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EDITORIAL SUMMARY CellPhoneDB combines an interactive database and a statistical framework for the 

exploration of ligand-receptor interactions inferred from single cell transcriptomics measurements. 
 

 

 
 
 
Abstract 
 

Cell-cell communication mediated by ligand-receptor complexes is crucial for coordinating 

diverse biological processes, such as development, differentiation and responses to infection. 

In order to understand how the context-dependent crosstalk of different cell types enables 

physiological processes to proceed, we developed CellPhoneDB, a novel repository of 

ligands, receptors and their interactions. In contrast to other repositories, our database takes 

into account the subunit architecture of both ligands and receptors, representing heteromeric 

complexes accurately. We integrated our resource with a statistical framework that predicts 

enriched cellular interactions between two cell types from single-cell transcriptomics data. 

Here, we outline the structure and content of our repository, the procedures for inferring cell-

cell communication networks from single-cell RNA sequencing data and present a practical 

step-by-step guide to help implement the protocol. CellPhoneDB v2.0 is an updated version 

of our resource that incorporates additional functionalities to allow users to introduce new 

interacting molecules and reduces the time and resources needed to interrogate large 

datasets. CellPhoneDB v2.0 is publicly available at https://github.com/Teichlab/cellphonedb 

and as a user-friendly web interface at http://www.cellphonedb.org/ and can be used by both 

experts and researchers with little experience in computational genomics. In our protocol, we 

demonstrate how to reveal meaningful biological interactions with CellPhoneDB v2.0 using 



 2 

published data sets. This protocol typically takes ~2 hours to complete, from installation to 

statistical analysis and visualisation, for a dataset of ~10GB, 10000 cells and 19 cell types 

using 5 threads. 
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Introduction 

 

Complex extracellular responses start with the binding of a ligand to their cognate receptor 

and the activation of specific cell signalling pathways. Mapping these ligand-receptor 

interactions is fundamental to understanding cellular behaviour and response to neighbouring 5 

cells. With the exponential growth of single-cell RNA sequencing (scRNAseq)
1
, it is now 

possible to measure the expression of ligands and receptors in multiple cell types and 

systematically decode intercellular communication networks that will ultimately explain tissue 

function in homeostasis and their alterations in disease. Identifying ligand-receptor 

interactions from scRNAseq requires both the annotation of the complex ligand-receptor 10 

relationships from the literature, and a statistical method that integrates the resource with 

scRNAseq data and selects relevant interactions from the dataset. 

Overview of the protocol 

 

We developed CellPhoneDB, a public repository of ligands, receptors and their interactions to 15 

enable a comprehensive, systematic analysis of cell–cell communication molecules. Our 

repository relies on the use of public resources to annotate receptors and ligands as well as 

manual curation of specific families of proteins involved in cell-cell communication. We include 

subunit architecture for both ligands and receptors to represent heteromeric complexes 

accurately (Figure 1). This is crucial, as cell-cell communication relies on multi-subunit protein 20 

complexes that go beyond the binary representation used in most databases and studies
2
. In 

order to integrate all the information in a flexible, distributable and amendable environment, 

we developed an SQLite relational database.  

 

Our repository is integrated with a computational approach to identify biologically relevant 25 

interacting ligand-receptor partners from scRNAseq data. After uploading the scRNAseq data 

and performing subsampling using geometric sketching
3 

(Figure 2a), cells with the same 

cluster annotation are pooled together as a cell state. We derive enriched ligand-receptor 

interactions between two cell states based on expression of a receptor by one cell state and 

a ligand by another cell state. For each gene in the cluster, the percentage of cells expressing 30 

the gene and the gene expression mean is calculated (Figure 2b). We consider the expression 

levels of ligands and receptors within each cell state, and use empirical shuffling to calculate 

which ligand–receptor pairs display significant cell state specificity (Figure 2c and Figure 2d). 

This predicts molecular interactions between cell populations via specific protein complexes 

and generates potential cell–cell communication networks which can be visualised using 35 

intuitive tables and plots (Figure 2e). Specificity of the ligand-receptor interaction is important, 

as some of the ligand-receptor pairs are ubiquitously expressed by the cells in a tissue, and 

therefore not informative regarding specific communication between particular cell states.  

 

The computational code is available in github (https://github.com/Teichlab/cellphonedb) and a 40 

user-friendly web interface is available at www.CellPhoneDB.org. The first option is 

recommended for large datasets (larger than 10GB). Compared to the original CellPhoneDB 

platform, our updated version CellPhoneDB v2.0 has incorporated new features, such as 
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subsampling of the original dataset to enable the fast querying of large datasets (geometric 

sketching 
2
) or the visualisation of the results using intuitive tables, plots and network files that 45 

can be directly uploaded into Cytoscape (https://cytoscape.org/). In addition, we now offer the 

user the possibility to use their own list of ligand-receptor interactions through our easy-to-use 

python GitHub package. 

 

 50 

Applications of the protocol 

 

We originally applied this computational framework to study maternal-fetal communication at 

the decidual-placental interface during early pregnancy
4
. Briefly, our analysis revealed new 

immunoregulatory mechanisms and cytokine signalling networks existing between the cells in 55 

the maternal-fetal interface, which guarantee the coexistence of both the mother and 

developing fetus (Figure 3). In the present protocol, we describe and discuss in detail how this 

analysis can be carried out, using our maternal-fetal study as an illustration. 

 

The protocol is generalizable to any other scRNA-seq dataset containing potentially interacting 60 

cell populations and has been recently used in several single-cell atlases. For example, 

CellPhoneDB helped us identify a shift in the cellular communication from a network that was 

dominated by mesenchymal-epithelial interactions in healthy airways, to a Th2 cell-dominated 

interactome in asthmatic airways
5
. In the context of the kidney, cell-cell interaction analysis 

helped to reveal epithelium-immune crosstalk that coordinates recruitment of antibacterial 65 

macrophages and neutrophils to regions in the kidney most vulnerable to infections
6
. In a 

recent single-cell atlas of hematopoietic progenitors in the liver during the first trimester of 

development, we identified interactions between erythroblasts and erythroblastic island (EI) 

macrophages through interactions involving molecules VCAM1, ITGB1 and ITGA4, all of them 

known to be important in haematopoiesis
7
.  70 

 

Furthermore, even though CellPhoneDB is created using human-specific ligand-receptor 

interactions, it can be easily applied on mouse datasets by mapping human genes onto their 

mouse orthologs. In a recent example, we applied our cell-cell communication framework to 

demonstrate the complex interplay among diverse cells in the evolving tumor 75 

microenvironment of a murine melanoma model where multiple immunosuppressive 

mechanisms coexist within a heterogeneous stromal compartment
8
.  

Comparison with other approaches 

 

There are now several other published methods to infer potentially relevant interactions 80 

between two cell populations from scRNA-seq. The majority of these methods use lists of 

binary ligand-receptor pairs to assign communication between cells, without considering 

multimeric receptors. Relevant interactions are inferred by filtering based on the expression 

level of the ligand and receptor. In these methods, only the interaction pairs that pass a certain 

threshold of cells expressing the specific interactors in the respective cell populations are 85 

selected for the downstream analysis
9-14

. For example, in addition to filtering based on 
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expression level, Cohen et al.15
 used hierarchical clustering with Spearman correlation to 

identify ligand-receptor modules and construct an interaction graph. Others, such as Kumar 

et al16
, scored interactions by calculating the product of average receptor and average ligand 

expression in the corresponding cell types and used a one-sided Wilcoxon rank-sum test to 90 

assess the statistical significance of each interaction score. Halpern et al.17
 computed a z-

score of the mean of each interacting molecule in each cluster to calculate the enrichment of 

each ligand and receptor in each cluster. To test for enrichment of the number of ligand-

receptor pairs between two cell populations, Joost et al.18
 performed random sampling of 

receptors and ligands and compared this number with the observed number of ligand-receptor 95 

pairs. In a similar way, Boisset et al.19
 applied cluster label permutations to create a null 

distribution of the number of random interactions between cell populations and then compared 

this to the actual number of interactions to identify enriched or depleted interactions compared 

with the numbers in the background model.  

 100 

A major strength of CellPhoneDB compared to most other databases is that it takes into 

account the structural composition of ligands and receptors, which is important as ligand-

receptor interactions often involve multiple subunits. This is particularly clear for protein 

families like many of the cytokine families, where receptors share structural subunits, and the 

affinity of the ligand is determined by the specific combination of the receptor subunits (Figure 105 

3e). Roughly one third of the ligand-receptor complexes in our database have a multi-subunit 

stoichiometry greater than binary one-to-one interactions. Specifically, there are 466 

interactions in our repository which involve heteromers, and 163 of them comprise cytokines.  

 

 110 

Limitations of the protocol 
 

Our database, while comprehensive, is not a complete list of all possible ligand-receptor 

interactions and this should be taken into consideration when interpreting cell-cell 

communication networks, especially the total number of interactions between cell types. As 115 

more and more interactions are curated and added, both the analysis and interpretation of the 

results will improve. Furthermore, our statistical method prioritizes cell-type enriched and 

potentially biologically important interactions that would result into a downstream signalling 

event. Therefore, a non-significant p-value does not indicate that the interaction is not present, 

only that it is not highly specific between two cell types. For a more permissive analysis, we 120 

also offer a simpler filtering method based on a threshold of cells expressing ligand-receptor 

complexes in the corresponding clusters. Additionally, we use permutations to generate a null 

hypothesis, and this can be time-consuming and resource-intensive with large datasets (for 

example datasets with millions of cells). To address this, we introduced a subsampling 

approach, which preserves the heterogeneity of the dataset and reduces speed and memory 125 

requirements (1 hour vs 1.5 hours for a dataset of 10000 cells). Finally, our tool infers potential 

interactions using transcriptomics data without considering spatial proximity of the cells. We 

anticipate that the information in CellPhoneDB will have the potential to provide a more 

comprehensive view of cellular communication when combined with the spatial location of the 

cells as quantified using highly multiplexed spatial methods (e.g. 
20-23

). 130 

 

 

Database input files 
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CellPhoneDB stores ligand-receptor interactions as well as other properties of the interacting 135 

partners, including their subunit architecture and gene and protein identifiers. In order to create 

the content of the database, four main .csv data files are required: “gene_input.csv”, 

“protein_input.csv”, “ complex_input.csv” and “interaction_input.csv” (Figure 4).  

 

“gene_input” 140 

 

Mandatory fields: “gene_name”; “uniprot”; “hgnc_symbol” and “ensembl” 

 

This file is crucial for establishing the link between the scRNA-seq data and the interaction 

pairs stored at the protein level. It includes the following gene and protein identifiers: i) gene 145 

name (“gene_name”); ii) UniProt identifier (“uniprot”); iiii) HUGO nomenclature committee 

symbol (HGNC) (“hgnc_symbol”) and iv) gene ensembl identifier (ENSG) (“ensembl”). In order 

to create this file, lists of linked proteins and gene identifiers are downloaded from UniProt and 

merged using gene names. Several rules need to be considered when merging the files: 

- UniProt annotation prevails over the gene Ensembl annotation when the same gene 150 

Ensembl identifier points towards different UniProt identifiers. 

- UniProt and Ensembl lists are also merged by their UniProt identifier but this 

information is only used when the UniProt or Ensembl identifier is missing in the original 

list merged by gene name. 

- If the same gene name points towards different HGNC symbols, only the HGNC 155 

symbol matching the gene name annotation is considered.  

- Only one HLA isoform is considered in our interaction analysis and it is stored in a 

manually HLA-curated list of genes, named “HLA_curated”. 

 

 160 

“protein_input” 
 

Mandatory fields: “uniprot”; “protein_name” 

Optional fields: “transmembrane”; “peripheral”; “secreted”; “secreted_desc”; 

“secreted_highlight”; “receptor”; “receptor_desc” ; “integrin”; “pfam”; “other”; “other_desc”; 165 

“tags”; “tags_ description”; “tags_reason”; “pfam” 

 

Two types of input are needed to create this file: i) systematic input using UniProt annotation, 

and ii) manual input using curated annotation both from developers of CellPhoneDB 

(“proteins_curated”) and users. For the systematic input, the UniProt identifier (“uniprot”) and 170 

the name of the protein (“protein_name”) are downloaded from UniProt. For the curated input, 

developers and users can introduce additional fields relevant to the future systematic 

assignment of ligand-receptor interactions (see below the “Systematic input from other 

databases” section for interaction_list). Importantly, if a protein id is present in both the curated 

and systematic inputs, the curated information always has priority over the systematic one.  175 

 

Optional fields are organised in the categories described below: 

 

 

 180 
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Location of the protein in the cell There are four non-exclusive options: transmembrane 

(“transmembrane”), peripheral (“peripheral”) and secreted (“secreted”, “secreted_desc” and 

“secreted_highlight”).  

 

We downloaded plasma membrane proteins from UniProt using the keyword KW-1003 (cell 185 

membrane) and annotated them as peripheral proteins using the keyword SL-9903 or as 

transmembrane proteins (remaining plasma membrane proteins). A systematic manual 

curation of proteins with transmembrane and immunoglobulin-like domains was performed to 

improve the lists of plasma transmembrane proteins. 

 190 

We downloaded secreted proteins from UniProt using the keyword KW-0964 (secreted), and 

further annotated them as cytokines (KW-0202), hormones (KW-0372), growth factors (KW-

0339) and immune-related proteins using UniProt keywords and manual annotation based on 

literature information. “secreted_highlight” includes cytokines, hormones, growth factors and 

other immune-related proteins and “secreted_desc” indicates a description of the protein 195 

function. 

 

All the manually annotated information is carefully tagged and can be identified. Please see 

the “curation tags” section below. 

 200 

 

 

Receptors and integrins Three fields are allocated to annotate receptors or integrins: 

“receptor”, “receptor_desc” and “integrin”.  

 205 

Receptors were defined by the UniProt keyword KW-0675 and by a revision of UniProt 

descriptions and bibliography. For some of the receptors, a short description is included in 

“receptor_desc”.  

 

“Integrin” is a manual curation field that indicates the protein is part of the integrin family. All 210 

the annotated information is carefully tagged and can be identified. For details, see the 

“curation tags” section below. 

 

 

Others We created another column named “others” that consists of membrane and secreted 215 

proteins that are excluded from our cell-cell communication analysis as they are not directly 

involved in the recognition of the ligand (eg. Co-receptors) or they require more specialised 

annotation (e.g. nerve-specific receptors such as those related to ear-binding, olfactory 

receptors, taste receptors and salivary receptors). In addition, we excluded small molecule 

receptors; immunoglobulin chains and viral and retroviral proteins, pseudogenes, cancer 220 

antigens and photoreceptors. We also added “others_desc” to add a brief description of the 

excluded protein. 

 

 

Protein family Information about the family of the protein is downloaded from 225 

https://pfam.xfam.org/ 
24

 and stored in “pfam”. This information may be useful for the 

annotation of ligand-receptor interactions. 
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 230 

Curation “tags” Three fields indicate whether the protein has been manually curated: “tags”, 

“tags_ description” and “tags_reason”. 

 

There are three options for the “tags” field: (a) ‘N/A’: protein matches with UniProt description; 

(b) ‘To_add’: addition of secreted and/or plasma membrane protein annotation; and (c) 235 

‘To_comment’: manual addition of a specific property of the protein, for example, annotation 

of a protein as a receptor. 

 

There are five options for the “tags_reason” field: (a) ‘extracellular_add’: manual annotation of 

the protein as plasma membrane; (b) ‘peripheral_add’: manual annotation of the protein as 240 

peripheral; (c) ‘secreted_add’: manual annotation of the protein as secreted; (d) 

‘secreted_high’: manual annotation of the protein as cytokine, hormone, growth factors or 

other immune-related protein (secreted_highlight); (e) ‘receptor_add’: manual annotation of a 

receptor. 

 245 

Finally, the “tags_description” field is a short description of the manually curated protein. 

 

 “complex_input” 
 

Mandatory fields: “complex_name”; “uniprot1, 2, etc.”  250 

Optional fields: “transmembrane”; “peripheral”; “secreted”; “secreted_desc”; 

“secreted_highlight”; “receptor”; “receptor_desc” ; “integrin”; “other”; “other_desc”; “pdb_id”; 

“pdb_structure” ; “stoichiometry”; “comments_complex” 

 
Literature and UniProt descriptions were reviewed to annotate heteromeric proteins, which 255 

were defined as cases when the functional receptor or ligand required more than one gene 

product, and a careful annotation was performed for cytokine complexes, TGF family 

complexes and integrin complexes. 

 

These lists contain the UniProt identifiers for each of the heteromeric ligands and receptors 260 

(“uniprot1”, “uniprot2”,etc.) and a name given to the complex (“complex_name”). These entries 

have common fields with “protein_input” that are described in the previous section. These are: 

“transmembrane”, “peripheral”, “secreted”, “secreted_desc”, “secreted_highlight”, “receptor”, 

“receptor_desc”, “integrin”, “other”, “other_desc” (see description in the above “protein_input” 

section for clarification). We also include additional optional information that may be relevant 265 

for the stoichiometry of the heterodimers. Structural information is included in “pdb_structure”, 

“pdb_id” and “stoichiometry”, if heteromers are defined in the RCSB Protein Data Bank 

(http://www.rcsb.org/). An additional field “comments_complex” was created to add a short 

description of the heteromer. 

 270 

“interaction_input” 
 

Mandatory fields: “partner_a”; “partner_b”; “annotation_strategy”; “source”  

Optional fields: “protein_name_a”; “protein_name_b” 

 275 
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Interactions stored in CellPhoneDB are annotated using their UniProt identifier (binary 

interactions) or the name of the complex (interactions involving heteromers) (“partner_a” and 

“partner_b”). The name of the protein is also included, yet not mandatory (“protein_name_a” 

and “protein_name_b”). Protein names are not stored in the database. 

 280 

There are two main inputs of interactions: i) a systematic input querying other databases, and 

ii) a manual input using curated information from CellPhoneDB developers 

(“interactions_curated”) and users. The method used to assign the interaction is indicated in 

the “annotation_strategy” column.  

 285 

Each interaction stored has a CellPhoneDB unique identifier (“id_cp_interaction”) generated 

automatically by the internal pipeline. 

 

 

 290 

Systematic input from other databases Three sources of interacting partners were 

considered: (a) IUPHAR (http://www.guidetopharmacology.org/): binary interactions only, (b) 

InnateDB (https://www.innatedb.com/): interactions involving cytokines, hormones and growth 

factors interactions, and (c) iMEX consortium (https://www.imexconsortium.org/): interactions 

involving cytokines, hormones and growth factors interactions. 295 

 

Binary interactions from IUPHAR are directly downloaded from 

“http://www.guidetopharmacology.org/DATA/interactions.csv” and 

“guidetopharmachology.org” is indicated in the “annotation_strategy” field. For the iMEX 

consortium all protein-protein interactions are downloaded using the PSICQUIC REST 300 

APIs
25

. The IMEx
26

, IntAct 
27

, InnateDB 
28

, UCL-BHF 

(https://www.ucl.ac.uk/cardiovascular/research/pre-clinical-and-fundamental-

science/functional-gene-annotation/manual-curation/protein), MatrixDB 
29

, MINT 
30

, I2D 
31

, 

UniProt, MBInfo (https://www.mechanobio.info/) registries are used. Interacting partners are 

defined as follows:  305 

- Interacting partner A has to be a transmembrane receptor and cannot be classified as 

“others” (see the “protein_input” section for more information).  

- Interacting partner B has to be “secreted_highlight”. This group of proteins includes 

cytokines, hormones, growth factors and other immune-related proteins (see the 

“protein_input” section for more information). 310 

 

Some interactions in the systematic approach are excluded: a) interactions where one of the 

components is part of a complex (see “complex_input” list in the above section); b) interactions 

which are not involved in cell-cell communication or are wrongly annotated by our systematic 

method. These are stored in a curated list of proteins named “excluded_interaction”. The 315 

“excluded_interaction” file contains five fields: a) uniprot_1: name of the interacting partner A 

that is going to be excluded; b) uniprot_2: name of the interacting partner B that is going to be 

excluded; c) name.1: name of the protein to be excluded corresponding to uniprot_1; d) 

name.2: name of the protein to be excluded corresponding to uniprot_2; e) comments: 

information about the exclusion of the protein.  320 
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Homomeric complexes - proteins interacting with themselves - are excluded from the 

systematic analysis. Importantly, in cases where both the systematic and the curated input 

detect the interactions, the curated input always prevails over the systematic information.  

 325 

 

 

Curated approach UniProt descriptions and PubMed information on membrane receptors 

were used to annotate ligand–receptor interactions and the International Union of 

Pharmacology annotation
32

 was used to annotate cytokine and chemokine interactions. The 330 

interactions of other groups of cell-surface proteins, including the TGF family, integrins, 

lymphocyte receptors, semaphorins, ephrins, Notch and TNF receptors, were manually 

reviewed from bibliography. The bibliography used to annotate the interaction is stored in 

“source”. ‘Uniprot’ indicates that the interaction has been annotated using UniProt 

descriptions. 335 

 

User-defined ligand-receptor datasets  
 

CellPhoneDB v2.0 allows users to create their own lists of genes, curated proteins, complexes 

and interactions. In order to do so, the format of the users’ lists must be compatible with the 340 

input files. Users can run the analysis using their sets of interactions using the Python package 

version of CellPhoneDB. User’s lists can either be merged with the information already stored 

in CellPhoneDB or considered on their own. In addition, users can send the interaction lists 

via email, the cellphonedb.org form, or a pull request to the CellPhoneDB data repository 

(https://github.com/Teichlab/cellphonedb-data) to be considered in the new versions of 345 

CellPhoneDB.  

 

Database structure  
 

Information is stored in an SQLite relational database (https://www.sqlite.org/). SQLAlchemy 350 

(www.sqlalchemy.org) and Python 3 were used to build the database structure and the query 

logic. The application is designed to allow analysis on potentially large count matrices to be 

performed in parallel. This requires an efficient database design, including optimisation for 

query times, indices and related strategies. All application code is open source and uploaded 

to github and www.cellphonedb.org .   355 

 

The database consists of 6 main tables: gene_table; protein_table; multidata_table; 

interaction_table; complex_table; complex_composition_table (Supplementary Figure 1). 

 

All tables have an incremental numeric unique identifier with the structure id_{table_name} 360 

and one or more foreign keys, with structure {foreign_table_name}_id, to connect all tables. 

 
gene_table 
 

This table stores all the information generated in the gene_input database input file. This 365 

includes the gene name (“gene_name”); the HUGO nomenclature committee symbol (HGNC) 

(“hgnc_symbol”) and the ensembl identifier (“ensembl”). Importantly, only the gene and protein 

information of the interactions participants from “interactions_list” is stored in our database.  
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The gene table is related to the protein table via the protein_id - id_protein (one to many) 370 

foreign key.  

 

multidata_table 
 

This table stores the shared information between the protein_table and the complex_table. 375 

 

All the information required in this table is obtained from the protein_input and complex_input 
input files. It stores the following fields: i) name, corresponding to uniprot if the specific entry 

(row) represents a protein or complex_name if the entry represents a complex; ii) 

transmembrane, iii) peripheral, iv) secreted, v) secreted_desc, vi) secreted_highlight, vii) 380 

receptor, viii) receptor_desc, ix) integrin, x) other and xi) other_desc. In addition, an 

is_complex column is added for internal optimization and indicates if the entry (row) is a 

complex. 

 

protein_table  385 

 

This table stores the information obtained from the database input file protein_input. It contains 

the name of the protein (protein_name), tags, tags_reason, tags_description and pfam. The 

table is related to multidata_table (1..0 - 1 relation, meaning that one or zero elements of 

protein_table corresponds to one element of multidata_table) through the protein_multidata_id 390 

foreign key. 

 

complex_table 
 

This table stores complex information from the database input file complex_input and stores 395 

the following fields: pdb_id, pdb_structure, stoichiometry, comments_complex. The table is 

related to multidata_table (this is a 1..0 - 1 relation, meaning that one or zero elements of 

complex_table corresponds to one element of multidata_table) through the 

complex_multidata_id foreign key. 

 400 

All information about the complex components is stored in the complex_composition_table. 

 

complex_composition_table 
 

This table stores the proteins (uniprot_1 - uniprot_4) that compose  a complex. It is connected 405 

to multidata_table through complex_multidata_id and protein_multidata_id (this is a 1..* - 1 

relations, meaning that multiple proteins and/or complexes with ids stored in multidata_table 

can participate in one complex_composition and can be included in the 

complex_composition_table). We also created an additional column called total_protein (with 

number of complex components) for internal optimization purposes. Supplementary Figure 2 410 

represents an example of two complex_input rows with two and four protein components, 

respectively. 

 

interaction_table 
 415 
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This table stores the interactions data from interaction_input file. The following columns to 

represent the data are used: id_cp_interaction, annotation_strategy and source. To identify 

the interaction partners (partner_a and partner_b in interaction_input), the table is connected 

to multidata_table through the foreign key multidata_1_id and multidata_2_id respectively with 

1 - 1..* relation, meaning that one multidata_id can be present multiple times in the 420 

interaction_table. multidata_table stores both protein and complex data. Importantly, only 

genes and proteins participating in cell-cell communication are stored in our database, i.e. not 

all the proteins present in the input files are stored in our database (see the interaction_input 
section). 

 425 

Analysis Methods 

Statistical inference of ligand-receptor specificity  

 

To assess cellular crosstalk between different cell types, we use our repository in a statistical 

framework for inferring cell–cell communication networks from scRNA-seq data. We predict 430 

enriched receptor–ligand interactions between two cell types based on expression of a 

receptor by one cell type and a ligand by another cell type. To identify biologically relevant 

interactions, we look for the cell-type enriched ligand-receptor interactions. Only receptors and 

ligands expressed in more than a user-specified threshold percentage of the cells in the 

specific cluster are considered for the analysis (default is 10%). 435 

 

We then perform pairwise comparisons between all cell types in the dataset. First, we 

randomly permute the cluster labels of all cells (1,000 times by default) and determine the 

mean of the average ligand expression level in a cluster and the average receptor expression 

level in the interacting cluster. In this way we generate a null distribution for each ligand-440 

receptor pair in each pairwise comparison between two cell types. We obtain a p-value for the 

likelihood of cell-type enrichment of each ligand-receptor complex by calculating the proportion 

of the means which are as high as or higher than the actual mean. Based on the number of 

significant pairs, we then prioritize interactions that are highly specific between cell types, so 

that the user can manually select biologically relevant ones. For the multi-subunit heteromeric 445 

complexes, we require that all subunits of the complex are expressed (using a user-specified 

threshold), and we use the member of the complex with the minimum average expression for 

random shuffling. 

Cell subsampling for accelerated analyses 

 450 

Technological developments and protocol improvements have enabled an exponential growth 

of the number of cells obtained from scRNA-seq experiments
1
. Large-scale datasets can 

profile hundreds of thousands cells, which presents a challenge for the existing analysis 

methods in terms of both computer memory usage and runtime. In order to improve the speed 

and efficiency of our protocol and facilitate its broad accessibility, we integrated subsampling 455 

as described in Hie et al.2. This “geometric sketching” approach aims to maintain the 

transcriptomic heterogeneity within a dataset with a smaller subset of cells. It projects high 

dimensional data into a low dimensional space and divides that low dimensional space into a 

predefined number of equal subspaces. The subsampling is then performed by sampling an 
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equal number of data points from each subspace. The subsampling step is optional, enabling 460 

users to perform the analysis either on all cells, or with other subsampling methods of their 

choice. 
 

Materials 

Equipment 465 

Input data files: 
- META file: The annotation file is generated by the users after they have annotated 

each cluster identified by scRNA-seq data (for example by using packages such as 

Seurat
33

, SCANPY
34

). The file contains two columns: “Cell” indicating the name of the 

cell, and “cell_type” indicating the name of the cluster considered. Formats accepted: 470 

.csv, .txt, .tsv, .tab, pickle. 

- COUNTS file: scRNA-seq count data containing gene expression values where rows 

are genes presented with gene names identifiers (Ensembl IDs, gene names or 

hgnc_symbol annotation) and columns are cells. We recommend using normalised 

count data. Importantly, the user needs to specify whether the data was log-475 

transformed when using the subsampling option. Format accepted: .csv or .txt, .tsv, 

.tab, pickle. 

CRITICAL Example input data can be downloaded from our webserver at 

https://www.cellphonedb.org/explore-sc-rna-seq or by running the following on command 

line: 480 

 

curl 
https://raw.githubusercontent.com/Teichlab/cellphonedb/master/in/exa
mple_data/test_counts.txt --output test_counts.txt 
 485 

curl 
https://raw.githubusercontent.com/Teichlab/cellphonedb/master/in/exa
mple_data/test_meta.txt --output test_meta.txt 
 
 490 

Software:  

- Python 3.5 or higher  
- SQLAlchemy  
- SQLite 
- Preprocessing of the raw expression data to generate the input files can be done using 495 

packages such as Seurat33, SCANPY34, or any other pipeline that the user prefers. 
 
Hardware 

-  Linux or MAC OS 
 500 

Equipment Setup 
Pre-processing of raw data and generating input files for the protocol  
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Some of the most standard packages for scRNA-seq analysis include Seurat
33

 and 

SCANPY
34

. Therefore, we include instructions for how to use these packages to pre-process 505 

the raw expression data to generate the input files necessary for CellPhoneDB v2.0. We 

recommend using normalised count data as input.  

 

For example, using the R package Seurat
33

, the count input file can be obtained by taking the 

raw expression data from the Seurat object and applying the normalisation manually. The user 510 

can also normalise using their preferred method for normalisation.  

 

# take raw data and normalise it 
count_raw <- data_object@raw.data[,data_object@cell.names] 
count_norm <- apply(count_raw, 2, function(x) 515 

(x/sum(x))*10000) 
write.table(count_norm, ‘cellphonedb_count.txt’, sep=’\t’, 
quote=F) 
 
# generating meta file 520 

meta_data <- cbind(rownames(data_object@meta.data), 
data_object@meta.data[,’cluster’, drop=F])   # cluster is the 
user’s corresponding cluster column 
write.table(meta_data, ‘cellphonedb_meta.txt’, sep=’\t’, 
quote=F, row.names=F) 525 

 

 

The input files can also be extracted from a SCANPY
34

 data object: 

 

import pandas as pd 530 

    import scanpy.api as sc 
 
    # data after filtering and normalising 
    adata = sc.read(adata_filepath) 

# we recommend using the normalised non-log transformed data - 535 

you can save it in adata.norm for example 
     df_expr_matrix = adata.norm 
    df_expr_matrix = df_expr_matrix.T 
     df_expr_matrix = pd.DataFrame(df_expr_matrix.toarray()) 

# Set cell ids as columns 540 

     df_expr_matrix.columns = adata.obs.index 
# Genes should be either Ensembl IDs or gene names 
df_expr_matrix.set_index(adata.raw.var.index, inplace=True)  

     df_expr_matrix.to_csv(savepath_counts,sep='\t') 
 545 

# generating meta file 
     df_meta = pd.DataFrame(data={'Cell':list(adata.obs[cell_ids]),                          
'cell_type':list(adata.obs[annotation_name])}) 
     df_meta.set_index('Cell',inplace=True) 
     df_meta.to_csv(savepath_meta, sep='\t') 550 
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CRITICAL CellPhoneDB can be used either through the interactive website (cellphonedb.org) 

which executes calculations in our private cloud, or as a Python package using the user’s 

computer/cloud/farm. The Python package is recommended for large datasets (datasets 555 

larger than 10GB). 

Procedure 

 

Installation  
Timing: 5-10 min 560 

 
CRITICAL: Steps 1-15 describe the Python implementation of CellPhoneDB v2.0, while 

Steps 16-19 describe using the webserver. 

CRITICAL: If the default Python interpreter is for Python v2.x (can be checked with the 

command: python --version), calls to python/pip must be substituted by python3/pip3. 565 

 

CRITICAL We highly recommend using a virtual environment (steps 1 and 2), but this can be 

omitted. 

1. Create a python virtual environment 

python -m venv cpdb-venv 570 

2. Activate the virtual environment 

source cpdb-venv/bin/activate 

3. Install CellPhone DB v2.0 

pip install cellphonedb 

Running with statistical analysis  575 

Timing: 1,5 hours for dataset of ~10GB, 10000 cells, threads=5 
 

4. Activate the virtual environment if you have not activated it in Step 2. 

source cpdb-venv/bin/activate 

5. Run CellPhoneDB v2.0 in statistical analysis mode using the input file names 580 

(including full path to the files) for metadata and counts (see Equipment Setup) 

 

cellphonedb method statistical_analysis test_meta.txt 
test_counts.txt 

?TROUBLESHOOTING 585 

Optional parameters: 
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--project-name: Name of the project. A subfolder with this 
name is created in the output folder [default: ./out] 
--iterations: Number of iterations for the statistical 590 

analysis [default: 1000] 
--threshold: % of cells expressing the specific ligand or 
receptor 
--result-precision: Number of decimal digits in results 
[default: 3] 595 

--counts-data: [ensembl | gene_name | hgnc_symbol] Type of 
gene identifiers in the counts data 
--output-path: Directory where the results will be allocated 
(the directory must exist) [default: ./out] 
--output-format: Output format of the results files (extension 600 

will be added to filename if not present) [default: txt] 
--means-result-name: Name of the means result file [default: 
means.txt] 
--significant-mean-result-name: Name of the significant means 
result file [default: significant_means.txt] 605 

--deconvoluted-result-name: Name of the deconvoluted result 
file [default: deconvoluted.txt] 
--verbose/--quiet: Print or hide cellphonedb logs [verbose] 
--pvalues-result-name: Name of the pvalues result file 
[default: pvalues.txt] 610 

--debug-seed: Debug random seed -1. To disable it please use a 
value >=0 [default: -1] 
--threads: Number of threads to use. >=1 [default: 4] 

 

Below we present three usage examples.  615 

Set number of iterations and threads: 

cellphonedb method statistical_analysis yourmetafile.txt 

yourcountsfile.txt --iterations=10 --threads=2 

Set project subfolder: 

cellphonedb method analysis yourmetafile.txt 620 

yourcountsfile.txt --project-name=new_project 

Set output path: 

mkdir custom_folder 

cellphonedb method statistical_analysis yourmetafile.txt 

yourcountsfile.txt --output-path=custom_folder 625 

Running with subsampling and statistical analysis  
Timing: 1 hour for dataset of ~10GB, 10000 cells subsampled to 5000, 19 cell types, 
threads=5 
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CRITICAL: This step can be used instead of Step 5 with large datasets to increase speed 630 

and reduce memory requirements. 

 

6. Run CellPhoneDB v2.0 in statistical analysis mode using the input files for metadata 

and counts and add subsampling and other subsampling-specific parameters 

cellphonedb method statistical_analysis yourmetafile.txt 635 

yourcountsfile.txt --subsampling --subsampling-log true 

The parameters are same as described in Step 5, in addition to the following 

subsampling specific parameters: 

--subsampling-log: Enable log transformation for non-log 
transformed data inputs (mandatory parameter) 640 

--subsampling-num-pc: Subsampling NumPC argument  
--subsampling-num-cells: Number of cells to subsample 
to[default: 1/3 of the cells) 
?TROUBLESHOOTING 

 645 

Running without statistical analysis  
Timing: ~5min for dataset of ~10GB, 10000 cells, 19 cell_types 
 

7. Run CellPhoneDB v2.0 in normal mode using the input files for metadata and counts 

and specified --threshold parameter. The parameters are same as described in Step 650 

5. The parameters --pvalues-result-name, --threads and --debug-seed should be 

omitted. 

 

cellphonedb method analysis test_meta.txt test_counts.txt 
 ?TROUBLESHOOTING 655 

 
Visualisation  
Timing: seconds to minutes 
 
CRITICAL The users can visualise the results from the analysis using dot plots and 660 

heatmaps. 

 
8. Run the dot plot visualisation command in either statistical analysis mode (Steps 4-5 

or Step 6) or normal mode (Step 7) using the means.csv and pvalues.scv output files. 

cellphonedb plot dot_plot 665 

 

Dot plot specific parameters: 
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--means-path: The means output file [default: ./out/means.txt] 
--pvalues-path: The pvalues output file [default: 
./out/pvalues.txt] 670 

--output-path: Output folder [default: ./out] 
--output-name: Name of the output plot [default: plot.pdf]; 
available output formats are those supported by R's ggplot2 
package, e.g. pdf, png, jpeg 
--rows: File with a list of rows to plot, one per line 675 

--columns: File with a list of columns to plot, one per line  
--verbose / --quiet: Print or hide cellphonedb logs [verbose] 
 

To plot only desired rows/columns, use: 

cellphonedb plot dot_plot --rows in/rows.txt --columns 680 

in/columns.txt 

Example content of rows.txt file: 

TNFRSF11B_TNFSF11 
PlexinA3_complex1_SEMA3A 
TTR_NGFR 685 

NGF_NGFR 
PTHLH_PTH1R 
EFNB2_EPHB3 
 

9. Run the heatmap visualisation command in either statistical analysis mode or normal 690 

mode, using the the pvalues.scv output file.  

cellphonedb plot heatmap_plot meta_data 

 

Heatmap plot specific parameters: 

--pvalues-path: The pvalues output file [default: 695 

./out/pvalues.txt] 
--output-path: Output folder [default: ./out] 
--count-name: Filename of the output plot [default: 
heatmap_count.pdf] 
--log-name: Filename of the output plot using log-count of 700 

interactions [default: heatmap_log_count.pdf] 
--count-network-name: Filename of the output network file 
[default: network.txt] 
--interaction-count-name: Filename of the output interactions-
count file [default: interaction_count.txt] 705 

--verbose / --quiet: Print or hide cellphonedb logs [verbose] 
 

Using different versions of the database  
Timing: seconds to minutes 
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CRITICAL “Local repository” refers to CellPhoneDB data available locally on the user’s 710 

computer. “Remote repository” corresponds to the CellPhoneDB official available data. This 

data will be downloaded using the --database parameter. 

 
10. CellPhoneDB v2.0 databases can be updated from a remote repository. Available 

versions of the database can be listed and downloaded to be used. This is relevant as 715 

users may have used one specific version of the databases for their analysis and may 

want to continue with this version for consistency and reproducibility of their analysis. 

To use one of those versions a user must provide the parameter --database 

<version_or_file> to the command ‘cellphonedb method’: 

cellphonedb method statistical_analysis 720 

in/example_data/test_meta.txt in/example_data/test_counts.txt 

--database=v0.0.2 

 

If the –database <version_or_file> parameter is a readable database file it will be used 

as it is. Otherwise, a database version matching the specified parameter will be used. 725 

If the selected database version does not exist in the user’s local environment it will be 

downloaded from the remote repository (see below). 

If the --database argument is not specified in the command for running the analysis, 

the latest local database version available will be used. Downloaded versions of the 

database will be stored in a user folder under ~/.cpdb/releases. 730 

11. To list available database versions from the remote repository execute the code 

below: 

cellphonedb database list_remote 

12. To list available versions from the local repository execute the code below: 

cellphonedb database list_local 735 

 

Downloading different versions of the database  
Timing: seconds to minutes 
 

13. To download a version from the remote repository type: 740 
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cellphonedb database download 

or 

cellphonedb database download --version <version_spec|latest> 

version_spec must be one of the database versions listed in the database. The list of 

database versions can be obtained using the list_remote command. If no version is 745 

specified or latest is used as a version_spec, the newest available version will be 

downloaded. 

 

Generating a user-specific database  
Timing: ~10 min 750 

 

14. To generate such a database with user-specific input files type: 

cellphonedb database generate  

Specific parameters for the database generate command: 

 755 

--user-protein: Protein input file 
--user-gene: Gene input file 
--user-complex: Complex input file 
--user-interactions: Interactions input file 
--fetch: Some lists can be downloaded from original sources 760 

while creating the database, eg: uniprot, ensembl. By default, 
the input tables included in the CellPhoneDB package will be 
used; to enable downloading an updated copy from the remote 
servers --fetch must be appended to the command 
--result-path: Output folder 765 

--log-file: Log file 
 

The resulting database file will be generated in the folder “out” with 

cellphonedb_user_{datetime}.db. The user defined input tables will be merged with the 

current CellPhoneDB input tables. To use this database, please use the --database 770 

parameter when executing the “cellphonedb method” command. E.g: 

cellphonedb method statistical_analysis 
in/example_data/test_meta.txt in/example_data/test_counts.txt 
--database out/cellphonedb_user_2019-05-10-11_10.db 

Below we describe the input and results of several examples of user-specific custom 775 

databases 
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● To add or correct some interactions: 

Input: your_custom_interaction_file.csv: Comma separated file (use mandatory 

columns!) with interactions to add/correct. 

 780 

cellphonedb database generate --user-interactions  
your_custom_interaction_file.csv 

 
Result: New database file with CellPhoneDB interactions and user custom 

interactions.  785 

For duplicated interactions, user lists overwrite the CellPhoneDB original data. 

● To use only user-specific interactions: 

Input: your_custom_interaction_file.csv: Comma separated file (use mandatory 

columns!) with interactions to use. 

cellphonedb database generate --user-interactions 790 

your_custom_interaction_file.csv --user-interactions-only 

Result: New database file with only user custom interactions. 

● To correct any protein data: 

Input: your_custom_protein_file.csv: Comma separated file (use mandatory 

columns!) with proteins to overwrite. 795 

 
cellphonedb database generate --user-protein 
your_custom_protein_file.csv 
 

Result: New database file with CellPhoneDB interactions and user custom 800 

interactions. For duplicated interactions or proteins, the user list overwrites 

CellPhoneDB original data. 

● To add some interactions and correct any protein data 

Input:  

your_custom_interaction_file.csv: Comma separated file (use805 

 mandatory columns!) with interactions to add/correct. 

your_custom_protein_file.csv: Comma separated file (use mandatory 

columns!) with proteins to overwrite. 

 

cellphonedb database generate --user-interactions 810 

your_custom_interaction_file.csv --user-protein 
your_custom_protein_file.csv 
  

Result: New database file with CellPhoneDB interactions and user custom 

interactions. For duplicated interactions or proteins, user list overwrites 815 

CellPhoneDB original data. 
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● To update remote sources (UniProt, IMEx, ensembl, etc.) 

 

Input: 

- your_custom_interaction_file.csv: Comma separated file (use 820 

mandatory columns!) with interactions to add/correct. 

- your_custom_protein_file.csv: Comma separated file (use mandatory 

columns!) with proteins to overwrite. 

cellphonedb database generate --fetch 

Some lists can be downloaded from original sources while creating the 825 

database, e.g. uniprot, or ensembl. By default, the input tables included in the 

CellPhoneDB package will be used; to enable downloading an updated copy 

from the remote servers --fetch must be appended to the “generate” command. 

Result: New database file with the CellPhoneDB interactions and user custom 

interactions. For duplicated interactions or proteins, user lists overwrite the 830 

CellPhoneDB original data.  

CRITICAL STEP 

This command uses external resources allocated in external servers. The command 

may not end correctly if external servers are not available. The timing of this step 

depends on external servers and the user’s internet connection and can take longer 835 

to finish. 

Getting descriptions of mandatory and optional parameters  

Timing: seconds 

 

15. Obtain detailed description of the mandatory and optional parameters using the help 840 

option: 

cellphonedb method statistical_analysis yourmetafile.txt 

yourcountsfile.txt --help 

Interactive web portal 

 845 

Timing: ~1 hour for dataset of ~10GB, 10000 cells, however this depends on how many 
jobs are running in parallel and the computing resources available at the time of 
analysis. 
 

CRITICAL: The web interface includes form inputs for the user to define analysis parameters 850 

before submission. Downstream calculations are performed on the application’s servers, 



 21 

rendering the information of ligand and receptor expression, and visualisation diagrams once 

analysis is complete (Figure 5). 

 

16. Go to the tab “Exploring your scRNAseq” and input your meta and count input files 855 

(Please see section Input data files in Equipment). 
17. Provide an email address if you would like to get an update when the process finishes 

(Figure 5a). 

18. The “significant_means” results table will appear as in Figure 5c (please see the next 

section – Anticipated results: formats of files). You can change the current view by 860 

clicking on the ”Data Shown” button (Figure 5b) and can download the results as well. 

Click on any field from the id_cp_interaction column to display detailed information for 

the specific interaction pair (Figure 5c). 

19. Go to the tab “Plots” and pick the type of plot you would like to produce. For plotting 

dot plots, please select the columns and rows you need (Figure 5d). 865 

 

 

The online results viewer allows you to select which columns you wish to display in each table. 

This option is quite useful as an aid to visualize the results.  

Anticipated results 870 

 

We originally applied CellPhoneDB to study the maternal-fetal communication at the decidual-

placental interface during early pregnancy
4
. The results obtained with our new CellPhoneDB 

v2.0 using subsampling were consistent with our original conclusions (Figure 3). Here we 

provide an explanation of the results generated in this example.  875 

 

Without running statistical inference of ligand-receptor interactions, only “means.csv” and 

“desconvoluted.csv” are generated. The “means.csv” file contains mean values for each 

ligand-receptor interaction. The “deconvoluted.csv” file gives additional information for each 

of the interacting partners. This is important as some of the interacting partners are 880 

heteromers. In other words, multiple molecules have to be expressed in the same cluster in 

order for the interacting partner to be functional. If the user uses the statistical inference 

approach, additional “pvalues.csv” and “significant_means.csv” files are generated containing 

the values for the significant interactions. 

 885 

Importantly, interactions are not symmetric. In other words, when testing a ligand-receptor pair 

A_B between clusters X_Y, the expression of partner A is considered within the first cluster 

(X), and the expression of partner B within the second cluster (Y). Therefore, X_Y and Y_X 

represent different comparisons and will have different p-values and means. 

Timing 890 

Python package, Steps 1-15, ~2 hours 

Step 1-3, Installation, 5 - 10 min 
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Step 5, Running with statistical method, 1,5 hours for dataset of ~10GB, 10000 cells, 

threads=5 

Step 6, Subsampling and statistical method, 1 hour for dataset of ~10GB, 10000 cells 895 

subsampled to 5000, 19 cell_types, threads=5 

Step 7, Analysis without the statistical method, ~5min for dataset of ~10GB, 10000 cells, 19 

cell_types 

Step 8-9, Visualisation, seconds to minutes 

Step 10-13, Using different database versions, seconds to minutes 900 

Step 14, Generating user-specific database, ~10 min 

Webserver, Step 16 - 19, ~1 hour for dataset of ~10GB, 10000 cells, however this depends 

on how many jobs are running in parallel and the resources available at the moment. 

Code availability 

 905 

CellPhoneDB code is available at https://github.com/Teichlab/cellphonedb. It can also be 

downloaded from https://cellphonedb.org/downloads. The code in this manuscript has been 

peer-reviewed. 

 

Data availability 910 

 

The decidua and placenta datasets can be downloaded from ArrayExpress, with experiment 

code E-MTAB-6701. 
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Figures  

 

Figure 1. Overview of the database. (1) Secreted and membrane proteins stored in 

“protein_input”; (2) protein complexes stored in “complex_input” and, (3) protein-protein 935 

interactions stored in “interaction_input”. a, Information aggregated within 

www.CellPhoneDB.org. CellPhoneDB stores a total of 978 proteins, 501 are secreted proteins 

and 585 are membrane proteins. These proteins are involved in 1396 interactions; out of all 

proteins stored in CellPhoneDB 466 are heteromers. There are 474 interactions that involve 

secreted proteins and 490 interactions that involve only membrane proteins. There is a total 940 

of 250 interactions that involve integrins. 

 

Figure 2. Overview of the statistical method framework used to infer ligand–receptor 

complex specific to two cell types from single-cell transcriptomics data. a, CellPhoneDB 

input data consist of scRNA-seq counts file and cell type annotation. Large datasets can be 945 

subsampled using geometric sketching
3
. b, Enriched receptor–ligand interactions between 

two cell types are derived based on expression of a receptor by one cell type and a ligand by 

another cell type. The member of the complex with the minimum average expression is 

considered for the subsequent statistical analysis. c, We generate a null distribution of the 

mean of the average ligand and receptor expression in the interacting clusters by randomly 950 

permute the cluster labels of all cells. d, The P value for the likelihood of cell-type specificity 

of a given receptor–ligand complex is calculated based on the proportion of the means which 

are as or higher than the actual mean. e, Ligand-receptor pairs are ranked based on their 

total number of significant p-values across the cell populations. Visualisation of the results 

using intuitive tables and plots is provided in the web interface. R1, example receptor R1; L1, 955 

example ligand L1.  

 

Figure 3. Example dataset run with CellPhoneDB and CellPhoneDB v2.0. a, Overview of 

selected ligand–receptor interactions using CellPhoneDB on the decidua dataset from 
3
; P 

values are indicated by circle size, scale is shown below the plot. The means of the average 960 

expression level of interacting molecule 1 in cluster 1 and interacting molecule 2 in cluster 2 

are indicated by colour. b, Heatmap showing the total number of interactions between cell 

types in the decidua dataset obtained with CellPhoneDB. c, Overview of selected ligand–

receptor interactions using the CellPhoneDB v2.0 with subsampling on the decidua dataset. 

P values indicated by circle size, scale on right. The means of the average expression level 965 

of interacting molecule 1 in cluster 1 and interacting molecule 2 in cluster 2 are indicated by 

colour. ⅓ of the dataset was subsampled. d, Heatmap showing the total number of 

interactions between cell types in the decidua dataset obtained with CellPhoneDB v2.0 with 

subsampling. ⅓ of the dataset was subsampled. e. An example of significant interactions 

involving complexes identified by CellPhoneDB in the placenta dataset 
3
. Violin plots show 970 

log-transformed, normalized expression levels of the components of the Interleukin 1 

Receptor – Interleukin 1 (IL1RN–IL1) complex in placental cells. IL1RN expression is 

enriched in the maternal macrophages cluster and the two subunits of the IL1 receptors 

(IL1R1 and IL1RAP) are co-expressed in the extravillous trophoblasts (EVT). SCT, 



 24 

syncytiotrophoblast; VCT, villous cytotrophoblast; F, fibroblasts; HB, Hofbauer cells; M, 975 

macrophages, Endo, endothelial cells. 

 

Figure 4. Diagram showing how lists are generated. Basic steps in the generation of lists to 

populate the tables in CellPhoneDB. 

 980 

 

Figure 5. Screenshot of the web portal. a, Screenshot showing how to input the user’s email 

in order to get a notification when the analysis is finished. b, Screenshot showing the 

significant_means results table. The user can click on a selected id_cp_interaction field to get 

more detailed information for the specific interaction pair. c, Screenshot showing detailed 985 

information for the specific interaction pair that appears when the user clicks on a specific 

id_cp_interaction field. d, Screenshot showing the dot plot visualisation page. 

 

Supplementary Figure Legends: 

 990 

Supplementary Figure 1. Diagram of the database structure. a) database schema, b) 
protein_input/complex_input storage in the CellPhoneDB database tables. The multidata entity stores fields 

common to complex_input and protein_input. This makes it easier and faster for the user to perform interaction 

queries because interaction_table is only related to multidata_table. All non-common fields are stored in either 

protein_table or complex_table. Complex fields are stored in complex_composition_table. The is_complex and 995 

total_protein field are created for optimization purposes. 

 

Supplementary figure 2. Example of complex_input components stored in CellPhoneDB. An 

example of two complex_input rows with two and four components 

 1000 

Tables 

 

Table 1. Troubleshooting table. 

Table 2. Description of the output files means.csv, pvalues.csv and significant_means.csv. 

Table 3. Description of the output file deconvoluted.csv. 1005 

 

 

Related links 
Key references using this protocol 
Vento-Tormo R. et al. Nature 563(7731), 347–353 (2018): 1010 

https://doi.org/10.1038/s41586-018-0698-6 

Stewart, B. et al. Science 365(6460), 1461–1466 (2019):  

https://doi.org/10.1126/science.aat5031 

Popescu, D. et al. Nature 574, 365–371 (2019) 

https://doi.org/10.1038/s41586-019-1652-y 1015 
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Troubleshooting 
Troubleshooting advice can be found in Table 1. 
Table 1. Troubleshooting table 1095 

 

Step Problem Possible reason Solution 

5, 6, 7 [ERROR] Invalid 

Counts data 

The order of the 

input count and meta 

data might be 

switched or the 

genes are neither 

Ensembl IDs nor 

Please use the meta 

data as first and the 

count data as 

second input 

parameter and 

provide a count table 
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gene names with genes 

presented as either 

Ensembl IDs or gene 

names 

5, 6, 7 [ERROR] Invalid 

Counts data: Some 

cell IDs in the meta 

file do not exist in 

counts columns or 

the input file is in a 

format that is not 

compatible with 

CellPhoneDB v2.0. 

The cell IDs in the 

columns of the count 

data do not match 

the cell IDs in the 

cell_type column of 

the meta data 

Please make sure 

that you have the 

same cell IDs in the 

columns of the count 

data and the 

cell_type column of 

the meta data 

6 [ERROR] In order to 

perform subsampling 

you need to specify 

whether to log1p 

input counts or not: 

to do this specify in 

your command as --

subsampling-log 

[true|false] 

 

--subsampling-log 

needs to be 

specified (True or 

False) 

Please provide 

BOOLEAN value to 

the --subsampling-

log input parameter 

 

 

 

Table 2. Description of the output files means.csv, pvalues.csv and significant_means.csv 1100 

 

 

Identifier  Definition Output file Example 

id_cp_interaction Unique 

CellPhoneDB 

identifier for each 

interaction stored in 

the database.  

means.csv; 

pvalues.csv; 

significant_means.cs

v 

CPI-SS096F3E0F2 

interacting_pair Name of the 

interacting pairs 

separated by “|”. 

means.csv; 

pvalues.csv; 

significant_means.cs

v 

JAG2|NOTCH4 

partner A or B Identifier for the first 

interacting partner 

(A) or the second 

(B). It could be: 

UniProt (prefix 

simple:) or complex 

(prefix complex:)  

means.csv; 

pvalues.csv; 

significant_means.cs

v 

simple:Q9Y219 
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gene A or B Gene identifier for 

the first interacting 

partner (A) or the 

second (B). The 

identifier will depend 

on the input user list. 

means.csv; 

pvalues.csv; 

significant_means.cs

v 

ENSG00000184916 

secreted True if one of the 

partners is secreted. 

means.csv; 

pvalues.csv; 

significant_means.cs

v 

FALSE 

Receptor A or B True if the first 

interacting partner 

(A) or the second (B) 

is annotated as a 

receptor in our 

database. 

means.csv; 

pvalues.csv; 

significant_means.cs

v 

FALSE 

annotation_strategy Curated if the 

interaction was 

annotated by the 

CellPhoneDB 

developers. 

Otherwise, the name 

of the database 

where the interaction 

has been 

downloaded from. 

means.csv; 

pvalues.csv; 

significant_means.cs

v 

curated 

is_integrin True if one of the 

partners is an 

integrin. 

means.csv; 

pvalues.csv; 

significant_means.cs

v 

FALSE 

rank Total number of 

significant p-values 

for each interaction 

divided by the 

number of cell type-

cell type 

comparisons. 

significant_means.cs

v 

0.25 

means Mean values for all 

the interacting 

partners: mean 

value refers to the 

total mean of the 

individual partner 

average expression 

values in the 

corresponding 

interacting pairs of 

cell types. If one of 

means.csv 0.53 
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the mean values is 

0, then the total 

mean is set to 0. 

p.values p-values for all the 

interacting partners: 

p.value refers to the 

enrichment of the 

interacting ligand-

receptor pair in each 

of the interacting 

pairs of cell types. 

pvalues.csv 0.01 

significant_mean Significant mean 

calculation for all the 

interacting partners. 

If p.value < 0.05, the 

value will be the 

mean. Alternatively, 

the value is set to 0. 

significant_means.cs

v 

0.53 

 

 

Table 3. Description of the output file deconvoluted.csv 1105 

 

Identifier  Definition Output file Example 

gene_name  Gene identifier for 

one of the subunits 

that is participating 

in the interaction 

defined in the 

“means.csv” file. 

The identifier will 

depend on the input 

of the user list. 

deconvoluted.csv JAG2 

uniprot UniProt identifier for 

one of the subunits 

that is participating 

in the interaction 

defined in 

“means.csv” file.  

deconvoluted.csv Q9Y219 

is_complex True if the subunit is 

part of a complex. 

Single if it is not, 

complex if it is. 

deconvoluted.csv FALSE 

protein_name  Protein name for deconvoluted.csv JAG2_HUMAN 
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one of the subunits 

that is participating 

in the interaction 

defined in 

“means.csv” file. 

complex_name Complex name if the 

subunit is part of a 

complex. Empty if 

not. 

deconvoluted.csv a10b1 complex 

id_cp_interaction Unique 

CellPhoneDB 

identifier for each of 

the interactions 

stored in the 

database.  

deconvoluted.csv CPI-SS0DB3F5A37 

mean Mean expression of 

the corresponding 

gene in each 

cluster. 

deconvoluted.csv 0.9 
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