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Abstract 

The dual interpolation boundary face method (DiBFM) proposed recently has been successfully 

applied to solve various problems in two dimensions in this paper. Compared with the conventional 

boundary element method (BEM), it has been proved that the DiBFM has the advantages of higher 

accuracy, convergence rate and computational efficiency. In addition, the DiBFM is able to unify the 

conforming and nonconforming elements in the BEM implementation, as well as to approximate 

both continuous and discontinuous stress fields. Moreover, there are no geometric errors by the 

DiBFM in the computational process. In this paper, the DiBFM is extended successfully to solve the 

elasticity problems in three-dimensions (3D) with formulations of DiBFM derived in details. A 

number of numerical examples are presented in order to validate the accuracy and convergence rate 

of the proposed method. 

Keywords: Dual interpolation boundary face method; 3D elasticity problems; boundary element 

method; moving least-squares approximation. 

 

1. Introduction 

 Recently, the dual interpolation boundary face method has been successfully applied to solve 

various 2D problems, such as potential [1], elasticity [2], thin-walled structures [3], contact [4], and 

V-shaped notch problems [5]. This is due to the fact that the DiBFM can 

achieve higher accuracy and convergence rates than the conventional BEM for most cases [1]. These 



advantages stem from the fact that the DiBFM is coupled between the dual interpolation method and 

the boundary face method. 

   The dual interpolation method specifically refers to the first-layer interpolation and the 

second-layer interpolation, while the element in the method is called dual interpolation element. The 

dual interpolation element consists of source and virtual nodes, as shown in Fig.1. When ignoring 

virtual nodes, it becomes a conventional discontinuous element. If both the virtual nodes and the 

source nodes are considered, then it amounts to a standard continuous element. In this manner, the 

continuous and discontinuous elements schemes can be unified by the dual interpolation element [1, 

6]. Thus, the geometric corner problems [2, 7, 8] and the mesh generation can be treated easily [9, 

10]. 

 

Fig.1. Dual interpolation elements in 3D problems. 

 The first-layer interpolation is similar to the interpolation in a conventional continuous boundary 

element. Namely, both source nodes and virtual nodes in the dual interpolation elements are used for 

interpolation. By adding the virtual nodes in dual interpolation elements, the interpolation order of 

the dual interpolation elements is increased obviousely, comparing to the interpolation function order 

of the conventional discontinuous elements which only use the source nodes [1,4]. This results in a 

significant improvement for interpolation accuracy. 

 The second-layer interpolation is constructed by the moving least square (MLS) approximation 

and this approximation is employed to condense the degrees of freedom associated with virtual nodes 

which does not act as collocation points in DiBFM [1, 2]. Thus, only the variables associated with 

the source nodes form the unknowns in the final system equations and the system matrix in the 

DiBFM is of the same size as the conventional BEM with the source nodes alone. Due to a 

significant improvement in interpolation accuracy, the DiBFM can achieve higher computational 

accuracy. Furthermore, the second-layer interpolation is of the ability to approximate both 



continuous and discontinuous fields accurately. Therefore, the continuous displacement and 

discontinues tractions at  the corners on the boudary are easily to be treated. 

The boundary face method (BFM) proposed in [11] is also based on the boundary integral 

equation without geometric errors due to BFM uses CAD geometries directly in its implementation. 

In addition, the boundary face method inherits the advantages of BEM including dimension 

reduction, higher accuracy and infinite domain problems without domain truncation or artificial 

boundary conditions [12]. These advantages are also inherited by DiBFM. 

Due to the above advantages, DiBFM has been applied to various 2D problems [1-5]. However, 

the 2D model is  a simplification from 3D problem and it whichis difficult to truly reflect the 3D 

practical problem. Meanwhile, not all of the 3D practical models can be simplified to 2D models. In 

order to take full advantages in solving practical problems, this paper firstly extends the DiBFM to 

3D elasticity problem with the dual interpolation element. For 3D elasticity problem, a general 

formulation of the DiBFM is also developed in detail. 

   The rest of the paper is organized as follows. The parameter mapping process for 3D problems is 

described in Section 2. Then the dual interpolation method for 3D problem is introduced in Section 3, 

and a general formulation of the problems is presented in Section 4. Numerical examples are 

presented in Section 5. Finally, the conclusions and future work are given in Section 6. 

2. Parameter mapping 

 In DiBFM, the parameter mapping technique of the boundary faces is employed without 

geometric errors . The parameter mapping technique is a geometric mapping from the parametric 

space to physical space. It is well known that a surface in physical space can be exactly represented 

in parametric form as[13,14]: 

                       , , , , , , , [ 0 , 1 ] , [ 0 , 1 ]u v x u v y u v z u v u v   r r                  (1) 

where r is the position vector, (u, v) is the parametric coordinate of the surface, and (x, y, z) is the 

corresponding physical coordinate. The parameter mapping for a surface is shown in Fig.2. 



 

Fig.2. Mapping from the parametric space to the physical space. 

 In DiBFM, the integrand quantities, such as the coordinates of Gauss integration points, out 

normal and Jacobian, are calculated directly from the boundary faces, rather than from mesh 

elements [11]. It means that  the coordinates of the Gaussian integration point are first represented 

by parameter coordinates. Then by the parameter mapping, the physical coordinates of Gauss 

integration points are specified. In this way, the physical coordinate will be located on the boundary 

faces (i.e.  geometric surface), and thus no geometric errors occurs in its implementation (此段没有

表示太明白）. Similarly, the out normal and Jacobian can be obtained directly from boundary faces. 

More details can refer to the references [11, 13]. 

 

3. Dual interpolation method in the DiBFM 

 (此段可不要） 

 

3.1 The element in DiBFM  

In the DiBFM, the elements,  called as dual interpolation elements, consist of  source and 

virtual nodes as shown in Fig. 3 and Fig. 4 for triangular and quadrilateral elements. 

 

Fig. 3. Dual interpolation elements for triangle: (a) TS1, (b) TS3, and (c) TS6. 



 

Fig. 4. Dual interpolation elements for quadrilateral: (a) QS1, (b) QS4, and (c) QS9. 

As shown in Fig.3 and Fig.4, all nodes in a dual interpolation element are classified into two 

groups: in the first group, allsource nodes are located inside the element, and in the second group all 

virtual nodes are located on the edges and vertexes of the element. If the virtual nodes are removed, 

the dual interpolation element becomes a conventional discontinuous element. In this manner, the 

continuous and discontinuous element schemes can be unified by the dual interpolation element. 

In the Fig.3, the elements are identified with the notation TS1, TS3 and TS6; while in Fig.4 the 

elements are identified with the notation QS1, QS4 and QS9, where T denotes the triangular element 

and Q denotes the quadrilateral element. The S indicates the  source node in the continuous element. 

This notation is based on the fact that the degrees of freedom associated with the virtual nodes are 

eliminated, so that they do not appear in the final system equations in the DIBFM. 

Compared with the interpolation function order of the conventional discontinuous elements 

which use the source nodes only, the addition of virtual nodes in dual interpolation elements signifies 

that the interpolation order in the dual interpolation elements is increased. For 2D problems, the 

interpolation order in the dual interpolation elements increases withtwo orders, which results in a 

significant improvement[1]. It is clear that this feature can be achieved to 3D problems. 

3.2 The first-layer interpolation 

The first-layer interpolation is similar to the interpolation in a conventional continuous boundary 

element. That is to say, both source nodes and virtual nodes are taken into account in dual 

interpolation elements. Thus, for an arbitrary quantity , the interpolation form is: 

1 1

( , ) ( , ) ( ) ( , ) ( )
nn

s s v vN Q N Q


   
 

        
 
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where ( , )sN    and ( , )vN    denote the shape functions of the source node  and the virtual node 

  ( )sQ and ( )vQ  are the nodal values, n  and n  (建议改成 sn 和 vn ) denote the total 

numbers of source nodes and virtual nodes in the dual interpolation element respectively. Normalized 

coordinate ),(  is used in the element, and  , 1,1   . In DiBFM, the virtual nodal value 

( )vQ  is not independent  which depends on the value of   at the source nodes to be determined 

by the second-layer interpolation. 

 It is noted that the shape functions ( , )sN    and ( , )vN   in Eq. (2) are the Lagrange 

polynomials used in a conventional element with a number of nodes  n n   (建议改成 sn 和 vn ). 

The derivation of the shape functions of the above elements can be referred to the work [15]. Here, 

only the shape functions are given. 

 

 

Fig. 5. Local parametric coordinate in element: TS1 and QS1. 
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(3)presented in Fig. 3 (a) and 
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in Fig. 4(a) respectively. 

  

3.3 The second-layer interpolation 

 Same as in 2D problems [1, 2], the second-layer interpolation is just utilized to construct the 

relationships between source and virtual nodes rather than the shape function of each Gauss point in 

the boundary integration. These relationships are employed to condense the degrees of freedom 

associated with virtual nodes. Thus, only the degrees of freedom associated with the source nodes 

form the unknowns of the final system equations in the DiBFM. 

 In this paper, the second-layer interpolation is constructed by the moving least square (MLS) 

approximation since the second-layer interpolation is able to approximate both continuous and 

discontinuous fields. It is obviously that it is effective to treat the continuous displacement and the 

discontinuous traction problems at the geometric edges andcorners.  

3.3.1 The moving least square approximation 

 The approximation with MLS approximation is applied to construct the second-layer 

interpolation in this paper. The virtual nodal value isapproximated by: 

1

( ) ( , ) ( )
M

v vs v v s

m m

m

Q u v Q    


                             (5) 

where M denotes the number of source nodes s

mQ  collocated in the influence domain of virtual node 

vQ , ( , )vs v v

m u v  denotes the shape function of second-layer interpolation corresponding to source 

node s

mQ  and 
vu  and 

vv  are the parametric coordinate of the virtual node 
vQ , shown in Section 

2 (坐标用 u，v？）. The derivation of the Eq.(5) can be seen in the work [16]. 

  



3.3.2 Approximation of continuous and discontinuous fields 

 The continuous or discontinuous behavior at an element vertex can be accommodated by  

placing one or more virtual nodes at the vertex simply. Only one virtual node is needed to modela 

continuous field, and more than one virtual node are needed to approximate the discontinuous fields. 

If there are continuous and  discontinuous fields, the number of the virtual nodes is equal to the 

number of the discontinuous field at the place. This feature is illustrated in Fig.6.. 

 

Fig. 6. Approximation of continuous and discontinuous fields 

 To model discontinuous fields, more than one virtual node need to be placed on the 

discontinuous boundary as shown in Fig.6. It  well known that the traction field at either the 

geometric edges or the corners is discontinuous. Thus, two virtual nodes, v0 and v1, are considered at 

the geometric edges at point q shown in Fig.6. However, the influence domains of this two virtual 

nodes are different. As shown in Fig.6, the influence domain of v0 covers nine source nodes in the 

blue, while the influence domain of v1 covers the nine source nodes in the red. Since the influence 

domains are different, , the node values at v0 and v1 are different in the second-layer interpolation 

Eq.(5) in order to construct the discontinuous. By manipulating the influence domains of the three 

virtual nodes at the geometric corner (point R), the traction discontinuous at the geometric corner is 

allowed. 

 For continuous fields, only a single virtual node, v0, is placed at the element vertex at point p 

shown in Fig.6. For the second-layer interpolation in Eq.(5), the influence domain of this virtual 



node spans four elements. Since the virtual node v0 is shared by the four elements, a continuity at the 

vertex is achieved. 

 Seeing from Fig.6, it is clear that the number of the virtual nodes at the geometric edges or 

corners is more than one  due to the discontinuous traction condition  at these points. The number 

of the virtual nodes is equal to the number of the discontinuous field. 

 Considering the continuous displacement condition at the geometric edges or corners, the 

influence domains of the virtual nodes at these locations should be the same. For example, for virtual 

nodes on the geometric edges, v0 and v1, the influence domain  covers the nine source nodes in blue 

and the nine source nodes in red as well. Using the second-layer interpolation, the virtual nodal value 

is equal at v0 and v1 in order to achieve the continuous displacement Considering the continuous 

displacement condition and discontinuous traction condition at the geometric edges or corners need 

to be satisfied, the influence domains of the virtual nodes in displacement and traction are different. 

Thus, the continuous displacement and the discontinuous traction field at the geometric edges or 

corners can be dealt with easily.i.e. both continuous and discontinuous fields can be approximated 

naturally and accurately via manipulating the influence domain of virtual node in the second-layer 

interpolation [1,2,4].  

 

4. DiBFM for elasticity problem 

4.1 Boundary integral equation 

 Consider an elasticity body occupying domain 3  with a boundary  , an elastic 

solid without body forces, the boundary integral equation (BIE) [17-24] can be written as: 

( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,ij j ij j ij jc P u P U P Q t Q d Q T P Q u Q d Q P Q
 

             (6) 

where ju  is displacement; jt is traction and  , 1,2,3i j  . The ( )ijc P  denotes the coefficient 

matrix. The ( , )ijU P Q  and ( , )ijT P Q  are expressed as follow: 
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            (8) 



where r denotes the distance between the source node P and the field point Q, and n is the unit 

outward normal at the point Q, v denotes the Poisson’s ratio and G the shear modulus. 

 

4.2 Discretization of the BIE for elasticity problems 

 In the DiBFM, the BIE is discretized by dual interpolation elements with the source nodes  Pk 

(k=1,2,…,NS) are considered only, where NS is the total number of the source nodes. After 

discretizing, the BIE for elasticity problems yields: 

( ) ( ) ( ) ( )
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in which 
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where 
e  denotes the boundary e-th element, ( )

s

eN  , ( )( )s

j e at Q  and ( )( )s

j e au Q  denote the shape 

function, nodal values of the traction and displacement of the  -th source node in the e-th element, 

( )

v

eN  , ( )( )v

j et Q   and ( )( )v

j eu Q   are shape function, nodal value of the traction and displacement of 

the  -th virtual node in the e
th

 element, respectively. 

 Eq. (9) can be arranged in a matrix form as: 
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where 
s

ju  and 
s

jt  denote the vectors of displacement and traction for all source nodes, 
v

ju  and 
v

jt  

aredisplacement and traction vectors for all virtual nodes, 
ss

ijH , 
ss

ijG , 
sv

ijH  and 
sv

ijG  are the 



coefficient matrices corresponding to vectors s

ju , s

jt , v

ju  and v

jt , respectively. Considering the 

boundary conditions, we can  rewrite Eq.(10) as: 
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where the subscripts 
jd  and 

jn  indicate the Dirichlet (displacement) and Neumann (traction) 

boundary conditions in the j direction, 
j

s

du , 
j

v

du  andand 
j

s

nt , 
j

v

nt   are vectors of the displacement 

and the traction of the source node and the virtual node specified in the j direction respectively. 

 

4.3 Condensation the degrees of freedom of the virtual nodes 

 As presented in Section 3.1, the BIEs are only collocated at source nodes. Thus, the number of 

linear equations is less than that of unknown nodal values inEq. (11). In order to make the final 

equations solvable, additional constraint equations are needed to condense the degrees of freedom of 

the virtual nodes. The additional constraint equations are provided by the second-layer interpolation 

as:  

     , 1,2,3
j j j j

v vs s

n n n n j u Ψ u                       (12) 
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d d d d j t Ψ t                       (13) 

where 
j j

vs

n nΨ  and 
j j

vs

d dΘ  denote shape function matrices constructed by the second-layer 

interpolation, see the Section 3.3.1. 

 Substituting Eqs (12) and (13) into Eq. (11) yields: 
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in which 
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4.4 Solution for elasticity problems 

 Imposing the boundary conditions at each source and virtual node and exchanging the columns 

of matrices in Eq. (14), the final system equations can be rewritten as: 

=Ax b                                    (15) 

in which 
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For 3D elasticity problems, the size of matrix A is 3NS, x is unknown at the source node and b is 

known with boundary conditions. 

 In this paper, the Gaussian elimination method [25] is used to obtain solutions in  Eq. (15). By 

using the second-layer interpolation in Eq.(12) and Eq.(13),  all nodal values at virtual nodes can be 

determined. 

 Due to the unknown vector of the final system equations involving the source node only, the size 

of the final system equations in the DiBFM is the same as that in the conventional BEM using source 

nodes alone (seeing from the Eq. (15)). As a result, the efficiency in DiBFM remains unchanged. 

 

 



5. Numerical examples 

 In this section, three examples are presented. The first example is used to demonstrate the 

accuracy and convergence of the DiBFM for solving 3D elastic problems. The other two examples 

demonstrate further the high accuracy of the proposed method for realistic engineering problems. 

 

5.1 Analytical displacement field problem 

 To evaluate the degrees of accuracy and convergence usingthe DiBFM, an analytical 

displacement field problem for a cube as shown in  Fig.7(a) is considered. The Young’s modulus 

E=1 and Poisson’s ratio v=0.25. The analytical displacement fields imposed on all faces are: 
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.                             (16) 

 （检查一下此解是否满足平衡方程）From the Eq.(16), it can be seen that the displacement 

field is a cubic function. Then, due to the differentiation operation, the stress field is a quadratic field 

function. The accuracy of the Von Mises stress will be used to study the accuracy and convergence. 

The accuracy is calculated by the following equation 

                     ( ) ( ) 2

1m a x

1 1
[ ]

M
e n

i i

i

error v v
v M 

                           (17) 

where 
max

v  is the maximum Von Mises stress value (建议用 von )on sample points, and the 

superscripts (e) and (n) refer to the exact and numerical solutions, respectively. The total number of 

sample points M is 180, and  60 sample points for each diagonal surfaces shown in Fig.7. In this 

example, both element QS1(seeing Fig.3(a)) and TS1(seeing Fig.4(a)) are investigated.  

 The computational errors with different number of source nodes (NS) are listed in Table 1. From 

Table 1, the accuracy is 10
-2

 even if only 96 QS1 or 84 TS1 is used to approximate quadratic stress 

field, which demonstrates the degree of accuracy of the DiBFM. It can be observed that  when the 

number of elements increases, the accuracy increases. This characteristic confirms the convergence 

of the DiBFM.  



     

Fig. 7. The analytical field problem. 

Table 1. Comparison of convergence of the DiBFM with the dual interpolation elements 

QS1 and TS1. 

DiBFM QS1  DiBFM TS1 

NS Err_Von Mises  NS Err_Von Mises 

96 

150 

600 

1,176 

2,400 

3.65e-04 

1.96e-04 

4.76e-05 

3.86e-05 

3.63e-05 

 84 

132 

606 

1,284 

2,430 

1.29e-02 

5.00e-03 

9.20e-04 

3.57e-04 

1.09e-04 

 

 

 

 

 

5.2 Three-way pipe with a rounded corner 

 In this example, a three-way pipe with a rounded corner is analyzed to show the capability of  

DiBFM to solve the problem of the structure  as shown in Fig.8(a). The dimensions of the 

horizontal hollow cylinder are R=10, r=6 and h=15 and the dimensions of the vertical hollow 

cylinder are R=6, r=4 and h=11. In addition,  the rounded corner between the two hollow cylinders 

is r=0.4. In this model, Young’s modules E=200,000 and Poisson's ratio ν=0.25. The boundary 

conditions are specified as: one side of the horizontal hollow cylinder is clamped, the top face of the 

vertical hollow cylinder is subjected to a uniform traction (p=10) 【不用粗体】. In the DiBFM 

analysis, the total number of source nodes is 7527 and the element mesh is shown in  Fig.8(b). The 

FEM is used to introduced as a reference with 1519450 quadratic tetrahedron elements.  

 We consider the Von Mises stress on the rounded corner. Since the fixed end is of a sharp corner, 

the Von Mises stress at this point is not convergent. , i.e.. when the mesh density increases, the Von 

(a) Geometric model 
(b) The distribution of the sample 

points  



Mises stress value at the corner increases. Thus, the Von Mises stress on the rounded corner is chosen 

for comparison. The displacement and Von Mises stress results are shown in Fig.9 and Fig.10 

respectively. 

     

(a) Geometry and boundary conditions                       (b) Mesh used in DiBFM  

Fig. 8. Three-way pipe 

          

(a) FEM                                   (b) DiBFM 

Fig. 9. The displacement results of the two methods 



    

(a) FEM                                   (b) DiBFM 

Fig. 10. The Von Mises stress at the rounded corner in the two methods. 

   

(a) Node number-493657                (b) Node number-928384 

Fig. 11. The Von Mises stress at the rounded corner with different numbers of node in FEM 

 From the Fig.9, it can be seen that the displacements given by DiBFM are almost coincident 

with that by FEM. Fig.10 demonstrates the excellent agreements between these two methods with 

von Mises stress around the rounded corner. In Fig.11, the distribution of von Mises stress at the 

rounded corner is not smooth when using 493657 nodes and 928384 nodes in FEM 【这两句不是很

清楚，要说明什么？】. Besides, even if the total number of nodes is 1519450, the stress distribution 

at the fillet obtained by FEM is less smooth than that obtained by DiBFM, seeing from Fig.10. 

However, the total number of source nodes in DiBFM is 7527 only. In Fig.10, the difference for von 

Mises stress on the cylinder surface is due to the fact that the meshes by two methods are different. 

In DiBFM, a coarse mesh is adopted at the cylinder surface, which results in an uneven contour of 

the von Mises stress. In other words, the smoother von Mises stress distribution in DiBFM illustrates 

that the DiBFM is more suitable for solving the structure with small features. 



 

5.3 Angle steel 

 An angle steel model is analyzed in this example to show the capability of  the DiBFM to solve 

the practical problems in engineering. The geometric model is shown in Fig.12(a). In this model, 

Young’s modules E=20000 and Poisson's ratio ν=0.3. The bottom of the angle steel is fixed, and the 

back of the angle steel is subjected to a uniform pressure p=1.0. In DiBFM, the total number of 

source nodes is 6937, and the mesh can be seen in Fig.12(b). In FEM, the quadratic tetrahedron 

elements with 1519450  nodes are used. The displacement and von Mises stress results are shown in 

Fig.13, Fig.14 and the maximum displacement and von Mises stress are presented in Table 2. 

 

   

(a) Geometric model                    (b) Mesh in DiBFM  

Fig. 12. Angle steel 

  

(a) FEM                                  (b) DiBFM 

Fig. 13. The displacement results by the two methods 



  

(a) FEM                               (b) DiBFM 

Fig. 14. The Von Mises stress results by the two methods 

Table 2. Comparison of the maximum displacement and the maximum Von Mises stress by DiBFM and FEM. 

Result FEM DiBFM 
DiBFM FEM

FEM

100%
x x

err
x


   

U_max 2.365 2.362 0.127% 

Von Mises_max 201.67 201.61 0.030% 

 From Fig.13 and Fig.14, it can be clearly seen that the displacement and Von Mises stress by 

DiBFM are almost coincident with those by FEM. In addition, from Table 2 we can see that the 

relative errors of the maximum displacement and the maximum Von Mises stress are 0.127% and 

0.030%, respectively. These results demonstrate that the DiBFM can solve the practical problems in 

engineering with high accuracy. 

 

6. Conclusions 

 In this paper, a dual interpolation boundary face method has been extended to 3D elasticity 

problems successfully. DiBFM is combined with the dual interpolation method and the boundary 

face method. The numerical results has demonstrated the high accuracy and convergence of the 

DiBFM in 3D elasticity problems. In addition, the numerical results show that the DiBFM is suitable 

for solving the problem of structures with small features, since the traction in DiBFM can be 

obtained directly without geometric errors. This is a very significant behavior since the maximum 



stress usually occurs at the location of the small features. The behavior will provide more reasonable 

stress results in numerical analysis. In future work, the DiBFM will be extended  to analyze the 

large-scale complex structures via combining with the fast multipole method or adaptive cross 

method,.  

 

Acknowledgements 

This work was supported by National Natural Science Foundation of China under grant number 

11772125. 

 

 

References 

[1] J.M. Zhang, W.C. Lin, Y.Q. Dong, A double-layer interpolation method for implementation of BEM analysis 

of problems in potential theory, Applied Mathematical Modelling, 51 (2017) 250-269. 

[2] J.M. Zhang, W. Lin, Y. Dong, A dual interpolation boundary face method for elasticity problems, Eur. J. 

Mech. – A/Solids 73 (2019) 500–511. 

[3] J.M. Zhang, Y.D. Zhong, Y.Q. Dong, et al. Expanding element interpolation method for analysis of 

thin-walled structures. Engineering Analysis with Boundary Elements, 2018, 86: 82-88. 

[4] J.M. Zhang, X.M. Shu, J. Trevelyan, W.C. Lin, P.F. Chai. A solution approach for contact problems based on 

the dual interpolation boundary face method. Applied Mathematical Modelling, 70 (2019) 643-658. 

[5] J.M. Zhang, Y.Q. Dong, W.C. Lin, et al. A singular element based on dual interpolation BFM for V-shaped 

notches. Applied Mathematical Modelling, 2019. 

[6] G.D Manolis, P.K Banerjee. Conforming versus non‐conforming boundary elements in three‐dimensional 

elastostatics. International Journal for Numerical Methods in Engineering, 1986, 23(10): 1885-1904. 

[7] Grilli S T, Svendsen I A. Corner problems and global accuracy in the boundary element solution of nonlinear 

wave flows. Engineering Analysis with Boundary Elements, 1990, 7(4): 178-195. 

[8] Rosen D, Cormack DE. On corner analysis in the BEM by the continuation approach. Engineering analysis 

with boundary elements, 1995;16:53–63. 

[9] Thompson J F, Soni B K, Weatherill N P. Handbook of grid generation. CRC press, 1998. 

[10] Bern M, Eppstein D, Teng S H. Parallel construction of quadtrees and quality triangulations. International 

Journal of Computational Geometry & Applications, 1999, 9(06): 517-532. 

[11] J.M. Zhang, X.Y. Qin, X. Han, A boundary face method for potential problems in three dimensions, 

International Journal for Numerical Methods in Engineering, 80 (2009) 320-337. 

[12] M.J Peake, J Trevelyan, Coates G. Extended isogeometric boundary element method (XIBEM) for 

two-dimensional Helmholtz problems. Computer Methods in Applied Mechanics and Engineering, 2013, 259: 

93-102. 



[13] X.Y. Qin, J.M. Zhang, G.Y. Li, et al. An element implementation of the boundary face method for 3D 

potential problems. Engineering analysis with boundary elements, 2010, 34(11): 934-943. 

[14] Gong Y P, Dong C Y. An isogeometric boundary element method using adaptive integral method for 3D 

potential problems. Journal of Computational and Applied Mathematics, 2017, 319: 141-158. 

[15] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals. Elsevier, 

Amsterdam (2013) 

[16] P. Lancaster, K. Salkauskas, Surface generated by moving least squares methods, Mathematics of computation, 

37 (1981) 141–158. 

[17] C.A Brebbia, J.C.F Telles, L.C Wrobel. Boundary element techniques: theory and applications in engineering. 

Springer Science & Business Media, 2012. 

[18] J.H. Kane, Boundary Element Analysis in Engineering Continuum Mechanics, Prentice-Hall, Engelwood 

Cliffs, NJ, 1994. 

[19] Zhang Y, Li X, Sladek V, et al. A new method for numerical evaluation of nearly singular integrals over 

high-order geometry elements in 3D BEM. Journal of Computational and Applied Mathematics, 2015, 277: 

57-72. 

[20] Zheng B, Gao X, Zhang C. Radial integration BEM for vibration analysis of two-and three-dimensional 

elasticity structures. Applied Mathematics and Computation, 2016, 277: 111-126. 

[21] Liu Y J, Ye W, Deng Y. On the Identities for Elastostatic Fundamental Solution and Nonuniqueness of the 

Traction BIE Solution for Multiconnected Domains. Journal of Applied Mechanics, 2013, 80(5): 051012. 

[22] Honnor M E, Trevelyan J, Huybrechs D. Numerical evaluation of the two-dimensional partition of unity 

boundary integrals for Helmholtz problems. Journal of Computational and Applied Mathematics, 2010, 

234(6): 1656-1662. 

[23] Niu Z, Wendland W L, Wang X, et al. A semi-analytical algorithm for the evaluation of the nearly singular 

integrals in three-dimensional boundary element methods. Computer methods in applied mechanics and 

engineering, 2005, 194(9-11): 1057-1074. 

[24] Y. Li, J.M. Zhang, G.Z. Xie, Time-domain BEM analysis for three-dimensional elastodynamic problems with 

initial conditions, Computer Modeling in Engineering and Sciences, 101(3) (2014) 187-206. 

[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al. Numerical recipes 3rd edition: The art of scientific 

computing. Cambridge university press, 2007. 


