1	
2	
3	The global clonal complexity of the murine blood system declines throughout life
4	and after serial transplantation
5	
6	
7	
8	Miguel Ganuza ¹ , Trent Hall ¹ , David Finkelstein ³ , Yong-Dong Wang ³ , Ashley Chabot ¹ ,
9	Guolian Kang ² , Wenjian Bi ² , Gang Wu ³ and Shannon McKinney-Freeman ^{§1} .
10	
11	
12	¹ Department of Hematology, ² Department of Biostatistics and ³ Department of
13	Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105
14	
15	Text word count: Main text (Introduction, Methods, Results and Discussion; <u>4631</u>
16	words), Abstract (200 words), 7 Figures, 6 Supplemental Figures, one Table, three
17	Supplemental Tables and <u>93</u> references.
18	Short title (48 characters including spaces): The clonal complexity of blood declines
19	with age
20	

21 § Corresponding author

22	Key points					
23	1)	The clonal diversity of the hematopoietic system declines with age and after				
24		serial transplantation.				
25						
26	2)	Aged HSC acquire mutations that might confer a selective advantage during				
27		serial transplantation				
28						
29						
30						
31						
32						

33 Abstract (limit: 200 words; Current: 200 words)

34

35 Although many recent studies describe the emergence and prevalence of 'clonal-36 hematopoiesis of indeterminate-potential' (CHIP) in aged human populations, a 37 systematic analysis of the numbers of clones supporting steady-state hematopoiesis 38 throughout mammalian life is lacking. Previous efforts relied on transplantation of 39 'barcoded' hematopoietic stem cells (HSC) to track the contribution of HSC clones to 40 reconstituted blood. However, ex vivo manipulation and transplantation alter HSC 41 function and thus may not reflect the biology of steady-state hematopoiesis. Using a non-42 invasive in vivo color-labeling system, we report the first comprehensive analysis of the 43 changing global clonal complexity of steady-state hematopoiesis during the natural 44 murine lifespan. We observed that the number of clones (*i.e.* clonal complexity) 45 supporting the major blood and bone marrow hematopoietic compartments decline with 46 age by about 30% and 60%, respectively. Aging dramatically reduced HSC in vivo 47 repopulating activity and lymphoid potential while increasing functional heterogeneity. 48 Continuous challenge of the hematopoietic system by serial transplantation provoked the 49 clonal collapse of both young and aged hematopoietic systems. Whole exome sequencing 50 of serially transplanted aged and young hematopoietic clones confirmed oligoclonal 51 hematopoiesis and revealed mutations in at least 27 genes, including nonsense, missense 52 and deletion mutations in *Bcl11b*, *Hist1h2ac*, *Npy2r*, *Notch3*, *Ptprr* and *Top2b*. 53 54

57 Introduction

58 Advances in technology and medicine have freed modern Homo sapiens from natural 59 selection imposed by the environment, predation and disease, increasing the incidence of 60 aging pathologies¹. Genomic instability, telomere attrition, epigenetic alterations and 61 perturbed proteostasis contribute to disrupted tissue homeostasis (*i.e.* stem cell 62 exhaustion) in the aged². Aged blood displays a loss of adaptive immunity and higher 63 incidences of anemia and myeloid malignancies³. Additionally, expanded hematopoietic clones are apparent in the peripheral blood (PB) of many aged individuals⁴⁻¹³. >70% of 64 65 humans older than 90 years display CHIP (defined as $\geq 2\%$ PB from a single cellular clone)⁴⁻¹¹. DNMT3A, TET2, ASXL1, PPM1D and JAK2 are often mutated in CHIP 66 patients^{6,7}, who have a three- and 11-fold greater risk of developing cardiovascular 67 diseases or leukemia, respectively^{6,11,14}. 68

69

70 Unknown is how many cellular clones actively contribute to hematopoiesis throughout 71 life and how these numbers change with age⁸. Previous studies interrogating clonal 72 behavior in aged mammalian blood utilized HSC transplantation or mathematical modeling^{15,16,17}. Transplantation imposes tremendous stress on HSC¹⁸. Thus, studies 73 74 based entirely on transplantation and *ex vivo* manipulation of HSC may not accurately reflect steady-state hematopoiesis¹⁹⁻²¹. Understanding the dynamics of the clonal 75 76 complexity of blood throughout life requires non-invasive strategies. We recently 77 reported a new approach to study the endogenous clonal complexity of blood that takes 78 advantage of a Cre recombinase (CRE) inducible multi-color allele (i.e. Confetti allele)^{22,23}. Here, employing this approach and multiple CRE labeling strategies, we 79

80	observed a loss of clonal complexity in all hematopoietic compartments with age during
81	steady-state hematopoiesis. Further, repeated exposure to extreme hematopoietic stress
82	by serial transplantation resulted in the clonal collapse of both aged and young blood.
83	Whole exome sequencing (WES) of serially transplanted bone marrow (BM) confirmed
84	oligoclonal hematopoiesis and identified mutations in aged hematopoietic clones in genes
85	not previously implicated in HSC self-renewal and maintenance (e.g. Bcl11b, Hist1h2ac,
86	Npy2r, Notch3, Ptprr, Top2b). These mutations might be important for HSC clonal
87	expansion during aging and hematopoietic stress.
88	
89	
90	
91	
92	
93	
94	
95	

- 96 Methods
- 97 *Mice*
- 98 C57BL/6J, C57BL/6.SJL-PtprcaPep3b/BoyJ, *Flk1*^{+/Cre} (Flk1Kdr^{tm1(cre)Sato/J}),
- 99 ROSA26^{+/Confetti} (Gt(ROSA)26Sor^{tm1(CAG-Brainbow2.1)Cle/J}) and E2a^{+/Cre} (B6.FVB-Tg(EIIa-
- 100 cre)C5379Lmgd/J) (Jackson Laboratory, Bar Harbor, Maine) mice were housed in a
- 101 pathogen-free facility. All animal experiments were carried out according to procedures
- 102 approved by the St. Jude Children's Research Hospital Institutional Animal Care and Use
- 103 Committee.
- 104
- 105 Genotyping
- 106 Genotyping of *Cre* and *Confetti* alleles was as previously described²³.
- 107
- 108 Transplants
- 0.2×10^6 , 1×10^6 or 5×10^6 whole BM cells from young (age two months), old (age 24-26)
- 110 months) CD45.2⁺ ROSA26^{+/Confetti}VE-Cadherin^{+/Cre} mice or from primary, secondary or
- 111 tertiary recipient mice were transplanted via tail vein into 8-12 week old
- 112 CD45.2⁺/CD45.1⁺ C57BL/6J mice previously subjected to 11 Gy of ionizing radiation in
- 113 split doses of 5.5 Gy.
- 114
- 115 Cell division kinetics
- 116 Single HSCs sorted into 96-well plates were inspected to follow division kinetics every
- 117 12 hours for 72 hours as described²⁴. Details in Supplemental Materials and Methods.
- 118

119	Differentiation potential assay
120	Single HSCs were sorted into 96-well plates and cultured in myeloid differentiation
121	medium for 14 days as described ²⁵ . Emerging colonies were harvested, stained and
122	analyzed for myeloid lineages. Details in Supplemental Materials and Methods.
123	
124	PB Analysis
125	PB was collected, stained and analyzed as described ²³ .
126	
127	Bone Marrow Analysis
128	BM was harvested from the femurs, tibias, and pelvic bones of mice by crushing. c-Kit ⁺
129	cells were enriched using anti-c-Kit microbeads (Miltenyi Biotech, San Diego, CA)
130	followed by magnetic separation (autoMACS Pro Separator; Miltenyi Biotech). Cells
131	were stained with antibodies to HSC, MPPs, CMPs, GMPs, MEPs and CLPs. Details in
132	Supplemental Materials and Methods.
133	
134	Statistics and use of formula for predicting cell number from sample-to-sample variance
135	Summary statistics, including mean, median, minimum, maximum, percentile 25,
136	percentile 75 and standard deviation were reported. To calculate the clonal complexity of
137	any tissue at any given time point, we used the mouse-to-mouse variance in Confetti
138	color distribution ²³ . Detailed in Supplemental Materials and Methods.
139	
140	WES-Sample collection, preparation and analysis

141	Genomic DNA was isolated using Quick-DNA [™] Miniprep Kit (Catalog No. D3024;
142	Zymo Research, Irvine, CA). Genomic libraries were generated using SureSelectXT kit
143	specific for the Illumina HiSeq instrument (Catalog No. G9611B; Agilent Technologies,
144	Santa Clara, CA), followed by exome enrichment (SureSelect XT Mouse All Exon bait
145	set; Catalog No. 5190-4642). Exome enriched libraries were then sequenced by the St.
146	Jude Genome Sequencing Facility.
147	
148	To identify somatic mutations within each transplant group, whole-exome-sequences of
149	CD45.1 ⁻ Confetti clones isolated from the same donor group were compared to each other
150	and to CD45.1 ⁻ Confetti clones isolated from distinct donor groups. Details in

- 151 Supplemental Materials and Methods.
- 152
- 153 Data sharing statement
- 154 For original data please contact shannon.mckinney-freeman@stjude.org.

156 **Results**

157 The clonal complexity of native hematopoiesis declines with age

158 To illuminate the clonal dynamics of native hematopoiesis throughout life, we genetically

- 159 labeled the hematopoietic system of mouse cohorts during embryonic development and
- 160 analyzed the subsequent evolution of global clonal complexity. Specifically, we
- 161 examined the mouse-to-mouse variance (MtMV) in Confetti color distribution in the
- 162 blood and c-Kit⁺ BM of cohorts of $ROSA26^{+/Confetti}E2a^{+/Cre}$ mice (Conf-E2a^{Cre}),
- 163 ROSA26^{+/Confetti}Flk-1^{+/Cre} (Conf-Flk-1^{Cre}), ROSA26^{+/Confetti}VE-Cadherin^{+/Cre} mice (Conf-
- 164 VE^{Cre}), and $ROSA26^{+/Confetti} Vav1^{+/Cre}$ mice (Conf-Vav1^{Cre}) from two to 26 months of age
- 165 (Figure 1A). The *Confetti* reporter allele is recombined by CRE and randomly labels
- 166 progeny with GFP, YFP, RFP or CFP (Supplemental Figures 1A-B). Here, *Confetti*
- 167 labeling is initiated in blastomeres (*Conf-E2a*^{Cre}), mesodermal hematopoietic precursors

168 (*Conf-Flk-1^{Cre}*), hemogenic endothelial precursors (*Conf-VE*^{Cre}) and definitive

169 hematopoietic stem and progenitor cells (HSPCs) (*Conf-Vav1*^{Cre}) (Figure 1A). As

170 previously established, large numbers of *Confetti+* precursors contributing to a given cell

- 171 population results in a small MtMV of *Confetti* colors while small numbers of *Confetti*+
- 172 precursors results in high MtMV of *Confetti* colors (Figure 1B)²³. The following formula
- 173 estimates the number of contributing clones using the observed MtMV in *Confetti* colors:

174 Cell number = $10^{(-1.56 \text{ x} \log 10(\text{CV})+1.47)}$ (where CV= standard deviation/mean and represents

- 175 the coefficient of variance). This formula yields accurate estimates of numbers of
- 176 contributing clones when that number falls between 50 and 2500 clones²³. For *Conf-Flk*-
- 177 *1*^{Cre}, *Conf-VE*^{Cre} and *Conf-Vav1*^{Cre} mice, PB clonal complexity at two months fell within
- 178 this range (about 600, Figure 1Ci). As expected, PB and BM clonal complexity of Conf-

179 $E2a^{Cre}$ mice fell below this range, as these mice express CRE when embryos are 180 comprised of very few cells. It therefore serves as a control for low complexity (Figure 181 1A-Ci). Thus, about 600 cells labeled during embryonic development represent the precursors for the entire HSC pool in young adult mice (about 20,000 HSC)²⁶⁻³⁰. This 182 183 number serves as an initial benchmark from which we grossly examined how relative 184 clonal complexity of blood changes with time. Across CRE lines, PB clonal complexity 185 was stable until 16-20 months of age, after which it steadily declined for all cohorts except *Conf-E2a*^{Cre} (Figure 1Ci-Cii, Supplemental Figure 1D). Clonal complexity 186 187 dropped slightly earlier in myeloid cells (Supplemental Figure 1D). On average, we 188 observed a 24% drop in PB clonal complexity of aged mice at 24 and 26 months relative 189 to young mice (p-value=0.03 and 0.01; FDR q-value(q)=0.1 and 0.06, respectively) 190 (Figure 1Cii). At 24 months, PB clonal complexity was reduced an average of 11.1%, 191 37.2% and 44.0% in B cell, T cell and myeloid cell lineages, respectively (Supplemental 192 Figure 1D).

193

194 Most BM HSPC compartments displayed a drop in overall clonal complexity with age in

195 Conf-Flk-1^{Cre}, Conf-VE^{Cre} and Conf-Vav1^{Cre} mice strains (Figure 1Di). On average, the

196 clonal complexity of HSC and MPP in aged mice decreased by 59.3% (p=0.045,

197 q=0.1578) and 69.6% (p=0.053, q=0.1578), respectively (Figure 1Dii). While CLP, CMP

198 and GMP displayed about a 65.6% (p=0.232), 32.3% (p=0.229) and 42.7% (p=0.0964,

199 q=0.1928) clonal loss, MEP only lost 44.2% (p=0.383) of clonal complexity with age

200 (Figure 1Dii). As expected, *Conf-E2a*^{Cre} mice showed no loss of BM complexity (Figure

201 1Di). Altogether, these data reveal a global loss of clonal complexity with age in all BM

202 compartments labeled after the blastomere stage. Interestingly, HSC and MPP were more

sensitive to the selective pressures imposed by aging than other HSPC.

204

205 Native hematopoiesis is characterized by clonal instability

Our study and others suggest that native hematopoiesis is polyclonal^{19,20}. The behavior of 206 207 individual HSC clones over time can be explained by clonal succession (distinct clones progressively recruited)³¹⁻³³, clonal stability (same clones steadily contributing)^{15,34}, 208 dynamic repetition (a specific clone recruited multiple times)³⁵ or a combination of these 209 210 models³⁶. Although our system cannot track individual clones, it can follow "pooled-211 clones", which are clones labeled with the same Confetti color. GFP-labeled pools are 212 particularly useful because *Confetti*-allele driven GFP labeling is under-favored in most 213 tissues^{22,23,37}. Thus, GFP+ hematopoietic cells almost certainly reflect the activity of a 214 smaller pool of clones than RFP, CFP or YFP and are useful for tracking the dynamics of 215 a relatively small number of clones. 216

217 Here, we analyzed in individual mice the evolution of GFP-labeled clonal pools. Aging

218 was occasionally accompanied by dramatic changes in PB GFP-labeling (Figure 2,

219 Supplemental Figure 2). For example, we observed expansions of GFP-pooled-clones

with age (*e.g. Conf-E2a*^{Cre} Mouse #1 and *Conf-VE*^{/Cre} Mouse #1, Figure 2A). Both

221 expansion and constriction of GFP-pooled-clones (e.g. Conf-Flk1^{Cre} Mouse #3, Conf-

222 Vav1^{Cre} Mouse #3, Figure 2A) and YFP-pooled-clones were also detected (e.g. Conf-

223 $E2a^{Cre}$ Mouse #3, Figure 2A). The relative change in the PB frequency of GFP from

time-point to time-point throughout the life of individual mice revealed this as a common

225	phenomenon observed across PB lineages (Figure 2B, Supplemental Figure 2). These
226	data support a model of PB clonal instability, in which clonal pools wax and wane
227	throughout life.

229 Aging increases the functional heterogeneity of the HSC pool

HSCs give rise to downstream <u>BM progenitors</u>²¹. To gain insight into the functional

231 consequences of aging on HSC, the division kinetics and differentiation potential of

single young and aged HSC was examined. Aged HSCs displayed slower division

233 kinetics than young HSCs (Figure 3A). Aging also decreased the frequency of multi-

234 potent HSC (Figure 3B, Supplemental Figure 3). These data suggest an increase in HSC

- 235 functional heterogeneity with age.
- 236

237 To address this *in vivo*, we again examined the behavior of 'pooled' clones labeled with 238 the same *Confetti* color. A similar distribution of *Confetti* colors among distinct BM 239 compartments in individuals reflects a close lineage relationship. For example, when one examines the BM of *Conf-E2a*^{Cre} Mouse #6 or *Conf-Vav*^{Cre} Mouse #5 at 26 months, HSC 240 241 and MPP displayed a similar distribution of Confetti colors relative to downstream HSPC 242 (Figure 3B). To globally analyze these patterns, we calculated the correlation (Pearson's 243 correlation coefficient) in the percent contribution of each *Confetti* color to different cell 244 lineages in young and old mice (Figure 3C). The correlation between lineages declined 245 with age (see color intensity in Figures 3Ci-ii). Remarkably, the correlation between HSC 246 and MPP was less eroded with age compared to the correlation of HSC with other HSPC 247 (Figure 3Ciii). Additionally, the pattern of correlation among different lineages in young

248 mice was similar in aged mice (see the color pattern in Figures 3Cii and Supplemental

249 Figure 3B where the scale is modified in young mice to facilitate comparison). These

250 data suggest that HSC continuously produce MPP throughout life and aging increases the

251 functional heterogeneity of the HSC pool, which is reflected in the eroded correlations

between HSC and other BM compartments (p-value=0.03).

253

254 Aging constrains HSC repopulating activity

255 To further investigate the effect of aging on HSC self-renewal and function, we

256 repeatedly challenged aged HSC by serially transplanting *Conf-VE*^{Cre}-BM into irradiated

recipients (Figure 4, Supplemental Figure 4). Here, BM from three independent young

and aged donors was independently serially transplanted into a total of six cohorts of

259 mice: young BM (groups A-C) and aged BM (groups D-F) (Figures 5-6, Supplemental

Figure 5). Thus, all *Confetti*+ BM within each group ultimately derives from the sameprimary donor.

262

263 Our *Confetti*-based approach faithfully estimates PB repopulating units (RUs) at short

and long-time points post-transplant²³. In primary transplants, many short-term

265 progenitors contributed to recipient PB regardless of donor age at four weeks post-

transplant^{23,38-40} (Figure 4B). RU numbers decreased over time as these progenitors

267 exhausted their reconstituting potential for all PB lineages^{23,38-40} (Figure 4B,

268 Supplemental Figure 4A-B). Counterintuitively, PB RUs trended higher in recipients of

aged BM *versus* recipients of young BM (Figure 4B, Supplemental Figure 4A).

270 Consistently, reconstituted HSC of aged BM recipients displayed greater clonal

271	complexity than recipients of young BM (Figure 4C). Phenotypic HSC are known to
272	accumulate in aged BM ^{26,27,41-44} . Indeed, a 10-fold increase in phenotypic HSC numbers
273	was apparent in aged <i>Conf-VE^{Cre}</i> mice relative to young mice (Supplemental Figure 6A).
274	Thus, the repopulating activity of phenotypic aged HSC appears about half that of young
275	HSC (ratio of estimated RUs divided by the HSC number), consistent with previous
276	reports (Supplemental Figure 6B) ^{45,46} . Thus, although the phenotypic HSC compartment
277	expands with age, its activity is compromised relative to young HSC and many more
278	aged clones are recruited to reconstitute homeostasis.
279	
280	Serial transplantation dramatically reduces clonal diversity
281	Continued serial transplantation of aged and young BM reproducibly resulted in the
281 282	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting
281 282 283	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting oligoclonality. Accordingly, in secondary transplants of aged and young <i>Conf-VE</i> ^{Cre} -BM,
281 282 283 284	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting oligoclonality. Accordingly, in secondary transplants of aged and young <i>Conf-VE</i> ^{Cre} -BM, we observed a loss of clonal diversity in the CD45.2 ⁺ PB (including myeloid and
281 282 283 284 285	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting oligoclonality. Accordingly, in secondary transplants of aged and young <i>Conf-VE</i> ^{Cre} -BM, we observed a loss of clonal diversity in the CD45.2 ⁺ PB (including myeloid and lymphoid lineages) and HSPC (Figure 4B-C, Supplemental Figure 4B).
281 282 283 284 285 286	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting oligoclonality. Accordingly, in secondary transplants of aged and young <i>Conf-VE</i> ^{Cre} -BM, we observed a loss of clonal diversity in the CD45.2 ⁺ PB (including myeloid and lymphoid lineages) and HSPC (Figure 4B-C, Supplemental Figure 4B).
281 282 283 284 285 286 287	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting oligoclonality. Accordingly, in secondary transplants of aged and young <i>Conf-VE</i> ^{Cre} -BM, we observed a loss of clonal diversity in the CD45.2 ⁺ PB (including myeloid and lymphoid lineages) and HSPC (Figure 4B-C, Supplemental Figure 4B). As the <i>Confetti</i> formula cannot accurately estimate the clonal complexity of an
281 282 283 284 285 286 287 288	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting oligoclonality. Accordingly, in secondary transplants of aged and young <i>Conf-VE</i> ^{Cre} -BM, we observed a loss of clonal diversity in the CD45.2 ⁺ PB (including myeloid and lymphoid lineages) and HSPC (Figure 4B-C, Supplemental Figure 4B). As the <i>Confetti</i> formula cannot accurately estimate the clonal complexity of an oligoclonal system ²³ , we developed an alternate strategy to quantify this progressive loss
281 282 283 284 285 286 287 288 289	Continued serial transplantation of aged and young BM reproducibly resulted in the dominance of a single <i>Confetti</i> color in reconstituted PB (Figure 5), suggesting oligoclonality. Accordingly, in secondary transplants of aged and young <i>Conf-VE</i> ^{Cre} -BM, we observed a loss of clonal diversity in the CD45.2 ⁺ PB (including myeloid and lymphoid lineages) and HSPC (Figure 4B-C, Supplemental Figure 4B). As the <i>Confetti</i> formula cannot accurately estimate the clonal complexity of an oligoclonal system ²³ , we developed an alternate strategy to quantify this progressive loss of complexity in subsequent transplants, focusing on the frequency of the most prevalent

- 291 Supplemental Figure 4C). There was no difference in the rate that young and old serially
- 292 transplanted BM achieved clonal dominance in the HSC, MPP and myeloid
- 293 compartments (Figure 4D, Supplemental Figure 4C). The differences observed in B- and

294 T-cell lineages are probably due to the earlier myeloid bias developed by the aged BM

and that depletes the aged BM from the lymphoid lineages, precluding a proper

296 comparison (Supplemental Figure 4C, Supplemental Figure 6C). Thus, serial

transplantation steadily and dramatically reduces the clonal diversity of transplanted BM,

- regardless of the age of the primary donor.
- 299

300 Serial transplantation exacerbates clonal instability

301 To examine the flux of HSC output during serial transplantation, we again analyzed the 302 behavior of "Confetti-pooled-clones" in individual mice (Figure 5). Dramatic expansions 303 and constrictions of PB pooled-clones were apparent throughout serial transplantation of 304 young BM (YFP and RFP in Groups A and B in Figure 5, Figure 6A-B, Supplemental 305 Figures 5Ai-ii-3Di-ii). Further, in Group A, GFP-pooled-clones steadily increased in 306 frequency in HSC during serial transplantation (Figure 5, Figure 6D and Supplemental 307 Figure 5Biv). In contrast, the sudden expansion of GFP-pooled clones in the tertiary and 308 quaternary PB of Group B recipients was never apparent in recipient HSC and MPP 309 (Figure 5, Supplemental Figure 5B). For example, the secondary Group B recipient 310 whose BM was transplanted into tertiary recipients had predominantly CFP⁺HSC. 311 However, the frequency of these CFP-pooled-clones constricted dramatically in tertiary 312 recipient PB by 16 weeks post-transplant and were a minority fraction in tertiary HSC, 313 which was overtaken by YFP-pooled clones (Figure 5). In Groups D-F (Figure 5), which 314 were serially transplanted with aged BM, large expansions of GFP-pooled-clones were 315 mostly followed by constrictions (Figures 5, 6B, Supplemental Figure 5B). This supports 316 the presence of small HSC clones with large contribution to PB. For example, the

317 distribution of PB pooled clones in Groups D-F secondary recipients were not reflected in

their MPP and HSC (Figure 5, Supplemental Figure 5). In total, these data suggest PB

319 and HSC clonal instability during serial transplantation.

320

321 Serially transplanted aged BM bears a heavier mutation load than serially

322 transplanted young BM

323 *Confetti*-labeling suggests that serial transplantation of BM results in a loss of clonal

324 complexity (Figure 4). By quaternary transplants, the majority of reconstituted blood is

- 325 only one or two *Confetti* colors (Figure 5). To confirm clonal hematopoiesis, we
- 326 performed WES on CD45.2⁺ BM labeled with individual *Confetti* colors (*i.e. Confetti*-

327 clones) isolated by FACS from quaternary recipients of CD45.2⁺ Conf-VE^{Cre} aged or

328 young BM. 11 Confetti-clones were sequenced: four isolated from recipients of young

329 BM (Groups A-B) and seven from recipients of aged BM (Groups D-F) (Figure 5, 7,

Table 1, Supplemental Tables 2-3). To ensure identification of true somatic mutations, at

331 least two *Confetti* clones labeled with different colors were isolated from each transplant

332 Group. Since *Confetti* clones in each Group originate from the same initial donor,

333 somatic mutations acquired either during aging or serial transplantation can be

334 distinguished from polymorphisms by comparing independent Confetti clones within a

335 Group.

336

WES revealed 27 mutations (23 missense and 4 nonsense) that change the amino acid

338 sequences (Table 1, Supplemental Tables 2-3). Five aged *Confetti* clones (O-1, O-3, O-4,

339 O-7, O-11) acquired mutations with variant allele frequencies (VAF) close to 50%,

340	consistent with monoclonal hematopoiesis (Supplemental Table 3). For example,
341	virtually all cells in O-4 carried a Cdr1 mutation (VAF=53%), yet this variant was not
342	observed in O-3 which received cells from the same primary donor. Interestingly, O-4
343	also harbored a sub-clone, as half of the sample carried a <i>Npy2r</i> mutation (VAF=25.9%)
344	(Supplemental Table 3). Two aged <i>Confetti</i> clones (O-2, O-6) were oligoclonal (e.g. O-2
345	was composed of at least two clones (VAFs=10.4% and 14.9%)) (Supplemental Table 3).
346	Two of four young <i>Confetti</i> clones (Y-2 and Y-3) were clonal (VAF=44% for each) or
347	oligoclonal (Y-1, subclones were detected with VAFs=16.7% and 13.9%, Supplemental
348	Table 3). Interestingly, the average counts of sample-specific mutations per transplant
349	event (including missense, nonsense, silent and those outside the coding regions) in aged
350	Confetti clones (4.2 mutations/transplant event) exceeded those of young Confetti clones
351	(1.4 mutations/transplant event, p=0.02, Figure 7A). These data suggest that most
352	mutations are acquired during aging or alternatively that aged HSC are more susceptible
353	to mutagenesis under repeated stress.

355 To distinguish between these possibilities, we performed WES on *Confetti*-labeled young 356 or aged BM isolated from primary recipients 16 months post-transplant or quaternary 357 recipients four months post-transplant that were transplanted with cells from the same 358 primary donor (Figure 7B). Comparing these primary and quaternary samples allowed us 359 to assess the effect of time and time+repeated serial transplantation. If the observed 360 mutations accumulated during the aging prior to transplant, then similar mutations should 361 be observed in both cases. Clones of the same Confetti color within each transplant group 362 (Two young clones (Y-5 and Y-6) and four aged clones (O-5, O-8, O-9 and O-10) were

363	sequenced (Supplemental Table 2). WES showed no overlap in mutations detected in
364	primary versus quaternary samples (Supplemental Table 2). These data support a model
365	in which most quaternary mutations are acquired during serial transplantation and aged
366	BM is more susceptible to mutation during intense hematopoietic stress. Alternatively,
367	small undetectable clones in primary samples may have been favored by serial
368	transplantation.
369	
370	We assessed if detected mutations were previously identified as variants in hematologic
371	disease or cancer using Pecan PIE (Pathogenicity Information Exchange)
372	(https://pecan.stjude.cloud/pie) ⁴⁷ . A nonsense mutation in the B-cell CLL/lymphoma 11b
373	(<i>Bcl11b</i>) locus (c. 610 C>T transition) has been implicated in T-ALL leukemogenesis.
374	Low <i>BCL11b</i> expression correlates with poor prognosis in T-ALL patients ^{48,49,50} . We also
375	identified a missense damaging mutation (Cys223Tyr) in a conserved, putative Ca ⁺²
376	binding domain of the Notch3 locus (Cys222 in the human protein) ⁵¹⁻⁵³ . Elevated
377	NOTCH3 is seen in most T-ALL cases (Table 1 and Supplemental Table 3) ⁵⁴ . A C>T
378	transition resulted in p379Arg->Trp in protein tyrosine phosphatase receptor type (<i>Ptprr</i>).
379	Eleven PTPRR R376 mutations have been reported in carcinomas and melanomas ⁴⁷ . In
380	addition, a C>T transition observed in the Neuropeptide Y receptor Y2 (Npy2r) has also
381	been seen in carcinoma patients (Arg82Cys) ^{55, 47} . A G>A transversion in the Histone
382	cluster 1, H2ac (Hist1h2ac) leading to an Arg33Trp was also observed. Reduced
383	expression of <i>Hist1h2ac</i> correlates with increased cell proliferation ^{56,57} . Finally, we
384	observed a frameshift deletion in Topoisomerase (DNA) II beta (Top2b), a target for
385	several anticancer drugs ^{58,59} .

- 387 In sum, WES of young and aged *Confetti* clones confirmed oligoclonal hematopoiesis
- 388 and suggest that aged HSC <u>may be</u> hypersensitive to mutation when subjected to
- 389 hematopoietic stress.

391 Discussion

392 We comprehensively examined the global clonal complexity of the murine 393 hematopoietic system throughout life during steady state hematopoiesis. Although the 394 presence of over-represented clones in aged PB is known, we showed for the first time 395 that aging correlates with a global loss of clonal diversity in the entire blood system. 396 These data caution against the use of aged donors for HSC transplantation. We also 397 visualized the dynamics of clonal instability during native hematopoiesis and extended 398 previous reports on aged HSC clones¹⁵. Our study further illuminated the effect of serial 399 transplantation on hematopoietic clonal complexity driving a clonal collapse of 400 reconstituted blood. Finally, we identified mutations that may confer a selective 401 advantage during hematopoietic stress. 402 403 Here, we utilized a novel, non-invasive approach that depends on the observed MtMV in 404 Confetti color distribution in cell populations. We previously validated the fidelity of this 405 approach for estimating clonal numbers and reconstituting events in the blood system 406 both during ontogeny and transplantation²³. The behavior of individual clones are not 407 tracked in this approach. Rather, much like classic limiting dilution transplantation assays 408 based on Poisson statistics^{34,60}, MtMV is a statistical, indirect measure of clonal content 409 and populations. Thus, an important caveat is that if a cell population consistently 410 contains clones too small to perturb the distribution of *Confetti*-colors in individual mice, 411 those clones are essentially 'hidden' from MtMV measurements. However, this caveat 412 can be mitigated by increasing the size of mouse cohorts and numbers of cells analyzed. 413 Further, with respect to aged HSC, these small 'hidden' clones can reflect important

414	biology, which is discussed at length below. MtMV is also influenced by cellular
415	behavior (i.e. changes in the number of clones actively contributing to blood
416	compartments). Many variables can influence the behavior of cells overtime (e.g. stress,
417	infection, inflammation, epigenetic remodeling). Behavioral changes with age reflect the
418	cumulative effect of these many variables on cells (and systems) throughout life. Here,
419	we applied the MtMV in Confetti color distribution to measure the sum total effect of
420	these insults on the blood and observed a loss of actively contributing clones in most
421	blood compartments (Figure 1 and Supplemental Figure 1). Further experimentation will
422	be necessary to decipher the biology driving changes in active clone numbers in aged
423	blood.
424	
425	Aging is accompanied by a large expansion in phenotypic HSC (Supplemental Figure
426	6A) ^{26,27,41-44} and a 20-fold decrease in transplantable HSC (Supplemental Figure 6B) ^{8,36-}
427	^{40,53,55-56 61} . <u>The precipitous drop in HSC clonal complexity</u> with age suggests that the
428	expansion of phenotypic HSC results from just a few clones with a selective advantage,
429	as suggested for CHIP ^{1,8} . Further, this loss of HSC complexity does not correlate in
430	magnitude with the loss of clonal complexity seen in PB (Figure 4B-C, Supplemental
431	Figure 1D). As aged HSC display poor repopulating activity relative to young HSC
432	(Supplemental Figure 6B) ⁶¹ , they are likely also compromised in their contribution to
433	native hematopoiesis. Indeed, the BM frequency of expanded aged HSC Confetti pools is
434	often not reflected in the blood, suggesting compromised output. We repeatedly observed
435	aged PB GFP-pooled clones that were undetectable in BM (e.g. Conf-E2a ^{Cre} #4; Conf-
436	<i>Flk1</i> ^{Cre} #6; <i>Conf-VE</i> ^{Cre} #6, <i>Conf-Vav1</i> ^{Cre} #6; Figure 3B), consistent with the model that

437 small 'young-like' HSC clones actively support aged PB, as proposed by de Haan and 438 Lazare⁸. Although, in our study, we cannot measure the precise composition of clonal 439 pools. None-the-less, very likely, only HSC clones that have not expanded dramatically 440 preserve their functional potential and aged native hematopoiesis is maintained by a 441 reduced pool of HSC clones^{8,62}. Thus, although PB complexity drops with age, this drop 442 is not equivalent to that seen in HSC. The pathological significance of harboring large 443 numbers of phenotypic HSC compromised in differentiative potential is unclear. This 444 may contribute to the selection of PB clones in elderly CHIP patients. 445 446 Our study complements a recent report estimating that about 50,000-200,000 HSC 447 contribute to the blood at any given moment in middle-aged individuals⁶³. 16-20 month 448 old mice are equivalently middle-aged and did not display a loss of PB clonal complexity 449 (Figure 1C). It would be interesting to assess if the 30% drop in complexity seen in our 450 study is conserved in an elderly (>80 years) individual. However, this may be difficult to 451 detect, given the large range of contributing HSC reported in Lee-Six *et al*⁶³. 452 HSC are heterogeneous^{36,42,64-67}. Aging is accompanied by delay in HSC cell *division ex* 453 454 vivo, as previously described⁶⁸, and a loss of <u>multipotency</u> (Figure 3A), which suggests a 455 global decline in HSC function. This decline could stem from increasing HSC functional 456 heterogeneity or from a homogeneous loss of HSC function. Reduced correlation in 457 *Confetti*-labeling patterns between BM HSPCs with age supports a model of increased 458 heterogeneity (Figure 3C). To preserve *Confetti* color distribution between two BM 459 compartments: 1) the immature compartment must evenly contribute to the downstream

460 compartment, 2) cell expansion and death must be evenly distributed across

461 compartments and 3) these requirements must hold for any intermediates. Deviation from

462 these requirements would weaken Confetti color correlations between compartments (i.e.

463 functional heterogeneity in HSPCs negatively impacts the preservation of *Confetti* color

464 distribution between populations). Thus, we favor a model in which aging increases HSC

465 functional heterogeneity (Figure 3A, Figure 3C).

466

467 Interestingly, HSC and MPP were highly correlated in aged mice (Figure 3Cii-iii). It has 468 been proposed that MPP support native hematopoiesis with rare contribution from HSC^{19,20}, which suggests that aged MPP emerge from HSC early in life or that HSC 469 470 steadily (but rarely) contribute to MPP. This would also require MPP and HSC to 471 preserve identical relative rates of symmetric and asymmetric cell division throughout 472 life (*i.e.* to preserve *Confetti* color distributions after a long separation). A simpler model 473 is that HSC actively and evenly generate MPP throughout life, consistent with the classic 474 model of hematopoieisis²¹

475

We also examined the effect of age and stress on HSC function. Primary transplantation
of aged BM required recruitment of larger clone numbers than young BM to re-establish
hematopoietic homeostasis (Figure 4B-C, Supplemental Figure 6D), likely because aged
HSC display less repopulating activity/cell than young HSC. Repeated serial
transplantation drove a clonal collapse of the blood in both aged and young mice (Figure
4-6). Our data highlights significant differences between native and stress hematopoiesis
(Figures 1, 4-5, Supplemental Figures 1D and 4). Stress (*i.e.* transplantation) dramatically

impacts the diversity of clones contributing to hematopoiesis (Figure 4-5, Supplemental
Figures 4). Although clonal complexity also falls during native hematopoiesis (Figure 1,
Supplemental Fig. 1D), this loss is more gradual and smaller in magnitude than that seen
post-transplant. Thus, to fully <u>appreciate</u> hematopoietic clonal dynamics, it is critical to
interrogate both native and stress hematopoiesis.

488

489 We identified mutations in six genes (*i.e. Bcl11b*, *Hist1h2ac*, *Npv2r*, *Notch3*, *Ptprr* and 490 Top2b) that may confer a selective advantage to HSCs during aging and/or serial 491 transplantation (Table 1 and Supplemental Table 3). *Bcl11b* regulates thymocyte development^{48,49}. Structural variants and mutations in *BCL11B* have been seen in AML, 492 493 pediatric and adult T-ALL and T/myeloid acute bi-lineage leukemia^{51,69-77,78,79}. PTPRR is a protein tyrosine phosphatase linked to colorectal and cervical cancer^{80,81,82}. NOTCH3 494 mutations have been causally linked to cerebral autosomal dominant arteriopathy⁸³. High 495 levels of NOTCH3 are detected regularly in T-ALL^{54, 84}. Variations in the levels of 496 497 HIST1H2AC might contribute to carcinogenesis^{56,57}. TOP2B is a DNA topoisomerase 498 that alleviates topological stress during DNA replication and transcription⁸⁵. TOP2B 499 mutations correlate with drug resistance and chromosome translocations in therapyinduced leukemia^{58,59,86-89}. Finally, *Npv2r* (a G-protein coupled receptor) regulates 500 memory^{90,91}. We did not detect the most frequent mutations in CHIP patients (*e.g.* 501 502 Dnmt3a, Asxl1, Tet2; total frequency $\approx 30\%$). This could simply be due to the small 503 number of clones interrogated in our study^{6,7}. 504

505 In summary, our non-invasive approach constitutes, to our knowledge, the first study of 506 the dynamics of the absolute clonal complexity of steady state hematopoiesis during a 507 natural mammalian lifespan. Here, aging resulted in a global loss of clonal complexity 508 and intense repeated hematopoietic stress compromised HSC self-renewal, regardless of 509 age, ending in clonal collapse and loss of lymphoid potential. Moreover, we identified 510 novel mutations that potentially select for HSC capable of extensive self-renewal in the 511 face of hematopoietic stress. Understanding the functional significance of these mutations 512 could shed light on similar processes in human clonal hematopoiesis and warrants further 513 investigation.

514 Acknowledgements

515 We thank W. Clements, J. Klco, E. Obeng, A. Morales and the rest of the McKinney-

- 516 Freeman laboratory and Department of Hematology at St. Jude Children's Research
- 517 Hospital for critical discussions and reading of the manuscript; D. Ashmun, S.
- 518 Schwemberger, and J. Laxton for FACS support; C. Davis-Goodrum, Krista Millican,
- 519 Amber Reap and C. Savage for help with injections and timed pregnancies. *Vav1*-Cre^{+/T}
- 520 mice were a gift from the laboratory of Thomas Graf (Center for Genomic Regulation,
- 521 Spain) by way of Dr. Nancy Speck (University of Pennsylvania, PA USA). VE-Cadherin-
- 522 Cre^{+/T} mice were a gift from the laboratory of Dr. Guillermo Oliver (Northwestern
- 523 University, IL USA).

524 This work was supported by the American Society of Hematology (S.M.-F.), the Hartwell

525 Foundation (S.M.-F.), the NIDDK (R01DK104028, S.M.-F.) and the American Lebanese

526 Syrian Associated Charities (S.M.-F.). The authors have no conflicting financial interests.527

528 Author Contributions

529 M.G. designed the study, performed and analyzed transplants, collected and analyzed

530 data, and wrote the paper. T.H. contributed to study design, collected data and wrote the

- 531 paper. D.F. performed statistical analysis for estimating cell numbers and tracking clonal
- 532 complexity evolution, analyzed data, contributed to study design, and wrote relevant
- 533 sections of paper. A.C. analyzed *Confetti*+ blood and resulting data. Y-D.W. and G.W.
- 534 performed whole exome sequencing analysis. G.K. and W.B. performed statistical
- analyses, S.M.-F. designed the study, analyzed data, and wrote the paper. All authors
- 536 discussed the results and commented on the manuscript.

537	
538	Correspondence and request for materials should be addressed to S.MF.
539	(Shannon.mckinney-freeman@stjude.org).
540	
541	Conflict of Interest Disclosure
542	The authors have no conflicting financial interests.
543	
544	
545	
546	
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	

Symbol	Reference	Allele	Coding / amino acid change	Group	Mutation Type	Conserved region in human ₁ genome	Predicted functional effect ²
Csmd1	с	т	NM_053171:c.5755G>A,p.Ala1919Thr	Young	missense	No	N/A
LmIn	с	т	NM_172823:c.1597C>T,p.Gln533*	Young	nonsense	Yes	Damaging
Mrgpra6	G	А	NM_001308537:c.799C>T,p.Arg267Trp	Young	missense	No	N/A
Sidt2	G	С	NM_172257:c.[1062C>G],p.[Tyr354*]	Young	nonsense	Yes	Stop gain
Slc5a9	с	т	NM_145551:c.298G>A,p.Gly100Ser	Young	missense	Yes	Damaging
Ahnak	с	т	NM_009643:c.[3092C>T],p.Pro1031Leu	Old	missense	Yes	Damaging
Bcl11b	G	A	NM_021399:c.610C>T,p.Gin204*	Old	nonsense	Yes	Damaging
Carm1	А	G	NM_021531:c.[1441A>G],p.[Thr481Ala]	Old	missense	Yes	Benign
Cdr1	G	А	NM_001166658:c.892C>T,p.Arg298Trp	Old	missense	No	N/A
Hist1h2ac	G	Α	NM_178189:c.97C>T,p.Arg33Trp	Old	missense	Yes	Damaging
Grin3a	A	-	NM_001033351:c.[1797delT],p.[Ile599fs]	Old	deletion	Yes	Frameshift
Itpkb	A	G	NM_001081175:c.2521A>G,p.Lys841Glu	Old	missense	Yes	Benign
Notch3	с	т	NM_008716:c.668G>A,p.Cys223Tyr	Old	missense	Yes	Damaging
Npy2r	G	A	NM_008731:c.244C>T,p.Arg82Cys	Old	missense	Yes	Damaging
Olfr1111	G	т	NM_146593:c.20C>A,p.Thr7Asn	Old	missense	Yes	Probably Damaging
Pde6a	G	A	NM_146086:c.161G>A,p.Ser54Asn	Old	missense	Yes	Benign
Prb1	G	т	NM_053251:c.702C>A,p.Asp234Glu	Old	missense	No	N/A
Ptprr	с	т	NM_011217:c.1135C>T,p.Arg379Trp	Old	missense	Yes	Damaging
Rapgef1	G	A	NM_001039086:c.2164G>A,p.Glu722Lys	Old	missense	No	N/A
Rnf6	с	т	NM_028774:c.1003G>A,p.Val335Ile	Old	missense	No	N/A
Scn2a	А	с	NM_001099298:c.5480A>C,p.Asp1827Ala	Old	missense	Yes	Benign
Tada1	Т	G	NM_030245:c.803T>G,p.Leu268Arg	Old	missense	Yes	Benign
Tjp1	А	G	NM_009386:c.4991T>C,p.Ile1664Thr	Old	missense	Yes	Benign
Top2b	G		NM_009409:c.1487delG,p.Gly497fs	Old	deletion	Yes	Frameshift
Vmn2r49	G	А	NM_001105156:c.647C>T,p.Pro216Leu	Old	missense	No	N/A
Zcwpw1	G	A	NM_001005426:c.34G>A,p.Glu12Lys	Old	missense	No	N/A
Zfp735	G	т	NM_001126489:c.510G>T,p.Lys170Asn	Old	missense	No	N/A

Table 1. Mutations identified that altered amino acid sequences

Gene ID, nucleotide change, amino acid change, age group, type of mutation, conservation in human sequence and predicted functional consequences in the protein function are indicated. Mutated genes with predicted damaging consequences are highlighted in red. ¹ Homologous region was identified in Human protein. ² Predicted based on Polyphen-2 tool.

560

562 Figure Legends

563 Figure 1. The global clonal complexity of the hematopoietic system declines with564 age.

565	a, Schematic of experimental approach. The clonal complexity of the PB and BM of
566	cohorts of Conf-E2a ^{Cre} ; Conf-VE ^{Cre} ; Conf-Flk1 ^{Cre} and Conf-Vav1 ^{Cre} mice were examined
567	at two, seven, 12, 16, 20, 24 and 26 months of age. See Supplemental Figure 1a-b for
568	schematic of Confetti allele and Confetti color flow cytometry gating strategy. b, i and ii,
569	Schematic of the inverse relationship between numbers of initially labeled events and
570	Mouse-to-Mouse Variance (MtMV) in the distribution of <i>Confetti</i> colors. c, i, Analysis of
571	the clonal complexity of the PB in cohorts of mice from two to 26 months of age. At two
572	months old: Conf-E2a ^{Cre} (n=14), Conf-VE ^{Cre} (n=13), Conf-Flk1 ^{Cre} (n=7), Conf-Vav1 ^{Cre}
573	(n=11). At 26 months old, Conf-E2a ^{Cre} (n=10), Conf-VE ^{Cre} (n=5), Conf-Flk1 ^{Cre} (n=6),
574	<i>Conf-Vav1</i> ^{Cre} (n=9). ii, Average PB clonal complexity of <i>Conf-Flk1</i> ^{Cre} , <i>Conf-VE</i> ^{Cre} and
575	Conf-Vav1 ^{Cre} mice overtime relative to two months of age. Error bars indicated standard
576	deviation. d, i, The clonal complexity of the major BM HSPC from cohorts of mice were
577	calculated at two and 26 months of age from previously cKit+ enriched BM. At two
578	months, <i>Conf-E2a</i> ^{Cre} (n=3), <i>Conf-VE</i> ^{Cre} (n=6), <i>Conf-Flk1</i> ^{Cre} (n=7), <i>Conf-Vav1</i> ^{Cre} (n=8).
579	At 26 months, <i>Conf-E2a</i> ^{Cre} (n=7), <i>Conf-VE</i> ^{Cre} (n=4), <i>Conf-Flk1</i> ^{Cre} (n=5), <i>Conf-Vav1</i> ^{Cre}
580	(n=5). ii, Average BM HSPC clonal complexities of <i>Conf-Flk1</i> ^{Cre} , <i>Conf-VE</i> ^{Cre} and <i>Conf-</i>
581	Vav1 ^{Cre} mice overtime relative to two months of age. Error bars indicate standard
582	deviation. (* p-value<0.05; # p-value<0.1). Source data are provided in Supplemental
583	Table 1. iii, Schematic of the consequences of aging on HSC and PB clonal complexity.
584	The absolute number of phenotypic HSC increase with age (Supplemental Fig. 6A) due

585	to the expansion of functionally impaired clones. In aged mice, "young-like" minimally-
586	expanded HSC contribute disproportionately to PB, resulting in a less dramatic decrease
587	in PB clonal complexity.

589 Figure 2. Analysis of pooled clones over time reveals instability in the clonal

590 composition of PB during native hematopoiesis.

- **a**, Visualization of the distribution of GFP, YFP, RFP and CFP in the PB of
- 592 representative Conf-E2a^{Cre}, Conf-VE^{Cre}, Conf-Flk1^{Cre}, Conf-Vav1^{Cre} mice at two, seven,
- 593 12, 16, 20, 24 and 26 months of age. **b**, Fold change in the %GFP relative to the
- 594 preceding time-point. Each line represents an independent mouse. Mice from all four

595 cohorts are shown. *Conf-E2a*^{Cre} (n=9), *Conf-VE*^{Cre} (n=7), *Conf-Flk1*^{Cre} (n=6), *Conf-*

596 *Vav1*^{Cre} (n=10). Evolution of %GFP for individual PB lineages is shown in Supplemental

597 Figure 2 for each mouse, each mouse strain and without normalization. Source data are

- 598 provided in Supplemental Table 1.
- 599

Figure 3. Aging functionally compromises HSC and erodes the lineage relationships between bone marrow compartments during native hematopoiesis.

602 **a**, Single HSC from three independent young or aged mice were individually plated in

603 96-well plates in media that supports HSC expansion (i, n=44-67 clones analyzed/mouse)

or differentiation media (ii, n=27-41 clones were analyzed/mouse). i, Division kinetics

for each well were tracked, % of cumulative number of divisions are shown. **ii**, % of

606 clones that generate one, two, three or four myeloid lineages (See Supplemental Figure

607 3A). Averages are shown, error bars represent standard deviation (# p-value < 0.1). **b**,

608	Distribution of <i>Confetti</i> colors in PB and BM in young (age two months) and old (age 26
609	months) mice. Three representative examples are shown for each mouse strain at each
610	time-point. c, Heatmaps summarize the correlation of Confetti color distribution between
611	different hematopoietic compartments in young (i, age two months) and old (ii, age 26
612	months) mice. Heatmaps depict the Pearson's correlation coefficient between two cell
613	compartments. At two months old: <i>Conf-E2a</i> ^{Cre} (n=14), <i>Conf-VE</i> ^{Cre} (n=13), <i>Conf-Flk1</i> ^{Cre}
614	(n=7), Conf-Vav1 ^{Cre} (n=11). At 26 months old, Conf-E2a ^{Cre} (n=10), Conf-VE ^{Cre} (n=5),
615	<i>Conf-Flk1</i> ^{Cre} (n=6), <i>Conf-Vav1</i> ^{Cre} (n=9). iii, Correlation values of BM compartments
616	relative to HSC at 2 and 26 months of age. Paired t test of correlation coefficient of cells
617	<i>vs</i> . HSC indicate that the correlations are significantly reduced with age (p-value = 0.03).
618	See also Supplemental Figure 3B. Source data are provided in Supplemental Table 1.
610	
017	
620	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of
620 621	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity
620621622	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ Conf-VE ^{Cre} BM was serially transplanted. a, Schematic of serial
 620 621 622 623 	 Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2⁺ Conf-VE^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2⁺ Conf-VE^{Cre} BM. For primary transplant, 5x10⁶ BM cells were
 620 621 622 623 624 	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ <i>Conf-VE</i> ^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2 ⁺ <i>Conf-VE</i> ^{Cre} BM. For primary transplant, 5x10 ⁶ BM cells were transplanted from young (age two months) or old (age 24 months) donors into distinct
 620 621 622 623 624 625 	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ Conf-VE ^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2 ⁺ Conf-VE ^{Cre} BM. For primary transplant, 5x10 ⁶ BM cells were transplanted from young (age two months) or old (age 24 months) donors into distinct cohorts of primary CD45.2 ⁺ /CD45.1 ⁺ recipients. For serial transplants, 5x10 ⁶ BM cells
 619 620 621 622 623 624 625 626 	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ Conf-VE ^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2 ⁺ Conf-VE ^{Cre} BM. For primary transplant, 5x10 ⁶ BM cells were transplanted from young (age two months) or old (age 24 months) donors into distinct cohorts of primary CD45.2 ⁺ /CD45.1 ⁺ recipients. For serial transplants, 5x10 ⁶ BM cells were transplanted. For each age group (young and old) at least three independent donor
 619 620 621 622 623 624 625 626 627 	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ Conf-VE ^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2 ⁺ Conf-VE ^{Cre} BM. For primary transplant, $5x10^6$ BM cells were transplanted from young (age two months) or old (age 24 months) donors into distinct cohorts of primary CD45.2 ⁺ /CD45.1 ⁺ recipients. For serial transplants, $5x10^6$ BM cells were transplanted. For each age group (young and old) at least three independent donor mice were transplanted into distinct recipient cohorts. Each cohort was composed of at
 619 620 621 622 623 624 625 626 627 628 	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ Conf-VE ^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2 ⁺ Conf-VE ^{Cre} BM. For primary transplant, 5x10 ⁶ BM cells were transplanted from young (age two months) or old (age 24 months) donors into distinct cohorts of primary CD45.2 ⁺ /CD45.1 ⁺ recipients. For serial transplants, 5x10 ⁶ BM cells were transplanted. For each age group (young and old) at least three independent donor mice were transplanted into distinct recipient cohorts. Each cohort was composed of at least five mice and was transplanted with an independent donor. b , Recipient PB was
 619 620 621 622 623 624 625 626 627 628 629 	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ Conf-VE ^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2 ⁺ Conf-VE ^{Cre} BM. For primary transplant, 5x10 ⁶ BM cells were transplanted from young (age two months) or old (age 24 months) donors into distinct cohorts of primary CD45.2 ⁺ /CD45.1 ⁺ recipients. For serial transplants, 5x10 ⁶ BM cells were transplanted. For each age group (young and old) at least three independent donor mice were transplanted into distinct recipient cohorts. Each cohort was composed of at least five mice and was transplanted with an independent donor. b , Recipient PB was analyzed for the distribution of <i>Confetti</i> colors in their PB at four, 10 and 16 weeks post-
 619 620 621 622 623 624 625 626 627 628 629 630 	Figure 4. Serial transplantation of aged and young bone marrow results in a loss of clonal complexity a-d, CD45.2 ⁺ Conf-VE ^{Cre} BM was serially transplanted. a, Schematic of serial transplantation of CD45.2 ⁺ Conf-VE ^{Cre} BM. For primary transplant, $5x10^6$ BM cells were transplanted from young (age two months) or old (age 24 months) donors into distinct cohorts of primary CD45.2 ⁺ /CD45.1 ⁺ recipients. For serial transplants, $5x10^6$ BM cells were transplanted. For each age group (young and old) at least three independent donor mice were transplanted into distinct recipient cohorts. Each cohort was composed of at least five mice and was transplanted with an independent donor. b, Recipient PB was analyzed for the distribution of <i>Confetti</i> colors in their PB at four, 10 and 16 weeks post- transplant. MtMV was used to estimate the number of repopulating units (see Methods).

631	Primary and secondary transplants are shown. (See Supplemental Figure 4 for additional
632	cell doses transplanted in primary transplants and PB lineages. See also Figure 5). c,
633	Recipient BM HSC were examined at four months post-transplant for the MtMV in the
634	Confetti colors. (See Supplemental Figure 6D for additional BM HSPC compartments).
635	b-c, Averages are shown, error bars denote standard deviation (*p-value<0.05; #p-
636	value<0.1) d , The median frequency of the most prevalent color is shown for the PB
637	(four and 16 weeks) and MPP and HSC (16 weeks) for each transplantation stage.
638	Whisker plots show interquartile range. ANOVA analysis was run to test for the
639	statistical significance of the transplantation stage and age for each cell type. Age did not
640	result in statistical differences for any cell type. Transplantation stage had a significant
641	effect in all cell types (p-values<0.05) except HSC. (* p-value<0.05). b-d, each bar or
642	point represents the average or median obtained from at least three independent cohorts
643	of mice (each cohort $n \ge 5$) from three independent initial young or old donors. Source
644	data are provided in Supplemental Table 1.
645	

Figure 5. Serial transplantation of aged and young bone marrow drives clonal collapse of reconstituted hematopoiesis

648 **a-b**, Pie graphs show the distribution of *Confetti* colors in the nucleated cells of the PB,

649 MPP and HSC of each recipient. Each pie graph represents an independent mouse. Each

- 650 column of pie charts refers to the same mouse. Vertical arrows indicate donor mice for
- the subsequent transplant. Results are shown at four and 16 weeks post-transplant. **a**,
- 652 Serial transplantation from young primary BM donors. b, Serial transplantation from old
- 653 primary BM donors. Data related to Figure 4a-c. Source data are provided in

654	Supplemental Table 1. Data for HSC and MPP at the quaternary stage is not shown as
655	they were used for WES.
656	
657	Figure 6. Labeled pooled-clones revealed clonal instability during serial
658	transplantation
659	The average frequency of CFP-, YFP-, RFP- or GFP-labeled pooled-clones in the PB at
660	four (a) and 16 weeks (b) and in MPP at 16 weeks (c) and HSC (d) at 16 weeks
661	throughout transplantation. Results are shown for each transplanted group (#A-F).
662	Related to Figure 5. Whisker plots show the interquartile range. $n \ge 5$ for each transplanted
663	mouse cohort. See Supplemental Figure 5 for the distribution of all pooled-clones. Source
664	data are provided in Supplemental Table 1.
665	
666	Figure 7. Aged <i>Confetti</i> clones exhibit higher mutational rates than young <i>Confetti</i>
667	clones
668	Transplanted Conf-VE ^{Cre} BM from aged or young donors was either maintained for 16
669	months in primary recipients or serially transplanted every four months for a total of 16
670	months. Confetti sorted clones were subjected to whole-exome-sequencing. a,
671	Experimental schematic. b , Whole exome sequencing of aged (n=7) and young (n=4)
672	sorted Confetti clones after serial transplantation. Mutation analysis revealed that aged
673	clones accumulated a significantly higher number of mutations than young clones when
674	serially transplanted (* p-value < 0.05) c, Whole exome sequencing of aged (n=4) and
675	young (n=2) sorted Confetti clones 16 months post-primary transplant. No overlap was

677	transplantation	(Please see	Supplemental	Tables 2-3).	(b). See also	Table 1 an	d Methods
	1		11				

- 678 for experimental details.

References

686 687	1	Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. <i>Science</i> 350 , 1199-
600/	2	1204, uol:10.1120/Science.adu5566 (2015).
600	Z	hollmarka of aging Coll 152 1104 1217 doi:10.1016/j.coll 2012.0E.020
089		nalimarks of aging. <i>Cell</i> 153 , 1194-1217, doi:10.1016/j.cell.2013.05.039
090 (01	2	(2013). Chang A. C. Lashi, C. Creannand, H. Danda, A. S. Land, I. M. Asing afthe impate
691 692	3	immune system. <i>Curr Opin Immunol</i> 22 , 507-513,
693		doi:10.1016/j.coi.2010.05.003 (2010).
694	4	Zink, F. et al. Clonal hematopoiesis, with and without candidate driver
695		mutations, is common in the elderly. <i>Blood</i> 130 , 742-752,
696		doi:10.1182/blood-2017-02-769869 (2017).
697	5	Xie, M. <i>et al.</i> Age-related mutations associated with clonal hematopoietic
698		expansion and malignancies. <i>Nat Med</i> 20 , 1472-1478, doi:10.1038/nm.3733
699		(2014).
700	6	Jaiswal, S. <i>et al.</i> Age-related clonal hematopoiesis associated with adverse
701		outcomes. <i>N Engl J Med</i> 371 , 2488-2498, doi:10.1056/NEJMoa1408617
702		(2014).
703	7	Genovese, G. <i>et al.</i> Clonal hematopoiesis and blood-cancer risk inferred from
704		blood DNA sequence. N Engl J Med 371 , 2477-2487,
705		doi:10.1056/NEJMoa1409405 (2014).
706	8	de Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. <i>Blood</i> 131 , 479-
707		487, doi:10.1182/blood-2017-06-746412 (2018).
708	9	van den Akker, E. B. <i>et al.</i> Uncompromised 10-year survival of oldest old
709		carrying somatic mutations in DNMT3A and TET2. <i>Blood</i> 127 , 1512-1515,
710		doi:10.1182/blood-2015-12-685925 (2016).
711	10	Acuna-Hidalgo, R. et al. Ultra-sensitive Sequencing Identifies High Prevalence
712		of Clonal Hematopoiesis-Associated Mutations throughout Adult Life. Am J
713		<i>Hum Genet</i> 101 , 50-64, doi:10.1016/j.ajhg.2017.05.013 (2017).
714	11	Jaiswal, S. et al. Clonal Hematopoiesis and Risk of Atherosclerotic
715		Cardiovascular Disease. N Engl J Med 377 , 111-121,
716		doi:10.1056/NEJMoa1701719 (2017).
717	12	Champion, K. M., Gilbert, J. G., Asimakopoulos, F. A., Hinshelwood, S. & Green,
718		A. R. Clonal haemopoiesis in normal elderly women: implications for the
719		myeloproliferative disorders and myelodysplastic syndromes. <i>Br J Haematol</i>
720		97 , 920-926 (1997).
721	13	Busque, L. <i>et al.</i> Nonrandom X-inactivation patterns in normal females:
722		lyonization ratios vary with age. <i>Blood</i> 88 , 59-65 (1996).
723	14	Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency
724		accelerates atherosclerosis development in mice. <i>Science</i> 355 , 842-847,
725		doi:10.1126/science.aag1381 (2017).

726	15	Verovskaya, E. <i>et al.</i> Heterogeneity of young and aged murine hematopoietic
727		stem cells revealed by quantitative clonal analysis using cellular barcoding.
728		<i>Blood</i> 122 , 523-532, doi:10.1182/blood-2013-01-481135 (2013).
729	16	Ashcroft, P., Manz, M. G. & Bonhoeffer, S. Clonal dominance and
730		transplantation dynamics in hematopoietic stem cell compartments. <i>PLoS</i>
731		<i>Comput Biol</i> 13 , e1005803, doi:10.1371/journal.pcbi.1005803 (2017).
732	17	Sieburg, H. B., Rezner, B. D. & Muller-Sieburg, C. E. Predicting clonal self-
733		renewal and extinction of hematopoietic stem cells. Proc Natl Acad Sci USA
734		108 , 4370-4375, doi:10.1073/pnas.1011414108 (2011).
735	18	Ganuza, M. & McKinney-Freeman, S. Hematopoietic stem cells under
736		pressure. <i>Curr Opin Hematol</i> 24 , 314-321,
737		doi:10.1097/MOH.000000000000347 (2017).
738	19	Sun, J. et al. Clonal dynamics of native haematopoiesis. <i>Nature</i> 514 , 322-327,
739		doi:10.1038/nature13824 (2014).
740	20	Busch, K. <i>et al.</i> Fundamental properties of unperturbed haematopoiesis from
741		stem cells in vivo. <i>Nature</i> 518 , 542-546, doi:10.1038/nature14242 (2015).
742	21	Sawai, C. M. <i>et al.</i> Hematopoietic Stem Cells Are the Major Source of
743		Multilineage Hematopoiesis in Adult Animals. <i>Immunity</i> 45 , 597-609,
744		doi:10.1016/j.immuni.2016.08.007 (2016).
745	22	Snippert, H. J. <i>et al.</i> Intestinal crypt homeostasis results from neutral
746		competition between symmetrically dividing Lgr5 stem cells. <i>Cell</i> 143 , 134-
747		144, doi:10.1016/j.cell.2010.09.016 (2010).
748	23	Ganuza, M. <i>et al.</i> Lifelong haematopoiesis is established by hundreds of
749		precursors throughout mammalian ontogeny. <i>Nat Cell Biol</i> 19 , 1153-1163,
750		doi:10.1038/ncb3607 (2017).
751	24	Hinge, A. <i>et al.</i> p190-B RhoGAP and intracellular cytokine signals balance
752		hematopoietic stem and progenitor cell self-renewal and differentiation. <i>Nat</i>
753		<i>Commun</i> 8 , 14382, doi:10.1038/ncomms14382 (2017).
754	25	Oguro, H., Ding, L. & Morrison, S. J. SLAM family markers resolve functionally
755		distinct subpopulations of hematopoietic stem cells and multipotent
756		progenitors. Cell Stem Cell 13, 102-116, doi:10.1016/j.stem.2013.05.014
757		(2013).
758	26	Cho, R. H., Sieburg, H. B. & Muller-Sieburg, C. E. A new mechanism for the
759		aging of hematopoietic stem cells: aging changes the clonal composition of
760		the stem cell compartment but not individual stem cells. <i>Blood</i> 111 , 5553-
761		5561, doi:10.1182/blood-2007-11-123547 (2008).
762	27	Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of
763		murine hematopoietic stem cells. J Exp Med 192 , 1273-1280 (2000).
764	28	Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C. & Eaves, C. J.
765		Quantitative assay for totipotent reconstituting hematopoietic stem cells by a
766		competitive repopulation strategy. Proc Natl Acad Sci U S A 87, 8736-8740
767		(1990).
768	29	Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and
769		progenitor cells and reveal endothelial niches for stem cells. <i>Cell</i> 121 , 1109-
770		1121, doi:10.1016/j.cell.2005.05.026 (2005).

771	30	Sieburg, H. B. <i>et al.</i> The hematopoietic stem compartment consists of a
772		limited number of discrete stem cell subsets. <i>Blood</i> 107 , 2311-2316,
773		doi:10.1182/blood-2005-07-2970 (2006).
774	31	Kay, H. E. How Many Cell-Generations? <i>Lancet</i> 2 , 418-419 (1965).
775	32	Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to
776		self-renewal during homeostasis and repair. <i>Cell</i> 135 , 1118-1129,
777		doi:10.1016/j.cell.2008.10.048 (2008).
778	33	Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling
779		hematopoietic stem cells. <i>Nat Biotechnol</i> 27 , 84-90, doi:10.1038/nbt.1517
780		(2009).
781	34	Harrison, D. E., Astle, C. M. & Lerner, C. Number and continuous proliferative
782		pattern of transplanted primitive immunohematopoietic stem cells. <i>Proc Natl</i>
783		Acad Sci U S A 85 , 822-826 (1988).
784	35	Takizawa, H., Regoes, R. R., Boddupalli, C. S., Bonhoeffer, S. & Manz, M. G.
785		Dynamic variation in cycling of hematopoietic stem cells in steady state and
786		inflammation. <i>J Exp Med</i> 208 , 273-284, doi:10.1084/jem.20101643 (2011).
787	36	Yu, V. W. C. <i>et al.</i> Epigenetic Memory Underlies Cell-Autonomous
788		Heterogeneous Behavior of Hematopoietic Stem Cells. <i>Cell</i> 167 , 1310-1322
789		e1317, doi:10.1016/j.cell.2016.10.045 (2016).
790	37	Rios, A. C., Fu, N. Y., Lindeman, G. J. & Visvader, J. E. In situ identification of
791		bipotent stem cells in the mammary gland. <i>Nature</i> 506 , 322-327,
792		doi:10.1038/nature12948 (2014).
793	38	Jordan, C. T. & Lemischka, I. R. Clonal and systemic analysis of long-term
794		hematopoiesis in the mouse. <i>Genes Dev</i> 4 , 220-232 (1990).
795	39	Purton, L. E. & Scadden, D. T. Limiting factors in murine hematopoietic stem
796		cell assays. <i>Cell Stem Cell</i> 1 , 263-270, doi:10.1016/j.stem.2007.08.016 (2007).
797	40	Yang, L. <i>et al.</i> Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term
798		hematopoietic stem cells capable of rapidly reconstituting and rescuing
799		myeloablated transplant recipients. <i>Blood</i> 105 , 2717-2723,
800		doi:10.1182/blood-2004-06-2159 (2005).
801	41	Benz, C. et al. Hematopoietic stem cell subtypes expand differentially during
802		development and display distinct lymphopoietic programs. <i>Cell Stem Cell</i> 10,
803		273-283, doi:10.1016/j.stem.2012.02.007 (2012).
804	42	Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis
805		reveals multiple functional defects of aged murine hematopoietic stem cells. J
806		<i>Exp Med</i> 208 , 2691-2703, doi:10.1084/jem.20111490 (2011).
807	43	Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate
808		hematopoietic lineage potential during aging by a mechanism of clonal
809		expansion. Proc Natl Acad Sci U S A 107 , 5465-5470,
810		doi:10.1073/pnas.1000834107 (2010).
811	44	Yamamoto, R. et al. Large-Scale Clonal Analysis Resolves Aging of the Mouse
812		Hematopoietic Stem Cell Compartment. <i>Cell Stem Cell</i> 22 , 600-607 e604,
813		doi:10.1016/j.stem.2018.03.013 (2018).
814	45	Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The
815		aging of hematopoietic stem cells. <i>Nat Med</i> 2 , 1011-1016 (1996).

816	46	Rossi, D. J. <i>et al.</i> Cell intrinsic alterations underlie hematopoietic stem cell
817		aging. Proc Natl Acad Sci U S A 102 , 9194-9199,
818		doi:10.1073/pnas.0503280102 (2005).
819	47	Zhang, J. et al. Germline Mutations in Predisposition Genes in Pediatric
820		Cancer. N Engl Med 373 , 2336-2346, doi:10.1056/NEJMoa1508054 (2015).
821	48	Liu, P., Li, P. & Burke, S. Critical roles of Bcl11b in T-cell development and
822		maintenance of T-cell identity. <i>Immunol Rev</i> 238 , 138-149,
823		doi:10.1111/j.1600-065X.2010.00953.x (2010).
824	49	Kominami, R. Role of the transcription factor Bcl11b in development and
825		lymphomagenesis. Proc Jpn Acad Ser B Phys Biol Sci 88, 72-87 (2012).
826	50	Bartram, I. <i>et al.</i> Low expression of T-cell transcription factor BCL11b
827		predicts inferior survival in adult standard risk T-cell acute lymphoblastic
828		leukemia patients. <i>J Hematol Oncol</i> 7 , 51, doi:10.1186/s13045-014-0051-y
829		(2014).
830	51	Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server
831		and survey. Nucleic Acids Res 30 , 3894-3900 (2002).
832	52	Sunyaev, S., Ramensky, V. & Bork, P. Towards a structural basis of human
833		non-synonymous single nucleotide polymorphisms. <i>Trends Genet</i> 16 , 198-
834		200 (2000).
835	53	Sunvaev, S. et al. Prediction of deleterious human alleles. Hum Mol Genet 10,
836		591-597 (2001).
837	54	Bellavia, D. <i>et al.</i> Combined expression of pTalpha and Notch3 in T cell
838		leukemia identifies the requirement of preTCR for leukemogenesis. <i>Proc Natl</i>
839		<i>Acad Sci U S A</i> 99 , 3788-3793, doi:10.1073/pnas.062050599 (2002).
840	55	Ammar, D. A. <i>et al.</i> Characterization of the human type 2 neuropeptide Y
841		receptor gene (NPY2R) and localization to the chromosome 4q region
842		containing the type 1 neuropeptide Y receptor gene. <i>Genomics</i> 38 , 392-398
843		(1996).
844	56	Singh, R. <i>et al.</i> Proteomic profiling identifies specific histone species
845		associated with leukemic and cancer cells. <i>Clin Proteomics</i> 12 , 22,
846		doi:10.1186/s12014-015-9095-4 (2015).
847	57	Singh, R. et al. Increasing the complexity of chromatin: functionally distinct
848		roles for replication-dependent histone H2A isoforms in cell proliferation
849		and carcinogenesis. Nucleic Acids Res 41, 9284-9295,
850		doi:10.1093/nar/gkt736 (2013).
851	58	Gieseler, F. et al. Topoisomerase II activities in AML and their correlation
852		with cellular sensitivity to anthracyclines and epipodophyllotoxines.
853		Leukemia 10 , 1177-1180 (1996).
854	59	Gieseler, F. et al. Topoisomerase II activities in AML blasts and their
855		correlation with cellular sensitivity to anthracyclines and
856		epipodophyllotoxines. <i>Leukemia</i> 10 Suppl 3 , S46-S49 (1996).
857	60	Harrison, D. E., Astle, C. M. & Stone, M. Numbers and functions of
858		transplantable primitive immunohematopoietic stem cells. Effects of age. J
859		Immunol 142 , 3833-3840 (1989).
860	61	Yilmaz, O. H., Kiel, M. J. & Morrison, S. J. SLAM family markers are conserved
861		among hematopoietic stem cells from old and reconstituted mice and

862		markedly increase their purity. <i>Blood</i> 107 , 924-930, doi:10.1182/blood-
803	()	2005-05-2140 (2006).
864	62	Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoletic
865		Stem Cells Count and Remember Self-Renewal Divisions. Cell 16 7, 1296-
866	60	1309 e1210, doi:10.1016/j.ceii.2016.10.022 (2016).
86/	63	Lee-Six, H. <i>et al.</i> Population dynamics of normal human blood inferred from
868		somatic mutations. <i>Nature</i> 561 , 4/3-4/8, doi:10.1038/s41586-018-0497-0
869		(2018).
870	64	Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the
871		most primitive hematopoietic stem cell compartment. J Exp Med 207 , 1173-
872		1182, doi:10.1084/jem.20091318 (2010).
873	65	Picelli, S. <i>et al.</i> Smart-seq2 for sensitive full-length transcriptome profiling in
874		single cells. <i>Nat Methods</i> 10 , 1096-1098, doi:10.1038/nmeth.2639 (2013).
875	66	Muller-Sieburg, C. E., Cho, R. H., Karlsson, L., Huang, J. F. & Sieburg, H. B.
876		Myeloid-biased hematopoietic stem cells have extensive self-renewal
877		capacity but generate diminished lymphoid progeny with impaired IL-7
878		responsiveness. <i>Blood</i> 103 , 4111-4118, doi:10.1182/blood-2003-10-3448
879		(2004).
880	67	Dykstra, B. et al. Long-term propagation of distinct hematopoietic
881		differentiation programs in vivo. <i>Cell Stem Cell</i> 1 , 218-229,
882		doi:10.1016/j.stem.2007.05.015 (2007).
883	68	Flach, J. <i>et al.</i> Replication stress is a potent driver of functional decline in
884		ageing haematopoietic stem cells. <i>Nature</i> 512 , 198-202,
885		doi:10.1038/nature13619 (2014).
886	69	MacLeod, R. A., Nagel, S., Kaufmann, M., Janssen, J. W. & Drexler, H. G.
887		Activation of HOX11L2 by juxtaposition with 3'-BCL11B in an acute
888		lymphoblastic leukemia cell line (HPB-ALL) with t(5;14)(q35;q32.2). <i>Genes</i>
889		<i>Chromosomes Cancer</i> 37 , 84-91, doi:10.1002/gcc.10194 (2003).
890	70	Przybylski, G. K. <i>et al.</i> Disruption of the BCL11B gene through
891		inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion
892		transcripts and is associated with the absence of wild-type BCL11B
893		transcripts in T-ALL. <i>Leukemia</i> 19 , 201-208, doi:10.1038/sj.leu.2403619
894		(2005).
895	71	De Keersmaecker, K. <i>et al.</i> Exome sequencing identifies mutation in CNOT3
896		and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic
897		leukemia. <i>Nat Genet</i> 45 , 186-190, doi:10.1038/ng.2508 (2013).
898	72	De Keersmaecker, K. <i>et al.</i> The TLX1 oncogene drives aneuploidy in T cell
899		transformation. <i>Nat Med</i> 16 , 1321-1327, doi:10.1038/nm.2246 (2010).
900	73	Satterwhite, E. <i>et al.</i> The BCL11 gene family: involvement of BCL11A in
901		lymphoid malignancies. <i>Blood</i> 98 , 3413-3420 (2001).
902	74	Bezrookove, V. <i>et al.</i> A novel t(6;14)(q25-q27;q32) in acute myelocytic
903		leukemia involves the BCL11B gene. <i>Cancer Genet Cytogenet</i> 149 , 72-76
904		(2004).
905	75	Oliveira, J. L. <i>et al.</i> Successful treatment of a child with T/myeloid acute
906		bilineal leukemia associated with TLX3/BCL11B fusion and 9q deletion.
907		<i>Pediatr Blood Cancer</i> 56 , 467-469, doi:10.1002/pbc.22850 (2011).

908	76	Abbas, S. et al. Integrated genome-wide genotyping and gene expression
909		profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia
910		with 14q32 aberrations. <i>Haematologica</i> 99 , 848-857,
911		doi:10.3324/haematol.2013.095604 (2014).
912	77	Gutierrez, A. <i>et al.</i> The BCL11B tumor suppressor is mutated across the major
913		molecular subtypes of T-cell acute lymphoblastic leukemia. <i>Blood</i> 118 , 4169-
914		4173, doi:10.1182/blood-2010-11-318873 (2011).
915	78	Wakabayashi, Y. <i>et al.</i> Bcl11b is required for differentiation and survival of
916		alphabeta T lymphocytes. <i>Nat Immunol</i> 4 , 533-539, doi:10.1038/ni927
917		(2003).
918	79	Kamimura, K. <i>et al.</i> Haploinsufficiency of Bcl11b for suppression of
919		lymphomagenesis and thymocyte development. <i>Biochem Biophys Res</i>
920		<i>Commun</i> 355 . 538-542. doi:10.1016/i.bbrc.2007.02.003 (2007).
921	80	Alonso, A. <i>et al.</i> Protein tyrosine phosphatases in the human genome. <i>Cell</i>
922		117 , 699-711, doi:10.1016/i.cell.2004.05.018 (2004).
923	81	Menigatti. M. <i>et al.</i> The protein tyrosine phosphatase receptor type R gene is
924	-	an early and frequent target of silencing in human colorectal tumorigenesis.
925		<i>Mol Cancer</i> 8 , 124, doi:10.1186/1476-4598-8-124 (2009).
926	82	Su. P. H. <i>et al.</i> Epigenetic silencing of PTPRR activates MAPK signaling.
927	-	promotes metastasis and serves as a biomarker of invasive cervical cancer.
928		<i>Oncogene</i> 32 , 15-26, doi:10.1038/onc.2012.29 (2013).
929	83	Li. S. <i>et al.</i> Novel heterozygous NOTCH3 pathogenic variant found in two
930		Chinese patients with CADASIL. <i>J Clin Neurosci</i> 46 , 85-89.
931		doi:10.1016/i.jocn.2017.08.029 (2017).
932	84	Felli, M. P. <i>et al.</i> Expression pattern of notch1, 2 and 3 and Jagged1 and 2 in
933	-	lymphoid and stromal thymus components: distinct ligand-receptor
934		interactions in intrathymic T cell development. Int Immunol 11 , 1017-1025
935		(1999).
936	85	Austin, C. A. <i>et al.</i> TOP2B: The First Thirty Years. <i>Int I Mol Sci</i> 19 .
937		doi:10.3390/ijms19092765 (2018).
938	86	Smith, K. A., Cowell, I. G., Zhang, Y., Sondka, Z. & Austin, C. A. The role of
939		topoisomerase II beta on breakage and proximity of RUNX1 to partner alleles
940		RUNX1T1 and EVI1. Genes Chromosomes Cancer 53, 117-128,
941		doi:10.1002/gcc.22124 (2014).
942	87	Cowell, I. G. & Austin, C. A. Do transcription factories and TOP2B provide a
943		recipe for chromosome translocations in therapy-related leukemia? <i>Cell Cycle</i>
944		11 , 3143-3144, doi:10.4161/cc.21477 (2012).
945	88	Nebral, K., Schmidt, H. H., Haas, O. A. & Strehl, S. NUP98 is fused to
946		topoisomerase (DNA) Ilbeta 180 kDa (TOP2B) in a patient with acute
947		myeloid leukemia with a new t(3:11)($p24$; $p15$). Clin Cancer Res 11 , 6489-
948		6494, doi:10.1158/1078-0432.CCR-05-0150 (2005).
949	89	Song, J. H. <i>et al.</i> High TOP2B/TOP2A expression ratio at diagnosis correlates
950		with favourable outcome for standard chemotherapy in acute myeloid
951		leukaemia. Br J Cancer 107, 108-115, doi:10.1038/bjc.2012.206 (2012).

952 953	90	Beste, C., Stock, A. K., Epplen, J. T. & Arning, L. On the relevance of the NPY2- receptor variation for modes of action cascading processes. <i>Neuroimage</i> 102
954		Pt 2 , 558-564, doi:10.1016/j.neuroimage.2014.08.026 (2014).
955	91	Arning, L., Stock, A. K., Kloster, E., Epplen, J. T. & Beste, C. NPY2-receptor
956		variation modulates iconic memory processes. Eur Neuropsychopharmacol
957		24 , 1298-1302, doi:10.1016/j.euroneuro.2014.03.003 (2014).
958	92	Benjamini, Y., and Hochberg, Y Controlling the false discovery rate: a
959		practical and powerful approach to multiple testing. Journal of the Royal
960		Statistical Society Series B 57, 289-300 (1995).
961	93	Adzhubei, I. A. et al. A method and server for predicting damaging missense
962		mutations. <i>Nat Methods</i> 7, 248-249, doi:10.1038/nmeth0410-248 (2010).
963		
964		
965		
966		
967		
968		
969		
970		
971		
972		
973		
974		
975		
976		
977		

Fig. 1

L	7
-	~

Age in	2	7	12	16	20	24	26	
0.1	Mouse 1							
E2a ^{Cre}	Mouse 2							
	Mouse 3							
	Mouse 1							
Conf- Flk-1 ^{Cre}	Mouse 2							
	Mouse 3							
	Mouse 1							
Conf- VE ^{Cre}	Mouse 2							
	Mouse 3							
	Mouse 1							
Conf- Vav1 ^{Cre}	Mouse 2							
	Mouse 3							

В

Figure 2

2⁰

Trx:

10w 16w

10

4w

Trx:

10w

2⁰

4w

16w

Figure 5

