
1

Deep Reinforcement Learning Based Dynamic
Trajectory Control for UAV-assisted Mobile Edge

Computing
Liang Wang, Kezhi Wang, Cunhua Pan, Wei Xu, Nauman Aslam and Arumugam Nallanathan, Fellow, IEEE

Abstract—In this paper, we consider a platform of flying mo-
bile edge computing (F-MEC), where unmanned aerial vehicles
(UAVs) serve as equipment providing computation resource, and
they enable task offloading from user equipment (UE). We aim
to minimize energy consumption of all the UEs via optimizing
the user association, resource allocation and the trajectory of
UAVs. To this end, we first propose a Convex optimizAtion based
Trajectory control algorithm (CAT), which solves the problem
in an iterative way by using block coordinate descent (BCD)
method. Then, to make the real-time decision while taking into
account the dynamics of the environment (i.e., UAV may take
off from different locations), we propose a deep Reinforcement
leArning based Trajectory control algorithm (RAT). In RAT, we
apply the Prioritized Experience Replay (PER) to improve the
convergence of the training procedure. Different from the convex
optimization based algorithm which may be susceptible to the
initial points and requires iterations, RAT can be adapted to
any taking off points of the UAVs and can obtain the solution
more rapidly than CAT once training process has been completed.
Simulation results show that the proposed CAT and RAT achieve
the considerable performance and both outperform traditional
algorithms.

Index Terms—Deep Reinforcement Learning, Mobile Edge
Computing, Unmanned Aerial Vehicle (UAV), Trajectory Control,
User Association

I. INTRODUCTION

W ITH the popularity of computationally-intensive tasks,

e.g., smart navigation and augmented reality, people

are expecting to enjoy more convenient life than ever before.

However, current smart devices and user equipments (UEs),

due to small size and limited resource, e.g., computation and

battery, may not be able to provide satisfactory Quality of

Service (QoS) and Quality of Experience (QoE) in executing

those highly demanding tasks.

Mobile edge computing (MEC) has been proposed by

moving the computation resource to the network edge and it

has been proved to greatly enhance UE’s ability in executing

computation-hungry tasks [1]. Recently, flying mobile edge

computing (F-MEC) has been proposed, which goes one step

further by considering that the computing resource can be

carried by unmanned aerial vehicles (UAVs) [2]. F-MEC

inherits the merits of UAV and it is expected to provide

Liang, Kezhi and Nauman are with the Department of Computer and
Informantion Science, Northumbria University, Newcastle upon Tyne, UK,
NE1 8ST. Cunhua and Arumugam are with School of Electronic Engineering
and Computer Science, Queen Mary University of London, E1 4NS, U.K. Wei
is with National Mobile Communications Research Lab, Southeast University,
China.

more flexible, easier and faster computing service than tra-

ditional fixed-location MEC infrastructures. However, the F-

MEC also brings several challenges: 1) how to minimize

the long-term energy consumption of all UEs by choosing

proper user association (i.e., whether UE should offload the

tasks and if so, which UAV to offload to, in the case of

multiple flying UAVs); 2) how much computations the UAV

should allocate to each offloaded UE by considering the

limited amount of on-board resource; 3) how to control each

UAV’s trajectory in real time (namely, flying direction and

distance), especially considering the dynamic environment

(i.e., the UAV may serve UEs from different taking off points).

Traditional approaches like exhaustive search are hardly to

tackle the above problems due to the fact that the decision

variable space of F-MEC, e.g., deciding the optimal trajectory

and resource allocation, is continuous instead of discrete. In

[3], the authors propose a quantized dynamic programming

algorithm to address the resource allocation problem of MEC.

However, the complexity of this approach is very high as the

flying choice of UAV is nearly infinite (as continues variables).

Moreover, the authors in [4] discretize the UAV trajectory

into a sequence of UAV locations and make their proposed

problem tractable. Similarly, in [5], the authors assume that the

UAV’s trajectory can be approximated by using the discrete

variables and then they deal with it by using the traditional

convex optimization approaches. However, the above treatment

may decrease the control accuracy of the UAV and also is not

flexible. Furthermore, the above contributions only considered

a single UAV case. In practice, one UAV may not have

enough resource to serve all the users. If the served area is

very large, more than one UAV are normally needed, which

will undoubtedly increase the decision space and make it

very difficult for the traditional convex optimization based

approaches to obtain the optimal control strategies of each

UAV. In [6], Liu et al. propose a deep reinforcement learning

based DRL-EC3 algorithm, which can control the trajectory of

multiple UAVs but did not consider the user association and

resource allocation.

Inspired by the challenges mentioned above, in this paper,

we first propose a Convex optimizAtion based Trajectory

control algorithm (CAT) to minimize the energy consumption

of all the UEs, by jointly optimizing user association, resource

allocation and UAV trajectory. Specifically, by applying block

coordinate descent (BCD) method, CAT is divided into two

parts, i.e., subproblems for deciding UAV trajectories and

for deciding user association and resource allocation. In each

Page 1 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

iteration, we solve each part separately while keep the other

part fixed, until the convergence is achieved.

Next, we propose a deep Reinforcement leArning based

Trajectory control algorithm (RAT) to facilitate the real-time

decision making. In RAT, two deep Q networks (DQNs),

i.e., actor and critic networks are applied, where the actor

network is responsible for deciding the direction and flying

distance of the UAV, while the critic network is in charge of

evaluating the actions generated by the actor network. Then,

we propose a low-complexity matching algorithm to decide

the user association and resource allocation with the UAVs.

We choose the overall energy consumption of all the UEs as

a reward of the RAT. In addition, we deploy a mini-batch to

collect samples from the experience replay buffer by using a

Prioritized Experience Replay (PER) scheme.

Different from the traditional optimization based algorithms

which normally need iterations and are susceptible to the initial

points, the proposed RAT can be adapted to any taking off

points of the UAVs and can obtain the solutions very rapidly

once the training process has been completed. In other words,

if the taking off points of the UAV are input to the RAT, the

trajectories of the UAVs will be determined by the proposed

RAT with only some simple algebraic calculations instead of

solving the original optimization problem through traditional

high-complexity optimization algorithms. This attributes to

the fact that during the training stages, excessive randomly

taking off points of UAV are generated and used to train the

networks until the networks are converged. Also, with the help

of prioritized experience reply (PER), the convergence speed

will be increased significantly. RAT can be applied to the

practical scenarios where the UAVs needs to act and fly swiftly

such as the battlefields. By inputting the current coordinates

as the taking off points to the networks, the trajectories of the

UAVs will be immediately obtained and then all the UAVs can

take off and fly according to the obtained trajectories. Also,

the resource allocation and user association are determined by

the proposed low-complexity matching algorithm. This is par-

ticularly useful to some emergence scenarios (e.g., battlefields,

earthquake, large fires), as fast decision making is crucial in

these areas.

In the simulation, we can see that the proposed RAT can

achieve the similar performance as the convex-based solution

CAT. They both have considerable performance gain over

other traditional algorithms. In addition, we can see that

during the learning procedure, the proposed RAT is less

sensitive to the hyperparameters, i.e., the size of mini-batch

and the experience replay buffer, when comparing to tradtional

reinforcement learning where PER is not applied.

The remainder of this paper is organized as follows. Section

II presents the related work. Section III describes the system

model. Section IV introduces the proposed CAT algorithm,

whereas Section V gives the proposed RAT algorithm includ-

ing the preliminaries of DRL. Section VI shows the application

of proposed RAT algorithm in 3-D UAV trajectory and 3-D

channel model scenario. The simulation results are reported in

Section VII. Finally, conclusions are given in Section VIII.

II. RELATED WORK

There are many related works that study UAV, MEC and

DRL separately, but only a very few consider them holistically.

For UAV aided wireless communications, several scenarios

have been studied, such as in areas of relay transmissions [7],

[8], [9], cellular system [10], data collection [11], [12], [13],

[14], wireless power transfer [15], caching networks [16], and

D2D communication [17]. In [18], the authors presented an

approach to optimize the altitude of UAV to guarantee the

maximum radio coverage on the ground. In [19], the authors

presented a fly-hover-and-communicate protocol in a UAV-

enabled multiuser communication system. They partitioned

the ground terminals into disjoint clusters and deployed the

UAV as a flying base station. Then, by jointly optimizing

the UAV altitude and antenna beamwidth, they optimized the

throughput in UAV-enabled downlink multicasting, downlink

broadcasting, and uplink multiple access models. In [4], to

maximize the minimum average throughput of covered users

in OFDMA system, the authors proposed an efficient iterative

algorithm based on block coordinate descent and convex

optimization techniques to optimize the UAV trajectory and

resource allocation. Furthermore, UAV trajectory optimization

research were also investigated. For instance in [20], Zeng et
al. proposed an efficient design by optimizing UAV’s flight

radius and speed for the sake of maximizing the energy

efficiency of UAV communication. In order to maximize

the minimum throughput of all mobile terminals in cellular

networks, Lyu et al. [13] developed a new hybrid network

architecture by deploying UAV as an aerial mobile base

station. Different from [18], [19], [4], [20] with the single

UAV system, a multi-UAV enabled wireless communication

system was considered to serve a group of users in [21].

Also, in [22], resource allocation between communication

and computation has been investigated in multi-UAV systems.

In [23], Mozaffari et al. investigated the application of UAVs

in Internet of Things (IoT) network, and they optimized the

mobility of UAVs, the device-UAV association and uplink

power control, for minimizing the overall transmit power of

ground IoT devices.

In addition, some recent literature made efforts to mobile

edge computing (MEC), which is considered to be a promising

technology for bringing computing resource to the edge of the

wireless networks [24], where UEs can benefit from offloading

their intensive tasks to MEC servers. In [25], partial compu-

tation offloading was studied. The computation tasks can be

divided into two parts, where one part is executed locally and

the other part is offloaded to MEC servers. In [26], binary

computation offloading was studied, where the computation

tasks can either be executed locally or offloaded to MEC

servers.

By taking the advantage of the mobility of UAVs, UAV-

enabled MEC has also been studied in [27], [28]. In [27], the

authors minimized the overall mobile energy consumption by

jointly optimizing UAV trajectory and bit allocation, while sat-

isfying QoS requirements of the offloaded mobile application.

In [28], the authors studied UAV-enabled MEC, where wireless

power transfer technology is applied to power the Internet of

Page 2 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

things devices and collect data from them. In [29], Zhou et
al. investigated an UAV-enabled MEC wireless-powered sys-

tem, and they tackled the computation maximization problem

through optimizing the UAV’s speed, partial and binary com-

putation offloading modes. In [30], Asheralieva et al. studied

the network operation problem in UAV-enabled MEC network,

and they developed a framework based on hierarchical game-

theoretic and reinforcement learning. In [31], Zhang et al.
established a communication and computation optimization

model in an MEC-enabled UAV network, where the successful

transmission probability was derived through using stochastic

geometry.

For most of the above works, optimization theory are mainly

applied in order to obtain the optimal and / or suboptimal solu-

tions, e.g., trajectory design and resource allocation. However,

solving such optimization problems normally requires plenty

of computational resources and take much time. To address

this problem, DRL has been applied and attracted much atten-

tion recently. In [32], the authors proposed a RL framework

that uses DQN as the function approximator. In addition, two

important ingredients experience replay and target network

are used for improving the convergence performance. In [33],

the authors pointed out that the classical DQN algorithm may

suffer from substantial overestimations in some scenarios, and

proposed a double Q-learning algorithm. In order to solve

control problems with continuous state and action space, Lil-

licrap at al. [34] proposed a policy gradient based algorithm.

For the purpose of obtaining faster learning and state-of-art

performance, in [35], the authors proposed a more robust

and scalable approach named prioritized experience replay.

Although DRL has achieved remarkable successes in game-

playing scenarios, it is still an open research area in UAV-

enabled MEC.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a scenario that there are

N UEs with the set denoted as N = {1,2, ...,N} and M UAVs

with the set denoted as M = {1,2, ...,M}, which form an F-

MEC platform. To make it clear, the main notations used in

this paper are listed in Table. I.

We assume that the i-th UE constantly generates one task

Ii(t) in the t-th time slot and lasting for T time slots. Note that

each of time slot has a maximal time duration Tmax. Then, T
tasks will be generated for each UE and one has t ∈ T =
{1,2, ...,T} and

Ii(t) = {Di(t), Fi(t)}, ∀i ∈ N, t ∈ T , (1)

where Di(t) denotes the size of data required to be transmitted

to a UAV if the UE chooses to offload the task, and Fi(t)
denotes the total number of CPU cycles needed to execute

this task. Assume that each UE can choose either to offload

the task to one of the UAVs or execute the task locally. Then

one can have

ai j(t) = {0,1},∀i ∈ N, j ∈ M, t ∈ T , (2)

where ai j(t) = 1, j � 0 implies that the i-th UE decides to

offload the task to the j-th UAV in the t-th time slot, while

TABLE I: Main Notations.

Notation Definition
i, N , N index, number, set of of UEs.
j , M ,M index,number,set of UAVs.
t ,T , T index, number, set of time slots.

Ii (t),Di (t), Fi (t) i-th UEs’ task in t-th time slot.
ai j (t) user association between i-th UE and j-th UAV.
Rmax

j maximal horizontal coverage radius of j-th UAV.

θhj (t), θ
v
j (t), d j (t) flying action j-th UAV.

dmax, vj (t) maximal distance, velocity of j-th UAV.
[Xj (t),Yj (t), Z j (t)] coordinate of j-th UAV.

Xmax,Ymax side length of rectangle-shaped area.
Tmax maximal time duration.

Vmax, f max maximal number of tasks, computation resource.
[xi , yi] coordinate of i-th UE.
Ri j (t) horizontal distance between UE and UAV.

B, PTr channel bandwidth, transmitting power.

g0, σ
2 channel power gain, noise power.

TO
i j (t),T

Tr
i j (t),T

C
i j (t) time for task completion, offloading, executing.

ETr
i j (t), E

L
i j (t) energy for offloading, local execution.

U ,G set of UAV trajectory, UAV coordinates.
A,F set of user association, resource allocation.

s(t), a(t), z(t) state, action and reward.
π(·),Q(·), L(·) policy function, Q function, loss function.

K , X size of mini-batch, experience replay buffer.
φ, δ, J network parameter, TD-error, policy gradient.

Zmin, Zmax minimal, maximal altitude value.
di j (t) distance between the j-th UAV and i-th UE.

ai j(t) = 1, j = 0 means that the i-th UE executes the task itself

in the t-th time slot, and otherwise, ai j(t) = 0. Define a new set

j ∈ M′ = {0,1,2, ...,M} to represent the possible place where

the tasks from UEs can be executed, where j = 0 indicates

that UE conducts its own task locally without offloading.

In addition, we assume that each UE can only be served by

at most one UAV or itself, and each task only has one place

to execute. Then, it follows

M∑
j=0

ai j(t) = 1,∀i ∈ N, t ∈ T . (3)

Additionally, in this paper, the OFDM is applied, which

means that each UAV can only accept Vmax tasks in each time

slot, due to the number of limited sub-carriers. Thus, one has

N∑
i=1

ai j(t) ≤ Vmax,∀ j ∈ M, t ∈ T . (4)

A. UAV Movement

Assume that the j-th UAV flies at a fixed altitude like [19],

and it has a maximal horizontal coverage, which depends on

the azimuth angle of antennas and the flying altitude. Also,

assume that in the t-th time slot, the j-th UAV can fly with a

horizontal direction as

0 ≤ θhj (t) ≤ 2π,∀ j ∈ M, t ∈ T , (5)

and distance as

0 ≤ dj(t) ≤ dmax,∀ j ∈ M, t ∈ T , (6)

where dmax is the maximal flying distance in each time

slot. We also denote the coordinate of the j-th UAV in the

Page 3 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

Fig. 1: Multi-UAV enabled F-MEC architecture.

t-th time slot as [Xj(t),Yj(t), Z j], where Xj(t) = Xj(0) +∑t
l=1 dj(l)cos

(
θhj (l)

)
, Yj(t) = Yj(0) +

∑t
l=1 dj(l)sin

(
θhj (l)

)
and

[Xj(0),Yj(0), Z j] is the initial coordinate of the j-th UAV.

In this paper, each UAV can only move within a rectangle-

shaped area with the side length of Xmax and Ymax. Thus, it

has

0 ≤ Xj(t) ≤ Xmax, (7)

and

0 ≤ Yj(t) ≤ Ymax. (8)

Then, the flying velocity of the j-th UAV in the t-th time

slot can be expressed as

vj(t) =
dj(t)
Tmax

. (9)

In this paper, we ignore the communication related energy,

including communication circuitry and signal processing.

B. Task Execution

If the i-th UE decides to offload the task to the j-th UAV

in the t-th time slot, then the horizontal distance Ri j(t) can be

written as

Ri j(t) =
√
(Xj(t) − xi)2 + (Yj(t) − yi)2, (10)

where [xi, yi] is the coordinate of the i-th UE. Additionally,

we assume that each UAV has a maximal azimuth angle θmax

1. Thus, in each time slot, the maximal horizontal coverage of

the j-th UAV Rmax can be obtained as follows

Rmax = Z j tan(θmax). (11)

1We define the azimuth angle with respect to a 3-D reference axis, such as
x axis, y axis, z axis.

Thus, it has

ai j(t)Ri j(t) ≤ Rmax,∀i ∈ N, j ∈ M, t ∈ T . (12)

In this paper, the free space channel model is applied. Thus,

the uplink data rate is given by

ri j(t) = B log2

(
1 +

αPTr

Z2
j + R2

i j(t)

)
, ∀i ∈ N, j ∈ M, t ∈ T ,

(13)

where B is the bandwidth for each communication channel;

PTr is the transmitting power of the i-th UE; α=
g0G0
σ2 with G0

≈ 2.2846 [19], [2], [22], [36]; g0 is the channel power gain at

the reference distance 1 m and σ2 is the noise power. Note that

we consider each user applies orthogonal frequency division

multiplexing (OFDM) channel and there is no interference

among them.

If the i-th UE decides to offload its task to the j-th UAV in

the t-th time slot, the total task completion time is given by

TO
i j (t) = TTr

i j (t) + TC
i j (t), ∀t ∈ T , (14)

where TTr
i j (t) is the time to offload the data from the i-th UE

to the j-th UAV in the t-th time slot, given by

TTr
i j (t) =

Di(t)
ri j(t)

, ∀t ∈ T , (15)

and TC
i j (t) is the time required to execute the task at the UAV

as

TC
i j (t) =

Fi(t)
f C
i j (t)
, ∀t ∈ T , (16)

where f C
i j (t) is the computation resource that the j-th UAV

can provide to the i-th UE in the t-th time slot.

Note that the time needed for returning the results back to

UE from UAV is ignored, similar to [37]. The overall energy

Page 4 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

consumption of the i-th UE to the j-th UAV in the t-th time

slot is given by

ETr
i j (t) = PTrTTr

i j (t), ∀t ∈ T . (17)

If the UE decides to execute the task locally, the power

consumption can be evaluated as ki(f L
i j (t))

vi [2], [22], [36],

where ki ≥ 0 is the effective switched capacitance, vi is

typically set to 3, and f L
i j (t) is the computation resource that

the i-th UE applies to execute the task. The overall time for

local execution can be given by

TL
i j(t) =

Fi(t)
f L
i j (t)
. (18)

Thus, the total energy consumption for local execution

equals

EL
i j(t) = ki(f L

i j (t))
viTL

i j(t), t ∈ T . (19)

To sum up, the overall energy consumption for task execu-

tion Ei j(t) is given by

Ei j(t) =

{
EL
i j(t), local execution,

ETr
i j (t), offloading,

(20)

and the time to complete the task Ti j(t) is expressed as

Ti j(t) =

{
TL
i j(t), local execution,

TO
i j (t), offloading.

(21)

Without loss of generality, we assume that each task has to

be completed within the maximal time duration Tmax, which

is consistent with the maximal flying time in each time slot.

Then, one has

Ti j(t) ≤ Tmax, ∀i ∈ N, j ∈ M′, t ∈ T . (22)

In each time slot, since the computation resource that each

UAV can provide is limited, we have

N∑
i=1

ai j(t) f C
i j (t) ≤ f max, ∀ j ∈ M, t ∈ T , (23)

where f max is the maximal computation resource that the j-
th UAV can provide in the t-th time slot. Next, we show our

proposed problem formulation.

C. Problem Formulation

Denote U = {θhj (t), dj(t),∀ j ∈ M, t ∈ T }, A = {ai j(t),∀i ∈
N, j ∈ M′, t ∈ T }, F = { fi j(t),∀i ∈ N, j ∈ M′, t ∈ T }. Then,

the energy minimization for all UEs is formulated as

P1 : min
U ,A,F

N∑
i=1

M∑
j=0

T∑
t=1

ai j(t)Ei j(t) (24a)

subject to:

ai j(t) = {0,1},∀i ∈ N, j ∈ M′, t ∈ T , (24b)
M∑
j=0

ai j(t) = 1,∀i ∈ N, t ∈ T , (24c)

N∑
i=1

ai j(t) ≤ Vmax,∀ j ∈ M, t ∈ T , (24d)

0 ≤ θhj (t) ≤ 2π,∀ j ∈ M, t ∈ T , (24e)

0 ≤ dj(t) ≤ dmax,∀ j ∈ M, t ∈ T , (24f)

0 ≤ Xj(t) ≤ Xmax,∀ j ∈ M, t ∈ T , (24g)

0 ≤ Yj(t) ≤ Ymax,∀ j ∈ M, t ∈ T , (24h)

ai j(t)Ri j(t) ≤ Rmax,∀i ∈ N, j ∈ M, t ∈ T , (24i)

Ti j(t) ≤ Tmax, ∀i ∈ N, j ∈ M′, t ∈ T , (24j)
N∑
i=1

ai j(t) f C
i j (t) ≤ f max, ∀ j ∈ M, t ∈ T . (24k)

One can see that the above problem P1 is a mixed integer

nonlinear programming (MINLP), as it includes both integer

variable, A and continuous variables, F and U , which is

very difficult to solve in general. We first propose a convex

optimization based algorithm CAT to address it iteratively.

Then, we propose a Deep Reinforcement Learning (DRL)

based RAT to facilitate fast decision-making, which can be

applied in dynamic environment. Note that in practice, if the

i-th UE does not generate the tasks in the t-th time slot and

then the corresponding Di(t) and Fi(t) can be set to zero.

IV. PROPOSED CAT ALGORITHM

In this section, a convex optimization based CAT is pro-

posed to solve the above problem P1. We first define a

set of new variables to denote the trajectories of UAVs as

G = {G j(t),∀ j ∈ M, t ∈ T }, where the coordinate is

G j(t) = [Xj(t),Yj(t)], Xj(t) = Xj(0) +
∑t

l=1 dj(l)cos
(
θhj (l)

)
and Yj(t) = Yj(0)+

∑t
l=1 dj(l)sin

(
θhj (l)

)
. Thus, the optimization

problem P1 can be reformulated as

P2 : min
G,A,F

N∑
i=1

M∑
j=0

T∑
t=1

ai j(t)Ei j(t) (25a)

subject to: (24b), (24c), (24d), (24g), (24h), (24j), (24k),
ai j(t)| |G j(t) − qi | |2 ≤ (Rmax)2,∀i ∈ N, j ∈ M, t ∈ T , (25b)

| |G j(t + 1) − G j(t)| |2 ≤ (dmax)2,∀t ∈ {0,1, ...,T − 1}, (25c)

where qi = [xi, yi]. In order to solve P2, we divide it

into two subproblems and apply the block coordinate descent

(BCD) method to address it. To this end, we first optimize the

user association A and resource allocation F given the UAV

trajectory G. Then, we optimize the UAV trajectory G given

the user association A and resource allocation F . We solve the

two optimization problems iteratively, until the convergence is

achieved.

Page 5 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6

A. User Association and Resource Allocation

Given the UAV trajectory G, the subproblem to decide user

association A and resource allocation F can be formulated as

min
A,F

N∑
i=1

M∑
j=0

T∑
t=1

ai j(t)Ei j(t) (26a)

subject to: (24b), (24c), (24d), (24j), (24k), (25b).

One can see that (24j) can be written as

f C
i j (t) ≥

Fi(t)
Tmax − Di (t)

ri j (t)

, ∀ j ∈ M, t ∈ T , (27)

if the i-th UE chooses to offload the task, and

f L
i j (t) ≥

Fi(t)
Tmax

, j = 0,∀t ∈ T , (28)

if the i-th UE decides to execute the task locally. It is readily

to see that equality holds for both (27) and (28).

Then, (26) can be re-written as

min
A,F

N∑
i=1

M∑
j=0

T∑
t=1

(
ai j(t)ETr

i j (t) + (1 − ai j(t))EL
i j(t)

)
(29a)

subject to: (24b), (24c), (24d), (25b),

f L
i j (t) =

Fi(t)
Tmax

, j = 0,∀t ∈ T , (29b)

N∑
i=1

ai j(t)
Fi(t)

Tmax − Di (t)
ri j (t)

≤ f max, ∀ j ∈ M, t ∈ T . (29c)

It is readily to find that (29) is a Multiple-Choice Multi-

Dimensional 0-1 Knapsack Problem (MMKP), which is NP-

hard in general. Fortunately, it can be solved by applying

Branch and Bound method via a standard Python package

PULP [38].

B. UAV Trajectory Optimization

Given the user association and resource allocation from (29)

and removing the constant, P2 can be simplified as

min
G

N∑
i=1

M∑
j=1

T∑
t=1

ai j(t)
PTrDi(t)

Blog2(1 + αPTr

Z2
j+ | |G j (t)−qi | |2

)
(30a)

subject to: (24g), (24h), (25b), (25c),
Di(t)

Blog2(1 + αPTr

Z2
j+ | |G j (t)−qi | |2

)
+

Fi(t)
f C
i j (t)

≤ Tmax,

∀i ∈ N, j ∈ M, t ∈ T . (30b)

It is easy to see that the above optimization problem is

non-convex with respect to G j(t). Next, we introduce a set

η = {ηi j(t),∀i ∈ N, j ∈ M, t ∈ T }, where ηi j(t) =
ai j(t) PTrDi (t)

Blog2(1+ αPTr

Z2
j
+| |Gj (t)−qi | |2

)
, then, problem (30) can be trans-

formed into

min
G,η

N∑
i=1

M∑
j=1

T∑
t=1
ηi j(t) (31a)

subject to: (24g), (24h), (25b), (25c),

Blog2
(
1 +

αPTr

Z2
j + | |G j(t) − qi | |2

)
≥

ai j(t)PTrDi(t)
ηi j(t)

,

∀i ∈ N, j ∈ M, t ∈ T , (31b)

Blog2
(
1 +

αPTr

Z2
j + | |G j(t) − qi | |2

)
≥

Di(t)
Tmax − Fi (t)

f C
i j (t)

,

∀i ∈ N, j ∈ M, t ∈ T . (31c)

One observes that (31b) and (31c) are convex with re-

spect to | |G j(t) − qi | |, respectively. Thus, (31b) and (31c)

are non-convex constraints. Then, similar to [4], [5], we

apply the successive convex approximation (SCA) to solve

this problem. Specifically, for any given local point Gr
j (t) in

Gr = {Gr
j (t),∀ j ∈ M, t ∈ T }, one can have the following

inequality as

wi j(t) = Blog2
(
1 +

αPTr

Z2
j + | |G j(t) − qi | |2

)
≥ Kr

i j(t)(| |G j(t) − qi | |2 − ||Gr
j (t) − gi | |2) + Br

i j(t)

� wlb,r
i j (t),

(32)

where

Kr
i j(t) = −

BαPTrlog2(e)
(Z2

j + | |G
r
j (t) − qi | |2)(Z2

j + | |G
r
j (t) − qi | |2 + αPTr)

,

(33)

and

Br
i j(t) = Blog2

(
1 +

αPTr

Z2
j + | |G

r
j (t) − qi | |2

)
. (34)

Then, problem (31) can be written as

min
G,η

N∑
i=1

M∑
j=1

T∑
t=1
ηi j(t) (35a)

subject to: (24g), (24h), (25b), (25c),

wlb,r
i j (t) ≥

ai j(t)PTrDi(t)
ηi j(t)

,∀i ∈ N, j ∈ M, t ∈ T , (35b)

wlb,r
i j (t) ≥

Di(t)
Tmax − Fi (t)

f C
i j (t)

,∀i ∈ N, j ∈ M, t ∈ T . (35c)

The above problem is a convex quadratically constrained

quadratic program (QCQP) and it can be solved by a standard

Python package CVXPY [39].

C. Overall Algorithm Design

In this section, a convex optimization algorithm based

CAT is proposed to solve Problem P2, where we optimize

user association and resource allocation subproblem iteratively

with the UAV trajectory subproblem until the convergence is

achieved. We describe the pseudo code of proposed CAT in

Algorithm 1.

Page 6 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7

Algorithm 1 CAT Algorithm

1: Set r = 0, and initialize Gr ;

2: repeat
3: Solve Problem (29) by Branch and Bound method for

given Gr , and denote the optimal solution as Ar+1 and

F r+1;

4: Solve Problem (35) for given Ar+1 and F r+1, and denote

the solution as Gr+1;

5: r = r + 1;

6: until the convergence is achieved.

Discussions: Algorithm 1 needs to run once the initial

taking off locations of the UAVs change. However, the com-

plexity of Algorithm 1 is high as the solutions are itera-

tively obtained and each subproblem involves a huge number

of optimization variables especially when the total number

of time slots is high. Precisely, as shown in Algorithm 1,

assume that the overall iteration number is Kr . In each

iteration, Problem (29) has N(M + 1)T variables, and it

can be solved by Branch and Bound method, in which the

Simplex technique for solving linear programs is used. Thus,

the computational complexity is O
(
2N (M+1)T)

in the worst

case. Furthermore, Problem (35) has 3N MT variables and

(N + 2)MT +T − 1 constraints. The computational complexity

is O
(
(3N MT)2

√
3N MT log2(1

ε1
)((N + 2)MT + T − 1)

)
, i.e.,

O
(
(N MT)3.5log2(1

ε1
)
)
, where ε1 is the accuracy of SCA for

solving Problem (35). Overall, the total complexity of CAT

algorithm is O
(
Kr

(
2N (M+1)T + (N MT)3.5log2(1

ε1
)
))

. Hence,

Algorithm 1 is not suitable for some emergence scenarios

(e.g., battlefields, earthquake, large fires), where fast decision

making is highly demanded. This motivates the algorithm

developed based on DRL in the following section.

V. PROPOSED RAT ALGORITHM

To facilitate the fast decision making, the DRL-based RAT

algorithm is proposed in this section. We first give some

preliminaries as follows.

A. Preliminaries

1) DQN: In a standard reinforcement learning, an agent

is assumed to interact with the environment and select the

optimal actions that can maximize the accumulated reward.

In [32], a Deep Q Network (DQN) structure developed by

Google Deepmind, integrates the deep neural networks with

traditional reinforcement learning. The DQN is used to esti-

mate the well-known Q-value defined as

Q(s(t), c(t)) = E[Z(t)|s(t), c(t)], (36)

where s(t) and c(t) denote the state and action respectively,

E[·] denotes the expectation, whereas Z(t) =
∑T

t′=t γz(t ′) is

a reward and γ ∈ [0,1] is the discount factor and z(t ′) is a

reward function in the t ′-th time step (or time slot). As the

objective is to maximize the reward, a widely used policy

is π(s(t)|φQ) = argmaxc(t)Q(s(t), c(t)|φQ), where φQ is the

parameter of the deep neural network. Then, the DQN can be

trained by minimizing the loss function [32]. Also, since the

deep networks are known to be unstable and very difficult to

converge, two effective approaches, i.e., target network and

experience replay, have been introduced in [32]. The target

network has the same structure as the original DQN but the

parameters are updated more slowly. The experience replay

stores the state transition samples which can help the DQN

converge. However, the DQN was originally designed to solve

the problem with discrete variables. Although we can adapt

the DQN to continuous problems by discretizing the action

space, it may unfortunately result in a huge searching space

and therefore intractable to deal with.

2) DDPG: To deal with the problem with continuous vari-

ables, e.g., the trajectory control of UAV, one may apply the

actor-critic approach, which was developed in [40]. DeepMind

has proposed a deep deterministic policy gradient (DDPG)

approach [34] by integrating the actor-critic approach into

DRL. DDPG includes two DQNs, one of the DQNs, named

actor network with function π(s(t)|φπ) is applied to generate

action c(t) for a given state s(t). The other DQN named critic

network with function Q(s(t), c(t)|φQ), is used to generate

the Q-value, which evaluates the action produced by the

actor network. In order to improve the learning stability, two

adjacent target networks corresponding to the actor and critic

networks, π′(·), Q′(·) with respective parameters φπ
′
, φQ

′
, are

also applied.

Then, the critic network can be updated with the loss

function, L(φQ), as

L(φQ) =
1
K

K∑
k=1
δ2k, (37)

where in each time step, the mini-batch randomly samples K
constituting experiences from the experience replay buffer, and

δk is the temporal difference (TD)-error [41] which is given

by

δk =z(k) + γQ′(s(k + 1), π′(s(k + 1)|φπ
′
)|φQ

′
)

−Q(s(k), π(s(k)|φπ)|φQ).
(38)

On the other hand, the actor network can be updated by

applying the policy gradient, which is described as [34].

	φπ J ≈
1
K

K∑
k=1

	cQ(s, c |φQ)|s=s(k),c=π(s(k) |φπ) =

1
K

K∑
k=1

[
	cQ(s, c |φQ)|s=s(k),c=π(s(k)) · 	φπ π(s |φπ)|s=s(k)

]
.

(39)

B. The RAT Algorithm

In this section, we introduce the DRL based RAT algorithm,

which includes deep neural networks (i.e., actor and critic

networks) and the matching algorithms. In order to apply the

DRL, we first define the state, action and reward as follows:

1) State s(t): s(t) = {[Xj(t),Yj(t), Z j], ∀ j ∈ M}, s(t) is the

set of the coordinates of all UAVs.

2) Action c(t): c(t) is the set of the actions of all UAVs,

including the horizontal direction θhj (t) and distance

Page 7 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8

dj(t). Then, the action set can be defined as c(t) =
{[θhj (t), dj(t)], ∀ j ∈ M}.

3) Reward z(t): z(t) is defined as the minus of the overall

energy consumption of all the UEs in each time slot as

z(t) = −
N∑
i=1

M∑
j=0

ai j(t)Ei j(t) − p, (40)

where p is the penalty if any of UAV flies out of the

target area, which means (24g) or (24h) is not satisfied.

The algorithm framework used in this paper is depicted

in Fig. 2, where an agent, which could be deployed in the

control center of the base station, is assumed to interact with

the environment. An actor network π(s(t)|φπ) is applied to

generate the action, which includes the flying direction and

distance for each UAV. The critic network Q(s(t), c(t)|φQ) is

used to obtain the Q-value of the action (i.e., to evaluate the

action generated by actor network). In each time slot, the agent

sends the action generated by actor network to each UAV.

Then, each UE tries to associate with one UAV in its coverage,

i.e., (12) by using a matching algorithm in Algorithm 3. More

specifically, each UE tries to connect the UAV which can save

more offloading energy. If the minimum offloading energy is

larger than the energy of local execution, the UE will decide

to conduct the task locally. Note that RAT has the same

optimization strategy for resource allocation as CAT.

Also, each UAV selects the UEs based on the following

criteria: 1) UE should be within its coverage area; 2) UE could

save more energy, i.e., EL
i j(t) − EC

i j(t) will be given higher

priority in offloading to this UAV. We will introduce the details

of the proposed matching algorithm in Algorithm 3. After the

matching algorithm, the reward in (40) can be obtained.

We assume that there is an experience replay buffer for the

agent to store the experience [s(t), c(t), z(t), s(t + 1)]. Once the

experience replay buffer is full, the learning procedure starts.

A mini-batch with K experiences can be obtained from the

experience replay buffer to train the networks.

In the classical DRL algorithms, such as Q-learning [42],

SARSA [43] and DDPG [34], the mini-batch uniformly sam-

ples experiences from the experience replay buffer. However,

since TD-error in (38) is used to update the Q-value network,

experience with high TD-error often indicates the successful

attempts. Therefore, a better way to select the experience

is to assign different weights to samples. Schaul et al. [35]

developed a prioritized experience replay scheme, in which

the absolute TD-error |δk | is used to evaluate the probability

of the sampled k-th experience from the mini-batch. Then, the

probability of sampling the k-th experience can be given by

P(k) =
pβ
k∑

m∈K pβm
, (41)

where pk = |δk | + ε , ε = 0.001 is a positive constant to avoid

the edge-case of transitions not being revisited if |δk | is 0, β =
0.6 is denoted as a factor to determine the prioritization [35].

However, frequently sampling experiences with high |δk |
can cause divergence and oscillation. To tackle this issue, the

importance-sampling weight [44] is introduced to represent the

importance of sampled experience, which can be given by

ωk =
1

(X · P(k))μ
, (42)

where X is the size of experience replay buffer, μ is given as

0.4 [35]. Thus, the loss function L(φQ) in (37) can be updated

as

L(φQ) =
1
K

K∑
k=1
ωkδ

2
k, (43)

which is used in our proposed RAT to train the networks. Next,

we describe the pseudo code of the overall RAT framework

in Algorithm 2.

Algorithm 2 RAT Algorithm

1: Initialize actor network π(s(t)|φπ) with parameters φπ and

critic network Q(s(t), s(t)|φQ) with parameters φQ;

2: Initialize target networks Q′(·) with parameters φQ
′
= φQ

and π′(·) with parameters φπ
′
= φπ ;

3: Initialize experience replay buffer X;

4: for epoch =1,..., kmax do
5: Initialize s(t);
6: for time slot t =1,..., T do
7: π(s(t)|φπ) + ρN ′ where N ′ is the random noise and

ρ decays with t;
8: for UAV j=1,..., M do
9: Execute c(t);

10: Obtain s(t + 1);
11: end for
12: Obtain the user association with UAVs using match-

ing algorithm proposed in Algorithm 3;

13: Obtain the reward z(t) from (40);

14: Store experience [s(t), c(t), z(t), s(t+1)] into the replay

buffer;

15: if the replay buffer is full then
16: for k = 1,..., K do
17: Sample k-th experience with probability P(k)

from (41);

18: Calculate |δk | and ωk from (38) and (42) respec-

tively;

19: end for
20: Update parameters of the critic network φQ by

minimizing its loss function according to (43);

21: Update parameters of the actor network φπ by

using policy gradient approach according to (39);

22: Update two target networks with the updating rate

τ:
23: end if
24: end for
25: end for

We first initialize the actor, critic, two target networks, and

experience replay buffer in Line 1 - 3. In the beginning of

each epoch, all UAVs start to serve UEs from different taking

off points. Note that for better exploration, we add a random

noise N ′ to the action, where N ′ follows a normal distribution

with 0 mean and variance 1, ρ is set to 2 and decays with a

rate of 0.9995 in each time step. From Line 8-11, each UAV

flies according to the generated action c(t) and enters the next

Page 8 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

9

Fig. 2: The structure of RAT algorithm.

state s(t + 1). Then, we obtain the user association by using

Algorithm 3. Next, the reward z(t) is obtained according to

(40) (i.e., Line 13). The experience is also stored in the replay

buffer. When the buffer is full, the mini-batch samples K
experiences by applying the prioritized experience replay (i.e.,

Line 16-19). Then, we update the actor and critic networks

by using loss function in (43) and policy gradient in (39)

respectively. Finally, we update the target networks by using

the following equations as (i.e., Line 22)

φQ
′
← τφQ + (1 − τ)φQ

′
, (44)

and

φπ
′
← τφπ + (1 − τ)φπ

′
, (45)

where τ is the updating rate.

Next, we introduce the low-complexity matching algorithm

which can decide the user association and resource allocation

given UAVs’ trajectories, as shown in Algorithm 3. First, we

denote A with size N to record the user association between

UEs and UAVs. If A(i) = j, it means the i-th UE matches with

the j-th UAV, and if A(i) = 0, it denotes that the i-th UE is not

matched yet and has to execute its task locally. In addition, we

denote a preference list Ej for the j-th UAV to record UEs

that can benefit from offloading. Then, from Line 2 to 10, we

generate the preference list Ej for the j-th UAV. Precisely,

if constraint (12) is met, we obtain EL
i j(t), ETr

i j (t), and f C
i j (t)

according to (19), (17), and (27), respectively. UEs that benefit

from offloading will be stored in Ej . Since UAVs wish to

save as many energy consumption of UEs as possible, we sort

the preference list Ej with descending order with respect to

EL
i j(t)−ETr

i j (t), as shown in Line 11. The UE that can save more

energy via offloading will be matched with a higher priority.

Next, from Line 13 to 23, we conduct the matching process.

Each UAV keeps selecting UEs according to its preference list,

and constantly checking the constraints (4) and (23) based on

Algorithm 3 Matching Algorithm

1: Initialize A and Fj , ∀ j ∈ M, ∀i ∈ N ;

2: for UAV j = 1,..., M do
3: for UE i = 1,..., N do
4: if (12) is met then
5: Calculate EL

i j(t), ETr
i j (t) and f C

i j (t);
6: if EL

i j(t) > ETr
i j (t) then

7: Store i into Ej ;

8: end if
9: end if

10: end for
11: Sort the element in Ej in descending order with respect

to EL
i j(t) − ETr

i j (t);
12: end for
13: repeat
14: for UAV j = 1,..., M do
15: i = GetTopItem(Ej);
16: if (4), (23) are met then
17: if ETr

i j (t) < ETr
iA(i)(t) or A(i) = 0 then

18: A(i) = j;
19: end if
20: RemoveTopItem(Ej);
21: end if
22: end for
23: until Each UE in Ej is checked.

24: Return A

A. In the meantime, the selected UE will determine whether

to match with the UAV or not. Precisely, from Line 17 to 19,

if the selected UE is not matched before, or matching with

the j-th UAV could save more energy than previous match,

the corresponding A(i) will be updated. We do this process

until all the UEs in each preference list are checked. Then,

the final user association can be obtained from A.

Page 9 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10

According to [34], our RAT algorithm is an offline learning

and off-policy DRL-based algorithm as the experience replay

mechanism is applied, and the mini-batch will sample several

uncorrelated experiences for training networks in each time

step. Additionally, the training procedure can be deployed in

a simulator, and the RAT model can be easily deployed in

reality when the convergence is achieved, which will inevitably

reduce the payoff of implementation. Furthermore, once the

whole networks are converged, the solutions can be generated

very fast with only some simple algebraic calculations instead

of solving the original MINLP. This is due to the fact that

during the training stages, random taking off points of all the

UAVs are generated and the networks are trained to converge.

Discussions: after adequate training process, the RAT

model, including the networks is saved for testing. In each

time slot, the action of all UAVs is generated together by actor

network. In our paper, as the fully-connected hidden layers are

applied, the computational complexity for generating action of

UAVs is O
(∑L

l=1 nl · nl−1
)
, where L is the number of network

layers, nl is the number of neurons in the l-th layer. Then, the

computational complexity of matching algorithm is O(N M).
The overall complexity of RAT algorithm in testing process is

O
(
(
∑L

l=1 nl · nl−1 + N M)T
)
.

VI. EXTENSION TO 3-D CHANNEL MODEL

In this section, in order to consider the impacts of blockage

and shadowing, we extend the free-space channel model to

3-D channel model that was proposed in [18], which is more

practical. Additionally, we consider to optimize the 3-D UAV

trajectories in this paper. Similarly, in each time slot, we

assume the UAV can fly with a vertical direction θvj (t) ∈ [0, π],
a horizontal direction θhj (t) ∈ [0,2π], and a flying distance

dj(t) ∈ [0, dmax]. Thus, we define the coordinate of the j-
th UAV in the t-th time slot as [Xj(t),Yj(t), Z j(t)], where

Xj(t) = Xj(0) +
∑t

l=1 dj(l)sin
(
θvj (l)

)
cos

(
θhj (l)

)
, Yj(t) = Xj(0) +∑t

l=1 dj(l)sin
(
θvj (l)

)
sin

(
θhj (l)

)
, Z j(t) = Z j(0)+

∑t
l=1 cos

(
θvj (l)

)
,

and [Xj(0),Yj(0), Z j(0)] is the initial coordinate of the UAV.

For collision avoidance, one has

Zmin ≤ Z j(t) ≤ Zmax,∀t ∈ T , (46)

where Zmin and Zmax are the minimal and maximal flying

altitude of the UAV.

Thus, the distance between the j-th UAV and the i-th UE

in t-th time slot is given by

di j(t) =
√(

Xj(t) − xi
)2
+

(
Yj(t) − xi

)2
+ Z j(t),

∀ j ∈ M, i ∈ N, t ∈ T .
(47)

The coverage radius of the j-th UAV in the t-th time slot

can be given by

Rmax
j (t) = Z j(t)tan(θmax). (48)

The mean path loss between the j-th UAV and the i-th UE

in the t-th time slot can be expressed as

Li j(t) =
ηLoS − ηNLoS

1 + aexp(−b(θi j(t) − a))
+ 20log10

(
di j(t)

)
+ 20log10

(4π fc
c

)
+ ηNLoS,

(49)

where ηLoS, ηNLoS are the path loss of achieving LoS and

NLoS links, a and b are constant values that can be obtained

in [18], θi j(t) = arctan

(
Z j (t)
Ri j (t)

)
is the elevation angle between

the UAV and the UE, fc is the carrier frequency, and c is the

light speed.

Overall, we define the uplink data rate as follows:

ri j(t) = Blog2

(
1 +

PTr

σ2 10−
Li j (t)

10

)
. (50)

Additionally, we consider to maximize the energy efficiency

of UAVs in this paper. More precisely, motivated by [45], we

introduce the power consumed by the j-th UAV in the t-th
time slot as follows

Pj(t) =Po

(
1 + 3

(vj(t)
Ub

)2
)
+ Ps

(√
1 +

1
4

(vj(t)
Vh

)4 −
1
2

(vj(t)
Vh

)2
) 1

2

+
π

2
d0ρarsR2

r vj(t)3 + wgvj(t)cos
(
θvj (t)

)
,

(51)

where Po and Ps are fixed constants that can be obtained

in [45], Ub is the tip speed of the rotor blade, Vh denotes

the mean rotor induced velocity when hovering, d0 is the drag

ratio of main body, ρa is the air density, rs is the rotor solidity,

Rr means the rotor radius, w is the weight of UAV, and g is

the gravity acceleration.

Thus, the remaining energy of the j-th UAV in the t-th time

slot is defined as

ej(t) = emax −
t∑

l=1
Pj(l)Tmax, (52)

in which, emax is the maximal energy of each UAV.

Thus, the optimization problem can be written as follows:

P1 : min
U ,A,F

T∑
t=1

(M∑
j=0

N∑
i=1

ai j(t)Ei j(t) + kz
M∑
j=1

Pj(t)Tmax

)

(53a)

subject to: (24b), (24c), (24d), (24e), (24f),
(24g), (24h), (24j), (24k),

0 ≤ θvj (t) ≤ π, ∀ j ∈ M, t ∈ T , (53b)

Zmin ≤ Z j(t) ≤ Zmax, ∀ j ∈ M, t ∈ T , (53c)

ai j(t)Ri j(t) ≤ Rmax
j (t), ∀i ∈ N, j ∈ M, t ∈ T . (53d)

where U = {θvj (t), θ
h
j (t), dj(t), ∀ j ∈ M, t ∈ T }, kz is the

impact factor.

Then, we define the state and action of our proposed RAT

algorithm as follows:

1) State s(t): s(t) = {[Xj(t),Yj(t), Z j(t), ej(t)], ∀ j ∈ M}.
2) Action c(t): the action set can be defined as c(t) =

{[θvj (t), θ
h
j (t), dj(t)], ∀ j ∈ M}.

Page 10 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

11

3) Reward z(t): we define the reward as follows

z(t) = −
M∑
j=0

N∑
i=1

ai j(t)Ei j(t) − kz
M∑
j=1

Pi(t)Tmax − p, (54)

where p is the penalty if any of UAV flies out of the target

area, which means (24g), (24h) or (53c) is not satisfied.

Thus, having defined the state, action and reward, the above

problem can be solved by the proposed RAT algorithm.

VII. SIMULATION RESULTS

In this section, both convex optimization based CAT and

DRL based RAT are evaluated with simulations implemented

on Intel i5-3450t, NVIDIA GTX 1050Ti, Python 3.6, PULP

1.6.10, CVXPY 1.1.7, and Tensorflow 1.15.0. We deploy three

fully-connected hidden layers with 1024, 800 and 600 neurons

in both actor and critic networks in RAT. The actor network

is trained by applying RMSPropOptimizer with the learning

rate 0.001, whereas the critic network is trained by using

AdamOptimzer with the learning rate 0.001. In the simulation,

we assume there are 60 time slots in each training epoch. There

are 100 UEs randomly distributed in a rectangle-shaped area

with the side length of Xmax = 400 m and Ymax = 400 m.

Additionally, there are 2 UAVs deployed to serve UEs within

the target area. Note that for RAT, each UAV has 20 different

taking off points during the training procedure. Besides, in

each time slot, UE generates a task with communication

requirement Di(t) ∈ [10,50] KB and computation requirement

Fi(t) ∈ [2 × 109,2 × 1010] cycles. Other parameters are

summarized in Table II. We assume in each time slot, UAVs

will send a signal to activate the corresponding UEs, which

will either offload the task or execute locally, within the delay

requirement.

TABLE II: Simulation Parameters

Parameters Settings Parameters Settings
T 60 N 100
M 2 Vmax 30

dmax 30 m Tmax 1 s
Xmax 400 m Ymax 400 m
θmax π

4 Z j (0) 75 m

vi 3 g0 1.42 ×10−4

PTr 0.1 W B 10 MHz

σ2 -90 dbm emax 3×106 J

ki 10−28 f max 100 GHz
γ 0.999 p 100

kmax 3000 ρ 2

w 2 kg g 10 m/s2

τ 0.001 Zmin 50 m
Zmax 120 m ηLoS 1.6
ηNLoS 23 a 12.08
b 0.11 fc 2.5 GHz

c 3×108 m/s kz 0.0005
Po 79.86 Ub 120 m/s
Ps 88.63 Vh 4.03

d0 0.6 ρa 1.25 kg/m3

rs 0.05 Rr 0.4 m

In order to evaluate the performance of the proposed CAT

and RAT, we present the following three algorithms for

comparison purpose.

• Local Execution (LE): All tasks are executed locally

without offloading.

• Random moving (RM): In this setting, each UAV ran-

domly selects the horizontal direction and flying distance

to take.

• Cluster moving (CM): We group all the UEs into 10

clusters and each UAV flies in the trajectory connecting

all the cluster center one by one. Note that it takes T
10

time slots for each UAV to move from one cluster center

to another one.

• Deep Deterministic Policy Gradient (DDPG) [34]: We

set the parameter of DDPG the same as actor and critic

networks of RAT, but do not apply the prioritized expe-

rience replay. In other words, DDPG uniformly samples

the experiences from the experience replay buffer in the

training procedure.

Note that both RM, CM, DDPG apply the matching algorithm

proposed in Algorithm 3 to decide the user association and

resource allocation.

A. Convergence Evaluation of CAT and RAT

In this subsection, we show the convergence of proposed

CAT and RAT. In Fig. 3, we show the convergence perfor-

mance of CAT with three different pairs of initial trajectories.

Specifically, we group all UEs into one cluster and the UAVs

fly in a circle around the cluster center with radius 80 m, 100
m, and 120 m respectively. We denote these three pairs of UAV

trajectories as the initial trajectories. As shown in Fig. 3, we

can conclude that no matter which the initial trajectory is, the

overall energy consumption of UEs achieved by CAT always

decreases and finally remains stable after several iteration

times. However, one can also observe that the convergent

solution achieved by CAT will be influenced by the initial

trajectory.

0 20 40 60 80 100

Iteration Times

460

470

480

490

500

510

520

530

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

CAT with Radius 80m

CAT with Radius 100m

CAT with Radius 120m

Fig. 3: The convergence performance of proposed CAT.

Then, we show the convergence performance of RAT in

training process. From Fig. 4 to Fig. 5, we compare the influ-

ence of hyperparameters to both DDPG and RAT. Prioritized

experience replay is applied in RAT. Both RAT and DDPG

Page 11 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

12

0 200 400 600 800 1000 1200 1400

Training Epoch

450

500

550

600

650

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

RAT with Batch Size 128

RAT with Batch Size 256

RAT with Batch Size 512

(a) The overall energy consumption of RAT with different batch
size.

0 200 400 600 800 1000 1200 1400

Training Epoch

450

500

550

600

650

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

DDPG with Batch Size 128

DDPG with Batch Size 256

DDPG with Batch Size 512

(b) The overall energy consumption of DDPG with different batch
size.

Fig. 4: The convergence performance of RAT and DDPG

with different size of mini-batch.

start the learning procedure once the experience replay buffer

is full. In Fig. 4, we depict the overall energy consumption

of RAT and DDPG for different size of mini-batches, where

the size of experience replay buffer is 50000. To be more

specific, from Fig. 4a, we can see that RAT has the similar

convergence performance for different size of mini-batches

and it becomes more stable during the learning procedure. In

Fig. 4b, when the batch size is 128, DDPG has an obvious

fluctuation during the learning procedure. When the batch

size is 256, the convergence performance of DDPG becomes

worse after the 1400-th epoch. While DDPG can only have

a promising convergence performance when the batch size is

512. Overall, from Fig. 4, it is clear to see that the RAT is

less sensitive to the change of mini-batch than DDPG.

In Fig. 5, we depict the overall energy consumption of RAT

and DDPG for different sizes of experience replay buffer,

where the size of mini-batch is set as 128. From Fig. 5a

0 200 400 600 800 1000 1200 1400

Training Epoch

450

500

550

600

650

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

RAT with Buffer Size 10000

RAT with Buffer Size 30000

RAT with Buffer Size 50000

(a) The overall energy consumption of RAT with different buffer
size.

0 200 400 600 800 1000 1200 1400

Training Epoch

450

500

550

600

650

700

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

DDPG with Buffer Size 10000

DDPG with Buffer Size 30000

DDPG with Buffer Size 50000

(b) The overall energy consumption of DDPG with different buffer
size.

Fig. 5: The convergence performance of RAT and DDPG

with different experience replay buffer.

and 5b, when the buffer size is 10000, the proposed RAT

finally remains stable between 450 J and 500 J, although it

has an obvious fluctuation during the learning process. While

DDPG has no convergence tendency during the entire learning

procedure. When the buffer size is 50000, DDPG becomes

worse after 1000-th epoch, and finally reaches 550 J. Overall,

we can observe that DDPG can only have a promising perfor-

mance when the buffer size is 30000, while RAT can always

converge and remain stable during the learning procedure, no

matter which the buffer size is. Thus, we can conclude that

RAT is less sensitive to the size of experience replay buffer

than DDPG.

B. Trajectory Evaluation of CAT and RAT

In Fig. 6 and Fig. 7, we show the trajectories obtained

by RAT and CAT, respectively. Note that during the training

procedure, the UAVs controlled by RAT always start to serve

Page 12 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

13

UEs from 20 different takinkg off points. Additionally, for

fairness, the UAVs controlled by CAT have the same taking off

points as RAT. We group all the UEs into 6 clusters and each

UAV flies in the trajectory connecting all the cluster center

one by one. In this setting, we set these trajectories as the

initial trajectories. Note that the iteration number of CAT is

10.

As shown in Fig. 6, we randomly select 5 pairs of taking

off points for comparison. And we can observe that no matter

which the taking off points of the UAVs are, the proposed

RAT can guide the UAVs to their certain areas and move

around to serve different UEs. This is due to the fact that

we train the RAT to converge during the training stage by

randomly generating many taking off points of the UAVs.

Then, during the testing stage, RAT can intermediately output

the best solutions once taking off points are input.

0 50 100 150 200 250 300 350 400

X (m)

0

50

100

150

200

250

300

350

400

Y
 (

m
)

1

1

2

2 3

3

44

5

5

UAV1 UAV2 UE

Fig. 6: Multi-UAV enabled F-MEC architecture controlled by

RAT.

While in Fig. 7, no matter where the taking off points of the

UAVs are, the trajectories obtained by CAT are always similar

with the initial trajectories. Also, note that unlike CAT which

may fall into the local optimum, the proposed RAT has the

global search ability due to the application of reinforcement

learning techniques.

C. Energy Consumption Evaluation of CAT and RAT

In Fig. 8, we compare the performance of RAT, CAT, CM,

RM, and LE in terms of energy consumption of UEs. As

shown in Fig. 8a, we depict the overall energy consumption

of UEs achieved by RAT, CAT, CM, RM, and LE with

different taking off points. It is obvious to see that LE has the

worst performance. This is because all UEs have to execute

their tasks locally without offloading, which will inevitably

consume more energy. RM outperforms LE but it fluctuates

with the index of taking off points. CM has better performance

than RM, which always remains between 520 J and 550 J. CAT

outperforms LE, RM, and CM, which remains about 500 J.

Additionally, one can observe that RAT achieves the optimal

performance. One plausible explanation is that the networks in

0 50 100 150 200 250 300 350 400

X (m)

0

50

100

150

200

250

300

350

400

Y
 (

m
)

1

1

2

2 3

3

44

5

5

UAV1 UAV2 UE

Fig. 7: Multi-UAV enabled F-MEC architecture controlled by

CAT.

RAT are convergent after adequate training, and it can output

the optimal solutions in real-time, no matter which the taking

off points are.

Furthermore, we set the index of taking off points as 1, and

depict the overall energy consumption of UEs achieved by

RAT, CAT, RM, CM, and LE in different number of time slots

in Fig. 8b. It is easy to see that both the energy consumption of

RAT, CAT, RM, CM, and LE increase as the number of time

slots increases. LE still performs the worst, which consumes

above 700 J eventually. Additionally, we can observe that RAT

consistently outperforms other algorithms. This is because the

UAVs controlled by RAT always serve UEs with the optimal

solutions. CAT still has considerable performance, which is

only slightly worse than RAT.

In Table III, we show the time consumed by CAT and

RAT for each pair of taking off points in Fig. 8. Note that

RAT is trained for 3000 epochs, while the iteration number

of CAT is 10. One can see that no matter which the index

of taking off point is, the proposed CAT takes over 1400

seconds to find solutions, while RAT only takes 1.2 seconds

in average, although it takes longer time in training process.

This is because the networks of RAT are trained to converge,

and the RAT only needs a few number of algebra calculations

once the training is completed offline.

TABLE III: Executed Time of CAT and RAT

Index CAT (s)
RAT

Training (s) Testing (s)
1 1405.23

10534.88

1.23
2 1491.74 1.22
3 1460.46 1.20
4 1445.11 1.21
5 1402.48 1.21

Furthermore, we analyze the performance of proposed RAT

in 3-D UAV trajectory and 3-D channel model scenario. In this

setting, we set the number of time slots T as 50, the channel

bandwidth as 20 MHz, Di(t) ∈ [5,10] KB, Fi(t) ∈ [7.5 ×

Page 13 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

14

1 2 3 4 5

Index of Taking Off Points

450

500

550

600

650

700

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (
J)

RAT

CAT

CM

RM

LE

(a) The overall energy consumption of RAT, CAT, RM, CM, LE
with different taking off points.

5 10 15 20 25 30 35 40 45 50 55 60

Number of Time Slots

100

200

300

400

500

600

700

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

RAT

CAT

CM

RM

LE

(b) The overall energy consumption of RAT, CAT, RM, CM, LE in
different number of time slots.

Fig. 8: The performance comparison of RAT, CAT, RM, CM,

and LE.

108,2×109] cycles, the size of mini-batch is 512, and the size

of experience replay buffer is 100000. In each training epoch,

each UAV starts to serve UEs with the altitude of Z j(0) =
50 m. First of all, we depict the overall energy consumption

achieved by the proposed RAT algorithm during the training

procedure in Fig. 9. One can observe that the overall energy

consumption of UEs firstly remains between 600 J and 700

J. When the learning process starts, the curve decreases and

eventually remains above 400 J, which means the convergence

is achieved.

Then, we depict the UAV trajectories obtained by RAT

during testing phase in Fig. 10. Note that blue dots represent

UEs, red stars are UAV1, and green triangles denote UAV2.

As shown in Fig. 10, we can observe that no matter which

the taking off points are, the UAVs always move from their

taking off points to the certain areas, and move around to serve

different UEs with the most sufficient distance. In addition,

0 500 1000 1500 2000 2500 3000

Training Epoch

400

450

500

550

600

650

700

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

RAT

Fig. 9: The convergence performance of proposed RAT in

3-D UAV trajectory and 3-D channel model scenario.

one can observe that each UAV will ascend its altitude in

the beginning, this is because higher altitude will increase the

coverage radius of the UAV, which will inevitably serve more

UEs, although it will also decrease the data rate of offloading.

X (m)

0
50

100
150

200
250

300
350

400

Y (m
)

50
100

150
200

250
300

350

Z
 (

m
)

0

20

40

60

80

100

120

1
1

2

2

3

3
4

4

5

5

Fig. 10: Multi-UAV enabled F-MEC trajectories obtained by

RAT in 3-D channel model scenario (blue dots for UEs, red

stars for UAV1, green triangles for UAV2).

Furthermore, we analyze the overall energy consumption of

UEs and UAVs achieved by RAT, CM, and RM in different

pair of taking off points in Fig. 11, where the UAVs controlled

by CM always fly with the fixed altitude value of 100 m, while

RM selects the available flying action for each UAV, including

the horizontal flying direction, the vertical flying direction, and

the flying distance. More precisely, in Fig. 11a, we can observe

that our proposed RAT consistently outperforms CM and RM,

whose energy consumption remains under 400 J. While CM

performs worse than RAT and better than RM, whose energy

consumption keeps at 450 J.

Finally, we show the overall energy consumption of UAVs

achieved by RAT, CM and RM in Fig. 11b. We observe that

Page 14 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

15

our proposed RAT algorithm has the optimal performance, no

matter which the index of taking off points are. CM has the

worse performance than RAT, which consumes 35000 J at

least. However RM is the worst.

1 2 3 4 5

Index of Taking Off Points

400

450

500

550

600

650

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

RAT

CM

RM

(a) The overall energy consumption of UEs achieved by RAT, CM,
and RM with different taking off points.

1 2 3 4 5

Index of Taking Off Points

30000

35000

40000

45000

50000

O
v
e
ra

ll
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
 (

J)

RAT

CM

RM

(b) The overall energy consumption of UAVs achieved by RAT,
CM, and RM with different taking off points.

Fig. 11: The performance comparison of RAT, CM, and RM.

VIII. CONCLUSION

In this paper, we consider the flying mobile edge computing

architecture, by taking advantage of the UAVs to serve as the

moving platform. We aim to minimize the energy consumption

of all the UEs by optimizing the UAVs’ trajectories, user

associations and resource allocation. To tackle the multi-

UAVs’ trajectories control problem, a convex optimization-

based CAT was first proposed. Then, in order to conduct fast

decision, a DRL-based RAT including a matching algorithm

was also proposed. Simulation results show that CAT and

RAT have considerable performance. Additionally, RAT also

outperforms other traditional algorithms.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] Y. Du, K. Wang, K. Yang, and G. Zhang, “Energy-efficient resource
allocation in UAV based MEC system for IoT devices,” in IEEE Global
Communications Conference, 2018, pp. 1–6.

[3] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, June. 2018.

[4] Q. Wu and R. Zhang, “Common throughput maximization in UAV-
enabled OFDMA systems with delay consideration,” IEEE Trans. Com-
mun., vol. 66, no. 12, pp. 6614–6627, Dec. 2018.

[5] Z. Li, M. Chen, C. Pan, N. Huang, Z. Yang, and A. Nallanathan, “Joint
trajectory and communication design for secure UAV networks,” IEEE
Commun. Lett., pp. 1–4, Feb. 2019.

[6] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient
UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE J. Select. Areas Commun.,
vol. 36, no. 9, pp. 2059–2070, Sep. 2018.

[7] L. Kong, L. Ye, F. Wu, M. Tao, G. Chen, and A. V. Vasilakos, “Au-
tonomous relay for millimeter-wave wireless communications,” IEEE J.
Select. Areas Commun., vol. 35, no. 9, pp. 2127–2136, 2017.

[8] P. Zhan, K. Yu, and A. L. Swindlehurst, “Wireless relay communications
with unmanned aerial vehicles: Performance and optimization,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 47, no. 3, pp.
2068–2085, July 2011.

[9] R. Fan, J. Cui, S. Jin, K. Yang, and J. An, “Optimal node placement and
resource allocation for UAV relaying network,” IEEE Communications
Letters, vol. 22, no. 4, pp. 808–811, 2018.

[10] U. Challita, A. Ferdowsi, M. Chen, and W. Saad, “Machine learning for
wireless connectivity and security of cellular-connected UAVs,” IEEE
Wireless Communications, vol. 26, no. 1, pp. 28–35, 2019.

[11] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
UAV enabled wireless sensor network,” IEEE Wireless Communications
Letters, vol. 7, no. 3, pp. 328–331, June 2018.

[12] J. Gong, T.-H. Chang, C. Shen, and X. Chen, “Aviation time mini-
mization of UAV for data collection from energy constrained sensor
networks,” in 2018 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2018, pp. 1–6.

[13] J. Lyu, Y. Zeng, and R. Zhang, “UAV-aided offloading for cellular
hotspot,” IEEE Transactions on Wireless Communications, vol. 17, no. 6,
pp. 3988–4001, 2018.

[14] J. Gu, T. Su, Q. Wang, X. Du, and M. Guizani, “Multiple moving
targets surveillance based on a cooperative network for multi-UAV,”
IEEE Communications Magazine, vol. 56, no. 4, pp. 82–89, 2018.

[15] J. Xu, Y. Zeng, and R. Zhang, “UAV-enabled wireless power transfer:
Trajectory design and energy optimization,” IEEE Transactions on
Wireless Communications, vol. 17, no. 8, pp. 5092–5106, Aug 2018.

[16] N. Zhao, F. Cheng, F. R. Yu, J. Tang, Y. Chen, G. Gui, and H. Sari,
“Caching UAV assisted secure transmission in hyper-dense networks
based on interference alignment,” IEEE Transactions on Communica-
tions, vol. 66, no. 5, pp. 2281–2294, 2018.

[17] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial
vehicle with underlaid device-to-device communications: Performance
and tradeoffs,” IEEE Transactions on Wireless Communications, vol. 15,
no. 6, pp. 3949–3963, 2016.

[18] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 569–572, Dec. 2014.

[19] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth
optimization for UAV-enabled multiuser communications,” IEEE Com-
mun. Lett., vol. 22, no. 2, pp. 344–347, Feb. 2018.

[20] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with tra-
jectory optimization,” IEEE Transactions on Wireless Communications,
vol. 16, no. 6, pp. 3747–3760, June 2017.

[21] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-UAV enabled wireless networks,” IEEE Transactions
on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, March
2018.

[22] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy
efficient resource allocation in UAV-enabled mobile edge computing
networks,” IEEE Transactions on Wireless Communications,
vol. 18, no. 9, p. 4576–4589, Sep 2019. [Online]. Available:
http://dx.doi.org/10.1109/twc.2019.2927313

Page 15 of 62 Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

16

[23] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned
aerial vehicles (UAVs) for energy-efficient internet of things communica-
tions,” IEEE Transactions on Wireless Communications, vol. 16, no. 11,
pp. 7574–7589, 2017.

[24] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[25] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, Aug 2017.

[26] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, Sep. 2013.

[27] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2049–
2063, March 2018.

[28] Y. Du, K. Yang, K. Wang, G. Zhang, Y. Zhao, and D. Chen, “Joint
resources and workflow scheduling in UAV-enabled wirelessly-powered
MEC for IoT systems,” IEEE Transactions on Vehicular Technology, pp.
1–14, 2019.

[29] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9,
pp. 1927–1941, 2018.

[30] A. Asheralieva and D. Niyato, “Hierarchical game-theoretic and
reinforcement learning framework for computational offloading in
UAV-enabled mobile edge computing networks with multiple service
providers,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8753–
8769, 2019.

[31] Q. Zhang, J. Chen, L. Ji, Z. Feng, Z. Han, and Z. Chen, “Response
delay optimization in mobile edge computing enabled UAV swarm,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3280–
3295, 2020.

[32] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529–533, Feb. 2015.

[33] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” 2015.

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[35] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, Nov. 2015.

[36] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep learning
based joint resource scheduling algorithms for hybrid MEC networks,”
IEEE Internet of Things Journal, 2019.

[37] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang, and S. Ou, “Dynamic
Resource Scheduling in Mobile Edge Cloud with Cloud Radio Access
Network,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 11, pp. 2429–
2445, Nov. 2018.

[38] S. Mitchell, M. G. O. Sullivan, and I. Dunning, “Pulp : A linear
programming toolkit for python,” in Python, 2011.

[39] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[40] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, 2000, pp. 1008–1014.

[41] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Thirtieth AAAI Conference on Artificial
Intelligence, Mar. 2016.

[42] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[43] J. Hamari, J. Koivisto, H. Sarsa et al., “Does gamification work?-a
literature review of empirical studies on gamification.” in HICSS, vol. 14,
no. 2014, 2014, pp. 3025–3034.

[44] A. R. Mahmood, H. P. Van Hasselt, and R. S. Sutton, “Weighted
importance sampling for off-policy learning with linear function ap-
proximation,” in Advances in Neural Information Processing Systems,
2014, pp. 3014–3022.

[45] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Transactions on Wireless
Communications, vol. 18, no. 4, pp. 2329–2345, 2019.

Page 16 of 62Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

