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Abstract

A prophet inequality states, for some α ∈ [0, 1], that the expected value achievable
by a gambler who sequentially observes random variables X1, . . . , Xn and selects one of
them is at least an α fraction of the maximum value in the sequence. We obtain three
distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and
is particularly relevant to modern applications in algorithmic pricing. In this setting, the
random variables are i.i.d. from an unknown distribution and the gambler has access to an
additional βn samples for some β ≥ 0. We first give improved lower bounds on α for a wide
range of values of β; specifically, α ≥ (1 + β)/e when β ≤ 1/(e − 1), which is tight, and
α ≥ 0.648 when β = 1, which improves on a bound of around 0.635 due to Correa et al.
(SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic
pricing, we then show that the new bounds can be obtained even in a streaming model of
computation and thus in situations where the use of relevant data is complicated by the
sheer amount of data available. We finally establish that the upper bound of 1/e for the
case without samples is robust to additional information about the distribution, and applies
also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a
known distribution, from a finite set of known candidate distributions. This implies a tight
prophet inequality for exchangeable sequences of random variables, answering a question of
Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better
guarantees when the number of candidate distributions is small, a setting we believe is of
strong interest to applications.

1 Introduction

Prophet inequalities have been studied extensively in optimal stopping theory and have recently
seen a surge of interest in theoretical computer science. They are less pessimistic than classic
worst-case competitive analysis as a framework for the study of online algorithms, and have
major applications in algorithmic mechanism design and algorithmic pricing. These applications
include relatively obvious ones in the design and analysis of posted-price mechanisms, but also
more indirect ones like the choice of reserve prices in online advertising auctions (see, e.g., the
survey of Hajiaghayi and Liaghat [2016]).
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The basic prophet inequality problem—sometimes referred to as the single-choice or single-
item prophet inequality—is the following: a gambler observes a sequence of random variables
X1, . . . , Xn which satisfy certain assumptions, for example that they are drawn independently
from possibly distinct known distributions. Upon seeing the realization Xi = xi the gambler has
to decide immediately and irrevocably whether to stop and receive xi as reward or to continue
to the next random variable. Denoting the possibly randomized index at which the gambler
stops by τ , the expected reward of the gambler is E[Xτ ]. The goal is to find a stopping rule that
is competitive with the expected reward of an all-knowing prophet who in particular knows the
entire sequence and can simply choose the highest reward in the sequence. The goal thus is to
determine the largest α ∈ [0, 1] such that the inequality E[Xτ ] ≥ α ·E[maxi{X1, . . . , Xn}] holds
for all random variables that satisfy the assumptions.

When distributions are known, optimal stopping rules can in principle be found by backward
induction. Determining the optimal competitive ratio α may, nevertheless, be an intricate task.
Whereas a tight result of α = 1/2 for non-identical distributions has been known since the 1980s
[Krengel and Sucheston, 1977, 1978; Samuel-Cahn, 1984], a bound of α ≈ 0.745 for the case of
identical distributions was only recently shown to be tight [Hill and Kertz, 1982; Abolhassani
et al., 2017; Correa et al., 2017].

An exciting new set of questions arises if we assume that the distributions of the random
variables are unknown. In what is arguably the most basic setting of this kind, the gambler
faces n i.i.d. draws from an unknown distribution. Since the random variables come from the
same distribution, we may hope to be able to learn from earlier draws and apply what we have
learned to later ones. Correa et al. [2019a] showed that, perhaps surprisingly, no learning is
possible and the optimal solution mirrors the optimal solution to the classic secretary algorithm
to achieve a bound of 1/e; the impossibility persists even with o(n) additional samples from
the distribution, whereas a considerably better lower bound can be achieved with βn samples,
for β > 0, and O(n2) samples are enough to get arbitrarily close to the optimal bound of
α ≈ 0.745 achievable for a known distribution. The latter can actually be achieved already with
O(n) samples [Rubinstein et al., 2020]. While improved bounds have been obtained for the
case with βn samples [Correa et al., 2020; Kaplan et al., 2020], significant gaps remain between
lower and upper bounds across the whole range of values of β. In a setting with non-identical
distributions, a single sample from each distribution is enough to match the optimal bound of
α = 1/2 achievable with full knowledge of the distributions [Rubinstein et al., 2020].

1.1 Our Contribution

We improve the results of Correa et al. [2019a] and the follow-up work in three distinct direc-
tions. Firstly, we give a new prophet inequality for i.i.d. random variables from an unknown
distribution and access to additional samples. The inequality is tight when the number of sam-
ples is small, and otherwise improves on the state of the art. To obtain it we consider a natural
class of algorithms and use tools from variational calculus to analyze the optimal algorithm
from the class exactly. Secondly, we show that the new prophet inequality can be translated
with arbitrarily small loss into a streaming model of computation. While streaming algorithms
for optimal stopping have to our knowledge not previously been considered, they become very
interesting when we deal with unknown distributions and large amounts of relevant data. The
latter are commonly found in modern applications of prophet inequalities to algorithmic pricing.
Thirdly, we give an upper bound of 1/e for a setting where the random variables are i.i.d. from a
distribution F j which is not itself known but drawn from a known distribution over a finite set
of known scenarios F 1, . . . , Fm. The bound is established for finite m and n, and scenarios of
finite support, and shows that the impossibility in the absence of additional samples is robust to
additional information regarding the distribution. It also implies a tight prophet inequality of
1/e for exchangeable sequences of random variables with a known joint distribution, answering
a question of Hill and Kertz [1992].
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Figure 1: Visualization of the lower bound established in this paper for varying β (solid, red),
and comparison with the parametric upper bound (dashed black) and parametric lower bound
(solid black) of Correa et al. [2019a] as well as the lower bounds of Kaplan et al. [2020] (blue)
and Correa et al. [2020] (violet).

Unknown Distribution. In recent work, Correa et al. [2019a] introduced a prophet in-
equality problem involving n i.i.d. random variables from an unknown distribution and k ≥ 0
additional samples. The main motivation for studying this problem arises from modern appli-
cations of prophet inequalities, specifically their use in the analysis of posted-price mechanisms
and reserve pricing in advertising auctions. While it is common in these applications to model
valuations as draws from an underlying distribution, it may not be reasonable to assume that
the distribution is known to the auctioneer. The auctioneer may, however, choose to learn the
distribution on the fly as opportunities arrive, or may possess some limited historical information
in the form of additional samples.

Correa et al. [2019a] showed that in the absence of samples the correct value of α is 1/e.
They also gave parametric upper and lower bounds for the case of βn samples when β > 0,
which for k = n are equal to 1− 1/e ≈ 0.6321 and ln(2) ≈ 0.69. Follow-up work has produced
improved lower bounds for k < n [Kaplan et al., 2020] and k = n [Correa et al., 2020], the latter
being equal to approximately 0.635.

The guarantee of 1 − 1/e for k = n samples, achieved by Correa et al. [2019a] and also by
Kaplan et al. [2020], can be obtained by setting a threshold for the acceptance of each arriving
value that is equal to the maximum of a uniform random subset of size n − 1 of all samples
and values seen thus far. The key ingredient in the analysis of this algorithm is a fresh-samples
lemma, which states that each of the selected sets of values is distributed like n−1 fresh samples.
The lemma implies that, conditioned on stopping, the expected value obtained is the same as
that of the prophet. The competitive ratio is thus at least, and in fact equal to, the probability
of stopping at all. Since conditioned on reaching a random variable we stop with probability
1/n, this probability is 1− (1− 1/n)n ≥ 1− 1/e.

We study a natural generalization of the algorithm to what we refer to as maximum-of-
random-subset (MRS) algorithms. MRS algorithms may use as the threshold in any given step
a random subset of any size of the samples and values seen so far, and are thus characterized
by a function mapping each step to the size of the set used at that step.

Our analysis of MRS algorithms is based on the observation that, with the help of a fresh-
samples lemma, the expected value obtained by the algorithm can be written as a linear com-
bination of expected maxima of certain numbers of fresh draws from the distribution. On the
other hand, the value obtained by the prophet, to which we are comparing ourselves, is simply
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the expected maximum of n fresh draws. We can thus determine the worst-case ratio between
the two values by writing any maximum of γn draws as the integral

∫∞
0 F γn(x) dx and then

considering the integrals pointwise for each x. After substituting a = Fn(x), we are left with
the minimization of a single rational function in a single variable. As we will see, this technique
leads to a tight analysis of MRS algorithms.

To determine the best MRS algorithm using an arbitrary number of samples, we take the
supremum over all functions characterizing MRS algorithms of the solution to the aforemen-
tioned single-variable optimization problem. An upper bound on the solution of this supremum-
infimum (control) problem can be obtained by swapping the supremum and the infimum, solving
the inner supremum using the Euler–Lagrange equation, and tackling the remaining optimiza-
tion problem by multivariable calculus. A lower bound can be obtained by substituting a
solution of the form obtained from the Euler–Lagrange equation into the supremum-infimum
problem and again solving the remaining optimization problem by multivariable calculus. It
turns out that the resulting upper and lower bounds match, which indirectly implies a minimax
result. The best guarantee that can be obtained using MRS algorithms is approximately 0.653
and can be realized with around 1.443 · n samples.

For the case in which only a bounded number of βn samples is available, we conjecture
a certain structure of the optimal MRS algorithm. Given this structure, we obtain a similar
control problem as before. Using numerical methods, we obtain lower bounds for different
values of β, which we conjecture to be tight up to errors in the numerical approximation. Our
lower bounds improve on the state of the art for a broad range of values of β. In particular
we establish the existence of an MRS algorithm using n samples that achieves a guarantee of
roughly 0.649, which presents a considerable improvement over the previous best guarantee of
0.635 for the exact same setting due to Correa et al. [2020].

An interesting question going forward concerns the types of algorithms that could be used
to close the remaining gap between the lower and upper bounds. Two natural candidates
are algorithms that may skip an initial fraction of the values, effectively turning them into
samples, and algorithms that may consider other (empirical) order statistics of random subsets
of variables than just the maximum. We will see that the former class, which includes the classic
algorithm for the secretary problem when β = 0, leads to a tight guarantee of (1 + β)/e when
β ≤ 1/(e− 1) ≈ 0.58.

A summary of our results for i.i.d. random variables from an unknown distribution and a
comparison to the results from prior work can be found in Figure 1.

Streaming Prophet Inequalities. As we have mentioned earlier, the study of prophet in-
equalities for i.i.d. random variables from an unknown distribution is motivated by applications
in posted pricing and in reserve pricing in advertising auctions. Such applications are often
subject to an additional constraint, imposed by a vast amount of individual transactions that
limits the way in which data about these transactions can be accessed and used. In particular,
simply storing all past data in its entirety for later use is often impossible.

The canonical model for studying algorithms subject to this kind of constraint is the stream-
ing model (see, e.g., the survey of Muthukrishnan [2005]). In the streaming model, an algorithm
is allowed only a limited number of sequential passes over the input, often just a single one, and
can only store a limited amount of information, logarithmic in the size of the input or constant.
In the prophet problem, allowing only a single pass over the sequence of random variables is
very natural, but the streaming model additionally limits the amount of memory available to
an algorithm to O(log(k + n)) or O(1).

Streaming algorithms for the prophet problem have to our knowledge not previously been
studied. This should not be surprising, since stopping rules typically rely on information about
underlying distributions like their mean or quantiles, and distributions were until very recently
assumed to be known from the outset. When distributions are not known, as in the model of
Correa et al. [2019a], any information about them must be inferred from the sequence of random
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variables and streaming algorithms suddenly become very desirable. This is true in particular
when optimal stopping is used as a tool for modern applications in algorithmic pricing, which
often involve very large amounts of relevant data.

MRS algorithms as described above are not streaming algorithms, as they may require access
to arbitrary subsets of the random variables seen so far at any point. We will see, however,
that any MRS algorithm can be implemented as a streaming algorithm with ε additive loss in
the guarantee by storing Oε(1) samples. Note that computing a threshold for accepting the
next value for each such value independently would essentially require remembering all of the
seen values. Instead, we recycle the first computed threshold for some number of times steps
and recompute it whenever it becomes too bad of an approximation for the threshold the MRS
algorithm would actually set. We show that it suffices to (non-adaptively, i.e., independently of
the observed values) choose Oε(1) time points for recomputing the threshold. The computation
of the thresholds is implemented by an on-the-fly construction of the corresponding random
subsets which only requires to store a single sample and O(log n) additional space.

Correa et al. [2019a] showed that Oε(n
2) samples are enough to get within ε of the tight

bound of around 0.745 for the case of a known distribution. Quite remarkably, the same can
already be achieved with just Oε(n) samples [Rubinstein et al., 2020]. The algorithms underlying
both of these results rely heavily on empirical quantiles, and strong communication-complexity
lower bounds for quantile estimation [Guha and McGregor, 2009] suggest that they cannot
be implemented in the streaming model. This suggests that a gap might exist between the
performance achievable respectively by streaming algorithms and algorithms that have random
access to past random variables. We leave this interesting question for future work.

Unknown Distribution with Prior. The prophet problem for i.i.d. random variables from
an unknown distribution is subject to a strong impossibility result that matches the obvious
lower bound of 1/e, and any improvement requires a significant number of additional samples.
It is natural to ask whether an improvement is possible if information about the distribution is
available not in the form of samples but more directly.

We explore this question by considering a setting where a distribution F j is drawn from a
set of distributions F 1, . . . , Fm according to a prior distribution θ, and the gambler is presented
with random variables X1, . . . , Xn drawn independently from F j . The gambler knows the prior
distribution θ including its support, but not the distribution F j that has been drawn. This
setting models situations where a decision maker is aware of the existence of a number of
scenarios and has a good understanding of each scenario, but does not know which scenario is
currently unfolding. For example, a merchant may be aware that there are good and bad days
for selling a particular item, and may be aware how the valuation potential buyers have for the
item is distributed on good days and on bad days, but may not be aware whether it is a good
or a bad day.

Given the additional information about the distribution, we may hope to be able to improve
on the obvious lower bound of 1/e. We will see, however, that no such improvement is possible
even when n, m, and the distributions F 1, . . . , Fm are all finite. This shows that the impos-
sibility result for unknown distributions is rather robust. It also implies tightness of a known
prophet inequality of 1/e due to Elton and Kertz [1991] for exchangeable sequences of random
variables with a known joint distribution, answering a question of Hill and Kertz [1992]. Here, a
sequence of random variables is called exchangeable if their joint distribution is invariant under
permutations of the sequence, which is the case for the sequence of random variables for which
we establish the upper bound. The upper bound does not preclude the existence of better lower
bounds in settings where n or m is small. We believe such settings to be of significant practical
interest and leave their study as an interesting problem for future work.

The proof of the upper bound uses an appropriate minimax argument to provide a reduction
to the impossibility result for an unknown distribution. However, the argument itself requires
a few new ideas and a modification of the key construction.
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The basic idea behind our proof is to interpret the new prophet problem as a two-player
zero-sum game, or equivalently a min-max problem, where the first player chooses a prior θ and
the second player chooses a stopping rule. The payoff that the first player seeks to minimize
and the second player seeks to maximize is the expected reward from the stopping rule minus
1/e times the expected maximum in the sequence. If we could reverse the order of minimization
and maximization, and thus turn the problem into a max-min problem, we would be looking
at a situation where player 2, the maximizer, moves first and chooses a stopping rule without
knowing θ, and player 1, the minimizer, gets to choose a difficult θ with knowledge of the
stopping rule. This max-min problem is, in fact, more difficult than the prophet problem for
i.i.d. random variables from an unknown distribution considered by Correa et al. [2019a].

Indeed, the construction of Correa et al. relies on the infinite version of Ramsey’s theorem
[Ramsey, 1930], and in particular leads to distributions with infinite support for which the order
of minimization and maximization cannot be reversed.

Minimax theorems do exist that can handle finite strategy spaces of player 2 and compact
metric strategy spaces for player 1 [e.g., Mertens et al., 2015, Proposition 1.17], and this is the
case we would get if the difficult instances for unknown i.i.d. distributions would have a support
that is finite and bounded by a number that depends only on n. The argument sketched above
could thus be rescued through a variant of the construction of Correa et al. [2019a] with this
property. We provide such a construction by using a finite version of Ramsey’s theorem as given
for example by Conlon et al. [2010].

An interesting aspect of our argument for the game theory connoisseur is that the minimax
theorem of course requires mixed strategies. This is clearly not a problem for player 2, but
for player 1 this involves mixing over stopping rules. The validity of the above argument thus
requires that any mixture of stopping rules can be implemented as a stopping rule. We will
see that this readily follows from Kuhn’s celebrated theorem on behavior strategies in extensive
form games [Kuhn, 1953].

1.2 Further Related Work

Prophet Inequalities and Pricing. A comprehensive overview of early work on the classic
single-choice prophet inequality can be found in the survey of Hill and Kertz [1992]. Starting
from the work of Hajiaghayi et al. [2007], prophet inequalities have seen a surge of interest in
the theoretical-computer-science literature.

Two important directions have considered extensions to richer domains where more than
one element can be selected [e.g., Kleinberg and Weinberg, 2019; Alaei, 2014; Dütting and
Kleinberg, 2015; Feldman et al., 2015; Dütting et al., 2020a; Rubinstein, 2016; Rubinstein and
Singla, 2017; Chawla et al., 2019; Gravin and Wang, 2019; Ezra et al., 2020; Dütting et al.,
2020b]), and random- or best-order models, both in the single-item setting and in combinatorial
domains [e.g., Esfandiari et al., 2015; Abolhassani et al., 2017; Azar et al., 2018; Ehsani et al.,
2018; Correa et al., 2019b; Agrawal et al., 2020].

Prophet inequalities with inexact priors were studied by Dütting and Kesselheim [2019], and
prophet inequalities for unknown distributions with or without access to samples by Azar et al.
[2014]; Babaioff et al. [2017]; Correa et al. [2019a]; Rubinstein et al. [2020]; Correa et al. [2020];
Kaplan et al. [2020].

Exchangeable random variables are generally positively correlated. Apart from the classical
work of Rinott and Samuel-Cahn [1987] on negatively correlated random variables, the only
work we are aware of to explicitly study correlation in the context of prophet inequalities is
that of Immorlica et al. [2020].

Problems in pricing where distributional information is unavailable and must be learned
have also been considered in operations research and management science. These problems
typically differ significantly from those studied in computer science, and solutions often involve
some form of regret minimization. Examples include recent results of Goldenshluger and Zeevi
[2017] and those described in a survey of den Boer [2015].
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Streaming Algorithms. To the best of our knowledge, we are the first to use the streaming
model of computation to study prophet inequality problems. Related work has previously
considered streaming algorithms for submodular maximization [e.g., Badanidiyuru et al., 2014;
Feldman et al., 2020]. The algorithms in this literature are typically not required to make
irrevocable online decisions, but they also don’t assume a generative model for the data.

More closely related is work in the streaming literature that concerns the computation of
various aggregate statistics of large amounts of stochastic data. For example, most prophet
inequalities rely on the mean or median, or on more fine-grained information about the under-
lying distributions such as quantiles. While the empirical mean and variance of a sequence of
values can be updated efficiently West [1979], strong lower bounds exist for the estimation of
the median and other quantiles Guha and McGregor [2009].

Even more specifically, our streaming implementation of MRS algorithms shares certain
characteristics with reservoir sampling and its variants [e.g., Vitter, 1985; Li, 1994], where the
goal is to produce at any point in time a random subset of size k of the values seen so far.
Compared to reservoir sampling, however, we require subsets of varying size at certain points
in time as well as a better space complexity.

Algorithms from Data. In analyzing MRS algorithm with and without streaming, we opti-
mize over a class of algorithms that has limited information about the problem at hand. Related
problems have been considered under the umbrella of application-specific algorithm selection
and data-driven algorithm design [e.g., Gupta and Roughgarden, 2017; Ailon et al., 2011; Bal-
can et al., 2018a,b], in particular in the context of designing revenue-optimal auctions from
samples [e.g., Cole and Roughgarden, 2014; Morgenstern and Roughgarden, 2015].

2 Preliminaries

Denote by N the set of positive integers and let N0 = N ∪ {0}. For i ∈ N, let [i] = {1, . . . , i}.

Sequences of Random Variables. We consider sequences of non-negative and integrable
random variables X1, . . . , Xn drawn independently from a distribution F . The distribution F
will either be unknown, or it will be drawn from a known prior distribution θ ∈ Θ, where Θ is
the set of finite distributions over real distributions with finite support. A sequence of random
variables is called exchangeable if their joint distribution is invariant under permutations of
the sequence. The set of exchangeable sequences contains the sequences described above but is
more general.

Stopping Rules. A stopping rule observes a sequence of random variables and decides to
stop based on the random variables seen so far and possibly some additional information re-
garding the distribution from which the random variables are drawn. We consider two types
of stopping rules, corresponding respectively to the cases where random variables are drawn
from an unknown distribution and from a distribution that has itself been drawn according to
a prior.

In the case of an unknown distribution, we consider stopping rules that in addition to the
random variables observed so far may depend on k additional independent samples S1, . . . , Sk
from the same distribution as the random variables. Such a stopping rule can be expressed as
a family r of functions r1, . . . , rn, where ri : Rk+i

+ → [0, 1] for all i = 1, . . . , n. Here, for any
s ∈ Rk+ and x ∈ Rn+, ri(s1 . . . , sk, x1, . . . , xi) is the probability of stopping at Xi when we have
observed samples S1 = s1 . . . , S = sk and values X1 = x1, . . . , Xi = xi and have not stopped
at X1, . . . , Xi−1. The stopping time τ of such a stopping rule r is the random variable with
support {1, . . . , n} ∪ {∞} such that for all s ∈ Rk+ and x ∈ Rn+,

Pr [τ = i | S1 = s1, . . . , Sk = sk, X1 = x1, . . . , Xn = xn] =

(
i−1∏
j=1

(
1− rj(s1, . . . , sk, x1, . . . , xj)

))
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· ri(s1 . . . , sk, x1, . . . , xi).

In the case of a distribution drawn from a prior θ, we consider stopping rules that in addition
of the random variables observed so far may depend on θ. Such a stopping rule can be expressed
as a family r of functions r1, . . . , rn, where ri : Ri+ × Θ → [0, 1] for all i = 1, . . . , n. Here, for
any x ∈ Rn+ and θ ∈ Θ, ri(x1, . . . , xi, θ) is the probability of stopping at Xi when we have
observed the values X1 = x1, . . . , Xi = xi, have not stopped at X1, . . . , Xi−1, and when the
prior distribution is θ. The stopping time τ of such a stopping rule r is thus the random
variable with support {1, . . . , n} ∪ {∞} such that for all x ∈ Rn+ and θ ∈ Θ,

Pr [τ = i | X1 = x1, . . . , Xn = xn, θ] =

(
i−1∏
j=1

(
1− rj(x1, . . . , xj , θ)

))
· ri(x1, . . . , xi, θ).

Prophet Inequalities. For a given stopping rule we will be interested in the expected value
E [Xτ ] of the variable at which it stops, where we use the convention that X∞ = 0, and will
measure its performance relative to the expected maximum E [max{X1, . . . , Xn}] of the random
variables X1, . . . , Xn. We will say that a stopping rule achieves approximation guarantee α, for
α ≤ 1, if for any distribution or prior over distributions, E [Xτ ] ≥ αE [max{X1, . . . , Xn}].

Streaming Algorithms. In the case of an unknown distribution we will be interested specif-
ically in stopping rules that can be implemented as streaming algorithms. We will assume that
the stream consists of the samples S1, . . . , Sk followed by the values X1, . . . , Xn. A stream-
ing algorithm is then allowed a single pass over the sequence, and its space complexity is
required to be logarithmic both in the length of the sequence, which will in fact be O(n), and
in max{S1, . . . , Sk, X1, . . . , Xn}. Since the streaming algorithms we consider exclusively store
values that occur in the stream, we will express their space complexity in terms of n only.

For ease of exposition we will assume continuity of distributions in proving lower bounds and
use discrete distributions to prove upper bounds. All results can be shown to hold in general
by standard arguments, to break ties among random variables and to approximate a discrete
distribution by a continuous one.

3 I.I.D. Random Variables from an Unknown Distribution

We now turn to the setting of unknown i.i.d. random variables, which was first studied by
Correa et al. [2019a]. Here a lower bound of α = 1/e can be obtained via the optimal solution
to the secretary problem, and this bound cannot be improved upon without access to additional
samples from the distribution. A sharp phase transition occurs when there are linearly many
samples in the number of variables. In particular, Correa et al. gave an algorithm that with n
samples achieves an approximation ratio of α ≥ 1−1/e ≈ 0.6321. The same bound was obtained
by Kaplan et al. [2020], and improved to 0.635 by Correa et al. [2020]. We improve on this
bound with n samples, and also obtain improved bounds for the case of βn samples for variable
β > 0.

We do so by considering a natural class of algorithms that can be thought of as fixing a
function f : [n]→ N, and accepting variable Xi if its value exceeds the maximum of f(i) fresh
samples from the distribution. In fact, we will not draw fresh samples at each time step but
rather choose uniformly at random a subset of size f(i) ≤ k + i − 1 from the set containing
the k samples available to the algorithm at the outset and the values of the random variables
X1, . . . , Xi−1 observed so far. We will refer to algorithms that follow this general strategy as
maximum-of-random-subset (MRS) algorithms, and will see in Section 3.1 that they behave as
if they would in fact draw fresh samples at each time step. The bound of 1 − 1/e of Correa
et al. can in fact be achieved with an MRS algorithm where for all i, f(i) = n− 1.

We will first consider MRS algorithms that may use an arbitrary number k of samples, and
give a tight bound on their approximation guarantee. Interestingly, the optimal such guarantee
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of α ≈ 0.6534 is obtained with a bounded number of samples, namely k ≈ 1.4434 · n. We
then give bounds for MRS algorithms that use at most βn samples for 0 ≤ β ≤ 1.4434, and
show specifically that there exists an MRS algorithm using n samples with an approximation
guarantee of α ≥ 0.6489 > 0.635 > 1− 1/e.

Theorem 3.1. Consider a sequence of n random variables X1, . . . , Xn drawn independently
from an unknown distribution. Then, as n→∞, the best MRS algorithm with an unconstrained
number k of samples achieves an approximation guarantee of α ≈ 0.6534 and requires k ≈
1.4434 · n samples.

Theorem 3.2. Consider a sequence of n random variables X1, . . . , Xn drawn independently
from an unknown distribution. Then there exists an MRS algorithm that uses k = n samples
and achieves an approximation ratio of α ≥ 0.6489 as n→∞.

Towards proving these theorems, we first show a structural lemma in Section 3.1 that allows
us to analyze MRS algorithms as if they would draw fresh samples at each step. In Section 3.2,
we then consider as a warm-up an MRS algorithm using a simple piecewise linear function
that improves upon the the approximation guarantee 1− 1/e. The remainder of the section is
concerned with computing the best MRS algorithm. In Section 3.3, we consider the setting in
which an unbounded number of samples is available, leading to the proof of Theorem 3.1. In
Section 3.4, we then turn to the setting in which only a limited number of samples is available,
proving Theorem 3.2 and additional bounds for other values of k.

3.1 Definition and Structural Lemma

Let k ∈ N and consider a function f : [n] → N where f(i) ≤ k + i − 1 for all i ∈ [n].
Then the MRS algorithm based on f proceeds as follows: given that it arrives at random

variable Xi, it selects a uniformly random subset Ri = {R1
i , . . . , R

f(i)
i } of size f(i) from the set

{S1, . . . , Sk, X1, . . . , Xi−1} of k samples and the first i− 1 random variables and sets maxRi as
threshold for Xi. We have the following lemma.

Lemma 3.3. Consider some MRS algorithm based on f : [n]→ N and i ∈ [n]. Conditioned on
the fact that the algorithm arrives at step i, the distribution of the set {S1, . . . , Sk, X1, . . . , Xi−1}
of values seen before step i is identical to the distribution of a set of k+ i−1 fresh samples from
F .

Proof. We show the claim by induction on i, and start by observing that it clearly holds for
i = 1. Now suppose the claim holds for i = 1, . . . , i? − 1. Then, conditioned on the fact
that the algorithm arrives at step i? − 1, the set T = {S1, . . . , Sk, X1, . . . , Xi?−2} has the same
distribution as the one of a set of k + i? − 2 fresh samples, so the distribution of the set
T ′ = {S1, . . . , Sk, X1, . . . , Xi?−1} is the same as the one of a set of k+ i?− 1 fresh samples. We
will argue that the decision of the algorithm to stop at Xi?−1 or to continue does not depend
on the realization of T ′, which implies the claim.

Since F is continuous, we may assume that all the values S1, . . . , Sk, X1, . . . , Xi?−1 are
distinct, so that each of these values can be identified with a unique rank in [k + i? − 1]. By
definition, the decision of an MRS algorithm to stop or continue only depends on the ranks of the

values R1
i?−1, . . . , R

f(i?−1)
i?−1 , Xi?−1. Since the distribution of T , from which R1

i?−1, . . . , R
f(i?−1)
i?−1

are drawn, is that of k + i? − 1 fresh samples, and since Xi?−1 is a fresh sample, those ranks
are f(i? − 1) + 1 uniform draws without replacement from [k+ i? − 1] and thus independent of
the realization of T ′.

Note that this lemma immediately implies that a set of size f(i) selected uniformly at
random from {S1, . . . , Sk, X1, . . . , Xi−1} is also distributed like f(i) fresh samples from F . This
insight is what will enable us to give a mathematical expression for the value obtained by an
MRS algorithm.
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3.2 Warm-Up: Three-Step Functions

As a warm-up, let us convince ourselves that an MRS algorithm with access to k = n samples can
improve on the bound of 1−1/e. We will assume for simplicity that n is a multiple of 3, but note
that the conclusion holds in general as n→∞. Let f : [n]→ N with f(i) = n−1 for i = 1, . . . , n3 ,
f(i) = 4n/3− 1 for i = n

3 + 1, . . . , 2n
3 , and f(i) = 2n/3− 1 for i = 2n

3 + 1, . . . , n. Observe that
the MRS algorithm for f uses only n samples. Consider X1, . . . , Xn drawn independently from
an arbitrary distribution F , and let τ be the stopping time of the algorithm for these random
variables. Then,

E [max{X1, . . . , Xn}] =

∫ ∞
0

1− F (x)n dx

and, by Theorem 3.3,

E[Xτ ] =

n/3∑
i=1

(
1− 1

n

)i−1 1

n︸ ︷︷ ︸
=:T1

∫ ∞
0

1− F (x)n dx+

(1− T1)

n/3∑
i=1

(
1− 3

4n

)i−1 3

4n︸ ︷︷ ︸
=:T2

∫ ∞
0

1− F (x)4n/3 dx+

(1− T1)(1− T2)

n/3∑
i=1

(
1− 2

3n

)i−1 2

3n︸ ︷︷ ︸
=:T3

∫ ∞
0

1− F (x)2n/3 dx.

For n→∞, T1 → 1− 1/e1/3, T2 → 1− 1/e1/4, and T3 → 1− 1/e1/2, and thus

E[Xτ ] =

(
1− 1

e1/3

)∫ ∞
0

1− F (x)n dx+
1

e1/3

(
1− 1

e1/4

)∫ ∞
0

1− F (x)4n/3 dx+

1

e1/3

1

e1/4

(
1− 1

e1/2

)∫ ∞
0

1− F (x)2n/3 dx.

To show that E[Xτ ] ≥ αE[max{X1, . . . , Xn}], it suffices to show that for all a ∈ [0, 1],(
1− 1

e1/3

)
(1− a) +

1

e1/3

(
1− 1

e1/4

)(
1− a4/3

)
+

1

e1/3

1

e1/4

(
1− 1

e1/2

)(
1− a2/3

)
≥ α(1− a).

By dividing both sides of the inequality by 1 − a and minimizing the resulting left-hand side
over a ∈ [0, 1), we see that this is the case for α ≈ 0.6370 > 1− 1/e.

As we will see later in Section 3.3.1, requiring the approximation ratio to hold pointwise for
each value of the variable of integration rather than just for the sum of integrals is without loss.
We will thus be able to obtain tight bounds using this technique.

3.3 Proof of Theorem 3.1

To prove Theorem 3.1 we would like to find the best possible choice of f : [n]→ N, without any
restriction on the number of samples it is allowed to use. For a particular choice of f , we will
again determine the approximation ratio α of the corresponding MRS algorithm by minimizing
the ratio between E[Xτ ] and E[max{X1, . . . , Xn}]. We will again express both in terms of
integrals, and turn the minimization over distributions F into a minimization over a ∈ [0, 1) by
requiring the approximation ratio to hold pointwise for each value of the variable of integration.
Maximization over f and minimization over a will yield a max-min control problem, which we
will solve optimally.
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3.3.1 Formulation as a Control Problem

Fix n ∈ N, and consider an MRS algorithm given by the function f : [n] → N. We can
construct a continuous function g : [0, 1]→ R+ from f by setting g(i/n) = f(i)/n for all i ∈ [n]
and linearly interpolating between these values. Similarly, if we were only given a continuous
function g in the first place, we could obtain f from g by setting f(i) = dg(i/n) · ne for all
i ∈ [n]. In what follows we will compute the optimal such function g and thereby the optimal
MRS algorithm for all values of n. To do so, consider a sequence X1, . . . , Xn of random variables
drawn i.i.d. from a distribution F , and denote the stopping time of the MRS algorithm on this
sequence by τ . Then

E [Xτ ] =
n∑
i=1

Pr [A arrives at Xi] · Pr [A accepts Xi | A arrives at Xi] · E [Xi | A accepts Xi]

=

n∑
i=1

i−1∏
j=1

(
1− 1

dg( jn) · ne+ 1

)
· 1

dg( in) · ne+ 1
·
∫ ∞

0

(
1− F dg(

i
n

)·ne+1(x)
)

dx

=

n∑
i=1

exp

 i−1∑
j=1

ln

(
1− 1

dg( jn) · ne+ 1

) · 1

dg( in) · ne+ 1
·
∫ ∞

0

(
1− F dg(

i
n

)·ne+1(x)
)

dx

=
n∑
i=1

exp

(
−

i−1∑
j=1

(
1

dg( jn) · ne+ 1
−O

( 1

n2

)))
· 1

dg( in) · ne+ 1
·
∫ ∞

0

(
1− F dg(

i
n

)·ne+1(x)
)

dx

= e−O( 1
n

)
n∑
i=1

exp

(
−

i−1∑
j=1

(
1

dg( jn) · ne+ 1

))
· 1

dg( in) · ne+ 1
·
∫ ∞

0

(
1− F dg(

i
n

)·ne+1(x)
)

dx,

where for the fourth equality we have used that the Laurent series of ln(1− 1
x)− (− 1

x) at x =∞
is
∑∞

i=2−
x−i

i = −O( 1
x2 ) (and assumed w.l.o.g. that g is bounded away from 0). Thus, for

n→∞,

E [Xτ ] =

∫ 1

0
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
∫ ∞

0

(
1− F g(y)·n(x)

)
dx dy

=

∫ ∞
0

∫ 1

0
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− F g(y)·n(x)
)

dy dx,

where we exchange the order of integration in the second step using Fubini’s theorem, which
may be applied, because the integrand is clearly positive.

Our goal is to find the maximum value α ∈ R+ for which E [Xτ ] ≥ α · E [max{X1, . . . , Xn}]
or, equivalently,∫ ∞

0

∫ 1

0
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− F g(y)·n(x)
)

dy dx ≥
∫ ∞

0
α · (1− Fn(x)) dx. (1)

A sufficient condition for the latter is that for all a ∈ [0, 1],∫ 1

0
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− ag(y)
)

dy ≥ α · (1− a), (2)

and this condition is in fact also necessary. Indeed, if (2) is violated for some α and a, then (1) is
violated for α and the cumulative distribution function F of a random variable that has value 0
with probability a and value 1 with probability (1− a). This choice of F makes the integrand
on the right-hand side of (1) greater than the integrand on the left-hand side for all x for which
the integrands are non-zero, i.e., for all x < 1, thus violating (1).
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To determine the approximation ratio of the MRS algorithm A we can thus focus on finding
the maximum value α such that (2) is satisfied for all a. Since (2) is trivially satisfied for a = 1,
we are interested in the optimum value of the control problem

P = sup
g:[0,1]→R+

inf
a∈[0,1)

{∫ 1

0
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1− ag(y)

g(y) · (1− a)
dy

}

= sup
h:[0,1]→R+,
h(0)=0

inf
a∈[0,1)

{∫ 1

0
e−h(y) · h′(y) · 1− a

1
h′(y)

1− a
dy

}
, (3)

where the second equality can be seen to hold by choosing h : [0, 1] → R+ such that h(y) =∫ y
0

1
g(z) dz for all y ∈ [0, 1], which implies that g(y) = 1

h′(y) .

3.3.2 Solving the Control Problem

We solve the control problem P by giving matching upper and lower bounds. For the upper
bound we swap supremum and infimum and apply the Euler–Lagrange equation to the supre-
mum, which is now the inner problem, to write any optimal function h in terms of a and a
single parameter µ. We then guess the value of a at which the infimum is attained and solve the
remaining supremum over µ. For the lower bound we replace h by its parametric form, guess the
values of the parameters at which the supremum is attained, and solve the remaining infimum
over a. In both cases we obtain the same value of approximately 0.6534. Inspection of the opti-
mal function h reveals that it is non-increasing, which implies that g(0) ·n = 1

h′(0)n ≈ 1.4434 ·n
samples are sufficient to implement the optimal MRS algorithm.

It is worth pointing out that the change of the order of supremum and infimum and the
substitution of a particular form of h are potentially lossy but turn out to be without loss. This
means that a minimax theorem holds for P, and that a universal worst-case distribution F
exists that applies to all MRS algorithms.

Upper Bound. By the max-min inequality,

P ≤ inf
a∈[0,1)

sup
h:[0,1]→R+,
h(0)=0

{∫ 1

0
e−h(y) · h′(y) · 1− a

1
h′(y)

1− a
dy

}
. (4)

Now the inner problem can be written as

sup
h:[0,1]→R+,
h(0)=0

∫ 1

0
L(y, h(y), h′(y)) dy,

where

L(y, h(y), h′(y)) = e−h(y) · h′(y) · 1− a
1

h′(y)

1− a
.

A necessary condition for optimality of h is the Euler–Lagrange equation

∂

∂h
L(y, h(y), h′(y))− d

dy

∂

∂h′
L(y, h(y), h′(y)) = 0, (5)

where

∂

∂h
L(y, h(y), h′(y)) = −e−h(y) · h′(y) · 1− a

1
h′(y)

1− a
(6)
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and

d

dy

∂

∂h′
L(y, h(y), h′(y)) =

d

dy

(
e−h(y) · 1− a

1
h′(y)

1− a
+ e−h(y) · h′(y) · ln a · a

1
h′(y)

(1− a) · (h′(y))2

)

=− e−h(y) · h′(y) · 1− a
1

h′(y)

1− a
+ e−h(y) · ln a · a

1
h′(y) · h′′(y)

(1− a) · (h′(y))2

+ e−h(y) · (h′′(y)− (h′(y))2) · ln a · a
1

h′(y)

(1− a) · (h′(y))2

+ e−h(y) · h′(y) ·

(
−(ln(a))2a

1
h′(y)h′′(y)

(1− a)(h′(y))4
− 2 ln(a)a

1
h′(y)h′′(y)

(1− a)(h′(y))3

)
. (7)

Substitution of (6) and (7) into (5) and simplification yields that

−e−h(y) ln(a)a
1

h′(y)

1− a
− e−h(y) (ln(a))2a

1
h′(y)h′′(y)

(1− a)(h′(y))3
= 0.

Since ex > 0 for all x and 1− a > 0 for a ∈ [0, 1), an equivalent requirement is that

− h′′(y)

(h′(y))3
=

1

ln(a)

with the boundary condition h(0) = 0.
Solving this second-order nonlinear ordinary differential equation yields two classes of para-

metric solutions

h1(y) =
√
κ− µy −

√
κ, h′2(y) = − µ

2
√
κ− µy

, µ = −2 ln(a) ≥ 0, κ ≥ µ, and

h2(y) =
√
κ−
√
κ− µy, h′2(y) = − µ

2
√
κ− µy

, µ = −2 ln(a) ≥ 0, κ ≥ µ,

where only the latter guarantees that g(y) = 1/h′(y) ≥ 0.
Let µ̄ ≈ 1.9202 be the unique value such that

1− e
√
µ̄

√
µ̄

+
e
µ̄
2

√
µ̄

= 0,

and ā = e−
µ̄
2 ≈ 0.3829.

By setting h = h2 and a = ā in (4), and showing that the remaining supremum over κ is
attained for κ = µ̄, we conclude that

P ≤ e−
√
µ̄(1− e

√
µ̄ +
√
µ̄)

e−
µ̄
2 − 1

≈ 0.6534.

Lower Bound. By restricting the supremum in (3) to functions of the form h(y) =
√
µ −√

µ · (1− y) for some µ ∈ R+, which satisfy the boundary condition that h(0) = 0, we see that

P ≥ sup
µ∈R+

inf
a∈[0,1)


e−
√
µ

1− a
·
∫ 1

0

e
√
µ·(1−y) · µ ·

(
1− a

2
µ

√
µ·(1−y)

)
2 ·
√
µ · (1− y)

dy


= sup
µ∈R+

inf
a∈[0,1)

e−
√
µ

1− a
·

e√µ·(1−y)·(1+ 2 ln a
µ

)

1 + 2 ln a
µ

− e
√
µ·(1−y)

1

0


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= sup
µ∈R+

inf
a∈[0,1)

{
e−
√
µ

1− a
·

(
1

1 + 2 ln a
µ

− 1− e
√
µ·(1+ 2 ln a

µ
)

1 + 2 ln a
µ

+ e
√
µ

)}

= sup
µ∈R+

inf
b∈R+;
b/∈{0,1}

{
e−
√
µ

1− e−
µb
2

·

(
1

1− b
− 1− e

√
µ·(1−b)

1− b
+ e
√
µ

)}
,

where the last equality can be seen to hold by setting b = −2 ln a
µ and a = e−

µb
2 .

By setting µ = µ̄ in the last expression and showing that the remaining infimum over b is
attained for b→ 1, we conclude that

P ≥ e−
√
µ̄(1− e

√
µ̄ +
√
µ̄)

e−
µ̄
2 − 1

,

which equals the upper bound.

The resulting optimal choice of g, given by g(y) = 1/h′(y) = 2
√
µ̄− µ̄y/µ̄, is non-increasing

in y and thus has a maximum value of g(0) = 2/
√
µ̄ ≈ 1.4434. This means that the optimal

MRS algorithm can be implemented with slightly fewer than 3n/2 samples.

3.4 Proof of Theorem 3.2

We finally consider MRS algorithms that have access to βn samples for some β < 2/
√
µ̄. This

imposes the constraint that g(y) ≤ β+y for all y ∈ [0, 1], and since the optimal MRS algorithm
for the unconstrained case uses more than βn samples the constraint must bind for some non-
empty subset of [0, 1]. To obtain a lower bound on the performance of the best MRS algorithm
we may in fact assume that the constraint binds on [0, t] for some t ∈ [0, 1], such that g(y) = β+y
and h(y) =

∫ y
0 1/g(z) dz = ln(β + y) − ln(β) for all y ∈ [0, t]. Proceeding as in Section 3.3.2,

we can write the performance of the best MRS algorithm from the restricted class as a control
problem

Q = sup
t∈[0,1],

h:[t,1]→R+,
h(t)=ln(β+t)

inf
a∈[0,1)


∫ t

0
β

(β+y)2 ·
(
1− aβ+y

)
dy +

∫ 1
t e
−h(y) · h′(y) ·

(
1− a

1
h′(y)

)
dy

1− a


= sup

t∈[0,1],
h:[t,1]→R+,
h(t)=ln(β+t)

inf
a∈[0,1)

{∫ t

0

β(1− aβ+y)

(β + y)2(1− a)
dy +

∫ 1

t
e−h(y) · h′(y) · 1− a

1
h′(y)

1− a
dy

}
.

Note that the objective is now a sum of two integrals. The first integral is constant with
respect to h. The second integral has the same integrand as the integral in problem P from
Section 3.3.2, but it begins at t rather than 0 and involves a function h that is subject to a
different boundary condition, h(t) = ln(β+ t)− ln(β) instead of h(0) = 0. As our application of
the Euler–Lagrange equation in Section 3.3.2 relied neither on the limits of integration nor on
the boundary condition we obtain the same differential equation as before, −h′′(y)/(h′(y))3 =
1/ ln(a), but subject to the new boundary condition that h(t) = ln(β + t)− ln(β).

Since g(y) = 1/h′(y) for y ∈ (0, 1) and thus

g(y) · g′(y) =
((g(y))2)′

2
=

1

2

(
1

(h′(y))2

)′
= − h′′(y)

(h′(y))3

for y ≥ t, we can alternatively solve the first-order non-linear differential equation g(t) · g′(t) =
1/ ln(a). From the requirement that g(y) ≥ 0 for all y we conclude that

g(y) =
√

2 ·

√
1

ln(a)
· y + κ
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β α ≥ t ≈ a ≈

1.4 0.653368 0.025503 0.383230
1.3 0.653280 0.087540 0.387562
1.2 0.652853 0.155180 0.398509
1.1 0.651654 0.230674 0.419390
1.0 0.648957 0.317590 0.455588
0.9 0.643563 0.421611 0.515673
0.8 0.633580 0.551596 0.612066
...

...
...

...

β α ≥ t ≈ a ≈
...

...
...

...
0.7 0.616281 0.720814 0.758359
0.6 0.588379 0.949784 0.959047
0.5 0.549306 1.000000 1.000000
0.4 0.501105 1.000000 1.000000
0.3 0.439901 1.000000 1.000000
0.2 0.358351 1.000000 1.000000
0.1 0.239789 1.000000 1.000000

Table 1: Lower bounds on the performance of the optimal MRS algorithm with access to βn
samples for varying values of β. The bounds arise as the minimum over a of a function in t,
and the values of t and a corresponding to each bound are given alongside it.

for some κ ≥ −1/ ln(a), and by choosing κ to satisfy the boundary condition that g(t) = β + t
we obtain

g(y) =
√

2 ·

√
1

ln(a)
· y +

1

2

(
− 2

ln(a)
· t+ t2 + 2βt+ β2

)
.

In analogy to Section 3.3.2 we may derive a lower bound on the value of Q by considering
the parametric class of functions

g(y) =
√

2 ·
√
cy +

1

2
(−2ct+ t2 + 2βt+ β2),

where c ≤ 0, and we may in fact choose c = (β + t)2/(2(t − 1)) such that g(1) = 0 as before.
Then

g(y) = (β + t)

√
y − 1

t− 1

and

h(y) = ln(β + t)− ln(β) +
2(y − 1)√
(y−1)(β+t)2

t−1

− 2(t− 1)√
(β + t)2

We can now substitute h into Q and solve the integrals to obtain a simpler control problem
with a supremum over t and an infimum over a. While we cannot solve this problem exactly, we
may conjecture in analogy to problem P that for the optimal choice of t the infimum over a is
attained for a→ e2(t−1)/(β+1)2

. We can then determine the value of t for which the conjectured
infimum is smallest, which turns out to be unique, and obtain a lower bound on Q and thus on
the approximation guarantee of the best MRS algorithm by substituting this value of t into the
simplified control problem and solving the remaining minimization problem over a.

Table 1 shows a selection of bounds obtained in this way for different values of β, along with
the choice of t that leads to each bound and the corresponding optimal choice of a. The lower
bounds are also shown graphically in Figure 1. For β = 1 in particular we obtain a lower bound
of α ≥ 0.6489.

We conjecture that the bounds shown in Table 1 are in fact tight up to errors in the numerical
approximation. More specifically, we believe that it is without loss of generality to assume that
g(y) = β + y for all y < t and some t ∈ [0, 1], g(t) = β + t, and g(1) = 0.
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3.5 A Tight Bound for At Most n/(e− 1) Samples

Comparison to the upper bound of Correa et al. [2019a] reveals that the bound in the previous
section is in fact tight when β = 1/(e−1). The optimal MRS algorithm in this case stops at the
first value that exceeds all samples, a behavior that should remind us of the optimal algorithm
for the case β = 0, which is identical to the optimal algorithm for the secretary problem. Indeed,
β = 1/(e− 1) implies that β/(β + 1) = 1/e, so the only difference to the case β = 0 is that the
algorithm does not need to skip any values because it is given the correct number of samples
for free.

For the intermediate case where 0 ≤ β ≤ 1/(e− 1), we may now conjecture that we should
skip values until the combined number of samples and skipped values amounts to a (rounded)
1/e fraction of the combined number of samples and values, and stop at the first value thereafter
that exceeds all samples and values seen so far. It turns out that this algorithm matches the
upper bound of Correa et al. [2019a], and is thus optimal, when 0 ≤ β ≤ 1/(e − 1) and
n → ∞. Note that the limit is needed in our analysis to account for possible losses incurred
when rounding.

Theorem 3.4. Let β ≤ 1/(e − 1), n ∈ N, k = bβnc, and m = b(1+β
e − β)nc. Consider a

sequence of i.i.d. random variables S1, . . . , Sk, X1, . . . , Xn. Let τ be the stopping time of the
algorithm that stops at Xj if (i) it has not stopped previously, (ii) j > m, and (iii) Xj >

max{S1, . . . , Sk, X1, . . . , Xj−1}. Then, as n→∞, E [Xτ ] ≥ 1+β
e · E [max{X1, . . . , Xn}].

Proof. To simplify the exposition, we will assume that 1+β
e − β and βn are integers and drop

the symbols b and c. Let δ = 1+β
e −β and x ∈ R+. We will show that for large n and uniformly

in F ,

Pr(Xτ ≥ x) ≥
(

1 + β

e
+ o(1)

)
· Pr(max {X1, . . . , Xn} ≥ x). (8)

The theorem then follows by integrating over x.
We have

Pr(Xτ ≥ x) =

n∑
i=δn+1

Pr({Xi ≥ x} ∩ {τ = i}),

and for i ∈ {δn+ 1, . . . , n}, Pr({Xi ≥ x} ∩ {τ = i}) is equal to

Pr([Xi ≥ max {x, S1, . . . , Sβn, X1, . . . , Xi−1}]
∩ [max {S1, . . . , Sβn, X1, . . . , Xδn} ≥ max {Xδn+1, . . . , Xi−1}])

= Pr (Xi ≥ max {x, S1, . . . , Sβn, X1, . . . , Xi−1})
· Pr(max {S1, . . . , Sβn, X1, . . . , Xδn} ≥ max {Xδn+1, . . . , Xi−1}).

We have

Pr(max {S1, . . . , Sβn, X1, . . . , Xδn}) ≥ max {Xδn+1, . . . , Xi−1}) =
β + δ

β + i−1
n

,

and Pr(Xi ≥ max {x, S1, . . . , Sβn, X1, . . . , Xi−1}) is equal to

Pr(Xi ≥ x|Xi ≥ max {S1, . . . , Sβn, X1, . . . , Xi−1}) · Pr(Xi ≥ max {S1, . . . , Sβn, X1, . . . , Xi−1})
= Pr(max {S1, . . . , Sβn, X1, . . . , Xi} ≥ x) · Pr(Xi = max {S1, . . . , Sβn, X1, . . . , Xi})

=
1− F βn+i(x)

βn+ i
.

Thus,

Pr(Xτ ≥ x) = (β + δ)
1

n

n∑
i=δn

1− F βn+i(x)

(β + i
n)(β + i−1

n )
≥ (β + δ)

1

n

n∑
i=δn

1− F βn+i(x)(
β + i

n

)2 .
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Set a = Fn(x), and notice that Pr(max {X1, . . . , Xn} ≥ x) = 1− an. Hence, to prove (8), it is
enough to prove that for all a ∈ [0, 1] and large n,

(β + δ)
1

n

n∑
i=δn

1− aβ+ i
n

(β + i
n)2
≥
(

(1 + β)

e
+ o(1)

)
(1− a), (9)

where the o(1) is independent of a. Let g(t) = 1−aβ+t

(β+t)2 . There exists C > 0 such that for all

t ∈ [0, 1] and a ∈ [0, 1], |g′(t)| ≤ C(1− a). By property of the Riemann integral, it follows that
for all a ∈ [0, 1] and n ≥ 1,∣∣∣∣∣(β + δ)

1

n

n∑
i=δn

1− aβ+ i
n

(β + i
n)2
− (β + δ)

∫ 1

δ

1− aβ+t

(β + t)2
dt

∣∣∣∣∣ ≤ C(1− a)

n
.

Since β + δ = 1+β
e , to prove (9), it is thus enough to prove that for all a ∈ [0, 1],∫ 1

δ

1− aβ+t

(β + t)2
dt ≥ 1− a.

The above inequality clearly holds for a = 1, and thus by the change of variables t′ = t+ β, we
want to prove that for all a ∈ [0, 1),∫ 1+β

1+β
e

1− at

(1− a)t2
dt ≥ 1.

It is enough to prove that the above integral is decreasing in a. Indeed, its limit as a goes to 1
is 1. Define

H(a) =

∫ 1+β

1+β
e

1− at

(1− a)t2
dt.

We have

H ′(a) =

∫ 1+β

1+β
e

−(1− a)tat−1 + (1− at)
(1− a)2t2

dt.

Thus, we want to prove that the function I defined by

I(a) =

∫ 1+β

1+β
e

−(1− a)tat−1 + (1− at)
t2

dt

is negative. Notice that
I(1) = 0,

thus it is enough to prove that I is increasing, which means that I ′ is positive. We have

I ′(a) = −
∫ 1+β

1+β
e

at−2(1− a)(t− 1)

t
dt.

Let

J(a) =

∫ 1+β

1+β
e

at−1(t− 1)

t
dt.

Thus, we want to prove that J is negative. For all a ∈ [0, 1) and t ∈ [1+β
e , 1 + β], we have

at−1(t−1)
t ≤ (t−1)

t , and thus

J(a) ≤
∫ 1+β

1+β
e

t− 1

t
dt =

(
1− 1

e

)
(1 + β)− 1 ≤

(
1− 1

e

)(
1 +

1

e− 1

)
− 1 = 0.

This finishes the proof.
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4 Streaming Prophet Inequalities

We will now argue that with arbitrarily small additive loss ε in the guarantee, our MRS algo-
rithms can be implemented as streaming algorithms. To this end, consider x0 ∈ [0, 1], ȳ ∈ R+,
and the continuous function g : [0, 1] → [0, ȳ] based on which the MRS algorithm is defined.
The property that we need our functions g to satisfy (and our algorithms from Section 3 do
satisfy) is that the graph of g has Oε(1) intersection points with the (infinitely many) horizontal
lines at height 0, ε, 2ε, . . . .

Theorem 4.1. Let ε > 0. Assume there exists an MRS algorithm with guarantee α for the
unknown-distribution setting with O(n) samples. Further assume that the MRS algorithm is
based on continuous function g with |{x ∈ [0, 1] : ∃q ∈ N : g(x) = q · ε}| = Oε(1). Then there
exists a streaming algorithm using Oε(log n) space and achieving a guarantee of α − ε in the
same setting.

The algorithm divides the x-range [0, 1] into strips of width ε and the y-range [0, ȳ] into
strips of width ε. This creates γ ≤ d1/εe+Oε(1) intersection points with g. Let 0 = x1 ≤ x2 ≤
· · · ≤ xγ = 1 be the corresponding x-coordinates of these intersection points.

For all i = 1, . . . , γ − 1, the algorithm uses a single threshold that is distributed like the
maximum of dg(xi)·ne fresh samples for all steps in [xi ·n, xi+1 ·n). We observe that the emerging
algorithm can be viewed as an MRS algorithm again. Towards this, let g̃ : [0, 1] → [0, ȳ + ε]
be the function that is equal to g(xi) at xi and then grows linearly with slope 1 until (and not
including) xi+1. We can (essentially) view the new algorithm as the MRS algorithm based on
g̃.

Lemma 4.2. Let j ∈ [xi · n, xi+1 · n) ∩ Z for some i ∈ {1, . . . , γ − 1}. Conditioned on arriving
in step j, the above algorithm sets a threshold for Xj that is distributed like the maximum of
g̃(j/n) · n±O(1) fresh samples.

Proof. Let j0 be the first integer in [xi · n, xi+1 · n). Denote the subset of values se-
lected uniformly at random from {S1, . . . , Sβn, X1, . . . , Xj0−1} by YS = {S′1, . . . , S′`} where
` = dg(j0/n) · ne = g̃(j0/n) · n ± O(1) by continuity of g. By Theorem 3.3, this set and
the set Y = {S′1, . . . , S′`, Xj0 , . . . , Xj−1} are distributed like sets of ` and |Y | = `+ (j − j0)− 1,
respectively, fresh samples. Note that |Y | = g̃(j/n) · n ± O(1). It suffices to show that, con-
ditioned on arriving in step j0 and any such set Y , (i) the probability of arriving in step j is
independent of Y , and (ii), if the algorithm arrives in step j, the threshold it sets in step j is
maxY .

Towards showing (i) and (ii), again condition on arriving in step j0 and any set Y . Note that
the algorithm arrives in step j if and only if maxY = maxYS . This implies that, throughout
steps j0, . . . , j, the algorithm sets maxY as threshold, showing (ii). Finally notice that, since
both YS and Y \ YS are sets of fresh draws from F , maxY = maxYS happens with probability
independent of Y , showing (i).

Further note that our construction ensures that g(x) ≤ g̃(x) ≤ g(x) + 2ε for all x ∈ [0, 1].
See Figure 2 for a visualization of the construction.

Lemma 4.3. Suppose that the MRS algorithm defined by g achieves approximation ratio α
via (2) and that |g̃(x) − g(x)| ≤ 2ε for all x ∈ [0, 1], then the MRS algorithm defined by g̃
achieves approximation ratio α−O(

√
ε).

Proof. As shown previously, g satisfies (2): For all a ∈ [0, 1],∫ 1

0
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− ag(y)
)

dy ≥ α · (1− a). (10)
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Moreover, to prove our claim, it is enough to show that the above equation holds, replacing g
by g̃ and α by α−O(

√
ε). Note that, as ε→ 0 and uniformly in a,

(1− a)−1

∫ 1

1−ε
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− ag(y)
)

dy = O(
√
ε). (11)

Second, for y ∈ [0, 1−ε], we have g(y) ≥ g̃(y)−2ε ≥ g̃(y)×(1−2ε/g̃(y)) ≥ g̃(y)(1−2ε/g(1−ε)) =
g̃(y)(1−O(

√
ε)), and thus 1/g̃(y) ≥ 1/g(y)−O(

√
ε). Hence, by (10) and (11), as ε tends to 0

and uniformly in a,

(1− a)−1

∫ 1−ε

0
exp

(
−
∫ y

0

1

g̃(z)
dz

)
· 1

g̃(y)
·
(

1− ag̃(y)
)

dy ≥ α−O(
√
ε).

To obtain the above inequality, we have used in addition the fact that the left-hand side term
and right-hand side term in the integrand of equation (10) increase when one replaces g by g̃.
This completes the proof.

To implement our approach as a streaming algorithm, for each i = 0, . . . , γ, we construct
the maximum of the corresponding random subset on the fly: We count how many random
positions are left to consider and include the current position with probability proportional to
that count.

Lemma 4.4. For each xi the threshold corresponding to g(xi) can be computed with a single
pass over the data and O(log n) space.

Proof. Consider the first j such that j/n ≥ xi and let q = dg(xi) · ne. We will construct a 0/1-
vector of length k + j − 1 with exactly q many 1’s on the fly such that the positions where the
bit vector is 1 correspond to a subset of size q chosen uniformly at random without replacement
from {S1, . . . , Sk, X1, . . . , Xj−1}. We can then compute the threshold in an online fashion by
remembering the maximum T of all values where we have set the bit to 1.

We do this as follows: We remember the number s of 1’s that we still need and the number
of positions t still to come. Initially, s = q and t = k + j − 1. Then for ` = 1 to k + j − 1 we
toss a biased coin that comes up 1 with probability s/t and is 0 otherwise. If it comes up 1 we
update s = s− 1 and t = t− 1, otherwise we keep s and just set t = t− 1.

It now suffices to show that this process always yields a 0/1-vector of length k + j − 1 with
exactly q many 1’s, and that all such bit vectors are equally likely. The former follows from the
fact that the probability of seeing another 1 is set to zero once there are already q many 1’s and
that once the number of remaining positions equals the number of 1’s that are still needed the
probability of seeing a 1 is set to one for all remaining steps.

It remains to show that all 0/1-vectors of length k + j − 1 with q many 1’s are equally
likely, i.e., that the likelihood of seeing any such vector vector is 1/

(
k+j−1
q

)
. Indeed, consider

an arbitrary such vector z. Let E = {e1, e2, . . . , eq} ⊆ [k+ j− 1] with e1 < e2 < · · · < eq be the
indices ` where z` = 1 and let N = {n1, . . . , nk+j−1−q} with n1 < · · · < nk+j−1−q be the indices
` where z` = 0. Then,

Pr [z] =

q∏
`=1

q − `+ 1

k + j − e`
·
k+j−1−q∏

`=1

k + j − q − `
k + j − n`

=
1(

k+j−1
q

) .
The space complexity is O(log(n)) because all the algorithm needs to store is the threshold,

the remaining number of positions, and the number of ones that are still required.

Theorem 4.1 then follows by combining the above lemmata.
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Figure 2: Visualization of the g function from Section 3.3 (bold, black), the grid with ε = 0.2
(dotted, black), and the resulting g̃ function (green, bold).

5 Unknown Distribution With Prior

Let θ be a distribution over a set of real distributions
{
F 1, . . . , Fm

}
, where m ≥ 1. Consider

the following learning problem, which we will call unknown i.i.d. problem with prior θ:

• Nature draws F according to θ and (X1, . . . , Xn) i.i.d. according to F ;

• the gambler knows θ but not F , and has to choose a stopping rule with stopping time τ
in order to maximize E(Xτ ).

The key difference with the unknown i.i.d. problem without samples studied by Correa et al.
[2019a] is that the gambler knows θ. Thus, it is plausible that a constant better than 1/e can be
guaranteed in this model. Our main result in this section shows that 1/e remains best possible.

Theorem 5.1. For any δ > 0, there exists n0 ∈ N such that for any n ≥ n0, there exists a finite
number of finitely supported distributions F 1, . . . , Fm and a distribution θ over

{
F 1, . . . , Fm

}
such that for any stopping rule with stopping time τ ,

E[Xτ ] ≤
(

1

e
+ δ

)
· E[max{X1, . . . , Xn}].

An important consequence of Theorem 5.1 is that it answers a question of Hill and Kertz
[1992]. Indeed, in their survey on the state of the art in prophet inequalities, Hill and Kertz
stated five groups of open questions. The second group, Question 2 on Page 203, concerns
exchangeable random variables. Regarding the maximum value obtainable by a stopping rule τ
and the expected maximum value in the sequence they specifically asked for the largest universal
constant γ such that, if X1, X2, . . . , Xn are exchangeable random variables taking values in [0, 1]
then

E[Xτ ] ≥ γ · E [max{X1, . . . , Xn}] . (12)

We resolve this question by showing that the universal constant is γ = 1/e ≈ 0.368. Prior to
this work it was only known that the tight approximation ratio for n = 2 is 1/2, that the ratio
is weakly decreasing in n, and that it is at least 1/e [Elton and Kertz, 1991].

Note that the assumption that X1, . . . , Xn take value in [0, 1] is actually without loss of
generality. Indeed, given non-negative random variables X1, . . . , Xn and M ≥ 1, one can define
X ′i = (Xi/M)1Xi≤M for all i ∈ [n]. The variables X ′1, . . . , X

′
n then are exchangeable and take

values in [0, 1], and for M large enough, the best approximation guarantees achievable for both
instances are almost the same. We will therefore omit the assumption when stating our results.

Corollary 5.2. For any δ > 0, there exists n0 ∈ N such that for any n ≥ n0, there exists a
sequence of exchangeable random variables X1, X2, . . . , Xn such that for any stopping rule with
stopping time τ ,

E[Xτ ] ≤
(

1

e
+ δ

)
· E[max{X1, . . . , Xn}].

In particular, the largest constant γ in (12) is 1/e.
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Proof. Let δ > 0, n0 ∈ N, n ≥ n0, m ≥ 1, F 1, . . . , Fm and θ be given by Theorem 5.1. Let
F be a random variable distributed according to θ, and (X1, . . . , Xn) a sequence of random
variables such that its distribution conditional to F is the one of i.i.d. random variables from
F . The random variables (X1, . . . , Xn) are exchangeable, and by Theorem 5.1, no stopping rule
can guarantee a constant better than 1/e+ δ.

The proof of Theorem 5.1 extends on a technique developed recently by Correa et al. [2019a]
to show a lower bound of 1/e for unknown i.i.d. random variables with finite support and without
any additional samples. We modify the central element of this technique, which relies on the
infinite version of Ramsey’s theorem, to instead use the finite version (Section 5.1). We then
deduce the desired impossibility using a minimax argument (Section 5.2).

5.1 Hard Finite Instances for Unknown Distribution

Let us return to the setting considered by Correa et al. [2019a], where random variables are
drawn independently from the same unknown distribution and we do not have access to any
additional samples and there is no prior over the unknown distribution. For p ∈ N, denote by
Bp the set of probability measures on [p]. We prove the following result.

Proposition 5.3. For all δ > 0, there exists n0 ∈ N such that for any n ≥ n0, there exists
p ∈ N such that for any stopping rule r with associated stopping time τ , there exists b ∈ Bp
such that when X1, . . . , Xn are i.i.d. random variables drawn from b,

E[Xτ ] <

(
1

e
+ δ

)
· E[max{X1, . . . , Xn}].

What distinguishes this result from Theorem 3.2 of Correa et al. is that the distribution b
has finite support and the cardinality of its support is independent of the stopping rule. This
property will be crucial when applying the minimax theorem in Section 5.2.

The result can be obtained by modifying the central construction in the proof of Correa
et al. while keeping much of the structure of that proof intact. To make it easier to compare
the two results we will follow the original structure, and begin by recalling the definition of
oblivious stopping rules.

Definition 1. Let ε > 0 and V ⊂ N.

• A stopping rule r is (ε, i)-value-oblivious on V if, there exists a qi ∈ [0, 1] such that, for all
pairwise distinct v1, . . . , vi ∈ V with vi > max{v1, . . . , vi−1}, it holds that ri(v1, . . . , vi) ∈
[qi − ε, qi + ε).

• A stopping rule r is ε-value-oblivious on V if, for all i ∈ [n], it is (ε, i)-value-oblivious on
V .

• A stopping rule r is order-oblivious if for all j ∈ [n], all pairwise distinct v1, . . . , vj ∈ R+

and all permutations π of [j − 1], ri(v1, . . . , vj) = ri(vπ(1), . . . , vπ(j−1), vj).

The cornerstone of our proof is the following lemma.

Lemma 5.4. Let ε > 0. For any n ∈ N, there exists p ∈ N such that if there exists a stopping
rule with guarantee α, then there exists a stopping rule r with guarantee α such that r is ε-
value-oblivious on V , for some finite set V ⊂ [p] with cardinality n3 + 1.

The difference to Lemma 3.4 of Correa et al. is that the set V is finite, and in addition is
uniformly bounded by an integer p that depends only on n. Consequently, instead of the infinite
version of Ramsey’s theorem used by Correa et al., we need the following finite version given
for example by Conlon et al. [2010].

Lemma 5.5. There exists a function R : N3 → N such that for all n ≥ 1, for all complete
m-hypergraph with c colors and order larger than R(m,n, c), there exists a sub-hypergraph of
order n that is monochromatic.
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Proof of Theorem 5.4. Fix ε > 0 and set c = b(2ε)−1c. Define an integer sequence (pi)0≤i≤n by
induction as pn = n3 +1 and pi−1 = R(i, pi, c). Consider a stopping rule r with guarantee α. By
Lemma 3.6 of Correa et al. it is without loss of generality to assume that r is order-oblivious.
We show by induction on j ∈ {0, 1, . . . , n} that there exists a set Sj ⊂ S0 such that |Sj | = pj
and for all i ∈ [j], r is (ε, i)-value-oblivious on Sj .

The set S0 =
{
n3s : s = 0, . . . , p0

}
satisfies the induction hypothesis for j = 0. We proceed

to show it for j > 0. First, observe that we only need to find a set Sj ⊂ Sj−1 such that |Sj | = pj
and r is (ε, j)-value oblivious on Sj , because it follows from the induction hypothesis that for
all i ∈ [j − 1], r is (ε, i)-value-oblivious on Si and thus on the subset Sj ⊂ Si.

Toward the application of Theorem 5.5, we construct a complete j-hypergraph H with vertex
set Sj−1. Consider any set v1, ..., vj ⊂ Sj−1 of cardinality j such that vj > max(v1, ..., vj−1).
Note that there exists a unique u ∈ {1, 2, ..., c} such that rj(v1, ..., vj) ∈ [(2u − 1)ε − ε, (2u −
1)ε + ε), and color the hyperedge {v1, ..., vj} of H with color u. By Theorem 5.5, there exists
a finite set Sj of vertices with cardinality pj that induces a complete monochromatic sub-
hypergraph of H. Let u be the color of this sub-hypergraph, set q = (2u − 1)ε, and consider
distinct v1, ..., vj ∈ Sj with vj > max(v1, ..., vj−1). Since the edge {v1, ..., vj} in H has color u,
rj(vπ(1), ..., vπ(j−1), vj) ∈ [q − ε, q + ε) for some permutation π of Sj−1. But since r is order-
oblivious, also rj(v1, ..., vj−1, vj) ∈ [q − ε, q + ε). So r is (ε, j)-value oblivious on Sj . This
completes the induction step.

With Theorem 5.4 at hand we are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let δ > 0 and n ∈ N. We proceed by contradiction, and consider a
stopping rule r with performance guarantee 1/e+δ. Set ε = 1/n2. By Theorem 5.4, there exists
a stopping rule r with performance guarantee 1/e+ δ and a set V ⊂ [p] with cardinality n3 + 1
on which r is ε-value-oblivious. Let u be the maximum of V , and write V = {v1, . . . , vn3 , u}.
Denote by τ the stopping time of r. By construction, we have u ≥ n3 max{v1, . . . , vn3}. The
rest of the proof proceeds in the same way as the proof of Theorem 3.2 of Correa et al., and we
give an informal summary for completeness. For each i ∈ [n], let

Xi =


v1 w.p. 1

n3 · (1− 1
n2 )

...

vn3 w.p. 1
n3 · (1− 1

n2 )

u w.p. 1
n2

.

For this particular instance, the performance of any stopping rule corresponds approximately
to the probability of picking u. Let us, therefore, investigate the probability that r picks u.
First note that with probability almost one, X1, . . . , Xn are distinct. Moreover, because r is
ε-value-oblivious on V , it can be changed with an error of ε = n−2 into a stopping rule that
considers only the relative ranks of the values it has seen before making its decision. As there
are only n stages, the error is insignificant.

The problem thus reduces to the classic secretary problem, for which it is known that no
stopping rule can guarantee a probability of picking the maximum that is higher than 1/e+o(1)
as n goes to infinity [Ferguson, 1989]. However, the stopping rule constructed from r considers
only relative ranks and selects the maximum with probability at least 1/e+ δ − o(1), which is
a contradiction.

5.2 From Unknown to Unknown with Prior: A Minimax Argument

We now use a minimax argument to convert Theorem 5.3, which concerns the unknown i.i.d.
case, into an upper bound (impossibility result) for the case of unknown i.i.d. with prior. Fix
δ > 0 and let n0 and p be as in Theorem 5.3. Fix n ≥ n0. We need the following definitions.
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Definition 2.

• A deterministic stopping rule is a sequence a = (a1, ..., an) such that ai : [p]i−1 → {0, 1}.
Denote the set of such rules by A.

• A mixed stopping rule is a distribution over A. Denote the set of such rules by P(A).

• A behavior stopping rule is a sequence r = (r1, ..., rn) such that ri : [p]i−1 → [0, 1]. Denote
the set of such rules by C.

Note that we have defined each class of stopping rule to consider only values in [p] as inputs
because we will consider random variables supported on [p]. As before, considering inputs in R
would not have a significant effect on the performance guarantee. Note further that behavior
stopping rules correspond to stopping rules as defined in Section 2. The minimax argument
will require us to consider mixed stopping rules. We will apply Kuhn’s theorem [Kuhn, 1953]
to prove that mixed stopping rules and behavior stopping rules provide the same performance
guarantee.

According to our purpose any of these stopping rules will have the two interpretations, (i) as
a stopping rule in the unknown i.i.d. problem, and (ii) as a stopping rule in the i.i.d. problem
with some prior distribution θ, where in the latter case we have omitted the dependence of a
on θ.

Recall that Bp is the set of probability distributions over [p]. Because p has been fixed
and for ease of exposition, we will henceforth write B instead of Bp. Let P(B) be the set of
probability distributions over B. For given a ∈ A and b ∈ B, define

g(a, b) = E [Xτ ]−
(

1

e
+ δ

)
· E [max{X1, . . . , Xn}] ,

where τ is the stopping time of the stopping rule a in the i.i.d. problem where X1, X2, ..., Xn

are drawn from b. We can extend g linearly to P(A)× P(B) by letting

g(x, y) =

∫
A

∫
B
g(a, b)x(da)y(db).

Let
V − = max

x∈P(A)
min
b∈B

g(x, b) and V + = min
y∈P(B)

max
a∈A

g(a, y).

Note that in the above expressions, by linearity of g with respect to x and y, minb∈B g(x, b) =
miny∈P(B) g(x, y) and maxa∈A g(a, y) = maxx∈P(A) g(x, y). The key point is that V − is related
to the universal constant in the unknown i.i.d. problem, while V + is related to the universal
constant in the unknown i.i.d. problem with prior. Indeed, the following proposition holds:

Proposition 5.6. If V + < 0, then there exists y ∈ P(B) a finitely supported distribution over
B such that, in the unknown i.i.d. problem with prior y, for all behavior stopping rule with
stopping time τ ,

E[Xτ ] ≤
(

1

e
+ δ

)
· E[max{X1, . . . , Xn}].

Proof. Assume that V + < 0. By [Mertens et al., 2015, Proposition I.1.9], there exists y ∈ P(B)
with finite support such that maxa∈A g(a, y) ≤ 0. This means that no deterministic stopping rule
provides a better guarantee than (1/e+δ) in the unknown i.i.d. problem with prior distribution y.
Then no distribution over deterministic stopping rule can provide a better guarantee by linearity
of expectation, neither can a behavior stopping rule by Kuhn’s theorem [Kuhn, 1953], which
proves the result.

To complete the proof of Theorem 5.1 it is thus enough to show that V + < 0. To this aim,
we first prove that V + = V −, and then that V − < 0.
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Proposition 5.7. We have V + = V −.

Proof. The set A is finite, the set B compact metric. Moreover, for all a ∈ A, the mapping
b → g(a, b) is continuous. By the minimax theorem [Mertens et al., 2015, Proposition I.1.9]
it follows that the mixed extension of the normal-form game (A,B, g) has a value, i.e., that
V + = V −.

To conclude the proof of Theorem 5.1 it remains to show that V − < 0. First note that by
Kuhn’s theorem [Kuhn, 1953],

V − = max
r∈C

min
b∈B

E [Xτ ]−
(

1

e
+ δ

)
· E [max{X1, . . . , Xn}] .

By definition of p, which we have chosen as in Theorem 5.3, for each stopping rule in C there
exists b ∈ B such that

E [Xτ ]−
(

1

e
+ δ

)
· E [max{X1, . . . , Xn}] < 0.

It follows that V − < 0, which proves Theorem 5.1.
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