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Abstract

We find a simple parametrization of the anti-symmetric giant graviton in
AdS4 ×CP3, first constructed in [1], dual to the anti-symmetric Schur polyno-
mial involving two bi-fundamental complex scalar fields of ABJM theory. Using
this parametrization we evaluate in a semi-classical approach the three-point
function of two such giant gravitons and one point-like graviton considering
both extremal and non-extremal configurations. We likewise discuss the case
of the symmetric giant graviton in AdS4 ×CP3. Finally, we provide an expres-
sion for the planar three-point function of chiral primary operators in ABJM
at strong coupling and find that the results for the giant graviton three-point
functions reduce to this expression in the point-like limit.
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1 Introduction

Giant gravitons constitute an important entry in the AdS/CFT dictionary. In the
gravity language giant gravitons represent extended higher dimensional objects, D-
or M-branes, while in the field theory language they correspond to operators carrying
higher representations of the gauge group. In particular, the latter characterization
imply that giant gravitons encode information about finite-N gauge theory.

In the AdS5 × S5 case [2] one has a simple and beautiful description of 1/2 BPS
giant gravitons. On the string theory side the giant gravitons are D3-branes which
wrap an S3 inside either S5 or AdS5 while moving on a circle of S5 with a fixed angular
momentum [3–6]. The gauge theory dual of the S5 giant graviton is the completely
anti-symmetric Schur polynomial of a single complex scalar while the dual of the
AdS5 giant is the completely symmetric Schur polynomial [6, 7].

For the AdS4 × CP3 case [8] the situation is slightly more complicated. The sim-
plest possible Schur polynomials are constructed out of two complex bi-fundamental
scalars, see [9, 10] for a discussion of these. The gravity dual of the completely sym-
metric Schur polynomial is a D2-brane which wraps an S2 inside AdS4 and (after
uplift to M-theory) rotates along a great circle of S7 orthogonal to the compactifica-
tion circle [11–13]. The gravity dual of the anti-symmetric Schur polynomial can be
described in M-theory language as an M5-brane which wraps two S5’s intersecting at
an S3, all inside S7, and which like its symmetric cousin rotates along a circle orthog-
onal to the compactification circle. Its maximal version was discussed in [11, 14], see
also [15–17], but the general solution was first constructed in [1].

In the present letter we find an improved parametrization of the anti-symmetric
giant graviton of AdS4 × CP3. This greatly simplified parametrization allows us to
calculate analytically the three-point function involving two such giant gravitons and
one point-like graviton in the holographic approach suggested for strings in [18–22]
and generalized to branes in [23, 24]. Unlike what is the case for N = 4 SYM, in
ABJM theory three-point functions of 1/2 BPS chiral primary operators are not pro-
tected. The chiral primary operators are built from pairs of the four bi-fundamental
complex scalar fields WI of the ABJM theory and their conjugates W̄ I and are given
by

OA =
(4π)J/2
√

J/2λJ/2
(CA)I1...IJ/2K1...KJ/2

Tr
(

WI1W̄
K1 · · ·WIJ/2W̄

KJ/2

)

, (1)

where λ = N/k is the ’t Hooft coupling of ABJM, and CA is completely symmetric
in upper and (independently) in lower indices, while the trace taken on any pair
consisting of one upper and one lower index vanishes. The tensors are orthonormal,
so that

(CA)I1...IJ/2K1...KJ/2
(C̄B)K1...KJ/2

I1...IJ/2
= δAB, (2)

and the two-point function is protected and given by 〈OA(x)ŌB(0)〉 = δAB/|x|J . The
three-point function structure constants C123 are then defined as

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x1 − x2|γ3 |x2 − x3|γ1 |x3 − x1|γ2
, (3)
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where γi = (
∑

j Jj−2Ji)/2. Using the fact that the chiral primary operators are dual
to point-like gravitons, the structure constants were calculated at strong coupling and
large-N long ago [25] using M-theory on AdS4 × S7 and so corresponding to the case
of ABJM with Chern-Simons level k = 1. This expression may then be generalized
for arbitrary k, see appendix A. The result is (we take J3 ≥ J2 ≥ J1)

Cλ≫1
123 =

1

N

(

λ

2π2

)1/4 ∏3
i=1

√
Ji + 1 (Ji/2)! Γ(γi/2 + 1)

Γ(γ/2 + 1)

γ3
∑

p=0

(C1)
I1...IpIp+1...IJ1/2
K1...Kγ3−pKγ3−p+1...KJ1/2

(C2)
K1...Kγ3−pL1...Lγ1−J2/2+p

I1...IpM1...MJ2/2−p
(C3)

Kγ3−p+1...KJ1/2
M1...MJ2/2−p

Ip+1...IJ1/2L1...Lγ1−J2/2+p

p!(γ3 − p)!(γ1 − J2/2 + p)!(J2/2− p)!(γ2 − J1/2 + p)!(J1/2− p)!
.

(4)

where γ = γ1 + γ2 + γ3. In contrast to the N = 4 SYM case, we see that not only is
there a λ-dependence, but also that there is a range of contractions of the C tensors.
This freedom amounts to the number p of upper indices in C1 which are contracted
with lower indices in C2. It is instructive to compare this result to the tree-level
perturbative result, where to the leading order in 1/N , only one such contraction can
appear1, which we denote by 〈C1 C2 C3〉planar. One then has

Cλ≪1
123 =

1

N

√

(J1/2)(J2/2)(J3/2) 〈C1 C2 C3〉planar +O(λ2/N). (5)

Therefore we see that the chiral primary structure constant C123 is a highly non-
trivial function of both the coupling λ and the charges defining the operators. In the
extremal case, when J3 = J1+J2, the result at strong coupling simplifies dramatically,
and only the planar contraction remains. One finds

Cλ≫1
123 |J3=J1+J2 =

1

N

(

λ

2π2

)1/4
√

(J1 + 1)(J2 + 1)(J3 + 1) 〈CJ1CJ2CJ3〉planar. (6)

It is a very interesting direction of future research to determine the C123 at higher
(or at all) orders of perturbation theory. Judging from the similarity between the
strong coupling and tree-level results in the extremal case, it would appear that the
extremal problem is far more tractable.

In this paper we provide a generalization of (4) to a specific case when two of the
1/2 BPS operators correspond to a specific giant graviton, and the remaining operator
to a pointlike graviton. This implies taking two of the charges, J2 and J3, large and
the remaining one, J1, to be order one. We will find that taking the large J2 = J3

limit of (4) coincides with the small J2/N = J3/N limit of the expressions we obtain
for the two-giant, one point-like three-point structure constants.2 This behaviour was

1The range of contractions in (4) includes all possible contractions, and so naturally includes the
planar contraction.

2In the latter limit we first take N, Ji → ∞ with Ji/N fixed and then Ji/N small (where i = 2, 3).
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also observed in the context of N = 4 SYM [24] where similar holographic three-
point functions involving giant gravitons were studied. There, in addition, it was
found that extremal correlators exhibited a structure very similar to the dual gauge
theory correlators at tree level whereas a complete match was not observed. Later
it was shown that one does obtain a complete match for non-extremal three-point
functions [26]. In the present letter we present three-point functions of both types
expecting that the non-extremal ones truly reflect the strong coupling behaviour of
ABJM theory and hoping that the others could help shed light on the subtleties of
the extremal case. We also calculate the three-point functions in ABJM perturbation
theory at tree-level. Unsurprisingly, it is clear that like in the point-like case, a non-
trivial function of the coupling and the charges defining the operators interpolates
between weak and strong coupling.

We start by introducing the coordinate system which naturally leads to our im-
proved parametrization in section 2 and move on to discussing in detail the anti-
symmetric giant in section 3. In particular, we calculate in this section a number of
extremal as well as non-extremal three-point functions involving two anti-symmetric
giants and one point-like graviton. The same type of correlation functions are sub-
sequently computed for symmetric giant gravitons in section 4 and in appendix B
the dual ABJM three-point functions at tree-level are calculated. Finally, section 5
contains our conclusions.

2 The coordinate system

For the study of the anti-symmetric giant graviton in AdS4 × CP3, it will prove
particularly convenient to use the parametrization

Z1 = rei(χ/2+φ)Z , Z2 = re−i(χ/2−φ)Z̄−1 , Z3 = eρ3+i(θ3+φ) , Z4 = r4e
iφ ,
(7)

where r24 = 1− 2r2 cosh(2ρ)− e2ρ3 and Z = eρ+iθ. The ZI cover the unit S7

|Z1|2 + |Z2|2 + |Z3|2 + |Z4|2 = 1 , (8)

once for

0 ≤ e2ρ3 ≤ 1− 2r2 cosh(2ρ) ≡ e2ρ
max
3 ,

−ρmax ≤ ρ ≤ ρmax where cosh(2ρmax) = 1/(2r2),

0 ≤ r ≤ 1/
√
2, 0 ≤ θ, θ3, χ, φ ≤ 2π.

(9)

The ZI are also in one-to-one correspondence with the four bi-fundamental complex
scalars WI of the ABJM theory. In terms of zi ≡ Zi/Z4 (i = 1, 2, 3), the S7 metric is
expressed as the U(1) fibration over the Fubini-Study CP3,

ds2S7 =
dzidz̄j

(1 + zkz̄k)2
[δij(1 + zkz̄k)− z̄izj ] + (dφ+ A)2 , (10)

with the standard 1-form A = i
2
(d − d̄) ln(1 + zkz̄k). The angle φ is the coordinate

parametrizing the M-theory circle. The S7/Zk is obtained by restricting the range of
the angle φ to 0 ≤ φ ≤ 2π/k.
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3 The anti-symmetric giant graviton

The giant graviton dual to the Schur polynomial of the U(N) adjoint field W1W̄
2 in

antisymmetric representations was found in [1]. In M-theory, the giant graviton is an
M5-brane in S7/Zk and described by the curve

Z1Z̄2 = α2eiχ(t) , (11)

where α is the constant related to the size of the giant. The time t is that of the global
AdS space, and the giant graviton rotates in the χ-direction. This curve reflects the
property that the Schur polynomial of the maximal dimension N becomes a product
of di-baryon operators, detW1 det W̄

2. Namely, when the giant is maximal (α = 0),
the curve becomes two S5’s (Z1 = 0 and Z2 = 0) intersecting at an S3 (Z1 = Z2 = 0)
dual to a product of two di-baryons.

In terms of the coordinates introduced in the previous section, the world volume
of the M5 giant is spanned by (t, ρ, ρ3, θ, θ3, φ) where −ρmax ≤ ρ ≤ ρmax where
cosh(2ρmax) = 1/(2α2), 0 ≤ e2ρ3 ≤ 1− 2α2 cosh(2ρ) ≡ e2ρ

max
3 , 0 ≤ θ, θ3, kφ ≤ 2π.

3.1 The probe analysis

We shall work in the probe approximation. It is straightforward to find the low energy
effective action, i.e., the DBI + WZ action, for the M5 giant:

SDBI =

− (2π)3

k
TM5R

6
S7α

2

∫ ∞

−∞

dt

2

∫ ρmax

−ρmax

dρ

∫ e2ρ
max
3

0

de2ρ3
√

(cosh(2ρ)− 2α2ω2) (cosh(2ρ)− 2α2) ,

(12)

where TM5 = ℓ−6
P /(2π)5, R6

S7 = (2RAdS)
6 = 23(2π)2kNℓ6P , and ω ≡ dχ

dt
. Meanwhile,

the background 6-form potential is given by

C6 = 2TM5R
6
S7e2ρ3r2

(

r2 − 1

2
cosh(2ρ)

)

dρ ∧ dρ3 ∧ dθ ∧ dχ ∧ dθ3 ∧ dφ+ · · · , (13)

with an appropriate gauge choice.3 We then find that

SWZ = +
(2π)3

k
TM5R

6
S7α2

∫ ∞

−∞

dt

2

∫ ρmax

−ρmax

dρ

∫ e2ρ
max
3

0

de2ρ3
(

cosh(2ρ)− 2α2
)

ω . (14)

Introducing the new variable x = cosh(2ρ), the DBI + WZ action for the M5 giant
yields

SM5 = 8Nα4

∫ ∞

−∞
dt

∫ 1
2α2

1

dx

(

x− 1
2α2

)

√
x2 − 1

[

√

(x− 2α2ω2) (x− 2α2)− ω
(

x− 2α2
)

]

.

(15)

3The 6-form potential is proportional to (A + dΛ) ∧ dA ∧ dA ∧ dφ where the 1-form A =
2r2 cosh(2ρ)dθ + 2r2 sinh(2ρ)dχ+ e2ρ3dθ3. This gauge corresponds to the choice Λ = −θ.
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Note that the action vanishes when ω = 1 which corresponds to the M5 giant moving
at the speed of light, i.e., the giant graviton solution.

The R-charge/angular momentum of the M5 giant is fixed

L ≡ ∂LM5

∂ω
= −8Nα4

∫ 1
2α2

1

dx

(

x− 1
2α2

)

√
x2 − 1

[

2α2ω

√

x− 2α2

x− 2α2ω2
+
(

x− 2α2
)

]

, (16)

where LM5 is the Lagrangian for the M5 giant. As in [1], we are unable to find ω or
the Routhian R(α, L) ≡ Lω−LM5(α, ω) as a function of L and α. However, we know
that the Routhian is minimized when ω = 1, as numerically checked in [1]. Hence
the energy E of the giant graviton is equal to L, saturating the BPS bound. This
agrees with the scaling dimension of the Schur polynomial, as L counts field-pairs,
i.e. W1W̄

2 which have conformal dimension 1.
It is easy to find the relation between the angular momentum L and the parameter

α related to the size of the giant graviton (ω = 1):

L

N
=

√
1− 4α4 − 4α4 log

1 +
√
1− 4α4

2α2
. (17)

The size is maximal when α = 0 and zero when α = 1√
2
. In the former case, the angu-

lar momentum is maximal L = N (stringy exclusion principle), whereas it vanishes,
L = 0, in the latter case.

The dimensional reduction to type IIA is straightforward. The M5 giant becomes
a D4-brane. In particular, the maximal giant wraps two CP2’s intersecting at a CP1.

3.2 Holographic three-point functions

The three-point function between two of the giant gravitons described in the previous
section and a chiral primary operator, corresponding to a point-like graviton, may be
computed using the techniques described in [18, 22, 24]. The supergravity fluctuations
corresponding to a chiral primary operator have been derived in [27–29], and used
in a very similar context to the present one in [30], to which we refer the reader for
details. The fluctuations are given by

δgµν = hµν =
4

J + 2

[

∇µ∇ν −
1

6
J(J − 1)

]

sJ(X) YJ(Ω),

δgαβ =
J

3
gαβ s

J(X) YJ(Ω),

δCµ1µ2µ3 = 2 ǫµ1µ2µ3µ4∇µ4 sJ(X) YJ(Ω),

δCα1...α6 = −2 ǫα1...α7∇α7 sJ(X) YJ(Ω),

(18)

where early greek indices refer to S7/Zk coordinates Ω while late greek indices refer
to AdS4 coordinates X , g is the metric and C3 and C6 are the three-form and six-form
Ramond-Ramond potentials. YJ(Ω) represents a scalar spherical harmonic4 on S7/Zk

4We take the radius of the S7/Zk to be 2, and the normalization of the spherical harmonics is
given by

∫

S7/Zk

Y J (Y K)∗ = δJK28π4k−1[(J/2)!]2/(J + 3)!.
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with angular momentum J , while sJ(X) is a scalar field propagating on AdS4 with
mass-squared J(J − 6)/4 and has a bulk-to-boundary propagator given by

〈sJ(x, z) sJ (xB, 0)〉 = ℓ9/2p

2J/2−1π
√
k

R
9/2
AdS

J + 2

J

√
J + 1

zJ/2

((x− xB)2 + z2)J/2
, (19)

where (x, z) are Poincaré coordinates on AdS4, and xB represents the boundary point.
In terms of global coordinates ds2AdS = R2

AdS

(

− cosh2 µdt2 + dµ2 + sinh2 µdΩ2
2

)

(x0, x1, x2, z) =
R

2(coshµ cos t− n1 sinhµ)
(coshµ sin t, n2 sinhµ, n3 sinhµ, 1), (20)

where ~n · ~n = 1 and R denotes the separation along the boundary of the two gi-
ant gravitons. The fluctuation calculation is carried out in Euclidean space, so that
t → −it and x0 → −ix0. The fluctuations (18) are pulled-back onto the Euclidean
M5-brane while the field sJ(X) is replaced by its bulk-to-boundary propagator con-
necting the insertion point on the brane to the boundary. The boundary point xB,
representing the position of the chiral primary field, is sent to infinity and the result-
ing expression is integrated over the on-shell world volume of the brane. The result is
−(R/(2x2

B))
J/2 times the structure constant defining the three-point function. Note

that for the antisymmetric giant of the previous section µ = 0.
We find the following fluctuations of the DBI and WZ parts of the Euclidean

M5-brane Lagrangian density (S =
∫

d6σL)

δLDBI =
R6

AdS

(2π)5ℓ6p
YJ(Ω)

1

2

√
g

(

2J +
cosh 2ρ

cosh 2ρ− 2α2ω2

[

4

J + 2
∂2
t −

J2

J + 2

])

sJ(X),

δLWZ = − R6
AdS

(2π)5ℓ6p
ω
√
gS7/Zk

grβS7/Zk
∂βYJ(Ω)

∣

∣

∣

∣

∣

r=α

sJ(X),

(21)

where
√
g = 26α2e2ρ3

√

(cosh 2ρ− 2α2) (cosh 2ρ− 2α2ω2), and gS7/Zk
is the metric on

the S7/Zk of radius 2, parametrized as in section 2, so that on the classical solution,
the coordinate r is set to α. Using the following spherical harmonic, dual to the
ABJM theory operator Tr(W1W̄

2)J/2, we get the extremal correlator with a point-
like graviton which is the degeneration of the antisymmetric giant graviton to a point

YJ(Ω) =
(

r2eiχ
)J/2

. (22)

The resulting structure constant is

CA
L,L−∆,∆ =

1

N

(

λ

2π2

)1/4

2L
(

2α2
)∆ √

2∆ + 1, (23)

where λ = N/k, L is the number of field-pairs (i.e. W1W̄
2) in the giant graviton and

∆ = J/2 is the number of field-pairs in the chiral primary.
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Given the subtleties associated with extremal correlators appearing in analo-
gous computations in the AdS5/CFT4 correspondence [24], where agreement between
gauge theory and holographic three point functions involving two giant gravitons is
found only for the non-extremal case [26], we present here some calculations of non-
extremal correlators. Specifically we consider the following operators [30]

O1,0 =
2π√
3λ

Tr
[

WIW̄
I − 4W1W̄

1
]

,

O2,0 =
8π2

3
√
5λ2

Tr
[

(WIW̄
I)2 − 10WIW̄

I W1W̄
1 + 15(W1W̄

1)2
]

,

O3,0 =
16π3

3
√
105λ3

Tr
[

(WIW̄
I)3 − 18(WIW̄

I)2 (W1W̄
1)

+ 63(WIW̄
I) (W1W̄

1)2 − 56(W1W̄
1)3
]

,

(24)

which are normalized chiral primary operators. The corresponding spherical har-
monics YJ(Ω) are found by substituting (7) for the WI and normalizing according to
footnote 4

Y2 =
1

2
√
3

(

1− 4 r2e2ρ
)

,

Y4 =
1

3
√
10

(

1− 10 r2e2ρ + 15 r4e4ρ
)

,

Y6 =
1

4
√
35

(

1− 18 r2e2ρ + 63 r4e4ρ − 56 r6e6ρ
)

.

(25)

The calculation then proceeds similarly to the extremal case. Using (21) one obtains

CA
O∆,0

=
1

N

(

λ

2π2

)1/4

×











−π
2
L, ∆ = 1

−2
√
2L+ 11

√
2N
9

(1− 4α4)3/2, ∆ = 2

− 9π
32

√
5

(

2L(4 + 3α4)− 7N(1 − 4α4)3/2
)

, ∆ = 3

,

(26)
for the structure constant corresponding to the three-point functions involving two
giant gravitons and one of O1,0, O2,0, or O3,0 respectively. As mentioned in the
introduction, taking the small L/N (i.e. α → 1/

√
2) limit, in both the extremal and

non-extremal cases, one obtains agreement with the large J2 = J3 = 2L limit of the
point-like result (4), as was the case in N = 4 SYM [24]. Comparing with free-field
contractions (46) and (51)-(54), we see that, as in the point-like case, a non-trivial
function of λ and the charges interpolates between weak and strong coupling results.

4 The symmetric giant graviton

The giant graviton dual to the Schur polynomial of the U(N) adjoint field W1W̄
2

in symmetric representations is an M2-brane wrapping the S2 in global AdS4 space
and rotating along the great circle of S7/Zk. This is the so-called AdS giant [4, 5].
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More specifically, the AdS giant of interest to us rotates along the great χ-circle;
r = 1√

2
, ρ = eρ3 = θ = φ = 0, and Z1Z̄2 =

1
2
eiχ(t).

The DBI + WZ action for the M2 giant is given by

SM2 = −4πTM2R
3
AdS

∫

dt

[

sinh2 µ

√

cosh2 µ− ω2 − sinh3 µ

]

, (27)

where ds2AdS = R2
AdS

(

− cosh2 µdt2 + dµ2 + sinh2 µdΩ2
2

)

and ω ≡ dχ
dt
. Note that

4πTM2R
3
AdS = N/

√
2λ. The angular momentum yields

L ≡ ∂LM2

∂ω
=

N√
2λ

ω sinh2 µ
√

cosh2 µ− ω2
. (28)

The Routhian R(µ, L) = Lω − LM2(µ, ω) is minimized at ω = 1 corresponding to
the M2 giant moving at the speed of light. The energy E of the giant graviton is
again L, saturating the BPS bound and the size of the giant is related to the angular
momentum by

sinhµ =
√
2λ

L

N
. (29)

There is no upper bound on the size of the giant in this case. The dimensional
reduction to type IIA is trivial, and the M2 giant becomes a D2-brane.

A comment is in order: There is another type of M2 giant which rotates along
the M-theory φ-circle. Without loss of generality, we can choose Z4 = eiφ(t), Z1 =
Z2 = Z3 = 0. The analysis is almost the same as the previous case, but there are
slight differences. The energy is E = kL/2 and the size/angular momentum relation
becomes

sinhµ =

√

λ

2

kL

N
, (30)

where the angular momentum is L ≡ ∂LM2

∂ω
with ω = dφ

dt
. Upon dimensional reduction

to type IIA, this M2 giant becomes a bound state of a D2-brane and L D0-branes.
Since the D0-branes are monopoles in the dual field theory, the dual operator carries
L units of monopole charge. The monopole operators can be labeled by the Cartan
generators H = diag(q1, q2 · · · , qN) and H ′ = diag(q′1, q

′
2 · · · , q′N) of two U(N)’s with

q1 ≥ q2 ≥ · · · ≥ qN and q′1 ≥ q′2 ≥ · · · ≥ q′N . In particular, the monopole operator Mk

with the unit charges q1 = q′1 = 1 is in the k-dimensional symmetric representations of
two U(N)’s [31]. Note that, when the level k = 1, the operator M1 is bi-fundamental.
Thus the dual operator is the Schur polynomial of the U(N) adjoint field W4M̄1 in
the L-dimensional symmetric representation. For k > 1, the dual operator is the
gauge invariant constructed from (W4)

kL(M̄k)
L. This operator has dimension kL/2

which agrees with the energy of the AdS giant.

4.1 Holographic three-point functions

The computation of the holographic three-point function between two symmetric
giants and a chiral primary operator proceeds similarly to section 3.2. We parametrize
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the S2 in AdS4 using (see (20)) ~n = (cosϑ, sin ϑ sinϕ, sinϑ cosϕ). Using (18) we find
that the variation of the Lagrangian density is

δLDBI+WZ =
TM2R

3
AdS

2
sinh µ sinϑ

[

−J

3
s+ htt + hϑϑ +

hϕϕ

sin2 ϑ

]

− 2TM2R
3
AdS coshµ sinh2 µ sinϑ ∂µs,

(31)

where s = sJ(X)YJ(Ω) and where µ is the global AdS4 coordinate from (27).
Using the chiral primary corresponding to (22), i.e. the point-like degeneration

of the giant itself, we find the following structure constant defining the extremal
three-point function

CS
L,L−∆,∆ =

1

N

(

λ

2π2

)1/4

2L
√
2∆ + 1

×
(

1 +
2L2

Nk

)−1−∆/2

2F1

(

1, 1 + ∆, 3/2,
2L2

Nk + 2L2

)

.

(32)

We also note the results for the structure constants corresponding to the three-point
functions of two symmetric giants and one of the operators in (24), i.e. non-extremal
correlators

CS
O∆,0

=
1

N

(

λ

2π2

)1/4

2L
√
2∆ + 1

√
π

Γ(1 + ∆/2)

Γ(1/2 + ∆/2)
Y2∆

×
(

1 +
2L2

Nk

)−1−∆/2

2F1

(

1 + ∆/2, 1 + ∆/2, 3/2,
2L2

Nk + 2L2

)

,

(33)

where Y2∆ = −1/(2
√
3), −1/(12

√
10), 3/(16

√
35) for ∆ = 1, 2, 3 respectively. We

note that the expressions (32) and (23) (and similarly, (33) and (26)) agree in the
point-like limit, when L/N is small (i.e. α → 1/

√
2). Thus the symmetric case also

reduces to the point-like result (4), in the large J2 = J3 = 2L limit. Comparing with
free-field contractions (46) and (51)-(54), we see that, as in the point-like case, a non-
trivial function of λ and the charges interpolates between weak and strong coupling
results.

5 Conclusion

Our greatly simplified parametrization of the anti-symmetric giant graviton of AdS4×
CP3 made possible the calculation of holographic three-point functions. It is possible
that further analytical results can now be obtained. One interesting example is the
possibility of obtaining an instanton solution describing the tunneling of the anti-
symmetric giant graviton to a point-like one. Such a solution is known to exist in the
AdS5 × S5 background [5].

Our holographic three-point functions involving two giant and one point-like gravi-
ton reduce to the three-point function of three point-like gravitons calculated in the

9



supergravity approach when the size of the giants approaches zero but remains larger
than O(1). The supergravity three-point functions behave as λ1/4 as λ → ∞ (where
λ = N

k
) signaling that three-point functions of chiral primaries in ABJM theory are

not protected. Hence, we do not expect to be able to recover our holographic three-
point functions by a gauge theory computation. In the case of N = 4 SYM, where
three-point functions of chiral primaries are known to be protected, the method de-
veloped for calculating holographic three-point functions of giant and point-like gravi-
tons [24] led to a complete match between gauge and string theory for non-extremal
correlators [26], but extremal correlators did not match their gauge theory duals
completely [24]. Based on these observations we expect that our non-extremal three-
point correlators correctly encode the strong coupling behaviour of ABJM theory. It
remains, however, of utmost importance to fully understand the subtleties of holo-
graphic three-point functions in the extremal case and we hope that our results for
the AdS4×CP3 case will provide useful data for the future development of this topic.

An interesting outcome of our analysis is that holographic three-point functions
are very different for anti-symmetric and symmetric giant gravitons in AdS4 × CP3.
This difference is not reflected by the dual correlation functions in ABJM theory when
calculated at tree-level, cf. appendix B. As pointed out above, in ABJM theory three-
point functions of 1/2 BPS operators are not protected and not even the lowest order
loop correction to the three-point function of chiral primaries is known. Calculating
such loop corrections constitutes another important future task.
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A Chiral primary structure constants from super-

gravity

The strong coupling result for the three-point function structure constant was given
for the k = 1 case in [25]. Restoring the k dependence is trivial, and one obtains the
following expression

Cλ≫1
123 =

1

N

(

λ

2π2

)1/4
1

Γ(γ/2 + 1)

3
∏

i=1

Γ(γi/2 + 1)
√
Ji + 1√

Ji!

× k 2γ (γ + 3)!

28π4

∫

S7/Zk

YJ1YJ2YJ3,

(34)

10



where the S7/Zk is taken to have radius 2, and the spherical harmonics YJi are taken
to be normalized as

∫

S7/Zk

YJȲK =
28π4

k
δJK

J !

2J(J + 3)!
. (35)

We would like to evaluate the integral of three spherical harmonics, written using the
C tensors appearing in the definition of the operators (1), i.e. using the harmonics

YJ = (CA)I1...IJ/2K1...KJ/2
ZI1 · · ·ZIJ/2Z̄

K1 · · · Z̄KJ/2. (36)

We use the following identity proven in [30]

∫

S7/Zk

ZI1 · · ·ZImZ̄
K1 · · · Z̄Km =

28π4

k(m+ 3)!

∑

σ∈Sm

δI1Kσ(1)
· · · δImKσ(m)

, (37)

to show that the YJ are normalized according to footnote 4. The relation between
the YJ and the YJ is then

YJ =

√

J !

2J
1

(J/2)!
YJ . (38)

We will also require the integral over three YJi. The identity (37) instructs us to
count all possible contractions between the Z’s and Z̄’s. We use the following figure

to explain this counting. We have Ji/2 upper indices and Ji/2 lower indices in each
of three C tensors defining the three spherical harmonics. We denote upper-to-lower
(Z to Z̄) contractions with an arrow pointing at the lower index. We thus have the
following constraints

n1 + n6 = J1/2 = n2 + n5,

n2 + n3 = J2/2 = n1 + n4,

n4 + n5 = J3/2 = n3 + n6,

(39)

which yields the solution

n1 = p, n2 = γ3 − p, n3 = γ1 −
J2

2
+ p,

n4 =
J2

2
− p, n5 = γ2 −

J1

2
+ p, n6 =

J1

2
− p,

(40)

11



where γi = (
∑

j Jj−2Ji)/2 denotes the total number of contractions between the two

operators other than the ith. Assuming, w.l.o.g. that J3 ≥ J2 ≥ J1, we see that

p ∈ [0, γ3]. (41)

We can now count possible contractions. We have (J1/2)!/[n1!n6!] ways of dividing
the J1/2 Z’s into two groups of n1 and n6 respectively, while for the J1/2 Z̄’s we have
(J1/2)!/[n2!n5!]. Multiplying by similar factors for each of the three operators, we
have

(

∏3
i=1(Ji/2)!
∏6

j=1 nj !

)2

(42)

many ways of splitting the various Z’s and Z̄’s into their requisite groups. We then
have

∏6
j=1 nj ! ways of contracting the groups together. We therefore find that

∫

S7/Zk

YJ1YJ2YJ3 =
28π4

k (γ + 3)!

γ3
∑

p=0

(J1/2)!
2(J2/2)!

2(J3/2)!
2

p!(γ3 − p)!(γ1 − J2/2 + p)!(J2/2− p)!(γ2 − J1/2 + p)!(J1/2− p)!

(CJ1)
I1...IpIp+1...IJ1/2
K1...Kγ3−pKγ3−p+1...KJ1/2

(CJ2)
K1...Kγ3−pL1...Lγ1−J2/2+p

I1...IpM1...MJ2/2−p
(CJ3)

Kγ3−p+1...KJ1/2
M1...MJ2/2−p

Ip+1...IJ1/2L1...Lγ1−J2/2+p
,

(43)

and the expression (4) follows.
We note that there are also other spherical harmonics with an unequal number

∆+ of Z’s and ∆− of Z̄’s such that ∆+ − ∆− = mk where m is an integer. These
correspond to states in ABJM with non-zero U(1)B charge, discussed for example in
[30], and which require the presence of the monopole operators discussed beneath (30).
Our analysis can also be carried out for this more general case using n1 + n6 = ∆+

1 ,
n2 +n5 = ∆−

1 , etc., and requiring that the total U(1)B charge,
∑

imi = 0. This then
gives a generalization of (4) for these more general operators. It is not clear however,
how to evaluate these more general structure constants in perturbation theory.

B The dual operators and their three-point func-

tions

In ABJM theory one can construct operators which form Schur polynomials of a single
U(N) by combining two bi-fundamental scalar fields. Denoting the two complex bi-
fundamental scalars as W1 and W̄ 2 a U(N) Schur polynomial can then be written
as

χRL
(W1W̄

2) =
1

L!

∑

σ∈SL

χRL
(σ) (W1W̄

2)
iσ(1)

i1
. . . (W1W̄

2)
iσ(L)

iL
, (44)

where RL denotes an irreducible representation of U(N) described in terms of a
Young tableau with L boxes. The sum is over elements of the symmetric group and

12



χRL
(σ) is the character of the element σ in the representation RL. The calculation of

two- and three-point functions of operators of the type (44) at tree-level is a purely
combinatorial problem which can be solved in close analogy with the similar problem
involving a single adjoint scalar appearing in N = 4 SYM, see [9].

The structure constant dual to the three-point function of two giants and one
point-like graviton of AdS4 × CP3 is

CL,L−∆,∆ ≡ 〈χ̄L χL−∆Tr(W1W̄
2)∆〉

√

〈χ̄L χL 〉〈χ̄L−∆χL−∆〉〈Tr(W̄ 1W2)∆Tr(W1W̄ 2)∆〉
, (45)

where here and in the following the expectation values are to be understood as expec-
tation values in a zero-dimensional Gaussian complex matrix model with unit prop-
agator. Furthermore, χL is the Schur polynomial corresponding to a Young tableau
consisting either of a single column (anti-symmetric case) or a single row (symmetric
case) with L boxes and we have suppressed the dependence of the WI-fields. Expand-
ing the single trace operator in the basis of Schur polynomials and making use of
the known three-point functions of the Schurs from [9] one easily finds the following
expression for the three-point functions in the limit ∆ ≪ L, L,N → ∞, L

N
fixed

CA
L,L−∆,∆ =

1√
∆

(

1− L

N

)∆

, CS
L,L−∆,∆ = (−1)∆−1 1√

∆

(

1 +
L

N

)∆

, (46)

where the superscript A refers to the anti-symmetric case and S to the symmetric
one. For details we refer to [24].

To determine the tree-level contribution to the non-extremal ABJM three-point
function, dual to the correlator of two giant gravitons and one point-like one of the
type given in equation (24) one has to evaluate

CO∆,0
=

〈χ̄L χL O∆,0〉
〈χ̄L χL 〉

. (47)

Writing the operators out explicitly, stripping off the factors originating from the
gauge theory propagators and furthermore exploiting the symmetry properties of the
expectation values one finds that in the formula (47) one can replace O∆,0 by Oeff

∆,0

given by

Oeff
1,0 =

1

2
√
3N

Tr(−2W1W̄
1), (48)

Oeff
2,0 =

1

6
√
5N2

Tr
[

7(W1W̄
1)2 − 4W1W̄

1W2W̄
2 − 4W1W̄

2W2W̄
1
]

, (49)

Oeff
3,0 =

1

12
√
105N3

Tr
[

−9(W1W̄
1)3 + 5(W1W̄

1)2W2W̄
2

+5W1W̄ 1W1W̄
2W2W̄

1 + 5W1W̄ 1W2W̄
1W1W̄

2
]

. (50)

A somewhat lengthy but in principle straightforward calculation along the lines of [26]
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gives

CS
O1,0

= CA
O1,0

= − 1√
3

L

N
, (51)

CS
O2,0

= − 1

6
√
5

L

N

(

8 +
L

N

)

, CA
O2,0

= − 1

6
√
5

L

N

(

8− L

N

)

, (52)

CS
O3,0

=
1

12
√
105

L

N

(

6

(

L

N

)2

+ 5 + 20
L

N

)

, (53)

CA
O3,0

=
1

12
√
105

L

N

(

6

(

L

N

)2

+ 5− 20
L

N

)

. (54)
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