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Abstract

Radio Drama is a theatrical form of art that usually exists solely in the acoustic domain

consisting of music, speech, and sound effects and is most often consumed through broad-

cast radio. This thesis proposes methods for assisting a human creator in producing radio

dramas.

Much research has been done to aiding creativity using artificial intelligence techniques

in storytelling, music composition, the visual arts, and film. Despite that, radio drama

is under-represented in such research. Radio drama consists of both literary aspects,

such as plot, story characters, or environments, as well as production aspects, such as

speech, music, and sound effects. While plenty of research has been examining each of

those aspects individually there is currently no research that combines such studies in

the context of radio drama production.

In this thesis, an interdisciplinary approach to assisting a human creator in radio drama

production is developed. The task is explored through the joint prism of natural lan-

guage processing, music information retrieval, and automatic mixing. We show that

individual literary aspects of radio drama can be automatically extracted from a story

draft provided by a human creator, by using natural language processing methods. For-

mal rules can be used to express the aforementioned elements in the form of a script

able to be read and altered by both the human creator and the computer. We devise

recommender systems for sound, music, and audio effects to retrieve the assets required

for production. Rules derived from radio drama literature can then use those recorded

assets to produce a radio drama mix in a semi-automatic way. Furthermore, an adaptive

reverberation effect suggests reverberation settings for each track based on track content

and past user choices.

The degree of success for individual tasks in aiding production is demonstrated using

examples of radio drama production from raw stories and validated through objective

evaluation metrics, and listening tests.
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Chapter 1

Introduction

1.1 Defining Radio Drama

Before introducing radio drama we must observe how the medium has been referred to

historically as well in the modern digital age by theoreticians and practitioners. It is

used to communicate drama on radio and differs from simply recording and transmitting

blind versions of theatrical plays. The stories in radio drama are developed specifically

for the medium of radio, with scenes, characters, events, and emotions augmented using

sound effects, music, and clever use of silence; the last three elements being as important

as the stories themselves [3, p. 30]. While broadcast to multiple receivers through radio,

radio drama heavily relies on the imagination of the individual listener to synthesise the

imagery of the play. It is also relatively short in duration (e.g. compared to cinema

film) so as not to let go of the interest of the listener. Throughout the rest of this thesis

therefore, we define radio drama as the theatrical interpretation of a story using speech,

music, sound effects, silence, and the imagination of the listener which is consumed via

digital or analog broadcast in a relatively short time-frame (usually under an hour).

Radio drama has its origins on the théâtrophone, a telephone-based system back

from 1881 which was used to broadcast sound from theatrical drama to restaurants,

28
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hotels, and rich households using a “pay-per-view” system not dissimilar to modern

digital distribution approaches [18, p. 15]. This first approach of broadcasting drama

however was crude, with problems related to capturing sound, an entertainment form

not specifically designed for sound, and of course accessible only to places the telephone

network could extend. The last constraint was of no concern with the invention of the

radio around the beginning of the 20th century. The first stories through radio can be

pointed at broadcasts of children’s stories at the beginning of the century but those were

merely readings with no extra sound effects, placing the medium closer to what today

we would call audiobooks, rather than radio drama adaptations [3, p. 14]. While it is

difficult to pinpoint the first radio drama, the first series can be recognised in Eugene

Walter’s “The Wolf” (August 1922, New York) where the play was split into 40 minutes

episodes, so as to not lose engagement with the audience [19]. This duration was close

to the 30 minutes used later in the Golden Age of radio drama. [3, p. 18]. In Britain,

the first radio drama was Richard Hughes’ “A Comedy of Danger” in January 1924 [3,

p. 16]. While those reminisced of radio drama as we know it, the term was not used to

describe them until at least the 1950s [3, p. 33].

Radio drama has gained a place as a technically and culturally significant form,

mainly due to radio. The first radios were bulky devices that relied on a steady electricity

source and only wealthy households could afford them. This changed with the invention

of the crystal radio in the 1920s and also in the 1950s with the transistor-based battery-

powered radio. The little dependence of the medium on electricity allowed people with

no access to steady power, such as people in developing nations or in war, access to news,

education, and entertainment [3, p. 8]. This affordability of the medium continues in the

digital world. While access to the internet requires much more complicated hardware

than simply a crystal and a copper wire, a low-bandwidth connection of under 1kbps is

required to transmit intelligible speech [20]. While this is still an increase in complexity

and cost requirements from the point of the consumer, production of radio material has

become much cheaper since the only requirements are a good mono microphone, a cheap
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computer, an internet connection, and a free DAW application. This is in contrast to the

expensive hardware airwave radio transmission requires. Radio is also affordable in time:

contrary to other kinds of entertainment, like theatre, cinema film, or even novels, does

not demand our full dedication but allows us to perform other activities while listening

to it [21].

Radio drama’s impact on culture does not rely solely on radio. The infamous CBS’

War of the Worlds, through its use of first-person narrative, ingenious mixing, and spot

effects led to societal panics about a Martian invasion with extended consequences that

even included human casualties [18, p. 111]. Echoes of that play resonate until today,

the show and the subsequent panic having become part of the western pop culture [3,

p. 27]. In World War 2, radio drama served as a substitute for theatre-going during the

blackouts of London [3, p. 33] but did not just lend itself just to entertainment; it played

a major role in the efforts of the United States to increase the faith of its people in the

Allies [19].

1.2 Radio drama as a Visual Medium

One of the first misconceptions that need to be clarified, is that of a radio drama as a

blind medium. It can be argued that radio drama as a term, even more as a drama form,

is a contradiction [21, p. 26]. After all, the word theatre comes from the Greek word

theomai, which means “to see”, “to behold”. How can one see when all that is available

is sound? To answer this question we need to understand the importance of sound,

not only in radio but also in film, and theatre. Hand and Traynor [3, p. 3] propose a

simple test: to watch any horror film with muted sound; the film is transformed from a

scary horror experience to a succession of images. Sound is much more than the audible

artefact of what is happening in the scene, it is an evoking of the viewer’s or listener’s

mind’s eye or imaginative spectacle [18, 22].
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Story Script Production Broadcast Listener

(a) Overall process
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Director Broadcast Assistant (BA)Studio Managers (SM)
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Add background music

Script Broadcast

(c) Production process

Figure 1.1: Radio drama pipeline. The team organisation shown above is the one used
at the production of BBC radio dramas and is described in [1].

1.3 The Radio Drama Pipeline

To provide methods for assisting radio drama production we must first identify the

processes taken in producing drama. We defined radio drama as the interpretation of

a story using music, sound effects, silence, and the imagination of the listener (Section

1.1). We can think of the form as a pipeline with the beginning being a story and the

end node being the listener as seen in Figure 1.1. At first the story is adapted to a

script, then production takes place and results in audio broadcast to a group of listeners

[3, p. 34]. The imagination of the listener is a vital part of radio drama so we begin

by identifying who the listener is: we would make a different adaptation to a children’s

audience than an adult one. A next step would be to adapt the story to a script suitable

for radio production. Part of this step is to identify elements of radio drama that can

be used to convey to the listener the various story parts such as characters, locations,

and emotions [23]. Such elements might be assets, such as music or sound effects, or

special effects such as panning, fading, and reverberation. The production stage usually

employs a small production team, consisting of a director, actors, and studio managers
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(SM). An example of a production team is described in [1] and can be seen in Figure

1.1(b). The roles of the production team are summarised below:

• The Director is the ‘leader’ of the drama. They are the ones whose vision the radio

drama interpretation takes.

• The Cast are the actors that perform the roles of the characters in a drama.

• The Studio Managers (SMs) manage recordings and relevant assets. According to

[1], radio drama production for the BBC uses a Panel SM that balances sound,

a Grams SM that adds pre-recorded sound effects and manages recordings, and a

Spot SM who creates spot sound effects.

A summary is also given about the various production steps:

• Pre-recording – A simple reading of the script is done by the cast to get an

estimate of the duration of the drama.

• Recording – The actors play their role. The Gram SM adds sound effects and

stores the recording to disk. The Spot SM creates perspective by moving the

microphone in the studio and also adds spot sound effects. The panel SM balances

sounds. The BA adds keeps detailed notes about the performances and adds rel-

evant recommendations to the script. The recording process is repeated until the

team is satisfied.

• Rough Edit – A studio manager creates a rough DAW timeline to identify the best

takes and process the mix, in order to have a consistent sound level throughout.

• Fine Edit – The Director and the Sound Managers cut the radio drama to the

required length, choose the best ‘takes’ and add background music.

The above processes can take up to several weeks and require experienced staff to fulfil

the roles discussed above [1]. An important goal of this thesis is to devise of methods

that allow the above processes to be sped up, and also be performed by people that are
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interested in radio drama generation but might be lacking resources or expertise.

1.4 Why Radio Drama?

Poetry

0.0

Theatre 25.5
Film/Television72.9

Radio Drama

1.6

(a) Audio Engineering Society

Poetry
27.4

Theatre

37.5

Film/Television

34.8

Radio Drama

0.3

(b) Semantic Scholar

Figure 1.2: Percentages of publications with each term in their Title or Abstracts com-
puter science literature stores as of August 7, 2019.

Until the time [18, 24] were released, radio drama as a research subject had been largely

ignored by academic researchers. Contrary to the expectations of the authors, radio

drama as a literary medium seems to continue to be overlooked well into the second

decade of the millennium [25]. While the trend reported refers to the domain of critical

studies, similar figures can be seen when considering research from technical communities,

such as the Audio Engineering Society (AES). AES, given its relevance to sound research,

was expected to host plenty of relevant material. Searching its e-library1 in 2019 we

find only 4 articles which include the term radio drama or radio play in their titles

and abstracts, compared to 63 for theatre and 180 for film or television placing radio

drama research to a 1.6% among these topics. Searching in the broader computer science

community we arrive at a dimmer result. The Semantic Scholar2 website, which provides

results from 20 websites with scientific papers, gives only 169 results for radio drama or

radio play compared to 21, 300 of the theater or the 19, 800 of film or television placing

publications of radio drama below 0.5% of the four literary arts. Figure 1.2 gives a visual

1http://www.aes.org/e-lib/
2http://semanticscholar.org
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perspective of those ratios.

Even in the cases that radio drama turns up into academic works, most of them relate

mostly to research about the acoustics of the radio medium. From the 4 articles of the

AES e-library, 3 of them related to producing and transmitting multi-channel/surround

sound and one from 1995 about improving the production process and even then, limited

to the final audio mixing process. Radio drama production however is not just sound

mixing, and as we discuss in Chapter 2, it cannot be seen as simply the blind cousin

of drama. If seen as drama, it encompasses plot writing, character development and

dialogue but if seen as a production for radio, constraints about time management, music

and sound effect libraries, actors, and others must be taken into account. Those two

perspectives are intertwined and must be tackled together, for example the availability

of a sound effects library will directly affect writing of the script.

All the aforementioned aspects have been a subject of research on automating or

assisting them. As examples, research on automating novel writing goes back to the

1970s [26], and recommender systems for assets with or without accompanying meta-

data is an active area of research since at least 1992 and are an active research subject

[27, 28]. Methods for automatic mixing have existed since the 1970s as well and are also

the subject of active research, however almost exclusively in the context of music [29, 30].

None of the research mentioned above has been used in the context of producing radio

drama. Huwiler [23] argues that radio pieces must not be analysed as literature since

they are written fundamentally different, even when adapted from a previous literary

work. For example, writing or analysing narrative for radio drama tends to be different

than for stories meant for reading. Narrative for radio drama tends to have simplified

structure, with few characters and descriptive language, but a specific story progression

focused on being able to capture and hold the attention of the listener. In the rest of

the thesis we examine the different aspects of radio drama in the context of radio drama

production: from expressing the plot of the drama as a script to mixing for radio.
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1.5 Research Assumptions

As discussed in the previous section, producing radio drama is a huge multi-faceted

endeavour and there is a need for realistic assumptions to be made for the various aspects

to be examined to a reasonable depth. Initially, we assume that stories to be adapted

have already been written and the thesis will examine only how to adapt them to radio

drama. The direct consequence of this shift is that we try to extract information that

is already available in a story, contrary to trying to generate it. The second assumption

to be made is that the stories examined are sufficiently short. Golden age radio dramas

tend to be 30 minutes in length [3], however we will keep our dramas well below that

duration in order to facilitate evaluation of our methods. In the next section we present

our research questions and directly link them to the chapters that answer them.

1.6 Research Questions

The main question this thesis explores is the following:

In what ways can advances in artificial intelligence and machine

learning assist a creator when producing radio drama?

Our goal is not to answer this question by exhaustively enumerating all such ways, but

to identify areas that can directly benefit from recent advances and provide directions

towards further research on this neglected field. Below we provide the individual ques-

tions answered throughout the text, together with references to the chapters and sections

answering them.

1.6.1 Understanding Radio Drama

In what elements can radio drama be deconstructed in order to make computational

analysis possible? Chapter 2 explores how radio drama literature has studied the ele-

ments of radio drama when examined as a story, as well as an acoustic art form and we

seek to construct a taxonomy to facilitate further research.
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1.6.2 Information Extraction in Stories

To what extent do recent advances in automatic story generation and natural language

processing (NLP) allow us to extract meaningful information from a story expressed in

raw text? Can extracting such information be seen as a set of NLP tasks common in

the literature? Can we use or devise algorithms to extract information that is either

explicit or implicit? In what ways can external knowledge, i.e. knowledge elicited from

online ontologies, help? How do we test the extent to which the aforementioned tasks

are successful? The main objectives for answering these questions are:

1. To establish a domain of literary elements found in radio dramas that allow for

adaptation in dramaturgical speech, music, sound effects. We aim to identify which

parts of the story text contain useful information in the context of radio drama

production, and what part of the text can be also expressed in a dramatic way or

only as narrative.

2. To acquire an understanding of the parts of the story that can be directly derived

from the text. To identify those parts that can be understood from the context.

3. To establish links between well-understood problems in NLP and extracting and

inferring information from story text that can be used in radio drama production.

Answering the above questions provide us with information extraction methods for story-

to-radio drama adaptation. Those are discussed in detail in Chapter 3.

1.6.3 Controlling reverberation based on desired Reverberation Char-

acteristics

In the process of mixing there are cases where the mixing engineer wants to ascribe the

characteristic of a space to an audio track (e.g. applying reverb to a footsteps track to

give an impression a character is walking on a large hall). Such characteristics include

e.g. the time it takes for the sound to decay. How can we adapt a reverberation effect

to be able to apply reverberation based on the aforementioned characteristics? For
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example, allow the mixing engineer to convey the characteristics of a cathedral, with

a long reverberation time, should they choose to do so. The main objectives of this

question are:

1. To identify appropriate reverb effect architectures that allow answering this ques-

tion.

2. To understand whether such architectures can be parameterised accordingly to

allow a user to convey the characteristics of a space to a radio drama track, based

on perceptual characteristics such as reverberation time, echo density, and clarity.

The question is explored in Chapter 4.

1.6.4 Asset Retrieval for Radio Drama Production

Given a radio drama script, how can assets for production be retrieved in an automatic

way? How can we retrieve audio effect parameters as well? The objectives in this case

are the following:

1. To establish a connection between recommendation systems for music, speech, and

sound effects and asset recommendation for radio drama.

2. To devise methods for recommending effect parameter settings for loudness, pan-

ning, fading, and reverberation.

And the outcomes, as described in Chapters 5 and 6 are the following:

1. Methods for organising and retrieving assets (speech, music, sound effects) men-

tioned in the radio drama script.

2. Methods for recommending audio effect settings to aid the user when mixing radio

drama.
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1.6.5 Radio Drama Production from Script and Asset Libraries

Given a machine-readable radio drama script and a library of assets, how can we produce

a radio drama? The main objective here is:

• To provide methods for aiding the user in mixing and mastering a radio drama.

1.7 Contributions

While pursuing answers to the above questions, the following contributions were made

via peer-reviewed publications:

• E.T. Chourdakis and J.D. Reiss – “Automatic Control of a digital reverberation

effect using hybrid models”. Presented at the 60th International AES Conference

on Dereverberation and Reverberation of Audio, Music, and Speech in February,

2016 (Leuven, Belgium).

• E.T. Chourdakis and J.D. Reiss – “ A Machine-Learning Approach to Application

of Intelligent Artificial Reverberation”. Published as an article in the 65th Volume

(Issue 1) of the Journal of the Audio Engineering Society (JAES) in February,

2017.

The two above papers discuss an approach to automatically applying presets for the

effect of reverberation to a source audio file, given the content of that audio file. The

two papers describe the same method, with the sole difference being that the second

paper allows the preset to be controlled using perceptual characteristics of the Impulse

Response. The two main contributions of the above are:

1. They provide a type of retrieval system for reverberation effect parameters where

the ‘queries’ are not given in a text form, but rather as the sound content of the

audio file the effect will be applied to.

2. They provide a way to apply reverberation by directly choosing intuitive reverber-
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ation characteristics: reverberation time, echo density, central time, clarity, and

spectral centroid.

They are discussed in more detail in Chapter 6.

• E.T. Chourdakis and J.D. Reiss – “From my Pen to your Ears: Automatic Produc-

tion of Radio Plays from Unstructured Story Text” Presented at the 15th Sound

and Music Computing Conference in July, 2018 (Limassol, Cyprus).

This paper describes an approach at an automated story-to-radio drama system. This

thesis is centred heavily around sections of this paper. Its main contribution is that

it provides an initial approach at analysing a story, retrieving relevant sound effects as

well as reverberation and panning settings, and composing a rough radio drama take

automatically. Chapter 3 extends and improves the methods of Section 3 of that paper

as well as repeats the evaluation presented in Section 5. Chapters 5, and 7 improve and

extend Section 4 of the same paper. A formal grammar of the radio drama script used

in that paper is also provided in Appendix C.

• E.T. Chourdakis and J.D. Reiss – “Grammar Informed Sound Effect Retrieval for

Soundscape Generation”. Presented as a poster at the 13th Workshop of the Digital

Music Research Network in December, 2018 (London, UK).

The above paper discusses a simple yet intuitive method for retrieving assets for gen-

erating a soundscape given a sentence in natural language. Its main contribution is a

method for constructing queries from literary story sentences, that allow retrieval of rel-

evant sound effects for that story from an online library of such effects. The paper is

expanded and discussed in more detail in Chapter 5.

• E.T. Chourdakis and J.D. Reiss – “Tagging and retrieval of room impulse responses

using semantic word vectors and perceptual measures of reverberation”. Presented

during a lecture at the 146th AES Convention in March, 2019 (Dublin, Ireland).

This paper describes a method for retrieving reverberation impulse responses from –
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possibly noisy– labels. The contributions in this paper are:

1. A content-based retrieval system for Room Impulse responses that retrieves them

using only five perceptual measures instead of features derived from the frames of

the audio files, which is common in content-based audio retrieval.

2. The ability to use imprecise tags to label or retrieve such files, without losing much

in retrieval accuracy.

Parts of it are discussed in more detail in Chapter 5.

1.8 Thesis Structure

The rest of the document is organised as follows: Chapter 2 discusses radio drama as a

format of storytelling medium. The chapter discusses elements that define radio drama

as a story, the elements used in expressing it as sound and the relationship between the

two. Chapter 3 discusses methods for extracting literary elements of radio drama that

can be expressed using sound. Chapter 4 focuses specifically on the audio effect of

reverberation since it is used extensively in the methods discussed in Section 5.3 and

Chapter 6. Chapter 5 discusses methods for retrieving assets that are relevant to the

source story and can be used in radio drama production. Chapter 6 focuses specifically

on retrieving relevant reverberation parameters for sound files based on content. Chap-

ter 7 discusses how content extracted and generated throughout the rest of the thesis

can be mixed to radio drama. Finally, Chapter 8 concludes this thesis by discussing

limitations and possible future directions.



Chapter 2

Story and Discourse in Radio

Drama

2.1 Introduction

Words Sounds Music

Radio Drama

Silence

Figure 2.1: Constituents of radio drama

In this chapter, we discuss important elements found in radio drama stories and how they

are communicated to the listener. We try to provide formal definitions for important

elements in radio drama story and discourse, as well as a formal framework to use them

computationally in the rest of the thesis.

Stories made for radio drama are not very dissimilar to stories found in the literature,

it is usually the case that radio drama adaptations are made from popular stories written

in books. It is, however, important to acknowledge that radio as the story’s medium has

an influence on the adapted story [23]. The perceived ‘blindness’ of the medium imposes

41
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several limitations. First of all, radio drama frees the listener’s vision and allows them

to do other activities while listening to it. Therefore, radio drama ‘competes’ with other

activities for the attention of the listener [3, p. 36]. Another constraint comes from the

limited capability of radio to communicate ideas and factual information; the word in

radio is ‘fleeting’ and information can be missed by the listener [31]. This constrains radio

drama in the way it is written: it must capture early the attention of the listener and

provide the story in an easy to follow way. Radio dramas tend to have simple narrative,

use descriptive language, and involve few characters. They are also ‘to the point’: every

event or interaction between characters has a reason for being in the drama.

Like every story, radio drama stories are focused around important narratological ele-

ments, such as the goal of the main character. Understanding every important element

however requires an exhaustive referral into semiotics, something that escapes the scope

of this thesis. Since many radio dramas come from adaptations from popular stories,

we will assume a story already exists and we need only concern ourselves with adapting

it to radio drama. There have been previous approaches at formalising radio drama

adaptations. In [23] the author discusses how the various acoustic elements of radio are

used to signify elements in the underlying story, and how this signification might differ

for each individual drama. While this last fact may seem to discourage a computational

framework, we will try to formulate one based on the most directly defined such connec-

tions between story and acoustical elements while acknowledging that the aspiring radio

drama creator might not completely adhere to such rules.

The basic elements available for radio drama discourse are: Speech, Sounds, Music,

and Silence (Figure 2.1) [3, p. 40]. In the sections below we briefly discuss the use for

each. It is important to note that it is not necessary for an audio drama to include all of

the elements. Although usually, we expect to see a little bit of every element, extreme

cases exist which completely lack an element. The audiobook format can be thought of

radio drama that completely lacks sound effects or music and makes up with increased

use of spoken words. On the other end of the spectrum, we have what [3, p. 59] refers
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Figure 2.2: Acoustic Dimensions of audio drama. The beginning of an axis signifies
lack of an element and the vertices of the triangle that the format consists fully of that
element. The blue dot refers to the format of Audio Book, which usually lacks music
and sound effects. The red line refers to a type of audio drama with no speech. Silence
is not mentioned since it is an integral part of all audio dramas.

to as ‘sonic art’ and [32, 33] as ‘audio film’: audio drama with a complete lack of speech

where the whole story is communicated through the exclusive use of sound effects, music,

and silence.

The three elements above are signs of the following narratological elements: Scenes,

Events, (Discourse) Time, Tension, Emotion, Characters, Objects, Locations. Obviously

there exist many more but we identified those to be those that can be directly commu-

nicated with acoustical elements.

In the following sections we distinguish between story, and discourse, and provide a

formal definition for each. We make this distinction for stories written for books as well

for stories written for radio. This will help us to clarify the differences between stories in

books and stories for radio, and make the distinction between story and discourse clearer.

Clarifying those differences will aid us at a later stage when formulating rules for adapting

literary stories to radio drama in Chapter C. Finally, we provide a taxonomy of story

and discourse where we place the narratological and acoustical elements we mentioned

above.
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Narrative

Discourse

Content

Manifestation

Structure / Plot

Events

Setting

Figure 2.3: Hierarchy of narrative elements adapted from [2]. The arrows denote hierar-
chical structure and the dashed lines dependency: the higher levels depend on the lower
levels.

2.2 Content and Discourse

Radio drama is an art form that is used to tell stories. Therefore, it has narratological

structure. In Figure 2.3 we borrow the hierarchy presented in [2], which facilitates com-

putational analysis. In the basis of the drama is the story, arguably the most important

element of radio drama [3, p. 106]. It is the foundation where all other elements of radio

drama can stand on. However, the story is hidden from the listener. It is revealed grad-

ually through discourse. While discourse in literary stories uses text to communicate to

the reader, in radio drama communication it uses the audio elements discussed in Section

2.1. We use the term manifestation to refer to the different types of communication of

discourse to the reader/listener such as natural text or sound. The elements of the story

that happen ‘behind the scenes’ in the story belong to the story content [34, p. 26]. Con-

tent can be distinguished into the story world which includes all entities and relations

between them in the narrative, and a set of chronologically organised events. Expressed

differently, the story content is the answer to the question “what happens in the story?”

and discourse is the answer to the question “how does the reader/listener know?” [34,

p. 20]. Below we discuss in more details the ‘leaves’ of the narrative hierarchy tree in

Figure 2.3.



Chapter 2. Story and Discourse in Radio Drama 45

2.2.1 Discourse Manifestation and Structure

Discourse answers to the question “how does the receptor of the story know?”. Observing

the story the answer comes easily: for written stories by reading the text and for radio

drama by listening to the story in sound. We say that the story manifests itself as text

or sound respectively. As an example of how the same story manifests in story and text,

consider a text excerpt of the Aesop’s fable, The fox and the crow :

“A crow was sitting on a branch of a tree with a piece of cheese in her beak

when a fox observed her and set his wits to discover some way of getting the

cheese.”

When adapting the crow and the fox to a radio drama script, we observe a much longer

discourse segment:

MUSIC: Happy medieval music

Narrator: The fox... and the crow

– First Scene –

ATMOS: Birds chirping, leaves rusting

(long pause)

Narrator: One morning a fox was walking through the woods, looking

for something tasty to eat for his breakfast when his nose

picked up a scent... a scent of something very interesting.

He stood still... and sniffed the air.

SFX: (Fox sniffing)

(pause)

Fox: Cheeeese...

Narrator: He said...

Fox: (Emphatically) I smell cheeese... Now why would there be cheeese

in the middle of the wood like this?
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Figure 2.4: A DAW timeline picture of the first scene of the for the BBC School Radio’s
“The fox and the crow”. Horizontal axis denotes time. The depiction of events is not
accurate in time but symbolic.

Narrator: The fox didn’t have to wait long to find out... because sitting

on a branch... high up in a tree... sat a crow... and in the crow’s beak...

was the biggest piece of cheese he’d ever seen.

(short pause)

Now the fox loved cheese more than anything in the whole world and he decided

that come what may he would have that piece of cheese for himself.

The above script1 when produced will have a DAW timeline picture similar to the one

in Figure 2.4. Both the radio drama script and the DAW timeline are considered valid

manifestations of radio drama narrative.

We notice several obvious differences between the two forms. The most obvious one

is that manifestation in radio drama uses the sound elements we briefly discussed in

Section 2.1: Speech, Sound Effects, and Music. The second is the differences in length:

the text excerpt is much shorter. Radio drama tends to be a form sparse in information

such as not to lose the attention of the listener. Consider the following part:

“A crow was sitting on a branch of a tree with a piece of cheese in her beak

when [...]”

In the same sentence we get the information that the crow was sitting on a branch, which

1BBC School Radio’s Aesop Fables 1–4: https://www.bbc.co.uk/programmes/b03g6vqg
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was on the tree, that the crow had some cheese in her mouth. This is three pieces of

information in a single sentence. In the radio drama manifestation, we get the following

instead.

“[...] on a branch... high up in a tree... sat a crow... and in the crow’s beak...

was the biggest piece of cheese he’d ever seen [...]”

Here simple pieces of information are segmented by short pauses making information

much easier to absorb. Another subtle difference that can be seen is the use of timing.

In radio, as opposed to written stories, the listener cannot ‘listen forward’ and absorbs

information in a much slower rate. This allows the radio drama creator to ‘play’ with

time and induce effects such as suspense, as evident in the excerpt above: the narrator

delays the introduction of an important character of the story, the crow, by using pauses

and slowly revealing the location someone was sitting on before introducing who that

was. A final difference between manifestation of the two forms can be observed in the

elongation of the word ‘cheese’ which the creator does to introduce humour.

We mentioned that radio drama is a sparse medium regarding information. To observe

this statement more clearly we need to discuss about discourse structure or plot. We

refer to plot as the arrangement of story events as presented to the reader/listener [34,

p. 43]. In its written story form the text excerpt we presented from the fox and the crow

is presented to the reader with the following structure:

1. A crow is sitting on a branch of a tree. The crow has a cheese in her beak.

2. A fox observes the crow.

3. The fox thinks of a way to get the cheese from the crow.

Another way to represent the progression of those events can be seen in Figure 2.5(a).

We can similarly represent the plot as given in the radio drama script:

1. A fox is walking through the woods looking for something to eat.
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(a) Written story (b) Radio drama

Figure 2.5: A graphical representation of the progression of discourse. Boxes with solid
outlines represent events and boxes with dashed line reveal information.

2. The fox picks a nice smell with his nose.

3. The fox stands still.

4. The fox sniffs the air.

5. The fox saw a crow sitting on a branch of a tree with a big piece of cheese in her

beak.

6. (Reveal Information) The fox loved cheese.

7. The fox decides to get the cheese.

8. The fox introduces himself to the crow.

We observe that the structure is similar (although re-ordered and expanded) to the
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Figure 2.6: Freytag’s Pyramid for plot structure. Lines represent sequences of events
or scenes and hollow circles important single scenes. Vertical axis measures tension and
horizontal axis discourse time. The plot begins with introducing the characters and
environment (Exposition) that lead to a point of conflict, then events of raising tension
lead to the climax, which is subsequently followed by events that ease the tension (Falling
action) and finally, the conflict is resolved.

same story told in writing, although the same story resulted in a much longer discourse

for radio drama. It is usually the case that radio drama adaptations are much more

expansive in providing information compared to their source stories. Finally, for radio

drama, we group events and information revealed to the listener into scenes which group

together those events that take place at the same place and point in time [35]. In Figure

2.5(b) we notice that we have grouped discourse into two scenes: one of the fox walking

by himself and revealing his desire to eat the cheese, and another talking to the crow.

Scenes are further grouped into main parts, or acts.

A common drama structure follows the Freytag’s Pyramid [36, p. 115] which divides

the discourse structure into five parts: Exposition, Rising Action, Falling Action, and

Resolution. Exposition is the part that introduces the characters and the environment,

and usually leads to a conflict. Conflict is the point in the plot where the objectives for

the story’s characters are placed against each other. Rising Action is the sequence of

events or scenes that build tension in the plot and lead to a point of climax. Finally,

Climax is the highest point of tension in the story. It is usually a single event which seals

the fate of the characters in the conflict. Finally, Falling Action is the part that follows

the climax. Since the fate of the characters is sealed by the climax, tension finally eases

in the falling action.
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Tension is either communicated through narrative, or through dialogue and actions

of characters. A very effective way to build tension is to use long pauses between words

in dialogue or sound effects. Tension, however, is not the only emotional state the

listener experiences. During the drama, the listener is expected to develop an emotional

connection with the character which might be love, hate, admiration or even pity [18,

p. 171]. A particular emotion can be evoked to the listener either by narration, sound

effects, music, or dialogue.

A feeling prevalent in drama which is related to tension is suspense. Suspense as a

feeling has multiple definitions throughout the literature. Since this thesis looks at radio

drama through the prism of a computational study however we will use the definition

from [37] according to which, the reader feels suspense when the paths that solve the

character’s problem have been restricted. We adopt this definition to be consistent with

previous studies of computational modelling of narrative [38, p. 12].

2.2.2 Story events and setting

In section 2.2.1 we saw that discourse reveals story information to the reader/listener.

This information originates from the story content. The content can be decomposed to

the story events and the story setting (Figure 2.3). As story setting, we refer to the state

of the story world: objects, locations, characters and their relationships, their emotional

states, etc. The elements of story setting get organised into the story events that are

used to tell the story. This organisation is usually linear (events in the story world

usually happen in linear time).

We visualise the differences between the setting and events in Figure 2.7. Figure 2.7(a)

shows a representation of story events and Figure 2.7(b) of story setting. The discourse

provided in Figure 2.7(c) is the same as the one in Figure 2.5(a) and is derived by picking

appropriate information from the story content at each step of discourse. Note that in

a similar fashion, the discourse provided in 2.5(b) is derived from the same content.

The representations chosen for discourse and content in the figures above were chosen
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(a) Story events (b) Story setting (c) Discourse

Figure 2.7: A representation of story events and the story setting. Events are represented
in simplified clauses. In the setting representation arrows represent binary relations. For
example the arrow from the crow node to the cheese node labelled has means that the
crow has the cheese. The rightmost figure represents an example discourse derived from
the story events and story setting. Colours represent information used to provide each
piece of discourse.

to facilitate comprehension and are not unique. There are plenty of representations

to choose from for representing discourse structure and choice depends on the type of

analysis needed. Examples of representation include simplified natural language [39],

graph-based [2, 40, 41], structured [42] and meaning-based representations [43–46]. We

discuss them further in Chapter 3.

We observe that the story setting (Figure 2.7(b)) consists of entities easily identified

in the world, such as cheese, or tree or emotional states such as hungry. The Paris School

of semiotics refers to those entities as Figures [47, p. 12]. Below we discuss the ones used

most often in radio drama.

2.2.3 Characters

We refer to animate actors in the story as characters. Characters can be communicated

to the listener by using either narration, dialogue, or sound effects. The simplest way

is for them to be described by the Narrator or by them to speak in the story. They

can also be hinted in the lines of other characters (e.g. by introducing them or speaking
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directly to them), or even by using plain sound effects (e.g. in the case of The Revenge

the main character does not speak but is perceived by the sounds resulting from their

interaction with the story world). In radio drama the characters generally are prepared

using the following attributes [3, p. 184]: Age, Gender, Sexual Orientation, Ethnicity,

Upbringing, Political Affiliation, Personality Traits, Appearance, Appearance, Occupa-

tion, and Lifestyle. Not all of them are needed or exposed in the drama. For example,

in “The fox and the crow” the makers only use the age, gender, and personality traits.

The fox is male and the crow female. The fox is young and cheeky and the crow older

and vain. Such attributes have not just been introduced for the sake of making the story

more interesting, for example, the crow’s vanity is the reason why she finally loses the

cheese to the fox. Characters can be categorised into the main character and secondary

characters. As the main character, we refer to the character around whom the plot

revolves. Secondary characters on the other hand are those whose role is to aid the plot

to unfold through their interaction with the main character. In “The fox and the crow”,

the main character is the fox, since the plot revolves around him getting the cheese.

The main character usually provides the point of listening we will discuss in Section 2.6

and is placed above all other characters in the sound hierarchy [18, p. 163]. The role of

the main character has been studied in the past in literature and is referred to as the

hero/heroine [48]. A very important role for the main character is for the listener to be

able to sympathise with them so that tension can be built through their struggle. Their

aspirations must be strong and the listener must be able to develop emotions for them

[18, p. 172]. In “The fox and the crow”, the crow is a secondary character since the

plot revolves around her conflict with the fox. Secondary characters are usually placed

lower than the main character in the sound hierarchy (Section 2.6). They are defined by

their role in interacting with the main characters as companion, adversary, etc [48]. A

significant difference between radio drama and written stories is that in radio drama the

number of characters tends to be kept to the bare minimum, every encounter between

characters, should be significant [3, p. 109].
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2.2.4 Inanimate Objects

As inanimate objects or simply objects we refer to those objects in the story world that

may or may not produce sound, and thus be communicated using SFX, but do not have

agency. They can also be used as instruments by characters in which case they produce

sound only when the characters interact with them. In the example of “The fox and the

crow” the fox uses his nose to smell the cheese, therefore producing a ‘sniffing’ sound.

Examples of objects can be wall clocks ticking, weapons firing, etc.

2.2.5 Locations

As location we refer to the perceived physical space parts, or the whole of the story

takes place. In our example, the location is the forest. Locations are communicated to

the listener with the use of sound effects, audio backdrop, emanation speech, or referred

to in dialogue or in narration. Locations can also alter the perspective in a drama, by

physically restricting movement of characters in the scene (e.g. in a car). An example

would be “wind blowing, bees buzzing and the bell of a church” when referring to a rural

area.

2.3 Elements of Radio Drama Discourse

The elements available and are specific to radio drama discourse can be mostly cate-

gorised as elements of discourse manifestation. Those are the following: Speech, Music,

Sounds and Silence. The only element we identified that can be classified as a structural

element of discourse is Discourse Time which we will also discuss.

2.4 Speech

Speech is used in radio drama to communicate information, express emotions, or inner

thoughts [3, p. 41]. It can be categorised into Dialogue, Narration, or Emanation speech

(Figure 2.8).
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Figure 2.8: Types of speech used in radio drama

2.4.1 Dialogue

Dialogue between radio drama characters is similar to real-life conversation. They, how-

ever, must respond to what is happening in the drama [18, p. 188]. Successful dialogue

uses active, direct, and emotional language as opposed to neutral communication. It

also springs from the characters’ background and emotional state. Dialogue is realised

using the voices of actors. The voices of characters can be described using characteristics

such as Volume, Pitch, Pace, Accent, etc.[3, p. 175]. Changes in those characteristics

can be a sign of the characters’ age, gender, or social and regional background, but also

of the character’s emotional or physical state [23]. As an example, male voices tend to

be deeper (have lower pitch) than female, which in turn are deeper than children voices.

Older characters tend to also have deeper and mellower voices. Physical or emotional

state tend to also affect the characteristics of a characters’ voice by e.g. increasing talking

pace when the character is stressed [3, p. 174].

2.4.2 Narration

Narration is used to evoke visual imagery of parts of the drama that would appear on

screen if it was on cinema [18, p. 81]. It is usual that narration happens using the voice

of the narrator who has to ‘guide’ the listener throughout the story. An important role

of the narrator is when the sound of objects and events are ambiguous: [31, p. 80] give

as an example the comparison between footsteps and a methodical stacking of bricks.

In those cases, it is the job of the Narrator to disambiguate the origin of the sound by

giving relevant hints in their speech, for example by mentioning that the character is

walking.
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2.4.3 Emanation Speech

Emanation speech is unintelligible speech possibly used in scene construction, such as

the crowd speaking in the background. The presence of emanation speech can be used to

signify mystery, symbolise emotional or intellectual myopia, and even be used for comic

effect [18, p. 83].

2.5 Music

Music is an essential part of radio and is not unique to radio drama. It is however

important for radio drama due to its ability to evoke emotions in the listener but its

role does not end there[3, p. 50]. While music has many different roles in radio drama,

we mainly identify mood music, linking music, stylised sound effects, and indexal music.

Mood music is probably the most obvious use for music in the drama, used to evoke

feelings or thoughts and usually plays in parallel with narration or lines of dialogue.

Linking music is music joining scenes in a radio drama. An example of linking music can

be seen in musical jingles in ads or signature tunes of radio programs. Linking music

is used as the analogous of the theatre’s ‘curtain’, signifying a change of scene. Other

examples of linking music include the intro or outro of the radio drama show [49, Ch. 15].

A stylised sound effect is a short music part used in place of a sound effect. Those are

usually sounds that are better at evoking the image of an event than a natural recording

of the event itself. As an example, a percussion instrument can signify a thunderstorm

better than a realistic recording [3, p. 50]. Other uses for stylised sound effects include

e.g. communicating time changes [18, p. 167]. Finally, indexal music is music that

occurs in the world of the drama, such as a character turning on a radio or playing an
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Figure 2.10: Types of sounds used in radio drama

instrument. [50, p. 51–2] elaborates further on the aforementioned functions of music.

2.6 Sounds

Sounds can be subdivided in four separate categories: Sound effects (SFX), Audio Back-

drop (ATMOS), acoustics, and perspective (Figure 2.10) [3, p. 44]. Sound effects are

distinct sounds which signify an event or location. They are usually accompanied by

textual descriptions. Examples of SFX include the sound of a telephone ring, and the

waves splashing on a beach shore. It is important to remind at this point that sounds

need not be naturalistic: it needs to evoke the desired visual imagery and might not

necessarily be a sound produced by the object it represents. According to Lance Sievek-

ing, sound effects can be further categorised based on whether they describe a physical

element in the scene and the effect they procure [3, 18]:

• Realistic and confirmatory: Confirming what was described. For example, the

sound of a ‘ship in a storm’ after a character has introduced a storm.

• Realistic and evocative: Evoking emotions or state of mind using sounds that

describe physical entities in the drama. For example, a rural, rustic atmosphere

evokes a sense of ‘peacefulness’.

• Symbolic and evocative: Evoking a character’s confusion using unrealistic sounds

such as abstract rhythms.
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• Conventionalised : Spontaneously evoking stereotypical images in the mind of the

listener: for example ‘the sound of a train‘.

• Impressionistic: Used to evoke the world of ‘dream’.

Sound effects are further categorised based on how they were sourced. We distinguish

them between spot sound effects, and pre-recorded sound effects. The distinction lies on

whether the SFX are created ‘live‘ in the studio during a recording of the drama, or are

available in a pre-recorded form. An example of a spot SFX is the ‘live’ breaking of a

frozen cabbage to give the impression of a breaking bone. Spot SFX have their origin on

early cinema when music and SFX were generated ‘live’ by SFX technicians [18, p. 90].

The primary reason for this was the inability of recording to hold more than a couple of

minutes of sound[3, p. 17]. The use of live SFX, however, evolved into common practice

even after technology allowed for longer recordings, a reason being that some times spot

SFX sounded more ‘realistic’ or were more practical to produce than their naturalistic

counterpart [3, p. 145]. Sound effects, in general, tend to be used sparingly, targeting

at a persuasive illusion of reality than realism, otherwise, the listener gets distracted

and the image gets blurred [31, p. 79]. The producer has the role of selecting the most

representative sound to signify an event or location; we refer to that sound effect as an

SFX signal. Finally, Audio Backdrop, Atmosphere, or ATMOS are sounds suggesting

the location of the drama [3, p. 143]. ATMOS are subtle non-intrusive sounds that ‘hint’

the location. They usually are imprecise, conveying a general impression rather than the

specific location. Other elements of the radio drama, such as sound effects or textual

descriptions are needed in order for the listener to pinpoint the exact location [3, p. 142].

2.6.1 Acoustics

In radio drama, Acoustics is the nature of sound in different locations [3, p. 150]. Acous-

tics are categorised to outside acoustics and interior acoustics. The former category

refers to perceived ‘outdoors’ locations, such as meadows or schoolyards, and the later

smaller spaces with perceived reverberation such as cathedrals, the inside of a car, etc.
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Figure 2.11: A hierarchy of sounds card for “The Hound of the Baskervilles (1998)” as
shown in [3, p. 48]. Notice that Sir Henry and Dr Watson are the main characters in the
scene and are higher in hierarchy followed by a hound that moves from left to right in
the scene.

Change in acoustics is achieved either through careful design of the production studio or

by using the audio effects of Reverberation and equalisation (EQ) at a mixing console or

a DAW. As an example, acoustics of a large ‘open’ space like a meadow can be simulated

by reducing the volume of the bass frequencies of the character voices, while a cathedral

would be simulated by introducing a spacious reverberation effect. We discuss EQ and

Reverberation in Section 2.7.

2.6.2 Perspective

As Perspective we will refer to the spatial relationships between the characters in the

drama [3, p. 47]. It is important for the listener to understand how the characters

interact in space. Characters can be distant or close to one another, to the left or right

(in a stereo mix). A point of listening can be specified which can give both the relative

positions of the characters as well signify their importance in the scene. This is usually

achieved by establishing a hierarchy of sounds in the objects and events in a scene and

can be realised by altering loudness and spatial positions of elements in the mix (e.g.

with stereo or surround audio) [3, 51].
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2.7 Audio Effects

We briefly mentioned the special effects of EQ and Reverberation in Section 2.6.1. While

those can be used for simulation of acoustics and perspective they have other means

which we explore in this section. Since there is a very large number of audio effects and

discussing all of them would be impractical, we will limit our conversation to Fading,

Reverberation, and equalisation. While dynamic range compression is also used in radio

drama, it is typically at the mastering stage and not at the discourse level so we will not

discuss it at the current stage.

Audio effects are not sounds themselves similar e.g. to speech or sound effects are,

but the transformation of sounds in order to alter the perception those sounds convey

in discourse. For example, by removing the treble from speech we can simulate someone

speaking with their back to the listener [52]. We begin with describing fading which is

the simpler of the three effects we will describe.

2.7.1 Fading and Scene Transitions

Fading is the gradual increase or decrease of the amplitude of a sound element of the

radio drama. It is most often used on the atmosphere of a scene to signpost change of

scene. It can be categorised in three types: fade-in, fade-out, and cross-fade:

• The fade-out effect gradually decreases the amplitude of a sound element (Figure

2.12(a)). It is characterised by the fade-out time (measure in seconds) which is the

time it takes for the sound to dissipate completely.

• The fade-in effect gradually increases the amplitude of a sound element (Figure

2.12(b)). Similar to the fade-out time, fade-in time is the time it takes for the

signal to reach from 0 amplitude to unit gain.

• The cross-fade effect gradually decreases the amplitude of a sound element while

gradually increasing the amplitude of another, giving the perception of ‘transition-

ing’ between the two elements(Figure 2.12(c)). The Cross-fade time is the time it
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Figure 2.12: Fade-in, Fade-out and Cross-fade applied to ATMOS. Top plots show the
unprocessed sound, middle plot shows the fade envelopes and bottom plot the resulting
effect.

takes for the transition to complete. Fading can be achieved either by manually

modifying the volume levels of the signals we want to apply fading to, or by using

an effect processor called a Fader [53, p. 279]. The Fader is a simple gain proces-

sor which gradually alters the gain of the input signals. Fader takes as inputs the

signals to fade and the duration the fading effect will last ft as well the shape of

the fading envelope.

Fading is mostly used in radio drama for changes between different scenes. There are

four common ways to signify a scene transition[3, p. 159]:

• A fade-out of the ATMOS of the first scene over roughly five seconds followed by a

silence of one or two seconds and a fade-in of another five seconds of the ATMOS

of the scene that follows. This is the most common transition in radio drama.

• A quick crossfade of two backdrops. This type of transition is used for quick scene

changes e.g. when characters move from one room to the next in real-time.
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• The segue. This is a sudden transition between the ATMOS of the scenes. A fader

might not be used in this case and if used the fade-out/fade-in transition is very

sharp.

• Linking music is used as a ‘bridge’ between scenes. It can often signpost changes

of mood and is discussed in Section 2.5.

2.7.2 Equalisation

Equalisation is another important effect. It is used to amplify or attenuate part of the

frequency content of sounds, music or speech. Like reverberation, it can be used to sim-

ulate spaces. For example, removing low frequencies from a sound can make it ‘thinner’,

giving the impression that the source is ‘outside’ (e.g. in a meadow). Equalisation can

be applied to a sound through the use of EQ processors. There are lots of different

implementations of EQ processors but they are usually a combination of the following

DSP filters [53, p. 59]:

• The Low-pass filter (LPF) removes frequencies of a sound higher than a chosen

frequency f lc. The frequency response of an LPF can be seen in Figure 2.13(a). We

can apply the effect to speech to simulate a person talking with their back on the

microphone [52], simulate underwater sound [18, p. 84], and similar effects.

• The High-pass filter (HPF) removes frequencies of a sound lower than a chosen

frequency fhc . The frequency response of a HPF can be seen in Figure 2.13(b). We

already gave an example of its usage for ‘thinning’ the sound when e.g. simulating

an outside environment. Another would be to eliminate the low frequencies of a

voice to e.g. simulate a telephone call.

• The Band-pass filters (BPF) removes frequencies of a sound outside a chosen fre-

quency band [f lc, f
h
c ]. It can be implemented by applying an low-pass and then a

high pass filter in sequence. The frequency response of a band-pass filter can be

seen in Figure 2.13(c).
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Figure 2.13: Example frequency responses of the several building blocks for applying
equalisation. Every filter is parameterised by at least a centre frequency (two for the
case of the band-pass filter). The high/low-shelf filters are also parameterised by a gain
factor G controlling how much the shelved part of the spectrum is enhanced/attenuated.
The notch and peak filters are also controlled by a quality factor Q deciding how ‘narrow’
the notch or peak is.
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• The Notch filters (NF) removes a narrow frequency range around a chosen centre

frequency fnc while leaving the rest of the frequencies intact. When they instead

attenuate all other frequencies except this narrow band, they are called Peak filters

(PF). They are controlled by this centre frequency and a quality factor Q. Notch

and Peak filters are used to remove of enhance specific frequencies. Their frequency

responses can be seen in Figures 2.13(f) and 2.13(g) respectively.

• Low-shelf filters (LSF) attenuate or enhance frequencies of a sound lower than a

chosen frequency fLSc . Aside from this frequency they are controlled by a parameter

G. High-shelf filters (HSF) attenuate or enhance frequencies of a sound higher

than a chosen frequency fHSc . Aside from this frequency they are controlled by a

parameter G. Figure 2.13(b) shows the frequency response of an LSF and 2.13(b)

of an HSF respectively. Shelving filters can be used where HP or LP filters are

used in cases we do not want to remove completely but simply attenuate some of

the frequencies.

2.8 Silence

As the name implies silence is the absence of sound. Silence is used to alter the perception

by the listener of other elements in radio drama. As an example, when used within

speech, it can be added to evoke ‘expectancy’ or introduce ‘emotional overtones’ [31,

p. 88]. It also acts as a boundary between scenes, a lapse in time or a change in location.

Other uses of silences are to e.g. introduce irony, or humour and to create dramatic

tension [3, p. 57].

The role of silence has been extensively studied in speech in the form of pauses. Dis-

tribution of pauses can hint on the type and structure of speech and are essential for

comprehension [54]. There is a variety of roles for ‘pauses’ in different settings such as

reading or discussion, communicate emotion [55], and even across age [56]. In this thesis,

we will only consider pauses in dialogue.
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Figure 2.14: A taxonomy of narrative elements for radio drama

2.9 Summary

In this chapter, we introduced the narrative elements of radio drama. A diagram showing

the overall taxonomy can be seen in Figure 2.14 and the way structural elements affect

radio drama manifestation in Table 2-A.
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Element Attributes Affects

Characters Age Dialogue
Gender SFX
Orientation Perspective
Ethnicity, ... Emotion

Objects – SFX

Locations – SFX
Audio Backdrop
Perspective
Emanation Speech
Indexal Music
Reverberation
Equalisation

Scenes – Tension
Stylised SFX
Linking music
Fading

Tension – Mood Music
Silence

Emotion – Dialogue
Mood Music

Table 2-A: Narrative elements, their attributes, and the elements of radio drama they
affect. Element contains the elements we discussed about in this section. Attributes are
properties of those (e.g. a character is of specific age). Finally, the elements in Affects
gives the part of radio drama production that is affected by the narrative element in
Element (e.g. Emotion in story can affect the choice of Mood Music).



Chapter 3

Computational Methods for

Extracting Information from

Stories

3.1 Introduction

Information extraction refers to the processes used to extract specific information from

some form of free text. In this chapter, we apply information extraction techniques

to extract information from stories. This information can be either names of entities,

phrases relating to instances of things, relations between them, events where those partic-

ipate, etc. [57, p. 4v]. There are a variety of methods used to do information extraction

from text in free form. We will be using information extraction methods to analyse

unstructured text in order to recognise and identify the narrative elements in Table 2-A.

We will use two approaches, rule-based Open Information Extraction [58] and statistical

methods entity and relation extraction [57, p. 497a,b]. An initial approach at extracting

information about characters, acting lines, and story locations was presented in [59]. We

begin this chapter by discussing how we can utilise knowledge about the real world when

66
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extracting information from text in Section 3.2. Information extraction about characters

as well as story dialog is discussed in Section 3.3. Extracting information about story

locations is discussed in Section 3.4. Section 3.5 discusses methods for discussing charac-

ter, and story emotion information. Section 3.7 discusses a simple method for identifying

story events, and Section 3.8 briefly discusses suspense. While most of the above sec-

tions discuss techniques already found in existing literature, the chapter introduces some

original contributions as well:

1. The process for joint identification of characters, assignment of their voices and

tags describing their roles in Section 3.3 in the context of adapting a written

story to radio drama. While established methods are also used in that context

from the NLP pipeline (Tokenization, Tagging, Dependency Parsing, Word Sense

Disambiguation and Coreference Resolution) they are used in that section for the

purpose of extracting characters, their roles, and their lines in order to direct actors

portraying these characters.

2. The method for spatial role labelling presented in Section 3.4 which slightly improves

on the state of the art on accuracy metrics on two previously established corpora.

3. In Section 3.5, the adaptation of an established technique for extracting emotions

from the text of fairy tales for the purpose of directing actors as well as retrieving

music for radio dramas.

Finally, the biggest contribution of this chapter is the use of established, and original

methods in the context of extracting information from stories in order to direct radio

drama production.

3.2 Utilising external knowledge

Before we discuss methods for extracting knowledge from text, we refer to methods

of utilising real-world knowledge, an ability essential to information extraction. One

way to introduce such knowledge to our methods is to use a knowledge base which was
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constructed specifically for this.

3.2.1 ConceptNet

One such knowledge base is ConceptNet [60], a freely available knowledge base that

encodes a large set of commonsense knowledge in a single graph network. It repre-

sents real-world entities as concepts and their relations between them as edges that link

those concepts. It encodes simple relations between concepts, such as “love is a type

of emotion”, lexical “love is the antonym of hate”, and also more complex ones such as

“marriage is motivated by love”. It is often used in the literature of Natural Language

Processing to augment statistical methods with some knowledge derived from common

sense. In this thesis, we use version 5.5 [61] which is the most recent. ConcentNet is

provided on the web and allows querying by accessing appropriate HTTP requests. For

example the query:

“Show me what a knife can be used for.”

can be accessed with the HTTP request:

http://api.conceptnet.io/query?rel=/r/UsedFor&start=/c/en/knife&

end=/c/en

where en/knife is the concept of a knife (an English word), and r/UsedFor returns the

concepts of the things that can be done with a knife. The result is a list of ConceptNet

entries such as en/stabbing (a knife can be used for stabbing) or en/butter (a knife

can be used for butter). We use such relations in Section 5.4 where we align emotions as

extracted from text with emotions from a dataset used for music retrieval. ConceptNet

also provides word embeddings that map each word to a vector in a way that encodes

some of the common sense relations available in the knowledge base. We discuss more

about word embeddings below. Before that, however, we discuss about WordNet [62],

another commonly used knowledge base.
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Synonym set Description

king.n.01 A male sovereign; ruler of a kingdom
king.n.02 A competitor who holds a preeminent position
baron.n.03 A very wealthy or powerful businessman
king.n.04 Preeminence in a particular category or group or field
king.n.05 Billie Jean King
king.n.06 B.B. King
king.n.07 Martin Luther King
king.n.08 The checker piece
king.n.09 A playing card with a picture of a king
king.n.10 The chess king

Table 3-A: Synonym sets for the lemma king. Descriptions are taken from the Princeton
WordNet 3.1 web interface.

king.n.01

sovereign.n.01

head_of_state.n.01

representative.n.01negotiator.n.01
communicator.n.01

person.n.01

causal_agent.n.01

physical_entity.n.01

entity.n.01

organism.n.01
living_thing.n.01 whole.n.02

object.n.01

ruler.n.01

Figure 3.1: The hypernym graph for sense king.n.01

3.2.2 WordNet

WordNet is an electronic lexical database of nouns, verbs, and adjectives. Entities in

WordNet are organised in sets of synonyms (or senses). Such senses might correspond

to different meanings of a word, or lemma. For example the word king corresponds to

the 10 senses shown in Table 3-A. We observe that the same lemma might correspond

to multiple different synonym sets, a problem we discuss further in Section 3.3.5. Aside

from retrieving synonyms for various words, WordNet also lets us inquire about relations

between those sets and parent sets, or hypernyms. Hypernyms can be understood as
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senses that, given a sense X, correspond to Y in:

X is a type of Y (3.1)

Or otherwise Y is a generalisation ofX. For example a king.n.01 is a type of ruler.n.01

which subsequently is a type of person.n.01. This means that person.n.01 is a hyper-

nym of ruler.n.01 which is a hypernym of king.n.01. Such chain of hypernyms can

be represented as a graph, as in Figure 3.1. Hyponyms are the opposite relation of Eq.

3.1. Y is a hyponym of X when Y is a type of X. While WordNet also contains informa-

tion about other relations such as meronyms, holonyms, etc., we only utilise information

hypernyms and hyponyms in this thesis.

3.2.3 Word Embeddings

In order to analyse the text of stories we will consider the story text to be a sequence

of word tokens which is a discrete type used in natural language processing to represent

text. This type of representation is appropriate when using rule-based approaches and

algorithms. There will be cases when we will need to use approaches that operate and

expect real numbers (or vectors) as inputs, such as the statistical approach used in

Section 3.4.2. In such cases we need to assign an appropriate numerical value to tokens.

Constructing a method for assigning vectors to tokens is a design decision and depends

on the task. The main concerns are:

• All words should be able to be represented that way.

• Words should be uniquely represented.

• Given a collection of words, a representation should be able to represent that

collection uniquely.

The last requirement comes from the need to represent structures that contain words,

such as sentences or even whole documents. A straight-forward but naive way to assign
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a unique number n to each word and use Kronecker’s delta δn:

δn =


1 if word is assigned unique number n

0 otherwise

(3.2)

where each δn is of the same size |D| × 1 where |D| is the total number of words in a

lexicon D. In this way, collections of words can be represented using sums of vectors of

the individual word representations:

tn = δn ∀n ∈ 1..|D| (3.3)

q =
1

M

M∑
i=1

ti (3.4)

This representation in Eq. 3.2 is called one-hot representation. The vector q in Eq.

3.4 then represents a collection of M words (each element qi is 1 or 0 depending on

whether the i-th word can be found in that collection). The factor 1
M constraints its

norm to 1 for convenience of computations. This representation is sufficient for use in

many approaches that expect numerical values. The word representation in Eq. 3.3 has,

however, some limitations:

1. The representation vector tn has size |D| × 1 where |D| is the total number of

words. This means that when dealing with real-world data, we end up having

to deal with very large vectors. While storing these vectors in memory is not a

problem since the vectors are sparse, using them in statistical approaches might

result in matrices that are not sparse (e.g. weight matrices of neural networks) and

thus run into memory problems.

2. There is no correlation between the representations of individual words. Consider

for example the words large and larger. One is the comparative form of the other

however their representation using one-hot vectors are orthogonal (they have a

cosine similarity value of 0). It is desirable to devise a representation where corre-
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Figure 3.2: Visualised word analogies. Each vector wx is the 300-dimensions word
embedding for word x. For reasons of convenience we visualise the vectors in a ‘flattened’
2D space.

lations in the vector format map to correlations in their real-world meanings.

A way to address these problems is found in word embeddings. These are low-dimensional

dense representations (usually 300 hundred dimensions – thus addressing limitation 1

above) that can encode some of the real-world relationships we discussed above. Those

relationships can be explored e.g. using analogies of the form:

x is to y like z is to w.

For example if we have the following analogy:

Wings are to aeroplane as wheels are to x

we can simply solve the following equation:

waeroplane −wwings = x−wwheels ⇔ (3.5)

x = waeroplane −wwings +wwheels (3.6)

Which can be also interpreted as that which is like an aeroplane, without wings, but with

wheels. The result is going to be a new point x which, in the case of ConceptNet, is

very ‘close’ to wwheeled vehicle. We visualise such analogies in Figure 3.2. Embedding
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representations are not limited to tokens but can be used for any type of discrete data,

such as characters, tags, or sets of tags. In Section 5.3 we use word embeddings to devise

a retrieval system for Room Impulse Responses that uses word synonyms to supplement

the tags used to search a database of audio files.

3.3 Extracting information for characters

Characters in radio dramas are not very different from characters in stories. They are

fictional entities with agency who think and interact with the story world. Those can be

people, animals, or even inanimate objects with personality1. When adapting a source

story to radio drama, one important task is to identify characters in order for actors to

impersonate them. Extracting characters for radio drama adaptation is not very different

from extracting information for characters in stories. There have been prior efforts to

recognise characters in stories by assign roles to them using both rule-based approaches

[63–65] as well as statistical methods [66].

In [63], the authors assign roles with the use of genetic algorithms. They try to con-

struct adjacency matrices between noun phrases and roles which are similar to matrices

from their corpus. This approach presupposes a library of pre-existing roles which are

suitable only for tales that can be analysed with Proppian roles [48]. In [64, 65] the

authors also begin by identifying noun phrases which they filter to characters using

hand-crafted rules and a folk-tale ontology, based on the Proppian morphology as well

which is subject to the same limitation. A more recent, rule-based approach that does

not depend directly on an ontology for identifying characters is taken in [67] where the

authors use abstractive summarisation to identify thematic roles characters might par-

ticipate in. While the authors subsequently use a database of Proppian annotations to

assign the roles, this is not needed for character annotation.

A different approach is taken in [66] where the authors use a large corpus of annotated

Dutch novels and statistical approaches for named entity recognition to extract charac-

1Lewis Carroll’s “Alice in Wonderland” had both animals and objects as characters.
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ters. While this approach does not suffer from the limitation of identifying characters

that adhere to the Proppian morphology, its ability to identify characters depends on

the annotation and curation of a large amount of text data which is a long and arduous

process. In [68], the authors apply a hybrid approach that combines Machine Learning

with hand-designed rules to detect animacy in 142 narratives which also included sto-

ries where characters were inanimate objects. This approach also requires an annotated

corpus. In [69] the same authors provide a simple supervised learning-based approach

on classifying characters in an annotated corpus of 46 Russian folktales.

3.3.1 A process for joint character identification and voice assignment

Most of the methods described above require an annotated corpus. They also do full

character extraction and analysis for every character which is not necessary for radio

drama. In radio drama, the main element of expression for characters is the Actor, via

their speech. Information shown in Table 2-A such as age, sex, status and emotional and

physiological states can be expressed directly through the character’s voice [3, p. 184].

Events, where characters participate but do not speak, are expressed mainly through

sound effects and exact identification of characters results in little extra information.

For this reason, we develop a character identification approach for characters that use

their voice in a story.

The process we developed achieves jointly three tasks:

1. Identify Characters

2. Identify their acting lines

3. Assigns them a set of tags that correspond to properties in Table 2-A

A summary can be seen in Figure 3.3. The input to our process is the raw story text.

Below we explain step by step each box in Figure 3.3. We will give an example for each

step in the context of the short fable “Belling the cat”
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Set of characters C
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Character-Line assignment Rsays

Coreference
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fCR

Figure 3.3: The Character extraction and assignment to speech acts process

Long ago, the mice had a general council to consider what measures they

could take to outwit their common enemy, the Cat. Some said this, and

some said that; but at last a young mouse got up and said he had a

proposal to make, which he thought would meet the case. ”You will all

agree,” said he ”that our chief danger consists in the sly and treacherous

manner in which the enemy approaches us. [...] could easily retire while she

was in the neighbourhood.” This proposal met with general applause, until

an old mouse got up and said: ”That is all very well, but who is to bell the

Cat?” The mice looked at one another and nobody spoke.

The process’ goal is to assign characters in bold to dialogue lines in italics and also

assign to the characters the properties in bold italics.

3.3.2 Tokenization and Sentence Segmentation

Tokenization is the pre-processing step of splitting natural text to basic units, called

tokens and is part of almost every NLP process. Here we use Spacy [70] which tokenizes
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had/VERB

advmod:ago/ADV dobj:council/NOUN nsubj:mice/NOUN punct:,/PUNCT

advmod:Long/ADV amod:general/ADJ det:a/DET relcl:consider/VERB det:the/DET

aux:to/PART ccomp:take/VERB

advcl:outwit/VERB aux:could/VERB dobj:measures/NOUN nsubj:they/PRON

aux:to/PART dobj:enemy/NOUN det:what/PRON

amod:common/ADJ appos:Cat/PROPN poss:their/DET punct:,/PUNCT

det:the/DET

Figure 3.4: The parsing tree of the first sentence in “Belling the cat”. Each node rep-
resents a word token and is labelled using the universal dependency of the token, the
token word, and the part-of-speech of that token. The list of universal dependencies and
their meanings can be found in [4].

to word tokens according to the Penn TreeBank [71]. We also split the text into sentences.

The story becomes segmented as:

Token1︷ ︸︸ ︷
Long

Token2︷︸︸︷
ago

Token3︷︸︸︷, . . .

Token23︷︸︸︷
the

Token24︷︸︸︷
Cat

Token25︷︸︸︷.︸ ︷︷ ︸
Sentence1

Token26︷ ︸︸ ︷
Some . . . ... the case︸ ︷︷ ︸

Sentence2

. . .

3.3.3 Parsing

Parsing is another step omnipresent in NLP. Dependencies and part-of-speech tags are

assigned by Spacy [70]. This process transforms each sentence into a tree similar to

the one in Figure 3.4. We define the functions dependency and pos for extracting the
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dependency and part-of-speech of a token accordingly:

dependency(token) = dep (3.7)

pos(token) = pos (3.8)

As an example, for the word-token ‘Long’ in “Long ago, the . . . ”, we have:

dependency(Long︸ ︷︷ ︸
Token1

) = advmod (3.9)

pos(Long︸ ︷︷ ︸
Token1

) = ADV (3.10)

3.3.4 Coreference Resolution

Coreference Resolution(CR) [57, p. 6l] is another common task in text-based information

retrieval for stories [63–65, 67, 72]. Its role is to resolve referents, such as pronouns or

this/that to the entities they refer to. As an example consider the sentence:

...Some said this and some said that, but at last a young mouse got up

and said he had a proposal to make, which he thought would meet the case...

In the above example, the pronoun he refers to a young mouse. Knowing this reference

comes handy when we need to answer questions such as Who thought this proposal would

meet the case? The answer comes by pointing to the subject of the verb thought which is

he which subsequently refers to a young mouse. In our case we use co-reference resolution

in this way, in order to gather more information about the characters in the story.

While automatic co-reference resolution still suffers and is not recommended for ques-

tion answering tasks for stories [73], our use is limited into referencing subjects of the

speech act triggers mentioned above and assigning the ‘sex’ property of a character,

when such property cannot be identified otherwise. There are plenty of automatic coref-

erence resolution algorithms to choose from, we make use of the deep reinforcement
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Referent Entity Sentence

they the mice Long ago the mice had a . . . measures they could take . . .
their the mice Long ago the mice had a . . . outwit their common . . .
he a young mouse at last a young mouse got up and said he had . . .
he a young mouse at last a young mouse got up . . . which he thought . . .
he a young mouse at last a young mouse . . . ” said he . . .

this proposal a proposal . . . the case “. . . ” this proposal . . .
her the Cat enemy, the Cat . . . signal of her approach . . .
she the Cat enemy, the Cat . . . she was about . . .

Table 3-B: The contents of the list of subject-trigger pairs W for the short fable. For
each show we show its index i and the sentence that corresponds to the pair.

learning-based algorithm in [74], mainly due to the ease of use of the NeuralCoref2

implementation. We construct a mapping function for every pronoun P that refers to

character C:

fCR(pronoun) = character (3.11)

We will then use this mapping we come across sentences such as:

“You will all agree,” said he

To refer to the original character (the young mouse) and gather more information about

it (that it was young). For the whole fable text we have the following mappings:

fCR = {〈 they︸︷︷︸
Token15

, the︸︷︷︸
Token4

mice︸ ︷︷ ︸
Token5

〉, 〈 their︸︷︷︸
Token20

, the︸︷︷︸
Token4

mice︸︷︷︸
Token5

〉, 〈 he︸︷︷︸
Token48

, a︸︷︷︸
Token40

young︸ ︷︷ ︸
Token41

mouse︸ ︷︷ ︸
Token42

〉, . . . }

(3.12)

3.3.5 Word Sense Disambiguation

A pre-processing step is taken to clarify the meaning of the words. To do that, we used

the neural WSD model introduced in [75]. As an example we repeat the first sentence

2https://github.com/huggingface/neuralcoref
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(a) Mouse (the rodent) (b) Computer Mouse (the instrument)

Figure 3.5: Hypernym graphs of mouse.n.01 and mouse.n.04

of the story given above together with the meanings of each word:

long.a.01︷ ︸︸ ︷
Long ago, the

mouse.n.01︷︸︸︷
mice

experience.v.03︷︸︸︷
had a

general.a.01︷ ︸︸ ︷
general

council.n.03︷ ︸︸ ︷
council to

study.v.03︷ ︸︸ ︷
consider

what measures︸ ︷︷ ︸
measure.n.01

they could take︸︷︷︸
take.v.01

to outwit︸ ︷︷ ︸
outwit.v.01

their common︸ ︷︷ ︸
common.a.01

enemy︸ ︷︷ ︸
enemy.n.04

, the

cat︸︷︷︸
cat.n.01

.

Where the identifiers above the words in the text are WordNet senses [62]. Using word

sense disambiguation in the above sentence establishes that the word mice refers to

the rodents and not the computer interface apparatus. This helps later to construct

the appropriate hypernym graphs for each word and assign properties to the identified

characters. As an example we would like to assign the old mouse character in the story

the property of it being a living mouse and not a computer mouse; we can distinguish

between the two by looking at their hypernym graphs (Figure 3.5). For our algorithms,

we regard word sense disambiguation as a function sense which returns the sense of a

token t:

sense(token) = wordnet sense (3.13)
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Or, for the case of “Belling the cat”, we can give it in the following relation-set form:

sense = {〈 long︸︷︷︸
Token1

, long.a.01〉, 〈mouse︸ ︷︷ ︸
Token42

, mouse.n.01〉, . . . } (3.14)

3.3.6 Character and dialogue line extraction

Entity Recognition is part of many information retrieval tasks. In our case the entities

we need to extract are dialogue lines and trigger words for speech (marked with italics

in the story presented above). Characters are extracted indirectly afterwards using this

information. Assigning lines to characters is part of the task of speaker identification, or

quotation attribution, and it has been studied before for extracting direct and indirect

speech from newspapers [76, 77], as well as fictional narrative [78–80]. We approach this

task using a mix of simple grammar rules and linear programming. The method can be

summarised to extracting a word-trigger that signposts a speech act and then using linear

programming to assign that word to the character who speaks, as well as the dialogue

line of the speech act. Something similar can be found in [80] where the authors assign

speakers to speech verbs. The main difference to that work is that while its authors

use machine learning and an annotated corpus, we use a simple linear programming

algorithm and do not require labelled data.

Like earlier works on quotation attribution, we assume dialogue lines come as direct

speech in quotation marks, and are easily captured using the pattern:

<CLINE> := “ <TOKEN> ∗ ” (3.15)

where <CLINE> represents a dialogue line and <TOKEN> a token extracted from the tagging

step. A simple constraint is enforced to not allow overlapping dialogue lines. The use of

the star operator (∗) denotes that any number of <TOKEN> can be inside the quotation

marks (“ and ”). We store those dialogue lines in a list L for later use. The algorithm
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Algorithm 1 Extracting dialogue lines. The extraction uses a pattern matching algo-
rithm (line 3) and keeps the matches that do not overlap with other patterns in the list.
match(P, T,M) is interpreted as: “Token sequence M is a match for pattern P in token
sequence T”

1: procedure ExtractDialogueLines(t1...|T |)
2: L← [] . An empty list
3: M ← [tk...m : match(“<TOKEN> ∗ ”, t1...|T |, tk...m)] . Matches pattern in Eq 3.15
4: for i ∈ 1 . . . |M | do
5: if @l ∈ L : Mi overlaps l then
6: L← L.Mi

return L

i Dialogue line li

1 “You will all agree,”
2 “that our chief . . . in the neighbourhood”
3 “That is all very well . . . the Cat?”

Table 3-C: The contents of the list of dialogue lines L. i is the index of the dialogue line
li in the list.

is given in Algorithm 1. In the case of “Belling the cat”, the contents of L are given

in Table 3-C. The aforementioned algorithm assumes that all speech is given as direct

speech. In general, however, this assumption does not hold, nearly 50% of speech found

in text is written as indirect speech. An example of such speech from “Belling the cat”

is the following:

A young mouse [...] said he had a proposal to make.

Where in italics is what was said by the young mouse. This is clearly not captured

by simply matching spans in quotation marks as above. It has been shown however

that similar direct quotation extraction approaches can be easily adapted to work with

indirect speech as well [81, 82].

Since we are looking to extract characters that use their voice, the other entity we

need to extract is speech act triggers. Those are words that signpost a dialogue line, such

as said, questioned, exclaimed, or even animal sounds such as roar or squeak when the

characters are animals. Speech act triggers might also reveal information about the way

of the line is spoken, such as grumbled, complained or murmured. We identify triggers by
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Lemma Example Hyponyms Example sentence

communicate.v.01 say.v.05 A young mouse said: “. . . ”
ask.v.01 The young mouse asked: “. . . ”
question.v.01 “Is this true?”, Mary questioned.
continue.v.02 “As I was saying”, the judge continued.

express.v.02 proclaim.v.02 The president proclaimed: “. . . ”
state.v.01 The scientist stated: “. . . ”

utter.v.02 grumble.v.03 The old pirate grumbled: “. . . ”

complain.v.01 murmur.v.02 “. . . ”, murmured the young child.

interrupt.v.01 interrupt.v.03 “This is wrong”, Nicholas interrupted
chime in.v.01

Table 3-D: Example speech act trigger senses

said/VERB

conj:said/VERB dobj:this/DET nsubj:Some/DET

dobj:that/DET nnsubj:some/DET cc:and/CCONJ

(a) “Some said this and some said that”

got/VERB

cc:and/CCONJ conj:said/VERB nsubj:mouse/NOUN prt:up/PART

amod:young/ADJ det:A/DET

(b) “A young mouse got up and said”

Figure 3.6: Capturing subjects for trigger verbs. Triggers are in square nodes with red
colour and captured subjects with red text. The red arrows show the path the algorithm
is taking in order to capture the subject of each trigger. In (a) the subjects are captured
by simply examining the children of the said instances. In (b) the algorithm needs to go
a step ‘up’ and look the subject in the children of the root node. This process is repeated
as long as the root node is of dependency type ‘conj’.

examining each token’s hypernym graph and selecting those that are hyponyms of some

trigger sense given in Table 3-D.

Together with identifying trigger words we also keep their subjects from the depen-

dency tree using a simple criterion:
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i Pair (si,vi) Sentence

1 (Some, said) . . . some said this . . .
2 (some, said) . . . and some said that . . .
3 (mouse, said) . . . a young mouse got up and said. . .
4 (he, said) . . . ” said he “ . . .
5 (mouse, said) . . . until a young mouse got up and said . . .

Table 3-E: The contents of the list of subject-trigger pairs W for the short fable. For
each pair we show its index i and the sentence that it is found in.

1. If the trigger verb has an nsubj dependency in its leaves, then match that as the

subject.

2. Else if the trigger does not have an nsubj dependency in its children and is part of

a coordinate conjunction (conj) then search its parent for an nsubj dependency

and match that as the subject.

Two examples of subject captures for triggers in two small phrases can be seen in Figure

3.6. For our purpose, we store the pairs (si, vi) where vi are the captured trigger verbs

and si their associated subjects, to a list W . The triggers and the subjects stored from

the fable above are:

W =

( Some︸ ︷︷ ︸
Token28

, said︸︷︷︸
Token29

), ( some︸ ︷︷ ︸
Token33

, said︸︷︷︸
Token34

), ( he︸︷︷︸
Token73

, said︸︷︷︸
Token72

)

 (3.16)

The sentences they belong to can be see in Table 3-E.

3.3.7 Character to lines assignment

After we have identified candidate characters in the text, either via extracting subject-

trigger pairs (si, vi) ∈W or coreference resolution, we need to assign them to the dialogue

lines li ∈ L. We approach the problem as an assignment problem: that is, to find a

symmetric relation such that:

Rsays = {〈(si, vi), cj〉 ∀(si, vi) ∈W ′, ∀cj ∈ L : “ si says line cj ”} (3.17)
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Where W ′ ⊆ W the subject-trigger pairs that correspond to a character speaking (for

example “some said this” is not a legal subject-trigger pair in our case since there is no

dialogue line associated with it). Normally, characters si speak more than one line lj

but this will be dealt with later. We rephrase the problem of finding subscripts i, j as

finding the adjacency matrix Xi,j such as that a cost:

cost =
∑
i

∑
j

Ci,jXi,j (3.18)

is minimised. This is a well-studied problem and a solution can found with linear pro-

gramming using the Hungarian algorithm [83]. The main problem is appropriately con-

structing the matrix Ci,j. From the fables in our dataset, we observe that the “closer”

the dialogue lines are to a trigger word, the higher the probability of it being assigned

to a trigger word. We exploit this information while constructing C:

Ci,j =

 vbegin
i − lend

i if vbegin
i > lend

i

lbegin
i − vend

i if lbegin
i > vend

i

(3.19)

where sbegin and send is the beginning and ending token position of text segment. Min-

imising cost cost gives a solution where each possible subject-trigger pair (si, vi) ∈ W ′

is assigned to a dialogue line lj ∈ L while extraneous subject-trigger pairs (that do not

correspond to a dialogue line) are eliminated. This would solve the assignment problem

exactly when |W ′| = |L|. When |W ′| < |L| (as is usually the case in stories) there are

|Lu| = |L| − |W ′| unassigned dialogue lines. To overcome this we assign them to the

subject-trigger pair of the previous dialogue line:

∃cj ∈ Lu,∃〈(si, vi), cj−1〉 ∈ Rsays → 〈(si, vi), cj〉 ∈ Rsays (3.20)

where Lu is the set of unassigned dialogue lines. An overview of the procedure can be

seen in Algorithm 2.



Chapter 3. Computational Methods for Extracting Information from Stories 85

Algorithm 2 An algorithm for assigning characters to dialogue lines. WD is the gazette
with senses denoting speech act shown in Table 3-D.

1: procedure AssignCharactersToLines(t1...|T |,WD)
2: L← ExtractDialogueLines(t1...|T |)
3: W ← [] . Empty list of tuples
4: Tr ← {t : t ∈ t1...|T |,∃w ∈WD, sense(t) = hyponymOf(w)} . All ‘trigger’ tokens
5: for t ∈ Tr do
6: vp = verbPhraseOf(t) . The ‘parent’ verb phrase of t
7: if ∃d ∈ descendants(t) : dependency(d) = nsubj then
8: np = nounPhraseOf(d) . The ‘parent’ noun phrase of d
9: if ∃c : (np, c) ∈ fCR then . If it refers to another noun phrase

10: W ←W.(c, vp)
11: else
12: W ←W.(np, vp)

13: else
14: if dependency(t) = cconj then
15: ρ = parent(t) . Parent node in the parse tree
16: if ∃dindescendants(ρ) : t 6= d, dependency(d) = nsubj then
17: np = nounPhraseOf(d)
18: if ∃c : (np, c) ∈ fCR then . If it refers to another noun phrase
19: W ←W.(c, vp)
20: else
21: W ←W.(np, vp)

22: C← 0
|W |×|L|

. An |W | × |L| matrix full of 0s

23: for i ∈ 1 . . . |W | do
24: (np, vp)←Wi

25: for j ∈ 1 . . . |L| do
26: l← Lj

27: Ci,j =

{
vpbegin − lend if vpbegin > lend

lbegin − vpend if lbegin > vpend

28: I, J ← Hungarian(C) . Get assignment indices list I and J
29: for i ∈ I do
30: (np, vp)←Wi

31: for j ∈ J do
32: Rsays ← Rsays ∪ {〈(np, vp), Li〉}

return Rsays

3.3.8 Character property assignment

This part of the procedure assigns a series of tags:

Tcharacter = {tag1, tag2, ...} (3.21)

to each of the characters extracted with the methods above. Those tags are any tag

that can signify a character property listed in Table 2.2.3, such as sex, age, title, etc. A



Chapter 3. Computational Methods for Extracting Information from Stories 86

was/VERB

nsubj:king/NOUN acomp:arrogant/ADJ

det:The/DET amod:old/ADJ advmod:very/ADV

(a) “The old king was very arrogant”

was/VERB

nsubj:king/NOUN attr:person/NOUN

det:The/DET det:an/DET amod:arrogant/ADJ

(b) “The king was an arrogant person”

Figure 3.7: Different ways of expressing that the king was old and arrogant.

straight-forward way to infer such information is by observing the noun phrases associ-

ated with the characters or their referents (i.e. pronouns). As an example, in “Belling

the cat” we have two characters: young mouse, and an old mouse. Let us revisit the first

speech act:

“. . . a young mouse got up and said. . . ”’

Its parse tree can be seen again in Figure 3.6(b). We observe that we can derive attributes

for the character by following the nsubj:mouse/NOUN subtree by observing the amod leaf

dependencies. In Figure 3.6(b) we observe we have a single amod leaf which attributes

the tag young to the mouse. We can have more than one amod dependency for each

noun phrase. Another obvious source of tags is the noun itself. By taking the hypernym

graphs of the mouse seen in 3.5(a) we see that it is a hyponym of an animal. Thus we

can add animal to the list of tags.

“The old king was very arrogant”

“The king was an arrogant person”

Their parse trees are seen in Figures 3.7(a) and 3.7(b) respectively. In those figures we

observe we can extract information in two ways:

1. By using the adjectival complement arrogant (acomp) of the verb was (Figure
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3.7(a)). In this case we insert the text of the acomp dependencies to the character

tags.

2. By using the attr dependency (Figure 3.7(a)). In this case we insert both the text

of the attr dependency, as well as the text of its amod children dependencies.

We have to note that information about a character is not available in a single place

but spread throughout the story. To compensate for that we gather information for each

character by not only observing the attributes associated with its main noun phrase but

for each of the character’s pronouns as well. An example is given below:

“‘The king was very old. He was also arrogant”’

In this case, we have two sentences each giving a piece of information about the king. In

the first sentence we understand that the king is very old, and in the second that he was

very arrogant. An extra piece of information we get from the second sentence is that the

king was ‘male’, as suggested from the pronoun he. We have the following tags for king :

Tking = {old, arrogant,male, king} (3.22)

After we construct the set of tags for each character, we check each of the tags whether

it is a hyponym of a word that expresses a character from Table 2.2.3. An example list

of such words and the properties they affect can be seen in Table 3-F. Those tags can

aid us to look for actors to portray those characters. For example, the tag animal can

help us focus our search to actors doing animal voices. We describe the algorithm in

Algorithm 3. An example of the characters, tags, and associated properties in “Belling

the cat” can be seen in Table 3-G.

3.3.9 Assigning Character Roles

Apart from character properties, we assign one of two roles to the characters in the

story. A character can be a main character and the rest are secondary characters. Who
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Tag Property Example sentence

young.a.01 Age An old mouse got up and said:
old.a.01

male.n.02 Sex The young woman was wise.
female.n.02

aristocrat.n.01 Upbringing The queen was sitting on her throne.

professional.n.01 Occupation Mary was a medical doctor.

disputant.n.01 Lifestyle Mike is a hippy.

person.n.01 Species The young mouse said.
animal.n.01

arrogant.a.01 Other traits The old king was arrogant.

Table 3-F: Example tag lemmas, character properties they affect, and sentences they
appear in.

.

Character Tag/Pronoun Property

A young mouse young.a.01 Young age
mouse.n.01 Animal
he/PRON Male

An old mouse old.a.01 Old age
mouse.n.01 Animal

Table 3-G: Characters in “Belling the cat” and their properties.

is a main and who a secondary character is decided according to a character importance

heuristic first described in [67]. According to [67], the assigned importance is:

Ic =
|Rc| × (r

(|Rc|)
c − r(1)

c )

r
(1)
c

(3.23)

where |Rc| is the number of referents of character c in the text, and r(i) the position of

the i-th referent in the text.

3.3.10 Evaluation

Evaluation of the character extraction method was done on the task of extracting char-

acters with voices, their age, sex, type of character (whether animal or person), and their
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Algorithm 3 An algorithm for assigning tags to characters. Function fCR is the coref-
erence resolution function shown in Eq. 3.12. Function root(sent) gives the root node
of the parse tree of sentence sent. Function pos(t) returns the part-of-speech of token
t, sense(t) its sense identified with word sense disambiguation [75], dependency(t) its
dependency label, parent(t) its parent token and descendants(t) the sub-tree of its chil-
dren.

1: procedure ExtractTags(c) . Extract tags for character c
2: Tc ← ∅
3: Rc ← {c} ∪ {c′ : fCR(c′) = c} . Referents of character c
4: for r ∈ Rc do
5: ρ← root(r) . The root of the dependency tree of r
6: D ← descendants(ρ) . Children of ρ in the dependency tree
7: if pos(ρ) 6= PROPN then . Part-of-speech of ρ
8: Tc ← Tc ∪ {sense(ρ)} . Append sense of ρ to tags

9: for d ∈ D do
10: if dependency(d) = amod then . Dependency type of word d
11: Tc ← Tc ∪ {sense(d)}
12: p← parent(ρ) . Parent of ρ in the dependency tree
13: if pos(p) = V ERB then
14: D′ ← descendants(p)− {r}
15: for d′ ∈ D′ do
16: if dependency(d′) ∈ {acomp, attr} then
17: Tc ← Tc ∪ {sense(d′)}
18: if dependency(d′) = attr then
19: D′′ ← descendants(d′)
20: for d′′ ∈ D′′ do
21: if dependency(d′′) = amod then
22: Tc ← Tc ∪ {sense(d′′)}

return Tc

role in the story (main or secondary). Additionally, evaluation included the performance

on assigning dialogue lines to characters as well as the verbs that signpost these dialogue

lines.

From 249 Aesop fables scraped from the web3, 166 were chosen that had at least

one detected dialogue line (and thus can be associated with the character). Those were

annotated automatically using the character extraction method described above and

these annotations were manually corrected according to the following criteria:

1. Annotate correctly the dialogue lines if incorrectly assigned.

2. Annotate those words or phrases that signpost those dialogue lines (speech act

3http://www.aesopfables.com
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Extraction Type p r f1 support

Character 0.85 0.88 0.86 100
Character [sex=male] 0.84 0.57 0.68 37
Character [sex=female] 0.92 0.48 0.63 12
Character [type=person] 0.82 0.73 0.77 50
Character [type=animal] 0.93 0.66 0.77 44
Character [age=young] 0.75 0.38 0.50 4
Character [age=old] 1.00 0.31 0.47 4
Character [role=main] 0.79 0.88 0.83 72
Character [role=secondary] 0.82 0.81 0.81 56
Speech act trigger 0.97 0.93 0.95 14
Dialogue line 0.99 0.89 0.94 310

Says what 0.88 0.81 0.84 314
Who speaks 0.77 0.74 0.75 257

Says 0.67 0.64 0.65 267

Table 3-H: Precision p, Recall r, f1 scores and number of retrieved elements support in
166 short Aesop Fables. The first 11 rows refer to entities in the text and their attributes
and the 3 last to relations. Characters, speech act triggers, and dialogue lines correspond
to spans in the text denoting story characters, words signifying that someone speaks,
and dialogue lines respectively. Attributes in brackets correspond to properties of the
story characters (e.g. characters [sex=male] corresponds to male characters in the text).
Who speaks links characters with speech act triggers. Says what links speech act triggers
with dialogue lines. Those two binary relations are used to construct the ternary relation
says which links characters, speech act triggers, and dialogue lines, and denotes speech
acts in the text.

triggers). Leave blank if no such words or phrases exist.

3. If the system has already annotated a mention of a character saying a line, leave

it as is. Otherwise, annotate as character the first instance of the character in the

text.

4. Draw arcs from characters to speech act triggers and from speech act triggers to

the dialogue lines to signify that a character speaks that line as signified by speech

act triggers.

5. For each character, select the correct attributes:

• For age, sex and type (animal or person), as derived from the context of the
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story.

• For its role (main or secondary character), as derived from the story or if in

doubt, use the title of the story (e.g. in “The Wily lion” the main character

is the lion. If the main character does not speak, assign every character as

secondary.

The above corrections served as a ‘gold’ standard against which to evaluate the auto-

matically annotated one. We report precision p, recall r and f1 scores:

• Precision, usually denoted as p, is the ratio of the number of elements that are

retrieved and are also found in ground truth over the number of retrieved elements.

p =
|relevant ∩ retrieved|

|retrieved| (3.24)

• Recall, usually denoted as r, is the ratio of the number of elements retrieved and

found in ground truth, over the number of elements found in ground truth.

r =
|relevant ∩ retrieved|

|relevant| (3.25)

item f1 score, usually denoted simply as f1, is the harmonic mean of p, and r and

shows a “combination” of the two metrics:

f1 = 2
p · r
p+ r

(3.26)

Where ‘relevant’ are the items found in our gold annotations and ‘retrieved’ are the

ones resulting from automatic annotation using our method. The values reported for the

aforementioned setting for each extraction task can be seen in Table 3-H. We observe that

tasks that depend on previous tasks report lower values. For example, since recognition

of character attributes depend on the correct recognition of characters themselves, errors

in character recognition will result in lower p, r and f1 values for attribute extraction as
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well. In general we observed that our method suffered from the following errors:

1. Incorrect annotations in conjunctions: In some cases phrases such as:

... the bull and the lion ...

are considered a single entity which needed to be corrected and thus resulting in

annotation errors on behalf of our method. There are other cases however that

such conjunctions are correct when followed by the pronoun they and a speech act.

2. The same character annotated with different types of pronouns: There are cases

where a single character might be referred to with a neutral pronoun (it) and

subsequently with a gendered one (he or she). This leads the link of character

mentions to either break or misses assigning the sex attribute.

3. Capitalised mentions: There are cases where the stories are written with capitalised

characters (e.g. The Lion which lead the tagging system in the NLP pipeline to

tag them as proper names, and thus leads some characters to be assigned as people

instead of animals.

4. Incorrect disambiguation: There are cases where the algorithm for word sense

disambiguation assigned incorrect senses, e.g. king.n.01 (as the head of state)

instead of king.n.04 for the preeminent member of a group. This led to cases

where the word king such as in the king of beasts were assigned the former sense,

and thus be regarded as a person, instead of an animal. In other cases the Ass (the

animal) was either assigned as American Samoa or Arsenic which led to a failure

of assigning any type attribute at all.

5. Speech act triggers are not always verbs: There are cases where a dialogue line is

signified with the verb ‘to be’. E.g.: “The reply was”.

6. Speech act triggers are not always communication verbs: Similarly to above, the

triggers can be verbs that do not confer communication directly, e.g.: “They made
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reply”.

7. Speech acts for inner voices: We omitted to capture trigger verbs that signify inner

voice, e.g. think.

8. Implied coreference: There are cases where two different nouns refer to the same

entity, however, the link is implicit. E.g.:

The woodcutter was [...] the man said: “...

Part of the mistakes reside in insufficient design on part of our algorithm, and part

on the imperfections of NLP algorithms used. The main sources of NLP errors come

from incorrect tagging (e.g. as proper names instead of capitalised nouns), incorrect

word sense disambiguation (e.g. the king of beasts being a ruler of state) and incorrect

coreference resolution as seen in the examples of errors above. From these, only the

latter has been formally examined in the context of extracting information from stories

[84].

3.4 Locations

An important element in a story that gets communicated in radio drama is the spatial

locations of the story’s constituents. Those can be locations of objects relative to other

objects, or characters relative to other characters or environments as well as identification

of the environments themselves. Consider the following excerpt4:

A fat Bull was feeding in a meadow when a lion approached him.

The elements given in bold in the excerpt above signify some part of a spatial relation

between two entities. Those elements signify in a straightforward way that there is

a bull in a meadow and that a lion approaches the bull. Prior knowledge also lets us

understand that a meadow is a kind of outside environment and the verb approach means

that the lion is getting closed to the bull. Understanding this kind of information when

4The excerpt is taken from the first sentences of “The Wily Lion” Aesop’s fable, rewritten for brevity.
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trying to adapt story text to radio drama is important. Knowing which parts constitute

environments lets us choose relevant sound effects, EQ and reverberation settings to

accompany the characters in the story. Furthermore, understanding relative positions

helps us establish the acoustic hierarchy described in Section 2.6.1:

The man tore his hair, and raised such an outcry that all the neighbours

came around him.

In the above excerpt5, a radio drama interpretation would have the sound hierarchy

with the main character in the highest amplitude, panned to the centre, and emanation

speech with lower amplitudes panned left and right. Therefore, it is useful to be able to

recognise such spatial configurations

3.4.1 Spatial Role Labelling

Identification of the above elements and the spatial configurations they constitute is a

challenging problem in information extraction from natural language. The task of Spatial

Role Labelling pertains to extracting spatial relations in natural language sentences, each

of which includes a spatial indicator and its arguments [7, 85]. Spatial Relations are

relations that define the spatial configuration between two entities or objects. They can

be categorised between Static, and Dynamic spatial relations. A static spatial relation

defines a spatial configuration between two entities (the arguments) where both of the

entities are fixed in space (they do not move). On the other hand, a dynamic spatial

relation defines a spatial configuration between two entities where the first is moving in

relation to the second. To demonstrate the difference between static and dynamic spatial

relations, consider again the sentence:

[A fat Bull was feeding in a meadow]1 when [a lion approached

him.]2

The relation described in the part of text in [. . . ]1 implies a static spatial relation since

5Adapted from the Aesop’s Fable “The Miser”.
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the fat bull does not move relative to the meadow (it is always in it). In the one between

[. . . ]2 the lion is moving towards the bull and the spatial relation implied is therefore

dynamic.

Both the static and dynamic spatial relations are indicated by a single word in the

sentence. The preposition in indicates the static relation between the bull and the

meadow and the verb approaches indicates the dynamic spatial relation between the

lion, and the bull. Such indicators of spatial relations are called Spatial Indicators. For

dynamic spatial relations, those are are called Motion Indicators instead. The arguments

of a spatial relation may be placed before, after, or around the indicators. The names of

these arguments vary depending on their role and the type of spatial relations they are

part of. In this thesis, we use the nomenclature from [7]:

• The Trajector is the entity that actively participates in a spatial relation.

• The Landmark is the location or object the trajector is spatially associated with.

In the spatial relation found in the quotation above, the trajector refers to the bull, and

the landmark refers to the meadow. Other roles for the arguments include the following:

• The Path contains the intermittent ‘locations’ that a trajector starts from, traverses

or ends up during their motion.

An example of a path would be 6:

A [ wagoner ]trajector was once [ driving ]motion indicator a heavy load along

[a very muddy way]path

In the segment above, the wagoner is passing through the very muddy way in order to

arrive to his destination.

• The Distance is an explicit or implicit distance given in the text.

6Aesop’s Fable: “Hercules and the Wagoner”
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i Argument 1 Indicator Argument 2 Label

1 a fat Bull in a meadow Region
2 a lion approached him Direction

Table 3-I: Spatial relations in “The Wily Lion”

An example of a distance relation would be:

There was [ a lake ]trajector [ not far away ]distance

Distances such as ‘near’, ‘far’, ‘20 meters from’ are very helpful in establishing the

placement of actors and objects in a radio drama scene. For the rest of the text, we will

use the shortcuts tr, si,mi, lm, p, di, dr for trajector, spatial indicator, motion indicator,

landmark, path, distance, and direction. We label a segment of text with one of the

aforementioned labels by putting it into brackets with the label as a subscript as per the

following example:

[ A fat bull ]tr was feeding [ in ]si [ a meadow ]lm.

To refer to the spatial relations themselves we use a triplet notation:

〈A fat bulltr, insi, a meadowlm〉 Region (3.27)

An example of the spatial relations found in the first sentence of “The Wily Lion” can

be seen in Table 3-I. The spatial relations are further labelled as Region, Direction, or

Distance:

• The Region label is applied to spatial relations where the trajector is defined rela-

tive to the interior or exterior of the landmark, e.g. “The flower is in the vase”.

• The Direction label is applied to spatial relations where the trajector is defined

relative to the landmark as an external frame of reference, e.g. “The flag was on

top of the building” or “The wagoner was moving along a path”.
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Relation Label Argument 1 Indicator Argument 2 Type

Region Trajector Spatial Indicator Landmark Static

Direction Trajector Spatial Indicator Landmark Static
Direction Trajector Motion Indicator Landmark or Path Dynamic

Distance Trajector Distance Landmark Static

Table 3-J: Types of spatial relations identified in natural text.

• The Distance label is applied to spatial relations where the relation between the

trajector and the landmark is given via a quantitative expression such as near,

12km, etc. E.g.: “The kids are close to the blackboard”.

Static relations can be labelled as either region, direction, or distance while dynamic

relations can only be labelled as direction. A summary of types of spatial relations, their

labels and their arguments can be seen in Table 3-J. In the next section, we describe

how we extract those arguments and relations automatically.

3.4.2 Automatic Spatial Role Labelling

Automatic labelling of spatial semantics has been the goal of past competitions for seman-

tic parsing from natural text (SemEval) which led to the development of techniques to

solve the problem [7–10, 86]. A notable such study [87] uses high recall heuristics to

mine candidate static relation constituents (the trajector, landmark, and spatial indica-

tor described above) and train a binary support vector machine classifier to identify such

relations. [8] use a Hidden Markov Model (HMM) with SVM emissions together with

shallow grammatical features and distributional semantics to identify both static and

dynamic relation constituents, and an SVM classifier to assign them one of the labels

described previously in Section 3.4.1. In [9], use of explicit features is avoided and instead

the features for the spatial indicator and its arguments are learned using a combination

of convolutional and simple MLP neural networks together with the Viterbi decoding

algorithm. Finally, in [10] the authors use Bi-directional long short-term memory net-

works (BiLSTM) to label spatial relation constituents, together with a rule-based system

to assign labels to spatial relations.
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Input tokens t1...|T |

Constituents Tagger

Candidate Relations Extractor

Spatial Relation Identification

Spatial Relation Labelling

Spatial relations r1...|Rsr|

(t1,B-TAG1)..., (s1,TAG1)...

〈s1,tr, s2,mi, s3,lm〉...

〈sa,tr, sb,mi, sc,lm〉...

〈sa,tr, sb,mi, sc,lm〉REGION...

Figure 3.8: An overview of assigning SpRL labels to spans and relations
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wA wfat wbull wwas wa wmeadow

Figure 3.9: An overview of the model used for sequence tagging.

Our approach is similar to [10] in that it uses a BiLSTM to assign spatial constituent

roles to spans of text, combines those constituents in each sentence in order to create

candidate spatial relations and then uses a cascade of two decision tree classifiers: the

first to classify whether a relation is spatial or not, and one to assign a label. An overview

of the method can be seen in Figure 3.8. Below we explain each step in more detail:

1. Input As input, we provide the unmodified text we want to extract spatial relations

from, as a sequence of ASCII characters.
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Label Description

Features relating to the trigger

trigger.type Spatial label of trigger (e.g. si, si, di...).
trigger.length Number of tokens in trigger.
trigger[n].text Raw text for the n−th token in the trigger.
trigger[n].lemma Lemma for the n−th token in the trigger.
trigger[n].pos Part-of-speech for the n−th token in the trigger.
trigger[n].dep Dependency with the token head for the n−th token.
trigger[n].entity type Entity type for the n−th token (e.g. PERSON, GPE).
trigger.text.bigrams[n] The n−th raw text bigram in the trigger span.
[trigger.text == W] Bag of words for token W in the trigger.
[trigger.dep == D] Bag of words for dependency type D in the trigger.

Features relating to each of the two arguments
argN.length Number of tokens of the N-th spatial argument.
argN[n].text Raw text for the n−th token in the N-th spatial argument.
argN[n].lemma Lemma for the n−th token in the N-th spatial argument.
argN[n].dep Dependency to its head for the n−th token.
argN[n].entity type Entity type for the n−th token.
argN[n].null? True if argument N is empty, else False.
argN-trigger[n].path[i] Step i of the dependency path in the tree in order

to reach the trigger (e.g. ↑ nsubj)
argN-trigger.distance Distance (in number of tokens) to the trigger

argN-trigger.position Left or Right depending on the position
of the N-th argument relative to the trigger.

argN-trigger.#SE Number of other spatial elements between the argument
and the trigger.

arg1-arg2.path[i] Step i of the dependency path in the tree in order
to reach arg2 from arg1

arg1-arg2.distance Distance (in number of tokens) between arg1 and arg2

Table 3-K: Grammar features for a candidate relation rc = 〈arg1, trigger, arg2〉. There
is a large overlap with the features used in [6] which were used as a starting point.

2. Constituents Tagger Spatial relation constituents are sequences of word-tokens.

To identify a span in an entity recognition task, each individual token of the span

must be identified correctly together with its position in the span. For example,

in:

A bull feeding in a meadow.

the tokens A and bull both belong to the span A bull. If we want to tag this span

as e.g. a Trajector we tag both A and bull with the label Trajector in addition to
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a label signifying their role in the span (e.g if they begin the span, are inside of it,

or are outside the span). These latter labels are used as prefixes to the overall span

label. In our case, we use the BILOU scheme which has been shown to perform

well in entity recognition tasks [88]. The BILOU scheme prefixes the span label

with the following single letter prefixes:

• B – Signifies that the word-token starts a new span.

• I – Prefixes token tags that belong to the same span that have been previously

begun using the B prefix.

• L – Signifies that the token ends the span.

• U – Signifies that span comprises of a single token.

• O – Signifies that the token does not belong to any span.

An example of such annotation can be seen in Table 3-L. The actual tagging

procedure uses a Bi-directional long short term memory (BiLSTM) followed by a

conditional random field (CRF) [89] with contextualised word embeddings based on

the sequence of characters in each word [90]. The word embeddings used were part

of the pre-trained embedding models available with the FLAIR NLP framework

[91]. We encourage the reader to read in the aforementioned papers for details on

how contextualised embeddings and sequence tagging with BiLSTM-CRF models

work. A quick summary of the steps is given below:

(a) The sentence to be parsed is given to the contextualised embeddings BiLSTM

as a sequence of characters. The output is a vector for each word in the

sentence that represents that word based on its context in the sentence. In

our case this process happens two times, using the pre-trained embedding

models news-forward and news-backward available in the FLAIR database

of pre-trained models7.

7The models news-forward and news-backward are trained on the same dataset of 1 billion words,
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(b) The outputs from the two pre-trained BiLSTMs for each word as well as their

GloVe [92] vector representation are stacked together to create a very ‘tall’

word embedding vector.

(c) This resulting embedding vector is passed through the BiLSTM-CRF model

which assigns a spatial tag (e.g. B-TRAJECTOR) for each word. The parameters

of this BiLSTM-CRF model are learned from examples taken from a corpus

of annotated word-tokens.

A visual overview of this tagging process is presented in Figure 3.9. To “learn”

the parameters of the top BiLSTM-CRF model we use the unmodified dataset

originally given as part of the competition in [7].

3. Candidate relation extraction

For each combination of spatial elements found above we construct a candidate

relation rc = 〈tr, t, a2〉 where tr is an identified trajector, t is a trigger (motion

indicator mi, spatial indicator si or distance di) and a2 is the second argument

of the relation, which can be a landmark lm, a path p, or a a direction dr. To

limit the number of candidate relations, we consider only combinations of elements

which exist in the same sentence.

4. Spatial Relation Identification

In this step, features are extracted from every candidate relation rc according to the

features seen in Table 3-K. This step creates a feature vector fc for every relation

rc. A simple binary decision tree classifier then labels every relation rc into valid

or invalid according to whether the candidate relation is a valid spatial relation or

not.

5. Spatial Relation Labelling

In this step, the set of valid spatial relations identified in the previous step, is

with the only difference being that during training, news-forward observes the text sequentially ‘left to
right’, while news-backward ‘right to left’.
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Word Tags Span

A B-TRAJECTOR

[A fat bull]trfat I-TRAJECTOR

bull L-TRAJECTOR

was O

feeding O

in U-SPATIAL INDICATOR [in]si
a B-LANDMARK

[a meadow]lmmeadow L-LANDMARK

. . . . . .

Table 3-L: Example of automatic annotations for “A fat bull was feeding in a meadow”.
The raw text can be seen in the left column. In the middle column, there are the
associated tags for each word using the BILOU tagging scheme. The last column shows
the spans each of the tagged word belongs to.

IAPR TC-12 Confluence
Statistic Training Testing Training Testing

Files 1 1 95 22
Sentences 600 613 1422 367
Trajectors 716 872 1701 497
Landmarks 661 743 1037 316
Sp. Indicators 670 796 879 247
M. Indicators – – 1039 305
Paths – – 945 240
Directions – – 223 37
Distances – – 307 87

Relations 765 940 2105 598

Table 3-M: Statistics for the corpora available in the SemEval 2013 Task 3 (SpRL)
competition. The statistics are taken from [7, Table 1].

labelled using a decision tree classifier using one of the three labels: Region, Direc-

tion, or Distance, each corresponding to a spatial relation type discussed in Section

3.4.1.

3.4.3 Training the models

In the steps given in Figure 3.8 we included the use of three learned models: a Con-

stituents tagger based on a BiLSTM-CRF, a Decision Tree classifier for identifying spa-

tial relations, and a second Decision Tree Classifier for assigning labels to those relations.
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The parameters for these models are learned from examples provided in the training data

of the original SpRL competition [7]. There were two corpora provided in the compe-

tition: a subset of the IAPR TC-12 image description dataset [93], and descriptions

of locations form the Confluence8 project. The first corpus contains simple sentence

descriptions of spatial configurations of objects found in images such as:

“About 20 kids in traditional clothing and hats waiting on stairs.”

The corpus based on the Confluence project contains annotated paragraphs taken

from a recollection of journeys to several locations around the world such as:

“Travelling without an atlas, I relied solely on my receiver and wound my

way through the Florida countryside, past Ebro Greyhound Park, and finally

arrived within 1/4 mile of my goal.”

Coincidentally, the formats of the two corpora, while dissimilar to one another, can be

found complementing each other in text stories. Story sentences such as:

A fat bull was feeding in a meadow.

imply (mental) image descriptions similar to the ones found in IAPR TC-12, while

story sentences such as9:

“A carter was driving a wagon along a country lane, when the wheels

sank down deep into a rut.”

are more similar to the event-recollection style text contained in the Confluence project

corpus. A model therefore trained on both will be able to extract almost the entirety

of spatial relations found in story text. The BiLSTM-CRF model for sequence tagging

and the two decision tree classifiers are therefore trained to the joint IAPR TC-12–

Confluence corpus. Training was done as follows:

8Degree Confluence: http://confluence.org/
9Another version of Aesop’s Fable: “Hercules and the Wagoner”
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Parameter Value

LSTM hidden size 128
# hidden LSTM layers 1
Dropout 0.259
Learning rate (starting) 0.1
Epochs 67

Table 3-N: Training parameters for the BiLSTM-CRF model training. The model was
trained with an adaptive learning rate which halved every 5 epochs with non-improving
loss and early stopping when the learning rate fell to negligible levels.

Dataset Task p r f1 f1 [8] f1 [9] f1 [10] Class

IA
P
R

T
C
-1
2 A

0.936 0.950 0.943 0.926 – 0.901 Sp. Indicator
0.861 0.915 0.887 0.785 – 0.814 Landmark
0.576 0.828 0.679 0.682 – 0.823 Trajector

B 0.607 0.522 0.561 0.458 0.702 0.562 Relation

E
0.561 0.350 0.431 – – – Direction
0.612 0.661 0.636 – – – Region
0.167 0.125 0.143 – – – Distance

C
o
n
f
l
u
e
n
c
e

A
0.755 0.481 0.587 0.538 – – Sp. Indicator
0.729 0.443 0.551 0.554 – – Landmark
0.753 0.472 0.580 0.406 – – Trajector

C

0.536 0.353 0.426 – – – Relation
0.755 0.481 0.587 0.536 – – Sp. Indicator
0.729 0.443 0.551 0.554 – – Landmark
0.753 0.472 0.580 0.406 – – Trajector
0.665 0.766 0.712 0.427 – – Path
0.832 0.645 0.727 0.443 – – M. Indicator
0.528 0.411 0.462 0.264 – – Direction
0.887 0.607 0.721 0.490 – – Distance

D 0.151 0.088 0.111 – 0.463 – Relation

E
0.004 0.003 0.004 – – – Direction
0.484 0.278 0.353 – – – Region
0.000 0.000 0.000 – – – Distance

Table 3-O: Results for our method of Automatic Spatial Role Labelling compared to
[8–10]. It is worth noting that [9] reported finding errors and fixing them in the original
dataset and therefore it is not appropriate to directly compare with the other methods.
[8] submitted a different model for each of the training/testing corpora while our method
has been trained to both the corpora. We could not find information about which part
of testing corpus is being reported in [10] but inferred that it is the IAPR TC-12 based
on the comparison the authors report with [8] and their lack of reporting on dynamic
spatial relation constituents such as MOTION INDICATOR.
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1. Convert all of the corpus .xml files to the Co-NLL 2002 shared task format [94]

for named entity recognition. The only difference is the use of the BILOU tagging

scheme instead of the proposed BIO [88].

2. Train a sequence tagging model using the FLAIR framework for NLP [91]. Con-

textualised embeddings are extracted for each word in the sentence and are stacked

with GloVe vectors as described in Section 3.4.2. Pairs of embeddings and BILOU

tags are used to train the sequence tagging BiLSTM-CRF model. Training statis-

tics and hyperparameters chosen were found using the hyper-parameter optimisa-

tion package Hyperopt [95] and are found in Table 3-N.

3. Sets of candidate spatial relations were created for every sentence in the train-

ing corpus by combining the spatial constituents relevant to that sentence. The

relations that were found in the corpus to be valid were then labelled using their

respective label (e.g. REGION, DIRECTION, ...). This set was used to train two Deci-

sion tree classifiers: a binary one that classified the candidate relations as VALID

or INVALID and one that classified the relations classified as VALID to one of the

spatial labels.

Training was done explicitly on the joint training set of the two corpora and testing to

each of the two corpora separately. Evaluation was done using the official competition’s

java evaluation scripts in the “relaxed” mode. We report metrics from the test corpora

in Table 3-O. For the sake of completion, we also report f1 scores for three more works

reported on the same datasets.

3.4.4 Conclusion

We observe that the method we used, despite using learned data from both the corpora

in the SemEval competition outperforms, or at least performs similarly with the state of

the art, at least when comparing f1 scores. While the reported f1 scores of relations seem

low and are almost zero in the case of DISTANCE relations, we have empirically observed

that our method adequately captures spatial relations in the Aesop’s Fables dataset we



Chapter 3. Computational Methods for Extracting Information from Stories 106

used for extracting characters. Furthermore, the results in the work of [9] suggest that

improving those metrics also depend on improving the corpora used for training. Finally,

we developed our method in a free to use python library based on Spacy and the Flair

framework10 and we encourage the reader to try it for themselves.

3.5 Emotions

Emotions are inherent and omnipresent in human activity and as something generally

understood intuitively hard to quantify and give a formal description. A common defini-

tion, however, describes emotion as “a response to events that are important to us” [96].

In studies pertaining to analysing text, or even sound media, Emotion is usually used

interchangeably with Mood, which is a longer, less powerful affective phenomenon that is

described in a two-dimensional energy-tension coordinate axis. On the other hand, Sen-

timent is a personal belief that is not founded on proof or certainty [97]. Understanding

and detecting emotion in story texts serves two main purposes:

1. Understanding the mental and emotional states of characters in the story.

2. Understanding the overall emotional theme the author intended to convey to the

reader.

Both the above functions are important when adapting story texts to radio dramas. The

two functions identified above directly contribute to the following:

1. Direct the speech of actors portraying the characters by using suggestions such as

‘with contempt’, ‘in an angry voice’, etc when writing the radio drama script.

2. Direct the speech of the narrator according to the implied emotion of the text

passage they are narrating.

3. Choose appropriate intro-outro music according to the emotion at the beginning

or ending of the story, as well as linking music (Section 2.5). This can be done by

10SPRL-SPACY: https://github.com/mmxgn/sprl-spacy
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extracting a set of emotional tags to search for music, or by using mood dimensions

that correspond to arousal and valence.

3.6 Extracting emotions from text

Extracting emotions from text is a thoroughly studied subject and as a task it can be

thought of as a subset of Sentiment Analysis [98]. Usually the task consists of identifying

conveyed emotion in text passages of varying length and granularity (from the emotion

communicated using simple words, to the emotion underlying the whole story text). The

most popular form of the task assigns one of 7 basic emotions: Anger, Disgust, Fear,

Guilt, Joy, Sadness, or Shame to a passage of text with granularity usually of a sentence

although there are exceptions to this rule.

There has been a large amount of studies focused on automating emotion extraction

using a variety of techniques from simple words-emotions association lexicons to using

databases of common sense knowledge and statistical methods. Before we refer to them

we provide some examples to better understand the challenges of the task [99]. The

authors in that study provide some examples for the challenges in emotion extraction

from text. Consider the following dialogue line:

“I am happy”

This directly communicates the emotion of joy. An emotion extraction system could

easily assign this emotion to said character by simply consulting an emotional lexicon

that associates the word happy with the emotion joy. Such lexicon-based methods can

be found, for example, in [100] and are quire popular in literature [98]. The statement,

however, can be negated:

“I am not happy”

Negation automatically complicates things for lexicon-based approaches [101], since now

the appropriate assigned emotion is the opposite of ‘joy’: ‘sadness’. Understanding and
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extracting such emotions needs a system to understand such cases. A simple rule based

system to augment a lexicon with identifying word negations would suffice. Consider,

however, the following phrase:

“I am going to the party”

The sentence above would be also normally marked as ‘joy’ (unless the speaker does

not like parties). However, a lexicon based approach, even augmented with a rule-based

system to detect opposites would not work because there is no word to convey emotion in

this case. Understanding and conveying emotion now requires commonsense knowledge.

The above example can also be part of a bigger context:

“I am going to the party”, she said, “although I need to study”

which immediately transforms the underlying emotion from ‘joy’ to ‘guilt’. It is appar-

ent that extraction of emotions needs to also take into consideration the context of the

phrase that is expressed. A different challenge described in [101] is that emotion recogni-

tion systems must be sensitive to the type of the text they perform their analysis to. As

an example, when examining modern electronic communications in social media (e.g. in

discussion fora) we observe use of emoticons, emojis, usage of capitalisation, abbrevia-

tions and other not grammatically relevant cues that are usually absent from story text.

In short, we have gathered the following challenges that pertain to emotion recognition

from text [98]:

1. Emotion extraction is a context-sensitive problem [102].

2. Emotions are not always expressed with affective words (such as happy, joyful) but

by describing real-world situations. [99].

3. Analysing text for emotion extraction depends on the type of the text that is

analysed [101].

We referred to three main approaches to emotion recognition: Lexicon-based, Rule-based
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Reference Type Approach Data used Emotions

[103] ED Statistical Children stories 7
[104] ED Rules Fairy Tales 7
[105] ED, AD Lexicon, KB, Rules Fairy Tales 95 (+3 continuous)
[106] ED Lexicon, Rules Personal experiences 7
[100] ED, AD Lexicon Novels, Fairy Tales 8
[107] AD Lexicon, KB Fairy Tales 95 (+3 continuous)
[108] ED Statistical, KB Fairy Tales 5

Table 3-P: Relevant studies for extracting emotion from stories. Type refers to the task
they contributed. ED stands for Emotion Detection and AD for Annotated Dataset.
KB stands for Knowledge base. The column Emotions refers to the number of emotions
examined in the study.

and Commonsense knowledge-based. Studies have also used Statistical approaches, such

as Machine Learning, by trying to automatically extract emotional associations in pas-

sages of text in an annotated corpus [97]. In general, it has been shown that a combina-

tion of the aforementioned approaches tackles the problem the best. The reader can find

a comprehensive analysis of the relevant studies in [98, 107]. In Table 3-P we present a

summary of studies relevant to story text.

3.6.1 Extracting Emotions for Radio Drama Production

Before we attempt emotion extraction we need to choose an appropriate method from

the ones in Table 3-P as well as an appropriate dataset. We focus only on methods which

provide emotional categories (as opposed to continuous emotional values), and methods

that have been used in children’s tales. The focus on emotional categories can be used

as tags for retrieving appropriate music for intro/outro and scene changes. The focus on

children’s stories is due to a better match with the dataset of Aesop’s Fables. We use

the method described in [100]. This method assigns emotions e ∈ E in text T using the
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following function:

femotions(T, e) =
1

|T |
∑
w∈T

D(w, e) (3.28)

Demotions(w, e) =


1 if word w is associated with emotion e

0 otherwise

(3.29)

where Demotions is a dictionary provided by [100] that associates a word w to emotion e.

We will refer to Eq. 3.29 as the text’s emotional word density for emotion e. The overall

emotion of text is then given by:

femotion(T ) = arg max
e∈E

{femotions(T, e)} (3.30)

In our dataset of Aesop Fables, we consider extraction of emotional tags from text in

four different granularities: Word level, Sentence level, Dialogue Line level, and whole

text level. We mentioned above some of the functions that emotion extraction serves,

such as choosing appropriate intro, outro, or linking music as well as directing the speech

of actors. For these purposes, we use the aforementioned emotion extraction method to

extract three different kinds of emotion values:

1. Emotions across the whole story text.

2. Emotions of the first and last sentences.

3. Emotions of each dialogue line.

4. Emotions outside the dialogue lines.

In Tables 3-Q, 3-R, and 3-S we observe the first emotion tags for each of the above cases

in the first 10 fables in the dataset. We can use the associated emotions as tags. For

example, in the following dialogue line:

“I feel depressed”, said Mary.
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Name ang. ant. disg. fear joy sad. surp. trust emot.

The Dogs and the Fox 0.00 0.20 0.00 0.40 0.20 0.00 0.00 0.20 fear
The Man and the Lion 0.12 0.12 0.00 0.50 0.12 0.00 0.00 0.12 fear
The Cat and the Birds 0.10 0.14 0.05 0.19 0.10 0.14 0.10 0.19 fear
The Cobbler Turned Doctor 0.14 0.14 0.09 0.11 0.05 0.18 0.05 0.25 trust
The Farmer and the Stork 0.12 0.08 0.00 0.17 0.21 0.21 0.04 0.17 joy
The Cat and the Rooster 0.40 0.20 0.00 0.20 0.00 0.00 0.00 0.20 anger
The Boy and the Filberts 0.14 0.00 0.29 0.07 0.07 0.36 0.07 0.00 sad.
The Gnat and the Lion 0.13 0.13 0.13 0.37 0.05 0.11 0.00 0.08 fear
The Heifer and the Ox 0.06 0.24 0.06 0.00 0.24 0.06 0.18 0.18 ant.
The One Eyed Doe 0.00 0.19 0.11 0.26 0.11 0.22 0.04 0.07 fear

Table 3-Q: Emotion association percentages for the first 10 fables in our dataset.

Name ang. ant. disg. fear joy sad. surp. trust emot.

The Dogs and the Fox 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 fear
The Man and the Lion 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 fear
The Cat and the Birds 0.17 0.00 0.00 0.50 0.00 0.17 0.00 0.17 fear
The Cobbler Turned Doctor 0.17 0.00 0.17 0.17 0.00 0.33 0.00 0.17 sad.
The Farmer and the Stork 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ang.
The Cat and the Rooster 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ang.
The Boy and the Filberts 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 disg.
The Gnat and the Lion 0.33 0.00 0.00 0.67 0.00 0.00 0.00 0.00 fear
The Heifer and the Ox 0.12 0.25 0.12 0.00 0.12 0.12 0.12 0.12 ant.
The One Eyed Doe 0.00 0.20 0.00 0.20 0.20 0.00 0.20 0.20 ant.

Table 3-R: Emotion association percentages for the first sentence for the first 10 fables
in our dataset.

Name ang. ant. disg. fear joy sad. surp. trust emot.

The Dogs and the Fox 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.25 ant.
The Man and the Lion 0.00 0.33 0.00 0.33 0.33 0.00 0.00 0.00 ant.
The Cat and the Birds 0.00 0.25 0.00 0.00 0.12 0.12 0.25 0.25 ant.
The Cobbler Turned Doctor 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.50 trust
The Farmer and the Stork 0.12 0.08 0.00 0.17 0.21 0.21 0.04 0.17 joy
The Cat and the Rooster 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ang.
The Boy and the Filberts 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 joy
The Gnat and the Lion 0.16 0.05 0.11 0.37 0.05 0.11 0.00 0.16 fear
The Heifer and the Ox 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ang.
The One Eyed Doe 0.00 0.14 0.29 0.29 0.00 0.29 0.00 0.00 disg.

Table 3-S: Emotion association percentages for the dialogue lines for the first 10 fables
in our dataset.
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The feeling of sadness is prevalent, so we add it to the list of tags of the dialogue line:

TI feel depressed ← TI feel depressed ∪ {sad} (3.31)

In the dialogue line above, the feeling of sadness is dominant in the content. There

are cases, however, where the content of the dialogue lines cannot be associated with

emotion, but the emotion is given outside the dialogue line itself. Consider the following

quotations:

“You cannot be serious”, Mary said with contempt. “You are not serious”,

Mary said angrily.

In such cases, the emotion is given by the modifier of the speech act trigger (e.g. said).

We add this modifier as a tag as follows:

1. We analyse the sentences to their dependency tree structure similar to Section

3.3.6.

2. If the speech act trigger (said) is followed by a preposition (with) then we check

whether the following noun is a hyponym of emotional arousal.n.01, emotion.n.01,

or feeling.n.01. In that case, and if the preposition is negated (e.g. not with

disgust, or without disgust) we add it as a tag to the dialogue line.

3. If the speech act trigger is modified by an adverbial (e.g. angrily) we convert this

adverbial to its corresponding noun (e.g. anger) using WordNet [62] and we

proceed as in step 2.

3.6.2 Conclusion

Emotion extraction from text is a well-studied problem. For this reason, we did not put

effort in developing new methods but we decided to depend on the already established

portfolio of methods and showcase how emotion extraction can be used in the context

of producing in a radio drama from story text. While we did not do an evaluation
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(a) Story events

a crow was sitting on a branch of a tree with a piece of cheese 
 in a crow beak  when a fox observed a crow and set a fox wits 

 to discover some way of getting the cheese.

The fox coming and standing under the tree looked up and said QUOTE.

crow

sit

on a branch of a treesit

with a piece of cheese 
 in a crow beak  sit

fox observe

come
stand
look wits

set

under the tree

stand

quote

say

(b) Story setting

Figure 3.10: Story events and setting approximation for the first two sentences of “The
Crow and the Fox”. In the top figure, smaller boxes represent simple events and arrows
progression of events. Events that are grouped into larger boxes take place at the same
time. In the bottom figure, arrows represent predicate directions similar to Figure 2.7(b).
In both figures, the larger group boxes are labelled based on the sentence they represent.

of emotion extraction in our test set, evaluation of emotion extraction methods in the

context of fairy tales can be found in past literature [105]. We revisit emotions in Section

5.4 where we discuss how we retrieve music that adheres to the emotional theme of the

story.

3.7 Event extraction via Text Simplification

In the above sections, we presented elements that can be simply extracted by looking

at a ‘surface’ level of the discourse text. There are elements, however, that cannot be

extracted simply by looking at the discourse text and need a slightly deeper inspection
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of the story. An example is recognising when a character is performing an action that

might lead to a sound being played (Section 2.6). The aforementioned tasks require at

least some knowledge of the story world (see Section 2.2.2). Efforts that attempt at

extracting the narrative structure (the events and setting part of the storyworld) can

be found in [67], where the authors derive Abstract Meaning Representations [43] of

story sentences and try to extract knowledge that is unable to be discerned by a shallow

analysis of text, such as character roles, motivations, etc. While following a similar

approach would help us find methods that take into consideration the happenings in

the story world, AMR loses morphology information about the text, something that is

useful when retrieving sound effects from story sentences (Chapter 5). Instead, we will

be using what is called automatic text simplification (TS) for reducing the story text into

simple sentences that can be easily processed using simple rules. TS is the process of

modifying natural language to reduce its complexity and improve both readability and

understandability [109]. In order to comprehend what this means consider the following

example from Section 2.2.2:

A Crow was sitting on a branch of a tree with a piece of cheese in her

beak when a Fox observed her and set his wits to work to discover some way

of getting the cheese.

The sentence above has a complicated dependency parse tree (Figure 3.11(a)) which

makes it difficult to derive simple rules that extract e.g. the actions of the fox and the

crow. By using automatic text simplification, however, we can simplify it to the following

sentences:

A crow was sitting on a branch of a tree. A crow was sitting with a piece

of cheese in her beak. A fox observed the crow. A fox set his wits to work to

discover some way of getting the cheese.

These sentences have much simpler dependency parse trees. Additionally, the main verb

is at the root of each sentence (e.g. sitting or observed) is at the root of each parse
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(a) Full sentence

(b) Simplified sentence

Figure 3.11: Parse tree of the first sentence in “The Crow and the Fox”. There is a
subtree of 11 more leaves on the right of the full sentence parse tree that was omitted
due space constraints.

tree and each tree describes an action performed by someone in the story (denoted with

nsubj).

Automatic text simplification has been used in the past of simplifying text for people

with aphasia, knowledge elicitation from natural language sources, simple-wiki construc-

tion for foreign speakers, drug-discovery, etc [109]. For our purpose we use ClausIE

[58] which jointly achieves text simplification and information extraction. ClausIE
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relies on a simple algorithm that processes the dependency parse tree of a more compli-

cated sentence and extracts simpler clauses with a single verb and a single subject. It

then proceeds to categorise each clause (e.g. as a di-transitive or mono-transitive). This

categorisation process adds information about which parts of the clause are important

and which can be omitted when simplifying the text.

The steps to simplify a sentence as a list of word-tokens are given as a flowchart in

[58, Fig. 2] which is repeated in Figure 3.12 for convenience. Applying those to “The

Crow and The Fox” results in the following seven clauses:

〈A crow, sitting, {on a branch of a tree,with a piece of cheese in her beak}〉SVA (3.32)

〈a fox, observed,her〉SVO (3.33)

〈a fox, set,his wits〉SVO (3.34)

We observe that each clause might have multiple adverbials. While not shown, this is

also the case for subjects, objects, and complements. It can, however, have a single verb.

We can use Algorithm 4 to construct simple facts such as:

A crow sitting.

A crow sitting on a branch of a tree.

A crow sitting with a piece of cheese in her beak.

A fox observed her.

A fox set his wits.

Each sentence above has a single verb and subject. This will come handy in Section 5.2

when we discuss about a grammar-informed sound effects retrieval system.

The above methods allow us to analyse a single sentence in simple facts but do not tell

us about their temporal progression (e.g. when these happen). Such temporal analysis

has been the subject of previous SemEval Competitions [110, 111], however, doing a

thorough analysis for event progression is outside of the scope of this thesis. Instead,



Chapter 3. Computational Methods for Extracting Information from Stories 117

Copular (SVC)

yes

no

Object?

Complement? Adverbial?
no

Intransitive (SV)

Non ext. copular? Extended Copular (SVA)no

yes

yes

no

Dir. and indirect Complement? Adverbial and Dir. Obj?

Ditransitive (SVOO) Complex Transitive (SVOC)

Monotransitive (SVO) Complex transitive (SVOA)

yes

yes

no

yes

no

no yes

Clause

Figure 3.12: Flowchart of the process labelling extracted clauses in ClausIE.

we make the following assumption: “Events happen in time in the same order they are

written in the text”. While this assumption does not hold in the general case, we found

that it is usually the case in our dataset of Aesop Fables. Using the methods described

above we can visualise an approximation of the story events and setting we spoke of

in Chapter 2. In Figure 3.10 we can see the story events and settings extracted using

the above methods for the first two sentences of “The Crow and the Fox”. We provide

a Python implementation of the aforementioned text simplification methods using the

Spacy library at https://github.com/mmxgn/spacy-clausie.

3.8 Suspense

In the last section of this chapter we will briefly touch Suspense which we introduced

in Chapter 2. Suspense is one of the most important elements of stories, radio drama

included, and is what keeps the reader, or listener, engaged to the story. It is especially

important in radio dramas due to the nature of the medium - listeners that are not

captured from the beginning of the play will abandon it. Understanding suspense in the

level of story text would aid us to convey it in radio drama when adapting the text, for

example, by introducing relevant ‘suspenseful’ music or pauses at important steps in the

drama.

Extracting suspense requires a deeper understanding of the narrative of the source
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Algorithm 4 Proposition extraction using clauses extracted using the ClausIE extrac-
tion algorithm. expandcc is a function that expands conjunctions to sets of simpler
terms, e.g. the phrase Cat and Mouse to {Cat,Mouse}

1: procedure PropositionExtraction(〈S, V,Oi, Od, C,A〉label)
2: P ← [] . An empty list
3: S′ ← expandcc(S) . Expand conjunctions
4: Oi ← expandcc(Oi)
5: Od ← expandcc(Od)
6: C ← expandcc(C)
7: for s ∈ S′ do
8: if label ∈ {Intransitive (SV),Copular (SVC),Ext. Copular (SVA)} then
9: P ← P ∪ {s.V } . Subject s concatenated with verb V

10: if label = Ext. Copular (SVA) then
11: for a ∈ A do
12: P ← P ∪ {s.V.a}
13: if label = Ditransitive (SVOO) then
14: for od ∈ Od do
15: for oi ∈ Oi do
16: P ← P ∪ {s.V.oi.od}
17: if label = Monotransitive (SVO) then
18: O ← Od ∪Oi

19: for od ∈ Od do
20: P ← P ∪ {s.V.o}
21: if label = Complex Transitive (SVOA) then
22: for od ∈ Od do
23: for a ∈ A do
24: P ← P ∪ {s.V.o}
25: P ← P ∪ {s.V.o.a}
26: if label = Complex Transitive (SVOC) then
27: O ← Od ∪Oi

28: for o ∈ O do
29: for c ∈ C do
30: P ← P ∪ {s.V.o.c}
31: if label = Copular (SVC) then
32: for c ∈ C do
33: P ← P ∪ {s.V.c}

return P

story text and is not something that can be done with a shallow parsing method similar

to the ones previously presented in this chapter. Suspense arises from the worry of the

reader or listener towards the fate of a character and thus requires recognising who is

the intended important character, what actions have they taken as well as understanding

where these actions might lead [112]. Suspense cannot be analysed on the discourse level

but requires a modelling on the story events and story settings level (Section 2.2.2).

Furthermore, it has been shown that perceiving suspense is dependent on the knowledge
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of the reader about similar works of art. For example, suspense in spy stories come

partly from the familiarity of the reader with the genre [38, p. 35].

Computational modelling of suspense in narrative, as far as the author of this thesis

is aware of, has only been studied in the context of narrative generation. Despite this, we

believe it is important to refer to the most well-known methods for suspense modelling for

narrative generation, in the hopes that it leads to future endeavours on approximating it

at the discourse level. One of the earlier computational methods for introducing suspense

can be found in Mexica [113], a system for narrative generation which describes a series

of tensions described as patterns called primitive actions. Primitive actions describe

suspenseful situations for characters. They comprise of a set of events that trigger these

tensions as well as their consequences for the characters in the story setting. The author

recognises a list of tensions such as Life at risk which is the tension caused when the life

of an important character is at risk. In the context of Aesop Fables, the following would

be an example of Life at risk 11:

“Once when a lion was asleep a little Mouse began running up and down

upon him; this soon wakened the lion, who placed his huge paw upon him,

and opened his big jaws to swallow him.”

In this scenario the mouse is an important character and its capture by the lion and the

uncertainty about his life causes suspense to the audience that worries about his fate.

A system that models this suspense must be able to derive the possible outcomes. The

less positive outcomes there are for the life of the mouse the higher the suspense [37].

A system that exploits the observation above is called Suspencer [114] which gen-

erates all the possible outcomes and models suspense based on the ratio of the number

of failed outcomes (e.g. the mouse dies) versus the successful outcomes (e.g. the mouse

lives). The higher this ratio is, the bigger the perceived suspense is. This approach,

however, is computationally intractable for sufficiently complicated stories. An attempt

11Aesop’s Fable: “The Lion and the Mouse”
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at better modelling of suspense which also solves the problem of intractable outcome

generation is Dramatis [115]. In this work, the authors identify the negative outcome

of a story and try to devise an escape plan that the character can follow to avoid this fate

(e.g. for the mouse to convince the lion not to eat him). Suspense is then modelled based

on the probability of the escape plan succeeding. The three approaches we described

above are based on explicit modelling of the story protagonist (or at least an important

character). A work that disentangles character-specific modelling from suspense gener-

ation is found in [116, 117] therefore disentangling the emotional affinity towards the

character from modelling of suspense.

3.9 Summary

In this section, we presented methods for extracting information from stories with the

goal of adapting it into radio drama. We presented a procedure for automatically iden-

tifying characters that need to be communicated using actors in a drama as well as their

dialogue lines. In addition, we discussed how we can extract events from the story and

locations where these events happen. Furthermore, methods for recognising emotions

underlying the text, as well as emotion of characters were presented. Finally, we briefly

discussed suspense.
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Figure 3.13: The complete framework consisting of the various computational approaches
we described in this chapter. Boxes describe the various algorithms described throughout
the chapter. Dashed boxes represent the four main narrative elements we try to extract:
Characters and their lines (Section 3.3), Locations (Section 3.4), Emotions (Section 3.5),
and Story events (Section 3.7).
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Reverberation

4.1 Introduction

Speaker
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(a) Diagram of sound reflections
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Figure 4.1: Diagram for understanding reverberation and the corresponding impulse
response plot. In this setting, we have a sound source (loudspeaker), a capture device
(microphone) and four walls. Here we represent sound transmission using piece-wise
line segments. Red colour is used for sound that is transmitted directly by the speaker,
green for sound that gets reflected on the walls once, and blue twice. Here, sound gets
transmitted by the speaker in all directions. Part of this sound is captured by the
microphone (solid red line) and part hits the four walls (dashed lines). Part of those
reflections are captured by the microphone (green lines), other parts get subsequently
reflected (blue lines), etc. To avoid clutter, only two of the latter reflections is shown here.
Each part of the sound that is captured by the microphone in Figure 4.1(a) is represented
by a vertical arrow in Figure 4.1(b) at the time it was captured by the microphone.
Further reflections captured that are not shown in Figure 4.1(a) are represented as a
continuous triangle.
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(a) Sports Centre, University of York
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(b) Impulse Response

Figure 4.2: The Sports Centre at the University of York and the plot of the amplitude
of its Room Impulse Response retrieved from the OpenAIR impulse response library
[5]. The RIR shown was captured by Aglaia Foteinou and Simon Shelley using the sine-
sweep method. Note the direct sound after a short delay of silence and the distinct peaks
corresponding the first-order reflections.

While part of audio effects (Section 2.7) we give specific emphasis to Reverberation

since Chapters 5 and 6 relate to it. In Section 4.2, we discuss what Reverberation and

Room Impulse Responses are. In Sections 4.3 and 4.4 we discuss what are the main

methods to capture and replicate the effect using digital means. In Section 4.5 we

discuss the DSP effect configuration in [118] which allows us to replicate reverberation

artificially and which is controlled by simple parameters that can get mapped to the

perceptual characteristics of reverberation discussed in Section 4.6. Finally, in Section

4.7 we introduce a mapping from those characteristics to the aforementioned parameters

which allows a user to simply choose the desired reverberation parameters and control

the effect in such way.

4.2 Reverberation and Room Impulse Responses

Reverberation (or Reverb for short) is the name given to the perceived effect of a sound

reflected on the surfaces of walls, ceilings, and other objects in a space. Suppose we

have the configuration of Figure 4.1(a) with a loudspeaker on one side of the room and a
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microphone on the other. When the loudspeaker emits a sound wave, it does so towards

every direction. The part of the sound wave emitted directly towards the capture device

will be the first to arrive, after a delay of d
c seconds, where d is the distance between

speaker and microphone and c = 343m/s the speed of sound in air. The part of the

wave that does not reach the microphone directly will get reflected on the surfaces of

the room, and those reflections will reach the microphone at some time after the direct

sound. Subsequently, those reflections that are not captured will be reflected back,

etc. When travelling through the air or reflected by the surfaces, the sound wave gets

partially attenuated. If we could produce a sound of infinitesimal duration at the source’s

position and record it using the configuration seen in Figure 4.1(a), the recorded signal

would look like the one in Figure 4.1(b) which is called a Room Impulse Response (RIR).

Producing such a sound in practice is impossible, however, since the speakers cannot

reproduce signals of arbitrarily high energy. Instead, can approximate such a sound by

clapping hands, shooting guns or popping air balloons. Each of those techniques has a

particular set of limitations, the most common being the lack of energy at low frequencies

that results to low Signal-to-Noise ratio (SNR) [119]. A different technique called the

Maximum Length Sequence (MLS) method uses, instead of an impulse, pseudo-random

noise as excitation signal and a deconvolution algorithm to derive the impulse response

[120]. While this technique achieves much higher SNR compared to the aforementioned

impulse techniques, it is still not sufficient for modern needs. Instead, the standard

method for measuring RIRs is to use a continuous sinusoidal signal with exponentially

increasing frequency (sweep) as the excitation signal [119, 121]. A realistic configuration

to capture the RIR of a space using the sweep method and the resulting RIR can be

seen in Figure 4.2.

4.3 Convolution Reverb

We could use an impulse response such as the one in Figure 4.2(b) to re-create the

impression the specific environment by convolving a dry (with no reverberation already)
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Figure 4.3: A Moorer algorithmic reverberator with the corresponding impulse response.
x[n] is the input (mono) signal and yR[n], yL[n] the right and left channels of the output.
The reverberator is controlled by directly affecting the parameters of the digital filter in
boxes.

sound source with the reverberation impulse response of that environment:

y[n] =
L∑
k=0

x[k]h[n− k] (4.1)

where L is the length of the impulse response. This way of introducing reverberation

to a dry sound source is called convolutional reverberation. There are various methods

of recording or generating RIRs but are out of the scope of this thesis. The important

characteristic of applying reverb with RIRs is that since RIRs are essentially sound files,

those can be labelled and stored in a library for a radio drama producer to retrieve and

use at a later stage.

4.4 Algorithmic Reverb

Another way to apply reverberation to a dry sound source is to process it using a systems

block configuration called an algorithmic reverberator. Systems for algorithmic reverber-

ation rely on networks of delay-inducing filters. They are older than their convolutional

counterparts [122] but can be more expressive: while in convolutional reverberation

effects choice of reverb is limited to the choice of a RIR file, filter parameters in algo-



Chapter 4. Reverberation 126

rithmic reverberators can produce a large range of perceived reverberation types, even

types that do not exist in nature [123].

4.5 The Moorer Reverberator

An example of algorithmic reverberation is the Moorer reverberator [118]. It is a simple

effect controlled by five simple parameters which can be mapped to perceived charac-

teristics of space [124, 125]. The reverberator consists of a configuration of Comb filters

(CF), allpass filters (APF), low-pass filters (LPF) and gain stages and can be seen in

Figure 4.3 with its corresponding IR can be seen in 4.3(b). The Moorer reverberator

is composed of simpler components seen in Figure 4.4. Each of the components in Fig-

ure 4.4 is controlled by two parameters: a delay d and a gain g. Below we provide the

difference functions for each and we give a short description of the component’s function:

4.5.1 Comb Filter CF

– The comb filter’s function is to introduce ‘copies’ of the signal of diminishing gain (gk)

at multiples of the filter’s delay parameter dk (Figure 4.4(b)) where k is a number from

1 to 6 corresponding to a comb filter in Figure 4.3. Each comb filter is used to ‘simulate’

a surface of a closed space. In the Moorer reverberator, a comb filter ‘simulate’ each of

the six surfaces of a shoebox-shaped room. The block diagram and impulse response of a

comb filter can be seen in Figure 4.4(a) and 4.4(b) respectively. The difference equation

of a comb filter is:

y[n] = x[n− dk] + gky[n− dk] (4.2)

When used in cascade each comb filter is labelled using a number k = 1..6. The delays

d1...k take values between 10 and 100ms and have a constant ratio:

di+1

di
=

1

1.5
(4.3)
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Figure 4.4: Block diagrams of the components of the Moorer reverberator (left) with
their corresponding impulse response (right).

with d1 having the largest value. The values dk and gk are further set to satisfy the

following constraint:

dl
log gl

=
dm

log gm
(4.4)
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which ensures the comb filters have the same reverberation time. Distributing delays

with such a constant ratio will result in overlapping echoes. To solve this problem, we

use the solution given in [124, 125], which is to make sure the delays are rounded to a

co-prime set of integers when converted to samples, i.e. impulses from the six different

comb filters should all fall on different times. We discuss about reverberation time in

Section 4.6. From Eq. 4.3 and 4.4 we observe that by controlling the gain and delay of

the first comb filter g1 and d1 we control the filter parameters for the rest of the comb

filters as well.

4.5.2 All-pass Filter APF

The all-pass is used in a similar way as the comb filter. It introduces attenuated ‘copies’

of the input sound at intervals controlled by the filters’ delay parameter da. The two

parallel all-pass filters in Figure 4.3 are set with a slightly different delay so that a

slightly different reverberation is introduced to the left and right channels. This gives

the impression of a ‘stereo’ reverberation effect. We observe this in Figure 4.3(b) where

the left channel (blue colour) is slightly different to the right channel (red colour). The

block diagram of the all-pass filter can be seen in Figures 4.4(c) and 4.4(d) respectively.

Its difference equation is:

y[n] = x[n− da]− gax[n] + gay[n− da] (4.5)

The delays of the two allpass filters da,1, da,2 and the gains ga,1, ga,2 [124]:

da,1 = 0.006 +
m

2
(4.6)

da,2 = 0.006− m

2
(4.7)

ga,1 = ga,2 =

√
2

2
= 0.707 (4.8)

where the delays are expressed in seconds (s). Since the gains are constant and the

delays of the two all-pass filters are both dependent on m, it is used as a parameter to
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control the all-pass filter stage of the used Moorer reverberator.

4.5.3 Low-pass Filter LPF

We briefly introduced the low-pass filter when we discussed about EQ in Section 2.7.2.

We use a low-pass filter after the comb and all-pass filter stages to simulate the air and

wall absorption present in natural reverberation. The filter used in this case is a very

simple single-pole lowpass filter controlled by a single gain parameter gc and a difference

equation:

y[n] = (1− gc)x[n] + gcy[n− 1] (4.9)

Its block diagram and impulse response can be seen in Figures 4.4(e) and 4.4(f) respec-

tively. Finally, the relation between the low-pass cutoff function fc and the gain gc is

given by:

gc = 2− cos

(
2π
fc
fs

)
−
√(

cos

(
2π
fc
fs

)
− 2

)
− 1 (4.10)

4.5.4 Dry/Wet Mix Gain

There is a last ‘Gain’ stage in Figure 4.3. This simply multiplies the signal via a param-

eter G ∈ [0, 1]:

y[n] = Gx[n] (4.11)

The parameters controlling the Moorer reverberator can be seen in Table 4-A.

4.6 Perceptual Measures of the Impulse Response

In Figure 4.3(b) we see the first 400ms of the impulse response of a reverberation effect.

By plotting the impulse response, one might get a rough idea on some of its charac-

teristics. For example, by observing the time it takes for the impulses to fall under a
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Parameter Values Description

d1 [0.01, 0.1] Delay of the first comb filter
g1 (0, 1) Gain of the first comb filter
m (0, 0.006) Difference of delays between the all-pass filters.
gc (0, 1) Gain of the low-pass filter
G (0, 1) Dry/Wet mix gain

Table 4-A: Parameters controlling the Moorer reverberator effect of Figure 4.3

perception threshold (e.g. an amplitude of 0.001) we can estimate that the reverberation

might give a perception of a ‘spacious’ or ‘damp’ room depending on whether this time

is large or small.

Observing the impulse response, however, is not practical: we would like to charac-

terise the impulse response using simple measures (such as the time we mentioned above).

We derive five such measures: Reverberation Time T60, Echo Density D, Central Time

Tc, Spectral Centroid Sc, and Direct-to-Reverberant Ratio Drr. For the architecture in

this section, we describe how we derive these measures from an impulse response of both

an algorithmic (e.g. Moorer) reverberation effect as well as realistic impulse responses

recorded for use with a convolutional reverb. We then discuss how we can synthesize

impulse responses that adhere to these measures using the Moorer reverberator shown

in Section 4.5.

4.6.1 Reverberation Time T60

Reverberation time is the time it takes for the power of the impulse response to drop to

imperceptible levels, usually below 60dB for T60. For RIRs synthesised by the Moorer

reverberator, this is usually just a matter of measuring the levels of the impulse response

dropping below a relative 10−3 compared to the direct sound (Figure 4.5). The rever-

beration time of the Moorer reverb’s IR can also be calculated as a function of the delay

and gain parameters d1, g1 of the first comb filter, the gain of the low-pass filter gc and
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Figure 4.5: A Moorer reverberator’s Impulse Response. Estimating T60 requires mea-
suring the time it takes until the amplitude of the impulse response falls under a value
of 0.001(60dB).

the dry/wet mix gain G of the ‘Gain’ stage in Figure 4.3 [124]:

T60 =
d1

log g1
log

(
0.001

√
2

(1− gc)G

)
(4.12)

Equation 4.12 allows us to predict the reverberation time when using a Moorer rever-

berator and thus introduce reverb with desired reverberation time (e.g. a long reverb

time gives the impression of a ‘spacious’ room).

For recorded RIRs used in convolutional reverb, the presence of noise makes mea-

suring T60 directly from the IR unreliable since the noise level will probably be higher

than 60dB. In order to measure reverberation time at 60db, we use python-acoustics1

which implements a method based on energy decay curves [126] and is shown in more

detail in Appendix A.1. T60 is not measured at the full spectrum, but at 8 octaves

centred at Cf = {63, 125, 250, 500, 1000, 2000, 4000, 8000}Hz and the average is taken as

the chosen reverberation time T60:

1https://github.com/python-acoustics
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T60 =
1

8

∑
f∈Cf

T f60 (4.13)

where each superscript f is the centre frequency of the respective band.

4.6.2 Echo Density Ed

Echo density is the number of distinct reflections of the direct sound that can be heard.

It is usually measured from the impulse response during the early phase of the reverber-

ation. Again, as with reverberation time, echo density can be directly measured in the

case of an algorithmically synthesised RIR by measuring the number of echoes (peaks)

over a small period of time τD = 0.1s at the early reverberation phase (Figure 4.5).

Similar to the reverberation time, echo density can be described as a function of Moorer

reverberator’s parameters:

Ed =
τD
da

6∑
1

1

dk
(4.14)

where τD = 0.1, da the delay of an all-pass filter (either the left or the right channel)

from the all-pass filter stage in Figure 4.3 and dk the delay of the k-th comb filter.

As with reverberation time, Echo Density is not as easy to measure in the case of

recorded RIRs. To do that, we use the method described in [127] which does not measure

the echo density exactly, but a metric that highly correlates with it. The method assumes

that distinct echoes are outliers of a Gaussian bell which models the distribution of sam-

ples around points of time when the reverberation is considered fully mixed. In our case,

we measure this metric at 8 different time instances T = {5, 10, 15, 20, 30, 50, 90, 190}ms

of the RIR and take the average.
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Ed =
1

8

∑
τ∈T

Eτd (4.15)

4.6.3 Direct-to-Reverberant Ratio Drr

In [124, 128, 129], the authors base their work on a measure they call Clarity and denote

by C. The way, however, it is defined in those works it is more similar to the Direct-

to-Reverberant ratio Drr when measured in recorded RIRs. This describes the ratio of

energies of the direct sound, to the rest of the reverberation, expressed in dB.

Drr =
Edirect

Ereverberant
(4.16)

In the algorithmically synthesised case, it is a simple matter of taking the ratio of

the RIR value at time t = 0 to the sum of squares of the rest of the values. It can also

be predicted from the Moorer reverb’s parameters [124]:

Drr = −10 log10

(
G2 1− gc

1 + gc

6∑
k=1

g2
k

1− g2
k

)
(4.17)

In the recorded RIR case again this is not the case since we are uncertain of the

location and duration of the direct sound. To estimate Drr we use the method described

in [130] which calculates the ratio of energies around a 5ms window around the highest

peak of the signal and divides it by the rest of the RIR signal.

Drr =

∫ t0+2.5ms
t0−2.5ms y

2(τ)dτ∫ T
t0+2.5ms y

2(τ)dτ
(4.18)

where y(t) is the signal of the RIR, t0 the location of the highest peak, and T the total

duration of the impulse response.
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4.6.4 Central Time Tc

Central time Tc is the “centre of mass” of the energy in the impulse response [131] and

in previous works has been found to correlate to perceptual descriptors for reverberation

such as boomy, or church-like [124, Table 1–3]. It can be calculated the same way for

algorithmic and recorded RIRs and is given by:

Tc =

∫ T
0 τy2(τ)dτ∫ T
0 y2(τ)dτ

(4.19)

where again, y is the signal of the RIR, and T its total duration. In the Moorer rever-

berator it can be expressed using the parameters (gains and delays) of the architecture’s

components [124]:

Tc =

6∑
k=1

dkg
2
k

(1− g2
k)

2
/

6∑
k=1

g2
k

1− g2
k

+ da (4.20)

4.6.5 Spectral Centroid Sc

Similar to central time, spectral centroid is the frequency at the centre of gravity of

the spectrum of the RIR and is correlated to the brightness of the impulse response

[124, 132]. In our case it is calculated using Librosa [133]. The signal is split into

frames, its Short Time Fourier Transform (STFT) is calculated and each frame n of the

STFT is normalised. The spectral centroid of frame n is then given by:

Snc =

∑K
k=1 k · STFT [n, k]∑K
k=1 STFT [n, k]

(4.21)

Where K is the number of bins of the STFT. We calculate the spectral centroid SnC for

frames at T = {5, 10, 15, 20, 30, 50, 90, 190}ms and take their average to compute the

final spectral centroid:
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Sc =
1

8

∑
τ∈T

SτfsC (4.22)

Where fs is the sampling rate of the recorded signal. Its relation to the Moorer’s reverb

effect parameters is given by:

Sc =

fs/2∑
n=0

n

1 + g2
c − 2gc cos(2πn/fs)

/

fs/2∑
n=0

1

1 + g2
c − 2gc cos(2πn/fs)

(4.23)

4.7 Controlling the Moorer Reverberator using measures

of reverberation

In Section 4.6, we introduced five simple measures of the impulse response that relate to

how we perceive reverberation. Moreover, we found that we can predict those measures

from five control parameters of a Moorer Reverberation effect. In this section, we derive

the inverse mapping, from the impulse response measurements to the Moorer reverb

parameters. This enables us to introduce reverb based on desired characteristics (e.g.

long reverberation time or high clarity). We formulate the problem as such:

“Given a set of the five impulse response characteristics introduced in

Section 4.6 (T60, Ed, Tc, Drr, and Sc), return a set of values for the five

reverb parameters in Table 4-A (d1, g1, da, gc, G).”

Spectral Centroid Sc depends only on gc and thus we can easily estimate a value for gc

given a value for Sc via numeric optimisation. The rest of the parameter-measure pairs,

however, form a 4 × 4 non-convex system of equations with constraints given by the

allowed value ranges shown in Table 4-A. Finding the feasibility space of such system is

non-trivial, and in some cases there exist no exact solutions: e.g. it is not possible to have

an arbitrarily low echo density Eg as well as reverb time T60. Instead, we approximate a

set of values that minimises an objective function that gives a non-exact, but hopefully
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good enough, solution. Suppose we have a vector of actual reverberation measurements

(remember we can directly estimate gc from Sc):

v =

[
T60 Ed Drr Tc

]T
(4.24)

and the desired reverberation measurements:

v′ =

[
T ′60 E′d D′rr T ′c

]T
(4.25)

we need to find a set of parameters that minimises the Euclidean distance of the target

measurements from the actual measurements, given the constraints of our parameters.

Furthermore, we add the extra constraint of a uniform error distribution. What we do

is find the optimal solution for the problem below (all variables are normalised to 0-1):

minimize:
x=[g1 d1 da G]T

f0(x) =
√
eTe+ Var[e]2

subject to:

0 < g1 < 1, 0 < G < 1,

d1,min ≤ d1 ≤ d1,max,

da,min ≤ da ≤ da,max

where:

e = v − v′

(4.26)

Instead of trying to exactly solve the system of equations in 4.26, we derive an approxi-

mation that depends on optimising a single variable (Appendix A.2):
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minimise:
g1

f0(g1) =
√
eTe+ Var[e]2

subject to:

0 < g1 < 1,

where:

G = f1(C ′, g1)

d1 = f2(C ′, T ′60, g1)

da = f3(C ′, T ′60, D
′, g1)

(4.27)

Solving the system in Eq.4.27 gives us a sub-optimal solution when there is no exact

solution in our feasible space, and the exact solution when there is one. If we are

deriving those measurements directly from a Moorer reverberator impulse response, we

are expecting the problem to have an exact solution, we only expect non-exact solutions

when the reverberation measurements are chosen arbitrarily.

4.8 Conclusion

In this chapter, we discussed the effect of Reverberation and how it can be intro-

duced used recorded signals that capture the characteristics of a space (Room Impulse

Responses) as well as using algorithmic means. Furthermore, we introduced simple mea-

sures that can perceptually describe such impulse responses. Finally, we showed how we

can introduce reverberation algorithmically based on desired values of those perceptual

measures. In Chapter 5 we discuss how we can use those measures together with the

algorithmic reverberation effect we discussed and recorded RIRs to introduce appropriate

reverberation to a radio drama using information extracted from story text.



Chapter 5

Organising Assets for Radio

Drama Production

5.1 Introduction

In Chapter 3 we discussed methods for extracting information from a source story that is

used when adapting the story to radio drama. In this chapter, we first discuss methods

for retrieving music, sound effects, and room impulse responses for reverberation. In

Section 5.2, we show we can use the methods for Text Simplification and Coreference

Resolution in Chapter 3 to extract tags from natural story sentences with the goal of

retrieving spot sound effects from an online library of sound effects. In Section 5.3, we

discuss how Room Impulse Responses can be labelled and retrieved using such tags.

Finally in Section 5.4, we discuss retrieval of music.

5.2 Tag-based retrieval of Sound Effects

In this section, we discuss how we can automatically retrieve sound effects relevant to

a story we are adapting to radio drama, in order to assist the sound managers in their

job. Similar to Sections 5.3 and 5.4, we assume that the team has access to a library

138
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of sound effects where sounds can be searched and retrieved using a collection of tags.

To retrieve relevant sound effects for the story therefore we need to find ways to extract

relevant tags from the stories, which in our case are written in natural language.

We search for such methods in previous attempts that try to automate the task of

soundscape composition. In soundscape composition, a sound designer has the goal of

producing a sound ‘scene’ able to elicit a mental image of a specific environment to the

listener [134]. Such scenes can be described in natural language, e.g.:

“On hot summer days, down by the river, we would listen to the hum of

insects.” 1.

There is a number of previous methods that try to assist in or automate the soundscape

composition process. In [136], the authors use tag-based search and a knowledge base

based on WordNet [62] to augment a user’s search query with the corresponding tag

‘concepts’ and thus retrieve sound effects that do not correspond simply to the objects

they have been queried about, but also to the concept they relate to (e.g. a ‘city’

tag relates also to ‘cars’, ‘pedestrians’, etc). The SoDa project [137] uses a sound

effects library richly annotated with various kinds of metadata to allow a creator to

‘explore’ and choose sound effects for use in a soundscape. In the Audio Metaphor

soundscape synthesis engine [134, 135], the authors extract tags from natural sentences

using a tag slicing algorithm called SLICE which uses simple word features and a sliding

window, to automatically construct queries for searching and retrieving sounds from the

FreeSound online sound effects library [138]. Furthermore, they use social media posts

to augment such queries with new tags. This last technique seems appropriate for our

task of extracting tags for retrieval of sound effects from story sentences. Consider the

following sentence2

One day the countrymen noticed that the mountains were in labour;

smoke came out of their summits, the earth was quaking at their feet, trees

1Quote taken from [135]
2Taken from the Aesop’s Fable: “The Mountains in Labour”
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were crashing, and huge rocks were tumbling .

In the above sentence, there are references to previous text (e.g. ‘their’ → ‘the moun-

tainś’), as well as coordinating conjunctions (“and, taking his cane . . . ”). SLICE [135]

extracts tags by considering all the nouns phrases in a sentence, as such:

day countrymen mountains labour smoke summits earth feet trees huge

rocks

as well as all the possible sub-sequences of decreasing length as queries:

day countrymen mountains labour smoke summits earth feet trees huge

countrymen mountains labour smoke summits earth feet trees huge rocks

...

day

countrymen

...

rocks

Overall, 66 queries were constructed from the above sentence, out of which only 8 will

retrieve sound effects3 when querying FreeSound. Story sentences like the above tend to

be more complex than descriptions of soundscapes. They tend to contain references to

previous text (e.g. pronouns such as ‘himself’, ‘his’, ‘them’), embedded clauses, coordi-

nated conjunctions, and other causes of sentence complexity [139]. When querying SFX

libraries, this complexity leads to the construction of a very large amount of queries

for stories since they contain a large number of complex sentences. This is especially

strainful for online libraries with limited bandwidth, as is the case for FreeSound. Fur-

thermore, when taking sub-sequences of tags, those that are related to each other in the

story are not going to be used together in a query without including all the tags that

exist in the span between them. For example, in the sentence above there is no query

3As of 6 Oct. 2020



Chapter 5. Organising Assets for Radio Drama Production 141

that contains both mountain and summits without including the tags labour, and smoke.

We observe therefore that simply using the algorithm in [135] without appropriate pre-

processing leads to two main issues: a large number of queries, and therefore requests to

an online library, as well as not entirely relevant queries. To overcome the issues men-

tioned above, we test coreference resolution and text simplification as a pre-processing

step before retrieval. This lets us do two things:

1. Replace text referents with the text they refer to, for example: “their summits”

→ “the mountains summits”.

2. Extract the coordinating conjunctions (identified by semicolons ‘;’, commas ‘,’, and

words such as ‘and’ in the sentence above) from the complex sentence into multiple

simpler sentences:

The countrymen noticed.

The mountains were in labour.

Smoke came out of their summits.

The earth was quaking at their feet.

Trees were crashing.

Huge rocks were tumbling.

Using SLICE to extract tags from the above sentences lead to the construction of only

16 queries, which is a significant decrease from the 66 of the original sentence. While

in this case the successful queries remained the same, the successful-to-total queries

ratio increased. To test more systematically the effect of coreference resolution and text

simplification to sound effects retrieval, we used the first sentence of 44 Aesop’s Fables

chosen from the dataset of 249 Aesop’s Fables we introduced in Chapter 3 to construct

tags and query the FreeSound library for sound effects. The first sentence was chosen

deliberately for two reasons:

1. We observed that in Aesop’s Fables they tend to introduce the characters and the
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locations of the story, and therefore are of interest when composing, e.g. atmo-

spheric effects

2. It is easier to apply coreference resolution since the pronouns refer to entities in

the same sentence.

The small number of Aesop’s fables was chosen simply to not overwhelm the FreeSound

library with queries. We examined how much text simplification and coreference resolu-

tion affect the following:

1. The ratio of successful queries (queries with at least a sound effect retrieved) to

the number of all queries made.

2. The ratio of the number of retrieved files to the number of all queries made.

3. The span length of the successful queries.

The first two will tell us how much the ability of the method to retrieve relevant files is

affected since a higher number will mean either a greater number of successful queries

or a smaller number of queries, both of which are desired when querying a library. The

last number will provide us with an idea of how relevant the sound effects retrieved are

since we expect queries that contain more words from a sentence to retrieve sound effects

more specific to it.

5.3 Tag-based retrieval of Recorded RIRs

In Chapter 4 we discussed about artificial reverberation. We saw that there exist two dis-

tinct ways to produce reverberation with computational means: by imitating the rever-

beration process using algorithmic approaches, or by convolving with a Room Impulse

Response which tries to capture the behaviour of a space across time and frequency [123].

While algorithmic approaches predate convolutional historically, the latter became preva-

lent in cases when sound engineers wanted to assign a label (e.g. forest, underground

park) to the acoustics of an environment. Those approaches rely on using a convolutional
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Figure 5.1: Boxplots that visualise the effect of coreference resolution and text simplifica-
tion for the three tasks. Note that there is an increase in the ratios of successful queries
and retrieves files associated with text simplification and a decrease in the maximum
successful query span. Coreference resolution on the other hand seems to not affect the
results at a significant degree.

reverberation plug-in in the sound engineer’s digital audio workstation and a library of

RIRs. These RIRs are stored as audio files and up to now needed to be manually anno-

tated (usually in their filename), and retrieving them relied on simply searching the text
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Task N CR TS µ σ

Successful-to-total Queries

44 no no 0.233 0.136
44 no yes 0.483 0.256
44 yes no 0.193 0.141
44 yes yes 0.435 0.256

Retrieved files-to-total Queries

44 no no 2.663 1.949
44 no yes 5.874 4.123
44 yes no 2.216 1.890
44 yes yes 5.317 3.978

Maximum Successful Query Span

44 no no 2.159 0.805
44 no yes 1.773 0.677
44 yes no 2.432 0.925
44 yes yes 1.886 0.754

Table 5-A: Mean µ and standard deviation σ for each sample in our analysis. N is the
number of data points in each sample.

Task Factor ∆µ p

Successful-to-total Queries
TS 0.246 2.72× 10−13

CR 0.044 0.157

Retrieved files-to-total Queries
TS 3.156 4.81× 10−10

CR 0.502 0.295

Maximum Successful Query Span
TS 0.465 1.46× 10−4

CR 0.193 0.109

Table 5-B: Results of two-way ANOVA. We observe that for the three tasks there are
significant differences in the mean when text simplification is present (p < 0.05).

for these annotations. This may raise issues when the files are labelled incorrectly or

not according to their perceived characteristics (e.g. ir.wav instead of forest.wav).

In this section, we present a way to alleviate those issues, by automatically tagging and

retrieving unlabelled RIRs based on the perceptual effect they have on sound. For exam-

ple, we can search RIRs that make a sound loud and dark based on their content. We

believe that our method can lead to assistive tools for sound engineers, allowing them to

browse a library of RIRs easily; aid in field recording scenarios [140] by quickly organ-

ising recorded RIRs; and organising and retrieving the numerous freely available RIRs

available on the net.
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Since RIRs are stored as regular audio files, an approach would be to use content-

based audio retrieval tools to label and retrieve them [141]. Those approaches, however,

make only minor assumptions about the features of the sound, and try to learn the parts

that are useful in retrieval by analysing each separate frame of the signal and using

sophisticated machine learning tools to assign labels to audio files. However, RIRs have

been studied extensively in the past and their perceptually relevant characteristics are

well known. We exploit these characteristics to provide a retrieval system for RIRs.

In [124] the authors described an algorithmic reverberation effect that can be con-

trolled by perceptually relevant measurements of the reverberation impulse response,

such as reverberation time and echo density, to apply reverberation based on specific

terms (e.g. boomy or not boomy at all). The work continued in [128] which created a

map from those terms and applied reverberation either by searching for a specific term

or by exploring the descriptor map. The authors of [142] presented an effect plugin archi-

tecture for algorithmic reverberation that allows crowdsourcing of semantic descriptors

from the users of the effect. The work presented in the following sections is similar to

the works above in that it tries to apply reverberation using crowd-sourced semantic

descriptors but differs in that it allows applying reverb using multiple descriptors (for

example, dark and muffled instead of just dark or muffled). A novelty introduced is that

we do not limit those descriptors to a preexisting set of tags, as in the works above, but

allow searching the RIRs using words with similar meanings. Additionally, it uses con-

volutional reverberation and recorded room impulse responses instead of an algorithmic

reverb effect.

5.3.1 Retrieval based on similarity

We approach the problem of retrieving RIRs from text queries in a similar fashion to

[141]. A content-based retrieval system that can retrieve RIRs from queries has the goal

of taking a set of RIRs M , and a query q and ranking them so that a RIR that is more

relevant to q than m′ gets ranked earlier:
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r(m, q) < r(m′, q) (5.1)

Similarly, a system that assigns tags t in T to RIRs m in M should rank tag t that is

more relevant to m than t′ ahead of it:

r(m, t) < r(m, t′) (5.2)

In order to construct such a system, we can construct functions F such that:

F (m, q) > F (m′, q) (5.3)

F (m, t) > F (m, t′) (5.4)

A simple but effective method is to count occurrences of pairs (m, t) in a set, where

m is an impulse response and t a tag, and use those occurrences in a matrix as our scores

(normalised so that each row has length 1 for convenience). Suppose we have a query q

consisting of tags t1 . . . tN and a matrix of occurrences W , we can define the score as:

F (m, q) = wm,t1 + wm,t2 + · · ·+ wm,tN (5.5)

If we represent tags as a set of column vectors t ∈ [0, 1]N , we can write the above equation

as:

F (m, q) = wmq =< wT
m, q > (5.6)

where wm is the row of the occurrence matrix W corresponding to impulse response m,

< ·, · > represents the vector inner product, and q is the sum of tags t1...N . It is worth

noting that the inner product is a measure of similarity, the more similar wT is to t, the
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Query q

Calculate F (mi, q)∀mi

Sort (highest first)

Pick mi corresponding
to first k elements

Chosen RIRs

Labelled RIR Library
(mi, qi)

Figure 5.2: Block diagram for retrieving the k most relevant RIRs to query q.

higher the value of the product. By using the vector identify for the inner product:

< a, b >= ‖a‖ ‖b‖ cos∠(a, b) (5.7)

We can further write Eq. 5.6 as:

F (m, q) = < wT
m, q > (5.8)

=
∥∥wT

m

∥∥ ‖q‖ cos∠(wT
m, q) (5.9)

= cos∠(wT
m, q) (5.10)

Where ‖·‖ is the euclidean vector norm, and the quantity cos∠(wT , t) is the cosine

similarity between wT and t. We can constrain ‖q‖ = 1 (e.g. by dividing it by its

length) and we can have also constrained vector wT to have length 1.

In order to find the k most relevant RIRs m to query q, we (1) calculate the cosine

similarities between q and all W , (2) sort them in descending order, and (3) we select

the first k. A block diagram of the process can be seen in Fig. 5.2.

To find the k most relevant tags for a specific RIR m we work in a similar fashion.

However instead of cosine similarity on the occurrence matrix W , we (1) check euclidean

distances between m, characterised by a feature vector dm that characterises the RIR,
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RIR feature vector dm

Calculate ||dmi
− dm||∀mi

Sort (highest first)

Pick k tags from
labels qi corresponding

to the top elements

Chosen RIRs

Labelled RIR Library
(mi, qi)

Figure 5.3: Block diagram for retrieving the k most relevant tags to RIR m.

and all of the RIRs λ in our dictionary, characterised by feature vectors dλ, (2) sort

them in ascending order, and (3) pick the first k tags that correspond to the top labels

in that step. A block diagram of the process can be seen in Fig. 5.3. This depends on

the assumption that similar RIRs are going to be labelled similarly, which we have found

works in practice. For tag and query representation we use the following:

tn = vword ∀n ∈ 1..|D| (5.11)

q =
1

M

M∑
i=1

ti (5.12)

where tn is the representation vector for the n−th word, vword is the Conceptnet

Numberbatch embedding vector for word, |D| is the number of words in our dictionary,

and q is the vector representation of the search query (which is a collection of tags). The

factor 1
M normalises it so that ‖q‖ = 1. Choosing the Conceptnet Numberbatch

embeddings allow us to encode some commonsense similarity information in our queries.

For example, when searching for a small-room our query will have a vector representation

that is more similar to the representation of chapel than for cathedral.

5.3.2 Acoustic Features for RIR retrieval

In Section 5.3.1, we mentioned that a RIR m is characterised by a feature vector dm and

that we use similarity between a RIR m and each RIR λ in our library to retrieve the

most relevant tags based on the labels of the RIRs that are most similar to m. In this

section, we explain what the features in dm are and how they are derived.



Chapter 5. Organising Assets for Radio Drama Production 149

Since our RIRs are essentially audio recordings we could use methods for content-

based sound retrieval similar to the ones presented in [141]. For example, by extracting

the frames of the audio signal, fitting a Gaussian Mixture Model for each tag, and using

the average of the log-likelihood of each model and each frame as our scoring function F

to rank each RIR. This would require extracting and fitting a model for at least hundreds

of frames for each impulse response.

Compared to arbitrary audio files, however, RIRs have been studied extensively and

a number of perceptual characteristics can be extracted that can sufficiently describe

them. Instead of extracting hundreds of frames for each recording, we can therefore just

extract a handful of those characteristics. There are a lot of those features to choose

from. For this work we chose the perceptual characteristics mentioned in Section 4.6.

To construct the vector d which characterises each RIR:

d = [T60 Ed Drr Tc Sc]
T (5.13)

We chose those measurements over others because they can be directly mapped to the

features used in [128] and can be computed equivalently for both algorithmically syn-

thesised and recorded RIRs. They, therefore, allow us to use the dataset provided in

[128, 129] with minimal effort. Definitions for each characteristic and the process through

which they are derived can be found in detail in Section 4.6.

5.3.3 Experimental Results

For evaluating our tagging and retrieval method we used the dataset described in [128].

The dataset consists of the reverberation parameters and the impulse response char-

acteristics of the effect in Section 4.5 mapped to sets of tags describing those impulse

responses. The authors of [128] gathered the data online by asking users to listen and

describe, using simple words, the effect of various algorithmic reverberation settings on

three excerpts of piano, guitar, and drums. The reverberation architecture used was the
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(a) Precision curves for retrieved RIRs

(b) Precision curves for retrieved tags

Figure 5.4: Precision curves for retrieval and tagging. Precision curves labelled as sim use
the orthonormal basis for tag representation given in Eq. 3.3 and cb use the representation
based on the Conceptnet Numberbatch embeddings in Eq. 5.11. Ratio r is the
percentage of training data that have been replaced with synonyms. Average precision p
reported is the percentage of relevant (a) RIRs or (b) tags retrieved respectively at the
top k places.
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Description / Filename Space Category Suggested Tags

. . . recording in an underground Chamber, Hall hall, big, deep, spacey, –
car park. metallic

Has a slightly nice resonance in Open Air church, heavy, organ,
it from the metal pipes on the ceiling slow

The Spokane Woman’s Club hall is a Auditorium, sharp, spacious, distant,
a highly reflective space with bare Ballroom, Hall warm, echo, strong
walls,a hardwood floor and a curved bright, electric, vibrant
ceiling. . . cool

Outback Climbing Centre Recreation spacey, big, room, muffled
echo, deep, hollow,
distant, rolling, soft

Steinman Hall Venues nice, heavy, clear, deep,
romantic, sad, bass,
warm, melancholy,love

Table 5-C: Labelling of recorded RIR. The first two rows show RIRs from OpenAIR [5]
and the last two show RIRs from the EchoThief [11] library.

same to the one we discuss in Section 4.5 and was implemented in the browser using the

Web Audio API. Since the dataset has been updated several times since its creation, we

chose the version used in [129] which contained 6791 labellings of 256 different reverbera-

tion settings. While impulse response measurements were provided with the dataset, we

resynthesised the impulse responses in order to extract the measurements described in

Section 4.6 which can be used both for realistic as well as synthesised impulse responses.

In order to do that, we re-implemented the reverberation effect from Section 4.5 while

taking into account modifications from [128] to compensate for limitations of the Web

Audio API. Those modifications consisted of adding a delay of 0.1ms to the dry sig-

nal and the all-pass filter and using a bi-quad filter instead of the first-order lowpass

filter given in [124]. Using this implementation, we generated a room impulse response

audio file for every set of parameters in the dataset in [128] and assigned those impulse

response audio files to the sets of tags corresponding to those parameters. For this work,

we report two separate results sets; precision of tagging and retrieval on a withheld part

of the original dataset, and automatic tagging on 4 realistic impulse response recordings

from two freely available RIR libraries [5, 11].
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For the first case, we pseudo-randomly (using a pre-defined random seed) split our

data into three equal-sized segments. We use the first two as training and development

and keep the last one for testing. We report results of the methods presented in Section

5.3.1 built on both the training and development set and tested on the testing set. The

first two parts were used in the process of developing our models, and the last was kept

completely separate in order to assure that our reported results were not biased by our

development process. Similar to [141], we report average per-query (Pq) and per-IR (Pm)

precision defined as the ratio of relevant documents retrieved at the top k positions:

Pν =
|relevantν ∩ retrievedν |

|retrievedν |
, ν ∈ {q,m} (5.14)

where | · | denotes the cardinality of a set. Per-query and per-IR precision curves for

k = 1 . . . 20 are shown in Figs. 5.4(a), and 5.4(b) respectively. Average precision p over

the curve is reported for each curve. Curve labelled as sim denotes precision of the

similarity-based method, and cb the method based on the Numberbatch embeddings.

Ratio r is the percentage of our training labels that have been replaced with synonyms.

The reason for this replacement is that there are cases in the original dataset where

impulse responses, that should be labelled the same, were labelled using synonyms (e.g.

big-hall and large-hall) or with highly correlated words (e.g. church, and cathedral).

Ignoring these correlations leads to similar impulse responses being scored (and therefore

ranked) independently. This would cause a search for a RIR with a specific tag to fail,

even if the RIR can be found if searched with a similar, but not the same tag. We would

like therefore to be able to retrieve that RIR even when we do not use the exact tag, but

one with similar meaning. To test how our method achieves that we replace part of our

training set with synonyms derived by WordNet [62] and report their precision curves on

Figs. 5.4(a) and 5.4(b). We observe that though the similarity-based method performs

slightly better than the method based on the Numberbatch embeddings (higher average

precision p when no replacement takes place), the latter loses much less in precision when

provided with synonym data (the difference between the maximum and minimum average
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precision p is better in the case of the Numberbatch embeddings). This is due to the

fact that the similarity-based method assumes that every possible label comes from

a fixed, previously known dictionary and therefore cannot deal with out-of-dictionary

terms.

In table 5-C we see how a system built on our method labelled four real RIRs found

from OpenAIR [5] and EchoThief [11]. The first is a library of freely available impulse

responses accompanied by metadata about the space and method they were recorded

with, and the second is an online library of RIRs extracted from noisy environments

(such as playgrounds). In the first RIR, which is from an underground car park, there

is an ”interesting resonance” because of some metal pipes. The system based on our

method, instead of tagging with just big and spacey that relates to the car park’s size,

managed to tag it as metallic. More results on recorded RIRs on OpenAIR and EchoThief

are available as supplementary material4.

5.3.4 Conclusion

Though we showed examples of how the system performs on real recorded data in table

5-C, it would be desirable to conduct listening tests using listeners accustomed to the

effect of the reverberation and preferably with experience in mixing. Such an experi-

ment can be a MUSHRA [143] style listening test using the Web Audio Evaluation Tool

[144] with careful choice of criteria for both listening subjects, as well as appropriate

listening stimuli. Alternatively, Napping® [145] experiments can be conducted for the

construction of a sound wheel [146]. Designing and running such experiments however is

not trivial and is out of the scope of this paper. We have also constrained the number of

used perceptually relevant characteristics to the ones used in the dataset from [129] and

also characteristics relevant to the reverberation IR itself and not to the sound it is con-

volved with or to the effect it will have in the final mix. If such information were known,

it could be “plugged in” as prior and posterior probabilities for tagging and retrieval.

For example, [147] show that there is a strong relation between musical tempo and choice

4https://code.soundsoftware.ac.uk/projects/chourdakisreiss2019aes
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of echo delay times in artificial reverberation, something which we could exploit in order

to weigh tags according to the source input. On the other hand, [148] show that reverb

loudness and early decay time have a significant impact on the perception of a mix.

Tags, therefore, could be ranked according to the perceptual effect they have on the mix

itself and not just to a single audio source. Such an extension, however, would require a

dataset of reverberation parameters collected on multitrack mixes.

The methods we presented here could probably be applied to other effects as well.

For example, [129, 149] show that the descriptor map used in [128] can be used for

equalisation and compression as well, and [150] show that there are statistical correlations

among the various tags when used in different audio effects. In the context of radio drama

this could allow us to better construct retrieve EQ parameters in the same way we can

retrieve reverberation IRs.

5.4 Tag-based retrieval of Music

In Chapter 2 we discussed the role of Music in radio drama production. We categorised

the roles of music into Linking, Mood and Indexal. The last one is used similarly to a

sound effect for which we discussed how to retrieve in Section 5.2. Linking, and Mood

music relate to the underlying theme of the text. While we did not deal with music

retrieval in this thesis, we discuss previous works that generate music from text.

Generating music from text has been studied before in the context of music compo-

sition. In [151] the authors associate relations between musical elements, such as pitch

or tempo to emotions elicited from story text. They use those associations and simple

rules to compose piano music. The author in [152] extends their work to 12 synthesised

instruments and also makes it adhere to narrative plot structure (Section 2.2.1). While

those works discuss composing, and not retrieving music, their use of semantic analysis

in narrative text is closely related to the work in this thesis.

A similar study can be found in [153] where the author uses a four-stage approach
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that extracts semantic information of text, uses sound libraries to select sounds based

on the extracted information and create compositions based on those selected sounds.

It then evaluates those compositions based on the system’s ‘understanding’ of ambient

music generation. Their method suggests that it can be used for composing ambient

music in the cases where thematic information (e.g. emotions) is provided explicitly in

the text. While the work has been presented as a study in computational creativity,

their approach to extracting emotional themes is relevant to our work. Also contrary to

[151, 152], they use this information to construct queries for searching a sound library.

Taking into consideration the works mentioned above we discuss further in Sec-

tion 8.3.2 how a future approach in music retrieval for radiodrama composition can

be achieved.

We consider coreference resolution and text simplification as factors with two values

for each factor: yes when it is present and no when absent. We tested the effect of these

factors in successful to total queries made ratio, the ratio of retrieved files to total queries

made, and the maximum span of successful queries. Boxplots for each task can be seen

in Figure 5.1. Means and standard deviations for each factor-value pair can be seen in

Table 5-A. We also performed 2-way ANOVA to check for significant differences when

checking for the aforementioned ratios and span. We found that when text simplification

is present, there is a significant increase in the ratios as well as a small, but statistically

significant decrease in the maximum span of successful queries. On the other hand,

coreference resolution does not affect significantly the results. The differences as well as

p values for the ANOVA can be seen in Table 5-B.

We conclude the section therefore by observing that a text simplification pre-processing

step leads to an increase in the successful queries or at least a decrease to the total number

of queries made and therefore to a more efficient use of online libraries of sound effects.

This is not unexpected, previous work has shown that text simplification can improve

information retrieval from text [154]. Our approach in evaluation however, while indica-

tive, is not complete due to the metrics used which do not take in consideration how
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useful the retrieved sound effects are in a real production scenario. For a real production

scenario, a dataset constructed with the involvement of radio drama sound managers, or

at least listeners of radio drama would be more appropriate. Such a dataset however does

not exist at this point. We briefly discuss possible paths of its construction in Section

8.3.5.

5.5 Summary

In this chapter, we presented computational methods for retrieval of assets used in the

production of radio drama. More specifically we presented methods for using the anal-

ysis done in Chapter 3 to retrieve sound effects from story sentences and reverberation

impulse responses that correspond to descriptions of locations found in the text. We

also briefly discussed how the aforementioned methods that utilise information extracted

about emotion in the text can be extended to retrieve music.



Chapter 6

A Machine Learning Approach to

Application of Intelligent

Artificial Reverberation

6.1 Introduction

In Section 5.3 we discussed a method for retrieving room impulse responses based on

extracted tags from the text. Such a method is adequate when information about the

environment is available from the text. There are cases however that is not the case.

Consider that we are writing a part where someone plays a small piece of piano (Indexal

Music, see Section 2.5). The sound designer can introduce reverberation manually by

controlling the parameters discussed in Chapter 4 in order to convey the perception of

‘space’. Later, whether in the same drama or in a future one, when a character plays

the same piano, it is desirable to automatically suggest applying the same reverberation

since the piano will most likely be placed in a similar location in the future. In addition,

understanding that there might be slight differences in the location each time we need

the reverberation to be fine-tuned by the user. This method does not work only for

157
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musical instruments, but also-non musical speech. Our work, presented in [155, 156] and

discussed below, presents and evaluates a method that achieves this functionality.

We discussed reverberation and its usage in radio drama in Chapter 4. It is important

to recall that users of a reverberation effect control its parameters and tend to change

these over time based on how the audio sounds. They assign specific audio features

(or their changes) to specific parameters (or changes). Our goal is to simulate this

process automatically using a supervised learning approach to train classifiers so that

they automatically assign effect parameter sets to audio features. This way, we can

train our reverberation effect to decide how to choose its parameters based just on the

observed audio (e.g. choose the same reverberation settings for the same piano piece).

In order to create a reverberation effect that applies reverb automatically, we need

to train it. Training can be done a-priori by e.g. an expert user of the reverberation

effect, or on-line by the user of such an effect. Training is a process that involves user-

interaction with the effect and so the parameters to be trained must make sense to

the user. In Section 4.5 we discussed a reverberation effect architecture that uses such

mapping.

Audio sources can be characterised by a multitude of features. Musical instrument

tracks, for example, can be characterised by timbre, tempo, etc. An automatic reverber-

ator trained on a set of audio is expected to be able to apply reverberation correctly on

similar audio. For this reason, in order to create a reverberation effect that is as general

as possible, we need to train it to a large and diverse set of audio data.

In order to train our system, we perform feature selection to select the best features

from a 31-dimensional feature space from 8 features found in the literature. Smoothing

is then applied to the resulting features. We then compare 4 different classifiers on the

classification task where our samples are vectors of audio features and classes are the

parameter-set clusters. The training data consists of the control parameters provided

by the user with a simple interface that allows them to control a simple reverberation



Chapter 6. A Machine Learning Approach to Application of Intelligent Artificial
Reverberation 159

effect. Testing is performed using cross-validation and multi-stimulus MUSHRA-style

[143] tests.

6.2 Previous Work

There has been a lot of research in Adaptive Digital Audio Effects for automatic multi-

track mixing but in almost all cases they focus on achieving a pre-specified goal. Param-

eter automation and intelligent control have been applied to many of the most popular

audio effects (e.g. gain and faders [157], equalisation [158], panning [159] and dynamic

range compression [160]), but to the best of the authors’ knowledge it has not been

attempted on artificial reverberation. Furthermore, all of the aforementioned approaches

except [157] which uses Linear Dynamical Systems to estimate mixing weight coefficients,

use fixed rules, rather than rules that learned from training data. On the other hand, to

the knowledge of the authors, there are no published works on Automatic Application

of Reverberation.

Key work for the current paper can be found in [124, 125] where they present the

mapping from the reverberation parameters to measurements of the reverberation. In

that paper, the authors do not go as far as to provide a mapping from the measurements

to the parameters, but they allow the control of the reverberation effect using high-level

descriptive terms. Similar work can also be found in [161] where the authors present a

real-time feedback delay network (FDN) reverberator that allows control of perceptually

relevant descriptors.

Work using semantic descriptors can be found in [142] where they use a Reverberation

Effect among others for their Semantic Audio Feature Extraction (SAFE) project, which

allows users to assign high-level descriptive terms to low-level audio feature changes that

are caused by effect parameter changes. In a similar fashion, [128] created a map of

high-level descriptive terms that correspond to low-level reverberation effect parameters.

Relevant work in [162] performs classification for drum sounds in order to control effect
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parameters, but still relies on fixed rules.

6.3 Effect Architecture

x[n] Feature
Extraction

Iφ,i

Buffer
φj

Di θj

ClassifierDecoder

Φc

Jj

Reverberation
Effect

cj

y[n]

Figure 6.1: Reverb application

Our proposed design uses the traditional adaptive DAFX design [163] limited to one

track and can be seen in detail in Figure 6.1. It consists of an algorithmic reverberation

effect where the values of the parameters are decided by a classifier model. The classifier

model can be trained on-line or off-line. The architecture of the model training process

can be seen in Figure 6.2 where φi is the feature vector of the i-th frame, Φi is a

matrix of features which consists of the vertical concatenation of the feature vectors (as

row vectors), from frame 1 to frame i. In a similar fashion, pi is the vector of desired

characteristics of the impulse response provided by the user, ci is the low-level filters

parameter vector to which pi are mapped. θi is the classifier parameter vector returned

as a result of the training after the i-th frame and Di a dictionary that maps class labels

to reverberator parameter sets.

Note that, several features require the accumulation of a number of samples in a
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Parameter (Unit) Controls Min Max

T60 (s) 60dB-Reverberation Time 0.02 4
D (echoes/s) Echo Density 1000 10000
Drr (dB) Clarity −20 10
Tc (s) Central Time 0.01 2
Sc (Hz) Spectral Centroid 200 fs/4

Table 6-A: Perceptual Characteristics of the Impulse Response. In this chapter, we
assume that these characteristics are set by the user using UI elements and therefore
each of the parameters has the minimum and maximum allowed value shown above. fs
is the sampling rate.

buffer (i.e. spectral features) to be computed. In such cases, latency equal to the size

of the buffer × the size of the frame is introduced. Similarly, some classifier models

require the accumulation of several values before being able to make a decision and

therefore introduce latency equal to number of previous values × buffer size × size

of each frame. Consequently, our architecture, although implementable in real-time,

can introduce latency that depends on the features chosen, as well as the models used.

Therefore one should be careful in their choice of features and classifier model.

In this chapter, we use the reverberation effect we discussed in Section 4.5 due to the

simplicity of its architecture and the fact that it can be trained directly from measure-

ments of the reverberation. While this design has stereo input and output, we use it

with monophonic signals split to stereo. We retain the stereo output in order to have a

more natural-sounding reverberation effect. The parameters of the reverberation effect

(the gain and delay coefficients of each filter in the architecture) and their limits can

be seen in Table 4-A. Those parameters are directly mapped to characteristics of the

reverberation impulse response (Table 6-A). We recall from Section 4.7 that a mapping

between measures of reverberation and DSP filter coefficients can be found by solving

the numerical problem in Appendix A.2.
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Figure 6.2: Training of classifier models

Feature Used in

ZeroCrossingRate Instrument Identification
Source Identification

13 MFCCs Instrument Identification
Genre Classification

12 Spectral Contrast Instrument Identification
Coefficients Genre Classification
Root Mean Square Instrument Identification

Voice/Music Discrimination
Audio Activity Detection

Crest Factor Instrument Identification
Spectral Centroid Instrument Identification

Genre Classification
Spectral Roll-off Instrument Identification

Genre Classification
Spectral Flux Instrument Identification

Table 6-B: Used features and their usage in the literature.

6.4 Feature Extraction

Application of reverberation to a track can depend on the instrumentation, the type of

music and the percussive-ness of the track, among others. For our task, we use 8 different

features. Their names and their role can be seen in Table 6-B [164–166]. The reason for

choosing these features is because they have been used extensively in the literature for

classification of instruments based on the above characteristics.

Before extracting the features from our audio, we first split the audio into 23ms frames

(1024 samples at 44.1Hz) using the onset-based audio segmentation method described

in [167] which is based on the Spectral Contrast feature. The reason for choosing this
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kind of segmentation, as shown in the original paper, is that it appears to give higher

classification accuracies for at least the music-genre classification task. We then concate-

nate our features into a 31 dimensional vector1 for each frame. Next, we use Principal

Component Analysis to filter out non-separable or noisy features and reduce our feature

vectors’ dimensionality [168].

6.5 Classification and Training

We use classification on the audio features in order to control the values of the reverber-

ation effect parameters. Given short excerpts of audio tracks together with the desired

reverb characteristics, for training (Figure 6.2):

1. Convert the given reverberation characteristics pi of values [T60,i, Di, Drr,i, Tc,i, SC,i]
T

to a set of filter parameters ci = [d1,i da,i g1,i gi Gi]
T and add ci to a set C. C is

the set of parameter classes and its cardinality |C| is the number of parameter

classes. Cm denotes the m-th element of C.

2. Assign a label Ji to the i-th frame if the chosen parameters for that frame belong

to a class in C:

Ji =

|C|∑
k=1

(k · δ [‖Ck − ci‖]) (6.1)

‖·‖ denotes a vector norm and δ[·] is Kronecker’s delta. Each number Ji is the class

label for the i-th frame. Keep a dictionary structure Di for the classes introduced

up to that point, comprised of the parameter sets and the labels to which they

correspond:

Di = {(Jk, Ck) : k = 1, . . . , |C|} (6.2)

1MFCCs and Spectral Contrast features have 13 and 12 dimensions respectively.
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3. Segment the audio excerpts into frames and calculate a 31-dimensional feature

vector φi for each frame:

φi = [φ1,i φ2,i . . . φ31,i]
T (6.3)

4. The vectors φTi are vertically concatenated to form a matrix Φ̃i which is smoothed

across columns with a Gaussian window (as a column vector of 41 elements). We

then perform principal feature analysis [168] on the resulting matrix to derive Φi.

We save the selected column numbers as the set Iφ,i.

5. Use matrix Φi together with the labels Ji to estimate the parameters θi of the

chosen classifier.

From the training stage above we store the dictionary Di and the classifier parameters

θi. For the application of reverberation:

1. Segment the audio track, to which we want to apply reverb, into frames and calcu-

late a feature vector φj for each frame. For each φj , we keep the rows the numbers

of which are in Iφ,i.

2. Use the classifier to select a label Jj for the j-th frame.

3. Use the dictionary structure Di derived in the training phase as a function in order

to convert from class labels Jj to reverberation effect parameters cj for each frame:

cj = Di[j] (6.4)

where Di[j] = CJj .

We compare 4 different classifiers: Gaussian Naive Bayes Classifier[169, p. 217], One-

vs-All Linear Support Vector Machine (SVM) Classifier [170], Hidden Markov Model

Maximum A-posteriori Classifier [169, p. 610], and a hybrid HMM classifier with obser-
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Figure 6.3: A screenshot of the user interface used for training. The user is presented
with a list of audio segments and is asked to add reverb according to their preference.
These preferences are saved and used as training data.

vations taken from a set of SVMs [171]. Each classifier can be completely described by a

vector of parameters θ. Given a set of training data, each of these classifiers is trained in a

different way (usually using a variation of the Expectation-Maximisation algorithm)

to estimate their parameters.

In order to train our classifier models, we use excerpts from 254 audio files taken from

the Open Multitrack Testbed [172]. First, the audio data is segmented into meaningful

parts (i.e. song phrases, guitar solo parts, etc.) using a similarity matrix and a novelty

function as found in [166].

A user is presented with a simple GUI (Figure 6.3) where they can listen and apply

reverb to the extracted parts by choosing the characteristics of the reverberation seen

in Table 6-A. For the purpose of conducting listening tests, we asked 3 people familiar
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with the effect of reverberation to train our models. The segmented parts are split into

frames using the method described in [167] and a tuple of features and parameters are

extracted for each frame as described in Section 6.4. Features are filtered with a low-pass

filter. The resulting data set is used to train the models described in Section 6.5. All our

models were implemented in the Python programming language using the SciPy [173]

library for Machine Learning and the Essentia library [174] for onset segmentation,

feature extraction and storage2.

6.6 Results

We tested our models both by measuring classification performance, as well as conducting

a multi-stimulus MUSHRA-style [143] listening test.

6.6.1 Classification Performance

In order to validate our models, we split our data into 6 sets in order to reduce training

times. Every set included 45 audio files except the last which included 29. Every file

was a part of a Bass, Keyboards, Vocals, Percussion or Saxophone track. The files were

randomly split into sets. In order to validate our classification scheme, we define the

weighted macro f1-score for K classes:

f1 =
K∑
k=1

nk
n
· 2tpk
tpk + fpk + fpk

(6.5)

In the definition above: nk is the number of samples belonging to class k, n the total

number of samples, tp the number of samples classified correctly as belonging to class

k, fp the number of samples classified incorrectly as belonging to class k, and fn the

number of samples that belong to class k but classified incorrectly to some other class.

We validate our models as such:

1. Split every set into 10 parts.

2Supplementary material for this research can be found at https://code.soundsoftware.ac.uk/

projects/chourdakisreiss2016
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2. Use 9 parts for training and 1 for testing. Do this for every combination of 10

parts. Store the predicted labels as well as the metrics tp, fp, and fn for every

run.

3. Measure the weighted macro f1-scores for the predicted values.

We also use cross-validation to estimate the most suitable Markov chain number for our

sequential models, as well as the number of Gaussian components for the case of the

HMM with Gaussian emission distribution. Using the full training set, we can see the

overall weighed f1-scores in Table 6-C, and the average Mean Squared Errors in Table

6-D.

Train. Set |C| GNB SVM HMM HMMSVM

1 7 0.79 0.82 0.70 0.70
2 9 0.80 0.81 0.69 0.49
3 6 0.81 0.79 0.75 0.73
4 8 0.78 0.77 0.65 0.59
5 7 0.82 0.82 0.73 0.60
6 7 0.87 0.87 0.73 0.52

Table 6-C: Average weighted f1-scores. Highest scores for each set are in bold. |C| is the
number of classes calculated for each set.

Tr. Set |C| GNB SVM HMM HMMSVM

1 7 0.0067 0.0065 0.0114 0.0117
2 9 0.0015 0.0010 0.0025 0.0045
3 6 0.0091 0.0097 0.0106 0.0096
4 8 0.0014 0.0014 0.0035 0.0062
5 7 0.0082 0.0047 0.0069 0.0135
6 7 0.0044 0.0041 0.0066 0.0204

Table 6-D: Mean Squared Errors for the normalised parameters. Lowest MSEs for each
sets are in bold. |C| is the number of classes calculated for each set.

The high f1-scores are important because they represent the rate of agreement,

between the automatic reverberation effect and the user that trained it, on the parame-

ters of the reverberation. Mean squared error effectively measures how far the estimated

parameters are from the parameters chosen by the user. This means that while the clas-
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User |C| GNB SVM HMM HMMSVM

A 30 0.79 0.73 0.06 0.11
B 22 0.74 0.66 0.17 0.16
C 32 0.81 0.84 0.12 0.18

Table 6-E: Weighted f1-scores for the user-trained models. Highest scores for each user
are in bold. |C| is the number of classes calculated for each user.

User |C| GNB SVM HMM HMMSVM

A 30 0.0104 0.0138 0.0510 0.0568
B 22 0.0141 0.0226 0.0538 0.0386
C 32 0.0087 0.0091 0.0444 0.0480

Table 6-F: MSEs for the user-trained models. Lowest MSEs for each user are in bold.
|C| is the number of classes calculated for each user.

sification accuracy may be high, so the effect and the users agree most of the time, the

differences on the parts they do not agree may be too high for the model to be useful.

Therefore, the most useful model is the model with the least mean squared error. In our

case, the multi-class SVM approach performs best regarding MSE in all but one cases,

while it performs similar to the GNB in regards to f1-scores.

6.6.2 Perceptual Evaluation

Perceptual evaluation of the data was performed using multi-stimulus MUSHRA-style

listening tests in the Web Audio Evaluation Tool(WAET)[144]. This was in order

to check how our models performed when trained by different users of the reverberation

effect.

For this test, we used 33 audio files from our dataset. We normalised them in regards

to mean loudness and converted them to mono. We used 3 expert users of the reverber-

ation effect from the Centre of Digital Music, to train our system by applying suitable

reverberation to each of them. For each of the “trainers”, we kept the parameters they

used for 27 of those files and trained our models as described in Section 6.5 (Classifi-

cation performance for each of those models can be seen in Tables 6-E and 6-F). Using

the GNB and SVM models for each trainer, we then applied automatic reverberation to
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the 6 remaining files. These files consisted of excerpts from two singing tracks, a bass

guitar, a saxophone, a drum, and a piano track.

For each file, we created a multi-stimulus trial. Each of the trials included a visible

outer reference (the original file with reverberation applied manually by one of the three

“trainers”), the same reference hidden in the stimuli, and an anchor (the original file

with no reverberation applied to it). It also included 6 files with automatically applied

reverberation (one from a GNB model, and one from a SVM model, for each of the three

“trainers” that trained those models). Subjects were asked to rate each of the stimuli in

regards to how close it sounds to the reference.

Sixteen test subjects participated in the listening test. Those did not include the

“trainers”. They were mostly PhD students and Post-doctoral associates from the Centre

for Digital Music at the Queen Mary University of London, with the exception of one

student not from the Centre, and a freelance employee. Three listeners were active users

of the reverberation effect (two of them professionally), while the rest just knew what

the effect sounded like. The average time of the test taken was 30 minutes and the test

was considered difficult by most participants. The tests were all done using WAET in

local mode on the desktop computer of the Media and Arts Technology studio control

room at the same university.

Figure 6.4 shows the mean rating, averaged over all participants, and the 95% inter-

vals, for each stimulus in each trial. If our reverberator was successful, we would expect

each model to be rated close to its respective reference, e.g. A-gnbc or A-svmc should

be close to the reference for A-sax. For C-drums, A-sax, and A-voice-1 we can see that

C-smvc, A-gnbc, and A-svmc score higher than the rest. For the case of B-bass we see

that while the B- models were not rated closer than the rest, B-svmc is still very close to

the reference. For B-piano, the models seem to perform poorly, while for A-voice-2, the

A- models seem to have failed. In general for this small listening test, the tracks based

on -svmc models appear more similar to the respective tracks with reverberation applied

by the trainers. The listening test however fails to give very clear results. We suspect
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Figure 6.4: Results of the MUSHRA-style tests. The bars represent the upper and lower
limits for the 95% confidence intervals. Full circles are mean values, x symbol points
are outliers, and dotted lines represent the upper and lower standard error borders of
the reference. On the x-axis are the labels of the stimuli. Each of the letters A, B, or
C represents a reverberated track generated from a model trained by the corresponding
expert. Suffixes -svmc and -gnbc represents whether it was based on a Support Vector
Machine or a Gaussian Naive Bayes classifier.

this was due to the difficulty of the question and the different concept of similarity for

each subject.

6.7 Conclusion

From tables 6-C to 6-F we can see that for our datasets, the non-sequential models per-

formed better than the sequential counterparts, which performed comparably or even

worse than the Naive Bayes classifier. This suggests that the Hidden Markov Models

failed to capture correctly the temporal progression of our data. One of the reasons
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for this could be the onset segmentation method we use prior to feature extraction,

which leads to uncorrelated feature vectors, as opposed to classical frame segmentation

and thus damaging the Markov assumption. The disparity between the sequential and

non-sequential classification results in Section 6.6.2 can also be attributed to the large

number of classes that were produced as a result of the training by the users (and as a

result, the smaller number of training samples for each class). The above suggest further

exploration with different models and configurations. The best model so far seemed

to be the One-vs-All Support Vector Machine classifier which performed best regarding

weighted f1-score and Mean Squared Error. Our choice of models becomes clearer when

we take into account that our simple non-sequential models do not require past samples

in order to make a decision, so we can use our models in real-time with a minimum

latency of 23 ms (a simple frame). This paper, in general, described an approach on a

reverberation effect that could control a reverberator given desired characteristics of the

impulse response, and also remember those characteristics in the future. An implemen-

tation for the method described is an audio effect that allows the user to select desired

reverberation characteristics to be applied to specific tracks, and have the system suggest

similar reverberation for newly introduced, but similar tracks, scenarios that adhere to

the goals set in Section 6.1.

6.8 Limitations

While this initial approach appears promising, there are things to be desired regarding

individual steps. Mathematically deriving characteristics of the reverberation does not

necessarily lead to perceptually correct parameters. For example, impulses that are

very closely placed together may not be perceived as distinct echoes, but Eq. 4.17 will

count them as such. Figuring out more perceptually robust reverberation features will

greatly improve this work. Another issue is that we did not take into account features

relating to stereo signals such as Interaural Cross-Correlation, Lateral Energy Fraction,

Apparent Source Width, etc. Future research could take the direction of providing
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mappings between such features and low-level parameters of a stereo reverberator. The

architecture of the reverberator itself can be of concern. The Moorer reverberator, while

serving as a good basis for our work given its simple design, is limited (for example, it

does not allow for independent control of early and late reverberation). One could try to

exchange the current architecture with a more recent reverberator design [123] or even try

to implement a model agnostic architecture so that it could be used with commercially

available reverberation effects. Adept [175] provides a framework that could aid in the

design of such a system. Regarding perceptual evaluation, there is work to be done

on how to efficiently evaluate such systems. Our question on how “similar” the tracks

with automatically applied reverb sounded to the reference, was deemed very difficult

to answer by our test subjects which made drawing conclusions difficult. One should

use a more clearly defined objective for testing (e.g. reducing masking in a multi-track

context).

The original Adaptive Digital Audio Effect architecture [163] supports multitrack

DAFX, while our method has only been tested for effects applied on a single track. A

logical next step would then be to extend our architecture to multitrack audio content.

Finally, the ability of our effect to be trained directly from measurements of reverber-

ation could allow it to be trained directly from impulse responses or even reverberant

sound samples. There are numerous works in the literature that would allow us to

estimate Reverberation Time [176–179], Echo Density [127], Clarity/Definition [178],

Central Time and Spectral Centroid. [180] also gives an easily measurable set of fea-

tures which correlate to subjective reverberation and which could be included with small

alterations to our model.



Chapter 7

Rendering, Mixing, and

Mastering of Radio Drama

7.1 Introduction

In this chapter, we complete the portfolio of proposed assistive methods with meth-

ods for rendering a radio drama, given a script generated in Chapter C and the asset

retrieval methods discussed in Chapter 5.1. Initially we discuss how such a script pro-

duces tracks for a DAW timeline to be further processed by a mixing engineer. Based on

this approach, we present perceptual evaluation results of simple story renders and we

examine the importance of each element in a mix. We then discuss how those tracks can

be automatically grouped according to their narrative importance to allow the listener

to control the mix at their device.

7.2 Using templates of synthesised speech

This section describes a method to allow a radio drama production team to easily oversee

speech ‘takes’. Such a system is helpful when the entirety of the team is available in

the day of the recording. There are cases however that this requirement is not satisfied.

173
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Figure 7.1: Sable construction and voice generation. The parameters age and line are
extracted by the methods discussed in Chapter 3

The production team might be just a single person, for example, in the case we are

talking about students of radio drama, or a team collaborating through the internet.

In such cases the actors might not be immediately available but we would still like for

the producer to be able to get a rough idea for how the drama would sound. In such

cases, we use a speech synthesis engine that allows for control of timing and minimal

expressivity controls. While such engines are still nowhere near human control of voice

expression, this is not necessarily limiting since [18, p. 242] advises against a director

offering the actors their representation of performance. Deep learning has provided recent

methods for synthesising naturally sounding speech such as WaveNet [181], TacoTron

[182], WaveGlow [183], and Deep Voice [184, 185]. All the aforementioned methods

allow to ‘replicate’ existing voices with natural sounding speech synthesis. Those works

however, lack control for voice characteristics such as volume, pitch, or accent (Section

2.4), although efforts for prosodic control exist [186]. Furthermore, the aforementioned

approaches require a large quantity of ‘source’ voices and most are used with two or

three different voices. For these reasons we use the ‘classical’ text-to-speech framework

Festival [187] with the voices available from the Carnegie Mellon University’s Festvox

[188] project. The version used is 2.4, which includes TTS voices of 15 US English

speakers. Furthermore, Festival allows some control over prosody using the Sable

[189] XML-based markup language. Sable allows for speaker directives to be introduced

to text and thus control elements of the speaker such as rate of speech, pauses, pitch,

loudness. It can also correctly transform to speech elements such as dates and numerical

elements, and assign the correct prosodic contours to the spoken sentences as well. The

process is as follows:

1. Identify the character’s age as well as their dialogue line using the method described
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in Section 3.3.6.

2. Choose the voice from a list of known male and female Festival voices.

3. Construct a .sable file with a single tag:

<SPEAKER name="<VOICE>">

<LINE>

</SPEAKER>

where <VOICE> is the voice selected in step 2, and <LINE> the dialogue line.

4. Feed the .sable file to the Festival TTS system to generate a single PCM .wav

file containing the spoken line.

5. Align them in a draft mix of the radio drama at the time when the character’s line

should be heard.

The method described above will let an aspiring producer to ‘listen’ to their radio drama

even without the existence of lines spoken by real actors (e.g. because they experiment

with other aspects of radio drama). A system using a method such as the one offered in

Section 3.3.6 will then allow them to include actor voices at a future stage.

7.3 Rendering & Mixing

This section describes how a script created, using the methods shown in Chapter C, can

be rendered into individual tracks of a DAW timeline. We begin with the concrete ele-

ments of radio drama: speech, music and sound effects. Then we discuss transformations

on these elements such as transitions and use of reverberation and EQ.

7.3.1 Speech

The characters take ‘turns’ speaking and listening and each ‘turn’ is preceded by a

conversational pause. Furthermore, to convey the feeling of conversation, stereo panning



Chapter 7. Rendering, Mixing, and Mastering of Radio Drama 176

A

B

t

tp

(a) no interrupt

A

B

t

to

(b) second speaker interrupts

A

B

t

to
tb

(c) second speaker fails to inter-
rupt

Figure 7.2: A DAW timeline corresponding to three turn-taking situations in dialogue.
A and B correspond to two different characters. In (a), tp is the duration of the pause
between A stops talking and B starts talking. In (b), to is the duration of overlap
between A and B. (c) is characterised by a time tb which is the offset at which B tries
to, but fails to interrupt A.

is employed with the following cases:

• The narrator and the main character are always positioned at the centre of the

stereo field.

• The other characters are positioned left and right based on their order of appear-

ance in the script.

Those decisions are taken from the instructions on how to create perspective in [3, p. 137].

An example resulting DAW timeline can be seen in Figure 7.2(a). A more tricky decision

is choosing the duration of pauses between individual lines, in cases where the lines have

not been recorded as a dialogue e.g. when synthesised (Section 7.2). Duration for

the turn-taking pauses discussed depend on the content of the dialogue. For example,

[190] show that there is a difference between spontaneous face-to-face and telephone

conversations. In this iteration of rendering methods, we do not make the distinction

between the two. Furthermore, even in the same setting dialogue turn-taking can differ

significantly. [12] have distinguished ten different cases in which turn-taking can take

place. For example, a dialogue might proceed like in Figure 7.2(a) but also the second

participant might try to interrupt the speaker and succeed or fail to do so, etc. We

consider the following cases:
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1. Successful turn. There is a pause P and the two lines do not overlap [12, Case 1]

(Figure 7.2(a)).

2. Successful turn with a short overlap [12, Case 2](Figure 7.2(b)).

3. The second participant tries to interrupt but is unsuccessful [12, Case 5a] (Figure

7.2(c).

The first case is the default state of dialogue. A pause of mean duration tp = 380ms is

inserted between speech segments A and B [12, Fig. 2]. The second case is denoted in

the radio drama script by a dialogue line that ends with ellipses (...) or dashes (--)

and another dialogue line that begins right after:

CHARACTER #1

The character says something that is interrupted--

CHARACTER #2

The second character begins at the point where the

previous character stopped talking.

The mean duration of the overlap for English is found to be to = 257ms [12, Fig. 2]. We

give an example for the last case:

CHARACTER #1

The character speaks for a long time

CHARACTER #2

(overlaps)

The character tries to interrupt CHARACTER #1 but is unsuccessful.

Where the overlaps parenthetical should be programmed as a directive. In this itera-

tion of our method, this case is not implemented since more research needs to be done

on deciding the exact position the overlap starts. The logarithm of the pause and over-



Chapter 7. Rendering, Mixing, and Mastering of Radio Drama 178

Variable µ σ

log10 tp 2.58 0.49
log10 to 2.41 0.49

Table 7-A: Gaussian distribution parameters for the pause and overlap durations for
dialogues in the English language, as found in [12].

Character type Peak level (dB) Avg level RMS (dB)

Narrator −16.70 −34.16
Character (Nathan) −21.60 −58.23
Character (Amelia) −5.90 −41.40

Table 7-B: Loudness levels of Narrator and Characters in The Turning Forest [13]. We
use those as a starting point for Narrator, Main Character, and Secondary Character.

L
eft

R
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t

Character #2

Atmos

Character #1

Narrator

Music

Figure 7.3: Example perspective hierarchy card of characters that can aid the actors
when recording, or a mixing engineer when setting the levels and stereo panning for the
character voice tracks.

lap durations have been found to follow a Gaussian distribution [12]. We repeat the

distribution parameters in Table 7-C for convenience.

The volumes of the narrator and the rest of the actors are normalised to have a peak

level in dB according to Table 7-B. This is an arbitrary decision but provides a ‘good

enough’ starting point. Additionally, we construct a ‘perspective hierarchy card’ (Section

2.6.2) that gives an immediate impression of the acoustic hierarchy of characters. An

example of such a card can be seen in Figure 7.3 and can aid both the actors when

recording (e.g. to help decide their positions relative to the microphone) or a mixing

engineer when setting stereo panning and loudness for the character voice tracks.
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Type Representation Duration

Short pause (short pause) 1s
Normal pause (pause) 2s
Long pause (long pause) 5s

Table 7-C: Types of pauses, their representation in the script and the duration they
correspond to in seconds

7.3.2 Pauses

We briefly discussed the role of pauses in Chapter 2. Pauses play a multitude of functions,

we discussed their role in ‘turn-taking’ in radio drama dialogue. Another important role

is in transitions between scenes that take place in different locations or time, which we

discuss in Section 7.3.5. Here we only discuss pauses that are inserted explicitly, for

example for dramatic effect. Those are presented in the script in parentheticals and are

distinguished in short, long pauses, and uncharacterised (normal) pauses:

CHARACTER #1

The character, e.g. a doctor is about to say something important,

e.g. whether the patient will live or die.

(short pause)

CHARACTER #1

The character finishes their speech.

The durations for each are chosen arbitrarily and are shown in Table 7-C.

7.3.3 Music

Rendering of music is done straightforwardly. As discussed in Section C.1.5 music can

be given with the MUSIC: prefix, followed by a query given to the music recommender

system, and an optional duration. In the case where no duration is specified, the music

plays until the end of the scene or the end of the music piece, whichever comes first.
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In the case a duration has been specified, the music starts fading when it has reached

3/4ths of that duration. Those numbers have been arbitrarily chosen but future work

should be systematically derive them from current practices.

7.3.4 Sound Effects

Sound effects fall into two categories: backdrop sound effects, or ATMOS, and event-

related sound effects. Those are given in the script using the FX: prefix, optionally

followed by SOUNDSCAPE:. If the line starts with FX: SOUNDSCAPE: then a description

of a soundscape is fed to the soundscape creation system discussed in Section 5.2 and

the resulting sound effects are looped in the background, otherwise it just plays once.

Sound effects are also actions in parentheticals that appear outside dialogues and are

not pauses or comments, e.g:

CHARACTER #1

Spoken line

(a hammer hits)

CHARACTER #2

Spoken line

Where the description of the sound effect is passed as a query to the method in Section

5.2. Sound effects that are not soundscapes are affected by reverberation.
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7.3.5 Transitions

Type Script text Duration

A cut (HARD) CUT TO: 4s
Crossfade CROSS FADE TO: 5s
Fade out/in FADE TO: 12s

Table 7-D: Duration of transitions in seconds. The durations for each type of transition
are derived from [14] and [3, p. 159].

Transitions between scenes should take from 4 to 15 seconds [14]. We discussed

fading times in Section 2.7.1. We choose 5 seconds when cross-fading (CROSSFADE TO:)

and 12 seconds when a fade-out/in occurs (FADE TO:) [3, p. 159]. For a cut, we chose

the minimum transition duration of 4 seconds [14]. Those numbers are seen in Table

7-D. Fadeout affects music and ATMOS but does not affect non-ATMOS sound effects

or speech. As an example, if the following part in the script:

INT. SCENE 1 - AN OFFICE ROOM

FX: SOUNDSCAPE: AN OFFICE ROOM

[...]

MUSIC: LINKING MUSIC

CROSSFADE TO:

EXT. SCENE 2 - A PUBLIC ROAD

The first scene has an office room ATMOS (keyboards clicking, telephones ringing) play-

ing throughout the scene. Linking music starts playing just before the crossfade begins

to occur. The music, as well as the office room ATMOS, start fading out and the ATMOS

of the second scene starts increasing in volume. The whole transition takes five seconds.
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7.3.6 Reverberation

In case of internal (INT.) scenes, reverberation is applied to the sound effects and

speeches in the scene. Scene description is used as a query for a system based on the

method in Section 5.3 to retrieve a relevant reverberation impulse response which is con-

volved with sound effects that are not ATMOS, and character speeches (excluding the

narrator). Alternatively, the method in Chapter 6 can be used to apply reverberation

based on contents and not the description of the scene.

7.3.7 Equalisation

In Section C.1.2 Scenes are introduced with a INT. or EXT. which stand for internal

or external, based on the type of locations the scenes take place. Sounds in external

locations lose some of the lower frequency content and thus sound ‘thin’. It is recom-

mended that sounds (non-ATMOS sound effects and non-narrator speech) should have

their 100Hz – 1KHz [3, p. 156] frequency attenuated. This can be achieved at placing a

notch filter (Section 2.7.2) in that frequency range (e.g. at 102.5 = 316Hz). We do not

discuss the exact parameters of an EQ to achieve that in this thesis. Instead, we add a

note using a script comment:

(NB: ATTENUATE NON-NARRATOR SPEECH AND NON-SOUNDSCAPE SFX

BY PLACING A NOTCH BETWEEN 100HZ-1KHZ TO GIVE THE IMPRESSION

THAT THOSE EVENTS TAKE PLACE ’OUTSIDE’)

Alternatively, [149] propose an EQ controlled using a library of semantic descriptors

which could be adapted for the case of radio drama. However, more research on the

subject is needed.

7.4 Evaluation of Script Rendering

Evaluation of the produced radio play renderings takes the form of a listening test. This

subjective evaluation has the goal of identifying the extent to which the various parts
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(c) Preference

Figure 7.4: Box plots from the listening tests

of the sound production system contribute to story character recognition (task 1) and

listener immersion (task 2), and how well they rank on the listeners’ preference (task 3).

Each test was presented on 9 pages (3 stories for each of 3 tasks) implementing

the MUSHRA[143] listening test environment using the Web Audio Evaluation Tool

(WAET)[144]. This environment consists of samples that can be played in the browser,
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ID CHARA PAN REVB SFX

0000
0011 X
1111 X X X X
1011 X X X
1101 X X X
1110 X X X

Table 7-E: Evaluation segments and audio story elements they represent in Fig. 7.4.
CHARA pertains to whether the story has different character voices or not, PAN whether
it contains spatial panning, REVB whether it contains reverberation and SFX whether
it contains spatial sound effects.

and each sample can be given a rating from 0 to 100, by using a vertical scroll bar. Scales

at 0, 25, 50, 75, and 100 of the scroll bar are annotated according to each test. The

samples were randomised in each page but the pages retained the same order across all

participants. MUSHRA tests generally have a hidden anchor and reference as stimuli.

Our tests have a hidden anchor but not a reference since it is non-trivial to generate an

objective reference for our tasks.

We gathered 21 subjects, mostly non-native English speakers. Subject age was

between 23-31. The subjects were also asked whether they had experience in radio/TV

production, with theatre and whether they were regular consumers of radio-plays/audio-

books. From the subjects, we omitted one person who reported not understanding the

test.

7.4.1 Listening Segments

Three story segments were selected (Section B.2), with each having a narrator and two

additional story characters. The first segment had all of the characters in the story as

male, the second as female, and the third had a male narrator, a male story character,

and a female story character. The choice of genders was made in order to consider

character recognition based on the difference in genders between different characters

since we expect both gender and voices to be important factors in recognising different

characters [191]. In addition to the character voices, two environmental background



Chapter 7. Rendering, Mixing, and Mastering of Radio Drama 185

sound effects were used (a meeting room, and a forest), the reverberation descriptors

clearer and dry from the Reverbalize social reverberation map [149], and stereo panning.

While Reverberation and Spatialisation are not very high in importance while identifying

spaces [191], with elements such as actions and context being higher, our segments lack

action sounds and are too short to provide a context. For the rest of the evaluation

section, we will refer to Character voices, Sound Effects, Reverberation, and Panning

as audio story elements. The segments were created by combining those elements but

leaving one out each time. This approach allows us to avoid introducing a “the more,

the better” bias to our listeners, something that could happen if we built each segment

from the previous one with one more additional element. In addition, a hidden anchor

with all elements disabled and an extra segment with all the elements enabled was used.

The table of listening segments and their elements can be seen in Table 7-E.

7.4.2 Character Recognition

This task pertains to how each audio story element contributes to the improvement of

the listener’s ability to distinguish between 3 different characters. We expect however

that the listener has already some cues from the story text. The question asked on the

related pages was:

“How easy does each segment make it to distinguish between the 3 characters

(based on both sound and text)?”

The answers were on a continuous scale from 0 (very hard) to 100 (very easy). Full use

of the scale was not required. If our system performs well, we expect the ratings for

segments including character voices, to be rated much higher than the segments with

just the narrator reading the text, and panning and reverberation to contribute to the

ability of our system to convey character differences.

Results are shown in figures Fig 7.4(a). Though the bars mostly overlap, stimuli with

different character/gender voices are rated much higher than the ones without. This

observation is verified by a Kruskal-Wallis rank-sum test for each of the stories (Table
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2-A), together with pairwise paired Wilcox tests (Table 2-B).

This appears to agree with the observation in [191]. From between the elements with

sound, there is a hint of preference towards the ones with spatial panning (1111, 1101,

and 1110) compared to the one without (1011). However, the pairwise Wilcox tests in

Table 2-B did not show a significant difference.

7.4.3 Listener Immersion

This task pertains to how well our system can immerse the listeners in the story envi-

ronment by usage of panning, reverberation, and environmental sound effects. The same

segments as in Section 7.4.2 were used. The question asked was:

“How easy does each segment make it to imagine yourself in the environment

of the story?”

The question seeks to identify what elements act as cues to communicate the environment

of the story to the listener. We expect environmental sound effects to contribute to

listener immersion, and reverberation and panning to add to that contribution. The

answers were again on a continuous scale from 0 (very hard) to 100 (very easy). The

resulting boxplots can be seen in Fig. 7.4(b).

Like in the case of Character Recognition, different character voices seem to be the

biggest factor facilitating immersion. Also, as in [191], sound effects seem to be an

important factor since there is a large difference between stimuli with (1011, 1101, 1111)

and without (1110) sound effects in the case different character voices are also there.

7.4.4 Listener Preference

The last test was a generic listener-preference test. The same segments used in the two

previous subsections were used, but this time they were ranked based on how well each

user preferred each one. The goal of this test was to check how much the listener liked

each element. The question asked was:
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“Please listen to each segment again, how would you rank them in regards

of preference?”

The answer was on a continuous scale from 0 (very low preference) to 100 (very high

preference). This was the only part of the test which encouraged full use of the scale since

it was checking for relative preference and not absolute user liking. The results can be

seen in Fig.7.4(c). In this case, boxplots overlap too much to make clear observations.

From Table 2-B however, we note that in general listeners prefer the segments with

character voices (1011, 1101, 1111, 1110), although in the cases when the segment already

contains reverb and sound effects the difference is not significant.

7.5 Summary

In this chapter, we provided a mechanism for producing a DAW timeline given a script of

radio drama generated using the methods discussed in Chapter C. Using this mechanism,

we rendered several radio drama excerpts which we evaluated based on the listener’s

ability to identify the different characters, the ability of the drama to ‘immerse’ the

listener to their world, as well as their overall preference. We found that panning and

reverberation indeed help to convey useful information but we did not survey how much

of each effect is needed in each case. We also left out of the discussion questions relating

to mixing and mastering for radio. Radio drama, as a form of art broadcast by radio,

is subject to regulations for a constant loudness [192]. Methods such as for automatic

dynamic range compression [160] could be adapted for radio drama. However, this is

not currently examined. Automatically applying audio effects in multi-track mixes has

also been tried for Panning [159], Equalisation[158], Reverberation[156], and while the

context of such works are usually multitrack music mixes, we would expect future work

adapting them to radio drama as well.



Chapter 8

Conclusion

8.1 Answers to the Research Questions

We begin wrapping up this thesis by answering the over-arching question asked in Section

1.6:

In what ways can advances in artificial intelligence and machine

learning assist a creator when producing radio drama?

Leveraging machine learning-based techniques for NLP with classical rule-based approaches

for information extraction as well as external knowledge sources allows for retrieval of

sound effects, music, and audio effect parameters for radio drama production directly

from a source story when adapting it to radio drama. Draft mix takes can then be

provided to the user using the aforementioned elements as well as templates based on

historical practices. Furthermore, when mixing sound for radio drama, reverberation

effect parameters can be chosen intuitively using desired spatial characteristics, the story

source text itself, or even the content of the sound file to be added to the mix.

The above statement is expanded by answering the individual questions asked:

1. In what elements can we deconstruct radio drama in order to make

188
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computational analysis possible?

The answer to this question comes in the form of a taxonomy of narratological

elements for radio drama (Figure 2.14) as well as their function in providing the user

with the auditory experience (Table 2-A). This taxonomy stemmed from previous

works on radio drama as well as computational narratology.

2. To what extent do recent advances in automatic story generation and

natural language processing allow us to extract meaningful information

from a story expressed in raw text? Can extracting such information

be seen as a set of NLP tasks common in the literature? Can we use

or devise algorithms to extract information that is either explicit or

implicit? In what ways can external knowledge, i.e. knowledge elicited

from online ontologies, help?

This question is answered in Chapter 3. Commonly studied NLP tasks can aid us

in understanding a story text with the goal of producing a radio drama. Corefer-

ence resolution, Word Sense disambiguation coupled with external ontologies and a

simple linear algorithm can give us information about characters, their properties,

and the lines their dialogue lines and therefore provide necessary information to

direct actors (Section 3.3.1). The task of Spatial Role labelling provides informa-

tion about locations in the drama and thus gives information that can be used for

building radio drama backdrop through the use of sound effects, as well EQ and

reverberation (Section 3.4). Finally, a database of word-emotion associations can

be used by a simple formula to assign emotional tags to sentences in the story and

thus be able to recommend appropriate music for the drama as well as provide

directions for emotional acting (Section 3.5).

3. How can we adapt a reverberation effect to be able to apply reverbera-

tion based on desired reverb characteristics?

In Chapter 4, the mapping between level filter parameters (gains and delays) to
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perceptually relevant characteristics of reverberation was examined. Through alge-

braic transformations as well as supplementary numerical minimisation, a mapping

from those characteristics to the low-level filter parameters was provided.

4. Given a radio drama script that includes the elements of Research Ques-

tion 1, how can assets for production be retrieved in an automatic way?

Can audio effects retrieved, e.g. reverberation, be retrieved in a similar

fashion?

Asset (e.g. sound effects) retrieval systems usually rely on querying a database

using queries comprised of individual words as tags. In Chapter 5 we show that

query text does not need to consist of individual precise tags, but retrieval using

queries constructed directly from story text is also possible by pre-processing the

sentences with a text simplification algorithm (Section 5.2). Furthermore, methods

for retrieving audio files based on text queries can be used to retrieve audio effects

as well which we showcase for the case of reverberation (Section 5.3). Furthermore,

queries need not be limited to tags extracted from the text of story sentences. In

Section 5.4 we discussed how implied emotional tags can be used to retrieve music.

In Chapter 6 we also show that effect parameters can be retrieved by querying

using the content of the sound that the effect needs to be applied to.

5. Assume that RQ1-RQ4 can be answered positively and elements from

a story can be effectively translated to speech, sound, music, and audio

effects. How can those elements be combined to produce a final radio

drama render? How can speech be timed and panned automatically to

convey the effect of ‘dialogue’ between characters, as well as narrator

speech? How should sound effects and music be introduced into the

mix? Finally, how do different elements of production contribute to the

listener’s experience?

This question is answered in Chapter 7. Time arrangement of speech can be done
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using templates which are based on previous dialogue studies (Section 7.2). Pan-

ning can be done using simple rules that take into consideration the role of char-

acters in the drama. Sound effects and music are mixed initially using a simple

lookup table for desired loudness levels. Reverberation and EQ are applied based

on a simple list of rules for applying those effects in the context of radio drama

(Section 7.3). From the elements of production we examined, we found that assign-

ing different voices to characters is the single significant factor for distinguishing

characters in the mix. Different voices for characters was also a significant factor

for listener immersion, together with the introduction of sound effects. Character

voices and sound effects were also rated highly in the test for character preference

as well (Section 7.4).

8.2 Summary

Pre-recording

BA: Takes notes

Cast: Acts

Panel SM: Balances sound

Gram SM:
Adds sound effects

Records sound to clips

Spot SM:
Positions microphone

Adds spot sfx

Recording

Cast:Readthrough

BA: Records time

Feedback & Retake

Rough Edit

Panel SM:
Rough DAW timeline

Add sfx

Fine Edit

Director & SM:
Choose best takes
Cut to duration

Add background music

Script Broadcast

Drama Script
–

Appendix C

Story IE
–

Chapter 3

Rendering
Mixing

& Mastering
–

Chapter 7

Sound
Music

& Audio Effects
–

Chapters 5, 6

Story

Evaluation
–

Chapter 7

Figure 8.1: An abstraction of the methods discussed in this thesis and the parts in the
production process they affect.

This thesis introduced a toolchain of computational methods that can aid radio drama

students, small producers, or even bigger teams to move through the process of creating

a radio drama faster. Given a literary story for adaptation, it aids the user in the

process of adapting to a radio drama script by identifying the important elements in

a story, organising assets such as music and sound effects, speeding up and organising
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voice recordings and finally mixing and mastering the drama. A graph, summarising the

discussed method and their roles in the production process, can be seen in Figure 8.1. In

our knowledge, it is the first effort to combine advances both in language processing as

well as in the audio processing domain that pertains to the complete production process

of a popular art form.

At first glance, it might seem that the entirety of this thesis goes against the warnings

of Tim Crook, who posited [18, p. 160]:

“Detailed deconstruction and analysis of the human alchemy of creativity

contains the risk of establishing cultural conventions which become oppressive

and mutually exclusive to the members of the production hierarchy. I do not

believe you can discover and produce great radio drama through formulas.”

We respect the above concerns and we do not claim to establish a dictionary of techniques

to mimic human creativity in radio drama. Instead, at every step, we try to make sure

the agency of the human creator is respected; each of the methods we discussed can

be ignored for the sake of artistic freedom, without drastically affecting the methods

that depend on them. Radio drama, as a form of art, has produced a large variety of

techniques throughout its history. We do not aspire to replicate them all but we expect

that the methods introduced in this thesis provide a basis upon which to build, for

researchers that aspire to do so.

8.3 Limitations/Future Work

In this section, we discuss aspects which we mentioned throughout the thesis but did not

get into sufficient details. We hope that both this work provides a reasonable starting

point for future exploration on computational methods for radio drama.
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Tags Associated with

happy, uplifting joy

dramatic, melancholic sad

nature Locations related to nature
dramatic Suspenseful events

Table 8-A: Associations between the tags given in [15] and tags or other information
derived from text.

8.3.1 Object based mixing for hard of hearing listeners

This thesis focused on assisting an individual or a team throughout the production aspect

of radio drama. The last link however in the radio drama pipeline is the listener them-

selves. As we discussed in Chapter 2, radio drama competes with other activities for

the attention of the listener and this competition is unforgiving, once the attention is

lost it is very difficult to be regained. An efficient way to establish the listener’s atten-

tion is to keep spoken text simple, which can be done with Text Simplification (Section

3.7). Despite efforts to keep text simple, however, the attention is still lost if other

non-important elements mask over speech insofar to make it hard for the listener to

understand. This notion is also true for non-spoken elements such as important events

that are communicated non-verbally. The effect becomes more intense in the case of the

listener being affected by partial hearing loss, which is the focus of [193–195]. In those

works, object-based mixing approaches are employed by a sound producer to allow the

listener to control a radio or TV mix in order to allow them to perceive important audio

elements more easily. In [196] we extended such works in order to perform such mixes

automatically something that resulted in increased speech intelligibility for the auto-

matically mixed drama examined in that paper. Future work could expand automatic

mixing for speech intelligibility to other metrics that more directly affect the attention

of the listener and thus become part of the radio drama production toolchain in this

thesis.
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8.3.2 Retrieving Music by extracting emotional theme from text

Our approach to recommending music is based on searching in a sound library annotated

with emotional tags. In Section 3.5 we presented how those emotions can be extracted

from narrative text. The library we use is described in [15] and is a library of freely dis-

tributed songs annotated with 59 tags for mood/theme. While those do not correspond

directly to the emotional tags from [100] which we use, we restrict searching only for

the tags that are directly related to the emotional tags found in that database. As an

example we associated the tags ‘joy’ in the dataset in [100] to ‘happy’, and ‘uplifting’

in [15] as well as the tags ‘sad’ in [100] to ‘dramatic’ and ‘melancholic’ in [15]. The tag

‘dramatic’ is also associated with suspenseful events. Additionally, we associate the tag

‘nature’ whether a location in the text is related to nature (e.g. a meadow). The latter

associations are extracted using ConceptNet (Section 3.2) using the query:

http://api.conceptnet.io/query?rel=/r/RelatedTo&start=/c/en/nature&

end=<location>

where <location> is the extracted location. The associations are given in Table 8-A.

Having the library given in [15] while keeping only the tags of the left column of Table

8-A allows us to retrieve music using the query-based approach we used in Section 5.3.

The associations of Table 8-A are, however, superficial and evaluation requires either

listening tests which have not been performed at the point of writing or user query data

for quantitative evaluation such as the one performed in Section 5.3.

8.3.3 Text Simplification for radio drama scripts

Text simplification, as presented in Section 3.7, is extractive and rather crude: it is

based on creating shorter sentences by recombining parts of a source sentence without

any modification for readability or any concern whether the resulting sentence makes

sense. This type of summarisation is called extractive summarisation and reuses part

of the original sentence. A different approach would be using abstractive summarisa-

tion techniques which generate new sentences which in turn can be constrained further.
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Exploring such techniques could lead to text simplification for more natural scripts.

8.3.4 Altering speech with the Personage NLG system

In a generated script (Chapter C) we convey emotions in the dialogue lines, by simply

adding the appropriate emotion in a parenthetical. There are cases, however, where it

is more natural as well as appropriate to give some cues for the emotion in the dialogue

line itself. For example, shyness or hesitation can be conveyed by repeating part of the

word in the text [197, Fig. 4]:

THE MOUSE

(hesitating)

I don’t kn- know!

Transforming text according to transformation parameters such as shy or angry is the

subject of [197]. They use the story representation format in [40, 198], formal rules

and the Personage NLG system [199] to apply personality traits to excerpts of Aesop

fables. Future work could explore how can such a system be adapted to the methods

described in this thesis in order to generate speech text that adheres more closely to the

emotions extracted from the text.

8.3.5 A dataset for story text-based sound effect retrieval

In Section 5.2, we did preliminary work on how text simplification and coreference reso-

lution can affect sound effect retrieval when queried using story sentences. We concluded

the section by briefly mentioning the need for a dataset appropriate for evaluating such

retrieval effort. Such a dataset might be gathered by experts, i.e. radio drama sound

managers, or listeners of the radio drama. Items in the dataset could be pairs of sen-

tence story text associated with the appropriate sound effects. Additionally, Audio Event

Detection techniques could be used to identify sound events that correspond to the input

query, in the final radio drama scene itself.
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8.3.6 Aiding with movement, 3D sound

In Section C.1.4 we discussed how the narrator and characters are positioned in a stereo

recording of a stereo field. This discussion was limited to characters that are static in

relation to one another, they do not move. We also avoided talking about the positions

of sound effects in stereo sound. Data and knowledge elicited from the S3A1 project [13]

can be combined with methods from 3D synthesis with natural language, e.g. in [200]

to construct 3D auditory scenes based on the content of the story.

8.3.7 Combining reverberation approaches

We presented two separate methods for adding reverberation based on content. In Sec-

tion 5.3 reverberation is added based on story locations while in Chapter 6 reverberation

is added based on the audio content of the asset itself. However, the methods are sepa-

rate and it is not entirely straightforward how those can be combined. A simple approach

would be to use the methods shown in [128] or Section 5.3 to decide initial parameters

from the story itself, for content used in the drama. Then those parameters and the

audio in the drama can be used to train the reverberation effect in Chapter 6 to apply

reverberation in other cases where no such information is available (e.g. in a new drama).

However, more research on how such methods can be combined is needed.

8.3.8 Controlling dramatisation

In Section 2.1 we referred to the difference between the various forms of audio drama:

sonic art, radio drama, and audiobook. We also discussed its relation to the three main

elements of radio: music, sound effect, and speech. It would be interesting to be able to

allow our methods to control how much of each element we want to use when producing an

audio drama. This would effectively mean that elements that are usually communicated

with sounds (such as events) in a radio drama, in an audiobook they would be narrated.

Another interesting idea would be to allow to switch between different types of narrator

(e.g. between intra- and extra-diegetic), definitions that we briefly mentioned but did

1http://www.s3a-spatialaudio.org/about-s3a
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not expand in Section 2.4.2.

8.4 Closing remarks

In the final section of this document, we want to address the question: “Why choose to

examine each element in the creation of radio drama separately? We have seen recent

approaches generating fictional articles [201] or poetry [202] by just feeding data to a

cleverly-designed neural model, why not learn radio drama making from data?”. There

is indeed increasing optimism in the artificial intelligence community stemming from the

impressive achievements of deep learning methods which seem to improve by simply pro-

viding more data: a notable example being newer language modelling approaches [203].

The achievements of those approaches are not followed, however, by any exceptional

examples in computer-generated art. Even in the cases where end-to-end approaches are

used, careful data-preparation and curation of the final output are warranted by a human

author. We believe this goes much further than not having enough data to generalise

yet. After all, art is a social endeavour and any creation of such a system should allow

the human creator to retain agency. This is difficult with the black-box data-intensive

approaches currently leading the state of the art and is a problem independent from

the level of generality achieved. Narrative for example, one of the elements of radio

drama, demands a multi-aspectual approach at analysis [204]. While there are meth-

ods to regain some control (e.g. how Generative Adversarial Networks allow control of

aspects such as perceived emotion in images [205]), those have yet to be showcased from

data-driven methods in the domains this thesis examines. Even ignoring those issues,

such approaches don’t currently perform sufficiently for elements crucial to radio drama,

such as modelling suspense where, at least to our knowledge, no method tries to model

it from surface text, in an end-to-end fashion (Section 3.8). Instead of delegating the

creation of radio drama to such successful AI techniques in an end-to-end fashion, we

believe that the focus should be into examining their functions and limitations on the

separate steps of the creative process. Once those are sufficiently mastered, we believe
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it will raise our chances of being able to create radio dramas and similar art forms in a

semi-automatic, way.

Finally, more focus should be paid into studying computer-assisted art in cases where

different forms of art are employed together. Take music and audio effects in the case of

radio drama as an example which are to elevate the listener’s experience as we showed in

Chapter 1. Research in automatic or computer-assisted music composition for or adap-

tive audio mixing specifically for radio drama is currently lacking, as we observed in that

chapter. On their own, automatic composition has been studied on its own extensively

since at least the 50’s [206] and adaptive audio mixing since the 70’s [29]. When studied

through the prism of creating a radio drama, however, the intricate relations between the

story of the drama, music, and audio mixing, add a new challenging dimension to those

domains. Exploring those elements in the context of radio drama might lead to new

interest directions of research that might improve how we treat music or audio effects,

using artificial intelligence.



Appendix A

Reverberation

A.1 Calculating T60 from the Energy of Impulse Response

Decay Curves

In Section 4.6 we mentioned measuring T60 from the energy of the decay curves of the

impulse response. Here we provide more details on this method. The method consists

of the following steps:

1. Take 8 frequency bands of the impulse response centred around Cf = {63, 125, 250,

500, 1000, 2000, 4000, 8000}Hz.

2. Calculate the energy of the decay curve of each band using backward integration

of the normalised squared impulse response:

Ef (t) =
1

‖yf‖∞

∫ t

∞
y2
f (τ)dτ (A.1)

where yf is the room impulse impulse response band-filtered around f ∈ Cf . The

energy reduction in dB is given by:
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Figure 1.1: Estimating T60 by measuring T30. Initially, the energy of the decay curve
(blue line) is calculated. The points of the curve between −5 and −35dB are used to fit
a line whose slope d gives the energy decay rate in dB/s (yellow curve segment). The
time taken for the yellow segment to drop by 30dB is T30 and T60 is double that time.

Ef,dB(t) = 10 log10

Ef (t)

‖Ef‖∞
(A.2)

3. Using linear regression, calculate a line segment that matches the decay curve more

closely in the range [−5,−35]dB. The fitted line has the equation:

El,dB = dt+ b (A.3)

where the slope d gives the energy reduction in decibels as a function of time, and

b is the intercept of the calculated line. We can compute the times the energy to

reach −5dB and −35dB:
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t5 =
−5− b
d

(A.4)

t35 =
−35− b

d
(A.5)

and therefore the time it takes for the energy to drop 30dB is:

T30 = t−35 − t−5 =
−30

d
(A.6)

The time it takes for the energy of the decay curve to drop by −60dB is that time

doubled.

T60 = 2T30 =
−30

d
(A.7)

A.2 Mapping from Filter Parameters to Impulse Response

Characteristics

In Section 4.7 we approximate the solution to a 4× 4 system that maps characteristics

for the impulse response, such as reverberation time and echo density, to filter gains

and delays of the Moorer reverberator. Here we show how we derive the approximated

system shown in Eq. 4.27 from the original 4 × 4 system shown in Eq. 4.26. Trying to

solve the system of equations analytically, we found that1:

1. From D′rr and g1 we can derive G:

G = f1(D′rr, g1) = Ae−
D′rr
20

log (10) (A.8)

2. From D′rr, T
′
60 and g1 we can derive d1:

d1 = f2(D′rr, T
′
60, g1) =

T ′60 log (g1)

B
(A.9)

1Note that gc and ga are treated as constants.
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3. From E′d, D
′
rr, T

′
60, and g1 we can derive da:

da = f3(D′rr, T
′
60, E

′
d, g1) = T ′c −

∑6
k=1

2.078125·1.51−kΓ2·1.51−k

D′da
(

1−Γ2·1.51−k
)2∑6

k=1
Γ2·1.51−k

1−Γ2·1.5−k+1

(A.10)

where:

A = ga
√

(1 + gc) (1− gc)
√√√√ 1∑6

k=1
g2·1.5

−k+1
1

1−g2·1.5−k+1
1

B = log

0.001e
D′rr
20

log (10)

A


Γ = e

2.078125
D′T ′60da

B

(A.11)

So if we could pick the correct value of g1 and we have the target values T ′60, D′rr, E
′
d,

and T ′c we can derive the other 3 parameters. Unfortunately, it is non-trivial to find a

closed-form solution but we find a value for g1 numerically given our constraints. We

can rewrite the optimisation problem above as:

minimise:
g1

f0(g1) =
√
eTe+ Var[e]2

subject to:

0 < g1 < 1,

where:

G = f1(C ′, g1)

d1 = f2(C ′, T ′60, g1)

da = f3(C ′, T ′60, D
′, g1)

(A.12)

We can numerically compute gc (e.g. using Newton’s method). The rest give us a (non-

convex) 4× 4 system. Given a set of target IR characteristics (T+
60, D

+, C+, T+
c , S

+
c ) we
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approximate a set (d′1, d
′
a, g
′
1, g
′
c, G

′) that brings the actual characteristics close to these

values (see Section 4.7).



Appendix B

Evaluation of Script Rendering

B.1 Statistical Analysis of the Results

In Section 7.4 we report on the results of the listening tests for three tasks: Character

Recognition, Listener Immersion, and Listener Preference. Here we report inferential

statistics that verify those observations. For every task and story, we test for the effect

of the different stimuli on the user rating. In all tasks and stories the data acquired

violate both normality (Shapiro-Wilk test p > 0.05) and equal variance (Hyun & Feldt

ε̃ < 0.85) and therefore it is not suitable for parametric tests (e.g. parametric ANOVA).

Instead, we perform a Kruskal-Wallis non-parametric omnibus test followed by pairwise

Wilcox post-hoc tests for the effect of individual stimuli on user rating. The statistics

for the omnibus test can be seen in Table 2-A and for the pairwise tests in Table 2-B.

204
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Task Story χ2 df p

1
1 67.624 5 3.196 × 10−13

2 60.729 5 8.592 × 10−12

3 54.039 5 2.057 × 10−10

2
1 45.997 5 9.097 × 10−9

2 55.395 5 1.083 × 10−10

3 47.288 5 4.963 × 10−9

3
1 47.388 5 4.736 × 10−9

2 53.994 5 2.102 × 10−10

3 54.117 5 1.983 × 10−9

Table 2-A: Kruskal-Wallis [16, p. 204–215] rank-sum test for the three tasks. χ2 is the
chi-squared statistic, df the degrees of freedom and p the p-value of the test. A p < 0.05
corresponds to a significant difference between at least two stimuli. There is a significant
difference between the stimuli for all stories for all three tasks.
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B.2 Story Segments of the Listening Tests

In Section 7.4 the tests conducted had three parts (tasks) and each task used three

different story segments each consisting of a narrator and two different characters. The

story segments are listed in script form in Figures 2.1, 2.2, and 2.3.

CAST LIST:

YOUNG MOUSE: male, young, animal.

OLD MOUSE: female, young, animal.

SCENE 1. INT. THE PROPOSAL -- A CONFERENCE ROOM

FX: SOUNDSCAPE: A CONFERENCE ROOM

(long pause)

YOUNG MOUSE

By this means we should always know when she was

about and could easily retire while she was in the

neighbourhood.

NARRATOR

This proposal met with general applause until an old

mouse got up and said:

OLD MOUSE

That is all very well but who is to bell the cat.

Figure 2.1: Excerpt from “Belling the Cat” rendered for the listening tests in Section
7.4. Script metadata is omitted. When rendering for the listening tests, reverb settings,
panning settings, and soundscape settings were manually chosen instead of automatically
fetched.
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CAST LIST:

JUPITER: male, god.

VENUS: female, god.

SCENE 1. EXT. ARGUMENT BETWEEN VENUS AND JUPITER -- NEXT TO A RIVER

FX: SOUNDSCAPE: A RIVER FLOWING

JUPITER

See.

NARRATOR

Said Jupiter to Venus

JUPITER

How becomingly she behaves. Who could tell that yesterday she was but a Cat? Surely her nature is changed?

VENUS

Wait a minute...

Figure 2.2: Excerpt from “The Cat Maiden” rendered for the listening tests in Section
7.4. Script metadata is omitted. When rendering for the listening tests, reverb settings,
panning settings, and soundscape settings were manually chosen instead of automatically
fetched.

CAST LIST:

THE FOX: female, animal.

THE CAT: female, animal.

SCENE 1. EXT. THE FOX BRAGGING -- IN A FOREST

FX: SOUNDSCAPE: A FOREST

NARRATOR

A Fox was boasting to a Cat of its clever devices for escaping its enemies.

THE FOX

I have a whole bag of tricks.

THE FOX

Which contains a hundred way of

escaping my enemies.

THE CAT

I have only one...

NARRATOR

Said the Cat.

THE CAT

But I can generally manage with that.

Figure 2.3: Excerpt from “The Fox and the Cat” rendered for the listening tests in
Section 7.4. Script metadata is omitted. When rendering for the listening tests, reverb
settings, panning settings, and soundscape settings were manually chosen instead of
automatically fetched.



Appendix C

A Regular Grammar for Radio

Drama Scripts

In this chapter, we introduce a regular grammar for radio drama scripts based on the

Fountain1 format for Film and TV scripts and also provide a method for adapting a

source story to this format. Introducing such a grammar serves the following:

1. It allows to easily present the stories in this thesis in a format that can be read by

a radio drama producer.

2. It can be easily parsed by a Context-Free Grammar parser and automatically

produce rough mixes of a radio drama for the producer.

We begin by introducing the Fountain format which we base the grammar on. We con-

tinue by presenting the elements of the radio drama that we need to take in consideration

and how those are added in the original format. Finally, we present the derived format as

rules for an Extended Context-Free Grammar and we give an example of a radio drama

script written in this format.

1http://www.fountain.io

209
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Terminal Regular Expression Description

int [1-9][0-9]* An integer number
sp :sp: A single space character
nl :nl: A character that changes to a new line
nb [A-Za-z0-9’@:sp:;*!:,. -?"] All characters, numbers, punctuation

and space except :nl:
name [A-Z0-9:sp:-" @]+ Capitalised names
tag [a-z0-9-]+ Tags (e.g. emotional tags)
ac [A-Z0-9’"*!m,:sp: 0;:] Same as nb but only allows capital letters
date multiple A regular expression for dates such as

11/12/2019 or December 11, 2019

Table 3-A: Common regular expressions used in this chapter

C.1 Adapting the Fountain Format for Radio Drama

In its original form, the Fountain script format allows parsing and editing for the following

elements:

• Metadata – Title, Author, Information about the adaptation, Draft number, etc.

• Scenes – Placement (internal, external), Description, etc.

• Characters – Speech, Description

• Dual Dialogue – When two characters speak at the same time.

• Actions – Character actions, events, etc.

• Transitions – Scene transitions, such as ‘hard cut to...’

• Scenes and Acts – Organising the script into Acts of Scenes.

• Parentheticals – Short modifiers of actions, character speech given in parentheses.

• Notes – Extra ‘comment’ information. Useful for example for reviewing script

drafts.

Observe that there are a few elements from Chapter 2 that relate directly to radio drama

and are missing from the list (e.g. Music and Sound Effects):
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• Music – Intro, Outro, Linking, or as Sound Effect.

• SFX – Event SFX, ATMOS, etc.

Below we present how the Fountain script format allows us to both generate scripts

according to the elements extracted in Chapter 2 as well how the same script format is

used to guide production, for each individual element. The parser for the grammar was

generated using Lark2 which generates Earley parsers [207].

C.1.1 Metadata

While we did not explicitly discuss metadata, they play a very important role in produc-

tion. Apart from giving information about the play and the author, draft and contact

information are included in order to facilitate communication between the members of

e.g. a small production team or between e.g. a teacher and the student of radio drama.

Fountain allows us to convey the following metadata:

• Title – The title of the script.

• Author – Who wrote that.

• Source – Was it adapted from a literary story?

• Draft Date – Date of the draft.

• Contact – Contact details of the author.

The above can be written in the form of an extended context-free grammar:

1 Metadata → T i t l e Author? Source ? Date? Contact ?

2 T i t l e → ‘ ‘TITLE : ’ ’ i n l ? (nb n l )+

3 Author → ‘ ‘AUTHOR: ’ ’ i n l ? (nb n l )+

4 Source → ‘ ‘SOURCE: ’ ’ i n l ? (nb n l )+

5 Date → ‘ ‘DATE: ’ ’ i n l ? date n l

6 Contact → ‘ ‘CONTACT: ’ ’ i n l ? (nb n l )+

2https://github.com/lark-parser/lark
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where date, nl, and nb are given in Table 3-A and the literals in teletype (e.g. title)

correspond to the string literals in double quotation marks ‘‘, ’’. As an example, the

Metadata grammar rule above will capture the following script metadata:

Title: The Crow and the Fox

Author: Emmanouil Theofanis Chourdakis

Source:

Adapted from Aesop’s Fable:

"The Crow and the Fox"

Date: 5/12/2019

Contact:

Emmanouil Theofanis Chourdakis

e.t.chourdakis@qmul.ac.uk

In general, in this work we do not deal with metadata. However, it is trivial to use

the above rules generatively to e.g. automatically fill title, author, date and contact

information:

Title: <TITLE>

Author: <AUTHOR_NAME>

Source:

Adapted from:

<TITLE>

Date: <DATE>

Contact:

<AUTHOR_NAME>

<AUTHOR_EMAIL>

Where slot <TITLE> gets substituted for the original fable’s title, <AUTHOR NAME> is the

name of the producer, <DATE> the current date and <AUTHOR EMAIL> the e-mail of the

producer.
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Slot Description

<TITLE> The original title of the story (automatically entered)
<AUTHOR NAME> The author’s name (manually entered)
<AUTHOR EMAIL> The author’s email (manually entered)
<DATE> The current (automatically entered)

Table 3-B: Slots and descriptions where they are extracted from.

C.1.2 Scenes

In Fountain, scenes are marked with an initial INT. or EXT. marking whether the scene

is interior or exterior. Since there are no camera shots in radio drama however using

those markers is rare (although not impossible to find). It is most often the case that a

scene is denoted by a starting SCENE literal, followed by the number of the scene, and

a description of the scene. In the form of extended context-free grammar rules, this

becomes:

1 SceneT i t l e → SceneType sp∗ ‘ ‘ . ’ ’ ? sp∗ IoE sp∗ ac

2 SceneType → ‘ ‘SCENE ’ ’ i sp∗ i n t

3 SceneType → ‘ ‘PROLOGUE’ ’ i

4 SceneType → ‘ ‘INTRO ’ ’ i ‘ ‘DUCTION’ ’ i ?

5 SceneType → ‘ ‘EPILOGUE ’ ’ i

6 SceneType → ‘ ‘OUTRO’ ’ i

7 IoE → ( ‘ ‘ INT ’ ’ i | ‘ ‘EXT’ ’ i ) sp∗ [ . : ]

8 Content → ( Dialogue | Paren |Fx |Music | Trans i t i on ) n l+

9 Scene → SceneTi t l e n l+ Content+

Note that the terminals are case-insensitive which we denote with the suffix ‘i’. We will

discuss about the non-terminals in Content in subsequent sections. SceneT itle can be

either PROLOGUE, INTRO(DUCTION), EPILOGUE, or OUTRO or the SCENE literal followed by

an integer number denoting the number of scene. We provide an example of a scene title

able to be parsed using the above rules:

SCENE 1. EXT. A FOX MEETS A CROW IN A FOREST.

...

When parsing, we can extract the location using the method described in Section 3.4,
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Slot Description

<INT. or EXT.> Whether the scene is internal or external (manually entered)
<DESCRIPTION> The description of the scene (manually entered)
<LOCATION> The location of the scene (automatically entered)

Table 3-C: Slots and descriptions where they are extracted from.

which will allow us to retrieve appropriate sound effects in production. When the rules

are used generatively, the name of the scene should optimally become the theme of

the story conveyed as drama at that point. Since, however, we do not perform theme

extraction from text, when generating we use the description <DESCRIPTION> as a scene

title, followed by the location of our main character (in our case, the fox). Before adding

the text of the location, we change the articles ‘the’ for ‘a’ or ‘an’ based on the first

letter of that follows. The scene integer starts counting from 1 and increases with each

new scene. The template for scene construction is:

SCENE 1. <INT. or EXT.> <DESCRIPTION> -- <LOCATION>.

...

The string of the location is used to drive retrieval of the assets discussed in Chapter 5.

C.1.3 Cast List

After title and crediting information, we include an optional cast list segment. In screen-

play, or BBC radio drama scripts, characters are introduced using a short introductory

sentence or directly from the dialogue lines. While we still allow this feature, we follow

the advice of Keith Crawford3 to include a Cast List to be able to observe the characters

at a glance:

CAST LIST

The Crow: animal, old, female.

The Fox: animal, young, male.

...

3https://www.aboutwriting.org/how-to-format-a-radio-play-script-the-cheap-and-easy-way/
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Slot Description

<CHARACTERN> A character name (automatically extracted)
<CHARNTAGM> The M-th tag of the N-th character (automatically extracted)

Table 3-D: Slots and descriptions where they are extracted from.

A cast list is also observed in many of the radio drama scripts found in the Simply Scripts

archive4. This format also allows for easy parsing by the computer. The grammar rules

for the cast list segment is:

1 C a s t l i s t → ( ‘ ‘CAST LIST ’ ’ i | ‘ ‘CHARACTER’ ’ i ‘ ‘ S ’ ’ ?) n l CInfo

2 CInfo → (CName ( sp∗ ‘ ‘ : ’ ’ sp∗ Tags ) ? ‘ ‘ . ’ ’ n l )+

3 CName → name

4 Tags → Tag sp∗ ( ‘ ‘ , ’ ’ Tag) ∗

When created automatically, for each character c extracted from the story and its corre-

sponding tags Tc add a new CInfo line where CName = c and each tc ∈ Tc is added as

a Tag according to the above rules. For example in the fable “The Crow and the Fox”

we recognise one character (The Fox, recall that we consider only characters who speak

a line) which has the tags animal and male, therefore the Cast List section becomes:

CAST LIST

THE FOX: animal, male.

The template for generating the cast list of a radio drama is:

CAST LIST

<CHARACTER1>: <CHAR1TAG1>, <CHAR1TAG2>.

<CHARACTER2>: <CHAR2TAG1>, <CHAR2TAG2>.

...

And the slots are substituted as in Table 3-C. It is up to the author of the radio drama,

to add more characters using the same format.

4https://www.simplyscripts.com/radio_all.html
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C.1.4 Dialogue

Every character line is formatted as the name of the character, followed by a series

of dialogue lines. Each line might be a parenthetical or one or more text sentences.

Parentheticals are words or phrases between ‘‘(’’ and ‘‘)’’ and are used to affect the

speech of the character. Emotions extracted from the original story which are related

to character speech (Section 3.5) are given in the radio drama script as parentheticals.

Dialogue might also include pauses included in the source text denoted as ellipses (. . . )

or long dashes (–). As an example, the story text:

“You – You disgust me!”, said Mary with contempt.

will be given in the radio drama script as:

MARY

(with contempt) You -- You disgust me!

Parentheticals can precede dialogue lines like above. Alternatively, they appear in a

separate line:

MARY

(with contempt)

You disgust me!

Parenthetical do not just convey emotional affect, but can also be used to give directions

to the actors:

MARY (OFF)

You disgust me!

Where the OFF instructs the actor to move away from the microphone. Further directives

can be seen at the BBC guidelines for radio drama writing [208]. The CFG rules for

parsing and subsequently processing script dialogue to guide production are:

1 Dialogue → CName nl ( DLine n l )+ nl



Appendix C. A Regular Grammar for Radio Drama Scripts 217

Slot Description

<CHARACTER> A character name (automatically extracted)
<MODIFIER> The emotional tag of the character line (automatically extracted)
<CHARACTER LINE> The character line (automatically extracted)

Table 3-E: Slots and descriptions where they are extracted from.

2 DLine → P a r e n t h e t i c a l | ( P a r e n t h e t i c a l ? nb)

3 P a r e n t h e t i c a l → ‘ ‘ ( ’ ’ nb ‘ ‘ ) ’ ’

The template for dialogue is the following:

<CHARACTER>

(<MODIFIER>)

<CHARACTER_LINE>

And the slots can be substituted as in Table 3-E.

C.1.5 Actions, Sound Effects, and Music

Sound effects in the script start with the FX: literal followed by a sound effect description

using all caps. The MUSIC: literal is the same but introduces music. The CFG rules for

sound effects in the script are:

1 P a r e n t h e t i c a l → ‘ ‘ ( ’ ’ nb ‘ ‘ ) ’ ’

2 Fx → ‘ ‘FX: ’ ’ i sp∗ ( ac n l )+

3 Music → ‘ ‘MUSIC: ’ ’ i sp∗ ( ac n l )+

When generating the script, the locations extracted from the source story are used as

soundscapes. For example the first sentence of the “Wily Lion”:

A fat bull was feeding in a meadow when a lion approached him.

Can be tagged as a soundscape as follows:

FX: SOUNDSCAPE: A MEADOW

The ‘‘MUSIC:’’ tag can be used with time modifiers:
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MUSIC: FOLK MUSIC PLAYS FOR ABOUT 5 SECONDS

The grammar also supports actions in parentheses. There are cases when actions might

be referred to in the script that are there to set the setting but are not communicated

with sound. Those are distinguished from parentheticals in dialogue (Section C.1.4) in

that they are separate from the dialogue segment (at least two new lines separate them

from a dialogue segment). In some cases, however, they represent short sound effects or

pauses, e.g.:

SCENE 1. EXT. THE LION

FX: SOUNDSCAPE: A MEADOW

(THE LION is approaching THE BULL)

THE LION

I cannot help saying how much I admire

your magnificent figure!

(short pause)

THE LION

What a fine head...

The names of characters in actions are capitalised. This is a common convention in

writing scripts and helps increase the readability of the script. The template is the

action enclosed in parentheses and a nl character above and below:

(<action>)
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C.1.6 Suspense

In Section 2.2.1 we referred to suspense as the emotional strain caused to the listener

by impactful events to the life or well-being of characters. We discussed how to extract

such events in Section 3.8 and here we discuss how we communicate such events in the

radio drama script. As we already discussed in Section 2.2.1, suspense is communicated

to the listener through the use of timing and music. We introduce the latter in the radio

drama script as suspenseful music to the scene leading to the events that elicit suspense.

SCENE X. EXT. ...

MUSIC: SUSPENSEFUL

In addition, we introduce a long pause before the suspenseful event.

(long pause)

(a character dies)

C.1.7 Comments

Comments are an important part of writing radio drama script. They play a pivotal

role in communication between the various factors of production [1]. In our case, they

are denoted with parentheticals, in the same way as actions that begin with the prefix

NB: (Nota Bene) optionally annotated with a take number. An example resembling the

‘coloured pens’ approach in [1, Fig. 4] is given below:

(NB: Take 1: I cannot... how: This line will be ignored by the parser.)

Since everything after NB: is ignored, it is up to the production team to decide on their

own comment formats.

C.1.8 Transitions

In Section 2.7, we discussed about how the fading effect is used to signify scene transi-

tions. Our grammar supports scene transitions similar to Fountain by using lines that
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end in TO: e.g5:

NARRATOR

...The Emperor and all his Court came to see the spectacle,

and ANDROCLES was led out into the middle of the arena.

FADE TO:

SCENE 2. EXT. THE ARENA.

FX: SOUDSCAPE: ROMAN CIRCUS

Here, FADE TO: signifies a soft transition between the previous scene and the arena.

Possible transitions are:

• FADE TO: – Soft transition between scenes, see above.

• CROSSFADE TO: – Crossfade between scenes.

• SEGUE TO: or HARD CUT TO: – A hard transition between scenes.

The grammar rules for a cut are:

1 Trans i t i on → Ttype sp+ ”TO: ” i

2 Ttype → ‘ ‘FADE’ ’ i ( ( sp ∗ | ‘ ‘ − ’ ’ ) ( ‘ ‘ IN ’ ’ | ‘ ‘UP ’ ’ ) ) ?

3 Ttype → ‘ ‘CROSSFADE’ ’ i

4 Ttype → ‘ ‘HARD’ ’ i ? ‘ ‘CUT’ ’ i

5 Ttype → ‘ ‘SEGUE ’ ’ i

Since we do not have a method yet to detect events and scene changes accurately, we only

use ‘‘FADE TO:’’ when fading from the introductory music to the first (and currently

only) scene in the drama:

MUSIC: ...

NARRATOR

5Aesop’s Fable: “Androcles and the Lion”
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You are about to head Aesop’s fable "The Wily Lion".

Adapted to radio by ...

FADE TO:

SCENE 1...

The template is simply:

<TYPE> TO:

surrounded by a required nl character before and after that line. The <TYPE> slot can

be substituted with one of HARD CUT, CUT, FADE, CROSSFADE, or SEGUE.

C.1.9 Example: “The Crow and the Fox”

To showcase how information extracted in Chapter 3 with the CFG introduced above

we will show below as an example how this method is applied to the following fable

segment6:

A crow was sitting on a branch of a tree with a piece of cheese in her beak

when a Fox observed her and set his wits to work to discover some way of

getting the cheese. The fox, coming and standing under the tree, looked up

and said, “What a noble bird I see above me! Her beauty is without equal,

the hue of her plumage exquisite. If only her voice is as sweet as her looks

are fair, she must be–without doubt–the queen of the birds. Won’t you sing

a song for me, O Queen of the Birds?”

Applying the methods of Chapter 3 we extract the following information:

• Title – The Crow and the Fox

• Location – The tree

6Aesop’s fable: “The fox and the crow”
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• Character – The fox (animal, male)

• Emotions (Overall) – Joy, Trust

• Emotions (Characters) – none

The first step is to add the script metadata. Provided that the system already knows

the author’s name and email address, as well as the current date, the metadata becomes:

TITLE: The Crow and the Fox

AUTHOR: Emmanouil Theofanis Chourdakis

SOURCE: Adapted from "The Crow and the Fox"

DATE: 09/13/2019

CONTACT:

Emmanouil Theofanis Chourdakis

e.t.chourdakis@qmul.ac.uk

The next step is to introduce the characters. We have one character (the fox) which has

the tags animal and male.

CHARACTERS

THE FOX: animal, male.

Next, we introduce the story to the listeners and play a short segment of intro music

tagged using the overall extracted emotions of joy and trust. A short initial line by the

Narrator is commonly used in radio drama to acclimate the listener to the setting [49,

Ch. 6].

PROLOGUE INT: INTRODUCTION TO THE STORY

NARRATOR

The crow and the Fox, a story by Emmanouil Theofanis Chourdakis
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MUSIC: PLAY MUSIC THAT ELICITS JOY AND TRUST FOR 5 SECONDS

FADE TO:

The parts that follow relate to the main story. Initially, event simplification can be

performed using the algorithm in Section 3.7. We keep the parts that do not belong to

any character as narrator speech:

SCENE 1. EXT. A TREE

NARRATOR

A crow was sitting on a branch of a tree with a

piece of cheese in her beak. A fox observed her.

A fox set his wits to discover some way of getting

the cheese. The fox coming under the tree. The fox,

standing under the tree. The fox looked up, and said:

We observe that the narrator speech in this case is inadequate for radio drama. The

speech however can act as a ‘template’ for the author to correct. Additionally, the

author can correct the scene headings and add some ATMOS effects:

SCENE 1. EXT. THE PIECE OF CHEESE

FX: SOUNDSCAPE: A QUIET FOREST

NARRATOR

A crow was sitting on a branch of a tree with a

piece of cheese in her beak. A fox observed her

and started thinking of a way to get this piece

of delicious cheese...

Extracted character speech is added verbatim:
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THE FOX

What a noble bird I see...

Finally, an outro scene is added after a fade-out.

FADE TO:

OUTRO INT. CREDITS

NARRATOR

You were listening to The Crow and the Fox.

A story by Emmanouil Theofanis Chourdakis

MUSIC: PLAY MUSIC THAT ELICITS JOY AND TRUST FOR 5 SECONDS

This generated script can also be parsed back using the formal grammar. A segment of

the parse tree can be seen in Figure 3.1.
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Figure 3.1: A segment of the parse tree.
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