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Abstract: Background

Despite causing up to a quarter of all strokes, the genetic basis of lacunar stroke
remains poorly understood, with a single locus on 16q24 identified to date. We
performed a genome-wide association study (GWAS) of lacunar stroke, expanding the
sample size by recruiting robustly phenotyped cases using MRI in diagnosis, to identify
novel associations and provide mechanistic insights into the disease.

Methods

We performed a GWAS of 7,338 cases and 225,258 controls, including newly recruited
patients and reanalysis of existing studies, of which 2,987 cases (matched with 29,540
controls) were confirmed using MRI. We used multi-trait analysis of GWAS (MTAG),
performing a joint analysis with a study of cerebral white matter hyperintensities
(N=42,310) - an etiologically related radiological trait, to uncover additional genetic
associations. We performed a transcriptome-wide association study (TWAS), to
determine genes for which expression is associated with lacunar stroke, identified
significantly enriched pathways using MAGMA and determined cardiovascular risk
factors causally associated with the disease using Mendelian Randomization.

Findings

5 loci were associated with lacunar stroke in European or Transethnic meta-analysis. A
further 7 loci were associated in multi-trait analysis. Two loci contain genes (COL4A2
and HTRA1) involved in monogenic lacunar stroke. Pathway analyses implicated
disruption of the extracellular matrix, phosphatidylinositol 5 phosphate binding, and
roundabout (ROBO) binding at FDR<0.05, while Mendelian randomization linked
elevated blood pressure, history of smoking, and type 2 diabetes in the etiology of
lacunar stroke.

Interpretation

Lacunar stroke has a substantial heritable component, with 12 loci now identified that
may represent future treatment targets. These loci provide insights into lacunar stroke
pathogenesis, highlighting disruption of the vascular ECM (COL4A2, LOX, SH3PXD2A,
GPR126, HTRA1), pericyte differentiation (FOXF2, GPR126), TGF-beta signaling
(HTRA1), and myelination (ULK4, GPR126) in disease risk.
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Abstract 78 

Background. Despite causing up to a quarter of all strokes, the genetic basis of lacunar stroke remains 79 

poorly understood, with a single locus on 16q24 identified to date. We performed a genome-wide 80 

association study (GWAS) of lacunar stroke, expanding the sample size by recruiting robustly 81 

phenotyped cases using MRI in diagnosis, to identify novel associations and provide mechanistic 82 

insights into the disease. 83 

Methods. We performed a GWAS of 7,338 cases and 225,258 controls, including newly recruited 84 

patients and reanalysis of existing studies, of which 2,987 cases (matched with 29,540 controls) were 85 

confirmed using MRI. We used multi-trait analysis of GWAS (MTAG), performing a joint analysis with 86 

a study of cerebral white matter hyperintensities (N=42,310) -  an etiologically related radiological trait, 87 

to uncover additional genetic associations. We performed a transcriptome-wide association study 88 

(TWAS), to determine genes for which expression is associated with lacunar stroke, identified 89 

significantly enriched pathways using MAGMA and determined cardiovascular risk factors causally 90 

associated with the disease using Mendelian Randomization. 91 

Findings. 5 loci were associated with lacunar stroke in European or Transethnic meta-analysis. A 92 

further 7 loci were associated in multi-trait analysis. Two loci contain genes (COL4A2 and HTRA1) 93 

involved in monogenic lacunar stroke. Pathway analyses implicated disruption of the extracellular 94 

matrix, phosphatidylinositol 5 phosphate binding, and roundabout (ROBO) binding at FDR<0.05, while 95 

Mendelian randomization linked elevated blood pressure, history of smoking, and type 2 diabetes in 96 

the etiology of lacunar stroke. 97 

Interpretation. Lacunar stroke has a substantial heritable component, with 12 loci now identified that 98 

may represent future treatment targets. These loci provide insights into lacunar stroke pathogenesis, 99 

highlighting disruption of the vascular ECM (COL4A2, LOX, SH3PXD2A, GPR126, HTRA1), pericyte 100 

differentiation (FOXF2, GPR126), TGF-beta signaling (HTRA1), and myelination (ULK4, GPR126) in 101 

disease risk. 102 

Funding. This work was supported by a British Heart Foundation Programme Grant. 103 

Introduction 104 
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Lacunar strokes are small subcortical infarcts that arise from ischemia in the territory of the deep 105 

perforating arteries of the brain.1,2 They comprise up to a quarter of all ischaemic strokes and are 106 

usually due to cerebral small vessel disease (SVD), which is also the most common pathology 107 

underlying intracerebral haemorrhage and vascular cognitive impairment. Radiologically, SVD is also 108 

characterized by the presence of cerebral white matter hyperintensities (WMH), enlarged perivascular 109 

spaces, microbleeds and brain atrophy. 3 Despite its widespread importance, few therapeutic 110 

interventions have been proven to reduce SVD. One obstacle to developing new therapeutic 111 

approaches has been a lack of understanding of the underlying pathophysiology. One method which 112 

has been successfully used to discover pathophysiological processes and uncover potential treatment 113 

targets in other complex disease is the use of genetic data derived from genome wide association 114 

studies (GWAS). Recent GWAS have identified 35 loci associated with risk of ischaemic stroke and its 115 

major subtypes; 4-6 but while many loci have been identified with the other major stroke subtypes 116 

(cardioembolic and large artery stroke) only one locus has robustly associated with lacunar stroke so 117 

far. 6 This is surprising because lacunar stroke is the stroke subtype most likely to be caused by 118 

monogenic disease, 7 and sporadic lacunar stroke has been strongly associated with a family history 119 

of stroke. 8 Additionally, studies of other MRI markers of CSVD have demonstrated a substantial 120 

genetic component; a recent GWAS identified 31 loci across 3 phenotypes. 9 121 

We formed a collaboration to perform GWAS of lacunar stroke to identify novel associations and 122 

provide mechanistic insights into the disease.  We recruited cases of lacunar stroke from hospitals 123 

across the UK as part of the UK DNA lacunar stroke studies 1 and 2, and from collaborators within the 124 

International Stroke Genetics Consortium (ISGC); and re-analysed data from previous studies. 10-13 As 125 

MRI confirmation of lacunar stroke is more reliable, 14,15 we focused on recruiting MRI confirmed cases. 126 

We first performed a GWAS of this data to identify novel genetic loci associated with lacunar stroke. 127 

Secondly, we used a multi-trait approach to detect additional genetic variation associated with lacunar 128 

stroke in a joint analysis with cerebral WMH from a large-scale GWAS.9 Thirdly, we followed up our 129 

initial analyses using the transcriptome-wide association study (TWAS) approach to identify transcribed 130 

genes whose expression is associated with lacunar stroke, and used Mendelian randomization to 131 

assess common cardiovascular risk factors that contribute to the disease. We performed analyses 132 
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separately in MRI confirmed and standard phenotyping groups to assess whether MRI confirmation 133 

improves power to detect genetic associations. 134 

 135 

Methods 136 

Study Design and Phenotype Definitions 137 

The workflow and design of the study is presented in Figure 1. Lacunar stroke cases were recruited 138 

from a combination of acute stroke admissions and outpatient services from Europe, United States, 139 

South America, and Australia. Study inclusion criteria are detailed in the appendix, and lacunar stroke 140 

classification is given below. For each contributing study, approval for inclusion in this analysis 141 

complied with local ethical standards and with local institutional review board/ethics committee 142 

oversight. All cases and controls provided informed consent for genetic studies.  143 

 144 

For the purposes of this analysis, lacunar stroke samples were divided into two strata: the MRI 145 

confirmed group and the standard phenotyping group.  146 

In the MRI confirmed group, lacunar stroke was defined as a clinical lacunar syndrome, 16 with an 147 

anatomically compatible lesion on MRI (subcortical infarct, ≤15 mm in diameter) - either as a region of 148 

high intensity on diffusion weighted imaging (DWI) for acute infarcts, or as a region of low intensity on 149 

FLAIR or T1 imaging for non-acute infarcts, 3 and absence of other non-SVD causes of stroke. MRI 150 

were centrally reviewed according to a standard proforma to confirm the diagnosis of lacunar stroke 151 

and identify any exclusion criteria. All patients underwent comprehensive stroke investigation, including 152 

brain MRI, imaging of the carotid arteries, and electrocardiogram. Echocardiography was performed 153 

where appropriate. Exclusion criteria were stenosis >50% in the extra or intracranial cerebral vessels, 154 

or previous carotid endarterectomy; cardioembolic source of stroke, defined according to the TOAST 155 

criteria as high or moderate probability;10 cortical infarct on MRI; subcortical infarct >15 mm in diameter, 156 

as these can be caused by embolic mechanisms (striatocapsular infarcts); and any other specific cause 157 

of stroke (e.g. lupus anticoagulant, cerebral vasculitis, dissection, and monogenic cause of stroke).   158 
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In the standard phenotyping group, lacunar stroke was defined according to the TOAST criteria, based 159 

on a clinical lacunar syndrome,  and the absence of other causes of stroke, or non-lacunar infarction 160 

on computed tomography. 10 161 

 162 

Genotyping and Imputation 163 

Genotyping arrays, quality control filters, and imputation reference panels are listed in the appendix 164 

(pp 7-8). All studies inferred the genetic ancestry of samples by comparison with reference populations 165 

using principal components analysis. European samples in this study are defined as those which 166 

segregated with European ancestry reference samples. The majority of studies were imputed to the 167 

Haplotype Reference Consortium build. Where this was not possible due to logistical or ethical reasons, 168 

imputation to 1000 Genomes Phase 3 (All ancestry groups) panels was used. 13,17  169 

 170 

Statistical Analysis 171 

All studies used logistic regression to assess the association of single nucleotide polymorphisms (SNP) 172 

allele dosages with lacunar stroke, including ancestry informative principal components as covariates 173 

as appropriate. All studies included cases with geographically matched controls, as confirmed by 174 

principal components analysis. Some studies had a combination of cases based on TOAST diagnosis 175 

of lacunar stroke which were re-analysed for MRI confirmation of lacunar stroke, and cases based on 176 

TOAST diagnosis of lacunar stroke only for which MRI was either not acquired or we were not able to 177 

access. In these circumstances we analysed the MRI confirmed and TOAST only (standard 178 

phenotyping) groups separately, and divided the study controls between the two groups to avoid any 179 

sample overlap. Any cases with subsequent MRI confirmation of lacunar stroke were omitted from the 180 

TOAST only group; all individuals were only analyzed once. 181 

Meta-analysis was performed based on a fixed effects inverse-variance weighted procedure using 182 

METAL. 18 Meta-analysis was performed in the MRI confirmed and standard phenotyping groups 183 

separately, and in all studies combined. We used the principles in Winkler et al. to scrutinize datasets 184 

used in the meta-analysis. 19 Per study, we filtered out SNPs with imputation INFO scores < 0.7 or 185 
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minor allele frequency (MAF) < 0.01. Additionally, we removed low frequency or poorly imputed SNPs 186 

in smaller studies by removing variants with INFO x MAF x Number of cases < 2. 5 Genomic control 187 

correction based on genomic inflation lambda was used per study to adjust for any residual inflation. 20 188 

LDSCORE intercept values were used to assess whether population structure had been sufficiently 189 

resolved at the meta-analysis level. 21 After meta-analysis we excluded SNPs not present in at least 190 

50% of cases. 191 

We defined significant loci as those containing SNPs reaching p<5x10-8 and being in linkage equilibrium 192 

(R2>0.1) with other lead SNPs. Where multiple loci met these criteria within 1Mb we used conditional 193 

and joint multiple SNP analysis (GCTA-cojo) to determine whether these SNPs remained genome-194 

wide significant in a joint modelling scenario. 22 We used Nagelkerke R2 values to calculate the 195 

proportion of variance explained by genome-wide significant SNPs using the NagelkerkeR2 function in 196 

the R fmsb library.23 We subtracted the R2 estimate for the model including only principal components 197 

from the model also containing the genome-wide significant SNPs to obtain an estimate of R2. We used 198 

a genome-based restricted maximum likelihood (GREML) approach, implemented in GCTA, 24,25 and 199 

LD Score regression, 21 to estimate heritability of lacunar stroke (MRI confirmed and non confirmed). 200 

 201 

Multi-Trait Analysis 202 

We applied multi-trait analysis of GWAS (MTAG), 26 performing a joint analysis with a large study of 203 

cerebral WMH on MRI (N=42,310), 9 which shares a common etiology with lacunar stroke through 204 

cerebral SVD, to uncover additional genetic variation associated with lacunar stroke. We considered 205 

associations significant if they attained a p-value < 5x10-8 in MTAG analysis, had a p-value <0.05 for 206 

association with WMH and lacunar stroke in univariate analysis, and showed greater significance in 207 

MTAG analysis than in univariate analyses for WMH or lacunar stroke. To confirm our associations, 208 

we used an alternative approach, Bayesian multivariate analysis of summary statistics (BMASS). 27  209 

 210 

Transcriptome-Wide Association Study 211 
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We used the transcriptome-wide association study (TWAS) approach to identify genes for which 212 

genetically altered expression was associated with lacunar stroke. Analyses were performed using 213 

FUSION, 28 from gene expression models derived from the GTEx v7, 29 CommonMind Consortium 214 

(CMC), 30 and Young Finns Study (YFS) datasets. 31 The CMC gene expression tissues (labelled as 215 

CMC-brain) were collected from the dorsolateral prefrontal cortex of individuals with schizophrenia or 216 

controls (TWAS-N=452). In the YFS study (labelled as YFS-whole blood), peripheral blood gene 217 

expression has been collected for 1,650 participants (TWAS-N=1,264). Among the available GTEx 218 

tissues, we focused our TWAS analysis on the aortic artery (TWAS-N=267), coronary artery (TWAS-219 

N=152), tibial artery (TWAS-N=388) and whole blood (TWAS-N=369), based on the assumption that 220 

these tissues would be the most relevant for lacunar stroke pathogenesis. Bonferroni correction for 221 

multiple testing was applied taking into account the total number of tested genes across the tissues. 222 

TWAS results were further investigated with colocalization analysis of expression quantitative trait loci 223 

(eQTLs) and GWAS signals with the R package COLOC, 32 to assess whether the observed eQTL and 224 

GWAS associations were consistent with a common shared association. 225 

 226 

Bioinformatics Analyses for Novel Associations 227 

We used Phenoscanner to query whether our genome-wide significant SNPs have been associated 228 

with DNA methylation, 33,34 metabolite or protein levels from genome-wide studies at genome-wide 229 

significance (p<5x10-8) in other GWAS. We scanned DrugBank and DGIdb to assess the therapeutic 230 

potential of targeting associated genes. 35,36 231 

 232 

Pathway Analysis 233 

To identify biological pathways significantly associated with risk of lacunar stroke, we used MAGMA. 234 

37 We first used MAGMA to calculate significance of each gene based on association results, and then 235 

used these gene-level statistics to estimate enrichment of Gene Ontology (GO) pathways from the 236 

Molecular Signatures Database (MSigDB) using a gene-set enrichment analysis approach. 38 We 237 
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investigated only GO terms containing at least 4 and less than 200 genes and considered pathways 238 

attaining a false discovery rate (FDR) < 0.05 as being significantly associated with lacunar stroke. 239 

 240 

Mendelian Randomization Analysis 241 

We performed Mendelian Randomization analyses to determine whether any lipid (low density 242 

lipoprotein, high density lipoprotein, triglycerides), 39 blood pressure (systolic blood pressure, diastolic 243 

blood pressure, pulse pressure), 40 metabolic (type 2 diabetes, body mass index), 41,42 and lifestyle risk 244 

factors (ever smoking) have a causal impact on lacunar stroke based on genetics. 43,44 Instrumental 245 

variables were independent (LD r2<0.01) genome-wide significant (p<5x10-8) variants associated with 246 

each trait from previous analyses, and are listed in appendix pp 9-74. For blood pressure traits, we 247 

included SNPs associated at genome-wide significance with any of the three traits in all analyses. For 248 

body mass index, we used the set of independent SNPs provided by study authors. 41 We calculated 249 

the ratio of the SNP risk factor effect size by the corresponding effect size for lacunar stroke and 250 

aggregated effects across all risk factor-associated SNPs using an inverse-variance weighted 251 

procedure. As secondary analyses, we used median, weighted median and MR-Egger approaches to 252 

aggregate across SNPs. We used the MR-Egger intercept to assess evidence of directional pleiotropy. 253 

In all analyses we used the MendelianRandomization package in R.45 Results are presented as odds 254 

ratios per genetically predicted increase in each risk factor (original scale). 255 

 256 

Role of the Funding Source 257 

The funder had no role in the design or execution of the study, interpretation of data, writing of the 258 

report, or the decision to submit the paper for publication. Study authors had full access to data included 259 

in the study and accept responsibility to submit for publication. 260 

 261 

Results 262 
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We meta-analysed studies from Europe, United States, and Australia, giving 6,030 cases and 248,929 263 

controls of European ancestry, and 7,338 cases and 225,258 controls in Transethnic analysis.  2,987 264 

(40.7%) cases (matched with 29,540 controls) had confirmation by MRI. Study cohorts, including 265 

genomic inflation  values, are described in the appendix (pp 5-6, 100-111). Following meta-analysis, 266 

in the European analysis LDSCORE intercept values were equal to 1.046 (s.e = 0.008) and the 1000 267 

value was 1.007, while in the Transethnic analysis the 1000 value was 1.005, indicating no substantial 268 

inflation. SNP-heritability of MRI confirmed lacunar stroke, calculated using GREML methods in a 269 

European ancestry subset of 1,693 cases and 10,171 controls genotyped on the same array, was 270 

h2=0.17-0.21, standard error=0.02 assuming stroke prevalence of 1-3%, and that 20% of these are 271 

lacunar strokes. Using LD Score regression estimates of SNP-heritability were lower then GREML 272 

estimates, but were higher in the MRI confirmed (h2=0.065, s.e=0.017) than in the non MRI confirmed 273 

(h2=0.0081, s.e=0.0025). The genetic correlation between MRI confirmed and non MRI confirmed 274 

groups using LD Score regression was significant (rg=0.61, s.e=0.21, p=0.0033).  275 

Three loci were associated with lacunar stroke in European samples, while 3 were associated in 276 

Transethnic analysis, giving 5 loci overall (Table 1, Figure 2). Regional association plots and forest 277 

plots for these loci are provided in the appendix (pp 115-134).  Four of the loci were novel, while one 278 

was the previously associated 16q24 locus. 6 One other locus (ICA1L-WDR12-CARF-NBEAL1) was 279 

associated in gene-based analyses in MEGASTROKE, and was associated in a recent multi-trait 280 

analysis of intracerebral haemorrhage and lacunar stroke. 5,46 281 

We next applied MTAG to identify additional genetic variation underlying lacunar stroke in a joint 282 

analysis with an etiologically related trait, cerebral WMH. Genetic correlation between lacunar stroke 283 

and cerebral WMH, calculated using LDSCORE regression, 21 was substantial for the MRI confirmed 284 

group (rG(SE)=0.46(0.10) p=4.6x10-6) and slightly lower when including all lacunar strokes 285 

(rG(SE)=0.37(0.09) p=4.0x10-5). In the joint analysis with cerebral WMH, variants in seven additional 286 

loci reached genome-wide significance for lacunar stroke overall (Table 1, Figure 2). Four of these loci 287 

(SLC25A44-PMF1-BGLAP, LOX-ZNF474-LOC100505841, SH3PXD2A, COL4A2) have previously 288 

been associated with WMH. 47,48 Regional association plots and Forest plots for the loci are provided 289 

in the appendix (pp 120-134). 290 
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None of the 12 loci reaching genomewide significance showed evidence of heterogeneity (p=0.05 to 291 

0.98; appendix pp 123-134). In two regions (SH3PXD2A and HTRA1-ARMS2) multiple apparently 292 

independent (LD r2<0.1) SNPs reached genome-wide significance. However, in a joint modelling 293 

scenario employed using GCTA-cojo, only a single SNP at each of these regions remained genome-294 

wide significant showing that a single variant remains the most parsimonious explanation of the 295 

association at this locus. 22 We discarded two regions according to our protocol. One region on 296 

chromosome 17q25 showed an association solely with WMH, with no association with lacunar stroke 297 

(lead SNP p=0.39). A second region on chromosome 14 (EVL-DEGS2), was not as significant in MTAG 298 

analysis (p=1.2x10-9) as in WMH alone (p=1.2x10-12) so an independent contribution of lacunar stroke 299 

to the association could not be determined. Further evidence is required to determine that these regions 300 

are associated with lacunar stroke, so each was discarded from this analysis. The ZBTB14-EPB41L3 301 

locus that was associated with lacunar stroke was not associated with WMH (p=0.33 and effect in the 302 

opposite direction). Similarly, for the ULK4 locus associated with lacunar stroke, the lead SNP did not 303 

reach significance for WMH (p=0.12), but was in the consistent effect direction and thus could reflect 304 

a lack of study power. 305 

The 12 loci showed stronger effects in the MRI confirmed group compared to the standard phenotyping 306 

group (in European ancestry analysis, appendix pp 86), although not significantly so (one-tailed p-307 

value=0.07), with a median proportional increase in odds ratio of 3.4%. The 12 loci explained 1.4% of 308 

the overall heritability, and 6.5-8.1% of the lacunar stroke heritability from GWAS arrays, as calculated 309 

in this study. 310 

We performed a TWAS to identify genes for which expression was associated with lacunar stroke 311 

(Figure 3).  Genetically elevated SLC25A44 was associated with lacunar stroke in multi-trait analysis 312 

in arterial tissues, while genetically decreased ULK4 was associated with lacunar stroke in arterial 313 

tissues, whole blood, and brain. At the 2q33.2 locus, genetically elevated CARF, FAM117B, ICA1L, 314 

and NBEAL1 were all associated with lacunar stroke. All associations were confirmed by colocalization 315 

analysis between the gene expression and lacunar stroke associations (posterior probability (pp)>0.7).  316 

Five other associations were identified in the TWAS, but were not confirmed by colocalization analysis 317 

(pp<0.7, Figure 3). 318 
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We used Phenoscanner to interrogate whether the 12 lead SNPs were associated with DNA 319 

methylation, metabolite or protein levels from large scale studies. 49-51 Eleven of the 12 lead SNPs 320 

showed associations with DNA methylation at genome-wide significance: more than expected by 321 

chance based on randomly selected SNPs across the genome (p<0.01), and 10 of which were 322 

associated in multiple independent studies (appendix pp 87-97). Conversely, none of the 12 SNPs 323 

were associated with metabolite or protein levels. 324 

Querying databases that catalogue drug-gene relationships showed that 11 of the genes listed in Table 325 

1 are categorized as ‘druggable’ indicating they have potential for therapeutic development (appendix 326 

pp 98). However, no existing drugs target any of the genes identified in this study.  327 

A pathway analysis based on the multi-trait analysis results using MAGMA revealed five significantly 328 

associated Gene Ontology gene sets: Phosphatidylinositol 5 Phosphate Binding (p=2.2x10-6, 329 

FDR=0.020), Extracellular Matrix Structural Constituent (p=6.2x10-6, FDR=0.027), Extracellular Matrix 330 

Constituent Conferring Elasticity (p=8.9x10-6, FDR=0.027), Middle Ear Morphogenesis (p=2.3x10-5, 331 

FDR=0.049), and Roundabout (ROBO) Binding (p=2.7x10-5, FDR=0.049). No pathways were 332 

significant when based solely on lacunar stroke results. Results for all pathways with FDR<0.5 are 333 

presented in the appendix (pp 75-76). 334 

Mendelian randomization analyses using an inverse variance weighted approach found positive 335 

associations with diastolic, systolic, and pulse pressure, type 2 diabetes, and ever smoking with lacunar 336 

stroke (Figure 4). No significant finding showed any evidence of pleiotropy, as assessed using the MR-337 

Egger intercept. There was evidence not reaching Bonferroni corrected significance, for a protective 338 

effect of increased high-density lipoprotein on risk of lacunar stroke. There was no evidence of 339 

association with body mass index, low density lipoprotein or triglycerides. Secondary analysis for all 340 

risk factors using median, weighted median, and MR-Egger approaches are presented in the appendix 341 

(pp 135-143). 342 

GWAS Summary statistics from the primary analyses are available at GWAS Catalog 343 

(https://www.ebi.ac.uk/gwas/summary-statistics) and on the Cerebrovascular Portal 344 

(http://www.cerebrovascularportal.org). 345 

 346 
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Discussion 347 

Despite its public health importance as the cause of a quarter of all strokes, previous GWAS studies 348 

have only identified one genetic locus for lacunar stroke, in contrast to the 35 identified for ischaemic 349 

stroke and its major subtypes.5 We performed a GWAS of lacunar stroke, including the largest number 350 

of cases with MRI confirmation to date, identifying 11 novel loci in addition to replicating the only 351 

previously reported locus.  352 

The primary analysis identified four novel loci. One association on chromosome 11, encompassing 353 

SPI1-SLC39A13-PSMC3-RAPSN was identified in both European and Transethnic analyses. The lead 354 

SNP is a synonymous variant in SLC39A13 (Solute Carrier Family 39 Member 13), a transmembrane 355 

protein with roles in zinc transport. Mutations in this gene cause a form of Ehlers-Danlos syndrome, a 356 

group of connective tissues disorders which influence the vasculature and can cause stroke; 52 vascular 357 

abnormalities have been reported in SLC39A13 knockout mice.53 We additionally identified a locus for 358 

which the lead SNP resides in an intron of ULK4 (UNC-51 Like Kinase 4) on chromosome 3. The TWAS 359 

analysis suggests ULK4 is the most likely implicated gene, with genetically decreased expression of 360 

ULK4 being associated with lacunar stroke. Variants in close LD with the lead SNP have been 361 

implicated in diastolic blood pressure in large scale GWAS. 54 However, the direction of effect was 362 

opposite to that for lacunar stroke, suggesting this likely reflects pleiotropy rather than a causal 363 

pathway. Variants in close LD have also been associated with another cardiovascular disease, Acute 364 

Aortic Dissection. 55 ULK4 belongs to the family of serine/threonine protein kinases, a group of 365 

phosphorylating kinases involved in diverse processes including cell proliferation and differentiation, 366 

apoptosis and embryonic development. Its deficiency leads to hypomyelination, 56 and it has been 367 

associated with neuropsychiatric traits. 57 Finally, we report a novel association on chromosome 18, 368 

located between ZBTB14 (Zinc Finger and BTB Domain Containing 14), a zinc finger transcription 369 

factor, and EPB41L3 (Erythrocyte Membrane Protein Band 4.1 Like 3), a membrane protein that inhibits 370 

cell proliferation and promotes apoptosis.  371 

In multi-trait analysis we identified 7 further loci, all of which are reported as associated with lacunar 372 

stroke at genome-wide significance for the first time. Two have not been reported as being associated 373 

with any cerebrovascular disease previously. One lies in an intergenic region between the VTA1 374 
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(Vesicle Trafficking 1) and GPR126 (G Protein-Coupled Receptor 126) genes. GPR126 is a G-Protein 375 

Coupled Receptor which is activated by type IV collagen and has an important role in myelination. 58 376 

GPR126 binds laminin-211, 59 an extracellular matrix protein produced by astrocytes and present in 377 

the brain, with key roles in development and function of the blood-brain barrier, 60 in part through 378 

regulation of pericyte differentiation – a mechanism previously implicated through the FOXF2 gene. 379 

61,62  SVD-related endothelial dysfunction has also been shown to prevent oligodendrocyte precursor 380 

cell maturation, contributing to impaired myelination. 63 One hypothesis is that the GPR126 variant 381 

might exacerbate this process, inhibiting repair from myelin damage. The second previously unreported 382 

association lies in an intergenic region, the nearest gene to which is HTRA1 (HtrA Serine Peptidase 383 

1), a gene in which rare homozygous variation leads to Cerebral Autosomal Recessive Arteriopathy 384 

with Subcortical Infarcts and Leucoencephalopathy (CARASIL). 64 HTRA1, through processing of 385 

LTBP-1 (latent transforming growth factor beta binding protein 1), promotes transforming growth factor 386 

beta (TGF-beta) signaling in the vascular extracellular matrix (ECM). 65 The presence of both rare and 387 

common risk variants in HTRA1 points to it being a key molecule in lacunar stroke pathogenesis, and 388 

is a feature shared with another gene identified in this study, COL4A2, in which rare variants also cause 389 

monogenic forms of cerebral small vessel disease.7 Candidate gene studies have previously shown 390 

associations not reaching genome-wide significance in COL4A2 with lacunar stroke and the same 391 

region has also previously been associated with intracerebral haemorrhage in multi-trait analysis, and 392 

coronary artery disease. 46,66,67 Four other loci identified (SH3PXD2A, LOX-ZNF474-LOC100505841, 393 

SLC25A44-PMF1-BGLAP, FOXF2-FOXQ1) were associated with broad stroke in MEGASTROKE (see 394 

appendix pp 11-18 for associations of all SNPs in MEGASTROKE) or a previous meta-analysis, 5,62 395 

although this is the first study to confirm their association specifically with lacunar stroke. At the 396 

SLC25A44-PMF1-BGLAP locus, the TWAS results point to an association of genetically elevated 397 

SLC25A44 with lacunar stroke, which was validated in colocalization analysis. SLC25A44 plays a key 398 

role in catabolism of branched-chain amino acids in brown adipose tissue by transporting them into 399 

mitochondria, 68 and thus has potential as a mediating factor in the relationship between metabolic 400 

disease and lacunar stroke. However, variants in close LD have also been associated with mosaic Y 401 

chromosome loss, 69 highlighting mosaicism as an alternative mechanism. Further functional studies 402 

will be required to untangle these relationships with lacunar stroke. The strength of association of all 403 
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associated variants was moderate to large in the context of GWAS (OR ranging from 1.10 to 1.25 in 404 

Europeans) and notably larger than effects previously reported for variants associated with broad 405 

stroke phenotypes. 5 This is consistent with the variants acting specifically on the lacunar stroke 406 

subtype rather than on stroke as a whole. 407 

We also found that 11 of the 12 lead SNPs influence DNA methylation at genome-wide significance, 408 

pointing to epigenetic changes being one source through which risk of lacunar stroke is conferred. 409 

Whether this genetically-altered DNA methylation influences transcription of nearby genes – and which 410 

genes are affected – should be the focus of further study. A pathway analysis implicated several 411 

biological processes in lacunar stroke pathophysiology. Two pathways involved the ECM, the network 412 

of extracellular molecules that provide scaffolding and biochemical support to surrounding tissues. 413 

Disruption of the vascular ECM has been hypothesized to be a key component in pathogenesis of 414 

CSVD, particularly in monogenic forms, and several of the genes implicated in this study (COL4A2, 415 

LOX, SH3PXD2A, GPR126, HTRA1) play a key role in the ECM. 70 This finding lends support to this 416 

hypothesis and suggests ECM dysfunction also has a key role in sporadic CSVD.  417 

We performed Mendelian randomization to assess whether cardiovascular risk factors showed 418 

evidence of causal association with lacunar stroke. We found support for genetically predicted elevated 419 

blood pressure (systolic, diastolic, and pulse pressure), type 2 diabetes and smoking being associated 420 

with lacunar stroke. The results are consistent with those from observational studies, and suggest that 421 

targeting these factors would reduce risk of lacunar stroke. 71 There was evidence not reaching 422 

Bonferroni corrected significance for a protective effect of increased high-density lipoprotein on risk of 423 

lacunar stroke, and no association with low-density lipoprotein, replicating findings in previous studies. 424 

72,73 Overall these finding show that the impact of the direct effects of low-density-lipoprotein lowering 425 

medications such as statins on incidence of lacunar stroke is likely to be minimal. 426 

Our study emphasises the benefit of accurate phenotyping using MRI. Using this approach, the 427 

heritability of lacunar stroke using GREML was substantial, and larger than previous estimates based 428 

on TOAST subtyping. 74 Using LD Score, the heritability was larger in the MRI confirmed group, but 429 

estimates were considerably lower than for GREML. The use of MRI subtyping also increased the 430 

strength of association of the lacunar stroke associated variants although this increase was not quite 431 
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significant.  These results suggest that further genetic risk factor studies in lacunar stroke are likely to 432 

be more successful if MRI subtyping is used.  433 

Our study has limitations. The analysis was performed in a predominantly European ancestry 434 

population. Large studies including diverse ancestries should be performed to assess the 435 

generalizability of findings to all ethnic groups. The MTAG approach relies on the relatively strong 436 

assumption that associated variants act on both traits, which may not always be the case for WMH and 437 

lacunar stroke, as they reflect downstream effects of a shared common ancestor, SVD. To control for 438 

this, we only considered SNPs showing association with both traits and showing greater significance 439 

in MTAG analysis than with WMH or lacunar stroke alone, as being significant. However independent 440 

replication will remain the gold standard for confirming these and all other reported associations in this 441 

article. Recent studies have suggested that a more conservative threshold of p<1x10-8 should be 442 

considered in GWAS using larger imputation panels such as here. 75 If using this threshold one locus 443 

(ZBTB14-EPB41L3) would no longer be significant. Additional caution should therefore be applied 444 

when interpreting this finding, particularly as it was not significant in MTAG analysis. To increase 445 

sample size and study power, we used publicly available controls in analyses. As such it was not 446 

possible to determine whether these individuals had a history of lacunar stroke. Our analyses did not 447 

adjust for age and sex; there is an ongoing debate about the importance of including such covariates 448 

in genetic studies. 76 In analyses with substantial differences between case and control populations it 449 

is possible that this could result in subtle biases. 450 

In summary, these findings represent substantial progress in identifying the genetic mechanisms 451 

underlying lacunar stroke, a disease for which there remain significant deficits in our understanding of 452 

the molecular causes. Our findings highlight diverse mechanisms contributing to the disease, 453 

implicating disruption of the vascular ECM (COL4A2, LOX, SH3PXD2A, GPR126, HTRA1), pericyte 454 

differentiation (FOXF2, GPR126), TGF-beta signaling (HTRA1), and myelination (ULK4, GPR126) in 455 

disease risk. This provides novel insights into the pathogenesis of lacunar stroke, and highlights 456 

multiple candidates to take forward into functional experiments to identify specific mechanisms 457 

conferring risk of lacunar stroke which could be targeted therapeutically.  458 

 459 
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(http://www.cerebrovascularportal.org). Individual level data from the NINDS-SIGN Stroke study are 523 

available to researchers through dbGAP: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-524 

bin/study.cgi?study_id=phs000615.v1.p1. 525 

 526 

Research in context 527 

Evidence before this study 528 

Using the terms “stroke”, “small vessel stroke”, “lacunar stroke”, “small vessel disease”, “white matter 529 

hyperintensities”, “genetics”, “GWAS”, we searched PubMed (https://pubmed.ncbi.nlm.nih.gov) and 530 

GWAS Catalog (https://www.ebi.ac.uk/gwas/) for relevant reports. We only considered peer-reviewed 531 

reports in English. Only a single locus on chromosome 16q24 has been robustly associated specifically 532 

with lacunar stroke compared to over 30 with broad stroke phenotypes.  533 

Added value of this study 534 

The present findings substantially expand the number of genetic associations with lacunar stroke, with 535 

5 loci now associated directly and a further 7 associated with lacunar stroke jointly with white matter 536 

hyperintensities. These loci highlight several key mechanisms in lacunar stroke pathogenesis - 537 

including extracellular matrix dysfunction, myelination, and pericyte differentiation. The current findings 538 

also show that individuals with increased genetic predisposition to elevated blood pressure, history of 539 

smoking, and type 2 diabetes are at increased risk of lacunar stroke, pointing to the causal role of these 540 

factors in disease etiology. 541 

http://www.cerebrovascularportal.org/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000615.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000615.v1.p1
https://pubmed.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/gwas/
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Implications of all the available evidence 542 

There currently are no treatments that prevent lacunar stroke aside from management of vascular risk 543 

factors such as blood pressure. This is due in part to lack of understanding of mechanisms underlying 544 

the disease. The present findings highlight novel mechanisms underlying lacunar stroke pathogenesis, 545 

and therefore point to pathways which have potential to be targeted by therapeutics. Improved 546 

treatment of elevated blood pressure and type 2 diabetes, as well as prevention of smoking in the 547 

population will likely reduce the burden of lacunar stroke.548 
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Table 1. Genome-wide Significant Loci for Lacunar Stroke in (A.) Univariate or (B.) Multi-trait Analysis. 

A,  Associations reaching genome-wide significance for Lacunar Stroke; B, Associations reaching genome-wide significance in multi-trait analysis. Chr, 

chromosome; BP, base position (hg19); RA, risk allele; OA, other allele; RAF, risk allele frequency; MTAG, multi-trait analysis of GWAS; logBF, log (Bayes 

factor); *, As A/T and C/G SNPs are removed by MTAG, results are presented for SNP in highest LD (rs9842261);  Genes in bold type were associated 

in TWAS analysis and confirmed by colocalization.

       
Lacunar Stroke (European: 

6030 Cases, 219,389 
Controls) 

Lacunar Stroke 
(Transethnic: 7338 

Cases, 225,258 
Controls) 

White Matter 
Hyperintensities 

(N=42,310) 
MTAG 

Nearest Genes Chr BP Genomic 
Context 

rsid RA/
OA 

RAF OR(SE) P value N  

Studies 

OR(SE) P value Beta(SE) P value P value 

A.               

ICA1L-WDR12-CARF-NBEAL1 2 203,968,973 Intronic rs72934535 T/C 0.89 1.25(0.04) 3.7x10-9 12 1.22(0.04) 5.2x10-8 0.070(0.01) 2.8x10-10 5.3x10-16 

ULK4 3 41,839,370 Intronic rs4621303 T/A 0.83 1.15(0.03) 1.7x10-7 14 1.16(0.03) 6.4x10-9 0.015(0.01) 0.12 2.2 x10-7* 

SPI1-SLC39A13-PSMC3-RAPSN 11 47,434,986 Exonic rs2293576 G/A 0.67 1.14(0.02) 7.2x10-10 14 1.14(0.02) 6.0x10-10 0.030(0.01) 3.1x10-5 6.4x10-13 

ZCCHC14 16 87,575,332 Intergenic rs12445022 A/G 0.34 1.13(0.02) 2.5x10-8 13 1.12(0.02) 9.0x10-8 0.019(0.01) 0.0078 3.1x10-9 

ZBTB14-EPB41L3 18 5,389,832 Intergenic rs9958650 G/A 0.10 1.18(0.03) 9.9x10-7 12 1.19(0.03) 2.4x10-8 -0.011(0.01) 0.33 0.0005 

B.                

SLC25A44-PMF1-BGLAP 1 156,197,380 Intronic rs2984613 C/T 0.64 1.10(0.02) 2.5x10-5 13 1.09(0.02) 1.4x10-5 0.037(0.01) 2.3x10-7 8.2x10-10 

LOX-ZNF474-LOC100505841 5 121,518,378 Downstream rs2303655 T/C 0.81 1.14(0.03) 3.6x10-5 11 1.12(0.03) 0.00014 0.050(0.01) 1.4x10-8 1.9x10-10 

FOXF2-FOXQ1 6 1,366,718 Intergenic rs7766042 C/T 0.11 1.17(0.03) 3.7x10-6 11 1.18(0.03) 1.2x10-6 0.045(0.01) 7.1x10-5 5.2x10-9 

VTA1-GPR126 6 142,562,417 Intergenic rs225744 C/T 0.77 1.11(0.03) 3.5x10-5 12 1.09(0.02) 0.00050 0.037(0.01) 5.8x10-6 9.2x10-9 

SH3PXD2A 10 105,447,838 Intronic rs61000833 T/C 0.60 1.10(0.02) 1.7x10-5 12 1.07(0.02) 0.0024 0.049(0.01) 2.0x10-12 6.0x10-13 

HTRA1-ARMS2 10 124,233,181 Intronic rs79043147 T/C 0.07 1.21(0.04) 3.2x10-6 11 1.22(0.04) 1.1x10-6 0.057(0.01) 1.8x10-5 1.6x10-9 

COL4A2 13 111,040,681 Intronic rs11838776 A/G 0.29 1.11(0.02) 4.3x10-6 12 1.11(0.02) 1.6x10-6 0.050(0.01) 7.9x10-11 7.9x10-13 
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Figure 1. Analysis pipeline 
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Figure 2. Manhattan plot of -log10(p-values) for genomewide SNP associations with A) lacunar stroke 

(transethnic analysis) and B) lacunar stroke multi-trait analysis, by genomic position. 
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Figure 3. Genes for which expression is associated with lacunar stroke in 6 tissues from Transcriptome-

Wide Association Analysis, with evidence of colocalization of gene expression and lacunar stroke signals 

given by triangle size 

 

COLOC.PP4, the posterior probability of hypothesis 4 in colocalization analysis, that there is a consistent 

association between lacunar stroke and expression of the given gene.   
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Figure 4. Odds ratios for associations between genetically proxied cardiovascular risk factors and lacunar 

stroke from Mendelian Randomization analysis using the inverse variance weighted method   

Estimates are presented as odds ratios per genetically proxied increase in each risk factor (original scale); 

OR, odds ratio.  
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