
1

Reinforcement Learning in Sparse-Reward En-
vironments with Hindsight Policy Gradients

Paulo Rauber1, 2, 3, 4

Avinash Ummadisingu2

Filipe Mutz5, 6

Jürgen Schmidhuber1, 2, 3, 7

1IDSIA. Lugano, Switzerland.

2USI. Lugano, Switzerland.

3SUPSI. Lugano, Switzerland.

4QMUL. London, United Kingdom.

5IFES. Serra, Brazil.

6UFES. Serra, Brazil.

7NNAISENSE. Lugano, Switzerland

Keywords: Reinforcement learning, policy gradients, policy search, multi-goal

reinforcement learning, goal-conditional policy, hierarchical reinforcement learning,

sparse rewards, hindsight, counterfactual, generalization, sample efficiency.

Abstract

A reinforcement learning agent that needs to pursue different goals across episodes re-

quires a goal-conditional policy. In addition to their potential to generalize desirable

behavior to unseen goals, such policies may also enable higher-level planning based on

subgoals. In sparse-reward environments, the capacity to exploit information about the

degree to which an arbitrary goal has been achieved while another goal was intended

appears crucial to enable sample efficient learning. However, reinforcement learning

agents have only recently been endowed with such capacity for hindsight. In this paper,

we demonstrate how hindsight can be introduced to policy gradient methods, general-

izing this idea to a broad class of successful algorithms. Our experiments on a diverse

selection of sparse-reward environments show that hindsight leads to a remarkable in-

crease in sample efficiency.

1 Introduction

In a traditional reinforcement learning setting, an agent interacts with an environment

in a sequence of episodes, observing states and acting according to a policy that ideally

maximizes expected cumulative reward. If an agent is required to pursue different goals

across episodes, its goal-conditional policy may be represented by a probability distri-

bution over actions for every combination of state and goal. This distinction between

states and goals is particularly useful when the probability of a state transition given an

action is independent of the goal pursued by the agent.

Learning such goal-conditional behavior has received significant attention in ma-

2

chine learning and robotics, especially because a goal-conditional policy may general-

ize desirable behavior to goals that were never encountered by the agent (Schmidhuber

and Huber, 1990; Da Silva et al., 2012; Kupcsik et al., 2013; Deisenroth et al., 2014;

Schaul et al., 2015; Zhu et al., 2017; Kober et al., 2012; Ghosh et al., 2018; Mankowitz

et al., 2018; Pathak et al., 2018; Schmidhuber, 2019). Consequently, developing goal-

based curricula to facilitate learning has also attracted considerable interest (Fabisch

and Metzen, 2014; Florensa et al., 2017; Sukhbaatar et al., 2018; Srivastava et al., 2013;

Schmidhuber, 2013). In hierarchical reinforcement learning, goal-conditional policies

may enable agents to plan using subgoals, which abstracts the details involved in lower-

level decisions (Oh et al., 2017; Vezhnevets et al., 2017; Kulkarni et al., 2016; Levy

et al., 2019).

In a typical sparse-reward environment, an agent receives a non-zero reward only

upon reaching a goal state. Besides being natural, this task formulation avoids the po-

tentially difficult problem of reward shaping, which often biases the learning process

towards suboptimal behavior (Ng et al., 1999). Unfortunately, sparse-reward environ-

ments remain particularly challenging for traditional reinforcement learning algorithms

(Andrychowicz et al., 2017; Florensa et al., 2017). For example, consider an agent

tasked with traveling between cities. In a sparse-reward formulation, if reaching a de-

sired destination by chance is unlikely, a learning agent will rarely obtain reward sig-

nals. At the same time, it seems natural to expect that an agent will learn how to reach

the cities it visited regardless of its desired destinations.

In this context, the capacity to exploit information about the degree to which an

arbitrary goal has been achieved while another goal was intended is called hindsight.

3

This capacity was recently introduced by Andrychowicz et al. (2017) to off-policy re-

inforcement learning algorithms that rely on experience replay (Lin, 1992). In earlier

work, Karkus et al. (2016) introduced hindsight to policy search based on Bayesian

optimization (Metzen et al., 2015). This work was recently extended by Pinsler et al.

(2019).

In this paper, we demonstrate how hindsight can be introduced to policy gradient

methods (Williams, 1986, 1992; Sutton et al., 1999a), generalizing this idea to a suc-

cessful class of reinforcement learning algorithms (Peters and Schaal, 2008; Duan et al.,

2016).

In contrast to previous work on hindsight, our approach relies on importance sam-

pling (Bishop, 2013). In reinforcement learning, importance sampling has been tradi-

tionally employed in order to efficiently reuse information obtained by earlier policies

during learning (Precup et al., 2000; Peshkin and Shelton, 2002; Jie and Abbeel, 2010;

Thomas et al., 2015; Munos et al., 2016). In comparison, our approach attempts to

efficiently learn about different goals using information obtained by the current policy

for a specific goal. This approach leads to multiple formulations of a hindsight policy

gradient that relate to well-known policy gradient results.

In comparison to conventional (goal-conditional) policy gradient estimators, our

proposed estimators lead to remarkable sample efficiency on a diverse selection of

sparse-reward environments.

4

2 Preliminaries

We denote random variables by upper case letters and assignments to these variables

by corresponding lower case letters. We let Val(X) denote the set of valid assignments

to a random variable X . We also omit the subscript that typically relates a probability

function to random variables when there is no risk of ambiguity. For instance, we may

use p(x) to denote pX(x) and p(y) to denote pY (y).

Consider an agent that interacts with its environment in a sequence of episodes, each

of which lasts for exactly T time steps. The agent receives a goal g ∈ Val(G) at the

beginning of each episode. At every time step t, the agent observes a state st ∈ Val(St),

receives a reward r(st, g) ∈ R, and chooses an action at ∈ Val(At). For simplicity of

notation, suppose that Val(G),Val(St), and Val(At) are finite for every t.

In our setting, a goal-conditional policy defines a probability distribution over ac-

tions for every combination of state and goal. The same policy is used to make decisions

at every time step.

Let τ = s1, a1, s2, a2, . . . , sT−1, aT−1, sT denote a trajectory. We assume that the

probability p(τ | g,θ) of trajectory τ given goal g and a policy parameterized by

θ ∈ Val(Θ) is given by

p(τ | g,θ) = p(s1)
T−1∏
t=1

p(at | st, g,θ)p(st+1 | st, at). (1)

In contrast to a Markov decision process, this formulation allows the probability of

a state transition given an action to change across time steps within an episode. More

importantly, it implicitly states that the probability of a state transition given an action

is independent of the goal pursued by the agent, which we denote by St+1 ⊥⊥ G | St, At.

5

For every τ , g, and θ, we also assume that p(τ | g,θ) is non-zero and differentiable

with respect to θ.

Assuming that G ⊥⊥ Θ, the expected return η(θ) of a policy parameterized by θ is

given by

η(θ) = E

[
T∑
t=1

r(St, G) | θ

]
=
∑
g

p(g)
∑
τ

p(τ | g,θ)
T∑
t=1

r(st, g). (2)

The action-value function is given byQθ
t (s, a, g) = E

[∑T
t′=t+1 r(St′ , g) | St = s, At = a, g,θ

]
,

the value function by V θ
t (s, g) = E

[
Qθ
t (s, At, g) | St = s, g,θ

]
, and the advantage

function by Aθ
t (s, a, g) = Qθ

t (s, a, g)− V θ
t (s, g).

3 Goal-conditional policy gradients

This section presents results for goal-conditional policies that are analogous to well-

known results for conventional policies (Peters and Schaal, 2008). They establish the

foundation for the results presented in the next section. Additional proofs are included

in Appendix A for completeness.

The objective of policy gradient methods is finding policy parameters that achieve

maximum expected return. When combined with Monte Carlo techniques (Bishop,

2013), the following result allows pursuing this objective using gradient-based opti-

mization.

Theorem 3.1 (Intermediary goal-conditional policy gradient). The gradient ∇η(θ) of

the expected return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)

[
T−1∑
t=1

∇ log p(at | st, g,θ)

][
T∑
t=1

r(st, g)

]
. (3)

6

Proof. The partial derivative ∂η(θ)/∂θj of the expected return η(θ) with respect to θj

is given by

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

∂

∂θj
p(τ | g,θ)

T∑
t=1

r(st, g). (4)

The likelihood-ratio trick allows rewriting the previous equation as

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g,θ) ∂
∂θj

log p(τ | g,θ)
T∑
t=1

r(st, g). (5)

Note that

log p(τ | g,θ) = log p(s1) +
T−1∑
t=1

log p(at | st, g,θ) +
T−1∑
t=1

log p(st+1 | st, at). (6)

Therefore,

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g,θ)

[
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

][
T∑
t=1

r(st, g)

]
. (7)

More conveniently, the following result can be obtained by noting that an action

is independent of any previous state given the current state, the goal, and the policy

parameters (see App. A.2).

Theorem 3.2 (Goal-conditional policy gradient). The gradient ∇η(θ) of the expected

return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)
T∑

t′=t+1

r(st′ , g). (8)

In order to reduce the variance of the gradient estimator, the following result allows

employing a so-called baseline (see App. A.4).

7

Theorem 3.3 (Goal-conditional policy gradient, baseline formulation). For every t,θ,

and associated real-valued (baseline) function bθt , the gradient ∇η(θ) of the expected

return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)

[[
T∑

t′=t+1

r(st′ , g)

]
− bθt (st, g)

]
.

(9)

Appendix A.7 presents the constant baselines that minimize the (elementwise) vari-

ance of the corresponding estimator. However, such baselines are usually impractical

to compute (or estimate), and the variance of the estimator may be reduced further by a

baseline function that depends on state and goal. Although generally suboptimal, it is

typical to let the baseline function bθt approximate the value function V θ
t (Greensmith

et al., 2004).

The action-value function is related to the goal-conditional policy gradient by the

following result (see App. A.5).

Lemma 3.1 (Goal-conditional policy gradient, action-value formulation). The gradient

∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)Qθ
t (st, at, g). (10)

Lastly, actor-critic methods may rely on the following result for goal-conditional

policies (see App. A.6).

8

Theorem 3.4 (Goal-conditional policy gradient, advantage formulation). The gradient

∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)Aθ
t (st, at, g). (11)

4 Hindsight policy gradients

This section presents the novel ideas that introduce hindsight to policy gradient meth-

ods. Additional proofs can be found in Appendix B.

Importance sampling is a traditional technique used to obtain estimates related to a

random variable X ∼ p using samples from an arbitrary positive distribution q. This

technique relies on the following equalities:

Ep(X) [f(X)] =
∑
x

p(x)f(x) =
∑
x

q(x)

q(x)
p(x)f(x) = Eq(X)

[
p(X)

q(X)
f(X)

]
. (12)

Suppose that the reward r(s, g) is known for every combination of state s and goal

g, as in previous work on hindsight (Andrychowicz et al., 2017; Karkus et al., 2016;

Pinsler et al., 2019). In that case, it is possible to evaluate a trajectory obtained while

trying to achieve an original goal g′ for an alternative goal g. This information can be

exploited using a central result based on importance sampling.

Theorem 4.1 (Every-decision hindsight policy gradient). For an arbitrary (original)

goal g′, the gradient∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)

T−1∑
t=1

∇ log p(at | st, g,θ)
T∑

t′=t+1

[
T−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(13)

9

Proof. Starting from Theorem 3.2, importance sampling allows rewriting the partial

derivative ∂η(θ)/∂θj as

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g′,θ)
p(τ | g′,θ)

p(τ | g,θ)
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

r(st′ , g).

(14)

Using Equation 1,

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g′,θ)

[
T−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

r(st′ , g).

(15)

In the formulation presented above, every reward is multiplied by the ratio between

the likelihood of the corresponding trajectory under an alternative goal and the likeli-

hood under the original goal (see Eq. 1). Intuitively, every reward should instead be

multiplied by a likelihood ratio that only considers the corresponding trajectory up to

the previous action. This intuition underlies the following important result, named after

an analogous result for action-value functions by Precup et al. (2000).

Theorem 4.2 (Per-decision hindsight policy gradient). For an arbitrary (original) goal

g′, the gradient∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)

T−1∑
t=1

∇ log p(at | st, g,θ)
T∑

t′=t+1

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(16)

Proof. Starting from Eq. 15, the partial derivative ∂η(θ)/∂θj can be rewritten as

∂

∂θj
η(θ) =

∑
g

p(g)

T−1∑
t=1

T∑
t′=t+1

∑
τ

p(τ | g′,θ)

[
T−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
∂

∂θj
log p(at | st, g,θ)r(st′ , g).

(17)

10

If we split every trajectory into states and actions before and after t′, then ∂η(θ)/∂θj
is given by

∑
g

p(g)

T−1∑
t=1

T∑
t′=t+1

∑
s1:t′−1

∑
a1:t′−1

p(s1:t′−1, a1:t′−1 | g′,θ)

t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

 ∂

∂θj
log p(at | st, g,θ)z, (18)

where z is defined by

z =
∑
st′:T

∑
at′:T−1

p(st′:T , at′:T−1 | s1:t′−1, a1:t′−1, g′,θ)

[
T−1∏
k=t′

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(19)

Using Lemma D.2 (see App. D.2) and canceling terms,

z =
∑
st′:T

∑
at′:T−1

p(st′ | st′−1, at′−1)

[
T−1∏
k=t′

p(ak | sk, g,θ)p(sk+1 | sk, ak)

]
r(st′ , g). (20)

Using Lemma D.2 once again,

z =
∑
st′:T

∑
at′:T−1

p(st′:T , at′:T−1 | s1:t′−1, a1:t′−1, g,θ)r(st′ , g). (21)

Using the fact that St′ ⊥⊥ G | S1:t′−1, A1:t′−1,Θ,

z =
∑
st′

r(st′ , g)p(st′ | s1:t′−1, a1:t′−1, g,θ) =
∑
st′

r(st′ , g)p(st′ | s1:t′−1, a1:t′−1, g′,θ).

(22)

Substituting z into Expression 18 and returning to an expectation over trajectories,

∂

∂θj
η(θ) =

∑
τ

p(τ | g′,θ)
∑
g

p(g)

T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(23)

The following lemma allows introducing baselines to hindsight policy gradients (see

App. B.4).

11

Lemma 4.1. For every g′, t,θ, and associated real-valued (baseline) function bθt ,

∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∇ log p(at | st, g,θ)

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
bθt (st, g) = 0. (24)

Appendix B.7 presents the constant baselines that minimize the (elementwise) vari-

ance of the corresponding gradient estimator. By analogy with the conventional prac-

tice, we suggest letting the baseline function bθt approximate the value function V θ
t

instead.

The action-value function is related to the hindsight policy gradient by the following

result (see App. B.5).

Lemma 4.2 (Hindsight policy gradient, action-value formulation). For an arbitrary

goal g′, the gradient∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∇ log p(at | st, g,θ)

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
Qθ
t (st, at, g).

(25)

Importantly, the choice of likelihood ratio in Lemma 4.1 is far from unique. How-

ever, besides leading to straightforward estimation, it also underlies the advantage for-

mulation presented below.

Theorem 4.3 (Hindsight policy gradient, advantage formulation). For an arbitrary

(original) goal g′, the gradient ∇η(θ) of the expected return with respect to θ is given

by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∇ log p(at | st, g,θ)

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
Aθ
t (st, at, g).

(26)

12

Fortunately, the following result allows approximating the advantage under a goal

using a state transition collected while pursuing another goal (see App. D.4).

Theorem 4.4. For every t and θ, the advantage function Aθ
t is given by

Aθ
t (s, a, g) = E

[
r(St+1, g) + V θ

t+1(St+1, g)− V θ
t (s, g) | St = s, At = a

]
. (27)

5 Hindsight gradient estimators

This section details gradient estimation based on the results presented in the previous

section. The corresponding proofs can be found in Appendix C.

Consider a dataset (batch) D = {(τ (i), g(i))}Ni=1 where each trajectory τ (i) is ob-

tained using a policy parameterized by θ in an attempt to achieve a goal g(i) chosen by

the environment.

The following result points to a straightforward estimator based on Theorem 4.2

(see App. C.1).

Theorem 5.1. The per-decision hindsight policy gradient estimator, given by

1

N

N∑
i=1

∑
g

p(g)
T−1∑
t=1

∇ log p(A
(i)
t | S

(i)
t , G(i) = g,θ)

T∑
t′=t+1

[
t′−1∏
k=1

p(A
(i)
k | S

(i)
k , G(i) = g,θ)

p(A
(i)
k | S

(i)
k , G(i),θ)

]
r(S

(i)
t′ , g),

(28)

is a consistent and unbiased estimator of the gradient∇η(θ) of the expected return.

In preliminary experiments, we found that this estimator leads to unstable learning

progress, which is probably due to its potential high variance. The following result,

inspired by weighted importance sampling (Bishop, 2013), represents our attempt to

trade variance for bias (see App. C.2).

13

Theorem 5.2. The weighted per-decision hindsight policy gradient estimator, given by

N∑
i=1

∑
g

p(g)
T−1∑
t=1

∇ log p(A
(i)
t | S

(i)
t , G(i) = g,θ)

T∑
t′=t+1

[∏t′−1
k=1

p(A
(i)
k |S

(i)
k ,G(i)=g,θ)

p(A
(i)
k |S

(i)
k ,G(i),θ)

]
r(S

(i)
t′ , g)∑N

j=1

[∏t′−1
k=1

p(A
(j)
k |S

(j)
k ,G(j)=g,θ)

p(A
(j)
k |S

(j)
k ,G(j),θ)

] ,

(29)

is a consistent estimator of the gradient∇η(θ) of the expected return.

In simple terms, the likelihood ratio for every combination of trajectory, (alternative)

goal, and time step is normalized across trajectories by this estimator. In Appendix

C.3, we present a result that enables the corresponding consistency-preserving weighted

baseline.

Consider a set G(i) = {g ∈ Val(G) | exists a t such that r(s(i)t , g) 6= 0} composed

of so-called active goals during the i-th episode. The feasibility of the proposed esti-

mators relies on the fact that only active goals correspond to non-zero terms inside the

expectation over goals in Expressions 28 and 29. In many natural sparse-reward en-

vironments, active goals will correspond directly to states visited during episodes (for

instance, the cities visited while trying to reach other cities), which enables computing

said expectation exactly when the goal distribution is known.

The proposed estimators have remarkable properties that differentiate them from

previous (weighted) importance sampling estimators for off-policy learning. For in-

stance, although a trajectory is often more likely under the original goal than under an

alternative goal, in policies with strong optimal substructure, a high probability of a

trajectory between the state a and the goal (state) c that goes through the state b may

naturally allow for a high probability of the corresponding (sub)trajectory between the

state a and the goal (state) b. In other cases, the (unnormalized) likelihood ratios may

14

become very small for some (alternative) goals after a few time steps across all trajec-

tories. After normalization, in the worst case, this may even lead to equivalent ratios

for such goals for a given time step across all trajectories. In any case, it is important to

note that only likelihood ratios associated to active goals for a given episode will affect

the gradient estimate. Additionally, an original goal will always have (unnormalized)

likelihood ratios equal to one for the corresponding episode.

Under mild additional assumptions, the proposed estimators also allow using a

dataset containing goals chosen arbitrarily (instead of goals drawn from the goal distri-

bution). Although this feature is not required by our experiments, we believe that it may

be useful to circumvent catastrophic forgetting during curriculum learning (McCloskey

and Cohen, 1989; Kirkpatrick et al., 2017).

6 Experiments

This section reports results of an empirical comparison between goal-conditional pol-

icy gradient estimators and hindsight policy gradient estimators.1 Because there are

no well-established sparse-reward environments intended to test agents under multiple

goals, our experiments focus on our own selection of environments, which is described

in Section 6.1. Section 6.2 details the implementation of estimators, policies, and base-

lines. Section 6.3 documents our experimental protocol. Section 6.4 analyses the results

of the corresponding experiments. Unabridged results are presented in Section 6.5. Sec-

tion 6.6 provides a supplementary empirical study of likelihood ratios, and Section 6.7

1An open-source implementation of these estimators is available on http://paulorauber.

com/hpg.

15

contains an empirical comparison with hindsight experience replay.

6.1 Environments

The environments presented in this section are diverse in terms of stochasticity, state

space dimensionality and size, relationship between goals and states, and number of

actions. In every one of these environments, the agent receives the remaining number

of time steps plus one as a reward for reaching the goal state, which also ends the

episode. In every other situation, the agent receives no reward.

Bit flipping environment. The agent starts every episode in the same state (0, repre-

sented by k bits), and its goal is to reach a randomly chosen state. The actions allow the

agent to toggle (flip) each bit individually. The maximum number of time steps is k+1.

Despite its apparent simplicity, this environment is an ideal testbed for reinforcement

learning algorithms intended to deal with sparse rewards, since obtaining a reward by

chance is unlikely even for a relatively small k. Andrychowicz et al. (2017) employed

a similar environment to evaluate their hindsight approach.

Grid world environments. The agent starts every episode in a (possibly random)

position on an 11 × 11 grid, and its goal is to reach a randomly chosen (non-initial)

position. Some of the positions on the grid may contain impassable obstacles (walls).

The actions allow the agent to move in the four cardinal directions. Moving towards

walls causes the agent to remain in its current position. A state or goal is represented by

a pair of integers between 0 and 10. The maximum number of time steps is 32. In the

empty room environment, the agent starts every episode in the upper left corner of the

16

grid, and there are no walls. In the four rooms environment (Sutton et al., 1999b), the

agent starts every episode in one of the four corners of the grid (see Fig. 1). There are

walls that partition the grid into four rooms, such that each room provides access to two

other rooms through single openings (doors). With probability 0.2, the action chosen

by the agent is ignored and replaced by a random action.

Figure 1: Four rooms. Figure 2: Ms. Pac-man. Figure 3: FetchPush.

Ms. Pac-man environment. In this variant of the homonymous game for ATARI

2600 (see Fig. 2), the agent starts every episode close to the center of the map, and its

goal is to reach a randomly chosen (non-initial) position on a 14 × 19 grid defined on

the game screen. The actions allow the agent to move in the four cardinal directions

for 13 game ticks. A state is represented by the result of preprocessing a sequence of

game screens (images) as described in Section 6.2. A goal is represented by a pair of

integers. The maximum number of time steps is 28, although an episode will also end

if the agent is captured by an enemy. In comparison to the grid world environments

considered in the previous section, this environment is additionally challenging due to

its high-dimensional states and the presence of enemies.

17

FetchPush environment. This is a variant of the environment recently proposed by

Plappert et al. (2018) to assess goal-conditional policy learning algorithms in a chal-

lenging task of practical interest (see Fig. 3). In a simulation, a robotic arm with seven

degrees of freedom is required to push a randomly placed object (block) towards a ran-

domly chosen position. The arm starts every episode in the same configuration. In

contrast to the original environment, the actions in our variant allow increasing the de-

sired velocity of the gripper along each of two orthogonal directions by ±0.1 or ±1,

leading to a total of eight actions. A state is represented by a 28-dimensional real vector

that contains the following information: positions of the gripper and block; rotational

and positional velocities of the gripper and block; relative position of the block with

respect to the gripper; state of the gripper; and current desired velocity of the gripper

along each direction. A goal is represented by three coordinates. The maximum number

of time steps is 50.

6.2 Implementation

Importantly, the weighted per-decision hindsight policy gradient estimator used in our

experiments (HPG) does not precisely correspond to Expression 29. Firstly, the orig-

inal estimator requires a constant number of time steps T , which would often require

the agent to act beyond the end of an episode in the environments that we consider.

Secondly, although it is feasible to compute Expression 29 exactly when the goal dis-

tribution is known (as explained in Sec. 5), we sometimes subsample the sets of active

goals per episode. Furthermore, when including a baseline that approximates the value

function, we again consider only active goals, which by itself generally results in an in-

18

consistent estimator (HPG+B). As will become evident in the following sections, these

compromised estimators still lead to remarkable sample efficiency.

In every experiment, a policy is represented by a feedforward neural network with a

softmax output layer. The input to such a policy is a pair composed of state and goal. A

baseline function is represented by a feedforward neural network with a single (linear)

output neuron. The input to such a baseline function is a triple composed of state,

goal, and time step. The baseline function is trained to approximate the value function

using the mean squared (one-step) temporal difference error (Sutton and Barto, 1998).

Parameters are updated using Adam (Kingma and Ba, 2014). The networks are given

by the following.

Bit flipping environments and grid world environments. Both policy and baseline

networks have two hidden layers, each with 256 hyperbolic tangent units. Every weight

is initially drawn from a Gaussian distribution with mean 0 and standard deviation 0.01

(and redrawn if far from the mean by two standard deviations), and every bias is initially

zero.

Ms. Pac-man environment. The policy network is represented by a convolutional

neural network. The network architecture is given by a convolutional layer with 32

filters (8×8, stride 4); convolutional layer with 64 filters (4×4, stride 2); convolutional

layer with 64 filters (3 × 3, stride 1); and three fully-connected layers, each with 256

units. Every unit uses a hyperbolic tangent activation function. Every weight is initially

set using variance scaling (Glorot and Bengio, 2010), and every bias is initially zero.

These design decisions are similar to the ones made by Mnih et al. (2015).

19

A sequence of images obtained from the Arcade Learning Environment (Bellemare

et al., 2013) is preprocessed as follows. Individually for each color channel, an el-

ementwise maximum operation is employed between two consecutive images to re-

duce rendering artifacts. Such 210 × 160 × 3 preprocessed image is converted to

grayscale, cropped, and rescaled into an 84 × 84 image xt. A sequence of images

xt−12, xt−8, xt−4, xt obtained in this way is stacked into an 84 × 84 × 4 image, which

is an input to the policy network (recall that each action is repeated for 13 game ticks).

The goal information is concatenated with the flattened output of the last convolutional

layer.

FetchPush environment. The policy network has three hidden layers, each with 256

hyperbolic tangent units. Every weight is initially set using variance scaling (Glorot

and Bengio, 2010), and every bias is initially zero.

6.3 Evaluation

We assess sample efficiency through learning curves and average performance scores,

which are obtained as follows. After collecting a number of batches (composed of

trajectories and goals), each of which enables one step of gradient ascent, an agent un-

dergoes evaluation. During evaluation, the agent interacts with the environment for a

number of episodes, selecting actions with maximum probability according to its policy.

A learning curve shows the average return obtained during each evaluation step, aver-

aged across multiple runs (independent learning procedures). The curves presented in

this text also include a 95% bootstrapped confidence interval. The average performance

20

is given by the average return across evaluation steps, averaged across runs. During

both training and evaluation, goals are drawn uniformly at random. Note that there is

no held-out set of goals for evaluation, since we are interested in evaluating sample

efficiency instead of generalization.

For every combination of environment and batch size, grid search is used to select

hyperparameters for each estimator according to average performance scores (after the

corresponding standard deviation across runs is subtracted, as suggested by Duan et al.

(2016)). Definitive results are obtained by using the best hyperparameters found for

each estimator in additional runs. In most cases, we present definitive results for small

(2) and medium (16) batch sizes.

Tables 1, 2, and 3 document the experimental settings. The number of runs, training

batches, and batches between evaluations are reported separately for hyperparameter

search and definitive runs. The number of training batches is adapted according to

how soon each estimator leads to apparent convergence. Note that it is very difficult

to establish this setting before hyperparameter search. The number of batches between

evaluations is adapted so that there are 100 evaluation steps in total.

Other settings include the sets of policy and baseline learning rates under consid-

eration for hyperparameter search, and the number of active goals subsampled per

episode. In Tables 1, 2, and 3, R1 = {α × 10−k | α ∈ {1, 5} and k ∈ {2, 3, 4, 5}}

andR2 = {β × 10−5 | β ∈ {1, 2.5, 5, 7.5, 10}}.

As already mentioned, the definitive runs use the best combination of hyperparame-

ters (learning rates) found for each estimator. Every setting was carefully chosen during

preliminary experiments to ensure that the best result for each estimator is representa-

21

tive. In particular, the best performing learning rates rarely lie on the extrema of the

corresponding search range. In the single case where the best performing learning rate

found by hyperparameter search for a goal-conditional policy gradient estimator was

such an extreme value (FetchPush, for a small batch size), evaluating one additional

learning rate lead to decreased average performance.

22

Ta
bl

e
1:

E
xp

er
im

en
ta

ls
et

tin
gs

fo
rt

he
bi

tfl
ip

pi
ng

en
vi

ro
nm

en
ts

B
it

fli
pp

in
g

(8
bi

ts
)

B
it

fli
pp

in
g

(1
6

bi
ts

)

B
at

ch
si

ze
2

B
at

ch
si

ze
16

B
at

ch
si

ze
2

B
at

ch
si

ze
16

R
un

s
(d

efi
ni

tiv
e)

20
20

20
20

Tr
ai

ni
ng

ba
tc

he
s

(d
efi

ni
tiv

e)
50

00
14

00
15

00
0

10
00

B
at

ch
es

be
tw

ee
n

ev
al

ua
tio

ns
(d

efi
ni

tiv
e)

50
14

15
0

10

R
un

s
(s

ea
rc

h)
10

10
10

10

Tr
ai

ni
ng

ba
tc

he
s

(s
ea

rc
h)

40
00

14
00

40
00

10
00

B
at

ch
es

be
tw

ee
n

ev
al

ua
tio

ns
(s

ea
rc

h)
40

14
40

10

Po
lic

y
le

ar
ni

ng
ra

te
s

R
1

R
1

R
1

R
1

B
as

el
in

e
le

ar
ni

ng
ra

te
s

R
1

R
1

R
1

R
1

E
pi

so
de

s
pe

re
va

lu
at

io
n

25
6

25
6

25
6

25
6

M
ax

im
um

ac
tiv

e
go

al
s

pe
re

pi
so

de
∞

∞
∞

∞

23

Ta
bl

e
2:

E
xp

er
im

en
ta

ls
et

tin
gs

fo
rt

he
gr

id
w

or
ld

en
vi

ro
nm

en
ts

E
m

pt
y

ro
om

Fo
ur

ro
om

s

B
at

ch
si

ze
2

B
at

ch
si

ze
16

B
at

ch
si

ze
2

B
at

ch
si

ze
16

R
un

s
(d

efi
ni

tiv
e)

20
20

20
20

Tr
ai

ni
ng

ba
tc

he
s

(d
efi

ni
tiv

e)
22

00
20

0
10

00
0

17
00

B
at

ch
es

be
tw

ee
n

ev
al

ua
tio

ns
(d

efi
ni

tiv
e)

22
2

10
0

17

R
un

s
(s

ea
rc

h)
10

10
10

10

Tr
ai

ni
ng

ba
tc

he
s

(s
ea

rc
h)

25
00

80
0

10
00

0
35

00

B
at

ch
es

be
tw

ee
n

ev
al

ua
tio

ns
(s

ea
rc

h)
25

8
10

0
35

Po
lic

y
le

ar
ni

ng
ra

te
s

R
1

R
1

R
1

R
1

B
as

el
in

e
le

ar
ni

ng
ra

te
s

R
1

R
1

R
1

R
1

E
pi

so
de

s
pe

re
va

lu
at

io
n

25
6

25
6

25
6

25
6

M
ax

im
um

ac
tiv

e
go

al
s

pe
re

pi
so

de
∞

∞
∞

∞

24

Ta
bl

e
3:

E
xp

er
im

en
ta

ls
et

tin
gs

fo
rt

he
M

s.
Pa

c-
m

an
an

d
Fe

tc
hP

us
h

en
vi

ro
nm

en
ts

M
s.

Pa
c-

m
an

Fe
tc

hP
us

h

B
at

ch
si

ze
2

B
at

ch
si

ze
16

B
at

ch
si

ze
2

B
at

ch
si

ze
16

R
un

s
(d

efi
ni

tiv
e)

10
10

10
10

Tr
ai

ni
ng

ba
tc

he
s

(d
efi

ni
tiv

e)
40

00
0

12
50

0
40

00
0

12
50

0

B
at

ch
es

be
tw

ee
n

ev
al

ua
tio

ns
(d

efi
ni

tiv
e)

40
0

12
5

40
0

12
5

R
un

s
(s

ea
rc

h)
5

5
5

5

Tr
ai

ni
ng

ba
tc

he
s

(s
ea

rc
h)

40
00

0
12

00
0

40
00

0
15

00
0

B
at

ch
es

be
tw

ee
n

ev
al

ua
tio

ns
(s

ea
rc

h)
80

0
12

0
80

0
30

0

Po
lic

y
le

ar
ni

ng
ra

te
s

R
2

R
2

R
2

R
2

E
pi

so
de

s
pe

re
va

lu
at

io
n

24
0

24
0

51
2

51
2

M
ax

im
um

ac
tiv

e
go

al
s

pe
re

pi
so

de
∞

3
∞

3

25

6.4 Analysis

This section summarizes the unabridged results presented in Section 6.5.

Bit flipping environments. Figure 4 presents the learning curves for k = 8. Goal-

conditional policy gradient estimators with and without an approximate value function

baseline (GCPG+B and GCPG, respectively) obtain excellent policies and lead to com-

parable sample efficiency. HPG+B obtains excellent policies more than 400 batches

earlier than these estimators, but its policies degrade upon additional training. Addi-

tional experiments strongly suggest that the main cause of this issue is the fact that the

value function baseline is still very poorly fit by the time that the policy exhibits desir-

able behavior. In comparison, HPG obtains excellent policies as early as HPG+B, but

its policies remain remarkably stable upon additional training.

The learning curves for k = 16 are presented in Figure 5. Clearly, both GCPG

and GCPG+B are unable to obtain policies that perform better than chance, which is

explained by the fact that they rarely incorporate reward signals during training. Con-

firming the importance of hindsight, HPG leads to stable and sample efficient learning.

Although HPG+B also obtains excellent policies, they deteriorate upon additional train-

ing.

Similar results can be observed for a small batch size (see Sec. 6.5.3). The average

performance results documented in Section 6.5.1 confirm that HPG leads to remarkable

sample efficiency. Importantly, Sections 6.5.4 and 6.5.5 present hyperparameter sen-

sitivity plots suggesting that HPG is less sensitive to hyperparameter settings than the

other estimators. A hyperparameter sensitivity plot displays the average performance

26

achieved by each hyperparameter setting (sorted from best to worst along the horizontal

axis). Section 6.5.5 also documents an ablation study where the likelihood ratios are re-

moved from HPG, which notably promotes increased hyperparameter sensitivity. This

study confirms the usefulness of the correction prescribed by importance sampling.

Grid world environments. Figure 6 shows the learning curves for the empty room

environment. Clearly, every estimator obtains excellent policies, although HPG and

HPG+B improve sample efficiency by at least 200 batches. The learning curves for the

four rooms environment are presented in Figure 7. In this surprisingly challenging en-

vironment, every estimator obtains unsatisfactory policies. However, it is still clear that

HPG and HPG+B improve sample efficiency. In contrast to the experiments presented

in the previous section, HPG+B does not give rise to instability, which we attribute

to easier value function estimation. Similar results can be observed for a small batch

size (see Sec. 6.5.3). HPG achieves the best average performance in every grid world

experiment except for a single case, where the best average performance is achieved

by HPG+B (see Sec. 6.5.1). The hyperparameter sensitivity plots presented in Sec-

tions 6.5.4 and 6.5.5 once again suggest that HPG is less sensitive to hyperparameter

choices, and that ignoring likelihood ratios promotes increased sensitivity (at least in

the four rooms environment).

Ms. Pac-man environment. Figure 8 presents the learning curves for a medium batch

size. Approximate value function baselines are excluded from this experiment due to

the significant cost of systematic hyperparameter search. Although HPG obtains better

policies during early training, GCPG obtains better final policies. However, for such

27

a medium batch size, only 3 active goals per episode (out of potentially 28) are sub-

sampled for HPG. Although this harsh subsampling brings computational efficiency, it

also appears to handicap the estimator. This hypothesis is supported by the fact that

HPG outperforms GCPG for a small batch size, when all active goals are used (see

Secs. 6.5.1 and 6.5.3). Policies obtained using each estimator are illustrated by videos

included on the project website.

FetchPush environment. Figure 9 presents the learning curves for a medium batch

size. HPG obtains good policies after a reasonable number of batches, in sharp contrast

to GCPG. For such a medium batch size, only 3 active goals per episode (out of po-

tentially 50) are subsampled for HPG, showing that subsampling is a viable alternative

to reduce the computational cost of hindsight. Similar results are observed for a small

batch size, when all active goals are used (see Secs. 6.5.1 and 6.5.3). Policies obtained

using each estimator are illustrated by videos included on the project website.

28

6.5 Results

6.5.1 Average performance results

Table 4: Definitive average performance results

Bit flipping (8 bits) Bit flipping (16 bits)

Batch size 2 Batch size 16 Batch size 2 Batch size 16

HPG 4.60± 0.06 4.72± 0.02 7.11± 0.12 7.39± 0.24

GCPG 1.81± 0.61 3.44± 0.30 0.00± 0.00 0.00± 0.00

HPG+B 3.40± 0.46 4.04± 0.10 5.35± 0.40 6.09± 0.29

GCPG+B 0.64± 0.58 3.31± 0.58 0.00± 0.00 0.00± 0.00

Empty room Four rooms

Batch size 2 Batch size 16 Batch size 2 Batch size 16

HPG 20.22± 0.37 16.83± 0.84 7.38± 0.16 8.75± 0.12

GCPG 12.54± 1.01 10.96± 1.24 4.64± 0.57 6.12± 0.54

HPG+B 19.90± 0.29 17.12± 0.44 7.28± 1.28 8.08± 0.18

GCPG+B 12.69± 1.16 10.68± 1.36 4.26± 0.55 6.61± 0.49

Ms. Pac-man FetchPush

Batch size 2 Batch size 16 Batch size 2 Batch size 16

HPG 6.58± 1.96 6.80± 0.64 6.10± 0.34 13.15± 0.40

GCPG 5.29± 1.67 6.92± 0.58 3.48± 0.15 4.42± 0.28

29

6.5.2 Learning curves (batch size 16)

20 40 60 80 100
evaluation step

0

1

2

3

4

5

av
er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 4: Bit flipping (k = 8).

20 40 60 80 100
evaluation step

0

2

4

6

8

av
er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 5: Bit flipping (k = 16).

20 40 60 80 100
evaluation step

0

5

10

15

20

av
er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 6: Empty room.

20 40 60 80 100
evaluation step

2

4

6

8

10
av

er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 7: Four rooms.

20 40 60 80 100
evaluation step

0

2

4

6

8

10

av
er
ag

e
re
tu
rn

HPG
GCPG

Figure 8: Ms. Pac-man.

20 40 60 80 100
evaluation step

2

4

6

8

10

12

14

16

18

av
er
ag

e
re
tu
rn

HPG
GCPG

Figure 9: FetchPush.

30

6.5.3 Learning curves (batch size 2)

20 40 60 80 100
evaluation step

0

1

2

3

4

5

av
er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 10: Bit flipping (k = 8).

20 40 60 80 100
evaluation step

0

2

4

6

8

av
er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 11: Bit flipping (k = 16).

20 40 60 80 100
evaluation step

0

5

10

15

20

av
er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 12: Empty room.

20 40 60 80 100
evaluation step

2

4

6

8

10
av

er
ag

e
re
tu
rn

HPG
GCPG
HPG+B
GCPG+B

Figure 13: Four rooms.

20 40 60 80 100
evaluation step

2

4

6

8

10

av
er
ag

e
re
tu
rn

HPG
GCPG

Figure 14: Ms. Pac-man.

20 40 60 80 100
evaluation step

4

6

8

10

12

av
er
ag

e
re
tu
rn

HPG
GCPG

Figure 15: FetchPush.

31

6.5.4 Hyperparameter sensitivity plots (batch size 16)

hyperparameter setting (best to worst)
0

1

2

3

4

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B

Figure 16: Bit flipping (k = 8).

hyperparameter setting (best to worst)

0

1

2

3

4

5

6

7

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B

Figure 17: Bit flipping (k = 16).

hyperparameter setting (best to worst)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B

Figure 18: Empty room.

hyperparameter setting (best to worst)
1

2

3

4

5

6

7

8

9

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B

Figure 19: Four rooms.

hyperparameter setting (best to worst)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG

Figure 20: Ms. Pac-man.

hyperparameter setting (best to worst)

4

6

8

10

12

14

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG

Figure 21: FetchPush.

32

6.5.5 Hyperparameter sensitivity plots (batch size 2)

hyperparameter setting (best to worst)
0

1

2

3

4

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B
HPG (ablated LR)
HPG+B (ablated LR)

Figure 22: Bit flipping (k = 8).

hyperparameter setting (best to worst)

0

1

2

3

4

5

6

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B
HPG (ablated LR)
HPG+B (ablated LR)

Figure 23: Bit flipping (k = 16).

hyperparameter setting (best to worst)
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B
HPG (ablated LR)
HPG+B (ablated LR)

Figure 24: Empty room.

hyperparameter setting (best to worst)
1

2

3

4

5

6

7

8

9

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG
HPG+B
GCPG+B
HPG (ablated LR)
HPG+B (ablated LR)

Figure 25: Four rooms.

hyperparameter setting (best to worst)

1

2

3

4

5

6

7

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG

Figure 26: Ms. Pac-man.

hyperparameter setting (best to worst)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

av
er
ag

e
pe

rfo
rm

an
ce

HPG
GCPG

Figure 27: FetchPush.

33

6.6 Likelihood ratio study

This section presents a study of the active (normalized) likelihood ratios computed by

agents during training. A likelihood ratio is considered active if and only if it multiplies

a non-zero reward (see Expression 29). Note that only these likelihood ratios affect

gradient estimates based on HPG.

This study is conveyed through plots that encode the distribution of active likelihood

ratios computed during training, individually for each time step within an episode. Each

plot corresponds to an agent that employs HPG and obtains the highest definitive av-

erage performance for a given environment (Figs. 28-33). Note that the length of the

largest bar for a given time step is fixed to aid visualization.

The most important insight provided by these plots is that likelihood ratios behave

very differently across environments, even for equivalent time steps (for instance, com-

pare bit flipping environments to grid world environments). In contrast, after the first

time step, the behavior of likelihood ratios changes slowly across time steps within the

same environment. In any case, alternative goals have a significant effect on gradient

estimates, which agrees with the results presented in the previous sections.

1 2 3 4 5 6 7 8
time step

0.0

0.2

0.4

0.6

0.8

1.0

(n
or

m
al
iz
ed

)l
ik
el
ih
oo

d
ra

tio
hi
st
og

ra
m

Figure 28: Bit flipping (k = 8, batch size 16).

34

1 3 5 7 9 11 13 16
time step

0.0

0.2

0.4

0.6

0.8

1.0

(n
or

m
al
iz
ed

)l
ik
el
ih
oo

d
ra

tio
hi
st
og

ra
m

Figure 29: Bit flipping (k = 16, batch size 16).

1 5 9 13 18 22 26 31
time step

0.0

0.2

0.4

0.6

0.8

1.0

(n
or

m
al
iz
ed

)l
ik
el
ih
oo

d
ra

tio
hi
st
og

ra
m

Figure 30: Empty room (batch size 16).

1 5 9 13 18 22 26 31
time step

0.0

0.2

0.4

0.6

0.8

1.0

(n
or

m
al
iz
ed

)l
ik
el
ih
oo

d
ra

tio
hi
st
og

ra
m

Figure 31: Four rooms (batch size 16).

1 4 8 12 15 19 23 27
time step

0.0

0.2

0.4

0.6

0.8

1.0

(n
or

m
al
iz
ed

)l
ik
el
ih
oo

d
ra

tio
hi
st
og

ra
m

Figure 32: Ms. Pac-man (batch size 16).

35

1 7 14 21 28 35 42 49
time step

0.0

0.2

0.4

0.6

0.8

1.0

(n
or

m
al
iz
ed

)l
ik
el
ih
oo

d
ra

tio
hi
st
og

ra
m

Figure 33: FetchPush (batch size 16).

36

6.7 Hindsight experience replay study

This section documents an empirical comparison between goal-conditional policy gra-

dients (GCPG), hindsight policy gradients (HPG), deep Q-networks (Mnih et al., 2015,

DQN), and a combination of DQN and hindsight experience replay (Andrychowicz

et al., 2017, DQN+HER).

Experience replay. Our implementations of both DQN and DQN+HER are based

on OpenAI Baselines (Dhariwal et al., 2017), and use mostly the same hyperparameters

that Andrychowicz et al. (2017) used in their experiments on environments with discrete

action spaces, all of which resemble our bit flipping environments. The only notable

differences in our implementations are the lack of both Polyak-averaging and temporal

difference target clipping.

Concretely, a cycle begins when an agent collects a number of episodes (16) by fol-

lowing an ε-greedy policy derived from its deep Q-network (ε = 0.2). The correspond-

ing transitions are included in a replay buffer, which contains at most 106 transitions.

In the case of DQN+HER, hindsight transitions derived from a final strategy are also

included in this replay buffer (Andrychowicz et al., 2017, Sec. 4.5). Completing the

cycle, for a total of 40 different batches, a batch composed of 128 transitions chosen

at random from the replay buffer is used to define a loss function and allow one step

of gradient-based minimization. The targets required to define these loss functions are

computed using a copy of the deep Q-network from the start of the corresponding cy-

cle. Parameters are updated using Adam (Kingma and Ba, 2014). A discount factor

of γ = 0.98 is used, and seems necessary to improve the stability of both DQN and

37

DQN+HER.

Network architectures. In every experiment, the deep Q-network is implemented

by a feedforward neural network with a linear output neuron corresponding to each

action. The input to such a network is a triple composed of state, goal, and time step.

The network architectures are the same as those described in Section 6.2, except that

every weight is initially set using variance scaling (Glorot and Bengio, 2010), and all

hidden layers use rectified linear units (Nair and Hinton, 2010). For the Ms. Pac-

man environment, the time step information is concatenated with the flattened output of

the last convolutional layer (together with the goal information). In comparison to the

architecture employed by Andrychowicz et al. (2017) for environments with discrete

action spaces, our architectures have one or two additional hidden layers (besides the

convolutional architecture used for Ms. Pac-man).

Experimental protocol. The experimental protocol employed in our comparison is

very similar to the one described in Section 6.3. Each agent is evaluated periodically,

after a number of cycles that depends on the environment. During this evaluation, the

agent collects a number of episodes by following a greedy policy derived from its deep

Q-network.

For each environment, grid search is used to select the learning rates for both DQN

and DQN+HER according to average performance scores (after the corresponding stan-

dard deviation across runs is subtracted, as described in Section 6.3). The candidate

sets of learning rates are the following. Bit flipping and grid world environments:

{α × 10−k | α ∈ {1, 5} and k ∈ {2, 3, 4, 5}}, FetchPush: {10−2, 5 × 10−3, 10−3, 5 ×

38

10−4, 10−4}, Ms. Pac-man: {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5}. These sets were

carefully chosen such that the best performing learning rates do not lie on their extrema.

Definitive results for a given environment are obtained by using the best hyperpa-

rameters found for each method in additional runs. These definitive results are directly

comparable to our previous results for GCPG and HPG (batch size 16), since every

method will have interacted with the environment for the same number of episodes be-

fore each evaluation step. For each environment, the number of runs, the number of

training batches (cycles), the number of batches (cycles) between evaluations, and the

number of episodes per evaluation step are the same as those listed in Tables 1, 2, and

3.

Analysis. The definitive results for the different environments are represented by

learning curves (Figs. 34-39, Pg. 42). In the bit flipping environment for k = 8

(Figure 34), HPG and DQN+HER lead to equivalent sample efficiency, while GCPG

lags far behind and DQN is completely unable to learn. In the bit flipping environment

for k = 16 (Figure 35), HPG surpasses DQN+HER in sample efficiency by a small

margin, while both GCPG and DQN are completely unable to learn. In the empty room

environment (Figure 36), HPG is arguably the most sample efficient method, although

DQN+HER is more stable upon obtaining a good policy. GCPG eventually obtains a

good policy, whereas DQN exhibits instability. In the four rooms environment (Figure

37), DQN+HER outperforms all other methods by a large margin. Although DQN takes

much longer to obtain good policies, it would likely surpass both HPG and GCPG given

additional training cycles. In the Ms. Pac-man environment (Figure 38), DQN+HER

39

once again outperforms all other methods, which achieve equivalent sample efficiency

(although DQN appears unstable by the end of training). In the FetchPush environment

(Figure 39), HPG dramatically outperforms all other methods. Both DQN+HER and

DQN are completely unable to learn, while GCPG appears to start learning by the end

of the training process. Note that active goals are harshly subsampled to increase the

computational efficiency of HPG for both Ms. Pac-man and FetchPush (see Sec. 6.3

and Sec. 6.4).

Discussion. Our results suggest that the decision between applying HPG or DQN+HER

in a particular sparse-reward environment requires experimentation. In contrast, the de-

cision to apply hindsight was always successful.

Note that we have not employed heuristics that are known to sometimes increase

the performance of policy gradient methods (such as entropy bonuses, reward scal-

ing, learning rate annealing, and simple statistical baselines) to avoid introducing con-

founding factors. We believe that such heuristics would allow both GCPG and HPG

to achieve good results in both the four rooms environment and Ms. Pac-man. Fur-

thermore, whereas hindsight experience replay is directly applicable to state-of-the-art

techniques, our work can probably benefit from being extended to state-of-the-art policy

gradient approaches, which we intend to explore in future work. Similarly, we believe

that additional heuristics and careful hyperparameter settings would allow DQN+HER

to achieve good results in the FetchPush environment. This is evidenced by the fact that

Andrychowicz et al. (2017) achieve good results using the deep deterministic policy

gradient (Lillicrap et al., 2016, DDPG) in a similar environment (with a continuous ac-

40

tion space and a different reward function). The empirical comparisons between either

GCPG and HPG or DQN and DQN+HER are comparatively more conclusive, since the

similarities between the methods minimize confounding factors.

Regardless of these empirical results, policy gradient approaches constitute one of

the most important classes of model-free reinforcement learning methods, which by

itself warrants studying how they can benefit from hindsight. Our approach is also

complementary to previous work, since it is entirely possible to combine a critic trained

by hindsight experience replay with an actor that employs hindsight policy gradients.

Although hindsight experience replay does not require a correction analogous to im-

portance sampling, indiscriminately adding hindsight transitions to the replay buffer is

problematic, which has mostly been tackled by heuristics (Andrychowicz et al., 2017,

Sec. 4.5). In contrast, our approach seems to benefit from incorporating all available

information about goals at every update, which also avoids the need for a replay buffer.

41

20 40 60 80 100
evaluation step

0

1

2

3

4

5

av
er
ag
e
re
tu
rn

HPG
GCPG
DQN+HER
DQN

Figure 34: Bit flipping (k = 8).

20 40 60 80 100
evaluation step

0

2

4

6

8

av
er
ag
e
re
tu
rn

HPG
GCPG
DQN+HER
DQN

Figure 35: Bit flipping (k = 16).

20 40 60 80 100
evaluation step

0

5

10

15

20

av
er
ag
e
re
tu
rn

HPG
GCPG
DQN+HER
DQN

Figure 36: Empty room.

20 40 60 80 100
evaluation step

2

4

6

8

10

12

14

16

av
er
ag
e
re
tu
rn

HPG
GCPG
DQN+HER
DQN

Figure 37: Four rooms.

20 40 60 80 100
evaluation step

0

2

4

6

8

10

12

14

16

av
er
ag
e
re
tu
rn

HPG
GCPG
DQN+HER
DQN

Figure 38: Ms. Pac-man.

20 40 60 80 100
evaluation step

2

4

6

8

10

12

14

16

18

av
er
ag
e
re
tu
rn HPG

GCPG
DQN+HER
DQN

Figure 39: FetchPush.

42

7 Conclusion

We introduced techniques that enable learning goal-conditional policies using hind-

sight. In this context, hindsight refers to the capacity to exploit information about the

degree to which an arbitrary goal has been achieved while another goal was intended.

Prior to our work, hindsight has been limited to off-policy reinforcement learning al-

gorithms that rely on experience replay (Andrychowicz et al., 2017) and policy search

based on Bayesian optimization (Karkus et al., 2016; Pinsler et al., 2019).

In addition to the fundamental hindsight policy gradient, our technical results in-

clude its baseline and advantage formulations. These results are based on a self-contained

goal-conditional policy framework that is also introduced in this text. Besides the

straightforward estimator built upon the per-decision hindsight policy gradient, we also

presented a consistent estimator inspired by weighted importance sampling, together

with the corresponding baseline formulation. A variant of this estimator leads to re-

markable comparative sample efficiency on a diverse selection of sparse-reward en-

vironments, especially in cases where direct reward signals are extremely difficult to

obtain. This crucial feature allows natural task formulations that require just trivial

reward shaping.

The main drawback of hindsight policy gradient estimators appears to be their com-

putational cost, which is directly related to the number of active goals in a batch. This

issue may be mitigated by subsampling active goals, which generally leads to incon-

sistent estimators. Fortunately, our experiments suggest that this is a viable alternative.

Note that the success of hindsight experience replay also depends on an active goal sub-

sampling heuristic (Andrychowicz et al., 2017, Sec. 4.5). The inconsistent hindsight

43

policy gradient estimator with a value function baseline employed in our experiments

sometimes leads to unstable learning, which is likely related to the difficulty of fitting

such a value function without hindsight. This hypothesis is consistent with the fact

that such instability is observed only in the most extreme examples of sparse-reward

environments. Although our preliminary experiments in using hindsight to fit a value

function baseline have been successful, this may be accomplished in several ways, and

requires a careful study of its own. Further experiments are also required to evaluate

hindsight on dense-reward environments.

There are many possibilities for future work besides integrating hindsight policy

gradients into systems that rely on goal-conditional policies: deriving additional esti-

mators; implementing and evaluating hindsight (advantage) actor-critic methods; as-

sessing whether hindsight policy gradients can successfully circumvent catastrophic

forgetting during curriculum learning of goal-conditional policies; approximating the

reward function to reduce required supervision; analysing the variance of the proposed

estimators; studying the impact of active goal subsampling; and evaluating every tech-

nique on continuous action spaces.

Acknowledgments

We thank Sjoerd van Steenkiste, Klaus Greff, Imanol Schlag, and the anonymous re-

viewers of previous versions of this work for their valuable feedback. This research was

supported by the Swiss National Science Foundation (grant 200021_165675/1), the Eu-

ropean Research Council (Advanced Grant 742870), and CAPES (Filipe Mutz, PDSE,

88881.133206/2016-01). We are grateful to Nvidia Corporation for donating a DGX-1

44

machine and to IBM for donating a Minsky machine.

45

A Goal-conditional policy gradients

This appendix contains proofs related to the results presented in Section 3: Theorem 3.1

(App. A.1), Theorem 3.2 (App. A.2), Theorem 3.3 (App. A.4), and Theorem 3.4 (App.

A.6). Appendix A.7 presents optimal constant baselines for goal-conditional policies.

The remaining subsections contain auxiliary results.

A.1 Theorem 3.1

Theorem 3.1 (Intermediary goal-conditional policy gradient). The gradient ∇η(θ) of

the expected return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)

[
T−1∑
t=1

∇ log p(at | st, g,θ)

][
T∑
t=1

r(st, g)

]
. (3)

Proof. The partial derivative ∂η(θ)/∂θj of the expected return η(θ) with respect to θj

is given by

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

∂

∂θj
p(τ | g,θ)

T∑
t=1

r(st, g). (30)

The likelihood-ratio trick allows rewriting the previous equation as

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g,θ) ∂
∂θj

log p(τ | g,θ)
T∑
t=1

r(st, g). (31)

Note that

log p(τ | g,θ) = log p(s1) +
T−1∑
t=1

log p(at | st, g,θ) +
T−1∑
t=1

log p(st+1 | st, at). (32)

Therefore,

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g,θ)

[
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

][
T∑
t=1

r(st, g)

]
.

(33)

46

A.2 Theorem 3.2

Theorem 3.2 (Goal-conditional policy gradient). The gradient ∇η(θ) of the expected

return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)
T∑

t′=t+1

r(st′ , g). (8)

Proof. Starting from Eq. 33, the partial derivative ∂η(θ)/∂θj of η(θ) with respect to θj

is given by

∂

∂θj
η(θ) =

∑
g

p(g | θ)
∑
τ

p(τ | g,θ)
T∑
t=1

r(st, g)
T−1∑
t′=1

∂

∂θj
log p(at′ | st′ , g,θ). (34)

The previous equation can be rewritten as

∂

∂θj
η(θ) =

T∑
t=1

T−1∑
t′=1

E
[
r(St, G)

∂

∂θj
log p(At′ | St′ , G,θ) | θ

]
. (35)

Let c denote an expectation inside Eq. 35 for t′ ≥ t. In that case, At′ ⊥⊥ St |

St′ , G,Θ, and so

c =
∑
st

∑
st′

∑
g

∑
at′

p(at′ | st′ , g,θ)p(st, st′ , g | θ)r(st, g)
∂

∂θj
log p(at′ | st′ , g,θ).

(36)

Reversing the likelihood-ratio trick,

c =
∑
st

∑
st′

∑
g

p(st, st′ , g | θ)r(st, g)
∂

∂θj

∑
at′

p(at′ | st′ , g,θ) = 0. (37)

Therefore, the terms where t′ ≥ t can be dismissed from Eq. 35, leading to

∂

∂θj
η(θ) = E

[
T∑
t=1

r(St, G)
t−1∑
t′=1

∂

∂θj
log p(At′ | St′ , G,θ) | θ

]
. (38)

The previous equation can be conveniently rewritten as

∂

∂θj
η(θ) = E

[
T−1∑
t=1

∂

∂θj
log p(At | St, G,θ)

T∑
t′=t+1

r(St′ , G) | θ

]
. (39)

47

A.3 Lemma A.1

Lemma A.1. For every j, t,θ, and associated real-valued (baseline) function bθt ,

T−1∑
t=1

E
[
∂

∂θj
log p(At | St, G,θ)bθt (St, G) | θ

]
= 0. (40)

Proof. Letting c denote an expectation inside Eq. 40,

c =
∑
st

∑
g

∑
at

p(at | st, g,θ)p(st, g | θ)
∂

∂θj
log p(at | st, g,θ)bθt (st, g). (41)

Reversing the likelihood-ratio trick,

c =
∑
st

∑
g

p(st, g | θ)bθt (st, g)
∂

∂θj

∑
at

p(at | st, g,θ) = 0. (42)

A.4 Theorem 3.3

Theorem 3.3 (Goal-conditional policy gradient, baseline formulation). For every t,θ,

and associated real-valued (baseline) function bθt , the gradient ∇η(θ) of the expected

return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)

[[
T∑

t′=t+1

r(st′ , g)

]
− bθt (st, g)

]
.

(9)

Proof. The result is obtained by subtracting Eq. 40 from Eq. 39. Importantly, for every

combination of θ and t, it would also be possible to have a distinct baseline function for

each parameter in θ.

48

A.5 Lemma 3.1

Lemma 3.1 (Goal-conditional policy gradient, action-value formulation). The gradient

∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)Qθ
t (st, at, g). (10)

Proof. Starting from Eq. 39 and rearranging terms,

∂

∂θj
η(θ) =

T−1∑
t=1

∑
g

∑
st

∑
at

p(st, at, g | θ)
∂

∂θj
log p(at | st, g,θ)

∑
st+1:T

p(st+1:T | st, at, g,θ)
T∑

t′=t+1

r(st′ , g). (43)

By the definition of action-value function,

∂

∂θj
η(θ) = E

[
T−1∑
t=1

∂

∂θj
log p(At | St, G,θ)Qθ

t (St, At, G) | θ

]
. (44)

A.6 Theorem 3.4

Theorem 3.4 (Goal-conditional policy gradient, advantage formulation). The gradient

∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
g

p(g)
∑
τ

p(τ | g,θ)
T−1∑
t=1

∇ log p(at | st, g,θ)Aθ
t (st, at, g). (11)

Proof. The result is obtained by choosing bθt = V θ
t and subtracting Eq. 40 from Eq.

44.

A.7 Theorem A.1

For arbitrary j and θ, consider the following definitions of f and h.

f(τ , g) =
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

r(st′ , g), (45)

h(τ , g) =
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ). (46)

49

For every bj ∈ R, using Theorem 3.2 and the fact that E [h(T , G) | θ] = 0 by

Lemma A.1,

∂

∂θj
η(θ) = E [f(T , G) | θ] = E [f(T , G)− bjh(T , G) | θ] . (47)

Theorem A.1. Assuming Var [h(T , G) | θ] > 0, the (optimal constant baseline) bj that

minimizes Var [f(T , G)− bjh(T , G) | θ] is given by

bj =
E [f(T , G)h(T , G) | θ]

E [h(T , G)2 | θ] . (48)

Proof. The result is an application of Lemma D.4.

50

B Hindsight policy gradients

This appendix contains proofs related to the results presented in Section 4: Theorem

4.1 (App. B.1), Theorem 4.2 (App. B.2), Lemma 4.1 (App. B.3), Theorem B.1 (App.

B.4), and Theorem 4.3 (App. B.6). Appendix B.7 presents optimal constant baselines

for hindsight policy gradients. Appendix B.5 contains an auxiliary result.

B.1 Theorem 4.1

The following theorem relies on importance sampling, a traditional technique used to

obtain estimates related to a random variable X ∼ p using samples from an arbitrary

positive distribution q. This technique relies on the following equalities:

Ep(X) [f(X)] =
∑
x

p(x)f(x) =
∑
x

q(x)

q(x)
p(x)f(x) = Eq(X)

[
p(X)

q(X)
f(X)

]
. (49)

Theorem 4.1 (Every-decision hindsight policy gradient). For an arbitrary (original)

goal g′, the gradient∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)

T−1∑
t=1

∇ log p(at | st, g,θ)
T∑

t′=t+1

[
T−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(13)

Proof. Starting from Theorem 3.2, importance sampling allows rewriting the partial

derivative ∂η(θ)/∂θj as

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g′,θ)
p(τ | g′,θ)

p(τ | g,θ)
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

r(st′ , g).

(50)

Using Equation 1,

∂

∂θj
η(θ) =

∑
g

p(g)
∑
τ

p(τ | g′,θ)

[
T−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

r(st′ , g).

(51)

51

B.2 Theorem 4.2

Theorem 4.2 (Per-decision hindsight policy gradient). For an arbitrary (original) goal

g′, the gradient∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∇ log p(at | st, g,θ)
T∑

t′=t+1

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(16)

Proof. Starting from Eq. 51, the partial derivative ∂η(θ)/∂θj can be rewritten as

∂

∂θj
η(θ) =

∑
g

p(g)
T−1∑
t=1

T∑
t′=t+1

∑
τ

p(τ | g′,θ)

[
T−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
∂

∂θj
log p(at | st, g,θ)r(st′ , g).

(52)

If we split every trajectory into states and actions before and after t′, then ∂η(θ)/∂θj
is given by

∑
g

p(g)

T−1∑
t=1

T∑
t′=t+1

∑
s1:t′−1

∑
a1:t′−1

p(s1:t′−1, a1:t′−1 | g′,θ)

t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

 ∂

∂θj
log p(at | st, g,θ)z, (53)

where z is defined by

z =
∑
st′:T

∑
at′:T−1

p(st′:T , at′:T−1 | s1:t′−1, a1:t′−1, g′,θ)

[
T−1∏
k=t′

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(54)

Using Lemma D.2 and canceling terms,

z =
∑
st′:T

∑
at′:T−1

p(st′ | st′−1, at′−1)

[
T−1∏
k=t′

p(ak | sk, g,θ)p(sk+1 | sk, ak)

]
r(st′ , g). (55)

Using Lemma D.2 once again,

z =
∑
st′:T

∑
at′:T−1

p(st′:T , at′:T−1 | s1:t′−1, a1:t′−1, g,θ)r(st′ , g). (56)

52

Using the fact that St′ ⊥⊥ G | S1:t′−1, A1:t′−1,Θ,

z =
∑
st′

r(st′ , g)p(st′ | s1:t′−1, a1:t′−1, g,θ) =
∑
st′

r(st′ , g)p(st′ | s1:t′−1, a1:t′−1, g′,θ).

(57)

Substituting z into Expression 53 and returning to an expectation over trajectories,

∂

∂θj
η(θ) =

∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(58)

B.3 Lemma 4.1

Lemma 4.1. For every g′, t,θ, and associated real-valued (baseline) function bθt ,

∑
τ

p(τ | g′,θ)
∑
g

p(g)

T−1∑
t=1

∇ log p(at | st, g,θ)

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
bθt (st, g) = 0. (24)

Proof. Let c denote the j-th element of the vector in the left-hand side of Eq. 24, such

that

c =
∑
g

p(g)
T−1∑
t=1

E

[
∂

∂θj
log p(At | St, g,θ)

[
t∏

k=1

p(Ak | Sk, g,θ)
p(Ak | Sk, g′,θ)

]
bθt (St, g) | g′,θ

]
.

(59)

Using Lemma D.1 and writing the expectations explicitly,

c =
∑
g

p(g)
T−1∑
t=1

∑
s1:t

∑
a1:t

p(s1:t, a1:t | g′,θ)
∂

∂θj
log p(at | st, g,θ)

p(s1:t, a1:t | g,θ)
p(s1:t, a1:t | g′,θ)

bθt (st, g).

(60)

Canceling terms, using Lemma D.1 once again, and reversing the likelihood-ratio

53

trick,

c =
∑
g

p(g)
T−1∑
t=1

∑
s1:t

∑
a1:t

∂

∂θj
p(at | st, g,θ)

[
p(s1)

t−1∏
k=1

p(ak | sk, g,θ)p(sk+1 | sk, ak)

]
bθt (st, g).

(61)

Pushing constants outside the summation over actions at time step t,

c =
∑
g

p(g)

T−1∑
t=1

∑
s1:t

∑
a1:t−1

[
p(s1)

t−1∏
k=1

p(ak | sk, g,θ)p(sk+1 | sk, ak)
]
bθt (st, g)

∂

∂θj

∑
at

p(at | st, g,θ) = 0. (62)

B.4 Theorem B.1

Theorem B.1 (Hindsight policy gradient, baseline formulation). For every g′, t,θ, and

associated real-valued (baseline) function bθt , the gradient∇η(θ) of the expected return

with respect to θ is given by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∇ log p(at | st, g,θ)z, (63)

where

z =

[
T∑

t′=t+1

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g)

]
−

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
bθt (st, g). (64)

Proof. The result is obtained by subtracting Eq. 24 from Eq. 16. Importantly, for every

combination of θ and t, it would also be possible to have a distinct baseline function for

each parameter in θ.

54

B.5 Lemma 4.2

Lemma 4.2 (Hindsight policy gradient, action-value formulation). For an arbitrary

goal g′, the gradient∇η(θ) of the expected return with respect to θ is given by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∇ log p(at | st, g,θ)

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
Qθ
t (st, at, g).

(25)

Proof. Starting from Eq. 44, the partial derivative ∂η(θ)/∂θj can be written as

∂

∂θj
η(θ) =

T−1∑
t=1

∑
g

p(g)
∑
s1:t

∑
a1:t

p(s1:t, a1:t | g,θ)
∂

∂θj
log p(at | st, g,θ)Qθ

t (st, at, g).

(65)

Using importance sampling, for an arbitrary goal g′,

∂

∂θj
η(θ) =

∑
g

p(g)

T−1∑
t=1

∑
s1:t

∑
a1:t

p(s1:t, a1:t | g′,θ)
p(s1:t, a1:t | g,θ)
p(s1:t, a1:t | g′,θ)

∂

∂θj
log p(at | st, g,θ)Qθ

t (st, at, g). (66)

Using Lemma D.1 and rewriting the previous equation using expectations,

∂

∂θj
η(θ) =

∑
g

p(g)E

[
T−1∑
t=1

∂

∂θj
log p(At | St, g,θ)

[
t∏

k=1

p(Ak | Sk, g,θ)
p(Ak | Sk, g′,θ)

]
Qθ
t (St, At, g) | g′,θ

]
.

(67)

B.6 Theorem 4.3

Theorem 4.3 (Hindsight policy gradient, advantage formulation). For an arbitrary

(original) goal g′, the gradient ∇η(θ) of the expected return with respect to θ is given

by

∇η(θ) =
∑
τ

p(τ | g′,θ)
∑
g

p(g)
T−1∑
t=1

∇ log p(at | st, g,θ)

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
Aθ
t (st, at, g).

(26)

55

Proof. The result is obtained by choosing bθt = V θ
t and subtracting Eq. 59 from Eq.

67.

B.7 Theorem B.2

For arbitrary g′, j, and θ, consider the following definitions of f and h.

f(τ) =
∑
g

p(g)
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g),

(68)

h(τ) =
∑
g

p(g)
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

t∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

. (69)

For every bj ∈ R, using Theorem 4.2 and the fact that E [h(T) | g′,θ] = 0 by

Lemma 4.1,

∂

∂θj
η(θ) = E [f(T) | g′,θ] = E [f(T)− bjh(T) | g′,θ] . (70)

Theorem B.2. Assuming Var [h(T) | g′,θ] > 0, the (optimal constant baseline) bj that

minimizes Var [f(T)− bjh(T) | g′,θ] is given by

bj =
E [f(T)h(T) | g′,θ]
E [h(T)2 | g′,θ]

. (71)

Proof. The result is an application of Lemma D.4.

56

C Hindsight gradient estimators

This appendix contains proofs related to the estimators presented in Section 5: Theorem

5.1 (App. C.1) and Theorem 5.2 (App. C.2). Appendix C.3 presents a result that enables

a consistency-preserving weighted baseline.

In this appendix, we will consider a dataset D = {(τ (i), g(i))}Ni=1 where each trajec-

tory τ (i) is obtained using a policy parameterized by θ in an attempt to achieve a goal

g(i) chosen by the environment. Because D is an iid dataset given Θ,

p(D | θ) = p(τ (1:N), g(1:N) | θ) =
N∏
i=1

p(τ (i), g(i) | θ) =
N∏
i=1

p(g(i))p(τ (i) | g(i),θ).

(72)

C.1 Theorem 5.1

Theorem 5.1. The per-decision hindsight policy gradient estimator, given by

1

N

N∑
i=1

∑
g

p(g)
T−1∑
t=1

∇ log p(A
(i)
t | S

(i)
t , G(i) = g,θ)

T∑
t′=t+1

[
t′−1∏
k=1

p(A
(i)
k | S

(i)
k , G(i) = g,θ)

p(A
(i)
k | S

(i)
k , G(i),θ)

]
r(S

(i)
t′ , g),

(28)

is a consistent and unbiased estimator of the gradient∇η(θ) of the expected return.

Proof. Let I(N)
j denote the j-th element of the estimator, which can be written as

I
(N)
j =

1

N

N∑
i=1

I(T (i), G(i),θ)j, (73)

where

I(τ , g′,θ)j =
∑
g

p(g)
T−1∑
t=1

∂

∂θj
log p(at | st, g,θ)

T∑
t′=t+1

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
r(st′ , g).

(74)

57

Using Theorem 4.2, the expected value E
[
I
(N)
j | θ

]
is given by

E
[
I
(N)
j | θ

]
=

1

N

N∑
i=1

∑
g(i)

p(g(i))E
[
I(T (i), g(i),θ)j | g(i),θ

]
=

1

N

N∑
i=1

∑
g(i)

p(g(i))
∂

∂θj
η(θ) =

∂

∂θj
η(θ).

(75)

Therefore, I(N)
j is an unbiased estimator of ∂η(θ)/∂θj .

Conditionally on Θ, the random variable I(N)
j is an average of iid random variables

with expected value ∂η(θ)/∂θj (see Eq. 75). By the strong law of large numbers (Sen

and Singer, 1994, Theorem 2.3.13),

I
(N)
j

a.s.−→ ∂

∂θj
η(θ). (76)

Therefore, I(N)
j is a consistent estimator of ∂η(θ)/∂θj .

C.2 Theorem 5.2

Theorem 5.2. The weighted per-decision hindsight policy gradient estimator, given by

N∑
i=1

∑
g

p(g)

T−1∑
t=1

∇ log p(A
(i)
t | S

(i)
t , G(i) = g,θ)

T∑
t′=t+1

[∏t′−1
k=1

p(A
(i)
k |S

(i)
k ,G(i)=g,θ)

p(A
(i)
k |S

(i)
k ,G(i),θ)

]
r(S

(i)
t′ , g)∑N

j=1

[∏t′−1
k=1

p(A
(j)
k |S

(j)
k ,G(j)=g,θ)

p(A
(j)
k |S

(j)
k ,G(j),θ)

] ,

(29)

is a consistent estimator of the gradient∇η(θ) of the expected return.

Proof. Let W (N)
j denote the j-th element of the estimator, which can be written as

W
(N)
j =

∑
g

p(g)
T−1∑
t=1

T∑
t′=t+1

X(g, t, t′)
(N)
j

Y (g, t, t′)
(N)
j

, (77)

58

where

X(g, t, t′)
(N)
j =

1

N

N∑
i=1

X(T (i), G(i), g, t, t′,θ)j, (78)

Y (g, t, t′)
(N)
j =

1

N

N∑
i=1

Y (T (i), G(i), g, t, t′,θ)j, (79)

X(τ , g′, g, t, t′,θ)j =

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
∂

∂θj
log p(at | st, g,θ)r(st′ , g), (80)

Y (τ , g′, g, t, t′,θ)j =

[
t′−1∏
k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
. (81)

Consider the expected valueEXi
= E

[
X(T (i), G(i), g, t, t′,θ)j | θ

]
, which is given

by

EXi =
∑
g(i)

p(g(i))E

[[
t′−1∏
k=1

p(Ak | Sk, g,θ)
p(Ak | Sk, G = g(i),θ)

]
∂

∂θj
log p(At | St, g,θ)r(St′ , g) | G = g(i),θ

]
.

(82)

Using the fact that t′ > t, Lemma D.1, and canceling terms, EXi
can be written as

∑
g(i)

p(g(i))
∑
s1:t′

∑
a1:t′−1

p(st′ | s1:t′−1, a1:t′−1, G = g(i),θ)p(s1:t′−1, a1:t′−1 | g,θ)
∂

∂θj
log p(at | st, g,θ)r(st′ , g).

(83)

Because St′ ⊥⊥ G | S1:t′−1, A1:t′−1,Θ,

EXi
= E

[
∂

∂θj
log p(At | St, g,θ)r(St′ , g) | g,θ

]
. (84)

Conditionally on Θ, the variable X(g, t, t′)
(N)
j is an average of iid random variables

with expected value EXi
. By the strong law of large numbers (Sen and Singer, 1994,

Theorem 2.3.13), X(g, t, t′)
(N)
j

a.s.−→ EXi
.

Using Lemma D.1, the expected value EYi = E
[
Y (T (i), G(i), g, t, t′,θ)j | θ

]
is

given by

EYi =
∑
g(i)

p(g(i))E

[
p(S

(i)
1:t′−1, A

(i)
1:t′−1 | G(i) = g,θ)

p(S
(i)
1:t′−1, A

(i)
1:t′−1 | g(i),θ)

| g(i),θ

]
= 1. (85)

59

Conditionally on Θ, the variable Y (g, t, t′)
(N)
j is an average of iid random variables

with expected value 1. By the strong law of large numbers, Y (g, t, t′)
(N)
j

a.s.−→ 1.

Because bothX(g, t, t′)
(N)
j and Y (g, t, t′)

(N)
j converge almost surely to real numbers

(Thomas, 2015, Ch. 3, Property 2),

X(g, t, t′)
(N)
j

Y (g, t, t′)
(N)
j

a.s.−→ E
[
∂

∂θj
log p(At | St, g,θ)r(St′ , g) | g,θ

]
. (86)

By Theorem 3.2 and the fact thatW (N)
j is a linear combination of termsX(g, t, t′)

(N)
j /Y (g, t, t′)

(N)
j ,

W
(N)
j

a.s.−→
∑
g

p(g)
T−1∑
t=1

T∑
t′=t+1

E
[
∂

∂θj
log p(At | St, g,θ)r(St′ , g) | g,θ

]
=

∂

∂θj
η(θ).

(87)

C.3 Theorem C.1

Theorem C.1. The weighted baseline estimator, given by

N∑
i=1

∑
g

p(g)
T−1∑
t=1

∇ log p(A
(i)
t | S

(i)
t , G

(i) = g,θ)

[∏t
k=1

p(A
(i)
k |S

(i)
k ,G(i)=g,θ)

p(A
(i)
k |S

(i)
k ,G(i),θ)

]
bθt (S

(i)
t , g)∑N

j=1

[∏t
k=1

p(A
(j)
k |S

(j)
k ,G(j)=g,θ)

p(A
(j)
k |S

(j)
k ,G(j),θ)

] ,

(88)

converges almost surely to zero.

Proof. Let B(N)
j denote the j-th element of the estimator, which can be written as

B
(N)
j =

∑
g

p(g)
T−1∑
t=1

X(g, t)
(N)
j

Y (g, t)
(N)
j

, (89)

60

where

X(g, t)
(N)
j =

1

N

N∑
i=1

X(T (i), G(i), g, t,θ)j, (90)

Y (g, t)
(N)
j =

1

N

N∑
i=1

Y (T (i), G(i), g, t,θ)j, (91)

X(τ , g′, g, t,θ)j =

[
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

]
∂

∂θj
log p(at | st, g,θ)bθt (st, g), (92)

Y (τ , g′, g, t,θ)j =
t∏

k=1

p(ak | sk, g,θ)
p(ak | sk, g′,θ)

. (93)

Using Eqs. 59 and 62, the expected value EXi
= E

[
X(T (i), G(i), g, t,θ)j | θ

]
is

given by

EXi
=
∑
g(i)

p(g(i))E
[
X(T (i), g(i), g, t,θ)j | g(i),θ

]
= 0. (94)

Conditionally on Θ, the variable X(g, t)
(N)
j is an average of iid random variables

with expected value zero. By the strong law of large numbers (Sen and Singer, 1994,

Theorem 2.3.13), X(g, t)
(N)
j

a.s.−→ 0.

The fact that Y (g, t)
(N)
j

a.s.−→ 1 is already established in the proof of Theorem

5.2. Because both X(g, t)
(N)
j and Y (g, t)

(N)
j converge almost surely to real numbers

(Thomas, 2015, Ch. 3, Property 2),

X(g, t)
(N)
j

Y (g, t)
(N)
j

a.s.−→ 0. (95)

Because B(N)
j is a linear combination of terms X(g, t)

(N)
j /Y (g, t)

(N)
j , B(N)

j
a.s.−→ 0.

Clearly, if E(N) is a consistent estimator of a some quantity given θ, then so is

E(N) −B(N)
j , which allows using this result in combination with Theorem 5.2.

61

D Fundamental results

This appendix presents results required by previous sections: Lemma D.1 (App. D.1),

Lemma D.2 (App. D.2), Theorem 4.4 (App. D.4), and Lemma D.4 (App. D.5). Ap-

pendix D.3 contains an auxiliary result.

D.1 Lemma D.1

Lemma D.1. For every τ , g,θ, and 1 ≤ t ≤ T − 1,

p(s1:t, a1:t | g,θ) = p(s1)p(at | st, g,θ)
t−1∏
k=1

p(ak | sk, g,θ)p(sk+1 | sk, ak). (96)

Proof. In order to employ backward induction, consider the case t = T − 1. By

marginalization,

p(s1:T−1, a1:T−1 | g,θ) =
∑
sT

p(τ | g,θ) =
∑
sT

p(s1)
T−1∏
k=1

p(ak | sk, g,θ)p(sk+1 | sk, ak)

(97)

= p(s1)p(aT−1 | sT−1, g,θ)
T−2∏
k=1

p(ak | sk, g,θ)p(sk+1 | sk, ak),

(98)

which completes the proof of the base case.

Assuming the inductive hypothesis is true for a given 2 ≤ t ≤ T−1 and considering

the case t− 1,

62

p(s1:t−1, a1:t−1 | g,θ) =
∑
st

∑
at

p(s1)p(at | st, g,θ)
t−1∏
k=1

p(ak | sk, g,θ)p(sk+1 | sk, ak)

(99)

= p(s1)p(at−1 | st−1, g,θ)
t−2∏
k=1

p(ak | sk, g,θ)p(sk+1 | sk, ak).

(100)

D.2 Lemma D.2

Lemma D.2. For every τ , g,θ, and 1 ≤ t ≤ T ,

p(st:T , at:T−1 | s1:t−1, a1:t−1, g,θ) = p(st | st−1, at−1)
T−1∏
k=t

p(ak | sk, g,θ)p(sk+1 | sk, ak).

(101)

Proof. The case t = 1 can be inspected easily. Consider 2 ≤ t ≤ T . By definition,

p(st:T , at:T−1 | s1:t−1, a1:t−1, g,θ) =
p(s1:T , a1:T−1 | g,θ)
p(s1:t−1, a1:t−1 | g,θ)

. (102)

Using Lemma D.1,

p(st:T , at:T−1 | s1:t−1, a1:t−1, g,θ) =
p(s1)

∏T−1
k=1 p(ak | sk, g,θ)p(sk+1 | sk, ak)

p(s1)p(at−1 | st−1, g,θ)
∏t−2
k=1 p(ak | sk, g,θ)p(sk+1 | sk, ak)

(103)

=

∏T−1
k=t−1 p(ak | sk, g,θ)p(sk+1 | sk, ak)

p(at−1 | st−1, g,θ)
. (104)

63

D.3 Lemma D.3

Lemma D.3. For every t and θ, the action-value function Qθ
t is given by

Qθ
t (s, a, g) = E

[
r(St+1, g) + V θ

t+1(St+1, g) | St = s, At = a
]
. (105)

Proof. From the definition of action-value function and using the fact that St+1 ⊥⊥

G,Θ | St, At,

Qθ
t (s, a, g) = E [r(St+1, g) | St = s, At = a] + E

[
T∑

t′=t+2

r(St′ , g) | St = s, At = a, g,θ

]
.

(106)

Let z denote the second term in the right-hand side of the previous equation, which

can also be written as

z =
∑
st+1

∑
at+1

∑
st+2:T

p(st+1, at+1, st+2:T | St = s, At = a, g,θ)
T∑

t′=t+2

r(st′ , g). (107)

Consider the following three independence properties:

St+1 ⊥⊥ G,Θ | St, At, (108)

At+1 ⊥⊥ St, At | St+1, G,Θ, (109)

St+2:T ⊥⊥ St, At | St+1, At+1, G,Θ. (110)

Together, these properties can be used to demonstrate that

z =
∑
st+1

p(st+1 | St = s,At = a)
∑
at+1

p(at+1 | st+1, g,θ)
∑

st+2:T

p(st+2:T | st+1, at+1, g,θ)

T∑
t′=t+2

r(st′ , g). (111)

From the definition of value function, z = E
[
V θ
t+1(St+1, g) | St = s, At = a

]
.

64

D.4 Theorem 4.4

Theorem 4.4. For every t and θ, the advantage function Aθ
t is given by

Aθ
t (s, a, g) = E

[
r(St+1, g) + V θ

t+1(St+1, g)− V θ
t (s, g) | St = s, At = a

]
. (27)

Proof. The result follows from the definition of advantage function and Lemma D.3.

D.5 Lemma D.4

Consider a discrete random variable X and real-valued functions f and h. Suppose

also that E [h(X)] = 0 and Var [h(X)] > 0. Clearly, for every b ∈ R, we have

E [f(X)− bh(X)] = E [f(X)].

Lemma D.4. The constant b ∈ R that minimizes Var [f(X)− bh(X)] is given by

b =
E [f(X)h(X)]

E [h(X)2]
. (112)

Proof. Let v = Var [f(X)− bh(X)]. Using our assumptions and the definition of

variance,

v = E
[
(f(X)− bh(X))2

]
− E [f(X)− bh(X)]2 = E

[
(f(X)− bh(X))2

]
− E [f(X)]2

(113)

= E
[
f(X)2

]
− 2bE [f(X)h(X)] + b2E

[
h(X)2

]
− E [f(X)]2 . (114)

The first and second derivatives of v with respect to b are given by dv/db = −2E [f(X)h(X)]+

2bE [h(X)2] and d2v/db2 = 2E [h(X)2]. Our assumptions guarantee that E [h(X)2] >

65

0. Therefore, by Fermat’s theorem, if b is a local minimum, then dv/db = 0, leading to

the desired equality. By the second derivative test, b must be a local minimum.

66

References

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,

B., Tobin, J., Abbeel, P., and Zaremba, W. (2017). Hindsight experience replay. In

Advances in Neural Information Processing Systems, pages 5048–5058.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learn-

ing environment: An evaluation platform for general agents. Journal of Artificial

Intelligence Research, 47:253–279.

Bishop, C. M. (2013). Pattern Recognition and Machine Learning. Information science

and statistics. Springer.

Da Silva, B. C., Konidaris, G., and Barto, A. G. (2012). Learning parameterized skills.

In Proceedings of International Conference of Machine Learning.

Deisenroth, M. P., Englert, P., Peters, J., and Fox, D. (2014). Multi-task policy search

for robotics. In IEEE International Conference on Robotics and Automation, 2014,

pages 3876–3881.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schul-

man, J., Sidor, S., Wu, Y., and Zhokhov, P. (2017). Openai baselines. https:

//github.com/openai/baselines.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking

deep reinforcement learning for continuous control. In Proceedings of International

Conference on Machine Learning, pages 1329–1338.

67

Fabisch, A. and Metzen, J. H. (2014). Active contextual policy search. The Journal of

Machine Learning Research, 15(1):3371–3399.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and Abbeel, P. (2017). Reverse

curriculum generation for reinforcement learning. In Proceedings of the 1st Annual

Conference on Robot Learning, pages 482–495.

Ghosh, D., Singh, A., Rajeswaran, A., Kumar, V., and Levine, S. (2018). Divide-and-

conquer reinforcement learning. In International Conference on Learning Represen-

tations.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international conference

on artificial intelligence and statistics, pages 249–256.

Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques for

gradient estimates in reinforcement learning. Journal of Machine Learning Research,

5(Nov):1471–1530.

Jie, T. and Abbeel, P. (2010). On a connection between importance sampling and the

likelihood ratio policy gradient. In Advances in Neural Information Processing Sys-

tems, pages 1000–1008.

Karkus, P., Kupcsik, A., Hsu, D., and Lee, W. S. (2016). Factored contextual policy

search with bayesian optimization. arXiv preprint arXiv:1612.01746.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. In

Proceedings of the 3rd International Conference on Learning Representations.

68

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,

Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming

catastrophic forgetting in neural networks. Proceedings of the National Academy of

Sciences, 114(13):3521–3526.

Kober, J., Wilhelm, A., Oztop, E., and Peters, J. (2012). Reinforcement learning

to adjust parametrized motor primitives to new situations. Autonomous Robots,

33(4):361–379.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical

deep reinforcement learning: Integrating temporal abstraction and intrinsic motiva-

tion. In Advances in Neural Information Processing Systems, pages 3675–3683.

Kupcsik, A. G., Deisenroth, M. P., Peters, J., and Neumann, G. (2013). Data-efficient

generalization of robot skills with contextual policy search. In Proceedings of the

27th AAAI Conference on Artificial Intelligence, AAAI 2013, pages 1401–1407.

Levy, A., Platt, R., and Saenko, K. (2019). Hierarchical reinforcement learning with

hindsight. In International Conference on Learning Representations.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. (2016). Continuous control with deep reinforcement learning. ICLR.

Lin, L. (1992). Self-improving reactive agents based on reinforcement learning, plan-

ning and teaching. Machine learning, 8(3/4):69–97.

Mankowitz, D. J., Žídek, A., Barreto, A., Horgan, D., Hessel, M., Quan, J., Oh, J., van

69

Hasselt, H., Silver, D., and Schaul, T. (2018). Unicorn: Continual learning with a

universal, off-policy agent. arXiv preprint arXiv:1802.08294.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist

networks: The sequential learning problem. Psychology of Learning and Motivation-

Advances in Research and Theory, 24(C):109–165.

Metzen, J. H., Fabisch, A., and Hansen, J. (2015). Bayesian optimization for contextual

policy search. In Proceedings of the Second Machine Learning in Planning and

Control of Robot Motion Workshop., Hamburg.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. Nature, 518(7540):529.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. (2016). Safe and efficient

off-policy reinforcement learning. In Advances in Neural Information Processing

Systems, pages 1054–1062.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In ICML.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transfor-

mations: Theory and application to reward shaping. In International Conference on

Machine Learning, volume 99, pages 278–287.

Oh, J., Singh, S., Lee, H., and Kohli, P. (2017). Zero-shot task generalization with

70

multi-task deep reinforcement learning. In Proceedings of the 34th International

Conference on Machine Learning.

Pathak, D., Mahmoudieh, P., Luo, M., Agrawal, P., Chen, D., Shentu, F., Shelhamer,

E., Malik, J., Efros, A. A., and Darrell, T. (2018). Zero-shot visual imitation. In

International Conference on Learning Representations.

Peshkin, L. and Shelton, C. R. (2002). Learning from scarce experience. In Proceedings

of the Nineteenth International Conference on Machine Learning, pages 498–505.

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with policy

gradients. Neural networks, 21(4):682–697.

Pinsler, R., Karkus, P., Kupcsik, A., Hsu, D., and Lee, W. S. (2019). Factored contex-

tual policy search with bayesian optimization. In 2019 International Conference on

Robotics and Automation (ICRA), pages 7242–7248. IEEE.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schnei-

der, J., Tobin, J., Chociej, M., Welinder, P., et al. (2018). Multi-goal reinforcement

learning: Challenging robotics environments and request for research. arXiv preprint

arXiv:1802.09464.

Precup, D., Sutton, R. S., and Singh, S. P. (2000). Eligibility traces for off-policy policy

evaluation. In International Conference on Machine Learning, pages 759–766.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function ap-

proximators. In Proceedings of the International Conference on Machine Learning,

pages 1312–1320.

71

Schmidhuber, J. (2013). POWERPLAY: Training an increasingly general problem solver

by continually searching for the simplest still unsolvable problem. Frontiers in Psy-

chology. (Based on arXiv:1112.5309v1 [cs.AI], 2011).

Schmidhuber, J. (2019). Reinforcement learning upside down: Don’t predict rewards–

just map them to actions. arXiv preprint arXiv:1912.02875.

Schmidhuber, J. and Huber, R. (1990). Learning to Generate Focus Trajectories for

Attentive Vision. Institut für Informatik.

Sen, P. and Singer, J. (1994). Large Sample Methods in Statistics: An Introduction with

Applications. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.

Srivastava, R. K., Steunebrink, B. R., and Schmidhuber, J. (2013). First experiments

with PowerPlay. Neural Networks, 41(0):130 – 136. Special Issue on Autonomous

Learning.

Sukhbaatar, S., Lin, Z., Kostrikov, I., Synnaeve, G., Szlam, A., and Fergus, R. (2018).

Intrinsic motivation and automatic curricula via asymmetric self-play. In Interna-

tional Conference on Learning Representations.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. Brad-

ford Book.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999a). Policy gradient

methods for reinforcement learning with function approximation. In Advances in

Neural Information Processing Systems 12, pages 1057–1063.

72

Sutton, R. S., Precup, D., and Singh, S. (1999b). Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial intelligence,

112(1-2):181–211.

Thomas, P. (2015). Safe reinforcement learning. PhD thesis, University of Mas-

sachusetts Amherst.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. (2015). High confidence policy

improvement. In International Conference on Machine Learning, pages 2380–2388.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and

Kavukcuoglu, K. (2017). FeUdal networks for hierarchical reinforcement learning.

In Proceedings of the 34th International Conference on Machine Learning, pages

3540–3549.

Williams, R. J. (1986). Reinforcement-learning in connectionist networks: A mathe-

matical analysis. Technical Report 8605, Institute for Cognitive Science, University

of California, San Diego.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine learning, 8(3-4):229–256.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-Fei, L., and Farhadi, A.

(2017). Target-driven visual navigation in indoor scenes using deep reinforcement

learning. In IEEE International Conference on Robotics and Automation, pages

3357–3364.

73

	Introduction
	Preliminaries
	Goal-conditional policy gradients
	Hindsight policy gradients
	Hindsight gradient estimators
	Experiments
	Environments
	Implementation
	Evaluation
	Analysis
	Results
	Average performance results
	Learning curves (batch size 16)
	Learning curves (batch size 2)
	Hyperparameter sensitivity plots (batch size 16)
	Hyperparameter sensitivity plots (batch size 2)

	Likelihood ratio study
	Hindsight experience replay study

	Conclusion
	Goal-conditional policy gradients
	Theorem 3.1
	Theorem 3.2
	Lemma A.1
	Theorem 3.3
	Lemma 3.1
	Theorem 3.4
	Theorem A.1

	Hindsight policy gradients
	Theorem 4.1
	Theorem 4.2
	Lemma 4.1
	Theorem B.1
	Lemma 4.2
	Theorem 4.3
	Theorem B.2

	Hindsight gradient estimators
	Theorem 5.1
	Theorem 5.2
	Theorem C.1

	Fundamental results
	Lemma D.1
	Lemma D.2
	Lemma D.3
	Theorem 4.4
	Lemma D.4

