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Key points  22 

1) The clonal diversity of the hematopoietic system declines with age and after 23 

serial transplantation. 24 

 25 

2) Aged HSC acquire mutations that might confer a selective advantage during 26 

serial transplantation 27 

 28 
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Abstract (limit: 200 words; Current: 200 words) 33 

 34 

Although many recent studies describe the emergence and prevalence of ‘clonal-35 

hematopoiesis of indeterminate-potential’ (CHIP) in aged human populations, a 36 

systematic analysis of the numbers of clones supporting steady-state hematopoiesis 37 

throughout mammalian life is lacking.  Previous efforts relied on transplantation of 38 

‘barcoded’ hematopoietic stem cells (HSC) to track the contribution of HSC clones to 39 

reconstituted blood. However, ex vivo manipulation and transplantation alter HSC 40 

function and thus may not reflect the biology of steady-state hematopoiesis. Using a non-41 

invasive in vivo color-labeling system, we report the first comprehensive analysis of the 42 

changing global clonal complexity of steady-state hematopoiesis during the natural 43 

murine lifespan. We observed that the number of clones (i.e. clonal complexity) 44 

supporting the major blood and bone marrow hematopoietic compartments decline with 45 

age by about 30% and 60%, respectively. Aging dramatically reduced HSC in vivo 46 

repopulating activity and lymphoid potential while increasing functional heterogeneity. 47 

Continuous challenge of the hematopoietic system by serial transplantation provoked the 48 

clonal collapse of both young and aged hematopoietic systems. Whole exome sequencing 49 

of serially transplanted aged and young hematopoietic clones confirmed oligoclonal 50 

hematopoiesis and revealed mutations in at least 27 genes, including nonsense, missense 51 

and deletion mutations in Bcl11b, Hist1h2ac, Npy2r, Notch3, Ptprr and Top2b.  52 

 53 

 54 

 55 
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Introduction 57 

Advances in technology and medicine have freed modern Homo sapiens from natural 58 

selection imposed by the environment, predation and disease, increasing the incidence of 59 

aging pathologies1. Genomic instability, telomere attrition, epigenetic alterations and 60 

perturbed proteostasis contribute to disrupted tissue homeostasis (i.e. stem cell 61 

exhaustion) in the aged2. Aged blood displays a loss of adaptive immunity and higher 62 

incidences of anemia and myeloid malignancies3. Additionally, expanded hematopoietic 63 

clones are apparent in the peripheral blood (PB) of many aged individuals4-13. >70% of 64 

humans older than 90 years display CHIP (defined as ≥2%PB from a single cellular 65 

clone)4-11. DNMT3A, TET2, ASXL1, PPM1D and JAK2 are often mutated in CHIP 66 

patients6,7, who have a three- and 11-fold greater risk of developing cardiovascular 67 

diseases or leukemia, respectively6,11,14. 68 

 69 

Unknown is how many cellular clones actively contribute to hematopoiesis throughout 70 

life and how these numbers change with age8. Previous studies interrogating clonal 71 

behavior in aged mammalian blood utilized HSC transplantation or mathematical 72 

modeling15,16,17. Transplantation imposes tremendous stress on HSC18. Thus, studies 73 

based entirely on transplantation and ex vivo manipulation of HSC may not accurately 74 

reflect steady-state hematopoiesis19-21. Understanding the dynamics of the clonal 75 

complexity of blood throughout life requires non-invasive strategies.  We recently 76 

reported a new approach to study the endogenous clonal complexity of blood that takes 77 

advantage of a Cre recombinase (CRE) inducible multi-color allele (i.e. Confetti 78 

allele)22,23. Here, employing this approach and multiple CRE labeling strategies, we 79 
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observed a loss of clonal complexity in all hematopoietic compartments with age during 80 

steady-state hematopoiesis. Further, repeated exposure to extreme hematopoietic stress 81 

by serial transplantation resulted in the clonal collapse of both aged and young blood. 82 

Whole exome sequencing (WES) of serially transplanted bone marrow (BM) confirmed 83 

oligoclonal hematopoiesis and identified mutations in aged hematopoietic clones in genes 84 

not previously implicated in HSC self-renewal and maintenance (e.g. Bcl11b, Hist1h2ac, 85 

Npy2r, Notch3, Ptprr, Top2b). These mutations might be important for HSC clonal 86 

expansion during aging and hematopoietic stress. 87 

 88 

 89 

 90 

 91 

 92 

 93 

 94 

  95 
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Methods  96 

Mice 97 

C57BL/6J, C57BL/6.SJL-PtprcaPep3b/BoyJ, Flk1+/Cre (Flk1Kdrtm1(cre)Sato/J), 98 

ROSA26+/Confetti (Gt(ROSA)26Sortm1(CAG-Brainbow2.1)Cle/J) and E2a+/Cre (B6.FVB-Tg(EIIa-99 

cre)C5379Lmgd/J) (Jackson Laboratory, Bar Harbor, Maine) mice were housed in a 100 

pathogen-free facility. All animal experiments were carried out according to procedures 101 

approved by the St. Jude Children’s Research Hospital Institutional Animal Care and Use 102 

Committee.  103 

 104 

Genotyping 105 

Genotyping of Cre and Confetti alleles was as previously described23.  106 

 107 

Transplants 108 

0.2x106, 1x106 or 5x106 whole BM cells from young (age two months), old (age 24-26 109 

months) CD45.2+ ROSA26+/ConfettiVE-Cadherin+/Cre mice or from primary, secondary or 110 

tertiary recipient mice were transplanted via tail vein into 8-12 week old 111 

CD45.2+/CD45.1+ C57BL/6J mice previously subjected to 11 Gy of ionizing radiation in 112 

split doses of 5.5 Gy.  113 

 114 

Cell division kinetics 115 

Single HSCs sorted into 96-well plates were inspected to follow division kinetics every 116 

12 hours for 72 hours as described24. Details in Supplemental Materials and Methods. 117 

 118 
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Differentiation potential assay 119 

Single HSCs were sorted into 96-well plates and cultured in myeloid differentiation 120 

medium for 14 days as described25. Emerging colonies were harvested, stained and 121 

analyzed for myeloid lineages. Details in Supplemental Materials and Methods. 122 

 123 

PB Analysis 124 

PB was collected, stained and analyzed as described23.  125 

 126 

Bone Marrow Analysis 127 

BM was harvested from the femurs, tibias, and pelvic bones of mice by crushing. c-Kit+ 128 

cells were enriched using anti-c-Kit microbeads (Miltenyi Biotech, San Diego, CA) 129 

followed by magnetic separation (autoMACS Pro Separator; Miltenyi Biotech). Cells 130 

were stained with antibodies to HSC, MPPs, CMPs, GMPs, MEPs and CLPs. Details in 131 

Supplemental Materials and Methods.   132 

 133 

Statistics and use of formula for predicting cell number from sample-to-sample variance 134 

Summary statistics, including mean, median, minimum, maximum, percentile 25, 135 

percentile 75 and standard deviation were reported. To calculate the clonal complexity of 136 

any tissue at any given time point, we used the mouse-to-mouse variance in Confetti 137 

color distribution23. Detailed in Supplemental Materials and Methods.   138 

 139 

WES-Sample collection, preparation and analysis 140 
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Genomic DNA was isolated using Quick-DNA™ Miniprep Kit (Catalog No. D3024; 141 

Zymo Research, Irvine, CA). Genomic libraries were generated using SureSelectXT kit 142 

specific for the Illumina HiSeq instrument (Catalog No. G9611B; Agilent Technologies, 143 

Santa Clara, CA), followed by exome enrichment (SureSelect XT Mouse All Exon bait 144 

set; Catalog No. 5190-4642).  Exome enriched libraries were then sequenced by the St. 145 

Jude Genome Sequencing Facility. 146 

 147 

To identify somatic mutations within each transplant group, whole-exome-sequences of 148 

CD45.1- Confetti clones isolated from the same donor group were compared to each other 149 

and to CD45.1- Confetti clones isolated from distinct donor groups. Details in 150 

Supplemental Materials and Methods. 151 

 152 

Data sharing statement 153 

For original data please contact shannon.mckinney-freeman@stjude.org. 154 

  155 
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Results 156 

The clonal complexity of native hematopoiesis declines with age 157 

To illuminate the clonal dynamics of native hematopoiesis throughout life, we genetically 158 

labeled the hematopoietic system of mouse cohorts during embryonic development and 159 

analyzed the subsequent evolution of global clonal complexity. Specifically, we 160 

examined the mouse-to-mouse variance (MtMV) in Confetti color distribution in the 161 

blood and c-Kit+ BM of cohorts of ROSA26+/ConfettiE2a+/Cre mice (Conf-E2aCre), 162 

ROSA26+/ConfettiFlk-1+/Cre (Conf-Flk-1Cre), ROSA26+/ConfettiVE-Cadherin+/Cre mice (Conf-163 

VECre), and ROSA26+/ConfettiVav1+/Cre mice (Conf-Vav1Cre) from two to 26 months of age 164 

(Figure 1A). The Confetti reporter allele is recombined by CRE and randomly labels 165 

progeny with GFP, YFP, RFP or CFP (Supplemental Figures 1A-B). Here, Confetti 166 

labeling is initiated in blastomeres (Conf-E2aCre), mesodermal hematopoietic precursors 167 

(Conf-Flk-1Cre), hemogenic endothelial precursors (Conf-VECre) and definitive 168 

hematopoietic stem and progenitor cells (HSPCs) (Conf-Vav1Cre) (Figure 1A). As 169 

previously established, large numbers of Confetti+ precursors contributing to a given cell 170 

population results in a small MtMV of Confetti colors while small numbers of Confetti+ 171 

precursors results in high MtMV of Confetti colors (Figure 1B)23. The following formula 172 

estimates the number of contributing clones using the observed MtMV in Confetti colors:  173 

Cell number = 10(−1.56 x log10(CV)+1.47)(where CV= standard deviation/mean and represents 174 

the coefficient of variance). This formula yields accurate estimates of numbers of 175 

contributing clones when that number falls between 50 and 2500 clones23. For Conf-Flk-176 

1Cre, Conf-VECre and Conf-Vav1Cre mice, PB clonal complexity at two months fell within 177 

this range (about 600, Figure 1Ci). As expected, PB and BM clonal complexity of Conf-178 
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E2aCre mice fell below this range, as these mice express CRE when embryos are 179 

comprised of very few cells. It therefore serves as a control for low complexity (Figure 180 

1A-Ci). Thus, about 600 cells labeled during embryonic development represent the 181 

precursors for the entire HSC pool in young adult mice (about 20,000 HSC)26-30. This 182 

number serves as an initial benchmark from which we grossly examined how relative 183 

clonal complexity of blood changes with time. Across CRE lines, PB clonal complexity 184 

was stable until 16-20 months of age, after which it steadily declined for all cohorts 185 

except Conf-E2aCre (Figure 1Ci-Cii, Supplemental Figure 1D). Clonal complexity 186 

dropped slightly earlier in myeloid cells (Supplemental Figure 1D). On average, we 187 

observed a 24% drop in PB clonal complexity of aged mice at 24 and 26 months relative 188 

to young mice (p-value=0.03 and 0.01; FDR q-value(q)=0.1 and 0.06, respectively) 189 

(Figure 1Cii). At 24 months, PB clonal complexity was reduced an average of 11.1%, 190 

37.2% and 44.0% in B cell, T cell and myeloid cell lineages, respectively (Supplemental 191 

Figure 1D). 192 

 193 

Most BM HSPC compartments displayed a drop in overall clonal complexity with age in 194 

Conf-Flk-1Cre, Conf-VECre and Conf-Vav1Cre mice strains (Figure 1Di). On average, the 195 

clonal complexity of HSC and MPP in aged mice decreased by 59.3% (p=0.045, 196 

q=0.1578) and 69.6% (p=0.053, q=0.1578), respectively (Figure 1Dii). While CLP, CMP 197 

and GMP displayed about a 65.6% (p=0.232), 32.3% (p=0.229) and 42.7% (p=0.0964, 198 

q=0.1928) clonal loss, MEP only lost 44.2% (p=0.383) of clonal complexity with age 199 

(Figure 1Dii). As expected, Conf-E2aCre mice showed no loss of BM complexity (Figure 200 

1Di). Altogether, these data reveal a global loss of clonal complexity with age in all BM 201 
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compartments labeled after the blastomere stage. Interestingly, HSC and MPP were more 202 

sensitive to the selective pressures imposed by aging than other HSPC.  203 

 204 

Native hematopoiesis is characterized by clonal instability  205 

Our study and others suggest that native hematopoiesis is polyclonal19,20. The behavior of 206 

individual HSC clones over time can be explained by clonal succession (distinct clones 207 

progressively recruited)31-33, clonal stability (same clones steadily contributing)15,34, 208 

dynamic repetition (a specific clone recruited multiple times)35 or a combination of these 209 

models36. Although our system cannot track individual clones, it can follow “pooled-210 

clones”, which are clones labeled with the same Confetti color. GFP-labeled pools are 211 

particularly useful because Confetti-allele driven GFP labeling is under-favored in most 212 

tissues22,23,37. Thus, GFP+ hematopoietic cells almost certainly reflect the activity of a 213 

smaller pool of clones than RFP, CFP or YFP and are useful for tracking the dynamics of 214 

a relatively small number of clones. 215 

 216 

Here, we analyzed in individual mice the evolution of GFP-labeled clonal pools. Aging 217 

was occasionally accompanied by dramatic changes in PB GFP-labeling (Figure 2, 218 

Supplemental Figure 2). For example, we observed expansions of GFP-pooled-clones 219 

with age (e.g. Conf-E2aCre Mouse #1 and Conf-VE/Cre Mouse #1, Figure 2A). Both 220 

expansion and constriction of GFP-pooled-clones (e.g. Conf-Flk1Cre Mouse #3, Conf-221 

Vav1Cre Mouse #3, Figure 2A) and YFP-pooled-clones were also detected (e.g. Conf-222 

E2aCre Mouse #3, Figure 2A). The relative change in the PB frequency of GFP from 223 

time-point to time-point throughout the life of individual mice revealed this as a common 224 
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phenomenon observed across PB lineages (Figure 2B, Supplemental Figure 2). These 225 

data support a model of PB clonal instability, in which clonal pools wax and wane 226 

throughout life.  227 

 228 

Aging increases the functional heterogeneity of the HSC pool  229 

HSCs give rise to downstream BM progenitors 21. To gain insight into the functional 230 

consequences of aging on HSC, the division kinetics and differentiation potential of 231 

single young and aged HSC was examined. Aged HSCs displayed slower division 232 

kinetics than young HSCs (Figure 3A). Aging also decreased the frequency of multi-233 

potent HSC (Figure 3B, Supplemental Figure 3). These data suggest an increase in HSC 234 

functional heterogeneity with age.  235 

 236 

To address this in vivo, we again examined the behavior of ‘pooled’ clones labeled with 237 

the same Confetti color. A similar distribution of Confetti colors among distinct BM 238 

compartments in individuals reflects a close lineage relationship. For example, when one 239 

examines the BM of Conf-E2aCre Mouse #6 or Conf-VavCre Mouse #5 at 26 months, HSC 240 

and MPP displayed a similar distribution of Confetti colors relative to downstream HSPC 241 

(Figure 3B). To globally analyze these patterns, we calculated the correlation (Pearson’s 242 

correlation coefficient) in the percent contribution of each Confetti color to different cell 243 

lineages in young and old mice (Figure 3C).  The correlation between lineages declined 244 

with age (see color intensity in Figures 3Ci-ii). Remarkably, the correlation between HSC 245 

and MPP was less eroded with age compared to the correlation of HSC with other HSPC 246 

(Figure 3Ciii). Additionally, the pattern of correlation among different lineages in young 247 
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mice was similar in aged mice (see the color pattern in Figures 3Cii and Supplemental 248 

Figure 3B where the scale is modified in young mice to facilitate comparison). These 249 

data suggest that HSC continuously produce MPP throughout life and aging increases the 250 

functional heterogeneity of the HSC pool, which is reflected in the eroded correlations 251 

between HSC and other BM compartments (p-value=0.03). 252 

 253 

Aging constrains HSC repopulating activity 254 

To further investigate the effect of aging on HSC self-renewal and function, we 255 

repeatedly challenged aged HSC by serially transplanting Conf-VECre-BM into irradiated 256 

recipients (Figure 4, Supplemental Figure 4). Here, BM from three independent young 257 

and aged donors was independently serially transplanted into a total of six cohorts of 258 

mice: young BM (groups A-C) and aged BM (groups D-F) (Figures 5-6, Supplemental 259 

Figure 5). Thus, all Confetti+ BM within each group ultimately derives from the same 260 

primary donor.  261 

 262 

Our Confetti-based approach faithfully estimates PB repopulating units (RUs) at short 263 

and long-time points post-transplant23. In primary transplants, many short-term 264 

progenitors contributed to recipient PB regardless of donor age at four weeks post-265 

transplant23,38-40 (Figure 4B). RU numbers decreased over time as these progenitors 266 

exhausted their reconstituting potential for all PB lineages23,38-40 (Figure 4B, 267 

Supplemental Figure 4A-B).  Counterintuitively, PB RUs trended higher in recipients of 268 

aged BM versus recipients of young BM (Figure 4B, Supplemental Figure 4A). 269 

Consistently, reconstituted HSC of aged BM recipients displayed greater clonal 270 
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complexity than recipients of young BM (Figure 4C). Phenotypic HSC are known to 271 

accumulate in aged BM26,27,41-44. Indeed, a 10-fold increase in phenotypic HSC numbers 272 

was apparent in aged Conf-VECre mice relative to young mice (Supplemental Figure 6A). 273 

Thus, the repopulating activity of phenotypic aged HSC appears about half that of young 274 

HSC (ratio of estimated RUs divided by the HSC number), consistent with previous 275 

reports (Supplemental Figure 6B)45,46. Thus, although the phenotypic HSC compartment 276 

expands with age, its activity is compromised relative to young HSC and many more 277 

aged clones are recruited to reconstitute homeostasis. 278 

 279 

Serial transplantation dramatically reduces clonal diversity  280 

Continued serial transplantation of aged and young BM reproducibly resulted in the 281 

dominance of a single Confetti color in reconstituted PB (Figure 5), suggesting 282 

oligoclonality. Accordingly, in secondary transplants of aged and young Conf-VECre-BM, 283 

we observed a loss of clonal diversity in the CD45.2+ PB (including myeloid and 284 

lymphoid lineages) and HSPC (Figure 4B-C, Supplemental Figure 4B).  285 

 286 

As the Confetti formula cannot accurately estimate the clonal complexity of an 287 

oligoclonal system23, we developed an alternate strategy to quantify this progressive loss 288 

of complexity in subsequent transplants, focusing on the frequency of the most prevalent 289 

color as an indicator of clonal diversity expressed as percent of total (Figure 4D, 290 

Supplemental Figure 4C). There was no difference in the rate that young and old serially 291 

transplanted BM achieved clonal dominance in the HSC, MPP and myeloid 292 

compartments (Figure 4D, Supplemental Figure 4C). The differences observed in B- and 293 
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T-cell lineages are probably due to the earlier myeloid bias developed by the aged BM 294 

and that depletes the aged BM from the lymphoid lineages, precluding a proper 295 

comparison (Supplemental Figure 4C, Supplemental Figure 6C). Thus, serial 296 

transplantation steadily and dramatically reduces the clonal diversity of transplanted BM, 297 

regardless of the age of the primary donor. 298 

 299 

Serial transplantation exacerbates clonal instability  300 

To examine the flux of HSC output during serial transplantation, we again analyzed the 301 

behavior of “Confetti-pooled-clones” in individual mice (Figure 5). Dramatic expansions 302 

and constrictions of PB pooled-clones were apparent throughout serial transplantation of 303 

young BM (YFP and RFP in Groups A and B in Figure 5, Figure 6A-B, Supplemental 304 

Figures 5Ai-ii-3Di-ii). Further, in Group A, GFP-pooled-clones steadily increased in 305 

frequency in HSC during serial transplantation (Figure 5, Figure 6D and Supplemental 306 

Figure 5Biv). In contrast, the sudden expansion of GFP-pooled clones in the tertiary and 307 

quaternary PB of Group B recipients was never apparent in recipient HSC and MPP 308 

(Figure 5, Supplemental Figure 5B). For example, the secondary Group B recipient 309 

whose BM was transplanted into tertiary recipients had predominantly CFP+ HSC. 310 

However, the frequency of these CFP-pooled-clones constricted dramatically in tertiary 311 

recipient PB by 16 weeks post-transplant and were a minority fraction in tertiary HSC, 312 

which was overtaken by YFP-pooled clones (Figure 5). In Groups D-F (Figure 5), which 313 

were serially transplanted with aged BM, large expansions of GFP-pooled-clones were 314 

mostly followed by constrictions (Figures 5, 6B, Supplemental Figure 5B). This supports 315 

the presence of small HSC clones with large contribution to PB. For example, the 316 
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distribution of PB pooled clones in Groups D-F secondary recipients were not reflected in 317 

their MPP and HSC (Figure 5, Supplemental Figure 5). In total, these data suggest PB 318 

and HSC clonal instability during serial transplantation. 319 

 320 

Serially transplanted aged BM bears a heavier mutation load than serially 321 

transplanted young BM 322 

Confetti-labeling suggests that serial transplantation of BM results in a loss of clonal 323 

complexity (Figure 4). By quaternary transplants, the majority of reconstituted blood is 324 

only one or two Confetti colors (Figure 5). To confirm clonal hematopoiesis, we 325 

performed WES on CD45.2+ BM labeled with individual Confetti colors (i.e. Confetti-326 

clones) isolated by FACS from quaternary recipients of CD45.2+ Conf-VECre aged or 327 

young BM. 11 Confetti-clones were sequenced: four isolated from recipients of young 328 

BM (Groups A-B) and seven from recipients of aged BM (Groups D-F) (Figure 5, 7, 329 

Table 1, Supplemental Tables 2-3). To ensure identification of true somatic mutations, at 330 

least two Confetti clones labeled with different colors were isolated from each transplant 331 

Group. Since Confetti clones in each Group originate from the same initial donor, 332 

somatic mutations acquired either during aging or serial transplantation can be 333 

distinguished from polymorphisms by comparing independent Confetti clones within a 334 

Group. 335 

 336 

WES revealed 27 mutations (23 missense and 4 nonsense) that change the amino acid 337 

sequences (Table 1, Supplemental Tables 2-3). Five aged Confetti clones (O-1, O-3, O-4, 338 

O-7, O-11) acquired mutations with variant allele frequencies (VAF) close to 50%, 339 
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consistent with monoclonal hematopoiesis (Supplemental Table 3). For example, 340 

virtually all cells in O-4 carried a Cdr1 mutation (VAF=53%), yet this variant was not 341 

observed in O-3 which received cells from the same primary donor. Interestingly, O-4 342 

also harbored a sub-clone, as half of the sample carried a Npy2r mutation (VAF=25.9%) 343 

(Supplemental Table 3). Two aged Confetti clones (O-2, O-6) were oligoclonal (e.g. O-2 344 

was composed of at least two clones (VAFs=10.4% and 14.9%)) (Supplemental Table 3). 345 

Two of four young Confetti clones (Y-2 and Y-3) were clonal (VAF=44% for each) or 346 

oligoclonal (Y-1, subclones were detected with VAFs=16.7% and 13.9%, Supplemental 347 

Table 3).  Interestingly, the average counts of sample-specific mutations per transplant 348 

event (including missense, nonsense, silent and those outside the coding regions) in aged 349 

Confetti clones (4.2 mutations/transplant event) exceeded those of young Confetti clones 350 

(1.4 mutations/transplant event, p=0.02, Figure 7A). These data suggest that most 351 

mutations are acquired during aging or alternatively that aged HSC are more susceptible 352 

to mutagenesis under repeated stress. 353 

 354 

To distinguish between these possibilities, we performed WES on Confetti-labeled young 355 

or aged BM isolated from primary recipients 16 months post-transplant or quaternary 356 

recipients four months post-transplant that were transplanted with cells from the same 357 

primary donor (Figure 7B). Comparing these primary and quaternary samples allowed us 358 

to assess the effect of time and time+repeated serial transplantation. If the observed 359 

mutations accumulated during the aging prior to transplant, then similar mutations should 360 

be observed in both cases. Clones of the same Confetti color within each transplant group 361 

(Two young clones (Y-5 and Y-6) and four aged clones (O-5, O-8, O-9 and O-10) were 362 
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sequenced (Supplemental Table 2). WES showed no overlap in mutations detected in 363 

primary versus quaternary samples (Supplemental Table 2). These data support a model 364 

in which most quaternary mutations are acquired during serial transplantation and aged 365 

BM is more susceptible to mutation during intense hematopoietic stress. Alternatively, 366 

small undetectable clones in primary samples may have been favored by serial 367 

transplantation. 368 

 369 

We assessed if detected mutations were previously identified as variants in hematologic 370 

disease or cancer using Pecan PIE (Pathogenicity Information Exchange) 371 

(https://pecan.stjude.cloud/pie)47. A nonsense mutation in the B-cell CLL/lymphoma 11b 372 

(Bcl11b) locus (c. 610 C>T transition) has been implicated in T-ALL leukemogenesis. 373 

Low BCL11b expression correlates with poor prognosis in T-ALL patients48,49,50. We also 374 

identified a missense damaging mutation (Cys223Tyr) in a conserved, putative Ca+2 375 

binding domain of the Notch3 locus (Cys222 in the human protein) 51-53.  Elevated 376 

NOTCH3 is seen in most T-ALL cases (Table 1 and Supplemental Table 3) 54. A C>T 377 

transition resulted in p379Arg->Trp in protein tyrosine phosphatase receptor type (Ptprr). 378 

Eleven PTPRR R376 mutations have been reported in carcinomas and melanomas47. In 379 

addition, a C>T transition observed in the Neuropeptide Y receptor Y2 (Npy2r) has also 380 

been seen in carcinoma patients (Arg82Cys)55, 47. A G>A transversion in the Histone 381 

cluster 1, H2ac (Hist1h2ac) leading to an Arg33Trp was also observed. Reduced 382 

expression of Hist1h2ac correlates with increased cell proliferation56,57. Finally, we 383 

observed a frameshift deletion in Topoisomerase (DNA) II beta (Top2b), a target for 384 

several anticancer drugs58,59.  385 

https://pecan.stjude.cloud/pie
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 386 

In sum, WES of young and aged Confetti clones confirmed oligoclonal hematopoiesis 387 

and suggest that aged HSC may be hypersensitive to mutation when subjected to 388 

hematopoietic stress.  389 

  390 
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Discussion 391 

 We comprehensively examined the global clonal complexity of the murine 392 

hematopoietic system throughout life during steady state hematopoiesis. Although the 393 

presence of over-represented clones in aged PB is known, we showed for the first time 394 

that aging correlates with a global loss of clonal diversity in the entire blood system. 395 

These data caution against the use of aged donors for HSC transplantation. We also 396 

visualized the dynamics of clonal instability during native hematopoiesis and extended 397 

previous reports on aged HSC clones15. Our study further illuminated the effect of serial 398 

transplantation on hematopoietic clonal complexity driving a clonal collapse of 399 

reconstituted blood. Finally, we identified mutations that may confer a selective 400 

advantage during hematopoietic stress. 401 

 402 

Here, we utilized a novel, non-invasive approach that depends on the observed MtMV in 403 

Confetti color distribution in cell populations. We previously validated the fidelity of this 404 

approach for estimating clonal numbers and reconstituting events in the blood system 405 

both during ontogeny and transplantation23. The behavior of individual clones are not 406 

tracked in this approach. Rather, much like classic limiting dilution transplantation assays 407 

based on Poisson statistics34,60, MtMV is a statistical, indirect measure of clonal content 408 

and populations. Thus, an important caveat is that if a cell population consistently 409 

contains clones too small to perturb the distribution of Confetti-colors in individual mice, 410 

those clones are essentially ‘hidden’ from MtMV measurements. However, this caveat 411 

can be mitigated by increasing the size of mouse cohorts and numbers of cells analyzed. 412 

Further, with respect to aged HSC, these small ‘hidden’ clones can reflect important 413 
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biology, which is discussed at length below. MtMV is also influenced by cellular 414 

behavior (i.e. changes in the number of clones actively contributing to blood 415 

compartments). Many variables can influence the behavior of cells overtime (e.g. stress, 416 

infection, inflammation, epigenetic remodeling). Behavioral changes with age reflect the 417 

cumulative effect of these many variables on cells (and systems) throughout life. Here, 418 

we applied the MtMV in Confetti color distribution to measure the sum total effect of 419 

these insults on the blood and observed a loss of actively contributing clones in most 420 

blood compartments (Figure 1 and Supplemental Figure 1). Further experimentation will 421 

be necessary to decipher the biology driving changes in active clone numbers in aged 422 

blood.  423 

 424 

Aging is accompanied by a large expansion in phenotypic HSC (Supplemental Figure 425 

6A)26,27,41-44 and a 20-fold decrease in transplantable HSC (Supplemental Figure 6B)8,36-426 

40,53,55-56 61. The precipitous drop in HSC clonal complexity with age suggests that the 427 

expansion of phenotypic HSC results from just a few clones with a selective advantage, 428 

as suggested for CHIP1,8. Further, this loss of HSC complexity does not correlate in 429 

magnitude with the loss of clonal complexity seen in PB (Figure 4B-C, Supplemental 430 

Figure 1D). As aged HSC display poor repopulating activity relative to young HSC 431 

(Supplemental Figure 6B)61, they are likely also compromised in their contribution to 432 

native hematopoiesis. Indeed, the BM frequency of expanded aged HSC Confetti pools is 433 

often not reflected in the blood, suggesting compromised output. We repeatedly observed 434 

aged PB GFP-pooled clones that were undetectable in BM (e.g. Conf-E2aCre #4; Conf-435 

Flk1Cre #6; Conf-VECre #6, Conf-Vav1Cre #6; Figure 3B), consistent with the model that 436 
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small ‘young-like’ HSC clones actively support aged PB, as proposed by de Haan and 437 

Lazare8. Although, in our study, we cannot measure the precise composition of clonal 438 

pools. None-the-less, very likely, only HSC clones that have not expanded dramatically 439 

preserve their functional potential and aged native hematopoiesis is maintained by a 440 

reduced pool of HSC clones8,62. Thus, although PB complexity drops with age, this drop 441 

is not equivalent to that seen in HSC. The pathological significance of harboring large 442 

numbers of phenotypic HSC compromised in differentiative potential is unclear. This 443 

may contribute to the selection of PB clones in elderly CHIP patients. 444 

 445 

Our study complements a recent report estimating that about 50,000-200,000 HSC 446 

contribute to the blood at any given moment in middle-aged individuals63. 16-20 month 447 

old mice are equivalently middle-aged and did not display a loss of PB clonal complexity 448 

(Figure1C). It would be interesting to assess if the 30% drop in complexity seen in our 449 

study is conserved in an elderly (>80 years) individual.  However, this may be difficult to 450 

detect, given the large range of contributing HSC reported in Lee-Six et al63. 451 

 452 

HSC are heterogeneous36,42,64-67. Aging is accompanied by delay in HSC cell division ex 453 

vivo, as previously described68, and a loss of multipotency (Figure 3A), which suggests a 454 

global decline in HSC function. This decline could stem from increasing HSC functional 455 

heterogeneity or from a homogeneous loss of HSC function. Reduced correlation in 456 

Confetti-labeling patterns between BM HSPCs with age supports a model of increased 457 

heterogeneity (Figure 3C). To preserve Confetti color distribution between two BM 458 

compartments: 1) the immature compartment must evenly contribute to the downstream 459 
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compartment, 2) cell expansion and death must be evenly distributed across 460 

compartments and 3) these requirements must hold for any intermediates. Deviation from 461 

these requirements would weaken Confetti color correlations between compartments (i.e. 462 

functional heterogeneity in HSPCs negatively impacts the preservation of Confetti color 463 

distribution between populations). Thus, we favor a model in which aging increases HSC 464 

functional heterogeneity (Figure 3A, Figure 3C).  465 

 466 

Interestingly, HSC and MPP were highly correlated in aged mice (Figure 3Cii-iii). It has 467 

been proposed that MPP support native hematopoiesis with rare contribution from 468 

HSC19,20, which suggests that aged MPP emerge from HSC early in life or that HSC 469 

steadily (but rarely) contribute to MPP. This would also require MPP and HSC to 470 

preserve identical relative rates of symmetric and asymmetric cell division throughout 471 

life (i.e. to preserve Confetti color distributions after a long separation). A simpler model 472 

is that HSC actively and evenly generate MPP throughout life, consistent with the classic 473 

model of hematopoieisis21 474 

 475 

We also examined the effect of age and stress on HSC function. Primary transplantation 476 

of aged BM required recruitment of larger clone numbers than young BM to re-establish 477 

hematopoietic homeostasis (Figure 4B-C, Supplemental Figure 6D), likely because aged 478 

HSC display less repopulating activity/cell than young HSC. Repeated serial 479 

transplantation drove a clonal collapse of the blood in both aged and young mice (Figure 480 

4-6). Our data highlights significant differences between native and stress hematopoiesis 481 

(Figures 1, 4-5, Supplemental Figures 1D and 4). Stress (i.e. transplantation) dramatically 482 
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impacts the diversity of clones contributing to hematopoiesis (Figure 4-5, Supplemental 483 

Figures 4). Although clonal complexity also falls during native hematopoiesis (Figure 1, 484 

Supplemental Fig. 1D), this loss is more gradual and smaller in magnitude than that seen 485 

post-transplant. Thus, to fully appreciate hematopoietic clonal dynamics, it is critical to 486 

interrogate both native and stress hematopoiesis.  487 

 488 

We identified mutations in six genes (i.e. Bcl11b, Hist1h2ac, Npy2r, Notch3, Ptprr and 489 

Top2b) that may confer a selective advantage to HSCs during aging and/or serial 490 

transplantation (Table 1 and Supplemental Table 3). Bcl11b regulates thymocyte 491 

development48,49. Structural variants and mutations in BCL11B have been seen in AML, 492 

pediatric and adult T-ALL and T/myeloid acute bi-lineage leukemia51,69-77,78,79. PTPRR is 493 

a protein tyrosine phosphatase linked to colorectal and cervical cancer80,81,82. NOTCH3 494 

mutations have been causally linked to cerebral autosomal dominant arteriopathy83. High 495 

levels of NOTCH3 are detected regularly in T-ALL54, 84. Variations in the levels of 496 

HIST1H2AC might contribute to carcinogenesis56,57. TOP2B is a DNA topoisomerase 497 

that alleviates topological stress during DNA replication and transcription85. TOP2B 498 

mutations correlate with drug resistance and chromosome translocations in therapy-499 

induced leukemia58,59,86-89. Finally, Npy2r (a G-protein coupled receptor) regulates 500 

memory90,91. We did not detect the most frequent mutations in CHIP patients (e.g. 501 

Dnmt3a, Asxl1, Tet2; total frequency|30%). This could simply be due to the small 502 

number of clones interrogated in our study6,7.  503 

 504 
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In summary, our non-invasive approach constitutes, to our knowledge, the first study of 505 

the dynamics of the absolute clonal complexity of steady state hematopoiesis during a 506 

natural mammalian lifespan. Here, aging resulted in a global loss of clonal complexity 507 

and intense repeated hematopoietic stress compromised HSC self-renewal, regardless of 508 

age, ending in clonal collapse and loss of lymphoid potential. Moreover, we identified 509 

novel mutations that potentially select for HSC capable of extensive self-renewal in the 510 

face of hematopoietic stress. Understanding the functional significance of these mutations 511 

could shed light on similar processes in human clonal hematopoiesis and warrants further 512 

investigation.   513 
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Table 1. Mutations identified that altered amino acid sequences

Gene ID, nucleotide change, amino acid change, age group, type of mutation, conservation in human 
sequence and predicted functional consequences in the protein function are indicated. Mutated genes 
with predicted damaging consequences are highlighted in red. 1 Homologous region was identified in 
Human protein. 2 Predicted based on Polyphen-2 tool.

Symbol Reference Allele Coding / amino acid change Group Mutation Type Conserved 
region in 
human 

genome
1

Predicted 
functional 

effect
2

Csmd1 C T NM_053171:c.5755G>A,p.Ala1919Thr Young missense No N/A

Lmln C T NM_172823:c.1597C>T,p.Gln533* Young nonsense Yes Damaging

Mrgpra6 G A NM_001308537:c.799C>T,p.Arg267Trp Young missense No N/A

Sidt2 G C NM_172257:c.[1062C>G],p.[Tyr354*] Young nonsense Yes Stop gain

Slc5a9 C T NM_145551:c.298G>A,p.Gly100Ser Young missense Yes Damaging

Ahnak C T NM_009643:c.[3092C>T],p.Pro1031Leu Old missense Yes Damaging

Bcl11b G A NM_021399:c.610C>T,p.Gln204* Old nonsense Yes Damaging

Carm1 A G NM_021531:c.[1441A>G],p.[Thr481Ala] Old missense Yes Benign

Cdr1 G A NM_001166658:c.892C>T,p.Arg298Trp Old missense No N/A

Hist1h2ac G A NM_178189:c.97C>T,p.Arg33Trp Old missense Yes Damaging

Grin3a A - NM_001033351:c.[1797delT],p.[Ile599fs] Old deletion Yes Frameshift

Itpkb A G NM_001081175:c.2521A>G,p.Lys841Glu Old missense Yes Benign

Notch3 C T NM_008716:c.668G>A,p.Cys223Tyr Old missense Yes Damaging

Npy2r G A NM_008731:c.244C>T,p.Arg82Cys Old missense Yes Damaging

Olfr1111 G T NM_146593:c.20C>A,p.Thr7Asn Old missense Yes
Probably 
Damaging

Pde6a G A NM_146086:c.161G>A,p.Ser54Asn Old missense Yes Benign

Prb1 G T NM_053251:c.702C>A,p.Asp234Glu Old missense No N/A

Ptprr C T NM_011217:c.1135C>T,p.Arg379Trp Old missense Yes Damaging

Rapgef1 G A NM_001039086:c.2164G>A,p.Glu722Lys Old missense No N/A

Rnf6 C T NM_028774:c.1003G>A,p.Val335Ile Old missense No N/A

Scn2a A C NM_001099298:c.5480A>C,p.Asp1827Ala Old missense Yes Benign

Tada1 T G NM_030245:c.803T>G,p.Leu268Arg Old missense Yes Benign

Tjp1 A G NM_009386:c.4991T>C,p.Ile1664Thr Old missense Yes Benign

Top2b G - NM_009409:c.1487delG,p.Gly497fs Old deletion Yes Frameshift

Vmn2r49 G A NM_001105156:c.647C>T,p.Pro216Leu Old missense No N/A

Zcwpw1 G A NM_001005426:c.34G>A,p.Glu12Lys Old missense No N/A

Zfp735 G T NM_001126489:c.510G>T,p.Lys170Asn Old missense No N/A
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Figure Legends 562 

Figure 1. The global clonal complexity of the hematopoietic system declines with 563 

age. 564 

 a, Schematic of experimental approach. The clonal complexity of the PB and BM of 565 

cohorts of Conf-E2aCre; Conf-VECre; Conf-Flk1Cre and Conf-Vav1Cre mice were examined 566 

at two, seven, 12, 16, 20, 24 and 26 months of age. See Supplemental Figure 1a-b for 567 

schematic of Confetti allele and Confetti color flow cytometry gating strategy. b, i and ii, 568 

Schematic of the inverse relationship between numbers of initially labeled events and 569 

Mouse-to-Mouse Variance (MtMV) in the distribution of Confetti colors. c, i, Analysis of 570 

the clonal complexity of the PB in cohorts of mice from two to 26 months of age. At two 571 

months old: Conf-E2aCre (n=14), Conf-VECre(n=13), Conf-Flk1Cre(n=7), Conf-Vav1Cre 572 

(n=11). At 26 months old, Conf-E2aCre (n=10), Conf-VECre(n=5), Conf-Flk1Cre(n=6), 573 

Conf-Vav1Cre (n=9). ii, Average PB clonal complexity of Conf-Flk1Cre, Conf-VECre and 574 

Conf-Vav1Cre mice overtime relative to two months of age. Error bars indicated standard 575 

deviation. d, i, The clonal complexity of the major BM HSPC from cohorts of mice were 576 

calculated at two and 26 months of age from previously cKit+ enriched BM. At two 577 

months, Conf-E2aCre (n=3), Conf-VECre(n= 6), Conf-Flk1Cre(n=7), Conf-Vav1Cre (n= 8). 578 

At 26 months, Conf-E2aCre (n=7), Conf-VECre(n=4), Conf-Flk1Cre (n= 5), Conf-Vav1Cre 579 

(n=5). ii, Average BM HSPC clonal complexities of Conf-Flk1Cre, Conf-VECre and Conf-580 

Vav1Cre mice overtime relative to two months of age. Error bars indicate standard 581 

deviation. (* p-value�0.05; # p-value�0.1). Source data are provided in Supplemental 582 

Table 1. iii, Schematic of the consequences of aging on HSC and PB clonal complexity. 583 

The absolute number of phenotypic HSC increase with age (Supplemental Fig. 6A) due 584 
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to the expansion of functionally impaired clones. In aged mice, “young-like” minimally-585 

expanded HSC contribute disproportionately to PB, resulting in a less dramatic decrease 586 

in PB clonal complexity. 587 

 588 

Figure 2. Analysis of pooled clones over time reveals instability in the clonal 589 

composition of PB during native hematopoiesis. 590 

a, Visualization of the distribution of GFP, YFP, RFP and CFP in the PB of 591 

representative Conf-E2aCre, Conf-VECre, Conf-Flk1Cre, Conf-Vav1Cre mice at two, seven, 592 

12, 16, 20, 24 and 26 months of age. b, Fold change in the %GFP relative to the 593 

preceding time-point. Each line represents an independent mouse. Mice from all four 594 

cohorts are shown. Conf-E2aCre (n=9), Conf-VECre (n=7), Conf-Flk1Cre (n=6), Conf-595 

Vav1Cre (n=10). Evolution of %GFP for individual PB lineages is shown in Supplemental 596 

Figure 2 for each mouse, each mouse strain and without normalization. Source data are 597 

provided in Supplemental Table 1. 598 

 599 

Figure 3. Aging functionally compromises HSC and erodes the lineage relationships 600 

between bone marrow compartments during native hematopoiesis. 601 

a, Single HSC from three independent young or aged mice were individually plated in 602 

96-well plates in media that supports HSC expansion (i, n=44-67 clones analyzed/mouse)  603 

or differentiation media (ii, n=27-41 clones were analyzed/mouse). i, Division kinetics 604 

for each well were tracked, % of cumulative number of divisions are shown. ii, % of 605 

clones that generate one, two, three or four myeloid lineages (See Supplemental Figure 606 

3A). Averages are shown, error bars represent standard deviation (# p-value � 0.1). b, 607 
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Distribution of Confetti colors in PB and BM in young (age two months) and old (age 26 608 

months) mice. Three representative examples are shown for each mouse strain at each 609 

time-point. c, Heatmaps summarize the correlation of Confetti color distribution between 610 

different hematopoietic compartments in young (i, age two months) and old (ii, age 26 611 

months) mice. Heatmaps depict the Pearson’s correlation coefficient between two cell 612 

compartments. At two months old: Conf-E2aCre (n=14), Conf-VECre(n=13), Conf-Flk1Cre 613 

(n=7), Conf-Vav1Cre (n=11). At 26 months old, Conf-E2aCre (n=10), Conf-VECre(n=5), 614 

Conf-Flk1Cre(n=6), Conf-Vav1Cre (n=9). iii, Correlation values of BM compartments 615 

relative to HSC at 2 and 26 months of age. Paired t test of correlation coefficient of cells 616 

vs. HSC indicate that the correlations are significantly reduced with age (p-value = 0.03). 617 

See also Supplemental Figure 3B. Source data are provided in Supplemental Table 1. 618 

 619 

Figure 4. Serial transplantation of aged and young bone marrow results in a loss of 620 

clonal complexity 621 

a-d, CD45.2+ Conf-VECre BM was serially transplanted. a, Schematic of serial 622 

transplantation of CD45.2+ Conf-VECre BM. For primary transplant, 5x106 BM cells were 623 

transplanted from young (age two months) or old (age 24 months) donors into distinct 624 

cohorts of primary CD45.2+/CD45.1+ recipients. For serial transplants, 5x106 BM cells 625 

were transplanted. For each age group (young and old) at least three independent donor 626 

mice were transplanted into distinct recipient cohorts. Each cohort was composed of at 627 

least five mice and was transplanted with an independent donor. b, Recipient PB was 628 

analyzed for the distribution of Confetti colors in their PB at four, 10 and 16 weeks post-629 

transplant. MtMV was used to estimate the number of repopulating units (see Methods). 630 
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Primary and secondary transplants are shown. (See Supplemental Figure 4 for additional 631 

cell doses transplanted in primary transplants and PB lineages. See also Figure 5). c, 632 

Recipient BM HSC were examined at four months post-transplant for the MtMV in the 633 

Confetti colors. (See Supplemental Figure 6D for additional BM HSPC compartments). 634 

b-c, Averages are shown, error bars denote standard deviation (*p-value�0.05; #p-635 

value�0.1) d, The median frequency of the most prevalent color is shown for the PB 636 

(four and 16 weeks) and MPP and HSC (16 weeks) for each transplantation stage. 637 

Whisker plots show interquartile range. ANOVA analysis was run to test for the 638 

statistical significance of the transplantation stage and age for each cell type. Age did not 639 

result in statistical differences for any cell type. Transplantation stage had a significant 640 

effect in all cell types (p-values�0.05) except HSC. (* p-value�0.05). b-d, each bar or 641 

point represents the average or median obtained from at least three independent cohorts 642 

of mice (each cohort nt5) from three independent initial young or old donors. Source 643 

data are provided in Supplemental Table 1. 644 

 645 

Figure 5. Serial transplantation of aged and young bone marrow drives clonal 646 

collapse of reconstituted hematopoiesis 647 

a-b, Pie graphs show the distribution of Confetti colors in the nucleated cells of the PB, 648 

MPP and HSC of each recipient. Each pie graph represents an independent mouse. Each 649 

column of pie charts refers to the same mouse. Vertical arrows indicate donor mice for 650 

the subsequent transplant. Results are shown at four and 16 weeks post-transplant. a, 651 

Serial transplantation from young primary BM donors. b, Serial transplantation from old 652 

primary BM donors. Data related to Figure 4a-c. Source data are provided in 653 
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Supplemental Table 1. Data for HSC and MPP at the quaternary stage is not shown as 654 

they were used for WES. 655 

 656 

Figure 6. Labeled pooled-clones revealed clonal instability during serial 657 

transplantation 658 

The average frequency of CFP-, YFP-, RFP- or GFP-labeled pooled-clones in the PB at 659 

four (a) and 16 weeks (b) and in MPP at 16 weeks (c) and HSC (d) at 16 weeks 660 

throughout transplantation. Results are shown for each transplanted group (#A-F).  661 

Related to Figure 5. Whisker plots show the interquartile range. nt5 for each transplanted 662 

mouse cohort. See Supplemental Figure 5 for the distribution of all pooled-clones. Source 663 

data are provided in Supplemental Table 1.  664 

 665 

Figure 7. Aged Confetti clones exhibit higher mutational rates than young Confetti 666 

clones 667 

Transplanted Conf-VECre BM from aged or young donors was either maintained for 16 668 

months in primary recipients or serially transplanted every four months for a total of 16 669 

months. Confetti sorted clones were subjected to whole-exome-sequencing. a, 670 

Experimental schematic. b, Whole exome sequencing of aged (n=7) and young (n=4) 671 

sorted Confetti clones after serial transplantation. Mutation analysis revealed that aged 672 

clones accumulated a significantly higher number of mutations than young clones when 673 

serially transplanted (* p-value � 0.05)  c, Whole exome sequencing of aged (n=4) and 674 

young (n=2) sorted Confetti clones 16 months post-primary transplant. No overlap was 675 

observed in mutations detected after primary transplant compared to repeated 676 
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transplantation (Please see Supplemental Tables 2-3). (b). See also Table 1 and Methods 677 

for experimental details. 678 

 679 

 680 

 681 

 682 

  683 
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