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ABSTRACT 

Objectives: Cardiac computed tomography (CCT) is a common pre-operative imaging modality to 
evaluate pulmonary vein anatomy and left atrial appendage thrombus in patients undergoing catheter 
ablation (CA) for atrial fibrillation (AF). These images also allow for full volumetric left atrium (LA) 
measurement for recurrence risk stratification, as larger LA volume (LAV) is associated with higher 
recurrence rates. Our objective is to apply deep learning (DL) techniques to fully automate the 
computation of LAV and assess the quality of the computed LAV values.  

Methods: Using a dataset of 85,477 CCT images from 337 patients, we proposed a framework that 
consists of several processes that perform a combination of tasks including the selection of images with 
LA from all other images using a ResNet50 classification model, the segmentation of images with LA 
using a UNet image segmentation model, the assessment of the quality of the image segmentation task, 
the estimation of LAV and quality control (QC) assessment. 

Results: Overall, the proposed LAV estimation framework achieved accuracies of 98% (precision, 
recall and F1 score metrics) in the image classification task, 88.5% (mean dice score) in the image 
segmentation task, 82% (mean dice score) in the segmentation quality prediction task, and R2 (the 
coefficient of determination) value of 0.968 in the volume estimation task. It correctly identified 9 out 
of 10 poor LAV estimations from a total of 337 patients as poor-quality estimates.  

Conclusions: We proposed a generalisable framework that consists of DL models and computational 
methods for LAV estimation. The framework provides an efficient and robust strategy for QC 
assessment of the accuracy for DL-based image segmentation and volume estimation tasks, allowing 
high-throughput extraction of reproducible LAV measurements to be possible. 
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INTRODUCTION 

Cardiac computed tomography (CCT) is commonly used to evaluate pulmonary vein (PV) anatomy and 
left atrial (LA) appendage thrombus prior to catheter ablation (CA). These images can also be used for 
full volumetric LA measurement, as there is strong evidence of the association of LA volumes (LAV) 
with atrial fibrillation (AF) recurrence after CA (1,2). Evidence also exists that suggests an association 
between LAV and successful PV isolation in CA of AF (3). The anatomic structure of LA is varied and 
complex, limiting precision of echocardiographic LAV measurements and making manual contouring 
and volume measurements of CCT time-consuming and user-dependent.  

Recent popularity of the use of artificial intelligence (AI), a concept of developing and using computer 
algorithms with human-like intelligence to solve specific tasks, in healthcare is driven by the advances 
and accessibility to high-performance scalable computing equipment, prompting an expansion of 
research into new AI methods and algorithms. AI algorithms have the potential to interpret biomedical 
and healthcare data. These algorithms can be used to optimise care pathways, standardise clinical 
diagnosis and develop predictive models (4). The choice of the method, data quality and context 
associated with the way data is used are important for the success of an AI approach for a given problem. 
For example, deep learning (DL) algorithms, which are a set of techniques based on neural networks 
designed to achieve AI, are particularly suitable for medical imaging segmentation problems (5,6). 
Medical image segmentation helps to quantify anatomical structures and produce quantities that are 
used to diagnose, monitor or prognosticate diseases. AI-based image segmentation tools are particularly 
useful in that they encourage standardisation and consistency, reducing variability that characterises 
manual human segmentation. They also permit high-throughput extraction of reproducible 
measurements that can be used for further analyses.  

It is costly if image-derived variables that support clinical decisions in diagnosis and treatments are 
obtained from low quality or corrupted images e.g. due to artefacts or noise introduced during image 
acquisition. Importantly, with the increasing use of DL models for medical image processing and 
analysis, it is pertinent that quality control (QC) mechanisms are in place to ensure cases where such 
models fail in deducing quantitative measures are flagged or identified. In clinical research, such failed 
cases can be processed manually or discarded altogether in subsequent statistical analysis. However, to 
the best of our knowledge, to date, QC has not been applied to LAV estimation obtained via DL 
approaches.  Of course, LAV estimation machine learning (ML) methods have been proposed for some 
modalities (7–9) other than CT, but even these have only been developed with very limited amount of 
data (e.g. 56 to 58 subjects), meaning that, the generalisability of these methods have not been 
established. Importantly, in tasks like LAV estimation using DL in which image segmentation is only 
part of the process, the errors at the segmentation level can add up cumulatively in the computation of 
the volumes. QC assessment via visual inspection of each segmentation mask is time consuming and 
infeasible, particularly for large datasets. Thus, there is the need for a QC framework for DL-based 
LAV estimations that is generalisable to large datasets and can identify cases that are difficult for DL 
models to read or where the predictions of such models are inaccurate. 

In this study, we present a novel fully automated framework for estimating LAV from CCT images. 
The framework consists of several processes that perform a combination of tasks including the selection 
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of images with LA from all other images using a DL classification model, the segmentation of images 
with LA using a DL image segmentation model, the assessment of the quality of the image segmentation 
task, the estimation of LAV by integrating the interslice volumes computed using segmentation areas 
across neighbouring slices and QC assessment. Existing automated DL methods only combine some of 
these essential processes and not all, making their practical utility and general adoption of such 
algorithms limited, particularly for large cohort studies. Using a dataset of 85,477 contrast-enhanced 
CCT images from 337 patients, we show that our approach provides an efficient and robust 
methodology for fully automated LAV estimation. The proposed approach is also equipped with a QC 
mechanism that allows LAV estimations to be flagged for rejection if it determines that the prediction 
is of poor quality. Thus, the framework allows high-throughput extraction of reproducible LAV 
measurements. 

 

METHODS 

The presentations related to DL in this paper follow the relevant aspects of the recommendation of the 
Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME) 
guidance (10). The overview of the proposed framework for estimating the volume of LA is shown in 
Figure 1 and consists of four main processes. The image selection process performs an image 
classification task for selecting images containing the LA from the set of all CT images acquired for a 
given patient. The image segmentation process obtains the segmentation mask from the selected images 
of the preceding process. The segmentation quality assessment process quantifies the quality of the 
segmentation task while the quality-controlled volume estimation process computes the LAV and 
quantifies the accuracy of that computation. Each of these processes is described in detail in subsequent 
subsections.  

 

Data Acquisition and Analysis Tools 

Study Population 

The study included 337 patients who underwent catheter ablation for symptomatic, anti-arrhythmic 
medication-refractory atrial fibrillation. This retrospective observational study was performed based on 
analysis of CCT within a database from MedStar Georgetown University Hospital in Washington, D.C. 
All patients underwent CCT for pre-operative assessment and gave written informed consent. Images 
were de-identified prior to analysis. This study was approved by the Georgetown University 
Institutional Review Board (STUDY-0400, approved 7/20/2017). A total of 85,477 images for all the 
337 patients were available for the study. This dataset and its subsets are used for all the experiments 
(analysis, modelling and evaluation) in this paper. The baseline characteristics of the studied patients 
are given in Table 1.  

 

CT Acquisition 

Pre-operative CCT was acquired using a high resolution 256-slice scanner (Brilliance iCT; Royal 
Philips; Amsterdam, Netherlands) with 0.625mm detector collimation. Images were acquired using 
prospectively ECG-triggered CCT scanning at 40% of the cardiac cycle, capturing the chest from carina 
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to diaphragm during the angiodynamic administration of contrast medium. The contrast protocol 
included administration of 60mL iohexol (Omnipaque; GE Healthcare; Chicago, Illinois) intravenously 
at a rate of 5mL/s with a kV range between 80-120. 

 

Manual Segmentation of LA as Ground Truth Dataset 

CCT scans were analysed using the semi-automated post-processing program 3D Slicer (Version 
4.11.0, http://www.slicer.org). The LAV was calculated based on manual segmentation using axial 
views: the LA was encircled on each 2D slice of the CCT scan superiorly to inferiorly by a reader with 
several years of experience. Care was taken to exclude the left atrial appendage and pulmonary veins. 
3D Slicer calculates the area of each corresponding LA section and estimates the LAV based on the 
distance between adjacent planes.  

 

Machine Learning Software Tools 

All experiments were conducted in Python programming language with TensorFlow 2.0 Python API 
machine learning framework, available from https://www.tensorflow.org/ on a Nvidia Tesla M40 
machine. The source code for the experiments can be found on the following GitHub repository: 
https://github.com/mabdulkareem/lav_volume_with_qc.  

 

Image Classification Model 

We consider three DL architectures that can be used for the image classification task of selecting images 
containing the LA from the set of all CT images acquired for a given patient.  These architectures are 
based on the VGG (VGG16 and VGG19) (11) and the ResNet (ResNet50) (12) architectures. The 
configuration of the VGG16 and VGG19 architectures are given in Table 2. For each of these two VGG 
architectures, the pooling layer after the last convolutional layer of the network is followed by a global 
average pooling operation and then a dense layer of 1 unit (neuron) with the sigmoid nonlinear 
activation function applied. The sigmoid function is chosen given that we are attempting to solve a 
binary (two-class) classification problem, that is, determine the presence or the absence of LA in a given 
CCT image. Each of the convolutional layers uses rectified linear unit (ReLU) as its activation function.  

The ResNet50 architecture consists of five stages. The first stage consists of one convolutional layer 
and each of the remaining four stages consist of several blocks of convolutional layers with skip 
connections. These blocks are referred to as identity blocks if they contain no convolutional layer in the 
skip connection path, otherwise, they are called as convolutional block. Similar to the VGG16 and 
VGG19 architectures in this work, the last convolutional layer of the ResNet50 architecture is followed 
by a global average pooling operation and then a dense layer of 1 unit (neuron) with the sigmoid 
nonlinear activation function applied and the outputs of the model yields a binary prediction (i.e. an 
image is with/without LA). The configuration of the ResNet50 architecture is given in Table 3. The 
number of parameters of the three classification models are given in Table 4.  

For the training of the VGG16, VGG19 and ResNet50 classification models, the input CCT images 
were resized to 224×224. For generalizability of the architectures, we rotated the images up to ±10° and 
their intensities normalized as part of the on-the-fly data augmentation (which ensures a different set of 
images is used after each complete training epoch). The parameters (weights) of the models were 
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randomly initialized and training proceeded for 60 complete epochs using a batch size of 128 images. 
The binary cross-entropy function was used as the loss function. The optimisation method used was the 
Root Mean Squared Propagation (RMSProp) optimizer, with an initial learning rate of 1e-4, decreasing 
as shown in Table 5. If 24 epochs elapsed with no decrease in the loss function, training was set to cease 
and the weights from the best epoch (i.e. one that yielded the lowest loss) is restored as the model’s 
weights.  

The CT image datasets of 150 patients (Dataset 1) of which with 15961 images contain LA were used 
to train, validate and test the three models. Dataset 1 consists of 42296 CT images in total. Of these, 
15% of these images were selected and divided into two equal sets representing the validation and test 
sets. Specifically, the number of the training, validation and test (evaluation) images are 35952, 3172 
and 3172, respectively.  

Of the 35952 images that constitute the training set, the number of images with LA present and absent 
are 13586 and 22366, respectively. In order to address this data imbalance, we used weighted loss 
function. Let {(𝑥$, 𝑦$), (𝑥(, 𝑦(),… , (𝑥*, 𝑦*), … , (𝑥+, 𝑦+)} denote a training set of 𝑁 samples where 𝑥 is 
the two-dimensional input image and 𝑦 ∈ {0,1}1  denote a binary one-hot encoded label with 𝐶=2 in 
our case, then the weighted loss function is defined as:  

𝐸4(𝜃) = − $
+
[𝜆: ∑ 𝕋:(𝑥*)	𝑦* log(𝑦A*(𝑥*, 𝜃)) ++

*C$ 𝜆$ ∑ 𝕋$(𝑥*)	𝑦*+
*C$ log(𝑦A*(𝑥*, 𝜃))]        (1) 

where 𝜃 denotes the trainable parameters of a model;  𝑦A*(𝑥*, 𝜃) is the posterior probability obtained 
after the application of sigmoid activation function on the output layer of the model; 𝕋:(𝑥*) and 𝕋$(𝑥*) 
are functions that indicate whether image 𝑥E belongs to class 0 or class 1, respectively (in our case, 
whether LA is absent or present in image 𝑥E, respectively); and 𝜆: and 𝜆$ are weights that penalize the 
loss function for false negatives errors (𝑥E that belongs to class 0 is misclassified as belonging to class 
1) and false positive errors (𝑥E that belongs to class 1 is misclassified as belonging to class 0), 
respectively. The weights, 𝜆:	and 𝜆$, can be computed using the following formula:  

𝜆E =
$
FG
∙ +
1

      (2) 

where 𝑘E is the number of images in class 𝑖. In our case, 𝑁 = 35952; class 0 and class 1 are subgroups 
indicating the collection of samples where LA is absent and present, respectively; then, 𝜆:	 =
(1 22366⁄ ) × (35952 2⁄ ) = 0.8037 and 𝜆$	 = (1 13586⁄ ) × (35952 2⁄ ) = 1.3231. In other words, 
the images contain LA (class 1) are weighted as being more valuable than those without LA (class 0) 
since the original Dataset 1 is skewed (i.e. images in class 0 are more than those in class 1).  

 
Image Segmentation Model 

The configuration of the UNet DL architecture (13) that is used for the image segmentation task is given 
in Table 6. The UNet architecture includes batch normalization following every convolutional layer to 
enhance robustness of the model (i.e. reduce sensitivity to initial parameters and learning rates (14)). 
Also, ‘dropout’ operation (15), dropping out 30% hidden neurons, is performed on the first six 
consecutive up-sampling convolutional layers of the architecture to avoid problems associated with 
model overfitting. The output of the model yields an image segmentation mask with the background 
pixels labelled 0 and the foreground pixels (region of the LA) labelled l. The total number of parameters 
of the model is 29,812,034 out of which 29,800,514 parameters are trainable. 

For the training of the UNet model for image segmentation, the input CCT images were resized to 
224×224. The images were rotated up to ±30° and their intensities normalized as part of the on-the-fly 
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data augmentation. The parameters of the models were randomly initialized and training proceeded for 
60 complete epochs using a batch size of 64 images. The sparse categorical cross-entropy function was 
used as the loss function. The optimisation method used was the Adam optimizer, with an initial 
learning rate of 1e-4. If 24 epochs elapsed with no decrease in the loss function, training was set to 
cease and the weights from the best epoch is restored as the model’s weights. The optimisation method 
used was the Adam optimizer, with an initial learning rate of 1e-4, decreasing as shown in Table 7. 

For the training set {(𝑥$, 𝑦$), (𝑥(, 𝑦(),… , (𝑥*, 𝑦*), … , (𝑥+, 𝑦+)} of 𝑁 samples where 𝑥 is the two-
dimensional input image and 𝑦 denote the two-dimensional segmentation mask, then the sparse 
categorical cross-entropy loss function is defined as:  

𝐸4(𝜃) = − $
+
[∑ 	𝑦* log(𝑦A*(𝑥*, 𝜃))+

*C$ ]     (3) 

where 𝜃 denotes the trainable parameters of a model and  𝑦A*(𝑥*, 𝜃) is the posterior probability obtained 
after the application of ‘softmax’ activation function on the output layer of the model.  

The CT image datasets of 150 patients in Dataset 1 with LA present (15961) were used to train, validate 
and test the UNet models for the segmentation of LA. Of these, 15% of these images were selected and 
divided into two equal sets representing the validation and test sets. The training, validation and test 
images are 13567, 1197 and 1197, respectively.  

 

Image Segmentation Quality Assessment 

One of the methods that have been proposed to address QC for AI-based segmentation tasks is the so-
called Reverse Classification Accuracy (RCA) method (16,17). The RCA algorithm attempts to predict 
the dice similarity coefficient (DSC), or dice score, using the segmentation mask in the absence of the 
ground truth. DSC is a measure of similarity between the label and predicted segmentation masks. 
Given two sets (two images in this case) 𝐴 and 𝐵, DSC score can be expressed as follows: 

𝐷𝑆𝐶 = 	 (|Z∩\|(|Z|]|\|)
      (4) 

where |𝐴| and |𝐵| represent the cardinalities of set 𝐴 and 𝐵 (i.e. the number of elements in each set), 
respectively. The DSC, which has a range of [0,1], is a useful summary measure of spatial overlap that 
can be applied to quantify the accuracy in image segmentation tasks. Rather than using one test image 
to validate a segmentation model, it can be used as a statistical validation metric by computing the DSC 
of several images from a segmentation model and evaluating the mean DSC, allowing reproducibility 
and comparison of the model with other models. For the purpose of this study, we will consider the 
segmentation model’s performance as good if the mean DSC is greater than 0.8 on evaluation dataset.  

The RCA algorithm consists of 3 main steps: Step 1 involves the image registration (rigid registration) 
of some 𝑁 number of (moving) images against the 𝑘^_ (fixed) image to obtain a set of 𝑁 transformation 
matrices; Step 2 involves using the transformation matrices from Step 1 to warp the segmentation masks 
of the 𝑁 images – thereby obtaining a set of 𝑁 warped segmentation masks; and Step 3 involves the 
prediction of the dice score. Thus, for a given mask, say mask 𝑚, from the output of the DL 
segmentation model, a set of warped masks are computed using the transformation matrices obtained 
in Step 1; these warped masks of mask m are then compared with the all warped segmentation masks 
obtained in Step 2 as ground truth in order to obtain the set of dice scores. The maximum dice score in 
the set of dice scores is assumed to be the predicted dice score – which is often an estimate that is good.  
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In our segmentation quality assessment approach, we modified the RCA method to improve its 
prediction accuracy – we call this the modified RCA (mRCA) method. Specifically, rather than using 
one fixed image in Step 1, we used several fixed images – thereby, building an atlas-like knowledge 
base. From 𝑀=704 images from p=5 patients (with patients selected at random) containing LA and 
their segmentation masks, starting from the first image of these stacked layers of images, we selected 
images at 25 slice intervals – a set of 𝐾=29 images in total – for obtaining the transformation matrices 
and warped segmentation masks. In particular, the transformation matrices {𝑇$, 𝑇(, …, 𝑇+} and warped 
segmentation masks {𝑤$, 𝑤(, …, 𝑤+} were computed by selecting each of these 29 images as the 𝑘^_ 
image used as the fixed image in the rigid registration process of Step 1 and the remaining 28 images 
as the moving images – iterating through all the 29 images in the set. In total, we have 𝑁=812 (i.e. 
29x28) transformation matrix and warped segmentation mask pairs in Step 2. Thus, in Step 3, in order 
to predict the dice score of mask 𝑚, the 812 transformation matrices are used to warp m and each of 
these warped masks is compared with its corresponding warped segmentation mask to obtain a list of 
812 dice scores 𝐷={𝑑$, 𝑑(, …, 𝑑+}. The maximum dice score in this list, that is 𝑚𝑎𝑥(𝐷), is the 
predicted dice score for mask 𝑚. 

The 𝑀=704 images from p=5 patients is a subset of the entirety of images (1315). This subset is the 
complete selection of images in which LA is present. We find using several images across several 
patients and across several slices in the mRCA method built using 29 images superior in dice score 
prediction accuracy than using 100 images built with the RCA method in the original paper. Figure 2 
shows a schematic description of the mRCA method.  

 

Volume Estimation and Quality Control   

The estimation of LAV involves the summation of the interslice volumes where each interslice volume 
is estimated by computing the approximate volume between two consecutive slices using the following 
formula:  

𝑉 =	∑ 𝑣E+
E        (5) 

where 𝑉 is the estimated LAV, 𝑁 is the number of slices and  𝑣E is the 𝑖th interslice volume and is 
defined as follows:  

𝑣E =
ZG	]	ZGij

(
𝑧FG       (6) 

𝑧FG  is the distance between two consecutive slices in the 𝑧 direction and is given by 𝑧FG = 𝑧E𝑘l, where 𝑘l 
is the unit vector in the 𝑧 direction and 𝑧E is the perpendicular distance between two consecutive parallel 
slices; 𝐴E and 𝐴E]$ are the areas of the two consecutive slices. That is, 𝑣E is the arithmetic mean of the 
areas of two consecutive slices multiplied by the distance between them in the direction of the 𝑧-axis. 
Also, 𝐴E can be obtained as follows: 

𝐴E = 𝑛E𝑠o𝑠p        (7) 

where 𝑛E is the number of pixels that constitutes the LA area on the 𝑖th slice; 𝑠o  and 𝑠p are the pixel 
dimensions in the 𝑥 and 𝑦 directions, respectively; and 𝐴E = 𝑛E𝑠( where 𝑠 = 𝑠o = 𝑠p.  

In order to assess the quality of volume estimation, it is tempting to try to check the quality of the 
segmentation mask of each slice using the mRCA technique described in the preceding section but 
computational time increases significantly in doing so. Because neighbouring slices are often similar, 
we propose to assess the quality of slices at specific slice intervals. For example, in order to assess the 
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quality of LAV estimation and given that neighbouring slices are often similar, we propose to assess 
the quality of slice at 8 slice intervals using the following two steps:  

Step 1 Estimate the segmentation quality by computing the set of dice scores, 𝔻, at 8 slice intervals 
using mRCA method; that is, 𝔻 = {𝑑$, 	𝑑r, 𝑑$s, … }. 

Step 2 Compute the following:  

• QC Score Mean, 𝑞uvw*: the arithmetic mean of 𝔻.  
• QC Score Percentage, 𝑞xvyz: the percentage of entries of 𝔻 with value of 𝑑E > 0.7 
• QC Score Percentage Number, 𝑞*{: the number of entries of 𝔻 with value of 𝑑E > 0.7  

The scores 𝑞uvw*, 𝑞xvyz and 𝑞*{  can then be used as a QC mechanism by the imposition certain 
conditions on them in order to determine whether to accept or reject an estimated LAV computation.  

In addition, in order to compare the predictions of the RCA and mRCA methods against the actual DSC 
scores, the mean absolute error (MAE) and mean squared error (MSE) may be used. The MAE and 
MSE are defined as follows:  

MAE=$
*
∑ |𝑒E|*
EC$       (8) 

MSE=$
*
∑ 𝑒E(*
EC$      (9) 

where error  𝑒E = 𝑦E − 𝑦AE, and 𝑦E and 𝑦AE represent the label and predicted values, respectively. 
 

RESULTS 

Image Classification Model 

The performance metrics (precision, recall and F1 score) of the VGG16, VGG19 and ResNet50 trained 
models on the same evaluation dataset are given in Table 8 while the confusion matrices are given in 
Table 9. Figure 3 provides some examples of the predictions of the classification models. The results 
show that ResNet50 model outperforms both VGG16 and VGG19 models on all the metrics. As such, 
we selected ResNet50 model as the basic classification model for our framework in the rest of this 
paper.  

 
 
Image Segmentation Model with Quality Assessment 

The evaluation of the predicted results of the UNet model was performed using the DSC score, a 
measure of similarity between the label and predicted segmentation masks, as the performance metric. 
For the 1197 evaluation set, the mean DSC is 0.885 (± 0.12 standard deviation; 25%, 50% and 75% 
percentiles are 0.88, 0.93 and 0.95, respectively; the maximum is 0.98). The distribution of the dice 
score is given in the histogram and boxplot of Figure 4. Figure 5 displays some examples of the 
predictions of the segmentation model. Overall, the performance of the segmentation model was good 
(mean DSC > 0.8). 

Figure 6 shows some examples of image segmentation quality assessment. For an evaluation dataset of 
2000 test images randomly selected from 15961 images with LA of Dataset 1, Table 10 shows the mean 
dice scores computed for the actual DSC and the predicted DSC with RCA and mRCA methods. The 
table also shows the MAE and MSE values comparing the predictions of these methods against the 
actual DSC scores. These metrics indicate that mRCA has smaller errors than the RCA method. The 
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image classification process, the image segmentation process and the prediction of the dice score for an 
image takes 805 ms with RCA method and 4385 ms with mRCA method. 

 
 

Volume Estimation with Quality Assessment 

The regression and the Bland-Altman plots of the label volumes versus the predicted volumes computed 
for the study population of 337 patients using the proposed framework are shown in Figure 7. Figure 
(a) shows the regression plot with volume computed using Equations 5 to 7 before QC assessment was 
implemented. In our case, 𝑠o = 𝑠p and 𝑧FG  is approximately between 2.2 mm and 4.5 mm. Thus, without 
QC, the mean volume of the population is 137.38±45.58 ml. In order to determine whether an LAV 
estimate is ‘poor’ quality for a given patient using the scores 𝑞uvw*, 𝑞xvyz and 𝑞*{ , we express the 
condition to be satisfied as follows:  

((𝑞uvw* < 0.6) 𝐴𝑁𝐷 (𝑞xvyz < 60) 𝐴𝑁𝐷 (𝑞*{ < 4)) 𝐴𝑁𝐷 ((𝑞uvw* < 0.65) 𝑂𝑅 (𝑞xvyz < 20) 𝑂𝑅 (𝑞*{ < 3)) 

where 𝐴𝑁𝐷 and 𝑂𝑅 are logical operators. If this condition is not satisfied, the estimated LAV value is 
of ‘good’ quality. Figure (b) shows the regression plot after the imposition of this condition. With QC, 
the mean volume of the population is 138.38±45.58 ml. The degree of linear correlation between the 
label and predicted quality-controlled volumes, R2, is 0.864 for the study population of 337 patients 
without QC. With QC, R2 is 0.968. Bland-Altman plots without and with QC are shown in figures (c) 
and (d) of Figure 7, respectively. 95% of the difference between the label and predicted volume values 
will be between -34.15 and +35.09 of the mean volume difference value of 0.47 for figure (c), and 
between -16.89 and +15.71 of the mean volume difference value of -0.59 for figure (d). In addition, 
Figure 8 shows (a) the regression plot and (b) the kernel density estimate plot along the label and 
predicted LAV marginal distributions. It also shows (c) the regression plot along the two variables’ 
boxplots and (d) the kernel density and histogram plots of the variables with the dashed vertical lines 
representing the arithmetic mean of the distributions. The plots of Figures 8 (a – d) correspond to the 
label volumes versus the predicted volumes without quality control (QC) and the plots (e – h) 
correspond to these variables using the proposed QC framework. The estimation of LAV with and 
without QC took approximately 74.25 sec per patient and 23.32 sec per patient, respectively. Table 11 
shows 5 examples of the predicted volumes using the proposed framework.  

 

DISCUSSION 

Summary of Findings 

In our methodology, we developed three DL classification models namely, VGG16, VGG19 and 
ResNet50. We selected ResNet50 model as the basic classification model for our framework as it 
outperforms the other two models on all the metrics.  

For the image segmentation model, the overall performance for the 1197 evaluation set is 88.5% based 
on the average DSC score which is close to accuracy of 87.2% reported in (18) which involved the 
segmentation of the four cardiac chambers from CT images. The median (50% percentile) dice score of 
the proposed 2-dimensional UNet image segmentation model on the evaluation set is 0.93. Similarly, a 
recent effort in (19) that uses a more complex 3-dimensional UNet DL architecture for the segmentation 
of LA has also been shown to have a performance of 0.93 median dice score. 

The RCA method (17) uses 100 images for obtaining the transformation matrix and warped 
segmentation mask pairs whose number increases with the number of images. In comparison, the 
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mRCA method we proposed uses 29 images selected from a stack of 704 images by selecting images 
at 25 slice intervals. The choice of p=5 patients and the selection of images at 25 slice intervals was to 
keep the sizes of the transformation matrices and the warped segmentation masks as small as possible 
(which reduces the time for computing the predicted DSC score) and at the same time ensure that the 
selected images are representative of the complex geometry of LA. This slice interval of 25 used for 
the mRCA method could be reduced further which, in turn, will increase the number of images and 
improve the accuracy of DSC score prediction at the expense increase in computation time. The mRCA 
method (mean dice score of 82%) for predicting DSC score shows far better performance compared to 
the RCA method (mean dice score of 52%) on testing dataset of 2000 images but that was at the expense 
of increase in computation time. The process of classifying an image as containing LA, segmenting LA 
from the image and predicting its dice score takes 805 ms with RCA method while it takes 4385 ms 
with mRCA method. 

The degree of linear correlation between the label and predicted quality-controlled volumes, R2, is 0.968 
for the study population of 337 patients. As neighbouring slices are similar, for LAV estimation with 
QC, we have assessed the segmentation quality of slices at 8 slice intervals for computing 𝑞uvw*, 𝑞xvyz 
and 𝑞*{ . The number of slice intervals to estimate dice scores was chosen to be 8 and that has worked 
for our volume computation problem where the interslice distance ranges from 2.2 mm to 4.5 mm. In 
practice, the number of slice intervals could be varied depending on the interslice distance settings of 
the acquisition machine. Generally, a small value could improve quality assessment at the expense of 
increase in computation time of LAV estimates. 

The scores 𝑞uvw*, 𝑞xvyz and 𝑞*{  were used to develop a QC mechanism by imposing certain conditions 
on them in order to determine whether to accept or reject an estimated LAV computation. The approach 
correctly identified 9 out of 10 poor LAV estimations from a total of 337 patients as LAV estimation 
of poor quality (missing 1 out of 10). Of course, this condition may have worked for our task but, in 
practice, the constraint of this condition could be made more stringent or relaxed to suit a given problem 
or dataset. Moreover, the estimation of LAV without QC took approximately 23.32 sec per patient. 
With QC, the estimation took 74.25 sec per patient.  

In addition, in relation to the figures (a) and (b) of Figure 7, apart from the cases of the very small 
volumes (4 out of 9) that would have been identified by simple thresholding even without the proposed 
quality control approach, the main reason that explains why our QC mechanism flagged these 9 cases 
are that these patients have anatomical abnormalities that were unfamiliar to the ML models (that is, 
the dataset used for the training do not contain many of these abnormal cases and, therefore, the model 
does not generalise to these cases). Such abnormalities include large left atrial appendage, atypical atrial 
dimensions and geometries, and mispositioning of the pulmonary arteries.  

For the classification and segmentation models, we have used the 150 patients (Dataset 1) and, for the 
volume computation, we have used the whole of the 337 patients. We note here that, in an attempt to 
make the classification and segmentation models more generalizable, we trained these models further 
using transfer learning approach (i.e. by training the models further but fixing certain part of the model 
weights) with the 151 to 337 datasets but these subsequent models were not superior to the initial models 
trained on Dataset 1. Furthermore, since model training was not carried out during volume estimation 
(that is, for example, we are not fitting a regression-like model where the input variables are the images 
and the output variable is the volume), it was meaningful to compare the computed volumes for the 
whole dataset of 337 patients using our approach with the results obtained by manual computation from 
an expert. In other words, our deep learning models are oblivious to the values of the volumes for all 
the 337 patients, and we are able to show that our approach is able to predict the volumes with high 
accuracy.   
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Researchers have successfully used DL for the segmentation and estimation of quantifiable measures 
of the different structures of the heart from CT images (18,20). This set of algorithms include DL 
segmentation models which can find certain images challenging to segment owing to the considerable 
variation of cardiac anatomy among individuals. Importantly, these algorithms are not fully automated 
to compute quantifiable measures from the output of segmentation tasks. Algorithms that do, such as 
those given in (21), used ad hoc approaches that do not include mechanisms to detect or handle cases 
where image segmentation exercise fails which will inevitably affect the results of the computed 
quantities or the results of further analysis that are based on such quantities. This can be observed, for 
example, in our estimation of LAV in this study where DL without QC mechanism failed to correctly 
compute 10 out 337 LAV values. Practically, this could be costly in clinical decision support for 
diagnosis and treatments. 

There are LAV estimation ML methods that have been proposed for other modalities. For example, 
automated volume estimation methods for the heart ventricles for cardiac magnetic resonance (CMR) 
images, such as Bayesian method (7), method of linear support vector machines (8), and method of 
multi-scale deep belief networks and regression forests (9), have been proposed that are capable of 
estimating the volumes directly when given the set of images containing LA and without the image 
classification or segmentation processes. Despite the promise of these approaches, they have only been 
developed with very limited amount of data (e.g. 56 subjects in each of (7) and (9) and 58 subjects in 
(8)), meaning that, the generalisability and evaluation of the methods to large datasets have not been 
reported. 

QC of medical images involves identifying those images with problems that resulted from the image 
acquisition process, image reconstruction algorithm or even in a step of the image processing pipeline. 
QC tasks are important to ensure the usability of these images. QC assessment via visual inspection is 
highly subjective, time consuming and infeasible in large-scale image acquisition or analysis settings. 
Methods that have been developed for QC assessment of medical images include the estimation of 
image noise level (22,23), random forest supervised learning approaches (24,25), simple label voting 
scheme (26), probabilistic schemes (27,28), and Bayesian neural networks learning (29–31). Many of 
these methods are inherently specific to the tissues being segmented or to the modalities used for image 
acquisition.    

With advancement in the applications of AI in medical imaging, it is important to have QC methods 
that can assess the quality of the analyses being carried out by AI techniques. Current studies on this 
subject have only focused on the image segmentation part of the process. Researchers, such as in 
(16,17,32,33) reduce the problem to developing classifiers for estimating Dice Similarity Coefficient 
(DSC), one of the common metrics for image segmentation accuracy, in the absence of manual 
segmentation as ground truths. The classifiers are often trained using random forests (16,32) or 
convolutional neural network (16,33) on a fixed number of space (k-space) of segmentation features 
with cases where ground truths are already known. In (17), QC of image segmentation task of CMR 
images was proposed. The method used the RCA technique (16,34) to predict the DSC score. QC is 
carried out by classifying the segmentation mask of an image as good quality if the accuracy estimate 
is above a pre-defined threshold value, and as poor quality otherwise.  

The existing DL algorithms dealing with automated segmentation of CT images do not come with 
segmentation QC mechanisms. This is an important setback in practice as it makes the algorithms 
unsuitable for fully automated analysis tasks in clinical applications. Moreover, in a problem like LAV 
estimation in which segmentation is part of the process and not itself the end goal of the analysis, the 
errors at the segmentation level add up cumulatively in the computation of the volumes. Thus, a QC 
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method for DL-based segmentation models that can identify cases that are difficult or inaccurate as 
presented in this paper will be immensely useful. 

 

Limitation 

Our models were trained on data from a single hospital system, limiting their generalisability. Data 
augmentation may have improved the chance that performance may not deteriorate significantly from 
datasets from elsewhere. It would therefore be worthwhile assessing the performance of these models 
using an external dataset. Accordingly, the performance of the models may then be improved, if needed, 
with training on heterogenous multi-centre datasets. In addition, the framework we have proposed is 
not limited by data from a single hospital. We believe our approach is generalisable for building models 
with multi-centre datasets with little or no modification. Importantly, the cases that are flagged as 
inaccurate LAV estimates in our approach could be interpreted as samples where there is little dataset 
on which the models have learnt from. The issue can then be addressed by providing training data that 
covers those areas of interest. This approach could well prove useful in the future given the current 
trend in AI research is towards developing data-centric AI algorithms (35).  

 

Future Work 

The mRCA could be further optimised to reduce computation time, possibly by reducing the sizes of 
the transformation matrices and the warped segmentation masks. The quality assessment method is not 
based on checking the segmentation quality of every slice, it should therefore be worthwhile exploring 
the optimal interslice interval that will reduce computational time without degrading the quality of LAV 
prediction. Although our framework focused on LAV estimation with QC for CT images, the 
framework can be adapted to estimate volumes of other tissues and for images from other modalities.  

 

CONCLUSION 

We proposed a novel comprehensive framework that consists of DL models and computational methods 
for LAV estimation. Although the individual DL model architectures in this work are not new, putting 
them together in a single framework with a novel QC mechanism as we have done is novel and more 
clinically useful.  The framework provides an efficient and robust strategy for QC assessment of the 
accuracy for DL-based image segmentation and volume estimation tasks. It therefore efficiently fully 
automates the process of estimating LAV and is able to flag cases where it fails to accomplish high 
quality prediction, perhaps, better described as a framework that allows DL models to “grade their own 
homework”. The framework we have proposed in this paper will be highly appreciated by clinicians for 
carrying out LAV estimation, particularly for large cohorts and high-throughput applications, and 
practitioners involved in developing digital solutions around CCT image applications such as CCT 
image acquisition that will allow better analysis results.  

 

ABBREVIATIONS AND ACRONYMS 

AF = atrial fibrillation  
AI = artificial intelligence  
CA = catheter ablation  
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CCT = cardiac CT 
CMR = cardiac magnetic resonance  
CT = computed tomography  
DL = deep learning  
DSC = dice similarity coefficient  
LA = left atrium  
LAV = LA volume  
ML = machine learning 
mRCA = modified RCA  
PV = pulmonary vein  
QC = quality control  
RCA = reverse classification accuracy 
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Figure 1. The overview of the proposed framework for estimating the volume of LA 
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Figure 2. The three steps of the Modified Reverse Classification Accuracy (mRCA) method 
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Figure 3. Some examples of the prediction of the classification models. The top, middle and bottom 
rows correspond to the predictions of the VGG16, VGG19 and ResNet50 models, respectively. The red 
arrows point to the LA. The middle column shows images with LA that the classification models got 
wrong. 
 
 

  

(a)       (b) 

Figure 4. The histogram (a) and the boxplot (b) of the dice score of the evaluation dataset. The 25%, 
50% and 75% percentiles are 0.88, 0.93 and 0.95, respectively.  
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Figure 5. Some examples of the variable prediction of the segmentation model (the red and blue 
contours represent the label and prediction and the corresponding dice scores are shown on the top of 
each image)  
 
 

 

Figure 6. Examples of image quality assessment comparing RCA and mRCA methods. The ‘Good’ 
(𝜂 ∈ [0	0.2]), ‘Average’ (𝜂 ∈ [0.2	0.5]) and ‘Poor’ (𝜂 ∈ [0.5	1.0]) refer to the quality of the predictions 
of the RCA method when compared to the actual DSC scores in terms of the relative error (not shown 
on the figure), where relative error 𝜂 = �(𝐷𝑆𝐶wz^�w� − 𝐷𝑆𝐶xyv�Ez^v�)/𝐷𝑆𝐶wz^�w��). 
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Figure 7. The regression ((a) and (b)) and the Bland-Altman ((c) and (d)) plots of the label volumes 
versus the predicted volumes using the proposed framework. The data points are shown in blue and 
green in figure (a); the green data points (9 out of 337) in the figure have been flagged by the QC 
condition as poor LAV estimates therefore eliminated in figure (b). The red data point in figure (b) 
indicates one poor volume estimate (out of a total of ten) was missed by the imposed condition. In 
figures (c) and (d), the upper and lower dashed horizontal lines represent the confidence interval at 
95%.  
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Figure 8. The top row shows (a) the regression plot and (b) the kernel density estimate plot along the 
two variables (label volume and predicted volume) marginal distributions. It also shows (c) the 
regression plot along the two variables’ boxplots and (d) the kernel density estimate and histogram plots 
of the variables with the dashed vertical lines representing the arithmetic mean of the distributions. The 
symbols 𝜌 and 𝑝 represent the p-value and Pearson correlation coefficient, respectively. The plots (a – 
d) correspond to the label volumes versus the predicted volumes without quality control (QC) and the 
plots (e – h) correspond to these variables using the proposed QC framework.  

 
Table 1. Baseline characteristics of the patients 

Baseline Characteristics Total 
(N = 337) 

Age, years 63.2 (± 10.2) 
Men, n (%) 223 (66) 
BMI (kg/m2) 31.1 (± 7.0) 
LAV (ml) 137.1 (± 46.4) 
Paroxysmal AF, n (%) 219 (65) 

Values are numbers and percentage (%) of the variables (± standard deviation). 
Abbreviations: AF, atrial fibrillation; BMI, body mass index; LAV, left atrial volume. 

 
Table 2. Configuration of the VGG16 and VGG19 DL Architectures. The convolutional layer 
parameters are denoted as “conv2-(number of filters)”, where “conv2” denotes 2D convolution 
operation and the height and width of the 2D convolution window is 2×2. For brevity, the ReLU 
activation function is not shown. 

VGG16 VGG19 
Input (224 × 224 one channel image) 

conv2-64 
conv2-64 

conv2-64 
conv2-64 

maxpool (kernel size = 2, stride = 2) 

conv2-128 
conv2-128 

conv2-128 
conv2-128 

maxpool (kernel size = 2, stride = 2) 

conv2-256 
conv2-256 
conv2-256 

conv2-256 
conv2-256 
conv2-256 
conv2-256 

maxpool (kernel size = 2, stride = 2) 

conv2-512 
conv2-512 
conv2-512 

conv2-512 
conv2-512 
conv2-512 
conv2-512 

maxpool (kernel size = 2, stride = 2) 
conv2-512 
conv2-512 
conv2-512 

conv2-512 
conv2-512 
conv2-512 
conv2-512 

maxpool (kernel size = 2, stride = 2) 

global average pooling 

fully connected layer (1 unit, sigmoid activation function) 

 

Table 3. Configuration of the ResNet50 DL Architecture. The convolutional layer parameters are 
denoted as “conv2-(number of filters)”, where “conv2” denotes 2D convolution operation and the 
height and width of the 2D convolution window is 2×2. Each of the convolutional or identity blocks is 
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followed by the number of filters 𝑛E of its three 2D convolutional operations as in “convolutional block 
𝑥 (𝑛$, 𝑛(, 𝑛�)”. Two or more identity blocks stacked together are denoted as “[identity block 𝑥 (𝑛$, 𝑛(, 
𝑛�)] × 𝑘”, where 𝑘 denotes the number of blocks stacked together.  

Stage name Layer/Block Name Output size 
 Input 224 × 224  

(one channel image) 
Stage 1 zero padding 

conv2-64 
batch normalization 

ReLU 
zero padding 

maxpool (kernel size = 2, stride = 2) 

230 × 230 
112 × 112 
112 × 112 
112 × 112 
114 × 114 
56 × 56 

Stage 2 convolutional block 1 (64, 64, 256) 
[identity block 1 (64, 64, 256)] × 2 

56 × 56 
56 × 56 

Stage 3 convolutional block 2 (128, 128, 512) 
[identity block 2 (128, 128, 512)] × 3 

28 × 28 
28 × 28 

Stage 4 convolutional block 3 (256, 256, 1024) 
[identity block 3 (256, 256, 1024)] × 5 

14 × 14 
14 × 14 

Stage 5 convolutional block 4 (512, 512, 2048) 
[identity block 4 (512, 512, 2048)] × 2 

7 × 7 
7 × 7 

 global average pooling 2048 
fully connected layer (1 unit, sigmoid activation function) 1 

 

Table 4. Number of parameters of the DL Architectures. 
 VGG16 VGG19 ResNet50 

Number of Trainable Parameters 14,714,049 20,023,745 23,530,369 

Total Number of Parameters 14,714,049 20,023,745 23,583,489 

 

Table 5. Learning rate adopted for training the image classification models with 𝑙𝑟 = 1e-4 
epoch 1-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-60 
Learning 
Rate 

𝑙𝑟 0.5×𝑙𝑟 0.2×𝑙𝑟 0.1×𝑙𝑟 0.05×𝑙𝑟 0.02×𝑙𝑟 0.01×𝑙𝑟 0.005×𝑙𝑟 0.002×𝑙𝑟 0.001×𝑙𝑟 

 
Table 6. Configuration of the UNet DL Architecture. The convolutional layer parameters are denoted 
as “conv2 (dimension of output, number of filters)” where “conv2” denotes 2D convolution operation. 
“conv2-T (dimension of output, number of filters)” denotes 2D transpose convolution layer. The conv2 
and conv2-T operations have ‘same’ padding (i.e. output and input of the operation have the same height 
and width).  

Layer/Block/Operation Name Layer/Block/Operation Name 
INPUT IMAGE 

Input Image (224×224, 1) 
OUTPUT IMAGE 

Output Image (224×224, 2) 
Block 1 

Conv2 (112×112, 64) [kernel size = 3×3, stride = 2] 
Leaky ReLU 
Conv2 (112×112, 64) [kernel size = 3×3, stride = 1] 
Leaky ReLU 

Block 10 
Skip connection (concatenates outputs of Blocks 1 and 9) 
Conv2-T (224×224, 2) [kernel size = 3×3, stride = 2] 
softmax 

Block 2 
Conv2 (56×56, 128) [kernel size = 3×3, stride = 2] 
Batch normalization 
Leaky ReLU 
Conv2 (56×56, 128) [kernel size = 3×3, stride = 1] 
Batch normalization 
Leaky ReLU 

Block 9 
Skip connection (concatenates outputs of Blocks 2 and 8) 
Conv2-T (112×112, 64) [kernel size = 3×3, stride = 2] 
Batch normalization 
ReLU 
Conv2-T (112×112, 64) [kernel size = 3×3, stride = 1] 
Batch normalization 
ReLU 

Block 3 
Conv2 (28×28, 256) [kernel size = 3×3, stride = 2] 
Batch normalization 
Leaky ReLU 

Block 8 
Skip connection (concatenates outputs of Blocks 3 and 7) 
Conv2-T (56×56, 128) [kernel size = 3×3, stride = 2] 
Batch normalization 
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Conv2 (28×28, 256) [kernel size = 3×3, stride = 1] 
Batch normalization 
Leaky ReLU 

Dropout 
ReLU 
Conv2-T (56×56, 128) [kernel size = 3×3, stride = 1] 
Batch normalization 
Dropout 
ReLU 

Block 4 
Conv2 (14×14, 512) [kernel size = 3×3, stride = 2] 
Batch normalization 
Leaky ReLU 
Conv2 (14×14, 512) [kernel size = 3×3, stride = 1] 
Batch normalization 
Leaky ReLU 

Block 7 
Skip connection (concatenates outputs of Blocks 4 and 6) 
Conv2-T (28×28, 256) [kernel size = 3×3, stride = 2] 
Batch normalization 
Dropout 
ReLU 
Conv2-T (28×28, 256) [kernel size = 3×3, stride = 1] 
Batch normalization 
Dropout 
ReLU 

Block 5 
Conv2 (7×7, 1024) [kernel size = 3×3, stride = 2] 
Batch normalization 
Leaky ReLU 
Conv2 (7×7, 1024) [kernel size = 3×3, stride = 1] 
Batch normalization 
Leaky ReLU 

Block 6 
Conv2-T (14×14, 512) [kernel size = 3×3, stride = 2] 
Batch normalization 
Dropout 
ReLU 
Conv2-T (14×14, 512) [kernel size = 3×3, stride = 1] 
Batch normalization 
Dropout 
ReLU 

 

Table 7. Learning rate adopted for training the UNet image segmentation model with 𝑙𝑟 = 1e-4 
epoch 1-10 11-20 21-30 31-35 36-40 41-45 46-50 51-60 
Learning 
Rate 

𝑙𝑟 0.5×𝑙𝑟 0.2×𝑙𝑟 0.1×𝑙𝑟 0.05×𝑙𝑟 0.02×𝑙𝑟 0.01×𝑙𝑟 0.005×𝑙𝑟 

 
Table 8. Performance metrics for the classification models using the evaluation dataset (N=3172) 

Model VGG16 VGG19 ResNet50 
Precision 0.9554 0.9605 0.9754 
Recall 0.9342 0.9419 0.9779 
F1 Score 0.9447 0.9511 0.9766 

 
 
Table 9. Confusion matrices for the classification models using the evaluation dataset (N=3172) with 
class 0 (absence of LA in an image) and class 1 (presence of LA in an image) 

Model VGG16 VGG19 ResNet50 
 Predicted 

Label (0) 
Predicted 
Label (1) 

Predicted 
Label (0) 

Predicted 
Label (1) 

Predicted 
Label (0) 

Predicted 
Label (1) 

Actual Label (0) 1951 51 1939 46 1969 29 
Actual Label (1) 77 1093 69 1118 26 1148 

Abbreviation: LA, left atrium. 
 
 

Table 10. Mean of actual DSC and predicted DSC for RCA and mRCA methods with MAE and MSE 
results for 2000 images. 

 Actual DSC DSC with RCA DSC with mRCA 

Mean DSC 0.88 0.52 0.82 
MAE - 0.3634 0.0899 
MSE - 0.1739 0.0231 

Abbreviations: DSC, dice similarity coefficient; mRCA, modified reverse classification accuracy; MAE, mean 
absolute error; MSE, mean squared error; RCA, reverse classification accuracy. 
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Table 11. Examples of label and predicted LAV with QC scores for 5 selected patients with No. 1- 4 
being of good quality and No. 5 flagged as being of poor quality.  

No. Label 
Volume 

Predicted 
Volume 

𝑞uvw* 𝑞xvyz(%) 𝑞*{ 

1 146.6 146.8 0.87 96 22 
2 130.8 128.9 0.80 75 6 
3 141.7 143.1 0.83 90 18 
4 113.7 114.4 0.78 89 8 
5 108.04 185.08 0.62 50 5 

 

 

 


