183] [-0.0067, 0.0176] [-0.0126, 0.0117] [-0.0056, 0.0186] [-0.0125, 0.0126] [0.0026, 0.0271] 
0.3259 0.377 0.9472 0.2958 0.9926 0.0172 

Minor Axis Length 0.0069 0.002 0.0119 0.0038 0.0028 0.0238* 
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 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
[-0.0053, 0.019] [-0.0101, 0.0141] [-0.0002, 0.024] [-0.0083, 0.0159] [-0.0098, 0.0154] [0.0116, 0.0361] 

0.2673 0.7484 0.0542 0.5358 0.6623 0.0001 

Least Axis Length 
0.0119 0.0101 0.0058 0.0092 0.015 0.0276* 

[0.0005, 0.0232] [-0.0013, 0.0214] [-0.0055, 0.0172] [-0.0021, 0.0205] [0.0033, 0.0268] [0.0161, 0.039] 
0.0411 0.0818 0.3151 0.1123 0.0123 2.27x10-6 

Elongation 
0.0055 0.0013 0.0145 -0.0003 0.0043 0.0141 

[-0.0085, 0.0195] [-0.0126, 0.0153] [0.0005, 0.0284] [-0.0142, 0.0136] [-0.0102, 0.0187] [0, 0.0282] 
0.4419 0.8503 0.0424 0.9643 0.5615 0.0496 

Flatness 
0.0086 0.0081 0.0073 0.0035 0.0163 0.0162 

[-0.0055, 0.0227] [-0.006, 0.0222] [-0.0068, 0.0214] [-0.0105, 0.0176] [0.0018, 0.0309] [0.002, 0.0304] 
0.2336 0.2595 0.312 0.6207 0.0281 0.0252 

Table 6.12. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. 

Results are degree of change in radiomics shape feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals and 

p-values. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. Bonferroni 

adjusted significance threshold p-value =0.0006 (corrected for 78 comparisons). 
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6.4.4 Association of meat and fish intake with LV myocardium radiomics first-order features 

We extracted 18 radiomics first-order features from the LV myocardium in end-diastole and end-

systole (in total 36 features). These features summarise the global distribution of signal intensities in 

the defined region of interest, in this case, the LV myocardium. 

 

Our results demonstrate that the associations of the red/processed meat and oily fish exposures with 

first-order features were markedly different, often with opposite directions of effect (Figure 6.8). 

 
Higher intake of red and processed meat consumption was associated with lower average signal 

intensity levels (e.g., mean, median) and less variation in signal intensity levels (e.g., range, variance, 

entropy). These relationships were consistent for individual red meat subtypes (Figure 6.8). In 

contrast, higher oily fish intake was associated with higher average signal intensity levels, greater 

variation in signal intensity levels, larger number of pixels with extreme signal intensity values 

(kurtosis), and higher randomness (entropy) of signal intensity levels within the LV myocardium 

(Figure 6.8). Associations were consistent in end-diastole and end-systole. 

 

Thus, associations with the global pattern of signal intensities in the LV myocardium are substantially 

different between the meat and fish exposures. Our results indicate that the different dietary exposures 

may be associated with differing patterns of global myocardial alterations. 

 

These findings suggest that these exposures may be associated with different global pattern of 

alterations at the myocardial level. Results from individual associations between meat and fish 

exposures and LV myocardium first-order features in end-diastole and end-systole are presented in 

Table 6.13 and Table 6.14. 
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Figure 6.8. Multivariable linear regression models showing change in myocardium cardiovascular magnetic resonance first-order radiomics per 
100g increase in daily meat consumption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8. Features are in descending order of change in unprocessed red meat in end-diastole. Each bar is from a separate model adjusted for age, sex, 

social deprivation, educational level, smoking, alcohol intake, exercise level (confounder adjusted model). Reproduced from Raisi-Estabragh et al.203. 
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Table 6.13. Multivariate linear regression models showing change in left ventricular myocardium first-order radiomics features in end-diastole per 
100g increase in daily meat/fish consumption 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Energy 
-0.0528* -0.049* -0.0354* -0.0294* -0.049* 0.0307* 

[-0.0656, -0.04] [-0.0618, -0.0363] [-0.0482, -0.0226] [-0.0421, -0.0167] [-0.0622, -0.0358] [0.0178, 0.0436] 
6.86×10-16 5.03×10-14 5.86×10-8 6.17×10-6 4.02×10-13 2.95x10×10-6 

Total Energy 
-0.0459* -0.0427* -0.0327* -0.0238* -0.0427* 0.0322* 

[-0.0586, -0.0333] [-0.0553, -0.0301] [-0.0453, -0.0201] [-0.0364, -0.0113] [-0.0558, -0.0296] [0.0195, 0.045] 
1.16×10-12 3.19×10-11 3.82×10-7 0.0002 1.51×10-10 6.81x10×10-7 

Entropy 
-0.0413* -0.0373* -0.024* -0.0263* -0.0361* -0.0082 

[-0.0544, -0.0281] [-0.0504, -0.0243] [-0.0371, -0.0109] [-0.0394, -0.0133] [-0.0496, -0.0225] [-0.0214, 0.005] 
7.33×10-10 2.22×10-8 0.0003 7.67×10-5 1.87×10-7 0.2228 

Minimum 
-0.0483* -0.0401* -0.0355* -0.0322* -0.041* 0.006 

[-0.0625, -0.0341] [-0.0542, -0.0259] [-0.0497, -0.0213] [-0.0464, -0.0181] [-0.0557, -0.0263] [-0.0083, 0.0203] 
2.83×10-11 3.05×10-8 9.64×10-7 7.9×10-6 4.6×10-8 0.4109 

10th Percentile 
-0.0679* -0.0615* -0.0462* -0.0395* -0.062* 0.0184 

[-0.0817, -0.0541] [-0.0752, -0.0477] [-0.06, -0.0324] [-0.0533, -0.0258] [-0.0762, -0.0477] [0.0045, 0.0323] 
5.32×10-22 1.93×10-18 5.12×10-11 1.68×10-8 1.69×10-17 0.0096 

90th Percentile 
-0.0775* -0.0705* -0.0506* -0.0459* -0.0678* 0.0099 

[-0.0916, -0.0635] [-0.0845, -0.0565] [-0.0646, -0.0365] [-0.0599, -0.0319] [-0.0823, -0.0532] [-0.0043, 0.0241] 
4.04×10-27 7.42×10-23 1.81×10-12 1.39×10-10 7.16×10-20 0.1721 

Maximum 
-0.0554* -0.0549* -0.0275* -0.0344* -0.0502* 0.0156 

[-0.0696, -0.0413] [-0.069, -0.0408] [-0.0416, -0.0134] [-0.0484, -0.0204] [-0.0648, -0.0356] [0.0014, 0.0298] 
1.46×10-14 2.07×10-14 0.0001 1.57×10-6 1.63×10-11 0.0317 

Mean 
-0.0768* -0.069* -0.0514* -0.0456* -0.0676* 0.0151 

[-0.0908, -0.0628] [-0.0829, -0.055] [-0.0655, -0.0374] [-0.0596, -0.0317] [-0.082, -0.0531] [0.001, 0.0292] 
7.91×10-27 4.04×10-22 6.15×10-13 1.48×10-10 6.59×10-20 0.036 

Median 
-0.0749* -0.0667* -0.0506* -0.0447* -0.0646* 0.0149 

[-0.0889, -0.0609] [-0.0806, -0.0528] [-0.0646, -0.0367] [-0.0586, -0.0309] [-0.0791, -0.0502] [0.0009, 0.029] 
8.6×10-26 5.83×10-21 1.14×10-12 2.82×10-10 1.8×10-18 0.0373 

Interquartile Range 
-0.0119 -0.0096 -0.0079 -0.0079 -0.0126 -0.0108 

[-0.0253, 0.0015] [-0.023, 0.0037] [-0.0213, 0.0054] [-0.0212, 0.0054] [-0.0264, 0.0013] [-0.0243, 0.0026] 
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 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
0.082 0.156 0.2452 0.2457 0.0746 0.1147 

Range 
-0.0518* -0.0525* -0.0239 -0.0318* -0.0473* 0.0157 

[-0.0659, -0.0377] [-0.0665, -0.0384] [-0.038, -0.0098] [-0.0458, -0.0178] [-0.0619, -0.0327] [0.0015, 0.0299] 
6.73×10-13 2.72×10-13 0.0009 9.05×10-6 2.18×10-10 0.0304 

Mean Absolute 
Deviation 

-0.0349* -0.0325* -0.0194 -0.0217 -0.0277* -0.0067 
[-0.048, -0.0219] [-0.0455, -0.0195] [-0.0324, -0.0064] [-0.0347, -0.0088] [-0.0412, -0.0142] [-0.0198, 0.0064] 

1.52×10-7 9.37×10-7 0.0035 0.001 5.69×10-5 0.318 

Robust Mean Absolute 
Deviation 

-0.0148* -0.0129 -0.0092 -0.0093 -0.0139 -0.0115 
[-0.0281, -0.0016] [-0.0261, 0.0003] [-0.0224, 0.004] [-0.0225, 0.0038] [-0.0275, -0.0002] [-0.0248, 0.0018] 

0.0285 0.0559 0.1731 0.165 0.0472 0.0913 

Root Mean Squared 
-0.0779* -0.0702* -0.0517* -0.0463* -0.0679* 0.0147 

[-0.0919, -0.0638] [-0.0842, -0.0562] [-0.0657, -0.0377] [-0.0603, -0.0324] [-0.0824, -0.0534] [0.0005, 0.0288] 
2.02×10-27 9.86×10-23 5.53×10-13 8.49×10-11 5.35×10-20 0.0425 

Skewness 
-0.0021 -0.0097 0.0124 -0.0026 -0.0023 0.0078 

[-0.0162, 0.012] [-0.0238, 0.0043] [-0.0017, 0.0265] [-0.0166, 0.0114] [-0.0169, 0.0123] [-0.0063, 0.022] 
0.7751 0.1746 0.0835 0.7131 0.7553 0.2789 

Kurtosis 
-0.0183 -0.0238 0.0013 -0.0119 -0.0195* 0.0134 

[-0.0325, -0.0041] [-0.038, -0.0097] [-0.0128, 0.0155] [-0.026, 0.0022] [-0.0341, -0.0048] [-0.0008, 0.0277] 
0.0115 0.0009 0.8542 0.0971 0.0092 0.065 

Variance 
-0.0427* -0.0412* -0.0216 -0.0268* -0.0279* -0.0013 

[-0.0565, -0.029] [-0.0549, -0.0275] [-0.0353, -0.0079] [-0.0405, -0.0131] [-0.0421, -0.0137] [-0.0152, 0.0125] 
1.18×10-9 3.85×10-9 0.0021 0.0001 0.0001 0.8523 

Uniformity 
0.0204 0.0157 0.0143 0.0147 0.0226 0.0139 

[0.007, 0.0339] [0.0023, 0.0291] [0.0009, 0.0278] [0.0014, 0.0281] [0.0087, 0.0365] [0.0004, 0.0274] 
0.0029 0.0217 0.0363 0.0308 0.0014 0.0442 

Table 6.13. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. 

Results are degree of change in radiomics first-order feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals 

and p-values. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. 

Bonferroni adjusted significance threshold p-value =0.0004 (corrected for 108 comparisons). Cardiovascular magnetic resonance: CMR. 
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Table 6.14. Multivariate linear regression models showing change in left ventricular myocardium first-order radiomics features in end-systole per 100g increase in 
daily meat/fish consumption 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Energy 
-0.0577* -0.0542* -0.0365* -0.0333* -0.0567* 0.0292* 

[-0.0703, -0.0451] [-0.0668, -0.0416] [-0.0492, -0.0239] [-0.0458, -0.0207] [-0.0697, -0.0436] [0.0164, 0.0419] 
3.9×10-19 3.27×10-17 1.41×10-8 2.19×10-7 1.9×10-17 7.03x10-6 

Total Energy 
-0.0526* -0.0496* -0.0346* -0.029* -0.0521* 0.0302* 

[-0.0651, -0.0401] [-0.062, -0.0371] [-0.0471, -0.0221] [-0.0415, -0.0166] [-0.065, -0.0392] [0.0177, 0.0428] 
1.69×10-16 6.21×10-15 5.54×10-8 4.75×10-6 2.8×10-15 2.45x10-6 

Entropy 
-0.034* -0.0296* -0.0182* -0.0249* -0.0305* 0.0063 

[-0.048, -0.0199] [-0.0436, -0.0157] [-0.0322, -0.0041] [-0.0388, -0.0109] [-0.045, -0.016] [-0.0078, 0.0204] 
2.15×10-6 3.3×10-5 0.0111 0.0005 3.88×10-5 0.3831 

Minimum 
-0.0433* -0.038* -0.0338* -0.0241* -0.039* 0.007 

[-0.0575, -0.0291] [-0.0522, -0.0239] [-0.048, -0.0196] [-0.0382, -0.01] [-0.0537, -0.0243] [-0.0073, 0.0214] 
2.44×10-9 1.46×10-7 3.14×10-6 0.0008 1.96×10-7 0.3344 

10th Percentile 
-0.0796* -0.0725* -0.0532* -0.0465* -0.0743* 0.0155* 

[-0.0934, -0.0657] [-0.0863, -0.0587] [-0.0671, -0.0394] [-0.0603, -0.0327] [-0.0887, -0.06] [0.0016, 0.0295] 
2.82×10-29 9.37×10-25 5.4×10-14 4.12×10-11 3.05×10-24 0.0292 

90th Percentile 
-0.0811* -0.0744* -0.0518* -0.0484* -0.0745* 0.0182* 

[-0.0949, -0.0673] [-0.0881, -0.0606] [-0.0656, -0.038] [-0.0622, -0.0347] [-0.0887, -0.0602] [0.0043, 0.0321] 
1.31×10-30 3.24×10-26 1.85×10-13 4.8×10-12 1.53×10-24 0.0103 

Maximum 
-0.0701* -0.0638* -0.0427* -0.0444* -0.0619* 0.019* 

[-0.0842, -0.056] [-0.0778, -0.0497] [-0.0568, -0.0287] [-0.0584, -0.0304] [-0.0765, -0.0474] [0.0049, 0.0332] 
1.7×10-22 5.16×10-19 2.62×10-9 5.07×10-10 7.24×10-17 0.0084 

Mean 
-0.0834* -0.0759* -0.0541* -0.05* -0.0771* 0.0163* 

[-0.0971, -0.0696] [-0.0896, -0.0621] [-0.0679, -0.0403] [-0.0638, -0.0363] [-0.0913, -0.0629] [0.0024, 0.0302] 
2.47×10-32 2.88×10-27 1.44×10-14 9.12×10-13 3.1×10-26 0.0213 

Median 
-0.0824* -0.0744* -0.0534* -0.0504* -0.0763* 0.0142* 

[-0.0962, -0.0687] [-0.0882, -0.0607] [-0.0671, -0.0396] [-0.0641, -0.0367] [-0.0905, -0.0621] [0.0003, 0.028] 
9.84×10-32 2.23×10-26 3.02×10-14 6.08×10-13 8.34×10-26 0.0455 

Interquartile Range 
-0.0236* -0.0201* -0.0159* -0.0152* -0.0199* 0.003 

[-0.0376, -0.0096] [-0.0341, -0.0061] [-0.0299, -0.0019] [-0.0291, -0.0012] [-0.0344, -0.0055] [-0.0111, 0.0172] 
0.001 0.0049 0.026 0.033 0.007 0.6725 

Range 
-0.0664* -0.0607* -0.0385* -0.0429* -0.0584* 0.0193* 

[-0.0804, -0.0523] [-0.0747, -0.0467] [-0.0525, -0.0244] [-0.0569, -0.0289] [-0.073, -0.0439] [0.0051, 0.0335] 
2.63×10-20 2.26×10-17 8.29×10-8 1.9×10-9 3.62×10-15 0.0076 
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 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Mean Absolute 
Deviation 

-0.0354* -0.0326* -0.0204* -0.0224* -0.0283* 0.0087 
[-0.0495, -0.0214] [-0.0465, -0.0186] [-0.0344, -0.0064] [-0.0364, -0.0085] [-0.0428, -0.0138] [-0.0054, 0.0228] 

7.38×10-7 4.99×10-6 0.0043 0.0016 0.0001 0.2251 

Robust Mean 
Absolute Deviation 

-0.0248* -0.0213* -0.0161* -0.0163* -0.0201* 0.0063 
[-0.0388, -0.0108] [-0.0353, -0.0073] [-0.0301, -0.0021] [-0.0302, -0.0023] [-0.0346, -0.0056] [-0.0078, 0.0205] 

0.0005 0.0028 0.0242 0.0221 0.0065 0.3784 

Root Mean Squared 
-0.0838* -0.0763* -0.0541* -0.0503* -0.077* 0.0165* 

[-0.0975, -0.07] [-0.09, -0.0626] [-0.0679, -0.0404] [-0.0641, -0.0366] [-0.0912, -0.0628] [0.0026, 0.0304] 
1.22×10-32 1.42×10-27 1.38×10-14 6.62×10-13 3.51×10-26 0.0198 

Skewness 
0.0193* 0.0159* 0.0111 0.0147* 0.0245* 0.0043 

[0.0052, 0.0334] [0.0019, 0.03] [-0.003, 0.0252] [0.0007, 0.0287] [0.01, 0.0391] [-0.0099, 0.0185] 
0.0075 0.0263 0.1225 0.0402 0.001 0.5503 

Kurtosis 
-0.0296* -0.0275* -0.0154* -0.0201* -0.0242* 0.0063 

[-0.0439, -0.0153] [-0.0417, -0.0133] [-0.0296, -0.0011] [-0.0343, -0.0059] [-0.0389, -0.0094] [-0.0081, 0.0206] 
4.85×10-5 0.0002 0.0344 0.0054 0.0013 0.3911 

Variance 
-0.0406* -0.0382* -0.0217* -0.0261* -0.029* 0.009 

[-0.0548, -0.0265] [-0.0523, -0.0241] [-0.0359, -0.0076] [-0.0402, -0.012] [-0.0437, -0.0144] [-0.0053, 0.0233] 
1.92×10-8 1.17×10-7 0.0026 0.0003 0.0001 0.216 

Uniformity 
0.0225* 0.0174* 0.0123 0.0196* 0.0205* -0.0037 

[0.0084, 0.0366] [0.0034, 0.0315] [-0.0018, 0.0264] [0.0055, 0.0336] [0.0059, 0.0351] [-0.0179, 0.0105] 
0.0018 0.0153 0.0883 0.0063 0.0059 0.6057 

Table 6.14. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. Results are degree of 

change in radiomics first-order feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals and p-values. First, second, and third 

row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. Bonferroni adjusted significance threshold p-value =0.0004 

(corrected for 108 comparisons). Cardiovascular magnetic resonance: CMR. 
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6.4.4.1 Association of meat and fish intake with LV myocardium radiomics texture features 

Radiomics texture features represent patterns of signal intensity levels within the region of interest. 

When applied to the LV myocardium, radiomics texture features may reflect tissue level alterations 

and provide insight into myocardial disease processes. In this study, we extracted 72 texture features 

from the LV myocardium in end-diastole and end-systole (total 144 texture features extracted from 

the LV myocardium per study). As detailed previously, we performed hierarchical cluster analysis to 

identify seven groupings of inter-correlated texture features (Figure 6.3). We assigned descriptive 

terms to each cluster based on the properties of its constituent features (Table 6.15). 

 
Table 6.15. Description of clusters identified from the radiomics texture features 

Assigned cluster name Exemplar feature from 
the cluster 

Properties represented by cluster 

Low Grey Level Emphasis Low Grey Level Emphasis  
Local distribution and clustering of low SI 

values 

Spatial Non-Uniformity Size Zone Non-Uniformity  
Non-uniformity in the size of pixel 

groupings 

Grey Level Variance Grey Level Variance Distribution of SI values 

Coarseness Run Percentage 
Tendency to small groupings of pixels with 

similar SI values 

Local Heterogeneity Dependence Entropy Randomness of neighbouring pixel SI values 

Large Scale Emphasis Large Area Emphasis Larger areas of similar pixel SI values 

Grey Level Skewness Cluster Prominence Skewness of the SI distribution 

Table 6.15. The table summarises the seven distinct groups of radiomics texture features identified 

through cluster analysis of these features (n=144, Figure 6.3). Each cluster incorporates a number of 

inter-correlated features. For each cluster, we provide an assigned name, an exemplar feature, and a 

general description of the properties represented. SI: signal intensity 

 

There were different magnitude and direction of association between the different dietary exposures 

and mean effects in the texture clusters (Figure 6.9). Higher intakes of red and processed meat were 

associated with lower intensity levels, less variation in intensity levels, less local heterogeneity, and 

less skewness in the local distribution of signal intensity values (Figure 6.7, Figure 6.9). Greater 

intake of oily fish was associated with more local heterogeneity in signal intensity levels and greater 

skewness in intensity level distributions (Figure 6.7, Figure 6.9). 

 

Results from individual associations between meat and fish exposures and individual LV myocardium 

texture features in end-diastole and end-systole are presented in Table 6.16 and Table 6.17. 
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Figure 6.9. Mean change in left ventricular myocardium radiomics texture feature clusters per 
100g increase in daily meat consumption 

 
Figure 6.9. Each bar represents mean standardised beta coefficients corresponding to the indicated 

texture feature cluster. Models are adjusted for age, sex, social deprivation, educational level, 

smoking, alcohol intake, exercise level (confounder adjusted model). Black lines represent half-length 

of confidence interval for the corresponding bar. CMR: cardiovascular magnetic resonance; LV: left 

ventricle *denotes p < 0.05 in using Kruskal-Wallis statistical testing followed by Dunn’s correction 

test for multiple comparisons, between oily fish and unprocessed red meat and between oily fish and 

processed red meat. Reproduced from Raisi-Estabragh et al.203.
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Table 6.16. Multivariable linear regression models showing change in left ventricular myocardium texture radiomics in end-diastole per 100g 
increase in daily meat/fish consumption 

Feature (sub-category) Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Autocorrelation (GLCM) 

-0.0765  -0.069  -0.0518  -0.0443  -0.0652  0.0178  

[-0.0905, -0.0625] [-0.083, -0.055] 
[-0.0659, -

0.0378] 
[-0.0582, -

0.0303] 
[-0.0797, -

0.0507] [0.0037, 0.032] 
1.49×10-26 4.41×10-22 4.56×10-13 5.41×10-10 1.37×10-18 0.0135 

Joint Average (GLCM) 

-0.0754  -0.0677  -0.0512  -0.044  -0.0675  0.0151  

[-0.0894, -0.0614] [-0.0817, -0.0538] 
[-0.0652, -

0.0372] [-0.0579, -0.03] [-0.082, -0.0531] [0.001, 0.0293] 
5.85×10-26 1.97×10-21 7.84×10-13 6.42×10-10 6.32×10-20 0.0354 

Cluster Prominence (GLCM) 

-0.0165  -0.0173  -0.004 -0.0124 -0.0012 -0.0032 

[-0.0309, -0.0021] [-0.0316, -0.0029] 
[-0.0184, 
0.0104] 

[-0.0267, 
0.0019] 

[-0.0161, 
0.0137] [-0.0177, 0.0113] 

0.025 0.0183 0.587 0.0903 0.8733 0.6676 

Cluster Shade (GLCM) 

-0.015  -0.0168  -0.0013 -0.0118 -0.0035 -0.001 

[-0.0293, -0.0007] [-0.0311, -0.0026] [-0.0156, 0.013] [-0.026, 0.0024] 
[-0.0183, 
0.0113] [-0.0154, 0.0134] 

0.0405 0.0205 0.8574 0.1046 0.6447 0.8933 

Cluster Tendency (GLCM) 

-0.0348  -0.0332  -0.0184  -0.0217  -0.0191  -0.0004 

[-0.0488, -0.0208] [-0.0471, -0.0192] 
[-0.0324, -

0.0044] 
[-0.0356, -

0.0078] 
[-0.0336, -

0.0046] [-0.0145, 0.0137] 
1.14×10-6 3.23×10-6 0.0099 0.0023 0.0097 0.9596 

Contrast (GLCM) 

-0.0438  -0.0404  -0.024  -0.0284  -0.0335  -0.0042 

[-0.057, -0.0307] [-0.0535, -0.0273] 
[-0.0371, -

0.0109] 
[-0.0415, -

0.0154] 
[-0.0471, -

0.0199] [-0.0174, 0.009] 
6.09×10-11 1.45×10-9 0.0003 1.99×10-5 1.3×10-6 0.5321 

Correlation (GLCM) 

0.0017 0.0028 -0.0043 0.0037 0.0064 0.0176  

[-0.012, 0.0155] [-0.0109, 0.0165] [-0.018, 0.0095] [-0.01, 0.0173] 
[-0.0078, 
0.0206] [0.0038, 0.0315] 

0.8053 0.6909 0.5418 0.6001 0.3792 0.0124 

Difference Average (GLCM) 
-0.0369  -0.0322  -0.0221  -0.0245  -0.0321  -0.012 

[-0.0495, -0.0242] [-0.0448, -0.0196] 
[-0.0348, -

0.0095] 
[-0.0371, -

0.0119] [-0.0452, -0.019] [-0.0247, 0.0007] 
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Feature (sub-category) Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
1.14×10-8 5.75×10-7 0.0006 0.0001 1.52×10-6 0.0649 

Difference Entropy (GLCM) 

-0.0441  -0.04  -0.0251  -0.0285  -0.0361  -0.01 

[-0.0566, -0.0317] [-0.0524, -0.0276] 
[-0.0375, -

0.0127] 
[-0.0408, -

0.0161] [-0.049, -0.0233] [-0.0225, 0.0025] 
3.52×10-12 2.42×10-10 7.27×10-5 6.3×10-6 3.48×10-8 0.1164 

Difference Variance (GLCM) 

-0.0487  -0.0463  -0.0255  -0.0307  -0.0352  0.0012 

[-0.0621, -0.0353] [-0.0596, -0.0329] 
[-0.0389, -

0.0121] 
[-0.0441, -

0.0174] 
[-0.0491, -

0.0213] [-0.0123, 0.0148] 
1.2×10-12 1.2×10-11 0.0002 6.34×10-6 6.74×10-7 0.8562 

Joint Energy (GLCM) 
0.0183  0.0122 0.015  0.014  0.0206  0.0143  

[0.0046, 0.032] [-0.0014, 0.0259] [0.0014, 0.0287] [0.0004, 0.0277] [0.0064, 0.0347] [0.0005, 0.0281] 
0.0087 0.0789 0.0309 0.0432 0.0043 0.0416 

Joint Entropy (GLCM) 

-0.0377  -0.0325  -0.024  -0.0243  -0.0318  -0.0103 

[-0.0509, -0.0245] [-0.0457, -0.0194] 
[-0.0371, -

0.0108] 
[-0.0375, -

0.0112] 
[-0.0455, -

0.0182] [-0.0236, 0.003] 
2.25×10-8 1.25×10-6 0.0004 0.0003 4.75×10-6 0.1276 

Informal Measure Of Correlation 1 
(GLCM) 

-0.0051 -0.0024 -0.0003 -0.0082 -0.0075 -0.0251  

[-0.0186, 0.0084] [-0.0159, 0.011] 
[-0.0138, 
0.0132] 

[-0.0216, 
0.0052] 

[-0.0215, 
0.0065] [-0.0387, -0.0115] 

0.4611 0.7234 0.9651 0.2317 0.2924 0.0003 

Informal Measure Of Correlation 2 
(GLCM) 

-0.0199  -0.0196  -0.016  -0.0072 -0.0103 0.0193  

[-0.0341, -0.0058] [-0.0337, -0.0055] 
[-0.0301, -

0.0018] 
[-0.0212, 
0.0069] 

[-0.0249, 
0.0044] [0.0051, 0.0335] 

0.0058 0.0063 0.0267 0.3178 0.1692 0.0079 

Inverse Difference Moment (GLCM) 
0.0303  0.0253  0.0192  0.0207  0.0285  0.0155  

[0.0177, 0.043] [0.0127, 0.0379] [0.0066, 0.0319] [0.0081, 0.0332] [0.0154, 0.0416] [0.0028, 0.0283] 
2.63×10-6 8.17×10-5 0.0029 0.0013 1.94×10-5 0.0167 

Inverse Difference Moment Normalized 
(GLCM) 

-0.0359  -0.0344  -0.0214  -0.0221  -0.0405  0.0226  

[-0.0499, -0.022] [-0.0483, -0.0205] 
[-0.0354, -

0.0074] [-0.036, -0.0082] [-0.0549, -0.026] [0.0085, 0.0366] 
4.83×10-7 1.34×10-6 0.0027 0.0019 4.16×10-8 0.0017 

Inverse Difference (GLCM) 0.029  0.0237  0.0187  0.0201  0.0277  0.0162  
[0.0162, 0.0417] [0.011, 0.0364] [0.0059, 0.0314] [0.0074, 0.0328] [0.0145, 0.0409] [0.0033, 0.029] 
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Feature (sub-category) Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
8.53×10-6 0.0002 0.0041 0.0019 3.74×10-5 0.0135 

Inverse Difference Normalized (GLCM) 

-0.0268  -0.0286  -0.0129 -0.0152  -0.0284  0.0266  

[-0.0406, -0.0131] [-0.0423, -0.0149] 
[-0.0266, 
0.0008] 

[-0.0289, -
0.0016] 

[-0.0427, -
0.0142] [0.0127, 0.0404] 

0.0001 4.4×10-5 0.0657 0.0291 8.8×10-5 0.0002 

Inverse Variance (GLCM) 

-0.0099 -0.0039 -0.0093 -0.0101 -0.0147  -0.0194  

[-0.0237, 0.0038] [-0.0176, 0.0098] 
[-0.0231, 
0.0044] 

[-0.0238, 
0.0035] 

[-0.0289, -
0.0005] [-0.0332, -0.0056] 

0.1577 0.5777 0.1831 0.146 0.0432 0.006 

Maximum Probability (GLCM) 

0.0162  0.0107 0.014  0.012 0.0201  0.0116 

[0.0023, 0.0301] [-0.0031, 0.0246] [0.0001, 0.0279] 
[-0.0018, 
0.0258] [0.0057, 0.0345] [-0.0024, 0.0256] 

0.0225 0.1294 0.0479 0.0886 0.0061 0.1044 

Sum Average (GLCM) 

-0.0754  -0.0677  -0.0512  -0.044  -0.0675  0.0151  

[-0.0894, -0.0614] [-0.0817, -0.0538] 
[-0.0652, -

0.0372] [-0.0579, -0.03] [-0.082, -0.0531] [0.001, 0.0293] 
5.85×10-26 1.97×10-21 7.84×10-13 6.42×10-10 6.32×10-20 0.0354 

Sum Entropy (GLCM) 

-0.0374  -0.0321  -0.0249  -0.0237  -0.0313  -0.0047 

[-0.051, -0.0239] [-0.0456, -0.0186] 
[-0.0384, -

0.0114] 
[-0.0372, -

0.0102] 
[-0.0453, -

0.0174] [-0.0183, 0.0089] 
6.12×10-8 3.09×10-6 0.0003 0.0006 1.14×10-5 0.4998 

Sum Of Squares (GLCM) 

-0.039  -0.0367  -0.0209  -0.0246  -0.0244  -0.0016 

[-0.0528, -0.0252] [-0.0504, -0.023] 
[-0.0346, -

0.0071] [-0.0383, -0.011] 
[-0.0386, -

0.0102] [-0.0154, 0.0122] 
2.8×10-8 1.52×10-7 0.0029 0.0004 0.0008 0.8212 

Small Area Emphasis (GLSZM) 

-0.0343  -0.0309  -0.0196  -0.0237  -0.0337  0.0149  

[-0.0486, -0.02] [-0.0451, -0.0167] 
[-0.0338, -

0.0053] 
[-0.0379, -

0.0095] 
[-0.0484, -

0.0189] [0.0006, 0.0293] 
2.53×10-6 2.05×10-5 0.0071 0.0011 7.62×10-6 0.0417 

Large Area Emphasis (GLSZM) 
0.0412  0.0378  0.0248  0.0242  0.0332  0.0181  

[0.0299, 0.0524] [0.0266, 0.049] [0.0135, 0.036] [0.0131, 0.0354] [0.0216, 0.0449] [0.0068, 0.0294] 
7.63×10-13 3.77×10-11 1.56×10-5 2.17×10-5 2.13×10-8 0.0018 

Grey Level Non Uniformity (GLSZM) 0.0164  0.0078 0.0132 0.0175  0.0188  0.0125 
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Feature (sub-category) Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

[0.0024, 0.0303] [-0.0061, 0.0217] 
[-0.0008, 
0.0271] [0.0037, 0.0314] [0.0043, 0.0332] [-0.0015, 0.0266] 

0.0216 0.2712 0.064 0.0132 0.0108 0.0802 

Size Zone Non Uniformity (GLSZM) 

0.0164  0.0078 0.0132 0.0175  0.0188  0.0125 

[0.0024, 0.0303] [-0.0061, 0.0217] 
[-0.0008, 
0.0271] [0.0037, 0.0314] [0.0043, 0.0332] [-0.0015, 0.0266] 

0.0216 0.2712 0.064 0.0132 0.0108 0.0802 

Size Zone Non Uniformity Normalized 
(GLSZM) 

-0.036  -0.0316  -0.0216  -0.0252  -0.0348  0.0143 

[-0.0502, -0.0217] [-0.0458, -0.0174] 
[-0.0359, -

0.0074] [-0.0394, -0.011] [-0.0495, -0.02] [0, 0.0287] 
8.09×10-7 1.34×10-5 0.0029 0.0005 3.83×10-6 0.0507 

Zone Percentage (GLSZM) 

-0.0574  -0.0537  -0.0347  -0.0333  -0.0417  0.0009 

[-0.0702, -0.0447] [-0.0665, -0.041] [-0.0474, -0.022] [-0.046, -0.0206] 
[-0.0549, -

0.0285] [-0.0119, 0.0138] 
1.23×10-18 1.23×10-16 9.69×10-8 2.82×10-7 6.22×10-10 0.8865 

Grey Level Variance (GLSZM) 

-0.0627  -0.0613  -0.0333  -0.0373  -0.0544  0.0074 

[-0.0768, -0.0485] [-0.0754, -0.0472] 
[-0.0475, -

0.0192] 
[-0.0514, -

0.0232] 
[-0.0691, -

0.0398] [-0.0069, 0.0217] 
4.56×10-18 1.75×10-17 3.96×10-6 2.16×10-7 3.19×10-13 0.3085 

Zone Variance (GLSZM) 
0.041  0.0375  0.0248  0.0242  0.033  0.0183  

[0.0298, 0.0522] [0.0264, 0.0487] [0.0135, 0.036] [0.0131, 0.0354] [0.0214, 0.0446] [0.007, 0.0296] 
8.87×10-13 4.97×10-11 1.54×10-5 2.13×10-5 2.57×10-8 0.0015 

Zone Entropy (GLSZM) 

-0.037  -0.0414  -0.0174  -0.0149  -0.0388  0.0073 

[-0.0512, -0.0229] [-0.0555, -0.0273] 
[-0.0315, -

0.0033] 
[-0.0289, -

0.0008] 
[-0.0534, -

0.0242] [-0.007, 0.0215] 
3×10-7 8.83×10-9 0.0158 0.0385 1.99×10-7 0.3162 

Low Grey Level Zone Emphasis 
(GLSZM) 

0.0645  0.0559  0.0458  0.0396  0.0575  -0.0245  
[0.0504, 0.0786] [0.0418, 0.0699] [0.0317, 0.0599] [0.0255, 0.0536] [0.0429, 0.0721] [-0.0388, -0.0103] 

4.04×10-19 7.9×10-15 2.14×10-10 3.53×10-8 1.26×10-14 0.0007 

High Grey Level Zone Emphasis 
(GLSZM) 

-0.0733  -0.0684  -0.0447  -0.044  -0.0652  0.0148  

[-0.0873, -0.0592] [-0.0824, -0.0543] 
[-0.0588, -

0.0306] [-0.058, -0.03] 
[-0.0798, -

0.0507] [0.0006, 0.029] 
2.14×10-24 1.33×10-21 4.8×10-10 7.59×10-10 1.64×10-18 0.0405 

0.0581  0.05  0.0423  0.0352  0.0518  -0.0224  
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Feature (sub-category) Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 
Small Area Low Grey Level Emphasis 

(GLSZM) 
[0.044, 0.0723] [0.0359, 0.064] [0.0282, 0.0565] [0.0212, 0.0493] [0.0372, 0.0664] [-0.0366, -0.0082] 

8.08×10-16 3.64×10-12 4.13×10-9 9.11×10-7 3.82×10-12 0.002 

Small Area High Grey Level Emphasis 
(GLSZM) 

-0.0738  -0.0689  -0.0449  -0.0443  -0.0673  0.0152  

[-0.0879, -0.0597] [-0.083, -0.0549] 
[-0.0589, -

0.0308] 
[-0.0583, -

0.0303] 
[-0.0818, -

0.0528] [0.001, 0.0294] 
9.86×10-25 6.07×10-22 4.11×10-10 5.75×10-10 1.28×10-19 0.0358 

Large Area Low Grey Level Emphasis 
(GLSZM) 

0.0455  0.0407  0.0303  0.0266  0.0549  0.0182  
[0.0318, 0.0592] [0.027, 0.0544] [0.0166, 0.044] [0.013, 0.0403] [0.0407, 0.069] [0.0044, 0.0321] 

8.54×10-11 5.52×10-9 1.5×10-5 0.0001 3.35×10-14 0.0096 

Large Area High Grey Level Emphasis 
(GLSZM) 

0.0013 0.0034 -0.0051 0.0014 -0.0046 0.024  

[-0.0104, 0.0129] [-0.0082, 0.015] 
[-0.0167, 
0.0065] [-0.0101, 0.013] 

[-0.0166, 
0.0075] [0.0123, 0.0357] 

0.8328 0.5628 0.3892 0.8068 0.4584 5.98×10-5 

Short Run Emphasis (GLRLM) 

-0.0299  -0.0236  -0.0226  -0.0189  -0.0266  -0.0152  

[-0.0419, -0.0178] [-0.0356, -0.0116] 
[-0.0347, -

0.0106] [-0.0309, -0.007] 
[-0.0391, -

0.0142] [-0.0273, -0.0031] 
1.2×10-6 0.0001 0.0002 0.0019 2.76×10-5 0.0141 

Long Run Emphasis (GLRLM) 
0.0311  0.0238  0.0222  0.0221  0.0278  0.0185  

[0.0188, 0.0434] [0.0116, 0.036] [0.0099, 0.0345] [0.0099, 0.0343] [0.0151, 0.0405] [0.0061, 0.0308] 
7.18×10-7 0.0001 0.0004 0.0004 1.83×10-5 0.0034 

Grey Level Non Uniformity (GLRLM) 
0.035  0.0278  0.0213  0.0273  0.0249  0.0279  

[0.0248, 0.0453] [0.0176, 0.038] [0.011, 0.0315] [0.0171, 0.0375] [0.0143, 0.0355] [0.0176, 0.0383] 
2.23×10-11 1.03×10-7 4.8×10-5 1.58×10-7 4.28×10-6 1.12×10-7 

Run Length Non Uniformity (GLRLM) 

0.0173  0.0106 0.0112 0.0182  0.0067 0.0201  

[0.0046, 0.0301] [-0.0021, 0.0234] 
[-0.0016, 
0.0239] [0.0055, 0.0309] 

[-0.0065, 
0.0199] [0.0073, 0.033] 

0.0077 0.1008 0.086 0.0049 0.3219 0.0021 

Run Length Non Uniformity Normalized 
(GLRLM) 

-0.0279  -0.0222  -0.0216  -0.0168  -0.0246  -0.0138  

[-0.04, -0.0157] [-0.0343, -0.0101] 
[-0.0338, -

0.0095] 
[-0.0289, -

0.0048] 
[-0.0372, -

0.0121] [-0.0261, -0.0016] 
7.13×10-6 0.0003 0.0005 0.0063 0.0001 0.0268 

Run Percentage (GLRLM) -0.0267  -0.0205  -0.0207  -0.0172  -0.0236  -0.0143  
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[-0.0389, -0.0144] [-0.0326, -0.0083] 
[-0.0329, -

0.0085] [-0.0293, -0.005] [-0.0362, -0.011] [-0.0266, -0.002] 
1.91×10-5 0.001 0.0009 0.0056 0.0002 0.0223 

Grey Level Variance (GLRLM) 

-0.0453  -0.0442  -0.0221  -0.0285  -0.0301  0.0005 

[-0.0591, -0.0315] [-0.0579, -0.0304] 
[-0.0359, -

0.0083] 
[-0.0423, -

0.0148] 
[-0.0444, -

0.0158] [-0.0135, 0.0144] 
1.43×10-10 3.5×10-10 0.0017 4.89×10-5 3.8×10-5 0.948 

Run Variance (GLRLM) 
0.0298  0.0227  0.0211  0.0214  0.0261  0.0191  

[0.0173, 0.0422] [0.0103, 0.0351] [0.0087, 0.0335] [0.0091, 0.0338] [0.0133, 0.039] [0.0066, 0.0317] 
2.75×10-6 0.0003 0.0009 0.0007 6.71×10-5 0.0027 

Run Entropy (GLRLM) 

-0.025  -0.0286  -0.0065 -0.0154  -0.0206  0.014  

[-0.0388, -0.0111] [-0.0424, -0.0148] 
[-0.0204, 
0.0073] 

[-0.0292, -
0.0017] 

[-0.0349, -
0.0063] [0.0001, 0.028] 

0.0004 4.93×10-5 0.3557 0.0282 0.0048 0.0485 

Low Grey Level Run Emphasis 
(GLRLM) 

0.0573  0.0523  0.0387  0.0327  0.0628  -0.0016 
[0.0434, 0.0713] [0.0385, 0.0662] [0.0248, 0.0526] [0.0188, 0.0465] [0.0484, 0.0772] [-0.0157, 0.0124] 

7.92×10-16 1.5×10-13 5.01×10-8 3.85×10-6 1.26×10-17 0.8202 

High Grey Level Run Emphasis 
(GLRLM) 

-0.0768  -0.0702  -0.0506  -0.0444  -0.066  0.0164  

[-0.0909, -0.0627] [-0.0842, -0.0562] 
[-0.0647, -

0.0366] 
[-0.0585, -

0.0304] 
[-0.0805, -

0.0514] [0.0022, 0.0306] 
1.38×10-26 1.22×10-22 1.85×10-12 5.28×10-10 7.22×10-19 0.0236 

Short Run Low Grey Level Emphasis 
(GLRLM) 

0.0558  0.0515  0.037  0.0317  0.0604  -0.0047 
[0.0419, 0.0696] [0.0377, 0.0653] [0.0232, 0.0509] [0.0179, 0.0454] [0.0461, 0.0747] [-0.0186, 0.0093] 

2.95×10-15 2.6×10-13 1.51×10-7 6.54×10-6 1.29×10-16 0.511 

Short Run High Grey Level Emphasis 
(GLRLM) 

-0.0779  -0.071  -0.0509  -0.0457  -0.0666  0.013 

[-0.092, -0.0638] [-0.085, -0.057] [-0.065, -0.0368] 
[-0.0597, -

0.0317] [-0.0811, -0.052] [-0.0011, 0.0272] 
2.39×10-27 3.81×10-23 1.37×10-12 1.68×10-10 3.22×10-19 0.0714 

Long Run Low Grey Level Emphasis 
(GLRLM) 

0.0542  0.0473  0.0379  0.0328  0.0629  0.0088 
[0.0401, 0.0683] [0.0332, 0.0613] [0.0238, 0.0519] [0.0188, 0.0468] [0.0483, 0.0775] [-0.0054, 0.023] 

5.1×10-14 4.27×10-11 1.37×10-7 4.49×10-6 2.64×10-17 0.2234 
-0.0497  -0.047  -0.0341  -0.0257  -0.0437  0.027  
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Long Run High Grey Level Emphasis 
(GLRLM) [-0.0629, -0.0365] [-0.0601, -0.0339] [-0.0473, -0.021] 

[-0.0388, -
0.0126] 

[-0.0573, -
0.0301] [0.0137, 0.0402] 

1.62×10-13 2.36×10-12 3.8×10-7 0.0001 3.3×10-10 6.8×10-5 

Coarseness (NGTDM) 

-0.0288  -0.0259  -0.0181  -0.0166  -0.0096 -0.0183  

[-0.0401, -0.0174] [-0.0373, -0.0146] 
[-0.0295, -

0.0068] 
[-0.0279, -

0.0053] 
[-0.0214, 
0.0021] [-0.0298, -0.0069] 

7.04×10-7 7.02×10-6 0.0017 0.004 0.108 0.0017 

Contrast (NGTDM) 
0.0242  0.0216  0.0167  0.0157  0.0303  -0.0216  

[0.0104, 0.038] [0.0079, 0.0353] [0.0029, 0.0304] [0.002, 0.0294] [0.0161, 0.0446] [-0.0354, -0.0077] 
0.0006 0.002 0.0174 0.0247 2.97×10-5 0.0022 

Busyness (NGTDM) 
0.0573  0.0495  0.0386  0.0369  0.064  0.001 

[0.0433, 0.0713] [0.0356, 0.0635] [0.0246, 0.0526] [0.023, 0.0508] [0.0496, 0.0785] [-0.0131, 0.0152] 
1.16×10-15 3.69×10-12 6.47×10-8 2.09×10-7 4.46×10-18 0.884 

Complexity (NGTDM) 

-0.0468  -0.0458  -0.0229  -0.0297  -0.0431  0.0109 

[-0.0608, -0.0328] [-0.0597, -0.0319] [-0.0369, -0.009] 
[-0.0436, -

0.0159] 
[-0.0576, -

0.0287] [-0.0031, 0.025] 
5.32×10-11 1.1×10-10 0.0013 2.7×10-5 4.71×10-9 0.1279 

Strength (NGTDM) 

-0.0373  -0.0387  -0.0148  -0.0239  -0.0267  0.0089 

[-0.0512, -0.0235] [-0.0525, -0.0249] 
[-0.0287, -

0.0009] 
[-0.0377, -

0.0101] [-0.041, -0.0123] [-0.0051, 0.0228] 
1.38×10-7 4.3×10-8 0.0364 0.0007 0.0003 0.2136 

Small Dependence Emphasis (GLDM) 

-0.0554  -0.0509  -0.0344  -0.0325  -0.0432  -0.0025 

[-0.0678, -0.0431] [-0.0632, -0.0386] 
[-0.0468, -

0.0221] 
[-0.0448, -

0.0203] [-0.056, -0.0305] [-0.0149, 0.01] 
1.42×10-18 4.87×10-16 4.36×10-8 2.06×10-7 3.19×10-11 0.699 

Large Dependence Emphasis (GLDM) 
0.0241  0.0175  0.0194  0.0164  0.0216  0.0146  

[0.0117, 0.0366] [0.0051, 0.0299] [0.007, 0.0318] [0.004, 0.0287] [0.0087, 0.0344] [0.0021, 0.0271] 
0.0001 0.0057 0.0022 0.0094 0.001 0.0222 

Grey Level Non Uniformity (GLDM) 
0.0335  0.0253  0.023  0.0252  0.0251  0.028  

[0.0229, 0.0441] [0.0148, 0.0359] [0.0124, 0.0336] [0.0147, 0.0358] [0.0142, 0.0361] [0.0173, 0.0387] 
6.42×10-10 2.7×10-6 2.05×10-5 2.83×10-6 6.99×10-6 2.69×10-7 

Dependence Non Uniformity (GLDM) 0.0215  0.0158  0.013  0.0195  0.0114 0.0197  
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[0.0088, 0.0342] [0.0032, 0.0285] [0.0003, 0.0257] [0.0068, 0.0321] 
[-0.0017, 
0.0245] [0.007, 0.0325] 

0.0009 0.0142 0.0445 0.0025 0.089 0.0024 

Dependence Non Uniformity 
Normalized (GLDM) 

-0.019  -0.013  -0.0165  -0.0126 -0.016  -0.0127 

[-0.0318, -0.0062] [-0.0258, -0.0003] 
[-0.0292, -

0.0037] 
[-0.0253, 
0.0001] 

[-0.0292, -
0.0028] [-0.0256, 0.0002] 

0.0036 0.0446 0.0114 0.0524 0.0176 0.0529 

Grey Level Variance (GLDM) 

-0.0397  -0.0383  -0.02  -0.025  -0.0258  -0.0028 

[-0.0535, -0.026] [-0.052, -0.0246] 
[-0.0337, -

0.0063] 
[-0.0387, -

0.0114] [-0.04, -0.0116] [-0.0166, 0.0111] 
1.44×10-8 4.06×10-8 0.0043 0.0003 0.0004 0.6961 

Dependence Variance (GLDM) 
0.0166  0.0092 0.0153  0.0136  0.0138  0.0117 

[0.0035, 0.0297] [-0.0039, 0.0222] [0.0022, 0.0284] [0.0006, 0.0266] [0.0003, 0.0273] [-0.0014, 0.0249] 
0.0128 0.1684 0.0216 0.0401 0.0458 0.0804 

Dependence Entropy (GLDM) 

2.99×10-6 -0.004 0.0023 0.003 -0.006 0.0077 

[-0.0136, 0.0136] [-0.0175, 0.0095] 
[-0.0113, 
0.0158] 

[-0.0105, 
0.0165] [-0.0201, 0.008] [-0.006, 0.0213] 

0.9997 0.5607 0.7444 0.6672 0.3994 0.2693 

Low Grey Level Emphasis (GLDM) 
0.0558  0.0509  0.0377  0.032  0.0621  -0.0001 

[0.0419, 0.0697] [0.037, 0.0647] [0.0238, 0.0515] [0.0182, 0.0458] [0.0477, 0.0764] [-0.0141, 0.0139] 
3.77×10-15 6.06×10-13 1.06×10-7 5.72×10-6 2.49×10-17 0.9882 

High Grey Level Emphasis (GLDM) 

-0.0766  -0.0696  -0.0512  -0.0443  -0.0656  0.0163  

[-0.0907, -0.0625] [-0.0836, -0.0555] 
[-0.0653, -

0.0371] 
[-0.0583, -

0.0303] [-0.0801, -0.051] [0.0021, 0.0304] 
1.82×10-26 2.73×10-22 1.04×10-12 6.11×10-10 1.13×10-18 0.0247 

Small Dependence Low Grey Level 
Emphasis (GLDM) 

0.0332  0.0288  0.0244  0.0203  0.0349  -0.0187  
[0.0199, 0.0465] [0.0155, 0.0421] [0.0111, 0.0377] [0.007, 0.0335] [0.0212, 0.0487] [-0.0321, -0.0053] 

1.07×10-6 2.18×10-5 0.0003 0.0027 6.65×10-7 0.0064 

Small Dependence High Grey Level 
Emphasis (GLDM) 

-0.0725  -0.0669  -0.0446  -0.0437  -0.0586  0.0091 

[-0.0863, -0.0588] [-0.0806, -0.0532] 
[-0.0584, -

0.0309] [-0.0574, -0.03] 
[-0.0728, -

0.0444] [-0.0047, 0.023] 
5.18×10-25 1.18×10-21 1.96×10-10 3.98×10-10 6.79×10-16 0.1958 

0.0523  0.0452  0.0379  0.031  0.0591  0.009 
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Large Dependence Low Grey Level 

Emphasis (GLDM) 
[0.0382, 0.0664] [0.0312, 0.0592] [0.0239, 0.052] [0.017, 0.045] [0.0446, 0.0737] [-0.0052, 0.0232] 

3.54×10-13 2.84×10-10 1.24×10-7 1.44×10-5 1.73×10-15 0.2127 

Large Dependence High Grey Level 
Emphasis (GLDM) 

-0.0439  -0.0421  -0.03  -0.0223  -0.0379  0.0253  

[-0.0569, -0.031] [-0.055, -0.0292] 
[-0.0429, -

0.0171] 
[-0.0351, -

0.0094] 
[-0.0512, -

0.0245] [0.0123, 0.0383] 
2.78×10-11 1.46×10-10 5.25×10-6 0.0007 2.76×10-8 0.0001 

Table 6.16. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. 
Results are degree of change in radiomics shape feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals and 
p-values. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. Bonferroni 
adjusted significance threshold p-value =0.0001 (corrected for 432 comparisons). GLCM: grey level co-occurrence matrix; GLDM: grey level dependence 
matrix; GLRLM: grey level run length matrix; GLSZM: grey level size zone matrix; NGTDM: neighboring grey tone difference matrix; CMR: Cardiovascular 
magnetic resonance.  
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Table 6.17. Multivariable linear regression models showing change in left ventricular myocardium texture radiomics in end-systole per 100g increase 
in daily meat/fish consumption 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Autocorrelation (GLCM) 
-0.0763  -0.0729  -0.045  -0.0442  -0.0703  0.0103 

[-0.0901, -0.0624] [-0.0867, -0.0591] [-0.0588, -0.0311] [-0.058, -0.0305] [-0.0846, -0.0559] [-0.0037, 0.0242] 
4.23×10-27 4.67×10-25 1.95×10-10 3.22×10-10 7.23×10-22 0.1487 

Joint Average (GLCM) 
-0.0755  -0.0721  -0.0445  -0.0438  -0.0709  0.0074 

[-0.0894, -0.0617] [-0.0859, -0.0583] [-0.0584, -0.0307] [-0.0576, -0.03] [-0.0852, -0.0566] [-0.0065, 0.0214] 
1.41×10-26 1.37×10-24 2.99×10-10 4.81×10-10 2.93×10-22 0.2973 

Cluster Prominence (GLCM) 
-0.0112 -0.0123 -0.0013 -0.009 0.0012 -0.001 

[-0.0257, 0.0032] [-0.0267, 0.0021] [-0.0157, 0.0131] [-0.0233, 0.0054] [-0.0137, 0.0161] [-0.0155, 0.0135] 
0.1272 0.0934 0.8603 0.2198 0.876 0.8934 

Cluster Shade (GLCM) 
-0.0066 -0.0089 0.0008 -0.0044 0.0055 0.0013 

[-0.021, 0.0078] [-0.0233, 0.0054] [-0.0135, 0.0152] [-0.0187, 0.0099] [-0.0094, 0.0203] [-0.0132, 0.0158] 
0.3696 0.223 0.9084 0.5456 0.4725 0.8612 

Cluster Tendency (GLCM) 
-0.0274  -0.026  -0.0142 -0.0176  -0.0175  0.0117 

[-0.0416, -0.0132] [-0.0402, -0.0119] [-0.0283, 0] [-0.0317, -0.0035] [-0.0322, -0.0029] [-0.0026, 0.026] 
0.0002 0.0003 0.0503 0.0147 0.0192 0.109 

Contrast (GLCM) 
-0.031  -0.0285  -0.0156  -0.021  -0.0213  -0.0032 

[-0.045, -0.017] [-0.0424, -0.0145] [-0.0296, -0.0017] [-0.0349, -0.0071] [-0.0358, -0.0069] [-0.0172, 0.0109] 
1.38×10-5 6.16×10-5 0.028 0.003 0.0038 0.6572 

Correlation (GLCM) 
-0.0052 -0.0024 -0.0079 -0.0035 -0.0043 0.0232  

[-0.0185, 0.0081] [-0.0156, 0.0109] [-0.0212, 0.0054] [-0.0167, 0.0097] [-0.0181, 0.0094] [0.0099, 0.0366] 
0.444 0.7267 0.2427 0.6022 0.5356 0.0007 

Difference Average (GLCM) 
-0.0213  -0.0199  -0.0098 -0.0143  -0.0164  -0.0036 

[-0.0351, -0.0075] [-0.0336, -0.0062] [-0.0235, 0.004] [-0.028, -0.0006] [-0.0306, -0.0021] [-0.0174, 0.0103] 
0.0025 0.0045 0.164 0.041 0.0244 0.6155 

Difference Entropy (GLCM) 
-0.0297  -0.0279  -0.0143  -0.0195  -0.0247  -0.0033 

[-0.0434, -0.016] [-0.0415, -0.0142] [-0.028, -0.0006] [-0.0331, -0.0059] [-0.0388, -0.0105] [-0.017, 0.0105] 
2.23×10-5 6.3×10-5 0.0406 0.0051 0.0006 0.6437 

Difference Variance (GLCM) 
-0.0376  -0.0346  -0.0192  -0.0254  -0.0255  -0.002 

[-0.0516, -0.0235] [-0.0486, -0.0207] [-0.0333, -0.0052] [-0.0393, -0.0114] [-0.04, -0.011] [-0.0161, 0.0121] 
1.6×10-7 1.22×10-6 0.0072 0.0004 0.0006 0.7819 
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 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Joint Energy (GLCM) 
0.0136 0.0098 0.0073 0.0129 0.0126 -0.0011 

[-0.0006, 0.0278] [-0.0044, 0.0239] [-0.0068, 0.0215] [-0.0012, 0.0269] [-0.0021, 0.0272] [-0.0154, 0.0131] 
0.0598 0.1752 0.3097 0.0732 0.0923 0.8748 

Joint Entropy (GLCM) 
-0.0247  -0.0218  -0.0131 -0.0176  -0.0217  0.0032 

[-0.0388, -0.0107] [-0.0358, -0.0078] [-0.0271, 0.001] [-0.0316, -0.0036] [-0.0363, -0.0072] [-0.0109, 0.0174] 
0.0006 0.0023 0.0681 0.0136 0.0035 0.656 

Informal Measure Of Correlation 
1 (GLCM) 

0.0142  0.0117 0.011 0.0098 0.0108 -0.0216  
[0.0011, 0.0273] [-0.0014, 0.0248] [-0.0021, 0.0241] [-0.0032, 0.0229] [-0.0027, 0.0244] [-0.0348, -0.0085] 

0.0338 0.0794 0.1005 0.1385 0.1172 0.0013 

Informal Measure Of Correlation 
2 (GLCM) 

-0.0196  -0.0149  -0.016  -0.0138  -0.0151  0.0195  
[-0.033, -0.0061] [-0.0283, -0.0016] [-0.0294, -0.0026] [-0.0272, -0.0005] [-0.0289, -0.0012] [0.006, 0.033] 

0.0043 0.0285 0.0191 0.0421 0.0333 0.0047 

Inverse Difference Moment 
(GLCM) 

0.0164  0.0154  0.0069 0.011 0.0133 0.0037 
[0.0026, 0.0301] [0.0017, 0.0292] [-0.0069, 0.0206] [-0.0027, 0.0247] [-0.0009, 0.0275] [-0.0101, 0.0176] 

0.0198 0.0272 0.3254 0.1141 0.0669 0.5976 

Inverse Difference Moment 
Normalized (GLCM) 

-0.0414  -0.0371  -0.0266  -0.0268  -0.0497  0.0174  
[-0.0553, -0.0275] [-0.051, -0.0233] [-0.0404, -0.0127] [-0.0406, -0.013] [-0.0641, -0.0354] [0.0034, 0.0314] 

5.17×10-9 1.44×10-7 0.0002 0.0001 1.11×10-11 0.0146 

Inverse Difference (GLCM) 
0.0144  0.0135 0.0058 0.0098 0.0119 0.0038 

[0.0006, 0.0282] [-0.0002, 0.0273] [-0.008, 0.0195] [-0.0039, 0.0235] [-0.0024, 0.0261] [-0.01, 0.0177] 
0.0408 0.053 0.4092 0.159 0.1017 0.5876 

Inverse Difference Normalized 
(GLCM) 

-0.0313  -0.0285  -0.0208  -0.0194  -0.0358  0.0151  
[-0.0451, -0.0176] [-0.0423, -0.0148] [-0.0345, -0.007] [-0.0332, -0.0057] [-0.0501, -0.0216] [0.0012, 0.0289] 

8.48×10-6 4.68×10-5 0.0031 0.0054 8.25×10-7 0.033 

Inverse Variance (GLCM) 
-0.0013 -0.0011 0.0014 -0.0018 -0.0026 -0.0042 

[-0.0152, 0.0126] [-0.0149, 0.0127] [-0.0124, 0.0152] [-0.0156, 0.012] [-0.017, 0.0117] [-0.0182, 0.0097] 
0.8549 0.8724 0.8435 0.7951 0.7193 0.5522 

Maximum Probability (GLCM) 
0.0125 0.0069 0.008 0.0137 0.0089 0.0003 

[-0.0017, 0.0267] [-0.0072, 0.0211] [-0.0061, 0.0222] [-0.0004, 0.0278] [-0.0058, 0.0236] [-0.0139, 0.0146] 
0.0842 0.3386 0.2663 0.0567 0.2341 0.9634 

Sum Average (GLCM) 
-0.0755  -0.0721  -0.0445  -0.0438  -0.0709  0.0074 

[-0.0894, -0.0617] [-0.0859, -0.0583] [-0.0584, -0.0307] [-0.0576, -0.03] [-0.0852, -0.0566] [-0.0065, 0.0214] 
1.41×10-26 1.37×10-24 2.99×10-10 4.81×10-10 2.93×10-22 0.2973 
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Sum Entropy (GLCM) 
-0.0237  -0.0202  -0.0134 -0.0174  -0.0211  0.008 

[-0.0378, -0.0096] [-0.0343, -0.0062] [-0.0275, 0.0007] [-0.0314, -0.0033] [-0.0357, -0.0065] [-0.0062, 0.0223] 
0.001 0.0048 0.062 0.0153 0.0046 0.2666 

Sum Of Squares (GLCM) 
-0.0298  -0.028  -0.0153  -0.0194  -0.0194  0.0087 

[-0.044, -0.0155] [-0.0422, -0.0139] [-0.0295, -0.0011] [-0.0335, -0.0052] [-0.0341, -0.0047] [-0.0056, 0.023] 
4.15×10-5 0.0001 0.0349 0.0073 0.0097 0.2333 

Small Area Emphasis (GLSZM) 
-0.0212  -0.022  -0.0151  -0.0075 -0.0016 0.0076 

[-0.0354, -0.0069] [-0.0362, -0.0078] [-0.0293, -0.0008] [-0.0216, 0.0067] [-0.0164, 0.0131] [-0.0068, 0.0219] 
0.0037 0.0024 0.038 0.3022 0.8284 0.2999 

Large Area Emphasis (GLSZM) 
0.0412  0.0331  0.0265  0.0295  0.0387  0.0201  

[0.0289, 0.0534] [0.0209, 0.0453] [0.0143, 0.0388] [0.0173, 0.0416] [0.026, 0.0514] [0.0078, 0.0324] 
4.5×10-11 1.06×10-7 2.15×10-5 2.12×10-6 2.09×10-9 0.0014 

Grey Level Non Uniformity 
(GLSZM) 

0.0356  0.0263  0.0255  0.0291  0.019  -0.0009 
[0.0217, 0.0495] [0.0124, 0.0401] [0.0117, 0.0394] [0.0152, 0.0429] [0.0047, 0.0334] [-0.0149, 0.013] 

5.38×10-7 0.0002 0.0003 3.74×10-5 0.0094 0.8948 

Size Zone Non Uniformity 
(GLSZM) 

0.0356  0.0263  0.0255  0.0291  0.019  -0.0009 
[0.0217, 0.0495] [0.0124, 0.0401] [0.0117, 0.0394] [0.0152, 0.0429] [0.0047, 0.0334] [-0.0149, 0.013] 

5.38×10-7 0.0002 0.0003 3.74×10-5 0.0094 0.8948 

Size Zone Non Uniformity 
Normalized (GLSZM) 

-0.0199  -0.0209  -0.0146  -0.0066 0.0001 0.008 
[-0.0342, -0.0057] [-0.0351, -0.0067] [-0.0289, -0.0004] [-0.0208, 0.0076] [-0.0147, 0.0148] [-0.0064, 0.0223] 

0.0062 0.004 0.0443 0.3611 0.9933 0.2776 

Zone Percentage (GLSZM) 
-0.0443  -0.0364  -0.0311  -0.0285  -0.0398  -0.01 

[-0.0579, -0.0306] [-0.05, -0.0228] [-0.0448, -0.0175] [-0.0421, -0.0149] [-0.0539, -0.0257] [-0.0237, 0.0038] 
2.26×10-10 1.6×10-7 7.76×10-6 4.02×10-5 3.36×10-8 0.1557 

Grey Level Variance (GLSZM) 
-0.0671  -0.0599  -0.0408  -0.0439  -0.0529  0.0094 

[-0.0812, -0.053] [-0.074, -0.0459] [-0.0549, -0.0267] [-0.058, -0.0299] [-0.0674, -0.0383] [-0.0048, 0.0236] 
1.06×10-20 5.84×10-17 1.35×10-8 7.85×10-10 1.1×10-12 0.1926 

Zone Variance (GLSZM) 
0.0414  0.0332  0.0266  0.0297  0.0383  0.0203  

[0.0292, 0.0536] [0.0211, 0.0454] [0.0145, 0.0388] [0.0176, 0.0418] [0.0257, 0.0509] [0.0081, 0.0326] 
3.09×10-11 8.66×10-8 1.83×10-5 1.61×10-6 2.68×10-9 0.0012 

Zone Entropy (GLSZM) 
-0.0421  -0.0375  -0.0232  -0.0294  -0.0517  0.0092 

[-0.0562, -0.028] [-0.0516, -0.0234] [-0.0373, -0.0091] [-0.0434, -0.0153] [-0.0663, -0.0372] [-0.0051, 0.0234] 
5.22×10-9 1.78×10-7 0.0013 4.17×10-5 3.72×10-12 0.2067 
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Low Grey Level Zone Emphasis 
(GLSZM) 

0.059  0.0558  0.0361  0.0341  0.0615  -0.0129 
[0.0448, 0.0731] [0.0418, 0.0699] [0.022, 0.0502] [0.02, 0.0481] [0.0469, 0.0761] [-0.0272, 0.0013] 

2.85×10-16 7.46×10-15 5.3×10-7 1.98×10-6 1.48×10-16 0.0741 

High Grey Level Zone Emphasis 
(GLSZM) 

-0.0713  -0.0673  -0.0412  -0.0436  -0.0633  0.0168  
[-0.0854, -0.0573] [-0.0813, -0.0533] [-0.0553, -0.0272] [-0.0576, -0.0296] [-0.0778, -0.0488] [0.0026, 0.0309] 

3.13×10-23 5.2×10-21 9.05×10-9 1.05×10-9 1.48×10-17 0.0204 

Small Area Low Grey Level 
Emphasis (GLSZM) 

0.0516  0.0477  0.0304  0.0327  0.0573  -0.0135 
[0.0374, 0.0658] [0.0335, 0.0618] [0.0162, 0.0445] [0.0187, 0.0469] [0.0426, 0.0719] [-0.0278, 0.0007] 

1.03×10-12 3.93×10-11 2.66×10-5 5.36×10-6 1.91×10-14 0.0629 

Small Area High Grey Level 
Emphasis (GLSZM) 

-0.0702  -0.0653  -0.0414  -0.0434  -0.0598  0.0164  
[-0.0842, -0.0561] [-0.0793, -0.0513] [-0.0554, -0.0273] [-0.0574, -0.0294] [-0.0743, -0.0453] [0.0022, 0.0305] 

1.51×10-22 7.09×10-20 7.9×10-9 1.2×10-9 7.61×10-16 0.0234 

Large Area Low Grey Level 
Emphasis (GLSZM) 

0.0462  0.0399  0.0264  0.0331  0.0522  0.0217  
[0.0322, 0.0601] [0.026, 0.0538] [0.0125, 0.0403] [0.0192, 0.047] [0.0378, 0.0666] [0.0077, 0.0358] 

8.64×10-11 1.83×10-8 0.0002 2.85×10-6 1.23×10-12 0.0024 

Large Area High Grey Level 
Emphasis (GLSZM) 

-0.0118 -0.0158  -0.0048 -0.0035 -0.0143  0.0171  
[-0.0243, 0.0006] [-0.0282, -0.0034] [-0.0173, 0.0077] [-0.0159, 0.0089] [-0.0272, -0.0015] [0.0046, 0.0296] 

0.0626 0.0126 0.4495 0.5841 0.0291 0.0076 

Short Run Emphasis (GLRLM) 
-0.0139  -0.0117 -0.0086 -0.0084 -0.0136 -0.0036 

[-0.0274, -0.0005] [-0.0251, 0.0017] [-0.022, 0.0048] [-0.0218, 0.005] [-0.0275, 0.0004] [-0.0171, 0.0099] 
0.0428 0.0875 0.2097 0.2178 0.056 0.603 

Long Run Emphasis (GLRLM) 
0.0177  0.0134  0.0113 0.0133  0.0142  0.0086 

[0.0045, 0.0309] [0.0002, 0.0265] [-0.0019, 0.0245] [0.0002, 0.0264] [0.0006, 0.0279] [-0.0047, 0.0219] 
0.0086 0.0462 0.0931 0.047 0.0408 0.2041 

Grey Level Non Uniformity 
(GLRLM) 

0.0485  0.0373  0.0317  0.0382  0.0346  0.0265  
[0.0374, 0.0596] [0.0262, 0.0484] [0.0205, 0.0428] [0.0271, 0.0492] [0.0231, 0.0461] [0.0153, 0.0377] 

1.38×10-17 4.23×10-11 2.39×10-8 1.39×10-11 3.7×10-9 3.67×10-6 

Run Length Non Uniformity 
(GLRLM) 

0.017  0.0096 0.0153  0.0159  0.0093 0.0229  
[0.0036, 0.0304] [-0.0038, 0.0229] [0.0019, 0.0286] [0.0026, 0.0292] [-0.0045, 0.0231] [0.0095, 0.0364] 

0.0128 0.1594 0.0249 0.0191 0.1874 0.0008 

Run Length Non Uniformity 
Normalized (GLRLM) 

-0.0151  -0.0129 -0.0092 -0.0089 -0.0134 -0.0029 
[-0.0286, -0.0015] [-0.0264, 0.0006] [-0.0227, 0.0043] [-0.0223, 0.0046] [-0.0274, 0.0005] [-0.0165, 0.0107] 

0.0291 0.0602 0.1802 0.1953 0.0594 0.6732 
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Run Percentage (GLRLM) 
-0.0172  -0.0141  -0.0108 -0.0112 -0.0148  -0.0044 

[-0.0306, -0.0038] [-0.0275, -0.0008] [-0.0241, 0.0026] [-0.0244, 0.0021] [-0.0286, -0.001] [-0.0178, 0.0091] 
0.0116 0.0371 0.1133 0.0996 0.036 0.5238 

Grey Level Variance (GLRLM) 
-0.0416  -0.0388  -0.021  -0.0281  -0.0309  0.0089 

[-0.0558, -0.0274] [-0.053, -0.0247] [-0.0352, -0.0069] [-0.0422, -0.014] [-0.0456, -0.0163] [-0.0054, 0.0231] 
9.29×10-9 7.09×10-8 0.0036 9.53×10-5 3.49×10-5 0.2232 

Run Variance (GLRLM) 
0.0195  0.0149  0.0127 0.0142  0.0133 0.009 

[0.0064, 0.0326] [0.0019, 0.028] [-0.0004, 0.0258] [0.0012, 0.0272] [-0.0003, 0.0268] [-0.0042, 0.0222] 
0.0036 0.025 0.0565 0.0323 0.0546 0.1793 

Run Entropy (GLRLM) 
-0.0195  -0.0187  -0.0085 -0.0152  -0.0191  0.0154  

[-0.0326, -0.0065] [-0.0317, -0.0057] [-0.0215, 0.0045] [-0.0281, -0.0022] [-0.0325, -0.0056] [0.0023, 0.0285] 
0.0034 0.0048 0.2012 0.0217 0.0055 0.0211 

Low Grey Level Run Emphasis 
(GLRLM) 

0.0567  0.0553  0.0339  0.0311  0.0601  0.0042 
[0.0427, 0.0707] [0.0414, 0.0693] [0.02, 0.0479] [0.0172, 0.0451] [0.0457, 0.0746] [-0.0099, 0.0183] 

1.98×10-15 7.16×10-15 1.92×10-6 1.16×10-5 3.66×10-16 0.5603 

High Grey Level Run Emphasis 
(GLRLM) 

-0.0756  -0.0729  -0.0444  -0.043  -0.0692  0.0113 
[-0.0895, -0.0618] [-0.0868, -0.0591] [-0.0583, -0.0305] [-0.0569, -0.0292] [-0.0836, -0.0549] [-0.0027, 0.0253] 

1.48×10-26 5.35×10-25 3.67×10-10 1.05×10-9 3.51×10-21 0.1134 

Short Run Low Grey Level 
Emphasis (GLRLM) 

0.0543  0.0536  0.033  0.0285  0.0583  0.0019 
[0.0404, 0.0682] [0.0397, 0.0675] [0.0191, 0.047] [0.0147, 0.0424] [0.0439, 0.0727] [-0.0121, 0.0159] 

2.34×10-14 3.86×10-14 3.32×10-6 5.51×10-5 2.11×10-15 0.7914 

Short Run High Grey Level 
Emphasis (GLRLM) 

-0.0733  -0.0703  -0.0433  -0.0418  -0.0666  0.0104 
[-0.0873, -0.0594] [-0.0842, -0.0564] [-0.0573, -0.0293] [-0.0558, -0.0279] [-0.0811, -0.0522] [-0.0037, 0.0245] 

9.99×10-25 5.18×10-23 1.28×10-9 3.9×10-9 1.73×10-19 0.1492 

Long Run Low Grey Level 
Emphasis (GLRLM) 

0.0523  0.0474  0.0307  0.034  0.053  0.0099 
[0.0383, 0.0664] [0.0335, 0.0614] [0.0167, 0.0447] [0.0201, 0.048] [0.0385, 0.0675] [-0.0042, 0.024] 

2.78×10-13 2.97×10-11 1.74×10-5 1.77×10-6 8.25×10-13 0.1695 

Long Run High Grey Level 
Emphasis (GLRLM) 

-0.0526  -0.0521  -0.0298  -0.0295  -0.0503  0.0129 
[-0.066, -0.0391] [-0.0655, -0.0388] [-0.0432, -0.0164] [-0.0429, -0.0162] [-0.0642, -0.0364] [-0.0006, 0.0264] 

1.7×10-14 2.11×10-14 1.35×10-5 1.44×10-5 1.18×10-12 0.0613 

Coarseness (NGTDM) 
-0.031  -0.0261  -0.0241  -0.0172  -0.0168  -0.0175  

[-0.0432, -0.0188] [-0.0383, -0.014] [-0.0362, -0.0119] [-0.0293, -0.0051] [-0.0294, -0.0042] [-0.0298, -0.0053] 
6.34×10-7 2.48×10-5 0.0001 0.0054 0.0089 0.0051 



 149 

 Unprocessed red meat Beef Lamb Pork Processed meat Oily fish 

Contrast (NGTDM) 
0.0256  0.0231  0.0181  0.0153  0.0372  -0.0124 

[0.0115, 0.0398] [0.009, 0.0372] [0.004, 0.0322] [0.0013, 0.0294] [0.0226, 0.0518] [-0.0266, 0.0018] 
0.0004 0.0013 0.0119 0.0324 5.9×10-7 0.0868 

Busyness (NGTDM) 
0.0629  0.0537  0.0422  0.0414  0.069  0.0064 

[0.0489, 0.0768] [0.0399, 0.0676] [0.0283, 0.0561] [0.0275, 0.0552] [0.0547, 0.0834] [-0.0076, 0.0204] 
9.47×10-19 3.25×10-14 2.73×10-9 4.88×10-9 5.45×10-21 0.3726 

Complexity (NGTDM) 
-0.054  -0.0472  -0.0317  -0.0381  -0.0465  0.0093 

[-0.0683, -0.0398] [-0.0613, -0.033] [-0.0459, -0.0175] [-0.0522, -0.0239] [-0.0612, -0.0318] [-0.005, 0.0236] 
9.63×10-14 6.84×10-11 1.23×10-5 1.31×10-7 5.72×10-10 0.2029 

Strength (NGTDM) 
-0.0549  -0.0482  -0.0311  -0.0394  -0.045  0.0074 

[-0.0691, -0.0407] [-0.0623, -0.0341] [-0.0453, -0.017] [-0.0535, -0.0253] [-0.0596, -0.0303] [-0.0069, 0.0217] 
3.26×10-14 2.28×10-11 1.63×10-5 4.39×10-8 1.81×10-9 0.3089 

Small Dependence Emphasis 
(GLDM) 

-0.0422  -0.0342  -0.0296  -0.0276  -0.0353  -0.0082 
[-0.0557, -0.0287] [-0.0477, -0.0208] [-0.043, -0.0161] [-0.041, -0.0142] [-0.0492, -0.0214] [-0.0218, 0.0053] 

9.06×10-10 5.92×10-7 1.68×10-5 5.46×10-5 7×10-7 0.2349 

Large Dependence Emphasis 
(GLDM) 

0.0152  0.0127 0.0093 0.0097 0.013 0.0043 
[0.0019, 0.0286] [-0.0006, 0.0261] [-0.004, 0.0227] [-0.0036, 0.0229] [-0.0008, 0.0268] [-0.0092, 0.0177] 

0.0255 0.0606 0.1711 0.1545 0.0645 0.532 

Grey Level Non Uniformity 
(GLDM) 

0.0423  0.0324  0.0269  0.0337  0.0284  0.0214  
[0.0308, 0.0538] [0.0209, 0.0439] [0.0155, 0.0384] [0.0222, 0.0451] [0.0165, 0.0403] [0.0098, 0.033] 

6.03×10-13 3.11×10-8 4.34×10-6 8.11×10-9 2.85×10-6 0.0003 

Dependence Non Uniformity 
(GLDM) 

0.0313  0.0213  0.0248  0.0251  0.0221  0.0267  
[0.02, 0.0427] [0.01, 0.0326] [0.0135, 0.0361] [0.0138, 0.0363] [0.0104, 0.0338] [0.0153, 0.0381] 

5.65×10-8 0.0002 1.63×10-5 1.24×10-5 0.0002 4.32×10-6 

Dependence Non Uniformity 
Normalized (GLDM) 

-0.0098 -0.0082 -0.0053 -0.0067 -0.0036 -0.0048 
[-0.0237, 0.004] [-0.022, 0.0056] [-0.0191, 0.0085] [-0.0205, 0.007] [-0.0179, 0.0108] [-0.0187, 0.0091] 

0.165 0.2424 0.4514 0.3387 0.6262 0.4968 

Grey Level Variance (GLDM) 
-0.0346  -0.0321  -0.0178  -0.0233  -0.0244  0.0079 

[-0.0488, -0.0204] [-0.0463, -0.018] [-0.032, -0.0037] [-0.0374, -0.0092] [-0.0391, -0.0097] [-0.0064, 0.0222] 
1.75×10-6 8.45×10-6 0.0137 0.0012 0.0011 0.2776 

Dependence Variance (GLDM) 
0.0074 0.0064 0.0047 0.0041 0.0025 0.0039 

[-0.0064, 0.0212] [-0.0074, 0.0201] [-0.0091, 0.0184] [-0.0096, 0.0178] [-0.0118, 0.0167] [-0.01, 0.0177] 
0.2908 0.3647 0.5062 0.5573 0.7314 0.5831 
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Dependence Entropy (GLDM) 
-0.0143  -0.0102 -0.008 -0.0142  -0.0151  0.0115 

[-0.0281, -0.0005] [-0.024, 0.0036] [-0.0218, 0.0057] [-0.028, -0.0005] [-0.0293, -0.0008] [-0.0024, 0.0254] 
0.0427 0.1459 0.2526 0.0419 0.0385 0.1037 

Low Grey Level Emphasis 
(GLDM) 

0.0565  0.0546  0.0335  0.0323  0.0591  0.0059 
[0.0426, 0.0705] [0.0407, 0.0685] [0.0195, 0.0474] [0.0184, 0.0462] [0.0447, 0.0735] [-0.0082, 0.0199] 

2.27×10-15 1.49×10-14 2.61×10-6 5.31×10-6 1.02×10-15 0.4136 

High Grey Level Emphasis 
(GLDM) 

-0.0763  -0.0731  -0.045  -0.0439  -0.0701  0.0104 
[-0.0901, -0.0624] [-0.0869, -0.0593] [-0.0588, -0.0311] [-0.0577, -0.0301] [-0.0844, -0.0558] [-0.0035, 0.0244] 

4.86×10-27 3.84×10-25 2.08×10-10 4.54×10-10 9.82×10-22 0.1429 

Small Dependence Low Grey 
Level Emphasis (GLDM) 

0.0412  0.0417  0.0234  0.0223  0.0432  -0.013 
[0.0274, 0.0549] [0.0281, 0.0554] [0.0097, 0.0371] [0.0087, 0.036] [0.029, 0.0574] [-0.0268, 0.0008] 

4.27×10-9 2.2×10-9 0.0008 0.0014 2.44×10-9 0.0652 

Small Dependence High Grey 
Level Emphasis (GLDM) 

-0.0673  -0.0604  -0.041  -0.043  -0.0572  0.0058 
[-0.0814, -0.0532] [-0.0745, -0.0464] [-0.0551, -0.027] [-0.057, -0.029] [-0.0717, -0.0427] [-0.0084, 0.02] 

7.74×10-21 3.08×10-17 1.1×10-8 1.69×10-9 1.31×10-14 0.4222 

Large Dependence Low Grey 
Level Emphasis (GLDM) 

0.0555  0.0514  0.0319  0.0355  0.0547  0.008 
[0.0415, 0.0695] [0.0374, 0.0653] [0.0179, 0.0459] [0.0216, 0.0494] [0.0402, 0.0691] [-0.0061, 0.0221] 

8.06×10-15 5.36×10-13 7.73×10-6 5.93×10-7 1.31×10-13 0.2651 

Large Dependence High Grey 
Level Emphasis (GLDM) 

-0.0587  -0.0569  -0.034  -0.0343  -0.0545  0.0102 
[-0.0724, -0.0451] [-0.0705, -0.0434] [-0.0476, -0.0204] [-0.0478, -0.0207] [-0.0686, -0.0405] [-0.0035, 0.0239] 

2.92×10-17 1.99×10-16 9.87×10-7 7.1×10-7 3.14×10-14 0.1433 
Table 6.17. Each cell represents a separate model, adjusted for: age, sex, social deprivation, educational level, smoking, alcohol intake, exercise level. 

Results are degree of change in radiomics shape feature per 100g increase in daily meat/fish consumption with corresponding 95% confidence intervals and 

p-values. First, second, and third row for every CMR measures corresponds to beta coefficient, 95% confidence interval and p-value, respectively. Bonferroni 

adjusted significance threshold p-value =0.0001 (corrected for 432 comparisons). Cardiovascular magnetic resonance: CMR; GLCM: grey level co-

occurrence matrix; GLDM: grey level dependence matrix; GLRLM: grey level run length matrix; GLSZM: grey level size zone matrix; NGTDM: neighboring 

grey tone difference matrix; LV: left ventricle. 
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6.5 Summary of findings 

In this study of 19,408 UK Biobank participants, higher intake or red and processed meat 

consumption was associated with poorer cardiovascular health, regarding both measures of arterial 

health and ventricular structure and function. In contrast, greater consumption of oily fish was 

associated with a healthier cardiovascular phenotype.  

 

Specifically, higher red and processed meat consumption was associated with smaller ventricular 

cavity volumes with poorer myocardial function (lower stroke volume) and lower arterial compliance 

(higher ASI, greater interval change in ASI, lower aortic distensibility). Conversely, higher 

consumption of oily fish was associated with larger ventricular volumes with better function (higher 

stroke volumes) and better arterial health (lower ASI, smaller interval increase in ASI, higher aortic 

compliance). There was evidence that adverse cardiometabolic alterations may be a mediator of the 

associations between unprocessed red meat and adverse ventricular phenotypes. However, these 

factors did not appear important for any other associations.  

 

The radiomics analysis demonstrated distinct ventricular geometry and LV myocardial signal 

intensity patterns associated with the different dietary exposures. Higher red and processed meat 

consumption were associated with smaller and more elongated ventricles, whereas greater oily fish 

consumption was associated with larger and more spherical ventricles. Greater red and processed 

meat intake were also associated with lower average signal intensity levels in the LV myocardium, 

less variation in signal intensity levels, and all together a darker more homogeneous signal intensity 

pattern. Higher oily fish consumption was associated with a brighter LV myocardium, with higher 

average signal intensity levels, more variation and randomness in signal intensity levels, and greater 

heterogeneity in pattern of signal intensity levels. It thus appears that the fish and meat exposures are 

not only associated with differences in gross ventricular anatomy, but also differences at the 

myocardial level, which is detectable by radiomics analysis. 

 

6.6 Discussion 

6.6.1 Comparison with existing literature 

Our findings of the association of greater red and processed meat consumption with adverse 

cardiovascular phenotypes is consistent with epidemiologic studies linking these dietary habits to 

poorer clinical cardiovascular outcomes. The specific association of red and processed meat intake 

with CMR phenotypes has not been previously studied. Two studies, both from the MESA cohort, 

have previously considered the association of certain diets on CMR phenotypes. These studies report 

association of CMR ventricular with a Mediterranean diet205 and the Dietary Approaches to Stop 
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Hypertension (DASH) diet206. Both dietary habits are reported to associate with healthier CMR 

phenotypes. In common with our findings, this comprised of larger ventricular volumes, higher LV 

mass, and higher stroke volume. We also document association of greater red and processed meat 

consumption with poorer arterial health. Our findings are consistent with those of Haring et al.193, 

who also report association of greater red and processed meat intake with greater intima medial 

thickness and atherosclerosis burden on carotid ultrasound. Our analysis with CMR radiomics 

demonstrates the feasibility of this technique and, for the first time, its potential utility as a research 

tool for deeper cardiovascular phenotyping. Our findings provide corroborating evidence for existing 

research and provide new and more detailed information on associations with cardiovascular 

phenotypes. 

 

6.6.2 Potential biological mechanisms 

Higher intake of red and processed meat has been linked to a poorer cardiometabolic profile, 

specifically adverse lipid profiles198, higher blood pressure197, poorer glycaemic control207, and 

adverse body composition208. As such, it has been suggested that the association of these dietary 

habits with poorer cardiovascular health is mediated by these factors. In our analysis, we found that 

the associations of red meat with ventricular metrics were significantly attenuated with inclusion of 

these exposures. However, associations of red meat with arterial stiffness remained robust, as did all 

phenotypic associations for processed meat and oily fish. This suggests the influence of multiple 

disease mechanisms, which likely vary by the aspect of cardiovascular health impacted (ventricles vs 

arteries) and the meat type (red meat vs unprocessed meat). Indeed, recent evidence has emerged in 

support of a role for the gut microbiome dependent trimethylamine N-oxide (TMAO) pathway. Red 

meat, which has high levels of carnitine, has been demonstrated to increase blood and urine levels of 

TMAO, through provision of the precursors, L-carnitine, and reduced renal excretion of TMAO209. 

TMAO has, in turn, been mechanistically associated with atherosclerotic disease199. Our findings 

support exploration of novel disease pathways that may link dietary habits and cardiovascular health. 

 

The healthy pattern of associations observed between greater oily fish consumption and CMR metrics 

is consistent with previous studies of this dietary exposure. There is evidence to support the role 

of  eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found in oily fish, as beneficial 

compounds for cardiac and vascular function210. The cardioprotective effect of EPA and DHA is most 

likely due to beneficial modification of multiple known vascular risk factors, such as serum lipids, 

blood pressure, heart rate, platelet aggregation, endothelial function, and inflammatory pathways211. 
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6.7 Critical appraisal of the results 

In this study we demonstrate novel associations of higher meat and fish intake with adverse CMR 

phenotypes. Our findings are complementary and additive to previous work linking these dietary 

exposures to poorer clinical outcomes. The use of CMR metrics for assessment of cardiovascular 

health removes subjectivity of clinical assessments and potential misdiagnoses. CMR in the UK 

Biobank is performed in a highly standardised manner; as such, biases related to image acquisition 

and analysis are minimised. Capturing dietary information is challenging and may be hampered by 

recall bias. The UK Biobank dietary health questionnaire has demonstrable validity with evidence of 

good longitudinal tracking in previous work. However, the dietary information collected is not 

particularly extensive and, importantly, does not permit calculation of estimated total energy intake, 

which would ordinarily be included as a covariate in modelling to extract more specific nutritional 

effects.212 Furthermore, there is potential confounding of the meat/fish associations by other dietary 

factors, as intakes of foods and nutrients are highly correlated. For example, individuals who eat a lot 

of oily fish are likely to have intakes of antioxidant-rich fruit and vegetables, which are associated 

with cardiovascular risk213; furthermore, macronutrient intake has previously been shown to 

associated with cardiovascular disease in the UK Biobank214. Additionally, habitual diet is closely 

linked to deprivation and other key lifestyle behaviours, although we attempt to account for these 

factors in our analyses, such variables are extremely challenging to capture and express completely in 

a quantitative manner, so an element of residual confounding likely remains. We took dietary 

variables as reported at baseline and CMR measures from the imaging visit (several years later), so 

there is temporal separation of our exposure and outcome. However, it was not possible, with the data 

available, to examine in detail the effect of change in diet during this time. It is possible that the 

observed associations are causal (this would indeed be consistent with prior work and biologically 

plausible). However, we should also consider potential confounding from unmeasured and 

imperfectly measured confounders (other dietary habits, energy intake, deprivation). These 

considerations reflect the challenging nature of nutritional epidemiology and limitations of evaluating 

such relationships using observational data from a secondary source. 

 

6.8 Conclusions 

Higher consumption of red and processed meat is associated with unhealthy cardiovascular 

phenotypes as characterised by CMR measures of ventricular structure and function, novel radiomics 

features, and arterial compliance metrics. Cardiometabolic morbidities appeared to have a mechanistic 

role in the associations of red meat with ventricular phenotypes, but less so for other associations 

suggesting importance of alternative mechanism for these relationships. Our findings support previous 

clinical associations and provide greater insight into potential mechanisms of dietary impact on 

cardiovascular health.  
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7 Cardiovascular phenotypes and incident coronavirus disease 2019 

7.1 Abstract 

Objectives: Existing work indicates persistent cardiovascular involvement after recovery from 

SARS-CoV-2 infection. However, causal inference is severely limited by the absence of baseline data. 

This is because we cannot know for certain whether CMR abnormalities identified after infection are 

a result of COVID-19 or were present prior to the occurrence of infection. To investigate this 

possibility, we evaluated the association of CMR metrics from pre-infection imaging with incident 

COVID-19 in the UK Biobank. 

 

Methods and Results: The study sample comprised participants with CMR and SARS-CoV-2 testing 

(n=310). Median age was 63.8 [57.5, 72.1] years; 51.0% (n = 158) were male. The following CMR 

metrics were included: LV and RV volumes, LV and RV ejection fractions, and LV and RV stroke 

volumes, LV mass, global longitudinal strain (GLS), global circumferential strain (GCS), global 

radial strain (GRS), myocardial native T1, AD, ASI. COVID-19 status was ascertained from linkages 

with Public Health England testing data. Co-morbidities were ascertained from self-report and HES. 

Critical care requirement and mortality were from HES and death register records. 70 participants had 

a positive test result, 78.7% (n = 244) were tested in hospital, 3.5% (n = 11) required critical care 

admission, and 6.1% (n = 19) died. In fully adjusted multivariable logistic regression models 

(covariates: age, sex, ethnicity, deprivation, body mass index, smoking, diabetes, hypertension, high 

cholesterol, prior AMI), we observed association of smaller LV/RV end-diastolic volumes, smaller 

LV stroke volume, and poorer GLS with significantly higher odds of COVID-19 (positive test result). 

 

Conclusions: Our findings demonstrate association of adverse pre-infection CMR phenotypes with 

greater odds of incident COVID-19. These relationships appeared significant after adjustment for 

demographic and clinical confounders. Thus, demonstrating the high risk of residual confounding and 

reverse causation in studies drawing conclusions from imaging performed after infection. It is likely 

that existing reports of cardiovascular involvement after COVID-19 may, at least partly, reflect pre-

existing cardiac status rather than COVID-19 induced alterations.  
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7.2 Background 

The SARS-CoV-2 infection, which causes COVID-19, is increasingly recognised as a multi-system 

disease215. Cardiovascular involvement in association with COVID-19 has been reported both in the 

acute and post-acute phases of the illness. 

 

The profound systemic inflammatory activation in acute COVID-19 has been hypothesized to lead to 

endothelial inflammation, myocarditis, and cardiac arrhythmias216–219. In addition, the associated 

hypercoagulable state increases the risk of both venous and arterial thrombi and related presentations 

such as pulmonary emboli, as well as thromboembolic myocardial and cerebral infarctions220. Whilst 

cardiovascular involvement in acute COVID-19 often reflects the severity of systemic and pulmonary 

disease, it is also an independent risk factor for poorer clinical endpoints. Indeed, patients with 

myocardial injury during acute COVID-19 have been shown to have higher risk of death independent 

of factors such as acute respiratory distress syndrome221,222. Furthermore, there are selected case 

reports of primary cardiac presentations of COVID-19 without pulmonary involvement 223–225. These 

observations have led to speculations of potential cardio-specific actions of SARS-CoV-2. Limited in 

vitro studies are supportive of these suppositions, demonstrating the ability of SARS-CoV-2 to enter 

and induce cytotoxicity in human cardiomyocytes226. Similarly, autopsy studies demonstrate evidence 

of direct cardiotoxicity in patients with COVID-19227. 

 

Growing reports indicate that a subset of patients experience a more prolonged illness after apparent 

recovery from the acute phase of SARS-CoV-2 infection, including persistence of potentially cardiac 

symptoms228–230. In addition, CMR studies of individuals recovered from COVID-19 indicate possible 

sustained cardiovascular involvement231–234. However, the lack of baseline (pre-COVID-19) data 

severely limits any causal inference from these studies. Given the high burden of cardiovascular 

disease and vascular risk factors in patients with COVID-19, it is possible that the differences 

observed in the CMR metrics of these cohorts after recovery from COVID-19 is, at least partly, a 

reflection of their baseline cardiac status, rather than new changes occurring as a result of COVID-19. 

This distinction is clearly highly important for clinical decision making and public health planning. 

 

In this study, we investigated whether baseline CMR phenotypes were associated with subsequent 

COVID-19 in the subset of UK Biobank participants tested for SARS-CoV-2 infection. We 

hypothesised that poorer baseline CMR phenotypes would be associated with higher likelihood of 

SARS-CoV-2 infection. 
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7.3 Methods 

7.3.1 Study population 

In light of the COVID-19 pandemic, the UK Biobank established linkages with Public Health 

England enabling tracking of SARS-CoV-2 test results for all UK Biobank participants235. Thus, 

SARS-CoV-2 test results for participants could be linked to all the other demographic, clinical, and 

imaging available in the UK Biobank (as detailed in Section 2.1). In this study, we included all UK 

Biobank participants who were tested for SARS-CoV-2 (between 16th March 2020 to 22nd August 

2020) and who had CMR imaging. 

 

7.3.2 SARS-CoV-2 testing 

Real-time polymerase chain reaction (RT-PCR) assay antigen tests were used to detect SARS-CoV-2 

infection. In the majority of cases, the test sample was obtained from combined nose and throat 

swabs. Lower respiratory samples may have been used for patients in critical care. We considered 

samples labelled as “inpatient” to be from a hospital setting. Critical care admissions and deaths were 

defined based on HES and death register data. 

 

7.3.3 CMR imaging and analysis 

CMR was performed at the first UK Biobank imaging visit, an average of 3.0 years prior to SARS-

CoV-2 testing. Details of the UK Biobank CMR acquisition protocol is discussed in Section 2.1.6. 

LV/RV volumes, LV mass, and LV strain (by tissue tracking) were derived from analysis of short axis 

and long axis images using the automated segmentation tool from Circle Cardiovascular Imaging 

(Version 5.11, Circle Cardiovascular Imaging Inc., Calgary, Canada). Image analysis was performed 

blind to all participant details and all study contours were examined for accuracy by a single reader 

with manual correction of segmentation where necessary. In the UK Biobank, native T1 maps are 

acquired at a single mid-ventricular short axis level using Shortened Modified Look-Locker Inversion 

recovery technique (ShMOLLI, WIP780B) acquisitions. After excluding cases with poor quality maps 

or excess septal motion, T1 was measured from a manual septal contour extending to half of the 

anterior-septal wall and half of the inferior-septal wall. AD was derived using an automated quality-

controlled image analysis tool as detailed in Section 2.2.6.1. We limited analysis to AD 

measurements with detection probability >0.75. Thus, the following CMR metrics available were 

included in the analysis: LV and RV volumes in end-diastole and end-systole, LV and RV stroke 

volume, LV and RV ejection fraction, LV mass, mid-ventricular radial strain, mid-ventricular 

circumferential strain, global longitudinal strain (GLS), torsion, septal native T1, AD at the ascending 

and descending aorta. 
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7.3.4 Arterial stiffness index 

We included ASI as a measure of larger artery stiffness measured at the baseline visit58. ASI was 

derived from finger plethysmography measured with the PulseTrace PCA2 (CareFusion, USA) device 

according to a pre-defined protocol and is described in more detail in Section 2.2.6.2
70. We used a 

1·5× IQR rule to remove outliers from this variable, as previously published using this dataset59.  

 

7.3.5 Statistical analysis 

We used R Version 3.6.2 and RStudio Version 1.2.5019 for statistical analysis142,143. We used 

multivariable logistic regression models to estimate the association of each cardiovascular phenotype 

(exposure) with SARS-CoV-2 test result (binary outcome- positive/negative) whilst adjusting for age, 

sex, ethnicity, deprivation, BMI, smoking, diabetes, hypertension, high cholesterol, and prior AMI. 

Results are presented as odds ratios (ORs) with 95% CIs and p-values for positive SARS-CoV-2 test 

result per one unit increase in cardiovascular measure. In a sensitivity analysis, we restricted the 

analysis sample to individuals tested in a hospital setting. As the ASI was available in a larger sample, 

for this variable we were able to estimate the association of ASI with death and critical care admission 

separately within SARS-CoV-2 positive and negative cohorts. 

 

7.3.6 Ascertainment of covariates 

Age was taken as recorded at time of SARS-CoV-2 testing. Sex was taken as recorded at baseline 

recruitment. Ethnicity was classified into a binary variable of White and BAME (Black, Asian and 

minority ethnic) ethnicity based on self-report at baseline. Deprivation, smoking status, hypertension, 

diabetes, and high cholesterol were ascertained as detailed in Section 2.2.2 and Section 2.2.3. 

Previous AMI was ascertained from UK Biobank algorithmically defined health outcome data. 

 

7.4 Results 

7.4.1 Population characteristics 

There were 18,162 UK Biobank participants who had been tested for SARS-CoV-2 within the defined 

study period. From these, 315 participants also had prior CMR imaging and 310 had at least one 

analysable CMR metric. Thus, the analysis sample comprised 310 participants tested for SARS-CoV-

2 and with at least one analysable CMR measure (Figure 7.1, Table 7.1). Within the analysis sample, 

70 participants had a positive SARS-CoV-2 test result. The majority were tested in a hospital setting 

(78.7%, n=244), 3.5% (n=11) had requirement for critical care, and 6.1% (n=19) died. There were 

158 men (51.0%) and the median age was 63.8 [57·5, 72·1] years. On average, CMR imaging was 



 158 

performed 3.0 years prior to SARS-CoV-2 testing. The rates of smoking, diabetes, hypertension, high 

cholesterol, and previous AMI were 45.2%, 9.4%, 40.6%, 29.4%, and 3.5% respectively (Table 7.1).  

 

There were greater proportions of men (58.6%) and individuals from BAME backgrounds (10.0% vs 

3.3%) in the test positive compared to the test negative group (Table 7.1). There were greater rates of 

adverse outcomes in the SARS-CoV-2 positive group compared to those testing negative, with greater 

proportion of people requiring critical care admission (5·7% vs 2·9%) and higher proportion of deaths 

(11·4% vs 4·6%), but this was not statistically significant. 

 
Figure 7.1. Approach to selection of participants for inclusion in the analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. There were 310 participants with at least one analysable CMR measure, this included one 

participant with analysable native T1, but not volumetric images. AD: aortic distensibility; CMR: 

cardiovascular magnetic resonance; LV: left ventricle; RV: right ventricle; SARS-CoV-2: severe 

acute respiratory syndrome coronavirus 2. Reproduced from Raisi-Estabragh et al.236 
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Table 7.1. Baseline participant characteristics 

 
Whole sample 

n=310 
SARS-CoV-2 

negatives 
n=240 

SARS-CoV-2 
positives 

n=70 

p-value 
[test] 

Age 63.8 [57.5, 72.1] 65.1 [58.2, 72.1] 61.4 [55.5, 72.4] 0.154 [2] 
Sex (Male) 158 (51.0%) 117 (48.8%) 41 (58.6%) 0.190[3] 
White 295 (95.2%) 232 (96.7%) 63 (90.0%) 0.049 [3] 
BAME 15 (4.8%) 8 (3.3%) 7 (10.0%)  
Asian 8 (2.6%) 5 (2.1%) 3 (4.3%) 0.046 [4] 
Black 2 (0.6%)  2 (2.9%)  
Mixed 3 (1.0%) 2 (0.8%) 1 (1.4%)  
Other 2 (0.6%) 1 (0.4%) 1 (1.4%)  
Townsend 
deprivation score -2.5 [-3.8, 0.2] -2.5 [-3.8, 0.0] -2.4 [-4.1, 0.4] 0.960 [2] 
Smoking 
(current/previous) 140 (45.2%) 108 (45.0%) 32 (45.7%) 1.000 [3] 
BMI 27.4 (± 4.9) 27.3 (± 4.7) 27.6 (± 5.6) 0.629 [1] 
Diabetes 29 (9.4%) 24 (10.0%) 5 (7.1%) 0.641 [4] 
Hypertension 126 (40.6%) 101 (42.1%) 25 (35.7%) 0.414 [3] 
High cholesterol 91 (29.4%) 70 (29.2%) 21 (30.0%) 1.000 [3] 
Prior myocardial 
infarction 11 (3.5%) 10 (4.2%) 1 (1.4%) 0.466 [4] 
Tested in hospital 244 (78.7%) 194 (80.8%) 50 (71.4%) 0.127 [3] 
Critical care 
admission 11 (3.5%) 7 (2.9%) 4 (5.7%) 0.276 [4] 
Death 19 (6.1%) 11 (4.6%) 8 (11.4%) 0.069 [3] 

Table 7.1. [1] Welch Two Sample t-test (numeric data with unequal variances); [2] Wilcoxon rank 

sum test with continuity correction (numeric skewed); [3] Two-sample test for equality of proportions 

with continuity correction (where minimum count > 5); [4] Fisher's Exact Test for Count Data 

(where minimum count ≤ 5). Abbreviations: BAME: Black, Asian, and minority ethnic; BMI: body 

mass index; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2. 

 
Amongst those testing positive for SARS-CoV-2, those who required critical care admission had 

poorer overall cardiometabolic profile, greater levels of deprivation, and included a higher proportion 

of men and individuals from BAME backgrounds, compared to those who did not (Table 7.2). Those 

who died had poorer cardiometabolic profile and were older than those who survived (Table 7.2). 

Amongst individuals testing negative for SARS-CoV-2, we observed similar but less marked 

differences (Table 7.2). 
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Table 7.2. Baseline characteristics by mortality and critical care outcomes in SARS-CoV-2 positives and negatives 

Table 7.2. Green shading indicates p-value of difference between 0.1–0.05. Yellow shading indicated p-value of difference <0.05. *smoking indicated 

previous/current smoking. AMI: acute myocardial infarction; BAME: Black, Asian, and minority ethnic; BMI: body mass index; SARS-CoV-2: severe acute 

respiratory syndrome coronavirus 2. 

 SARS-CoV-2 positive (n= 70) SARS-CoV-2 negative (n= 240) 
 Alive 

n=62 
Dead 
n=8 

No critical care 
n=66 

Critical care 
n=4 

Alive 
n=229 

Dead 
n=11 

No critical care 
n=233 

Critical care 
n=7 

Age 60.4 [55.0, 67. 1] 78.0 [75.7, 81.0] 62.1 [55.5, 72.4] 59.6 [57.6, 64.0] 64.0 [58.0, 72.0] 71.2 [66.2, 75.1] 65.1 [58.1, 72.1] 66.5 [61.0, 71.8] 
Sex (Male) 35 (56.5%) 6 (75.0%) 37 (56.1%) 4 (100.0%) 111 (48.5%) 6 (54.5%) 111 (47.6%) 6 (85.7%) 
White 55 (88.7%) 8 (100.0%) 59 (89.4%) 4 (100.0%) 221 (96.5%) 11 (100.0%) 225 (96.6%) 7 (100.0%) 
BAME 7 (11.3%)  7 (10.6%)  8 (3.5%)  8 (3.4%)  
Asian 3 (4.8%)  3 (4.5%)  5 (2.2%)  5 (2.1%)  
Black 2 (3.2%)  2 (3.0%)      
Mixed 1 (1.6%)  1 (1.5%)  2 (0.9%)  2 (0.9%)  
Other 1 (1.6%)  1 (1.5%)  1 (0.4%)  1 (0.4%)  
Townsend score -2.2 [-4.0, 0.4] -3.6 [-4.2, -0.8] -2.4 [-4.2, 0.3] 0.2 [-3.3, 3. 8] -2.6 [-3.9, 0.2] -2.4 [-3. 7, -1.2] -2.5 [-3.8, 0.0] -2.6 [-3.1, 0.7] 
Smoking* 27 (43.5%) 5 (62.5%) 30 (45.5%) 2 (50.0%) 102 (44.5%) 6 (54.5%) 105 (45.1%) 3 (42.9%) 
BMI 27.4 (± 5.9) 29.3 (± 1. 9) 27.3 (± 5. 6) 32.9 (± 4.9) 27.3 (± 4.5) 27.5 (± 7.4) 27.2 (± 4.7) 28.5 (± 5. 0) 
Diabetes 4 (6.5%) 1 (12.5%) 4 (6.1%) 1 (25.0%) 23 (10.0%) 1 (9.1%) 23 (9.9%) 1 (14.3%) 
Hypertension 20 (32.3%) 5 (62.5%) 23 (34.8%) 2 (50.0%) 93 (40.6%) 8 (72.7%) 96 (41.2%) 5 (71.4%) 
High cholesterol 17 (27.4%) 4 (50.0%) 18 (27.3%) 3 (75.0%) 64 (27.9%) 6 (54.5%) 69 (29.6%) 1 (14.3%) 
Prior AMI 1 (1.6%)  1 (1.5%)  7 (3.1%) 3 (27.3%) 10 (4.3%)  
Tested in hospital 43 (69.4%) 7 (87.5%) 47 (71.2%) 3 (75.0%) 185 (80.8%) 9 (81.8%) 189 (81.1%) 5 (71.4%) 
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ASI was recorded for 167,423 participants at baseline. From these, 6,160 had SARS-CoV-2 testing 

within our defined study period, after outlier removal (n=94), 6,066 participants had analysable ASI 

and SARS-CoV-2 testing and are included in the analysis. Within this cohort, 667 participants tested 

positive, and 5,399 participants tested negative. The baseline characteristics are summarised in Table 

7.3. 

 
Table 7.3. Baseline population characteristics (arterial stiffness index set) 

 
Whole sample 

n=6,066 
SARS-CoV-2 

negatives 
n=5,399 

SARS-CoV-2 
positives 

n=667 

p-value [test] 

Age 70.9 [62.2, 75.7] 71.0 [62.8, 75.8] 68.1 [59.0, 75.1] 4.4x10-7 [2] 

Sex (Male) 2,947 (48.6%) 2,586 (47.9%) 361 (54.1%) 2.8x10-3 [3] 

White 5,357 (88.3%) 4,810 (89.1%) 547 (82.0%) 1.5x10-7 [4] 

BAME 660 (10.9%) 545 (10.1%) 115 (17.2%)  

Asian 288 (4.7%) 243 (4.5%) 45 (6.7%) 5.0x10-4 [4] 

Black 208 (3.4%) 162 (3.0%) 46 (6.9%)  

Chinese 15 (0.2%) 12 (0.2%) 3 (0.4%)  

Mixed 42 (0.7%) 38 (0.7%) 4 (0.6%)  

Other 156 (2.6%) 134 (2.5%) 22 (3.3%)  

Townsend deprivation score -1.4 [-3.2, 1.4] -1.5 [-3.2, 1.4] -0.8 [-3.0, 2.1] 1.0x10-3 [2] 

Smoking (current/previous) 2,946 (48.6%) 2,609 (48.3%) 337 (50.5%) 0.302 [3] 

BMI 28.3 (± 5.1) 28.2 (± 5.1) 28.7 (± 5.12) 0.023 [1] 

Diabetes 954 (15.7%) 817 (15.1%) 137 (20.5%) 3.7x10-4 [3] 

Hypertension 3,073 (50.7%) 2,731 (50.6%) 342 (51.3%) 0.767 [3] 

High cholesterol 2,253 (37.1%) 2,017 (37.4%) 236 (35.4%) 0.340 [3] 

Prior myocardial infarction 397 (6.5%) 348 (6.4%) 49 (7.3%) 0.421 [3] 

ASI (m/s) 9.3 (± 2.9) 9.3 (± 2.9) 9.2 (± 2.7) 0.348 [1] 

Testing in hospital 4,546 (74.9%) 4,128 (76.5%) 418 (62.7%) 1.3x10-14 [3] 

Critical care admission 149 (2.5%) 97 (1.8%) 52 (7.8%) 1.3x10-20 [3] 

Death 347 (5.7%) 217 (4.0%) 130 (19.5%) 1.3x10-58 [3] 

Table 7.3. [1] Welch Two Sample t-test (numeric data with unequal variances); [2] Wilcoxon rank 

sum test with continuity correction (numeric skewed); [3] Two-sample test for equality of proportions 

with continuity correction (where minimum count > 5); [4] Fisher's Exact Test for Count Data 

(where minimum count ≤5). BAME: Black, Asian, and minority ethnic; BMI: body mass index; SARS-

CoV-2: severe acute respiratory syndrome coronavirus 2 
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7.4.2 Baseline cardiovascular phenotypes 

Participants with a positive SARS-CoV-2 test had, on average, smaller LV end-diastolic volumes, 

lower stroke volume, lower ejection fraction, and lower LV mass, compared to those testing negative 

(Table 7.4, Figure 7.2). A similar pattern was observed in RV metrics of test positives and test 

negatives (Figure 7.2). Compared to test negatives, test positives also had, on average, poorer LV 

function by strain metrics, higher average native T1, and greater arterial compliance (higher aortic 

distensibility, lower ASI), however, there was significant overlap of distributions for these variables 

(Figure 7.2, Table 7.3, Table 7.4). Amongst participants with a positive SARS-CoV-2 test result, 

those who died had significantly lower LV stroke volume, worse global longitudinal strain, and 

poorer arterial compliance (lower AD, higher ASI), compared to those who survived (Table 7.5). 

Within the test negative group, there were no significant differences in the LV metrics of those who 

died and those who survived, however those who died had higher ASI. 

 
Table 7.4. Cardiovascular magnetic resonance metrics stratified by SARS-CoV-2 test result 

Table 7.4. [1] Welch Two Sample t-test (numeric data with unequal variances); [2] Wilcoxon rank 

sum test with continuity correction (numeric skewed). Abbreviations: AA: ascending aorta; AoD: 

aortic distensibility; LVEDV: left ventricular endo-diastolic volume; LVEF: left ventricular ejection 

fraction; LVESV: left ventricular endo-systolic volume; LVSV: left ventricular stroke volume; GLS: 

global longitudinal strain; MCS: circumferential strain at the mid short axis level; MRS: radial strain 

at the mid short axis level; PDA: proximal descending aorta; RVEDV: right ventricular endo-

diastolic volume; RVEF: right ventricular ejection fraction; RVESV: right ventricular end-systolic 

volume; RVSV: right ventricular stroke volume; SARS-CoV-2: severe acute respiratory syndrome 

coronavirus 2. 

 Whole sample 
n=310 

COVID-19 negatives 
n=240 

COVID-19 positives 
n=70 

p-value 
[test] 

LVEDVi (ml/m2) 80.0 (± 14.2) 80.8 (± 14.3) 77.1 (± 13.2) 0.046 [1] 

LVESVi (ml/m2) 31.5 (± 8.3) 31.6 (± 8.4) 31.4 (± 8.1) 0.863 [1] 

LVSVi (ml/m2) 48.5 (± 9.3) 49.2 (± 9.4) 45.7 (± 8.4) 0.004 [1] 

LVEF (%) 60.8 (± 6.5) 61.1 (± 6.4) 59.6 (± 6.5) 0.083 [1] 

LVMi (g/m2) 46.7 (± 8.8) 46.9 (± 8.8) 45.7 (± 8.4) 0.318 [1] 

RVEDVi (ml/m2) 79.2 (± 15.5) 79.9 (± 15.6) 76.9 (± 15.0) 0.148 [1] 

RVESVi (ml/m2) 30.8 (± 8.4) 31.0 (± 8.5) 30.0 (± 8.1) 0.393 [1] 

RVSVi (ml/m2) 48.4 (± 10.4) 48.9 (± 10.5) 46.8 (± 9.8) 0.133 [1] 

RVEF (%) 61.3 (± 6.6) 61.3 (± 6.8) 61.1 (± 6.2) 0.808 [1] 

Native T1 (ms) 923.2 (± 39.1) 922.9 (± 40.1) 924.2 (± 35.9) 0.808 [1] 

MRS (%) 35.5 (± 9.1) 35.6 (± 9.3) 34.9 (± 8.5) 0.558 [1] 

MCS (%) -20.0 (± 3.2) -20.1 (± 3.2) -19.8 (± 3.1) 0.562 [1] 

GLS (%) -15.4 (± 2.6) -15.5 (± 2.5) -15.0 (± 2.6) 0.206 [1] 

Torsion (degrees) 0.9 (± 0.8) 0.9 (± 0.7) 0.8 (± 1.0) 0.437 [1] 

AA AoD (× 10-3 mmHg-1) 1.4 [0.8, 2.3] 1.3 [0.8, 2.3] 1.4 [0.9, 2.3] 0.665 [2] 

PDA AoD (× 10-3 mmHg-1) 2.2 [1.7, 3.1] 2.2 [1.7, 3.1] 2.4 [1.6, 3.2] 0.511 [2] 
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Figure 7.2. Summary of Cardiovascular measures stratified by SARS-CoV-2 test result 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Green and red bars indicate SARS-CoV-2 test negative and positive, respectively. AA 

AoD: aortic distensibility at the ascending aorta; ASI: arterial stiffness index; CMR: cardiovascular 

magnetic resonance;; ED: end-diastole; ES: end-systole; GLS: global longitudinal strain; MCS: 

circumferential strain at the mid short axis level; MRS: radial strain at the mid short axis level; LV: 

left ventricle; PDA AoD: aortic distensibility at the proximal descending aorta; SARS-CoV-2 : severe 

acute respiratory syndrome coronavirus 2. Intervals for AoD show the 95% confidence interval for 

the median, all others are 95% confidence interval for the mean. 
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 Table 7.5. Cardiovascular phenotypes by mortality and critical care outcome in SARS-CoV-2 positives and negatives 

Table 7.5. Green shading indicates p-value of difference between 0.1–0.05. Yellow shading indicated p-value of difference <0.05 AA: ascending aorta; AoD: aortic 

distensibility; LVEDV: left ventricular endo-diastolic volume; LVEF: left ventricular ejection fraction; LVESV: left ventricular endo-systolic volume; LVSV: left ventricular 

stroke volume; GLS: global longitudinal strain; MCS: circumferential strain at the mid short axis level; MRS: radial strain at the mid short axis level; PDA: proximal 

descending aorta; RVEDV: right ventricular endo-diastolic volume; RVEF: right ventricular ejection fraction; RVESV: right ventricular end-systolic volume; RVSV: right 

ventricular stroke volume; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2. shading indicates comparison between dead vs alive and critical care vs no 

critical care within the test positive and test negative cohorts. 

 COVID-19 positive (n= 70) COVID-19 negative (n= 240) 

 Alive 
n=62 

Dead 
n=8 

No critical care 
n=66 

Critical care 
n=4 

Alive 
n=229 

Dead 
n=11 

No critical care 
n=233 

Critical care 
n=7 

LVEDVi (ml/m2) 77.5 (± 13.2) 73.2 (± 13.3) 76.8 (± 13.4) 81.5 (± 8.1) 81.0 (± 14.4) 76.2 (± 14.1) 80.6 (± 13.8) 89.4 (± 26.4) 

LVESVi (ml/m2) 31.1 (± 7.8) 33.9 (± 10.4) 31.3 (± 8.2) 32.3 (± 6.0) 31.6 (± 8.2) 31.0 (± 12.4) 31.5 (± 8.2) 33.3 (± 14.0) 

LVSVi (ml/m2) 46.5 (± 8.3) 39.3 (± 6.5) 45.5 (± 8.4) 49.3 (± 9.3) 49.4 (± 9.5) 45.2 (± 7.7) 49.0 (± 9.2) 56.1 (± 15.9) 

LVEF (%) 60.2 (± 6.2) 54.3 (± 7.1) 59.5 (± 6.5) 60.2 (± 7.7) 61.2 (± 6.2) 60.4 (± 10.1) 61.1 (± 6.4) 63.0 (± 9.1) 

LVMi (g/m2) 45.9 (± 8.4) 44.5 (± 9.2) 45.3 (± 8.4) 53.3 (± 5.9) 46.8 (± 8.6) 50.2 (± 13.3) 46.6 (± 8.7) 55.9 (± 10.3) 

RVEDVi (ml/m2) 77.5 (± 15.0) 71.5 (± 15.2) 76.9 (± 15.2) 76.7 (± 13.4) 80.1 (± 15.7) 74.3 (± 12.2) 79.8 (± 15.3) 83.2 (± 24.8) 

RVESVi (ml/m2) 30.1 (± 8.0) 29.3 (± 9.3) 29.9 (± 8.2) 32.5 (± 6.0) 31.1 (± 8.5) 28.5 (± 8.9) 30.8 (± 8.2) 36.0 (± 15.8) 

RVSVi (ml/m2) 47.4 (± 10.0) 42.2 (± 7.1) 47.0 (± 10.0) 44.1 (± 7.4) 49.0 (± 10.6) 45.7 (± 8.6) 48.9 (± 10.5) 47.2 (± 11.5) 

RVEF (%) 61.3 (± 6.3) 59.5 (± 5.1) 61.3 (± 6.4) 57.6 (± 0.6) 61.3 (± 6.7) 61.9 (± 9.0) 61.4 (± 6.7) 57.5 (± 6.5) 

T1 (ms) 924.8 (± 37.0) 919.0 (± 26.4) 924.3 (± 36.7) 921.0 (± 10.7) 922.7 (± 39.3) 928.3 (± 54.4) 923.5 (± 40.2) 904.8 (± 31.7) 

MRS (%) 35.4 (± 8.4) 30.2 (± 7.7) 34.9 (± 8.7) 34.6 (± 4.3) 35.6 (± 9.0) 36.6 (± 14.6) 35.8 (± 9.4) 31.0 (± 4.7) 

MCS (%) -20.0 (± 2.9) -17.8 (± 3.9) -19.8 (± 3.1) -20.0 (± 1.5) -20.1 (± 3.1) -20.0 (± 4.3) -20.1 (± 3.2) -18.6 (± 1.8) 

GLS (%) -15.4 (± 2.4) -11.8 (± 1.8) -15.0 (± 2.7) -15.0 (± 2.1) -15.6 (± 2.5) -14.2 (± 2.2) -15.5 (± 2.6) -15.4 (± 1.5) 

Torsion (degrees) 0.8 (± 0.9) 0.5 (± 1.7) 0.8 (± 1.0) 0.7 (± 1.0) 0.9 (± 0.8) 1.0 (± 0.3) 0.9 (± 0.7) 1.1 (± 0.5) 

AA AoD (× 10-3 mmHg-1) 1.5 [1.0, 2.6] 0.7 [0.4, 1.3] 1.4 [0.9, 2.3] 1.6 [1.1, 2.6] 1.4 [0.8, 2.4] 1.0 [0.6, 1.3] 1.3 [0.8, 2.3] 2.5 [1.3, 3.7] 

PDA AoD (× 10-3 mmHg-1) 2.4 [1.8, 3.5] 1.6 [0.8, 2.1] 2.4 [1.6, 3.3] 1.8 [1.8, 2.3] 2.2 [1.7, 3.1] 2.1 [1.4, 2.4] 2.2 [1.7, 3.1] 2.2 [1.8, 4.3] 

ASI (m/s) 9.1 (± 2.7) 9.7 (± 2.7) 9.2 (± 2.8) 9.6 (± 2.2) 9.3 (± 2.9) 9.8 (± 2.8) 9.3 (± 2.9) 10.0 (± 2.8) 
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7.4.3 Association of cardiovascular phenotypes with incident SARS-CoV-2 infection 

In multivariable logistic regression models with full covariate adjustment (age, sex, ethnicity, 

deprivation, body mass index, smoking, diabetes, hypertension, high cholesterol, prior myocardial 

infarction), smaller LV and RV volumes in end-diastole, lower LV stroke volume, and poorer global 

longitudinal strain (higher value) were associated with significantly higher odds of a positive SARS-

CoV-2 test result (Figure 7.3, Table 7.6). Associations with other cardiac metrics were not 

statistically significant. We additionally performed sensitivity analysis limiting to the subset of 

participants tested in a hospital setting (positive n=50, negative n=194). The previously observed 

associations remained unchanged in this subset, and additionally, we observed a significant 

association between smaller RV end-systolic volume and greater odds of a positive test result (Table 

7.7). 

 
Figure 7.3. Odds ratios from fully adjusted multivariable logistic regression models 

demonstrating association of cardiovascular phenotype measures with positive SARS-CoV-2 
status 

 

 

 

 

 

 

 

 

 
 
 
Figure 7.3. Association of each cardiovascular measure with SARS-CoV-2 result (positive vs 

negative) in multivariable logistic regression models adjusting for age, sex, ethnicity, deprivation, 

body mass index, smoking, diabetes, hypertension, high cholesterol, and prior myocardial infarction. 

Results are from individual models and expressed as odds ratio and 95% confidence interval (CI) 

corresponding to each cardiovascular measure. Green: 95% CI includes 1. Red: 95% CI does not 

include 1. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2. 
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Table 7.6. Odds ratios from logistic regression models demonstrating association of 
cardiovascular phenotype measures with positive SARS-CoV-2 status 

 
Univariate Age and Sex Adjusted Fully Adjusted 

LVEDVi (ml/m2) 0.98 [0.96, 1.00] 0.97* [0.95, 0.99] 0.97* [0.95, 1.00]  
0.057 8.50x10-3 0.022 

LVESVi (ml/m2) 1.00 [0.96, 1.03] 0.99 [0.95, 1.02] 1.00 [0.96, 1.03]  
0.865 0.416 0.806 

LVSVi (ml/m2) 0.96* [0.93, 0.99] 0.95* [0.92, 0.98] 0.95* [0.92, 0.98]  
6.4x10-3 1.4x10-3 2.2x10-3 

LVEF (%) 0.96 [0.93, 1.00] 0.97 [0.93, 1.01] 0.96 [0.91, 1.00]  
0.081 0.127 0.059 

LVMi (g/m2) 0.98 [0.95, 1.02] 0.96* [0.92, 1.00] 0.96 [0.92, 1.00]  
0.328 0.036 0.087 

RVEDVi (ml/m2) 0.99 [0.97, 1.00] 0.98* [0.96, 1.00] 0.98* [0.96, 1.00]  
0.155 0.023 0.042 

RVESVi (ml/m2) 0.99 [0.95, 1.02] 0.96* [0.92, 1.00] 0.97 [0.93, 1.00]  
0.404 0.050 0.087 

RVSVi (ml/m2) 0.98 [0.95, 1.01] 0.97 [0.95, 1.00] 0.98 [0.95, 1.00]  
0.146 0.065 0.093 

RVEF (%) 1.00 [0.96, 1.04] 1.01 [0.97, 1.06] 1.01 [0.96, 1.06]  
0.816 0.682 0.746 

Native T1 (ms) 1.00 [0.99, 1.01] 1.00 [1.00, 1.01] 1.00 [1.00, 1.01]  
0.818 0.536 0.483 

MRS (%) 0.99 [0.96, 1.02] 1.00 [0.97, 1.04] 1.00 [0.96, 1.03]  
0.575 0.828 0.972 

MCS (%) 1.02 [0.94, 1.11] 0.99 [0.90, 1.09] 1.01 [0.91, 1.11]  
0.569 0.914 0.851 

GLS (%) 1.07 [0.96, 1.19] 1.10 [0.98, 1.24] 1.14* [1.01, 1.29]  
0.197 0.113 0.039 

Torsion (degrees) 0.86 [0.62, 1.20] 0.88 [0.63, 1.24] 0.92 [0.65, 1.31]  
0.366 0.443 0.628 

AA AoD (× 10-3 mmHg-1) 1.06 [0.84, 1.33] 0.93 [0.68, 1.23] 0.92 [0.67, 1.24]  
0.602 0.625 0.606 

PDA AoD (× 10-3 mmHg-1) 1.12 [0.89, 1.41] 1.04 [0.79, 1.35] 1.06 [0.79, 1.39]  
0.372 0.863 0.812 

ASI (m/s) 0.99 [0.96, 1.02] 0.99 [0.96, 1.02] 0.99 [0.96, 1.02]  
0.367 0.549 0.481 

Table 7.6. Covariates in fully adjusted models include: age, sex, ethnicity, deprivation, body mass 

index, smoking, diabetes, hypertension, high cholesterol, and prior myocardial infarction. Results are 

odds ratio [95% confidence interval] and p-value, each belonging to a separate logistic regression 

model with covariate adjustment as indicated in columns. Abbreviations: AA: ascending aorta; AoD: 

aortic distensibility; ASI: arterial stiffness index; LVEDV: left ventricular endo-diastolic volume; 

LVEF: left ventricular ejection fraction; LVESV: left ventricular endo-systolic volume; LVSV: left 

ventricular stroke volume; GLS: global longitudinal strain; MCS: circumferential strain at the mid 

short axis level; MRS: radial strain at the mid short axis level; PDA: proximal descending aorta; 

RVEDV: right ventricular endo-diastolic volume; RVEF: right ventricular ejection fraction; RVESV: 

right ventricular end-systolic volume; RVSV: right ventricular stroke volume. SARS-CoV-2: severe 

acute respiratory syndrome coronavirus 2. 
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Table 7.7. Odds ratios from logistic regression models demonstrating association of 
cardiovascular phenotype measures with SARS-CoV-2 status in the subset tested in hospital 

 Univariate Age and Sex Adjusted Fully Adjusted 
LVEDVi (ml/m2) 0.98 [0.96, 1.00] 0.97* [0.94, 0.99] 0.97* [0.94, 1.00]  

0.064 0.010 0.028 
LVESVi (ml/m2) 1.00 [0.96, 1.04] 0.98 [0.94, 1.02] 0.99 [0.95, 1.04]  

0.899 0.338 0.755 
LVSVi (ml/m2) 0.95* [0.92, 0.99] 0.94* [0.91, 0.98] 0.94* [0.90, 0.98]  

7.2×10-3 2.5×10-3 3.9×10-3 
LVEF (%) 0.96 [0.91, 1.01] 0.97 [0.92, 1.02] 0.95 [0.90, 1.01]  

0.078 0.194 0.089 
LVMi (g/m2) 0.99 [0.95, 1.02] 0.95* [0.91, 1.00] 0.96 [0.92, 1.01]  

0.459 0.047 0.137 
RVEDVi (ml/m2) 0.98 [0.96, 1.00] 0.97* [0.95, 0.99] 0.97* [0.95, 1.00]  

0.098 0.014 0.022 
RVESVi (ml/m2) 0.98 [0.94, 1.01] 0.95* [0.90, 0.99] 0.95* [0.91, 1.00]  

0.244 0.018 0.049 
RVSVi (ml/m2) 0.98 [0.95, 1.01] 0.97 [0.94, 1.00] 0.97 [0.93, 1.00]  

0.125 0.070 0.065 
RVEF (%) 1.00 [0.96, 1.05] 1.03 [0.97, 1.08] 1.02 [0.96, 1.07]  

0.911 0.341 0.581 
T1 (ms) 1.00 [0.99, 1.01] 1.01 [1.00, 1.01] 1.00 [1.00, 1.01]  

0.645 0.258 0.287 
MRS (%) 0.98 [0.95, 1.02] 1.00 [0.96, 1.04] 0.99 [0.94, 1.03]  

0.303 0.882 0.567 
MCS (%) 1.05 [0.95, 1.16] 1.01 [0.91, 1.13] 1.04 [0.93, 1.17]  

0.294 0.802 0.478 
GLS (%) 1.12 [0.99, 1.26] 1.14 [1.00, 1.31] 1.18* [1.02, 1.37]  

0.072 0.053 0.026 
Torsion (degrees) 0.86 [0.60, 1.25] 0.88 [0.60, 1.31] 0.88 [0.60, 1.31]  

0.418 0.509 0.527 
AA AoD (× 10-3 mmHg-1) 1.12 [0.84, 1.48] 0.99 [0.67, 1.38] 1.00 [0.67, 1.42]  

0.425 0.938 0.983 
PDA AoD (× 10-3 mmHg-1) 1.12 [0.85, 1.47] 1.04 [0.74, 1.42] 1.09 [0.76, 1.52]  

0.409 0.832 0.637 
ASI (m/s) 0.99 [0.96, 1.02] 0.98 [0.95, 1.01] 0.98 [0.95, 1.02] 
 0.528 0.348 0.391 

Table 7.7. Analysis sample n=244 (n=50 positive); Fully adjusted model includes adjustment for age, 

sex, ethnicity, deprivation, body mass index, smoking, diabetes, hypertension, high cholesterol, and 

prior myocardial infarction. Results are odds ratio [95% confidence interval] and p-value, each 

belonging to a separate logistic regression model with covariate adjustment as indicated in columns. 

Abbreviations: AA: ascending aorta; AoD: aortic distensibility; ASI: arterial stiffness index; LVEDV: 

left ventricular endo-diastolic volume; LVEF: left ventricular ejection fraction; LVESV: left 

ventricular endo-systolic volume; LVSV: left ventricular stroke volume; GLS: global longitudinal 

strain; MCS: circumferential strain at the mid short axis level; MRS: radial strain at the mid short 

axis level; PDA: proximal descending aorta; RVEDV: right ventricular endo-diastolic volume; 

RVEF: right ventricular ejection fraction; RVESV: right ventricular end-systolic volume; RVSV: right 

ventricular stroke volume. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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As a larger sample was available in the ASI subset (n=6,066), we had adequate power to test 

association of ASI with COVID-19 outcomes. Amongst those testing positive for SARS-CoV-2, we 

found no statistically significant associations between ASI and death or need for critical care 

admission (Table 7.8). 

 
 

Table 7.8. Logistic regression models demonstrating association of arterial stiffness index with 

SARS-CoV-2 status, death, and critical care admission in different sample subsets 

Table 7.8. Fully adjusted model includes adjustment for age, sex, ethnicity, deprivation, body mass 

index, smoking, diabetes, hypertension, high cholesterol, and prior myocardial infarction. Results are 

odds ratio [95% confidence interval] and p-value, each belonging to a separate logistic regression 

model with covariate adjustment as indicated in columns. SARS-CoV-2: severe acute respiratory 

syndrome coronavirus 2. 

 

7.5 Summary of findings 

In this analysis of 310 UK Biobank participants tested for SARS-CoV-2 and prior CMR scanning, we 

observed association of adverse CMR measures of cardiovascular structure and function with greater 

odds of subsequent positive SARS-CoV-2 test. In particular, in fully adjusted models, smaller LV and 

RV end-diastolic volumes, lower stroke volume, and poorer global longitudinal strain were associated 

with significantly higher odds of SARS-CoV-2 infection. We found no significant associations with 

measures of arterial compliance (aortic distensibility, ASI) or native T1 and SARS-CoV-2 test result. 

 

Sample Outcome Univariate Age and Sex Adjusted Fully Adjusted 
Whole sample SARS-CoV-2 

test result 
0.99 [0.96, 1.02] 0.99 [0.96, 1.02] 0.99 [0.96, 1.02] 

 
 0.367 0.549 0.481 

Tested in hospital SARS-CoV-2 
test result 

0.99 [0.95, 1.02] 0.98 [0.95, 1.02] 0.98 [0.95, 1.02] 
 

 0.528 0.348 0.391 
SARS-CoV-2 negatives Death 1.06* [1.01, 1.11] 1.02 [0.97, 1.07] 1.01 [0.97, 1.07]  

 0.017 0.486 0.553 
SARS-CoV-2 positives Death 1.08* [1.01, 1.16] 1.00 [0.92, 1.07] 0.98 [0.91, 1.06]  

 0.032 0.899 0.699 
SARS-CoV-2 negatives Critical care 

admission 
1.08* [1.01, 1.16] 1.07 [1.00, 1.15] 1.07 [0.99, 1.15] 

 
 0.021 0.064 0.072 

SARS-CoV-2 positives Critical care 
admission 

1.06 [0.96, 1.17] 1.03 [0.92, 1.15] 1.02 [0.91, 1.14] 
 

 0.268 0.601 0.758 
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7.6 Discussion 

7.6.1 Comparison with existing literature 

Our study is the first to assess association of pre-existing cardiovascular phenotypes with incident 

COVID-19. Observational studies of CMR scans performed after recovery from COVID-19 suggest 

possible indolent cardiovascular involvement. In a study of 100 patients recovered from SARS-CoV-2 

infection, Puntmann et al.232 report larger LV end-diastolic volumes, lower LV and RV ejection 

fraction, higher native T1, higher T1, and greater proportion of late gadolinium enhancement (LGE) 

abnormalities (ischaemic: 32% vs 17%, non-ischaemic 20% vs 7%) in the cases compared to controls. 

Overall, these findings suggest possible persistent myocardial involvement after recovery from 

COVID-19. However, the frequency of abnormalities reported is higher than would be expected from 

the cardiac blood biomarkers (5% abnormal troponin at the time of CMR). This suggests that some of 

the observed differences in CMR metrics may reflect pre-existing cardiac status, rather than ongoing 

cardiac involvement. Indeed, in our analysis of CMR scans performed on average 3.0 years prior to 

SARS-CoV-2 testing, we found similar significant associations between measures of poorer LV 

function (lower LV stroke volume, poorer GLS) and incident COVID-19, after adjustment for 

demographic and vascular risk factors, demonstrating the potential for residual confounding from 

other exposures. 

 

Subsequent reports have not confirmed the same degree of post-infection abnormalities as outlined by 

Puntmann et al.232. For example, in a cohort of 40 patients recovered from COVID-19, Li et al.237 

report LGE in only 3% and no difference in volumetric LV or RV metrics compared to controls. They 

report significantly higher mean global native T1 and ECV, and, in common with our results, poorer 

LV function by GLS in cases compared to healthy controls. In a study of 26 recovered COVID-19 

patients, Huang et al.234 report no significant difference in LV function or volume metrics between 

cases and controls. Consistent with Puntmann et al.232 and Li et al.237, they report higher native T1 and 

T2 in cases compared to controls. In our study, we did not document significant association between 

native T1 and COVID-19 status. It is possible, that we were underpowered to detect a small effect 

associated with this metric, or that abnormalities in T1 are caused by SARS-CoV-2 infection and thus 

would not be detected on baseline scans.  

 

In the largest study reported to date, Kotecha et al.238 compare CMR findings from 148 patients 

recovered from severe COVID-19 with match controls. They report no significant differences in LV 

metrics, native T1, or T2 between cases and controls. Although the proportion of participants with 

LGE was high, this was not significantly different between cases and controls (49% vs 45%). The 

matching in this study was the most extensive of the studies reported, which may account for the 

absence of significant difference between the disease and comparator cohorts, which would also 
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suggest that a substantial proportion of CMR findings reported by other studies reflects residual 

confounding and reverse causation. 

 

7.6.2 Potential biological mechanisms 

COVID-19 in increasingly recognised as a multi-system disease, with high inflammatory burden 

during the acute illness, which has been proposed as the driver of cardiovascular manifestations 

during acute COVID-19216–219. Acute myocardial injury is frequently observed during acute illness 

and is linked to poorer outcomes221,222. Furthermore, in vitro evidence has suggested that SARS-CoV-

2 may directly enter cardiomyocytes leading to toxicity in these cells226. Limited autopsy studies have 

confirmed potential of direct SARS-CoV-2 cardiotoxicity227. 

 

The evidence for ongoing cardiovascular involvement after recovery from the acute phase of the 

illness is more contentious. Current evidence is limited to cross-sectional comparisons of CMR from 

infected and non-infected individuals, without clear corroboration with serum cardiac biomarkers. 

Given the high burden of cardiovascular disease and vascular risk factors in patients with COVID-19, 

it is possible that the differences observed in the CMR metrics of these cohorts after recovery from 

COVID-19 is, at least partly, a reflection of their baseline cardiac status. The absence of baseline 

imaging data prior to COVID-19 severely limits any causal inference from existing data. Further 

research, in diverse settings, with longitudinal follow up and repeat imaging are needed to better 

understand the cardiovascular consequences of COVID-19. 

 

7.7 Critical appraisal of the results 

Our findings demonstrate that individuals with unhealthy baseline CMR measures are at higher risk of 

incident COVID-19. Of course, CMR abnormalities do not appear spontaneously, rather occur as a 

result of exposure to a risk factor. Thus, the persistence of associations in our study despite 

adjustment for demographic and classical vascular risk factors indicates that the observed 

relationships are due to confounding, likely due to a combination of imperfections in measured 

confounders and the presence of unmeasured confounders (e.g. non-classical vascular risk factors). 

These observations highlight the high risk of residual confounding and reverse causation in studies 

using post-infection CMR measures to make inferences about the long-term cardiovascular impact of 

COVID-19. CMR in our study typically occurred several years prior to COVID-19, obviating the 

possibility of reverse causation. 

 

Another issue that merits discussion is that of selection bias. Between March to May 2020, SARS-

CoV-2 testing in the UK was limited to individuals in a hospital setting. As such, infections identified 
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in the early months of the pandemic would have been (mostly) in individuals with moderate-severe 

symptoms requiring hospitalisation. Beyond May 2020, there was extension of testing to community 

settings; thus, allowing identification of individuals with milder symptoms. Our study includes 

participants tested between March to August 2020. It is likely that our study sample includes a 

disproportionate number of individuals with more severe manifestations of COVID-19 identified in 

the first three months of the study. We cannot be certain that our observations would be generalisable 

to individuals with mild or asymptomatic infection. With wider availability of testing, the sampling 

bias from selection into testing will become less problematic. However, it is essential to remain 

vigilant to such potential sources of bias in epidemiologic and in particular COVID-19 research, 

whilst also bearing in mind that our methods are limited by the national approach to testing, and 

additionally in our case, the data available in UK Biobank. 

 

7.8 Conclusions 

Our findings, in a predominantly hospitalised cohort, indicate that several pre-existing adverse cardiac 

phenotypes are linked to higher risk of incident SARS-CoV-2 infection. This suggests that these 

phenotypes may be risk factors for, rather than a consequence of, SARS-CoV-2 infection. Existing 

observational studies suggesting cardiovascular involvement after COVID-19 may, in part, reflect 

residual confounding or reverse causation from baseline cardiac status rather than COVID-19 induced 

alterations. 

 

Volumetric and ventricular function measures appeared dominant in our analysis, differences in tissue 

characteristics were more marked in CMR studies after recovery from COVID-19 infection. 

Therefore, whilst certain unhealthy cardiac phenotypes may pre-dispose to more severe COVID-19 

and need for hospitalisation, SARS-CoV-2 infection itself might also lead to distinct phenotypic 

alterations. Further research in larger populations, with appropriate control groups and ideally 

imaging before and after COVID-19, together with prospective follow-up, are required for definitive 

conclusions.  
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8 Discussion 

8.1 Summary of results 

We demonstrate, in this series of observational studies from the UK Biobank, the association of 

several novel cardiovascular risk factors with clinical cardiovascular endpoints and/or CMR 

phenotypes. We demonstrate that these non-classical risk factors may be of both clinical and 

biological importance, with evidence of exposure effects extending across organ systems. The 

observed associations were independent of classical cardiovascular risk factors suggesting that they 

provide additive information on population cardiovascular risk. In summary, our key findings are as 

follows:  

 

• Higher resting heart rate is associated with greater all-cause mortality, cardiovascular disease 

mortality, and cancer mortality for men and women. In men, ischaemic cardiovascular 

outcomes were a major driver of the excess mortality, whilst in women this was not the case. 

There was also a modifying effect from age, with greater magnitude of effect in younger ages 

for the associations with all-cause mortality, cancer mortality, and incident AMI.  

 

• Better cognitive performance (FI, RT) is associated with healthier CMR phenotypes in both 

men and women. In particular, higher cognition scores were associated with larger ventricular 

volumes, higher LVM, greater LV stroke volumes, and greater aortic distensibility (AD). 

These associations remained robust with adjustment for a range of lifestyle, demographic, and 

cardiometabolic morbidities, suggesting mediation by alternative mechanisms.  

 
• Better bone health (higher SOS) is associated with better vascular health (higher AD, lower 

ASI). This relationship is consistent for men and women and with menopause status, but with 

evidence of sex differential disease mechanisms. There was no convincing evidence to 

suggest differential associations relating to BMI, diabetes, or smoking. Better bone health was 

also associated with significantly lower risk of IHD mortality in men (and less robustly for 

women), this relationship was not mediated by the associations between SOS and ASI.  

 

• Greater consumption of red and processed meat is associated with poorer CMR measures of 

cardiovascular health. In particular, smaller ventricular volumes, lower stroke volume, and 

lower arterial compliance (AD, ASI), and greater interval increase in large artery stiffness 

(interval change in ASI). In contrast, greater oily fish intake is associated with larger 

ventricular volumes, greater stroke volumes, higher LVM, greater arterial compliance (AD, 
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ASI), and less interval increase in arterial stiffness. The radiomics analysis demonstrated 

association of the different dietary habits with distinct patterns of ventricular geometry (shape 

features) and myocardial texture (first-order and texture features), suggesting different 

patterns of remodelling related to the different dietary exposures.  

 

•  Adverse baseline CMR measures are associated with higher risk of incident COVID-19, as 

per analysis of UK Biobank participants tested for SARS-CoV-2 (mostly in hospital). Smaller 

ventricular volumes, lower LV stroke volume, and poorer LV GLS were associated with 

significantly higher risk of positive SARS-CoV-2 test result. This indicates that studies 

reporting cardiovascular involvement based on imaging after recovery from COVID-19, may 

in part reflect pre-existing cardiac status, which has predisposed to rather than occurred as a 

result of COVID-19.  

 

8.2 Strengths and limitations 

The large sample size available in the UK Biobank permitted adequately powered analyses for the 

relationships studied and for stratified analysis by sex and other important factors. The standardised 

data collection procedures in the UK Biobank permitted reliable ascertainment of exposures and 

outcomes. Similarly, there was reliable tracking of prospective clinical outcomes recorded in 

accordance with ICD codes through linkages with HES and death register data for all UK Biobank 

participants. Imaging in the UK Biobank is also performed using standardised equipment and 

protocols and presents a very large and uniform image bank, which is ideally suited to epidemiologic 

research. Furthermore, the detailed characterisation of participants in the UK Biobank allowed 

investigation of a wide range of exposure-outcome associations, comprehensive confounder 

adjustment, and consideration of possible mediating variables. The standardised protocols in UK 

Biobank were extremely helpful in providing a uniform dataset for analysis. However, it also meant 

that we had no influence into these protocols and research questions had to be designed around the 

data available with no option to modify or extend protocols. 

 

The observational nature of the studies presented means that we cannot exclude residual confounding 

due to unmeasured confounders or measurement error. It is particularly challenging to quantify and 

fully account for the social determinants of health. In our analyses we incorporate the Townsend 

deprivation score, educational level, and multiple lifestyle factors. However, it is likely that these 

variables do not fully encompass the socio-economic aspects of health experienced by individuals 

throughout the life course. Such factors are important across all exposures, but particularly with 

regards dietary exposures, where certain dietary habits have strong links to social and lifestyle factors 

(Section 6). Furthermore, we express smoking status smoking as a categorical variable. A continuous 
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measure of this variable, e.g., in smoking pack-years, would have provided more detailed information 

and likely provided better adjustment. At the time of writing, such more quantitative measures of 

smoking were not readily available in the UK Biobank. Since writing, derived data from an external 

group of researchers has been returned to the UK Biobank resource, which includes a cigarette pack 

year estimate for participants. This continuous measure may provide better quantification of smoking 

exposure. The usefulness of this estimate merits investigation in future work. There is also likely 

measurement error with regards other important covariates which may also increase confounding of 

observed relationships. For example, the cardiometabolic variables are defined according to self-

report, ICD classification, and a single biochemistry measure. There is risk of misclassification of 

disease status with this approach. For example, this approach would overlook individuals who were 

diagnosed with a chronic health condition after baseline assessment but did not require hospital 

admission (or the condition was not coded on hospitalisation). In 2019, linked primary care data was 

released by UK Biobank, which will go some way in addressing these shortcomings. At the time of 

writing the linked primary care data is in a raw format, and not readily usable for research. Clinical 

endpoints may be reliably ascertained in UK Biobank, particularly as we selected unambiguous 

outcomes relating to mortality and AMI. There would be limitations for consideration of clinical 

outcomes where there is greater uncertainty or subjectivity around the diagnosis (e.g., heart failure) or 

for conditions that do not always require hospitalisation (e.g. atrial fibrillation). 

 

Consideration of association of exposures with CMR phenotypes provided added insight in 

delineating the impact of the exposure on different aspects of heart health (e.g. ventricular structure 

and function, arterial health). Interpretation of associations with CMR phenotypes in the UK Biobank 

requires special consideration. The significant healthy participant effect in the UK Biobank and the 

dominance of healthy participants within the CMR subset means that associations of exposures with 

CMR phenotypes are, almost exclusively, within the spectrum of normality (health). The pattern of 

associations observed within these limits is different to that seen in clinical cohorts and interpretations 

should be made with consideration of phenotypic traits in healthy aging (Table 8.1). 

 

In general, healthy exposures in UK Biobank are associated with a pattern of CMR phenotypes 

reflecting decelerated healthy aging. That is, healthy exposures are associated with larger ventricular 

volumes, higher LV mass, higher stroke volumes, greater AD, and lower ASI (as illustrated in the 

associations with oily fish intake and cognitive performance). The reverse pattern is seen with 

unhealthy exposures (smaller ventricular volumes, lower LV mass, lower stroke volume, less 

compliant arteries). These relationships may be a source of confusion, as for some metrics they are the 

reverse of what would be considered in a clinical cohort (where most studies of CMR associations 

originate). A careful approach to selection of CMR metrics is advisable, with preferential selection of 

measures that have an unambiguous, and preferably linear, trend with aging e.g., stroke volume, ASI, 
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AD - Table 8.1). In addition, these observations present a case for deeper CMR phenotyping, 

availability of measures such as strain and atrial metrics would be helpful in distinguishing more 

definitively between health and disease. 

 

The UK Biobank CMR protocol was designed with purpose of providing a detailed, but rapid 

assessment of cardiac status, whilst minimising health risk to participants. As such, the protocol does 

not include extensive mapping, administration of contrast, or stress perfusion imaging. These metrics 

have been particularly implicated in reports of cardiovascular involvement related to COVID-19. 

Thus, although we can make assertions regarding the association of CMR phenotypes with COVID-

19, we cannot directly address questions regarding these tissue characterisation metrics with the UK 

Biobank dataset. 

 

The UK Biobank imaging visit also includes carotid ultrasonography, which can detect the presence 

of carotid atheroma. The work presented uses two measures of arterial health, AD derived from CMR 

and ASI derived from finger plethysmography. These measures of arterial compliance are established 

validated indicators of cardiovascular (particularly ischaemic) risk. An important strength of the AD 

and ASI measures is that they provide a continuous measure of arterial health for the whole UK 

Biobank cohort, regardless of the presence of clinical disease. As such, these measures provide a 

quantitative indicator of level of risk in individuals with and without disease, which is particularly 

relevant for population cohorts such as the UK Biobank where the majority of participants do not 

have clinical disease. The additive value of carotid atheroma as an indicator of clinical cardiovascular 

outcomes over other measures of arterial health (e.g., AD and ASI) requires formal study. We were 

unable to conduct such analyses as part of the current work, as results from analysis of the carotid 

ultrasound in UK Biobank have not yet been made available to researchers.  
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Table 8.1. Age and sex stratified cardiovascular magnetic resonance indices in the UK Biobank 

cohort without cardiovascular disease (n=29,801) 

 Men 

CMR indices ≤55 years  56-65 years 66-75 years ≥76 years 

n 2,633 5,143 5,624 620 

LVEDVi (ml/m2) 87.7 (±14.0) 84.5 (±13.9) 81.1 (±14.2) 77.8 (±14.4) 

LVESVi (ml/m2) 36.9 [31.8, 42.6] 34.9 [30.0, 40.2] 33.0 [28.3, 38.6] 31.6 [26.60 37.3] 

LVSVi (ml/m2) 50.3 (±8.9) 48.9 (±8.8) 47.0 (±8.8) 45.0 (±8.9) 

LVMi (g/m2) 52.7 (±8.0) 51.5 (±7.7) 50.0 (±7.6) 48.6 (±7.5) 

LVEF (%) 57.5 (±5.4) 58.0 (±5.8) 58.1 (±6.3) 58.1 (±6.7) 

AA AoD (10-3 mmHg-1) 2.44 [1.79, 3.22] 1.56 [1.04, 2.17] 0.95 [0.63, 1.38] 0.69 [0.48, 1.05] 

PDA AoD (10-3 mmHg-1) 3.28 [2.62, 4.14] 2.54 [1.95, 3.20] 1.89 [1.43, 2.44] 1.46 [1.13, 1.91] 

ASI (unitless) 8.6 (±2.2) 9.8 (±2.7) 10.2 (±2.8) 10.5 (±2.8) 

 Women 

CMR indices ≤55 years  56-65 years 66-75 years ≥76 years 

n 3,271 6,542 5,525 443 

LVEDVi (ml/m2) 78.2 (±10.9) 74.4 (±10.6) 71.2 (±10.8) 67.3 (±10.1) 

LVESVi (ml/m2) 30.6 [26.8, 34.8] 28.4 [24.7, 32.6] 26.9 [23.1, 31.1] 25.3 [22.0, 29.3] 

LVSVi (ml/m2) 47.1 (±7.4) 45.4 (±7.3) 43.6 (±7.0) 41.5 (±6.9) 

LVMi (g/m2) 41.0 (±5.7) 40.6 (±5.7) 40.3 (±6.0) 39.3 (±5.8) 

LVEF (%) 60.3 (±5.2) 61.2 (±5.4) 61.4 (±5.9) 61.7 (±5.7) 

AA AoD (10-3 mmHg-1) 2.40 [1.67, 3.39] 1.26 [0.79, 1.95] 0.70 [0.48, 1.06] 0.55 [0.38, 0.80] 

PDA AoD (10-3 mmHg-1) 3.28 [2.57, 4.15] 2.31 [1.75, 3.01] 1.58 [1.20, 2.11] 1.20 [0.94, 1.54] 

ASI (unitless) 7.5 (±2.3) 8.3 (±2.6) 8.9 (±2.9) 9.2 (±3.0) 
Table 8.1. Results are mean (standard deviation) or median [interquartile range] depending on 

distribution. For ASI, outliers have been removed as per 1.5 IQR rule.  Age is at recorded at time of 

imaging. Cardiovascular disease reflect status at time of imaging based on criteria outlined in Table 

2.3. 
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8.3 Grand discussion 

8.4 Implications for clinical practice and research 

Current approaches to risk assessment and disease prevention are mostly limited to targeting of 

classical cardiovascular risk factors. However, the trends in improvements in cardiovascular outcomes 

are starting to plateau, indicating that alternative approaches are necessary to achieve continued 

outcome improvements. There is strong support for identification of novel cardiovascular risk factors, 

often with moderate effect sizes, on which intervention would be worthwhile. Growing evidence 

indicates complex interconnected relationships between health status in key organ systems. In the 

present work we describe associations of several novel exposures with cardiovascular health in the 

UK Biobank. The scale and deep phenotyping in UK Biobank, permitted adequately powered 

analyses and investigation of several aspects of cardiovascular health. 

 

We investigated, firstly, the sex- age- and disease- specific associations of resting heart rate with 

incident cardiovascular outcomes, demonstrating its utility as an indicator of all-cause and 

cardiovascular mortality in both men and women. Associations of resting heart rate with ischaemic 

cardiovascular outcomes appeared more robust for men than women. Overall, resting heart rate seems 

to have potential as a low cost and readily accessible indicator of cardiovascular risk. The integration 

of this resting heart rate as an additional risk measure within current risk stratification tools warrants 

explorations to determine whether it can truly increment the predictive performance of existing tools. 

 

In the second study, we demonstrated association of better cognitive performance with healthier CMR 

phenotypes for men and women independent of classical cardiovascular risk factors. This is an 

important observation. Although there is growing evidence for association of brain and heart health, 

many previous studies have attributed these links entirely to shared vascular risk factors. Our findings 

demonstrate that these links are robust to adjustment for a wide range of demographic, lifestyle, and 

cardiometabolic factors. Therefore, our results indicate the importance of alternative potential 

mechanism linking heart and brain health, which merit investigation. Better understanding of the 

connectivity of the heart-brain axis is of huge importance in alleviating the global burden of disease 

related to both organ systems. 

 

Thirdly, we demonstrated the association between better vascular health (greater arterial compliance) 

and better bone quality (heel ultrasound), beyond classical cardiovascular risk factors. The observed 

relationships were consistent across the sexes and in pre- and post- menopause. Findings from 

previous studies regarding the potential modifying effect of these factors were mixed, and so our 

findings in the largest sample to address this question to date, provide more definitive conclusions to 

the existing evidence base. Interestingly, although we observed consistent associations for men and 
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women, examination of mediating factors suggested that underlying biological mechanisms varied by 

sex. Understanding these potential common biological mechanisms is key to improvement of health 

across both cardiovascular and musculoskeletal systems. 

 

In the fourth presented study, we considered association of red and processed meat intake with 

cardiovascular phenotypes, taking oily fish as a comparator with expected reverse associations. Our 

findings demonstrate association of higher red and processed meat intake with poorer cardiovascular 

phenotypes across all metrics considered, whilst greater oily fish consumption was associated with 

healthier phenotypes. These associations were robust to confounder adjustment. However, additional 

adjustment for cardiometabolic factors resulted in broad attenuation of the associations between red 

meat consumption and ventricular phenotypes, whilst associations between red meat and arterial 

stiffness measures remained robust, as did all associations for processed meat and oily fish intake. It 

therefore appears, that although both red meat and processed meat are “adverse” dietary exposures, in 

terms of cardiovascular health, their mechanism of action may be distinct. Similarly, whilst the 

associations between red meat and ventricular phenotypes may be largely explained by 

cardiometabolic morbidities, this is not the case for its relationships with arterial health. Indeed, 

previous studies have indicated distinct mechanism between red meat and ischaemic vascular 

outcomes (of which arterial stiffness is a reliable indicator) 209. Our results suggest that exploration of 

such alternative mechanism is worthwhile. Furthermore, in general, public health advice to limit red 

and processed meat intake for reasons of cardiovascular health seem sensible. Of course, these 

findings should be interpreted in the context of other evidence. 

 

Finally, we studied the association of baseline CMR phenotypes with incident SARS-CoV-2 infection 

in the UK Biobank. We demonstrate, as expected, that individuals with adverse pre-existing 

cardiovascular phenotypes are at greater risk of subsequent SARS-CoV-2 infection. Our findings are 

not surprising, given that COVID-19 patients have high burden of cardiovascular disease and risk 

factors. The observed associations were robust to adjustment for demographic and cardiovascular risk 

factors, demonstrating the potential for residual confounding from measurement error and other 

unmeasured exposures. This work was motivated by studies reporting cardiovascular involvement 

after recovery from COVID-19 based on comparison of CMR studies of infected cases with 

uninfected controls. Our findings demonstrate the high potential for residual confounding and reverse 

causation with such approaches and the need for caution in the interpretation of such results. 

 

The results presented here make a meaningful contribution to the scientific literature and may be used 

in conjunction with other evidence to inform risk stratification and disease prevention approaches and 

to prioritise research efforts into understanding underlying biology of the demonstrated relationships. 
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8.5 Future work 

In the presented work, we examine the relationships between a range of novel exposures and 

measures of cardiovascular healthy considering sex-specific associations and potential underlying 

mechanisms. The observational nature of the presented studies means that we cannot infer causation 

from the results. Although an experimental approach would not be appropriate for any of our study 

questions, alternative methods, such as Mendelian Randomisation, may provide added insight into 

potential causal nature (or otherwise) of the observed associations. 

 

The large sample in the UK Biobank permitted examination of sex-specific associations. However, 

there was marked variation in the distribution of incident events in men and women. For example, as 

would be expected in a cohort of predominantly healthy middle-aged women, there were markedly 

fewer incident ischaemic outcomes for women than men. As such, we may have been underpowered 

to detect female specific associations for outcomes relating to IHD, particularly where effect sizes 

were small. For these endpoints, examination of associations in cohorts of older women with higher 

risk profile would be advisable. The UK Biobank itself may be a useful resource for such analyses as 

the participants age and incident outcomes accrue. Furthermore, the relationships reported in this 

project, for both men and women, represent, associations within the range of healthy populations. 

Thus, the reported patten of associations may not be directly applicable to clinical cohorts. 

Examination of these associations in disease cohorts may provide novel insights into the observed 

relationships and how they may be altered with the onset of disease. 

 

Finally, and importantly, despite consideration of a wide range of potential mediators, it was highly 

challenging to delineate underlying biological mechanisms for the observed associations. This reflects 

the complexity of elucidating such mechanistic pathways and making specific links to disease 

processes. Our findings provide useful hypothesis for biological (and perhaps genetic) studies into 

underlying mechanisms of observed associations. For instance, there is potential to elucidate 

mechanistic links between resting heart rate and incident cardiovascular events, through incorporation 

of brain MRI phenotypes in future work. Such work is highly important for understanding the 

underlying biology and identification of novel therapeutic targets for disease prevention or treatment. 

 

8.6 Conclusions 

In this doctoral thesis, we characterise the relationships between cardiovascular health and several 

novel disease exposures acting across different organ systems (heart, brain, gut, bone). We 

demonstrate the value of a multi-system approach to understanding cardiovascular health and the 

importance of cross-system interactions in disease occurrence and progression. We further illustrate 

the utility of population level CMR data to gain added insights into such relationships and describe 
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and illustrate the use of deeper cardiovascular phenotyping using CMR radiomics. Our findings 

suggests that the search for such novel disease determinants is worthwhile and may be key in 

alleviating the global burden of cardiovascular disease. 
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